1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/mm.h> 20 #include <linux/rbtree.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "backref.h" 24 #include "ulist.h" 25 #include "transaction.h" 26 #include "delayed-ref.h" 27 #include "locking.h" 28 29 enum merge_mode { 30 MERGE_IDENTICAL_KEYS = 1, 31 MERGE_IDENTICAL_PARENTS, 32 }; 33 34 /* Just an arbitrary number so we can be sure this happened */ 35 #define BACKREF_FOUND_SHARED 6 36 37 struct extent_inode_elem { 38 u64 inum; 39 u64 offset; 40 struct extent_inode_elem *next; 41 }; 42 43 /* 44 * ref_root is used as the root of the ref tree that hold a collection 45 * of unique references. 46 */ 47 struct ref_root { 48 struct rb_root rb_root; 49 50 /* 51 * The unique_refs represents the number of ref_nodes with a positive 52 * count stored in the tree. Even if a ref_node (the count is greater 53 * than one) is added, the unique_refs will only increase by one. 54 */ 55 unsigned int unique_refs; 56 }; 57 58 /* ref_node is used to store a unique reference to the ref tree. */ 59 struct ref_node { 60 struct rb_node rb_node; 61 62 /* For NORMAL_REF, otherwise all these fields should be set to 0 */ 63 u64 root_id; 64 u64 object_id; 65 u64 offset; 66 67 /* For SHARED_REF, otherwise parent field should be set to 0 */ 68 u64 parent; 69 70 /* Ref to the ref_mod of btrfs_delayed_ref_node */ 71 int ref_mod; 72 }; 73 74 /* Dynamically allocate and initialize a ref_root */ 75 static struct ref_root *ref_root_alloc(void) 76 { 77 struct ref_root *ref_tree; 78 79 ref_tree = kmalloc(sizeof(*ref_tree), GFP_NOFS); 80 if (!ref_tree) 81 return NULL; 82 83 ref_tree->rb_root = RB_ROOT; 84 ref_tree->unique_refs = 0; 85 86 return ref_tree; 87 } 88 89 /* Free all nodes in the ref tree, and reinit ref_root */ 90 static void ref_root_fini(struct ref_root *ref_tree) 91 { 92 struct ref_node *node; 93 struct rb_node *next; 94 95 while ((next = rb_first(&ref_tree->rb_root)) != NULL) { 96 node = rb_entry(next, struct ref_node, rb_node); 97 rb_erase(next, &ref_tree->rb_root); 98 kfree(node); 99 } 100 101 ref_tree->rb_root = RB_ROOT; 102 ref_tree->unique_refs = 0; 103 } 104 105 static void ref_root_free(struct ref_root *ref_tree) 106 { 107 if (!ref_tree) 108 return; 109 110 ref_root_fini(ref_tree); 111 kfree(ref_tree); 112 } 113 114 /* 115 * Compare ref_node with (root_id, object_id, offset, parent) 116 * 117 * The function compares two ref_node a and b. It returns an integer less 118 * than, equal to, or greater than zero , respectively, to be less than, to 119 * equal, or be greater than b. 120 */ 121 static int ref_node_cmp(struct ref_node *a, struct ref_node *b) 122 { 123 if (a->root_id < b->root_id) 124 return -1; 125 else if (a->root_id > b->root_id) 126 return 1; 127 128 if (a->object_id < b->object_id) 129 return -1; 130 else if (a->object_id > b->object_id) 131 return 1; 132 133 if (a->offset < b->offset) 134 return -1; 135 else if (a->offset > b->offset) 136 return 1; 137 138 if (a->parent < b->parent) 139 return -1; 140 else if (a->parent > b->parent) 141 return 1; 142 143 return 0; 144 } 145 146 /* 147 * Search ref_node with (root_id, object_id, offset, parent) in the tree 148 * 149 * if found, the pointer of the ref_node will be returned; 150 * if not found, NULL will be returned and pos will point to the rb_node for 151 * insert, pos_parent will point to pos'parent for insert; 152 */ 153 static struct ref_node *__ref_tree_search(struct ref_root *ref_tree, 154 struct rb_node ***pos, 155 struct rb_node **pos_parent, 156 u64 root_id, u64 object_id, 157 u64 offset, u64 parent) 158 { 159 struct ref_node *cur = NULL; 160 struct ref_node entry; 161 int ret; 162 163 entry.root_id = root_id; 164 entry.object_id = object_id; 165 entry.offset = offset; 166 entry.parent = parent; 167 168 *pos = &ref_tree->rb_root.rb_node; 169 170 while (**pos) { 171 *pos_parent = **pos; 172 cur = rb_entry(*pos_parent, struct ref_node, rb_node); 173 174 ret = ref_node_cmp(cur, &entry); 175 if (ret > 0) 176 *pos = &(**pos)->rb_left; 177 else if (ret < 0) 178 *pos = &(**pos)->rb_right; 179 else 180 return cur; 181 } 182 183 return NULL; 184 } 185 186 /* 187 * Insert a ref_node to the ref tree 188 * @pos used for specifiy the position to insert 189 * @pos_parent for specifiy pos's parent 190 * 191 * success, return 0; 192 * ref_node already exists, return -EEXIST; 193 */ 194 static int ref_tree_insert(struct ref_root *ref_tree, struct rb_node **pos, 195 struct rb_node *pos_parent, struct ref_node *ins) 196 { 197 struct rb_node **p = NULL; 198 struct rb_node *parent = NULL; 199 struct ref_node *cur = NULL; 200 201 if (!pos) { 202 cur = __ref_tree_search(ref_tree, &p, &parent, ins->root_id, 203 ins->object_id, ins->offset, 204 ins->parent); 205 if (cur) 206 return -EEXIST; 207 } else { 208 p = pos; 209 parent = pos_parent; 210 } 211 212 rb_link_node(&ins->rb_node, parent, p); 213 rb_insert_color(&ins->rb_node, &ref_tree->rb_root); 214 215 return 0; 216 } 217 218 /* Erase and free ref_node, caller should update ref_root->unique_refs */ 219 static void ref_tree_remove(struct ref_root *ref_tree, struct ref_node *node) 220 { 221 rb_erase(&node->rb_node, &ref_tree->rb_root); 222 kfree(node); 223 } 224 225 /* 226 * Update ref_root->unique_refs 227 * 228 * Call __ref_tree_search 229 * 1. if ref_node doesn't exist, ref_tree_insert this node, and update 230 * ref_root->unique_refs: 231 * if ref_node->ref_mod > 0, ref_root->unique_refs++; 232 * if ref_node->ref_mod < 0, do noting; 233 * 234 * 2. if ref_node is found, then get origin ref_node->ref_mod, and update 235 * ref_node->ref_mod. 236 * if ref_node->ref_mod is equal to 0,then call ref_tree_remove 237 * 238 * according to origin_mod and new_mod, update ref_root->items 239 * +----------------+--------------+-------------+ 240 * | |new_count <= 0|new_count > 0| 241 * +----------------+--------------+-------------+ 242 * |origin_count < 0| 0 | 1 | 243 * +----------------+--------------+-------------+ 244 * |origin_count > 0| -1 | 0 | 245 * +----------------+--------------+-------------+ 246 * 247 * In case of allocation failure, -ENOMEM is returned and the ref_tree stays 248 * unaltered. 249 * Success, return 0 250 */ 251 static int ref_tree_add(struct ref_root *ref_tree, u64 root_id, u64 object_id, 252 u64 offset, u64 parent, int count) 253 { 254 struct ref_node *node = NULL; 255 struct rb_node **pos = NULL; 256 struct rb_node *pos_parent = NULL; 257 int origin_count; 258 int ret; 259 260 if (!count) 261 return 0; 262 263 node = __ref_tree_search(ref_tree, &pos, &pos_parent, root_id, 264 object_id, offset, parent); 265 if (node == NULL) { 266 node = kmalloc(sizeof(*node), GFP_NOFS); 267 if (!node) 268 return -ENOMEM; 269 270 node->root_id = root_id; 271 node->object_id = object_id; 272 node->offset = offset; 273 node->parent = parent; 274 node->ref_mod = count; 275 276 ret = ref_tree_insert(ref_tree, pos, pos_parent, node); 277 ASSERT(!ret); 278 if (ret) { 279 kfree(node); 280 return ret; 281 } 282 283 ref_tree->unique_refs += node->ref_mod > 0 ? 1 : 0; 284 285 return 0; 286 } 287 288 origin_count = node->ref_mod; 289 node->ref_mod += count; 290 291 if (node->ref_mod > 0) 292 ref_tree->unique_refs += origin_count > 0 ? 