1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 19 /* Just an arbitrary number so we can be sure this happened */ 20 #define BACKREF_FOUND_SHARED 6 21 22 struct extent_inode_elem { 23 u64 inum; 24 u64 offset; 25 struct extent_inode_elem *next; 26 }; 27 28 static int check_extent_in_eb(const struct btrfs_key *key, 29 const struct extent_buffer *eb, 30 const struct btrfs_file_extent_item *fi, 31 u64 extent_item_pos, 32 struct extent_inode_elem **eie, 33 bool ignore_offset) 34 { 35 u64 offset = 0; 36 struct extent_inode_elem *e; 37 38 if (!ignore_offset && 39 !btrfs_file_extent_compression(eb, fi) && 40 !btrfs_file_extent_encryption(eb, fi) && 41 !btrfs_file_extent_other_encoding(eb, fi)) { 42 u64 data_offset; 43 u64 data_len; 44 45 data_offset = btrfs_file_extent_offset(eb, fi); 46 data_len = btrfs_file_extent_num_bytes(eb, fi); 47 48 if (extent_item_pos < data_offset || 49 extent_item_pos >= data_offset + data_len) 50 return 1; 51 offset = extent_item_pos - data_offset; 52 } 53 54 e = kmalloc(sizeof(*e), GFP_NOFS); 55 if (!e) 56 return -ENOMEM; 57 58 e->next = *eie; 59 e->inum = key->objectid; 60 e->offset = key->offset + offset; 61 *eie = e; 62 63 return 0; 64 } 65 66 static void free_inode_elem_list(struct extent_inode_elem *eie) 67 { 68 struct extent_inode_elem *eie_next; 69 70 for (; eie; eie = eie_next) { 71 eie_next = eie->next; 72 kfree(eie); 73 } 74 } 75 76 static int find_extent_in_eb(const struct extent_buffer *eb, 77 u64 wanted_disk_byte, u64 extent_item_pos, 78 struct extent_inode_elem **eie, 79 bool ignore_offset) 80 { 81 u64 disk_byte; 82 struct btrfs_key key; 83 struct btrfs_file_extent_item *fi; 84 int slot; 85 int nritems; 86 int extent_type; 87 int ret; 88 89 /* 90 * from the shared data ref, we only have the leaf but we need 91 * the key. thus, we must look into all items and see that we 92 * find one (some) with a reference to our extent item. 93 */ 94 nritems = btrfs_header_nritems(eb); 95 for (slot = 0; slot < nritems; ++slot) { 96 btrfs_item_key_to_cpu(eb, &key, slot); 97 if (key.type != BTRFS_EXTENT_DATA_KEY) 98 continue; 99 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 100 extent_type = btrfs_file_extent_type(eb, fi); 101 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 102 continue; 103 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 104 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 105 if (disk_byte != wanted_disk_byte) 106 continue; 107 108 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 109 if (ret < 0) 110 return ret; 111 } 112 113 return 0; 114 } 115 116 struct preftree { 117 struct rb_root_cached root; 118 unsigned int count; 119 }; 120 121 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 122 123 struct preftrees { 124 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 125 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 126 struct preftree indirect_missing_keys; 127 }; 128 129 /* 130 * Checks for a shared extent during backref search. 131 * 132 * The share_count tracks prelim_refs (direct and indirect) having a 133 * ref->count >0: 134 * - incremented when a ref->count transitions to >0 135 * - decremented when a ref->count transitions to <1 136 */ 137 struct share_check { 138 u64 root_objectid; 139 u64 inum; 140 int share_count; 141 }; 142 143 static inline int extent_is_shared(struct share_check *sc) 144 { 145 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 146 } 147 148 static struct kmem_cache *btrfs_prelim_ref_cache; 149 150 int __init btrfs_prelim_ref_init(void) 151 { 152 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 153 sizeof(struct prelim_ref), 154 0, 155 SLAB_MEM_SPREAD, 156 NULL); 157 if (!btrfs_prelim_ref_cache) 158 return -ENOMEM; 159 return 0; 160 } 161 162 void __cold btrfs_prelim_ref_exit(void) 163 { 164 kmem_cache_destroy(btrfs_prelim_ref_cache); 165 } 166 167 static void free_pref(struct prelim_ref *ref) 168 { 169 kmem_cache_free(btrfs_prelim_ref_cache, ref); 170 } 171 172 /* 173 * Return 0 when both refs are for the same block (and can be merged). 