0 : 1; 293 else if (node->ref_mod <= 0) 294 ref_tree->unique_refs += origin_count > 0 ? -1 : 0; 295 296 if (!node->ref_mod) 297 ref_tree_remove(ref_tree, node); 298 299 return 0; 300 } 301 302 static int check_extent_in_eb(const struct btrfs_key *key, 303 const struct extent_buffer *eb, 304 const struct btrfs_file_extent_item *fi, 305 u64 extent_item_pos, 306 struct extent_inode_elem **eie) 307 { 308 u64 offset = 0; 309 struct extent_inode_elem *e; 310 311 if (!btrfs_file_extent_compression(eb, fi) && 312 !btrfs_file_extent_encryption(eb, fi) && 313 !btrfs_file_extent_other_encoding(eb, fi)) { 314 u64 data_offset; 315 u64 data_len; 316 317 data_offset = btrfs_file_extent_offset(eb, fi); 318 data_len = btrfs_file_extent_num_bytes(eb, fi); 319 320 if (extent_item_pos < data_offset || 321 extent_item_pos >= data_offset + data_len) 322 return 1; 323 offset = extent_item_pos - data_offset; 324 } 325 326 e = kmalloc(sizeof(*e), GFP_NOFS); 327 if (!e) 328 return -ENOMEM; 329 330 e->next = *eie; 331 e->inum = key->objectid; 332 e->offset = key->offset + offset; 333 *eie = e; 334 335 return 0; 336 } 337 338 static void free_inode_elem_list(struct extent_inode_elem *eie) 339 { 340 struct extent_inode_elem *eie_next; 341 342 for (; eie; eie = eie_next) { 343 eie_next = eie->next; 344 kfree(eie); 345 } 346 } 347 348 static int find_extent_in_eb(const struct extent_buffer *eb, 349 u64 wanted_disk_byte, u64 extent_item_pos, 350 struct extent_inode_elem **eie) 351 { 352 u64 disk_byte; 353 struct btrfs_key key; 354 struct btrfs_file_extent_item *fi; 355 int slot; 356 int nritems; 357 int extent_type; 358 int ret; 359 360 /* 361 * from the shared data ref, we only have the leaf but we need 362 * the key. thus, we must look into all items and see that we 363 * find one (some) with a reference to our extent item. 364 */ 365 nritems = btrfs_header_nritems(eb); 366 for (slot = 0; slot < nritems; ++slot) { 367 btrfs_item_key_to_cpu(eb, &key, slot); 368 if (key.type != BTRFS_EXTENT_DATA_KEY) 369 continue; 370 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 371 extent_type = btrfs_file_extent_type(eb, fi); 372 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 373 continue; 374 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 375 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 376 if (disk_byte != wanted_disk_byte) 377 continue; 378 379 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 380 if (ret < 0) 381 return ret; 382 } 383 384 return 0; 385 } 386 387 /* 388 * this structure records all encountered refs on the way up to the root 389 */ 390 struct prelim_ref { 391 struct list_head list; 392 u64 root_id; 393 struct btrfs_key key_for_search; 394 int level; 395 int count; 396 struct extent_inode_elem *inode_list; 397 u64 parent; 398 u64 wanted_disk_byte; 399 }; 400 401 static struct kmem_cache *btrfs_prelim_ref_cache; 402 403 int __init btrfs_prelim_ref_init(void) 404 { 405 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 406 sizeof(struct prelim_ref), 407 0, 408 SLAB_MEM_SPREAD, 409 NULL); 410 if (!btrfs_prelim_ref_cache) 411 return -ENOMEM; 412 return 0; 413 } 414 415 void btrfs_prelim_ref_exit(void) 416 { 417 kmem_cache_destroy(btrfs_prelim_ref_cache); 418 } 419 420 /* 421 * the rules for all callers of this function are: 422 * - obtaining the parent is the goal 423 * - if you add a key, you must know that it is a correct key 424 * - if you cannot add the parent or a correct key, then we will look into the 425 * block later to set a correct key 426 * 427 * delayed refs 428 * ============ 429 * backref type | shared | indirect | shared | indirect 430 * information | tree | tree | data | data 431 * --------------------+--------+----------+--------+---------- 432 * parent logical | y | - | - | - 433 * key to resolve | - | y | y | y 434 * tree block logical | - | - | - | - 435 * root for resolving | y | y | y | y 436 * 437 * - column 1: we've the parent -> done 438 * - column 2, 3, 4: we use the key to find the parent 439 * 440 * on disk refs (inline or keyed) 441 * ============================== 442 * backref type | shared | indirect | shared | indirect 443 * information | tree | tree | data | data 444 * --------------------+--------+----------+--------+---------- 445 * parent logical | y | - | y | - 446 * key to resolve | - | - | - | y 447 * tree block logical | y | y | y | y 448 * root for resolving | - | y | y | y 449 * 450 * - column 1, 3: we've the parent -> done 451 * - column 2: we take the first key from the block to find the parent 452 * (see add_missing_keys) 453 * - column 4: we use the key to find the parent 454 * 455 * additional information that's available but not required to find the parent 456 * block might help in merging entries to gain some speed. 457 */ 458 static int add_prelim_ref(struct list_head *head, u64 root_id, 459 const struct btrfs_key *key, int level, u64 parent, 460 u64 wanted_disk_byte, int count, gfp_t gfp_mask) 461 { 462 struct prelim_ref *ref; 463 464 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 465 return 0; 466 467 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 468 if (!ref) 469 return -ENOMEM; 470 471 ref->root_id = root_id; 472 if (key) { 473 ref->key_for_search = *key; 474 /* 475 * We can often find data backrefs with an offset that is too 476 * large (>= LLONG_MAX, maximum allowed file offset) due to 477 * underflows when subtracting a file's offset with the data 478 * offset of its corresponding extent data item. This can 479 * happen for example in the clone ioctl. 480 * So if we detect such case we set the search key's offset to 481 * zero to make sure we will find the matching file extent item 482 * at add_all_parents(), otherwise we will miss it because the 483 * offset taken form the backref is much larger then the offset 484 * of the file extent item. This can make us scan a very large 485 * number of file extent items, but at least it will not make 486 * us miss any. 487 * This is an ugly workaround for a behaviour that should have 488 * never existed, but it does and a fix for the clone ioctl 489 * would touch a lot of places, cause backwards incompatibility 490 * and would not fix the problem for extents cloned with older 491 * kernels. 492 */ 493 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY && 494 ref->key_for_search.offset >= LLONG_MAX) 495 ref->key_for_search.offset = 0; 496 } else { 497 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 498 } 499 500 ref->inode_list = NULL; 501 ref->level = level; 502 ref->count = count; 503 ref->parent = parent; 504 ref->wanted_disk_byte = wanted_disk_byte; 505 list_add_tail(&ref->list, head); 506 507 return 0; 508 } 509 510 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 511 struct ulist *parents, struct prelim_ref *ref, 512 int level, u64 time_seq, const u64 *extent_item_pos, 513 u64 total_refs) 514 { 515 int ret = 0; 516 int slot; 517 struct extent_buffer *eb; 518 struct btrfs_key key; 519 struct btrfs_key *key_for_search = &ref->key_for_search; 520 struct btrfs_file_extent_item *fi; 521 struct extent_inode_elem *eie = NULL, *old = NULL; 522 u64 disk_byte; 523 u64 wanted_disk_byte = ref->wanted_disk_byte; 524 u64 count = 0; 525 526 if (level != 0) { 527 eb = path->nodes[level]; 528 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 529 if (ret < 0) 530 return ret; 531 return 0; 532 } 533 534 /* 535 * We normally enter this function with the path already pointing to 536 * the first item to check. But sometimes, we may enter it with 537 * slot==nritems. In that case, go to the next leaf before we continue. 538 */ 539 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 540 if (time_seq == SEQ_LAST) 541 ret = btrfs_next_leaf(root, path); 542 else 543 ret = btrfs_next_old_leaf(root, path, time_seq); 544 } 545 546 while (!ret && count < total_refs) { 547 eb = path->nodes[0]; 548 slot = path->slots[0]; 549 550 btrfs_item_key_to_cpu(eb, &key, slot); 551 552 if (key.objectid != key_for_search->objectid || 553 key.type != BTRFS_EXTENT_DATA_KEY) 554 break; 555 556 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 557 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 558 559 if (disk_byte == wanted_disk_byte) { 560 eie = NULL; 561 old = NULL; 562 count++; 563 if (extent_item_pos) { 564 ret = check_extent_in_eb(&key, eb, fi, 565 *extent_item_pos, 566 &eie); 567 if (ret < 0) 568 break; 569 } 570 if (ret > 0) 571 goto next; 572 ret = ulist_add_merge_ptr(parents, eb->start, 573 eie, (void **)&old, GFP_NOFS); 574 if (ret < 0) 575 break; 576 if (!ret && extent_item_pos) { 577 while (old->next) 578 old = old->next; 579 old->next = eie; 580 } 581 eie = NULL; 582 } 583 next: 584 if (time_seq == SEQ_LAST) 585 ret = btrfs_next_item(root, path); 586 else 587 ret = btrfs_next_old_item(root, path, time_seq); 588 } 589 590 if (ret > 0) 591 ret = 0; 592 else if (ret < 0) 593 free_inode_elem_list(eie); 594 return ret; 595 } 596 597 /* 598 * resolve an indirect backref in the form (root_id, key, level) 599 * to a logical address 600 */ 601 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 602 struct btrfs_path *path, u64 time_seq, 603 struct prelim_ref *ref, struct ulist *parents, 604 const u64 *extent_item_pos, u64 total_refs) 