174 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 175 * indicates a 'higher' block. 176 */ 177 static int prelim_ref_compare(struct prelim_ref *ref1, 178 struct prelim_ref *ref2) 179 { 180 if (ref1->level < ref2->level) 181 return -1; 182 if (ref1->level > ref2->level) 183 return 1; 184 if (ref1->root_id < ref2->root_id) 185 return -1; 186 if (ref1->root_id > ref2->root_id) 187 return 1; 188 if (ref1->key_for_search.type < ref2->key_for_search.type) 189 return -1; 190 if (ref1->key_for_search.type > ref2->key_for_search.type) 191 return 1; 192 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 193 return -1; 194 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 195 return 1; 196 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 197 return -1; 198 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 199 return 1; 200 if (ref1->parent < ref2->parent) 201 return -1; 202 if (ref1->parent > ref2->parent) 203 return 1; 204 205 return 0; 206 } 207 208 static void update_share_count(struct share_check *sc, int oldcount, 209 int newcount) 210 { 211 if ((!sc) || (oldcount == 0 && newcount < 1)) 212 return; 213 214 if (oldcount > 0 && newcount < 1) 215 sc->share_count--; 216 else if (oldcount < 1 && newcount > 0) 217 sc->share_count++; 218 } 219 220 /* 221 * Add @newref to the @root rbtree, merging identical refs. 222 * 223 * Callers should assume that newref has been freed after calling. 224 */ 225 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 226 struct preftree *preftree, 227 struct prelim_ref *newref, 228 struct share_check *sc) 229 { 230 struct rb_root_cached *root; 231 struct rb_node **p; 232 struct rb_node *parent = NULL; 233 struct prelim_ref *ref; 234 int result; 235 bool leftmost = true; 236 237 root = &preftree->root; 238 p = &root->rb_root.rb_node; 239 240 while (*p) { 241 parent = *p; 242 ref = rb_entry(parent, struct prelim_ref, rbnode); 243 result = prelim_ref_compare(ref, newref); 244 if (result < 0) { 245 p = &(*p)->rb_left; 246 } else if (result > 0) { 247 p = &(*p)->rb_right; 248 leftmost = false; 249 } else { 250 /* Identical refs, merge them and free @newref */ 251 struct extent_inode_elem *eie = ref->inode_list; 252 253 while (eie && eie->next) 254 eie = eie->next; 255 256 if (!eie) 257 ref->inode_list = newref->inode_list; 258 else 259 eie->next = newref->inode_list; 260 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 261 preftree->count); 262 /* 263 * A delayed ref can have newref->count < 0. 264 * The ref->count is updated to follow any 265 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 266 */ 267 update_share_count(sc, ref->count, 268 ref->count + newref->count); 269 ref->count += newref->count; 270 free_pref(newref); 271 return; 272 } 273 } 274 275 update_share_count(sc, 0, newref->count); 276 preftree->count++; 277 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 278 rb_link_node(&newref->rbnode, parent, p); 279 rb_insert_color_cached(&newref->rbnode, root, leftmost); 280 } 281 282 /* 283 * Release the entire tree. We don't care about internal consistency so 284 * just free everything and then reset the tree root. 285 */ 286 static void prelim_release(struct preftree *preftree) 287 { 288 struct prelim_ref *ref, *next_ref; 289 290 rbtree_postorder_for_each_entry_safe(ref, next_ref, 291 &preftree->root.rb_root, rbnode) 292 free_pref(ref); 293 294 preftree->root = RB_ROOT_CACHED; 295 preftree->count = 0; 296 } 297 298 /* 299 * the rules for all callers of this function are: 300 * - obtaining the parent is the goal 301 * - if you add a key, you must know that it is a correct key 302 * - if you cannot add the parent or a correct key, then we will look into the 303 * block later to set a correct key 304 * 305 * delayed refs 306 * ============ 307 * backref type | shared | indirect | shared | indirect 308 * information | tree | tree | data | data 309 * --------------------+--------+----------+--------+---------- 310 * parent logical | y | - | - | - 311 * key to resolve | - | y | y | y 312 * tree block logical | - | - | - | - 313 * root for resolving | y | y | y | y 314 * 315 * - column 1: we've the parent -> done 316 * - column 2, 3, 4: we use the key to find the parent 317 * 318 * on disk refs (inline or keyed) 319 * ============================== 320 * backref type | shared | indirect | shared | indirect 321 * information | tree | tree | data | data 322 * --------------------+--------+----------+--------+---------- 323 * parent logical | y | - | y | - 324 * key to resolve | - | - | - | y 325 * tree block logical | y | y | y | y 326 * root for resolving | - | y | y | y 327 * 328 * - column 1, 3: we've the parent -> done 329 * - column 2: we take the first key from the block to find the parent 330 * (see add_missing_keys) 331 * - column 4: we use the key to find the parent 332 * 333 * additional information that's available but not required to find the parent 334 * block might help in merging entries to gain some speed. 335 */ 336 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 337 struct preftree *preftree, u64 root_id, 338 const struct btrfs_key *key, int level, u64 parent, 339 u64 wanted_disk_byte, int count, 340 struct share_check *sc, gfp_t gfp_mask) 341 { 342 struct prelim_ref *ref; 343 344 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 345 return 0; 346 347 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 348 if (!ref) 349 return -ENOMEM; 350 351 ref->root_id = root_id; 352 if (key) 353 ref->key_for_search = *key; 354 else 355 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 356 357 ref->inode_list = NULL; 358 ref->level = level; 359 ref->count = count; 360 ref->parent = parent; 361 ref->wanted_disk_byte = wanted_disk_byte; 362 prelim_ref_insert(fs_info, preftree, ref, sc); 363 return extent_is_shared(sc); 364 } 365 366 /* direct refs use root == 0, key == NULL */ 367 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 368 struct preftrees *preftrees, int level, u64 parent, 369 u64 wanted_disk_byte, int count, 370 struct share_check *sc, gfp_t gfp_mask) 371 { 372 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 373 parent, wanted_disk_byte, count, sc, gfp_mask); 374 } 375 376 /* indirect refs use parent == 0 */ 377 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 378 struct preftrees *preftrees, u64 root_id, 379 const struct btrfs_key *key, int level, 380 u64 wanted_disk_byte, int count, 381 struct share_check *sc, gfp_t gfp_mask) 382 { 383 struct preftree *tree = &preftrees->indirect; 384 385 if (!key) 386 tree = &preftrees->indirect_missing_keys; 387 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 388 wanted_disk_byte, count, sc, gfp_mask); 389 } 390 391 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 392 { 393 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 394 struct rb_node *parent = NULL; 395 struct prelim_ref *ref = NULL; 396 struct prelim_ref target = {}; 397 int result; 398 399 target.parent = bytenr; 400 401 while (*p) { 402 parent = *p; 403 ref = rb_entry(parent, struct prelim_ref, rbnode); 404 result = prelim_ref_compare(ref, &target); 405 406 if (result < 0) 407 p = &(*p)->rb_left; 408 else if (result > 0) 409 p = &(*p)->rb_right; 410 else 411 return 1; 412 } 413 return 0; 414 } 415 416 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 417 struct ulist *parents, 418 struct preftrees *preftrees, struct prelim_ref *ref, 419 int level, u64 time_seq, const u64 *extent_item_pos, 420 bool ignore_offset) 421 { 422 int ret = 0; 423 int slot; 424 struct extent_buffer *eb; 425 struct btrfs_key key; 426 struct btrfs_key *key_for_search = &ref->key_for_search; 427 struct btrfs_file_extent_item *fi; 428 struct extent_inode_elem *eie = NULL, *old = NULL; 429 u64 disk_byte; 430 u64 wanted_disk_byte = ref->wanted_disk_byte; 431 u64 count = 0; 432 u64 data_offset; 433 434 if (level != 0) { 435 eb = path->nodes[level]; 436 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 437 if (ret < 0) 438 return ret; 439 return 0; 440 } 441 442 /* 443 * 1. We normally enter this function with the path already pointing to 444 * the first item to check. But sometimes, we may enter it with 445 * slot == nritems. 