605 { 606 struct btrfs_root *root; 607 struct btrfs_key root_key; 608 struct extent_buffer *eb; 609 int ret = 0; 610 int root_level; 611 int level = ref->level; 612 int index; 613 614 root_key.objectid = ref->root_id; 615 root_key.type = BTRFS_ROOT_ITEM_KEY; 616 root_key.offset = (u64)-1; 617 618 index = srcu_read_lock(&fs_info->subvol_srcu); 619 620 root = btrfs_get_fs_root(fs_info, &root_key, false); 621 if (IS_ERR(root)) { 622 srcu_read_unlock(&fs_info->subvol_srcu, index); 623 ret = PTR_ERR(root); 624 goto out; 625 } 626 627 if (btrfs_is_testing(fs_info)) { 628 srcu_read_unlock(&fs_info->subvol_srcu, index); 629 ret = -ENOENT; 630 goto out; 631 } 632 633 if (path->search_commit_root) 634 root_level = btrfs_header_level(root->commit_root); 635 else if (time_seq == SEQ_LAST) 636 root_level = btrfs_header_level(root->node); 637 else 638 root_level = btrfs_old_root_level(root, time_seq); 639 640 if (root_level + 1 == level) { 641 srcu_read_unlock(&fs_info->subvol_srcu, index); 642 goto out; 643 } 644 645 path->lowest_level = level; 646 if (time_seq == SEQ_LAST) 647 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path, 648 0, 0); 649 else 650 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, 651 time_seq); 652 653 /* root node has been locked, we can release @subvol_srcu safely here */ 654 srcu_read_unlock(&fs_info->subvol_srcu, index); 655 656 btrfs_debug(fs_info, 657 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 658 ref->root_id, level, ref->count, ret, 659 ref->key_for_search.objectid, ref->key_for_search.type, 660 ref->key_for_search.offset); 661 if (ret < 0) 662 goto out; 663 664 eb = path->nodes[level]; 665 while (!eb) { 666 if (WARN_ON(!level)) { 667 ret = 1; 668 goto out; 669 } 670 level--; 671 eb = path->nodes[level]; 672 } 673 674 ret = add_all_parents(root, path, parents, ref, level, time_seq, 675 extent_item_pos, total_refs); 676 out: 677 path->lowest_level = 0; 678 btrfs_release_path(path); 679 return ret; 680 } 681 682 static struct extent_inode_elem * 683 unode_aux_to_inode_list(struct ulist_node *node) 684 { 685 if (!node) 686 return NULL; 687 return (struct extent_inode_elem *)(uintptr_t)node->aux; 688 } 689 690 /* 691 * resolve all indirect backrefs from the list 692 */ 693 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 694 struct btrfs_path *path, u64 time_seq, 695 struct list_head *head, 696 const u64 *extent_item_pos, u64 total_refs, 697 u64 root_objectid) 698 { 699 int err; 700 int ret = 0; 701 struct prelim_ref *ref; 702 struct prelim_ref *ref_safe; 703 struct prelim_ref *new_ref; 704 struct ulist *parents; 705 struct ulist_node *node; 706 struct ulist_iterator uiter; 707 708 parents = ulist_alloc(GFP_NOFS); 709 if (!parents) 710 return -ENOMEM; 711 712 /* 713 * _safe allows us to insert directly after the current item without 714 * iterating over the newly inserted items. 715 * we're also allowed to re-assign ref during iteration. 716 */ 717 list_for_each_entry_safe(ref, ref_safe, head, list) { 718 if (ref->parent) /* already direct */ 719 continue; 720 if (ref->count == 0) 721 continue; 722 if (root_objectid && ref->root_id != root_objectid) { 723 ret = BACKREF_FOUND_SHARED; 724 goto out; 725 } 726 err = resolve_indirect_ref(fs_info, path, time_seq, ref, 727 parents, extent_item_pos, 728 total_refs); 729 /* 730 * we can only tolerate ENOENT,otherwise,we should catch error 731 * and return directly. 732 */ 733 if (err == -ENOENT) { 734 continue; 735 } else if (err) { 736 ret = err; 737 goto out; 738 } 739 740 /* we put the first parent into the ref at hand */ 741 ULIST_ITER_INIT(&uiter); 742 node = ulist_next(parents, &uiter); 743 ref->parent = node ? node->val : 0; 744 ref->inode_list = unode_aux_to_inode_list(node); 745 746 /* additional parents require new refs being added here */ 747 while ((node = ulist_next(parents, &uiter))) { 748 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 749 GFP_NOFS); 750 if (!new_ref) { 751 ret = -ENOMEM; 752 goto out; 753 } 754 memcpy(new_ref, ref, sizeof(*ref)); 755 new_ref->parent = node->val; 756 new_ref->inode_list = unode_aux_to_inode_list(node); 757 list_add(&new_ref->list, &ref->list); 758 } 759 ulist_reinit(parents); 760 } 761 out: 762 ulist_free(parents); 763 return ret; 764 } 765 766 static inline int ref_for_same_block(struct prelim_ref *ref1, 767 struct prelim_ref *ref2) 768 { 769 if (ref1->level != ref2->level) 770 return 0; 771 if (ref1->root_id != ref2->root_id) 772 return 0; 773 if (ref1->key_for_search.type != ref2->key_for_search.type) 774 return 0; 775 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 776 return 0; 777 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 778 return 0; 779 if (ref1->parent != ref2->parent) 780 return 0; 781 782 return 1; 783 } 784 785 /* 786 * read tree blocks and add keys where required. 787 */ 788 static int add_missing_keys(struct btrfs_fs_info *fs_info, 789 struct list_head *head) 790 { 791 struct prelim_ref *ref; 792 struct extent_buffer *eb; 793 794 list_for_each_entry(ref, head, list) { 795 if (ref->parent) 796 continue; 797 if (ref->key_for_search.type) 798 continue; 799 BUG_ON(!ref->wanted_disk_byte); 800 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0); 801 if (IS_ERR(eb)) { 802 return PTR_ERR(eb); 803 } else if (!extent_buffer_uptodate(eb)) { 804 free_extent_buffer(eb); 805 return -EIO; 806 } 807 btrfs_tree_read_lock(eb); 808 if (btrfs_header_level(eb) == 0) 809 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 810 else 811 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 812 btrfs_tree_read_unlock(eb); 813 free_extent_buffer(eb); 814 } 815 return 0; 816 } 817 818 /* 819 * merge backrefs and adjust counts accordingly 820 * 821 * FIXME: For MERGE_IDENTICAL_KEYS, if we add more keys in add_prelim_ref 822 * then we can merge more here. Additionally, we could even add a key 823 * range for the blocks we looked into to merge even more (-> replace 824 * unresolved refs by those having a parent). 825 */ 826 static void merge_refs(struct list_head *head, enum merge_mode mode) 827 { 828 struct prelim_ref *pos1; 829 830 list_for_each_entry(pos1, head, list) { 831 struct prelim_ref *pos2 = pos1, *tmp; 832 833 list_for_each_entry_safe_continue(pos2, tmp, head, list) { 834 struct prelim_ref *ref1 = pos1, *ref2 = pos2; 835 struct extent_inode_elem *eie; 836 837 if (!ref_for_same_block(ref1, ref2)) 838 continue; 839 if (mode == MERGE_IDENTICAL_KEYS) { 840 if (!ref1->parent && ref2->parent) 841 swap(ref1, ref2); 842 } else { 843 if (ref1->parent != ref2->parent) 844 continue; 845 } 846 847 eie = ref1->inode_list; 848 while (eie && eie->next) 849 eie = eie->next; 850 if (eie) 851 eie->next = ref2->inode_list; 852 else 853 ref1->inode_list = ref2->inode_list; 854 ref1->count += ref2->count; 855 856 list_del(&ref2->list); 857 kmem_cache_free(btrfs_prelim_ref_cache, ref2); 858 cond_resched(); 859 } 860 861 } 862 } 863 864 /* 865 * add all currently queued delayed refs from this head whose seq nr is 866 * smaller or equal that seq to the list 867 */ 868 static int add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 869 struct list_head *prefs, u64 *total_refs, 870 u64 inum) 871 { 872 struct btrfs_delayed_ref_node *node; 873 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 874 struct btrfs_key key; 875 struct btrfs_key op_key = {0}; 876 int sgn; 877 int ret = 0; 878 879 if (extent_op && extent_op->update_key) 880 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 881 882 spin_lock(&head->lock); 883 list_for_each_entry(node, &head->ref_list, list) { 884 if (node->seq > seq) 885 continue; 886 887 switch (node->action) { 888 case BTRFS_ADD_DELAYED_EXTENT: 889 case BTRFS_UPDATE_DELAYED_HEAD: 890 WARN_ON(1); 891 continue; 892 case BTRFS_ADD_DELAYED_REF: 893 sgn = 1; 894 break; 895 case BTRFS_DROP_DELAYED_REF: 896 sgn = -1; 897 break; 898 default: 899 BUG_ON(1); 900 } 901 *total_refs += (node->ref_mod * sgn); 902 switch (node->type) { 903 case BTRFS_TREE_BLOCK_REF_KEY: { 904 struct btrfs_delayed_tree_ref *ref; 905 906 ref = btrfs_delayed_node_to_tree_ref(node); 907 ret = add_prelim_ref(prefs, ref->root, &op_key, 908 ref->level + 1, 0, node->bytenr, 909 node->ref_mod * sgn, GFP_ATOMIC); 910 break; 911 } 912 case BTRFS_SHARED_BLOCK_REF_KEY: { 913 struct btrfs_delayed_tree_ref *ref; 914 915 ref = btrfs_delayed_node_to_tree_ref(node); 916 ret = add_prelim_ref(prefs, 0, NULL, ref->level + 1, 917 ref->parent, node->bytenr, 918 node->ref_mod * sgn, GFP_ATOMIC); 919 break; 920 } 921 case BTRFS_EXTENT_DATA_REF_KEY: { 922 struct btrfs_delayed_data_ref *ref; 923 ref = btrfs_delayed_node_to_data_ref(node); 924 925 key.objectid = ref->objectid; 926 key.type = BTRFS_EXTENT_DATA_KEY; 927 key.offset = ref->offset; 928 929 /* 930 * Found a inum that doesn't match our known inum, we 931 * know it's shared. 