446 * 2. We are searching for normal backref but bytenr of this leaf 447 * matches shared data backref 448 * 3. The leaf owner is not equal to the root we are searching 449 * 450 * For these cases, go to the next leaf before we continue. 451 */ 452 eb = path->nodes[0]; 453 if (path->slots[0] >= btrfs_header_nritems(eb) || 454 is_shared_data_backref(preftrees, eb->start) || 455 ref->root_id != btrfs_header_owner(eb)) { 456 if (time_seq == BTRFS_SEQ_LAST) 457 ret = btrfs_next_leaf(root, path); 458 else 459 ret = btrfs_next_old_leaf(root, path, time_seq); 460 } 461 462 while (!ret && count < ref->count) { 463 eb = path->nodes[0]; 464 slot = path->slots[0]; 465 466 btrfs_item_key_to_cpu(eb, &key, slot); 467 468 if (key.objectid != key_for_search->objectid || 469 key.type != BTRFS_EXTENT_DATA_KEY) 470 break; 471 472 /* 473 * We are searching for normal backref but bytenr of this leaf 474 * matches shared data backref, OR 475 * the leaf owner is not equal to the root we are searching for 476 */ 477 if (slot == 0 && 478 (is_shared_data_backref(preftrees, eb->start) || 479 ref->root_id != btrfs_header_owner(eb))) { 480 if (time_seq == BTRFS_SEQ_LAST) 481 ret = btrfs_next_leaf(root, path); 482 else 483 ret = btrfs_next_old_leaf(root, path, time_seq); 484 continue; 485 } 486 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 487 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 488 data_offset = btrfs_file_extent_offset(eb, fi); 489 490 if (disk_byte == wanted_disk_byte) { 491 eie = NULL; 492 old = NULL; 493 if (ref->key_for_search.offset == key.offset - data_offset) 494 count++; 495 else 496 goto next; 497 if (extent_item_pos) { 498 ret = check_extent_in_eb(&key, eb, fi, 499 *extent_item_pos, 500 &eie, ignore_offset); 501 if (ret < 0) 502 break; 503 } 504 if (ret > 0) 505 goto next; 506 ret = ulist_add_merge_ptr(parents, eb->start, 507 eie, (void **)&old, GFP_NOFS); 508 if (ret < 0) 509 break; 510 if (!ret && extent_item_pos) { 511 while (old->next) 512 old = old->next; 513 old->next = eie; 514 } 515 eie = NULL; 516 } 517 next: 518 if (time_seq == BTRFS_SEQ_LAST) 519 ret = btrfs_next_item(root, path); 520 else 521 ret = btrfs_next_old_item(root, path, time_seq); 522 } 523 524 if (ret > 0) 525 ret = 0; 526 else if (ret < 0) 527 free_inode_elem_list(eie); 528 return ret; 529 } 530 531 /* 532 * resolve an indirect backref in the form (root_id, key, level) 533 * to a logical address 534 */ 535 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 536 struct btrfs_path *path, u64 time_seq, 537 struct preftrees *preftrees, 538 struct prelim_ref *ref, struct ulist *parents, 539 const u64 *extent_item_pos, bool ignore_offset) 540 { 541 struct btrfs_root *root; 542 struct extent_buffer *eb; 543 int ret = 0; 544 int root_level; 545 int level = ref->level; 546 struct btrfs_key search_key = ref->key_for_search; 547 548 /* 549 * If we're search_commit_root we could possibly be holding locks on 550 * other tree nodes. This happens when qgroups does backref walks when 551 * adding new delayed refs. To deal with this we need to look in cache 552 * for the root, and if we don't find it then we need to search the 553 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 554 * here. 555 */ 556 if (path->search_commit_root) 557 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id); 558 else 559 root = btrfs_get_fs_root(fs_info, ref->root_id, false); 560 if (IS_ERR(root)) { 561 ret = PTR_ERR(root); 562 goto out_free; 563 } 564 565 if (!path->search_commit_root && 566 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 567 ret = -ENOENT; 568 goto out; 569 } 570 571 if (btrfs_is_testing(fs_info)) { 572 ret = -ENOENT; 573 goto out; 574 } 575 576 if (path->search_commit_root) 577 root_level = btrfs_header_level(root->commit_root); 578 else if (time_seq == BTRFS_SEQ_LAST) 579 root_level = btrfs_header_level(root->node); 580 else 581 root_level = btrfs_old_root_level(root, time_seq); 582 583 if (root_level + 1 == level) 584 goto out; 585 586 /* 587 * We can often find data backrefs with an offset that is too large 588 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 589 * subtracting a file's offset with the data offset of its 590 * corresponding extent data item. This can happen for example in the 591 * clone ioctl. 