932 */ 933 if (inum && ref->objectid != inum) { 934 ret = BACKREF_FOUND_SHARED; 935 break; 936 } 937 938 ret = add_prelim_ref(prefs, ref->root, &key, 0, 0, 939 node->bytenr, node->ref_mod * sgn, 940 GFP_ATOMIC); 941 break; 942 } 943 case BTRFS_SHARED_DATA_REF_KEY: { 944 struct btrfs_delayed_data_ref *ref; 945 946 ref = btrfs_delayed_node_to_data_ref(node); 947 ret = add_prelim_ref(prefs, 0, NULL, 0, ref->parent, 948 node->bytenr, node->ref_mod * sgn, 949 GFP_ATOMIC); 950 break; 951 } 952 default: 953 WARN_ON(1); 954 } 955 if (ret) 956 break; 957 } 958 spin_unlock(&head->lock); 959 return ret; 960 } 961 962 /* 963 * add all inline backrefs for bytenr to the list 964 */ 965 static int add_inline_refs(struct btrfs_path *path, u64 bytenr, 966 int *info_level, struct list_head *prefs, 967 struct ref_root *ref_tree, 968 u64 *total_refs, u64 inum) 969 { 970 int ret = 0; 971 int slot; 972 struct extent_buffer *leaf; 973 struct btrfs_key key; 974 struct btrfs_key found_key; 975 unsigned long ptr; 976 unsigned long end; 977 struct btrfs_extent_item *ei; 978 u64 flags; 979 u64 item_size; 980 981 /* 982 * enumerate all inline refs 983 */ 984 leaf = path->nodes[0]; 985 slot = path->slots[0]; 986 987 item_size = btrfs_item_size_nr(leaf, slot); 988 BUG_ON(item_size < sizeof(*ei)); 989 990 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 991 flags = btrfs_extent_flags(leaf, ei); 992 *total_refs += btrfs_extent_refs(leaf, ei); 993 btrfs_item_key_to_cpu(leaf, &found_key, slot); 994 995 ptr = (unsigned long)(ei + 1); 996 end = (unsigned long)ei + item_size; 997 998 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 999 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1000 struct btrfs_tree_block_info *info; 1001 1002 info = (struct btrfs_tree_block_info *)ptr; 1003 *info_level = btrfs_tree_block_level(leaf, info); 1004 ptr += sizeof(struct btrfs_tree_block_info); 1005 BUG_ON(ptr > end); 1006 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1007 *info_level = found_key.offset; 1008 } else { 1009 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1010 } 1011 1012 while (ptr < end) { 1013 struct btrfs_extent_inline_ref *iref; 1014 u64 offset; 1015 int type; 1016 1017 iref = (struct btrfs_extent_inline_ref *)ptr; 1018 type = btrfs_extent_inline_ref_type(leaf, iref); 1019 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1020 1021 switch (type) { 1022 case BTRFS_SHARED_BLOCK_REF_KEY: 1023 ret = add_prelim_ref(prefs, 0, NULL, *info_level + 1, 1024 offset, bytenr, 1, GFP_NOFS); 1025 break; 1026 case BTRFS_SHARED_DATA_REF_KEY: { 1027 struct btrfs_shared_data_ref *sdref; 1028 int count; 1029 1030 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1031 count = btrfs_shared_data_ref_count(leaf, sdref); 1032 ret = add_prelim_ref(prefs, 0, NULL, 0, offset, 1033 bytenr, count, GFP_NOFS); 1034 if (ref_tree) { 1035 if (!ret) 1036 ret = ref_tree_add(ref_tree, 0, 0, 0, 1037 bytenr, count); 1038 if (!ret && ref_tree->unique_refs > 1) 1039 ret = BACKREF_FOUND_SHARED; 1040 } 1041 break; 1042 } 1043 case BTRFS_TREE_BLOCK_REF_KEY: 1044 ret = add_prelim_ref(prefs, offset, NULL, 1045 *info_level + 1, 0, 1046 bytenr, 1, GFP_NOFS); 1047 break; 1048 case BTRFS_EXTENT_DATA_REF_KEY: { 1049 struct btrfs_extent_data_ref *dref; 1050 int count; 1051 u64 root; 1052 1053 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1054 count = btrfs_extent_data_ref_count(leaf, dref); 1055 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1056 dref); 1057 key.type = BTRFS_EXTENT_DATA_KEY; 1058 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1059 1060 if (inum && key.objectid != inum) { 1061 ret = BACKREF_FOUND_SHARED; 1062 break; 1063 } 1064 1065 root = btrfs_extent_data_ref_root(leaf, dref); 1066 ret = add_prelim_ref(prefs, root, &key, 0, 0, 1067 bytenr, count, GFP_NOFS); 1068 if (ref_tree) { 1069 if (!ret) 1070 ret = ref_tree_add(ref_tree, root, 1071 key.objectid, 1072 key.offset, 0, 1073 count); 1074 if (!ret && ref_tree->unique_refs > 1) 1075 ret = BACKREF_FOUND_SHARED; 1076 } 1077 break; 1078 } 1079 default: 1080 WARN_ON(1); 1081 } 1082 if (ret) 1083 return ret; 1084 ptr += btrfs_extent_inline_ref_size(type); 1085 } 1086 1087 return 0; 1088 } 1089 1090 /* 1091 * add all non-inline backrefs for bytenr to the list 1092 */ 1093 static int add_keyed_refs(struct btrfs_fs_info *fs_info, 1094 struct btrfs_path *path, u64 bytenr, 1095 int info_level, struct list_head *prefs, 1096 struct ref_root *ref_tree, u64 inum) 1097 { 1098 struct btrfs_root *extent_root = fs_info->extent_root; 1099 int ret; 1100 int slot; 1101 struct extent_buffer *leaf; 1102 struct btrfs_key key; 1103 1104 while (1) { 1105 ret = btrfs_next_item(extent_root, path); 1106 if (ret < 0) 1107 break; 1108 if (ret) { 1109 ret = 0; 1110 break; 1111 } 1112 1113 slot = path->slots[0]; 1114 leaf = path->nodes[0]; 1115 btrfs_item_key_to_cpu(leaf, &key, slot); 1116 1117 if (key.objectid != bytenr) 1118 break; 1119 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1120 continue; 1121 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1122 break; 1123 1124 switch (key.type) { 1125 case BTRFS_SHARED_BLOCK_REF_KEY: 1126 ret = add_prelim_ref(prefs, 0, NULL, info_level + 1, 1127 key.offset, bytenr, 1, GFP_NOFS); 1128 break; 1129 case BTRFS_SHARED_DATA_REF_KEY: { 1130 struct btrfs_shared_data_ref *sdref; 1131 int count; 1132 1133 sdref = btrfs_item_ptr(leaf, slot, 1134 struct btrfs_shared_data_ref); 1135 count = btrfs_shared_data_ref_count(leaf, sdref); 1136 ret = add_prelim_ref(prefs, 0, NULL, 0, key.offset, 1137 bytenr, count, GFP_NOFS); 1138 if (ref_tree) { 1139 if (!ret) 1140 ret = ref_tree_add(ref_tree, 0, 0, 0, 1141 bytenr, count); 1142 if (!ret && ref_tree->unique_refs > 1) 1143 ret = BACKREF_FOUND_SHARED; 1144 } 1145 break; 1146 } 1147 case BTRFS_TREE_BLOCK_REF_KEY: 1148 ret = add_prelim_ref(prefs, key.offset, NULL, 1149 info_level + 1, 0, 1150 bytenr, 1, GFP_NOFS); 1151 break; 1152 case BTRFS_EXTENT_DATA_REF_KEY: { 1153 struct btrfs_extent_data_ref *dref; 1154 int count; 1155 u64 root; 1156 1157 dref = btrfs_item_ptr(leaf, slot, 1158 struct btrfs_extent_data_ref); 1159 count = btrfs_extent_data_ref_count(leaf, dref); 1160 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1161 dref); 1162 key.type = BTRFS_EXTENT_DATA_KEY; 1163 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1164 1165 if (inum && key.objectid != inum) { 1166 ret = BACKREF_FOUND_SHARED; 1167 break; 1168 } 1169 1170 root = btrfs_extent_data_ref_root(leaf, dref); 1171 ret = add_prelim_ref(prefs, root, &key, 0, 0, 1172 bytenr, count, GFP_NOFS); 1173 if (ref_tree) { 1174 if (!ret) 1175 ret = ref_tree_add(ref_tree, root, 1176 key.objectid, 1177 key.offset, 0, 1178 count); 1179 if (!ret && ref_tree->unique_refs > 1) 1180 ret = BACKREF_FOUND_SHARED; 1181 } 1182 break; 1183 } 1184 default: 1185 WARN_ON(1); 1186 } 1187 if (ret) 1188 return ret; 1189 1190 } 1191 1192 return ret; 1193 } 1194 1195 /* 1196 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1197 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1198 * indirect refs to their parent bytenr. 1199 * When roots are found, they're added to the roots list 1200 * 1201 * NOTE: This can return values > 0 1202 * 1203 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave 1204 * much like trans == NULL case, the difference only lies in it will not 1205 * commit root. 1206 * The special case is for qgroup to search roots in commit_transaction(). 1207 * 1208 * If check_shared is set to 1, any extent has more than one ref item, will 1209 * be returned BACKREF_FOUND_SHARED immediately. 