592 * 593 * So if we detect such case we set the search key's offset to zero to 594 * make sure we will find the matching file extent item at 595 * add_all_parents(), otherwise we will miss it because the offset 596 * taken form the backref is much larger then the offset of the file 597 * extent item. This can make us scan a very large number of file 598 * extent items, but at least it will not make us miss any. 599 * 600 * This is an ugly workaround for a behaviour that should have never 601 * existed, but it does and a fix for the clone ioctl would touch a lot 602 * of places, cause backwards incompatibility and would not fix the 603 * problem for extents cloned with older kernels. 604 */ 605 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 606 search_key.offset >= LLONG_MAX) 607 search_key.offset = 0; 608 path->lowest_level = level; 609 if (time_seq == BTRFS_SEQ_LAST) 610 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 611 else 612 ret = btrfs_search_old_slot(root, &search_key, path, time_seq); 613 614 btrfs_debug(fs_info, 615 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 616 ref->root_id, level, ref->count, ret, 617 ref->key_for_search.objectid, ref->key_for_search.type, 618 ref->key_for_search.offset); 619 if (ret < 0) 620 goto out; 621 622 eb = path->nodes[level]; 623 while (!eb) { 624 if (WARN_ON(!level)) { 625 ret = 1; 626 goto out; 627 } 628 level--; 629 eb = path->nodes[level]; 630 } 631 632 ret = add_all_parents(root, path, parents, preftrees, ref, level, 633 time_seq, extent_item_pos, ignore_offset); 634 out: 635 btrfs_put_root(root); 636 out_free: 637 path->lowest_level = 0; 638 btrfs_release_path(path); 639 return ret; 640 } 641 642 static struct extent_inode_elem * 643 unode_aux_to_inode_list(struct ulist_node *node) 644 { 645 if (!node) 646 return NULL; 647 return (struct extent_inode_elem *)(uintptr_t)node->aux; 648 } 649 650 /* 651 * We maintain three separate rbtrees: one for direct refs, one for 652 * indirect refs which have a key, and one for indirect refs which do not 653 * have a key. Each tree does merge on insertion. 654 * 655 * Once all of the references are located, we iterate over the tree of 656 * indirect refs with missing keys. An appropriate key is located and 657 * the ref is moved onto the tree for indirect refs. After all missing 658 * keys are thus located, we iterate over the indirect ref tree, resolve 659 * each reference, and then insert the resolved reference onto the 660 * direct tree (merging there too). 661 * 662 * New backrefs (i.e., for parent nodes) are added to the appropriate 663 * rbtree as they are encountered. The new backrefs are subsequently 664 * resolved as above. 665 */ 666 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 667 struct btrfs_path *path, u64 time_seq, 668 struct preftrees *preftrees, 669 const u64 *extent_item_pos, 670 struct share_check *sc, bool ignore_offset) 671 { 672 int err; 673 int ret = 0; 674 struct ulist *parents; 675 struct ulist_node *node; 676 struct ulist_iterator uiter; 677 struct rb_node *rnode; 678 679 parents = ulist_alloc(GFP_NOFS); 680 if (!parents) 681 return -ENOMEM; 682 683 /* 684 * We could trade memory usage for performance here by iterating 685 * the tree, allocating new refs for each insertion, and then 686 * freeing the entire indirect tree when we're done. In some test 687 * cases, the tree can grow quite large (~200k objects). 