1210 * 1211 * FIXME some caching might speed things up 1212 */ 1213 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1214 struct btrfs_fs_info *fs_info, u64 bytenr, 1215 u64 time_seq, struct ulist *refs, 1216 struct ulist *roots, const u64 *extent_item_pos, 1217 u64 root_objectid, u64 inum, int check_shared) 1218 { 1219 struct btrfs_key key; 1220 struct btrfs_path *path; 1221 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1222 struct btrfs_delayed_ref_head *head; 1223 int info_level = 0; 1224 int ret; 1225 struct list_head prefs_delayed; 1226 struct list_head prefs; 1227 struct prelim_ref *ref; 1228 struct extent_inode_elem *eie = NULL; 1229 struct ref_root *ref_tree = NULL; 1230 u64 total_refs = 0; 1231 1232 INIT_LIST_HEAD(&prefs); 1233 INIT_LIST_HEAD(&prefs_delayed); 1234 1235 key.objectid = bytenr; 1236 key.offset = (u64)-1; 1237 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1238 key.type = BTRFS_METADATA_ITEM_KEY; 1239 else 1240 key.type = BTRFS_EXTENT_ITEM_KEY; 1241 1242 path = btrfs_alloc_path(); 1243 if (!path) 1244 return -ENOMEM; 1245 if (!trans) { 1246 path->search_commit_root = 1; 1247 path->skip_locking = 1; 1248 } 1249 1250 if (time_seq == SEQ_LAST) 1251 path->skip_locking = 1; 1252 1253 /* 1254 * grab both a lock on the path and a lock on the delayed ref head. 1255 * We need both to get a consistent picture of how the refs look 1256 * at a specified point in time 1257 */ 1258 again: 1259 head = NULL; 1260 1261 if (check_shared) { 1262 if (!ref_tree) { 1263 ref_tree = ref_root_alloc(); 1264 if (!ref_tree) { 1265 ret = -ENOMEM; 1266 goto out; 1267 } 1268 } else { 1269 ref_root_fini(ref_tree); 1270 } 1271 } 1272 1273 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1274 if (ret < 0) 1275 goto out; 1276 BUG_ON(ret == 0); 1277 1278 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1279 if (trans && likely(trans->type != __TRANS_DUMMY) && 1280 time_seq != SEQ_LAST) { 1281 #else 1282 if (trans && time_seq != SEQ_LAST) { 1283 #endif 1284 /* 1285 * look if there are updates for this ref queued and lock the 1286 * head 1287 */ 1288 delayed_refs = &trans->transaction->delayed_refs; 1289 spin_lock(&delayed_refs->lock); 1290 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1291 if (head) { 1292 if (!mutex_trylock(&head->mutex)) { 1293 refcount_inc(&head->node.refs); 1294 spin_unlock(&delayed_refs->lock); 1295 1296 btrfs_release_path(path); 1297 1298 /* 1299 * Mutex was contended, block until it's 1300 * released and try again 1301 */ 1302 mutex_lock(&head->mutex); 1303 mutex_unlock(&head->mutex); 1304 btrfs_put_delayed_ref(&head->node); 1305 goto again; 1306 } 1307 spin_unlock(&delayed_refs->lock); 1308 ret = add_delayed_refs(head, time_seq, 1309 &prefs_delayed, &total_refs, 1310 inum); 1311 mutex_unlock(&head->mutex); 1312 if (ret) 1313 goto out; 1314 } else { 1315 spin_unlock(&delayed_refs->lock); 1316 } 1317 1318 if (check_shared && !list_empty(&prefs_delayed)) { 1319 /* 1320 * Add all delay_ref to the ref_tree and check if there 1321 * are multiple ref items added. 1322 */ 1323 list_for_each_entry(ref, &prefs_delayed, list) { 1324 if (ref->key_for_search.type) { 1325 ret = ref_tree_add(ref_tree, 1326 ref->root_id, 1327 ref->key_for_search.objectid, 1328 ref->key_for_search.offset, 1329 0, ref->count); 1330 if (ret) 1331 goto out; 1332 } else { 1333 ret = ref_tree_add(ref_tree, 0, 0, 0, 1334 ref->parent, ref->count); 1335 if (ret) 1336 goto out; 1337 } 1338 1339 } 1340 1341 if (ref_tree->unique_refs > 1) { 1342 ret = BACKREF_FOUND_SHARED; 1343 goto out; 1344 } 1345 1346 } 1347 } 1348 1349 if (path->slots[0]) { 1350 struct extent_buffer *leaf; 1351 int slot; 1352 1353 path->slots[0]--; 1354 leaf = path->nodes[0]; 1355 slot = path->slots[0]; 1356 btrfs_item_key_to_cpu(leaf, &key, slot); 1357 if (key.objectid == bytenr && 1358 (key.type == BTRFS_EXTENT_ITEM_KEY || 1359 key.type == BTRFS_METADATA_ITEM_KEY)) { 1360 ret = add_inline_refs(path, bytenr, &info_level, 1361 &prefs, ref_tree, &total_refs, 1362 inum); 1363 if (ret) 1364 goto out; 1365 ret = add_keyed_refs(fs_info, path, bytenr, info_level, 1366 &prefs, ref_tree, inum); 1367 if (ret) 1368 goto out; 1369 } 1370 } 1371 btrfs_release_path(path); 1372 1373 list_splice_init(&prefs_delayed, &prefs); 1374 1375 ret = add_missing_keys(fs_info, &prefs); 1376 if (ret) 1377 goto out; 1378 1379 merge_refs(&prefs, MERGE_IDENTICAL_KEYS); 1380 1381 ret = resolve_indirect_refs(fs_info, path, time_seq, &prefs, 1382 extent_item_pos, total_refs, 1383 root_objectid); 1384 if (ret) 1385 goto out; 1386 1387 merge_refs(&prefs, MERGE_IDENTICAL_PARENTS); 1388 1389 while (!list_empty(&prefs)) { 1390 ref = list_first_entry(&prefs, struct prelim_ref, list); 1391 WARN_ON(ref->count < 0); 1392 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1393 if (root_objectid && ref->root_id != root_objectid) { 1394 ret = BACKREF_FOUND_SHARED; 1395 goto out; 1396 } 1397 1398 /* no parent == root of tree */ 1399 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1400 if (ret < 0) 1401 goto out; 1402 } 1403 if (ref->count && ref->parent) { 1404 if (extent_item_pos && !ref->inode_list && 1405 ref->level == 0) { 1406 struct extent_buffer *eb; 1407 1408 eb = read_tree_block(fs_info, ref->parent, 0); 1409 if (IS_ERR(eb)) { 1410 ret = PTR_ERR(eb); 1411 goto out; 1412 } else if (!extent_buffer_uptodate(eb)) { 1413 free_extent_buffer(eb); 1414 ret = -EIO; 1415 goto out; 1416 } 1417 btrfs_tree_read_lock(eb); 1418 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1419 ret = find_extent_in_eb(eb, bytenr, 1420 *extent_item_pos, &eie); 1421 btrfs_tree_read_unlock_blocking(eb); 1422 free_extent_buffer(eb); 1423 if (ret < 0) 1424 goto out; 1425 ref->inode_list = eie; 1426 } 1427 ret = ulist_add_merge_ptr(refs, ref->parent, 1428 ref->inode_list, 1429 (void **)&eie, GFP_NOFS); 1430 if (ret < 0) 1431 goto out; 1432 if (!ret && extent_item_pos) { 1433 /* 1434 * we've recorded that parent, so we must extend 1435 * its inode list here 1436 */ 1437 BUG_ON(!eie); 1438 while (eie->next) 1439 eie = eie->next; 1440 eie->next = ref->inode_list; 1441 } 1442 eie = NULL; 1443 } 1444 list_del(&ref->list); 1445 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1446 } 1447 1448 out: 1449 btrfs_free_path(path); 1450 ref_root_free(ref_tree); 1451 while (!list_empty(&prefs)) { 1452 ref = list_first_entry(&prefs, struct prelim_ref, list); 1453 list_del(&ref->list); 1454 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1455 } 1456 while (!list_empty(&prefs_delayed)) { 1457 ref = list_first_entry(&prefs_delayed, struct prelim_ref, 1458 list); 1459 list_del(&ref->list); 1460 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1461 } 1462 if (ret < 0) 1463 free_inode_elem_list(eie); 1464 return ret; 1465 } 1466 1467 static void free_leaf_list(struct ulist *blocks) 1468 { 1469 struct ulist_node *node = NULL; 1470 struct extent_inode_elem *eie; 1471 struct ulist_iterator uiter; 1472 1473 ULIST_ITER_INIT(&uiter); 1474 while ((node = ulist_next(blocks, &uiter))) { 1475 if (!node->aux) 1476 continue; 1477 eie = unode_aux_to_inode_list(node); 1478 free_inode_elem_list(eie); 1479 node->aux = 0; 1480 } 1481 1482 ulist_free(blocks); 1483 } 1484 1485 /* 1486 * Finds all leafs with a reference to the specified combination of bytenr and 1487 * offset. key_list_head will point to a list of corresponding keys (caller must 1488 * free each list element). The leafs will be stored in the leafs ulist, which 1489 * must be freed with ulist_free. 1490 * 1491 * returns 0 on success, <0 on error 1492 */ 1493 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1494 struct btrfs_fs_info *fs_info, u64 bytenr, 1495 u64 time_seq, struct ulist **leafs, 1496 const u64 *extent_item_pos) 1497 { 1498 int ret; 1499 1500 *leafs = ulist_alloc(GFP_NOFS); 1501 if (!*leafs) 1502 return -ENOMEM; 1503 1504 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1505 *leafs, NULL, extent_item_pos, 0, 0, 0); 1506 if (ret < 0 && ret != -ENOENT) { 1507 free_leaf_list(*leafs); 1508 return ret; 1509 } 1510 1511 return 0; 1512 } 1513 1514 /* 1515 * walk all backrefs for a given extent to find all roots that reference this 1516 * extent. Walking a backref means finding all extents that reference this 1517 * extent and in turn walk the backrefs of those, too. Naturally this is a 1518 * recursive process, but here it is implemented in an iterative fashion: We 1519 * find all referencing extents for the extent in question and put them on a 1520 * list. In turn, we find all referencing extents for those, further appending 1521 * to the list. The way we iterate the list allows adding more elements after 1522 * the current while iterating. The process stops when we reach the end of the 1523 * list. Found roots are added to the roots list. 1524 * 1525 * returns 0 on success, < 0 on error. 1526 */ 1527 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1528 struct btrfs_fs_info *fs_info, u64 bytenr, 1529 u64 time_seq, struct ulist **roots) 1530 { 1531 struct ulist *tmp; 1532 struct ulist_node *node = NULL; 1533 struct ulist_iterator uiter; 1534 int ret; 1535 1536 tmp = ulist_alloc(GFP_NOFS); 1537 if (!tmp) 1538 return -ENOMEM; 1539 *roots = ulist_alloc(GFP_NOFS); 1540 if (!*roots) { 1541 ulist_free(tmp); 1542 return -ENOMEM; 1543 } 1544 1545 ULIST_ITER_INIT(&uiter); 1546 while (1) { 1547 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1548 tmp, *roots, NULL, 0, 0, 0); 1549 if (ret < 0 && ret != -ENOENT) { 1550 ulist_free(tmp); 1551 ulist_free(*roots); 1552 return ret; 1553 } 1554 node = ulist_next(tmp, &uiter); 1555 if (!node) 1556 break; 1557 bytenr = node->val; 1558 cond_resched(); 1559 } 1560 1561 ulist_free(tmp); 1562 return 0; 1563 } 1564 1565 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1566 struct btrfs_fs_info *fs_info, u64 bytenr, 1567 u64 time_seq, struct ulist **roots) 1568 { 1569 int ret; 1570 1571 if (!trans) 1572 down_read(&fs_info->commit_root_sem); 1573 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1574 time_seq, roots); 1575 if (!trans) 1576 up_read(&fs_info->commit_root_sem); 1577 return ret; 1578 } 1579 1580 /** 1581 * btrfs_check_shared - tell us whether an extent is shared 1582 * 1583 * @trans: optional trans handle 1584 * 1585 * btrfs_check_shared uses the backref walking code but will short 1586 * circuit as soon as it finds a root or inode that doesn't match the 1587 * one passed in. This provides a significant performance benefit for 1588 * callers (such as fiemap) which want to know whether the extent is 1589 * shared but do not need a ref count. 1590 * 1591 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1592 */ 1593 int btrfs_check_shared(struct btrfs_trans_handle *trans, 1594 struct btrfs_fs_info *fs_info, u64 root_objectid, 1595 u64 inum, u64 bytenr) 1596 { 1597 struct ulist *tmp = NULL; 1598 struct ulist *roots = NULL; 1599 struct ulist_iterator uiter; 1600 struct ulist_node *node; 1601 struct seq_list elem = SEQ_LIST_INIT(elem); 1602 int ret = 0; 1603 1604 tmp = ulist_alloc(GFP_NOFS); 1605 roots = ulist_alloc(GFP_NOFS); 1606 if (!tmp || !roots) { 1607 ulist_free(tmp); 1608 ulist_free(roots); 1609 return -ENOMEM; 1610 } 1611 1612 if (trans) 1613 btrfs_get_tree_mod_seq(fs_info, &elem); 1614 else 1615 down_read(&fs_info->commit_root_sem); 1616 ULIST_ITER_INIT(&uiter); 1617 while (1) { 1618 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1619 roots, NULL, root_objectid, inum, 1); 1620 if (ret == BACKREF_FOUND_SHARED) { 1621 /* this is the only condition under which we return 1 */ 1622 ret = 1; 1623 break; 1624 } 1625 if (ret < 0 && ret != -ENOENT) 1626 break; 1627 ret = 0; 1628 node = ulist_next(tmp, &uiter); 1629 if (!node) 1630 break; 1631 bytenr = node->val; 1632 cond_resched(); 1633 } 1634 if (trans) 1635 btrfs_put_tree_mod_seq(fs_info, &elem); 1636 else 1637 up_read(&fs_info->commit_root_sem); 1638 ulist_free(tmp); 1639 ulist_free(roots); 1640 return ret; 1641 } 1642 1643 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1644 u64 start_off, struct btrfs_path *path, 1645 struct btrfs_inode_extref **ret_extref, 1646 u64 *found_off) 1647 { 1648 int ret, slot; 1649 struct btrfs_key key; 1650 struct btrfs_key found_key; 1651 struct btrfs_inode_extref *extref; 1652 const struct extent_buffer *leaf; 1653 unsigned long ptr; 1654 1655 key.objectid = inode_objectid; 1656 key.type = BTRFS_INODE_EXTREF_KEY; 1657 key.offset = start_off; 1658 1659 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1660 if (ret < 0) 1661 return ret; 1662 1663 while (1) { 1664 leaf = path->nodes[0]; 1665 slot = path->slots[0]; 1666 if (slot >= btrfs_header_nritems(leaf)) { 1667 /* 1668 * If the item at offset is not found, 1669 * btrfs_search_slot will point us to the slot 1670 * where it should be inserted. In our case 1671 * that will be the slot directly before the 1672 * next INODE_REF_KEY_V2 item. In the case 1673 * that we're pointing to the last slot in a 1674 * leaf, we must move one leaf over. 1675 */ 1676 ret = btrfs_next_leaf(root, path); 1677 if (ret) { 1678 if (ret >= 1) 1679 ret = -ENOENT; 1680 break; 1681 } 1682 continue; 1683 } 1684 1685 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1686 1687 /* 1688 * Check that we're still looking at an extended ref key for 1689 * this particular objectid. If we have different 1690 * objectid or type then there are no more to be found 1691 * in the tree and we can exit. 1692 */ 1693 ret = -ENOENT; 1694 if (found_key.objectid != inode_objectid) 1695 break; 1696 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1697 break; 1698 1699 ret = 0; 1700 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1701 extref = (struct btrfs_inode_extref *)ptr; 1702 *ret_extref = extref; 1703 if (found_off) 1704 *found_off = found_key.offset; 1705 break; 1706 } 1707 1708 return ret; 1709 } 1710 1711 /* 1712 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1713 * Elements of the path are separated by '/' and the path is guaranteed to be 1714 * 0-terminated. the path is only given within the current file system. 1715 * Therefore, it never starts with a '/'. the caller is responsible to provide 1716 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1717 * the start point of the resulting string is returned. this pointer is within 1718 * dest, normally. 1719 * in case the path buffer would overflow, the pointer is decremented further 1720 * as if output was written to the buffer, though no more output is actually 1721 * generated. that way, the caller can determine how much space would be 1722 * required for the path to fit into the buffer. in that case, the returned 1723 * value will be smaller than dest. callers must check this! 1724 */ 1725 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1726 u32 name_len, unsigned long name_off, 1727 struct extent_buffer *eb_in, u64 parent, 1728 char *dest, u32 size) 1729 { 1730 int slot; 1731 u64 next_inum; 1732 int ret; 1733 s64 bytes_left = ((s64)size) - 1; 1734 struct extent_buffer *eb = eb_in; 1735 struct btrfs_key found_key; 1736 int leave_spinning = path->leave_spinning; 1737 struct btrfs_inode_ref *iref; 1738 1739 if (bytes_left >= 0) 1740 dest[bytes_left] = '\0'; 1741 1742 path->leave_spinning = 1; 1743 while (1) { 1744 bytes_left -= name_len; 1745 if (bytes_left >= 0) 1746 read_extent_buffer(eb, dest + bytes_left, 1747 name_off, name_len); 1748 if (eb != eb_in) { 1749 if (!path->skip_locking) 1750 btrfs_tree_read_unlock_blocking(eb); 1751 free_extent_buffer(eb); 1752 } 1753 ret = btrfs_find_item(fs_root, path, parent, 0, 1754 BTRFS_INODE_REF_KEY, &found_key); 1755 if (ret > 0) 1756 ret = -ENOENT; 1757 if (ret) 1758 break; 1759 1760 next_inum = found_key.offset; 1761 1762 /* regular exit ahead */ 1763 if (parent == next_inum) 1764 break; 1765 1766 slot = path->slots[0]; 1767 eb = path->nodes[0]; 1768 /* make sure we can use eb after releasing the path */ 1769 if (eb != eb_in) { 1770 if (!path->skip_locking) 1771 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1772 path->nodes[0] = NULL; 1773 path->locks[0] = 0; 1774 } 1775 btrfs_release_path(path); 1776 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1777 1778 name_len = btrfs_inode_ref_name_len(eb, iref); 1779 name_off = (unsigned long)(iref + 1); 1780 1781 parent = next_inum; 1782 --bytes_left; 1783 if (bytes_left >= 0) 1784 dest[bytes_left] = '/'; 1785 } 1786 1787 btrfs_release_path(path); 1788 path->leave_spinning = leave_spinning; 1789 1790 if (ret) 1791 return ERR_PTR(ret); 1792 1793 return dest + bytes_left; 1794 } 1795 1796 /* 1797 * this makes the path point to (logical EXTENT_ITEM *) 1798 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1799 * tree blocks and <0 on error. 