688 */ 689 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 690 struct prelim_ref *ref; 691 692 ref = rb_entry(rnode, struct prelim_ref, rbnode); 693 if (WARN(ref->parent, 694 "BUG: direct ref found in indirect tree")) { 695 ret = -EINVAL; 696 goto out; 697 } 698 699 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 700 preftrees->indirect.count--; 701 702 if (ref->count == 0) { 703 free_pref(ref); 704 continue; 705 } 706 707 if (sc && sc->root_objectid && 708 ref->root_id != sc->root_objectid) { 709 free_pref(ref); 710 ret = BACKREF_FOUND_SHARED; 711 goto out; 712 } 713 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees, 714 ref, parents, extent_item_pos, 715 ignore_offset); 716 /* 717 * we can only tolerate ENOENT,otherwise,we should catch error 718 * and return directly. 719 */ 720 if (err == -ENOENT) { 721 prelim_ref_insert(fs_info, &preftrees->direct, ref, 722 NULL); 723 continue; 724 } else if (err) { 725 free_pref(ref); 726 ret = err; 727 goto out; 728 } 729 730 /* we put the first parent into the ref at hand */ 731 ULIST_ITER_INIT(&uiter); 732 node = ulist_next(parents, &uiter); 733 ref->parent = node ? node->val : 0; 734 ref->inode_list = unode_aux_to_inode_list(node); 735 736 /* Add a prelim_ref(s) for any other parent(s). */ 737 while ((node = ulist_next(parents, &uiter))) { 738 struct prelim_ref *new_ref; 739 740 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 741 GFP_NOFS); 742 if (!new_ref) { 743 free_pref(ref); 744 ret = -ENOMEM; 745 goto out; 746 } 747 memcpy(new_ref, ref, sizeof(*ref)); 748 new_ref->parent = node->val; 749 new_ref->inode_list = unode_aux_to_inode_list(node); 750 prelim_ref_insert(fs_info, &preftrees->direct, 751 new_ref, NULL); 752 } 753 754 /* 755 * Now it's a direct ref, put it in the direct tree. We must 756 * do this last because the ref could be merged/freed here. 757 */ 758 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 759 760 ulist_reinit(parents); 761 cond_resched(); 762 } 763 out: 764 ulist_free(parents); 765 return ret; 766 } 767 768 /* 769 * read tree blocks and add keys where required. 770 */ 771 static int add_missing_keys(struct btrfs_fs_info *fs_info, 772 struct preftrees *preftrees, bool lock) 773 { 774 struct prelim_ref *ref; 775 struct extent_buffer *eb; 776 struct preftree *tree = &preftrees->indirect_missing_keys; 777 struct rb_node *node; 778 779 while ((node = rb_first_cached(&tree->root))) { 780 ref = rb_entry(node, struct prelim_ref, rbnode); 781 rb_erase_cached(node, &tree->root); 782 783 BUG_ON(ref->parent); /* should not be a direct ref */ 784 BUG_ON(ref->key_for_search.type); 785 BUG_ON(!ref->wanted_disk_byte); 786 787 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 788 ref->root_id, 0, ref->level - 1, NULL); 789 if (IS_ERR(eb)) { 790 free_pref(ref); 791 return PTR_ERR(eb); 792 } else if (!extent_buffer_uptodate(eb)) { 793 free_pref(ref); 794 free_extent_buffer(eb); 795 return -EIO; 796 } 797 if (lock) 798 btrfs_tree_read_lock(eb); 799 if (btrfs_header_level(eb) == 0) 800 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 801 else 802 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 803 if (lock) 804 btrfs_tree_read_unlock(eb); 805 free_extent_buffer(eb); 806 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 807 cond_resched(); 808 } 809 return 0; 810 } 811 812 /* 813 * add all currently queued delayed refs from this head whose seq nr is 814 * smaller or equal that seq to the list 815 */ 816 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 817 struct btrfs_delayed_ref_head *head, u64 seq, 818 struct preftrees *preftrees, struct share_check *sc) 819 { 820 struct btrfs_delayed_ref_node *node; 821 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 822 struct btrfs_key key; 823 struct btrfs_key tmp_op_key; 824 struct rb_node *n; 825 int count; 826 int ret = 0; 827 828 if (extent_op && extent_op->update_key) 829 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 830 831 spin_lock(&head->lock); 832 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 833 node = rb_entry(n, struct btrfs_delayed_ref_node, 834 ref_node); 835 if (node->seq > seq) 836 continue; 837 838 switch (node->action) { 839 case BTRFS_ADD_DELAYED_EXTENT: 840 case BTRFS_UPDATE_DELAYED_HEAD: 841 WARN_ON(1); 842 continue; 843 case BTRFS_ADD_DELAYED_REF: 844 count = node->ref_mod; 845 break; 846 case BTRFS_DROP_DELAYED_REF: 847 count = node->ref_mod * -1; 848 break; 849 default: 850 BUG(); 851 } 852 switch (node->type) { 853 case BTRFS_TREE_BLOCK_REF_KEY: { 854 /* NORMAL INDIRECT METADATA backref */ 855 struct btrfs_delayed_tree_ref *ref; 856 857 ref = btrfs_delayed_node_to_tree_ref(node); 858 ret = add_indirect_ref(fs_info, preftrees, ref->root, 859 &tmp_op_key, ref->level + 1, 860 node->bytenr, count, sc, 861 GFP_ATOMIC); 862 break; 863 } 864 case BTRFS_SHARED_BLOCK_REF_KEY: { 865 /* SHARED DIRECT METADATA backref */ 866 struct btrfs_delayed_tree_ref *ref; 867 868 ref = btrfs_delayed_node_to_tree_ref(node); 869 870 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 871 ref->parent, node->bytenr, count, 872 sc, GFP_ATOMIC); 873 break; 874 } 875 case BTRFS_EXTENT_DATA_REF_KEY: { 876 /* NORMAL INDIRECT DATA backref */ 877 struct btrfs_delayed_data_ref *ref; 878 ref = btrfs_delayed_node_to_data_ref(node); 879 880 key.objectid = ref->objectid; 881 key.type = BTRFS_EXTENT_DATA_KEY; 882 key.offset = ref->offset; 883 884 /* 885 * Found a inum that doesn't match our known inum, we 886 * know it's shared. 887 */ 888 if (sc && sc->inum && ref->objectid != sc->inum) { 889 ret = BACKREF_FOUND_SHARED; 890 goto out; 891 } 892 893 ret = add_indirect_ref(fs_info, preftrees, ref->root, 894 &key, 0, node->bytenr, count, sc, 895 GFP_ATOMIC); 896 break; 897 } 898 case BTRFS_SHARED_DATA_REF_KEY: { 899 /* SHARED DIRECT FULL backref */ 900 struct btrfs_delayed_data_ref *ref; 901 902 ref = btrfs_delayed_node_to_data_ref(node); 903 904 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 905 node->bytenr, count, sc, 906 GFP_ATOMIC); 907 break; 908 } 909 default: 910 WARN_ON(1); 911 } 912 /* 913 * We must ignore BACKREF_FOUND_SHARED until all delayed 914 * refs have been checked. 915 */ 916 if (ret && (ret != BACKREF_FOUND_SHARED)) 917 break; 918 } 919 if (!ret) 920 ret = extent_is_shared(sc); 921 out: 922 spin_unlock(&head->lock); 923 return ret; 924 } 925 926 /* 927 * add all inline backrefs for bytenr to the list 928 * 929 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 930 */ 931 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 932 struct btrfs_path *path, u64 bytenr, 933 int *info_level, struct preftrees *preftrees, 934 struct share_check *sc) 935 { 936 int ret = 0; 937 int slot; 938 struct extent_buffer *leaf; 939 struct btrfs_key key; 940 struct btrfs_key found_key; 941 unsigned long ptr; 942 unsigned long end; 943 struct btrfs_extent_item *ei; 944 u64 flags; 945 u64 item_size; 946 947 /* 948 * enumerate all inline refs 949 */ 950 leaf = path->nodes[0]; 951 slot = path->slots[0]; 952 953 item_size = btrfs_item_size(leaf, slot); 954 BUG_ON(item_size < sizeof(*ei)); 955 956 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 957 flags = btrfs_extent_flags(leaf, ei); 958 btrfs_item_key_to_cpu(leaf, &found_key, slot); 959 960 ptr = (unsigned long)(ei + 1); 961 end = (unsigned long)ei + item_size; 962 963 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 964 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 965 struct btrfs_tree_block_info *info; 966 967 info = (struct btrfs_tree_block_info *)ptr; 968 *info_level = btrfs_tree_block_level(leaf, info); 969 ptr += sizeof(struct btrfs_tree_block_info); 970 BUG_ON(ptr > end); 971 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 972 *info_level = found_key.offset; 973 } else { 974 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 975 } 976 977 while (ptr < end) { 978 struct btrfs_extent_inline_ref *iref; 979 u64 offset; 980 int type; 981 982 iref = (struct btrfs_extent_inline_ref *)ptr; 983 type = btrfs_get_extent_inline_ref_type(leaf, iref, 984 BTRFS_REF_TYPE_ANY); 985 if (type == BTRFS_REF_TYPE_INVALID) 986 return -EUCLEAN; 987 988 