1800 */ 1801 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1802 struct btrfs_path *path, struct btrfs_key *found_key, 1803 u64 *flags_ret) 1804 { 1805 int ret; 1806 u64 flags; 1807 u64 size = 0; 1808 u32 item_size; 1809 const struct extent_buffer *eb; 1810 struct btrfs_extent_item *ei; 1811 struct btrfs_key key; 1812 1813 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1814 key.type = BTRFS_METADATA_ITEM_KEY; 1815 else 1816 key.type = BTRFS_EXTENT_ITEM_KEY; 1817 key.objectid = logical; 1818 key.offset = (u64)-1; 1819 1820 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1821 if (ret < 0) 1822 return ret; 1823 1824 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1825 if (ret) { 1826 if (ret > 0) 1827 ret = -ENOENT; 1828 return ret; 1829 } 1830 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1831 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1832 size = fs_info->nodesize; 1833 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1834 size = found_key->offset; 1835 1836 if (found_key->objectid > logical || 1837 found_key->objectid + size <= logical) { 1838 btrfs_debug(fs_info, 1839 "logical %llu is not within any extent", logical); 1840 return -ENOENT; 1841 } 1842 1843 eb = path->nodes[0]; 1844 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1845 BUG_ON(item_size < sizeof(*ei)); 1846 1847 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1848 flags = btrfs_extent_flags(eb, ei); 1849 1850 btrfs_debug(fs_info, 1851 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1852 logical, logical - found_key->objectid, found_key->objectid, 1853 found_key->offset, flags, item_size); 1854 1855 WARN_ON(!flags_ret); 1856 if (flags_ret) { 1857 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1858 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1859 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1860 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1861 else 1862 BUG_ON(1); 1863 return 0; 1864 } 1865 1866 return -EIO; 1867 } 1868 1869 /* 1870 * helper function to iterate extent inline refs. ptr must point to a 0 value 1871 * for the first call and may be modified. it is used to track state. 1872 * if more refs exist, 0 is returned and the next call to 1873 * get_extent_inline_ref must pass the modified ptr parameter to get the 1874 * next ref. after the last ref was processed, 1 is returned. 1875 * returns <0 on error 1876 */ 1877 static int get_extent_inline_ref(unsigned long *ptr, 1878 const struct extent_buffer *eb, 1879 const struct btrfs_key *key, 1880 const struct btrfs_extent_item *ei, 1881 u32 item_size, 1882 struct btrfs_extent_inline_ref **out_eiref, 1883 int *out_type) 1884 { 1885 unsigned long end; 1886 u64 flags; 1887 struct btrfs_tree_block_info *info; 1888 1889 if (!*ptr) { 1890 /* first call */ 1891 flags = btrfs_extent_flags(eb, ei); 1892 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1893 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1894 /* a skinny metadata extent */ 1895 *out_eiref = 1896 (struct btrfs_extent_inline_ref *)(ei + 1); 1897 } else { 1898 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1899 info = (struct btrfs_tree_block_info *)(ei + 1); 1900 *out_eiref = 1901 (struct btrfs_extent_inline_ref *)(info + 1); 1902 } 1903 } else { 1904 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1905 } 1906 *ptr = (unsigned long)*out_eiref; 1907 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1908 return -ENOENT; 1909 } 1910 1911 end = (unsigned long)ei + item_size; 1912 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1913 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1914 1915 *ptr += btrfs_extent_inline_ref_size(*out_type); 1916 WARN_ON(*ptr > end); 1917 if (*ptr == end) 1918 return 1; /* last */ 1919 1920 return 0; 1921 } 1922 1923 /* 1924 * reads the tree block backref for an extent. tree level and root are returned 1925 * through out_level and out_root. ptr must point to a 0 value for the first 1926 * call and may be modified (see get_extent_inline_ref comment). 1927 * returns 0 if data was provided, 1 if there was no more data to provide or 1928 * <0 on error. 1929 */ 1930 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1931 struct btrfs_key *key, struct btrfs_extent_item *ei, 1932 u32 item_size, u64 *out_root, u8 *out_level) 1933 { 1934 int ret; 1935 int type; 1936 struct btrfs_extent_inline_ref *eiref; 1937 1938 if (*ptr == (unsigned long)-1) 1939 return 1; 1940 1941 while (1) { 1942 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1943 &eiref, &type); 1944 if (ret < 0) 1945 return ret; 1946 1947 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1948 type == BTRFS_SHARED_BLOCK_REF_KEY) 1949 break; 1950 1951 if (ret == 1) 1952 return 1; 1953 } 1954 1955 /* we can treat both ref types equally here */ 1956 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1957 1958 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1959 struct btrfs_tree_block_info *info; 1960 1961 info = (struct btrfs_tree_block_info *)(ei + 1); 1962 *out_level = btrfs_tree_block_level(eb, info); 1963 } else { 1964 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1965 *out_level = (u8)key->offset; 1966 } 1967 1968 if (ret == 1) 1969 *ptr = (unsigned long)-1; 1970 1971 return 0; 1972 } 1973 1974 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1975 struct extent_inode_elem *inode_list, 1976 u64 root, u64 extent_item_objectid, 1977 iterate_extent_inodes_t *iterate, void *ctx) 1978 { 1979 struct extent_inode_elem *eie; 1980 int ret = 0; 1981 1982 for (eie = inode_list; eie; eie = eie->next) { 1983 btrfs_debug(fs_info, 1984 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1985 extent_item_objectid, eie->inum, 1986 eie->offset, root); 1987 ret = iterate(eie->inum, eie->offset, root, ctx); 1988 if (ret) { 1989 btrfs_debug(fs_info, 1990 "stopping iteration for %llu due to ret=%d", 1991 extent_item_objectid, ret); 1992 break; 1993 } 1994 } 1995 1996 return ret; 1997 } 1998 1999 /* 2000 * calls iterate() for every inode that references the extent identified by 2001 * the given parameters. 2002 * when the iterator function returns a non-zero value, iteration stops. 2003 */ 2004 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 2005 u64 extent_item_objectid, u64 extent_item_pos, 2006 int search_commit_root, 2007 iterate_extent_inodes_t *iterate, void *ctx) 2008 { 2009 int ret; 2010 struct btrfs_trans_handle *trans = NULL; 2011 struct ulist *refs = NULL; 2012 struct ulist *roots = NULL; 2013 struct ulist_node *ref_node = NULL; 2014 struct ulist_node *root_node = NULL; 2015 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 2016 struct ulist_iterator ref_uiter; 2017 struct ulist_iterator root_uiter; 2018 2019 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 2020 extent_item_objectid); 2021 2022 if (!search_commit_root) { 2023 trans = btrfs_join_transaction(fs_info->extent_root); 2024 if (IS_ERR(trans)) 2025 return PTR_ERR(trans); 2026 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 2027 } else { 2028 down_read(&fs_info->commit_root_sem); 2029 } 2030 2031 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 2032 tree_mod_seq_elem.seq, &refs, 2033 &extent_item_pos); 2034 if (ret) 2035 goto out; 2036 2037 ULIST_ITER_INIT(&ref_uiter); 2038 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2039 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 2040 tree_mod_seq_elem.seq, &roots); 2041 if (ret) 2042 break; 2043 ULIST_ITER_INIT(&root_uiter); 2044 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 2045 btrfs_debug(fs_info, 2046 "root %llu references leaf %llu, data list %#llx", 2047 root_node->val, ref_node->val, 2048 ref_node->aux); 2049 ret = iterate_leaf_refs(fs_info, 2050 (struct extent_inode_elem *) 2051 (uintptr_t)ref_node->aux, 2052 root_node->val, 2053 extent_item_objectid, 2054 iterate, ctx); 2055 } 2056 ulist_free(roots); 2057 } 2058 2059 free_leaf_list(refs); 2060 out: 2061 if (!search_commit_root) { 2062 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 2063 btrfs_end_transaction(trans); 2064 } else { 2065 up_read(&fs_info->commit_root_sem); 2066 } 2067 2068 return ret; 2069 } 2070 2071 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2072 struct btrfs_path *path, 2073 iterate_extent_inodes_t *iterate, void *ctx) 2074 { 2075 int ret; 2076 u64 extent_item_pos; 2077 u64 flags = 0; 2078 struct btrfs_key found_key; 2079 int search_commit_root = path->search_commit_root; 2080 2081 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2082 btrfs_release_path(path); 2083 if (ret < 0) 2084 return ret; 2085 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2086 return -EINVAL; 2087 2088 extent_item_pos = logical - found_key.objectid; 2089 ret = iterate_extent_inodes(fs_info, found_key.objectid, 2090 extent_item_pos, search_commit_root, 2091 iterate, ctx); 2092 2093 return ret; 2094 } 2095 2096 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 2097 struct extent_buffer *eb, void *ctx); 2098 2099 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 2100 struct btrfs_path *path, 2101 iterate_irefs_t *iterate, void *ctx) 2102 { 2103 int ret = 0; 2104 int slot; 2105 u32 cur; 2106 u32 len; 2107 u32 name_len; 2108 u64 parent = 0; 2109 int found = 0; 2110 struct extent_buffer *eb; 2111 struct btrfs_item *item; 2112 struct btrfs_inode_ref *iref; 2113 struct btrfs_key found_key; 2114 2115 while (!ret) { 2116 ret = btrfs_find_item(fs_root, path, inum, 2117 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2118 &found_key); 2119 2120 if (ret < 0) 2121 break; 2122 if (ret) { 2123 ret = found ? 0 : -ENOENT; 2124 break; 2125 } 2126 ++found; 2127 2128 parent = found_key.offset; 2129 slot = path->slots[0]; 2130 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2131 if (!eb) { 2132 ret = -ENOMEM; 2133 break; 2134 } 2135 extent_buffer_get(eb); 2136 btrfs_tree_read_lock(eb); 2137 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 2138 btrfs_release_path(path); 2139 2140 item = btrfs_item_nr(slot); 2141 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2142 2143 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2144 name_len = btrfs_inode_ref_name_len(eb, iref); 2145 /* path must be released before calling iterate()! */ 2146 btrfs_debug(fs_root->fs_info, 2147 "following ref at offset %u for inode %llu in tree %llu", 2148 cur, found_key.objectid, fs_root->objectid); 2149 ret = iterate(parent, name_len, 2150 (unsigned long)(iref + 1), eb, ctx); 2151 if (ret) 2152 break; 2153 len = sizeof(*iref) + name_len; 2154 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2155 } 2156 btrfs_tree_read_unlock_blocking(eb); 2157 free_extent_buffer(eb); 2158 } 2159 2160 btrfs_release_path(path); 2161 2162 return ret; 2163 } 2164 2165 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2166 struct btrfs_path *path, 2167 iterate_irefs_t *iterate, void *ctx) 2168 { 2169 int ret; 2170 int slot; 2171 u64 offset = 0; 2172 u64 parent; 2173 int found = 0; 2174 struct extent_buffer *eb; 2175 struct btrfs_inode_extref *extref; 2176 u32 item_size; 2177 u32 cur_offset; 2178 unsigned long ptr; 2179 2180 while (1) { 2181 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2182 &offset); 2183 if (ret < 0) 2184 break; 2185 if (ret) { 2186 ret = found ? 0 : -ENOENT; 2187 break; 2188 } 2189 ++found; 2190 2191 slot = path->slots[0]; 2192 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2193 if (!eb) { 2194 ret = -ENOMEM; 2195 break; 2196 } 2197 extent_buffer_get(eb); 2198 2199 btrfs_tree_read_lock(eb); 2200 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 2201 btrfs_release_path(path); 2202 2203 item_size = btrfs_item_size_nr(eb, slot); 2204 ptr = btrfs_item_ptr_offset(eb, slot); 2205 cur_offset = 0; 2206 2207 while (cur_offset < item_size) { 2208 u32 name_len; 2209 2210 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2211 parent = btrfs_inode_extref_parent(eb, extref); 2212 name_len = btrfs_inode_extref_name_len(eb, extref); 2213 ret = iterate(parent, name_len, 2214 (unsigned long)&extref->name, eb, ctx); 2215 if (ret) 2216 break; 2217 2218 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2219 cur_offset += sizeof(*extref); 2220 } 2221 btrfs_tree_read_unlock_blocking(eb); 2222 free_extent_buffer(eb); 2223 2224 offset++; 2225 } 2226 2227 btrfs_release_path(path); 2228 2229 return ret; 2230 } 2231 2232 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2233 struct btrfs_path *path, iterate_irefs_t *iterate, 2234 void *ctx) 2235 { 2236 int ret; 2237 int found_refs = 0; 2238 2239 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2240 if (!ret) 2241 ++found_refs; 2242 else if (ret != -ENOENT) 2243 return ret; 2244 2245 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2246 if (ret == -ENOENT && found_refs) 2247 return 0; 2248 2249 return ret; 2250 } 2251 2252 /* 2253 * returns 0 if the path could be dumped (probably truncated) 2254 * returns <0 in case of an error 2255 */ 2256 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2257 struct extent_buffer *eb, void *ctx) 2258 { 2259 struct inode_fs_paths *ipath = ctx; 2260 char *fspath; 2261 char *fspath_min; 2262 int i = ipath->fspath->elem_cnt; 2263 const int s_ptr = sizeof(char *); 2264 u32 bytes_left; 2265 2266 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2267 ipath->fspath->bytes_left - s_ptr : 0; 2268 2269 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2270 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2271 name_off, eb, inum, fspath_min, bytes_left); 2272 if (IS_ERR(fspath)) 2273 return PTR_ERR(fspath); 2274 2275 if (fspath > fspath_min) { 2276 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2277 ++ipath->fspath->elem_cnt; 2278 ipath->fspath->bytes_left = fspath - fspath_min; 2279 } else { 2280 ++ipath->fspath->elem_missed; 2281 ipath->fspath->bytes_missing += fspath_min - fspath; 2282 ipath->fspath->bytes_left = 0; 2283 } 2284 2285 return 0; 2286 } 2287 2288 /* 2289 * this dumps all file system paths to the inode into the ipath struct, provided 2290 * is has been created large enough. each path is zero-terminated and accessed 2291 * from ipath->fspath->val[i]. 2292 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2293 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2294 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2295 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2296 * have been needed to return all paths. 2297 */ 2298 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2299 { 2300 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2301 inode_to_path, ipath); 2302 } 2303 2304 struct btrfs_data_container *init_data_container(u32 total_bytes) 2305 { 2306 struct btrfs_data_container *data; 2307 size_t alloc_bytes; 2308 2309 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2310 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2311 if (!data) 2312 return ERR_PTR(-ENOMEM); 2313 2314 if (total_bytes >= sizeof(*data)) { 2315 data->bytes_left = total_bytes - sizeof(*data); 2316 data->bytes_missing = 0; 2317 } else { 2318 data->bytes_missing = sizeof(*data) - total_bytes; 2319 data->bytes_left = 0; 2320 } 2321 2322 data->elem_cnt = 0; 2323 data->elem_missed = 0; 2324 2325 return data; 2326 } 2327 2328 /* 2329 * allocates space to return multiple file system paths for an inode. 2330 * total_bytes to allocate are passed, note that space usable for actual path 2331 * information will be total_bytes - sizeof(struct inode_fs_paths). 2332 * the returned pointer must be freed with free_ipath() in the end. 2333 */ 2334 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2335 struct btrfs_path *path) 2336 { 2337 struct inode_fs_paths *ifp; 2338 struct btrfs_data_container *fspath; 2339 2340 fspath = init_data_container(total_bytes); 2341 if (IS_ERR(fspath)) 2342 return (void *)fspath; 2343 2344 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2345 if (!ifp) { 2346 kvfree(fspath); 2347 return ERR_PTR(-ENOMEM); 2348 } 2349 2350 ifp->btrfs_path = path; 2351 ifp->fspath = fspath; 2352 ifp->fs_root = fs_root; 2353 2354 return ifp; 2355 } 2356 2357 void free_ipath(struct inode_fs_paths *ipath) 2358 { 2359 if (!ipath) 2360 return; 2361 kvfree(ipath->fspath); 2362 kfree(ipath); 2363 } 2364