offset = btrfs_extent_inline_ref_offset(leaf, iref); 989 990 switch (type) { 991 case BTRFS_SHARED_BLOCK_REF_KEY: 992 ret = add_direct_ref(fs_info, preftrees, 993 *info_level + 1, offset, 994 bytenr, 1, NULL, GFP_NOFS); 995 break; 996 case BTRFS_SHARED_DATA_REF_KEY: { 997 struct btrfs_shared_data_ref *sdref; 998 int count; 999 1000 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1001 count = btrfs_shared_data_ref_count(leaf, sdref); 1002 1003 ret = add_direct_ref(fs_info, preftrees, 0, offset, 1004 bytenr, count, sc, GFP_NOFS); 1005 break; 1006 } 1007 case BTRFS_TREE_BLOCK_REF_KEY: 1008 ret = add_indirect_ref(fs_info, preftrees, offset, 1009 NULL, *info_level + 1, 1010 bytenr, 1, NULL, GFP_NOFS); 1011 break; 1012 case BTRFS_EXTENT_DATA_REF_KEY: { 1013 struct btrfs_extent_data_ref *dref; 1014 int count; 1015 u64 root; 1016 1017 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1018 count = btrfs_extent_data_ref_count(leaf, dref); 1019 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1020 dref); 1021 key.type = BTRFS_EXTENT_DATA_KEY; 1022 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1023 1024 if (sc && sc->inum && key.objectid != sc->inum) { 1025 ret = BACKREF_FOUND_SHARED; 1026 break; 1027 } 1028 1029 root = btrfs_extent_data_ref_root(leaf, dref); 1030 1031 ret = add_indirect_ref(fs_info, preftrees, root, 1032 &key, 0, bytenr, count, 1033 sc, GFP_NOFS); 1034 break; 1035 } 1036 default: 1037 WARN_ON(1); 1038 } 1039 if (ret) 1040 return ret; 1041 ptr += btrfs_extent_inline_ref_size(type); 1042 } 1043 1044 return 0; 1045 } 1046 1047 /* 1048 * add all non-inline backrefs for bytenr to the list 1049 * 1050 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1051 */ 1052 static int add_keyed_refs(struct btrfs_root *extent_root, 1053 struct btrfs_path *path, u64 bytenr, 1054 int info_level, struct preftrees *preftrees, 1055 struct share_check *sc) 1056 { 1057 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1058 int ret; 1059 int slot; 1060 struct extent_buffer *leaf; 1061 struct btrfs_key key; 1062 1063 while (1) { 1064 ret = btrfs_next_item(extent_root, path); 1065 if (ret < 0) 1066 break; 1067 if (ret) { 1068 ret = 0; 1069 break; 1070 } 1071 1072 slot = path->slots[0]; 1073 leaf = path->nodes[0]; 1074 btrfs_item_key_to_cpu(leaf, &key, slot); 1075 1076 if (key.objectid != bytenr) 1077 break; 1078 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1079 continue; 1080 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1081 break; 1082 1083 switch (key.type) { 1084 case BTRFS_SHARED_BLOCK_REF_KEY: 1085 /* SHARED DIRECT METADATA backref */ 1086 ret = add_direct_ref(fs_info, preftrees, 1087 info_level + 1, key.offset, 1088 bytenr, 1, NULL, GFP_NOFS); 1089 break; 1090 case BTRFS_SHARED_DATA_REF_KEY: { 1091 /* SHARED DIRECT FULL backref */ 1092 struct btrfs_shared_data_ref *sdref; 1093 int count; 1094 1095 sdref = btrfs_item_ptr(leaf, slot, 1096 struct btrfs_shared_data_ref); 1097 count = btrfs_shared_data_ref_count(leaf, sdref); 1098 ret = add_direct_ref(fs_info, preftrees, 0, 1099 key.offset, bytenr, count, 1100 sc, GFP_NOFS); 1101 break; 1102 } 1103 case BTRFS_TREE_BLOCK_REF_KEY: 1104 /* NORMAL INDIRECT METADATA backref */ 1105 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1106 NULL, info_level + 1, bytenr, 1107 1, NULL, GFP_NOFS); 1108 break; 1109 case BTRFS_EXTENT_DATA_REF_KEY: { 1110 /* NORMAL INDIRECT DATA backref */ 1111 struct btrfs_extent_data_ref *dref; 1112 int count; 1113 u64 root; 1114 1115 dref = btrfs_item_ptr(leaf, slot, 1116 struct btrfs_extent_data_ref); 1117 count = btrfs_extent_data_ref_count(leaf, dref); 1118 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1119 dref); 1120 key.type = BTRFS_EXTENT_DATA_KEY; 1121 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1122 1123 if (sc && sc->inum && key.objectid != sc->inum) { 1124 ret = BACKREF_FOUND_SHARED; 1125 break; 1126 } 1127 1128 root = btrfs_extent_data_ref_root(leaf, dref); 1129 ret = add_indirect_ref(fs_info, preftrees, root, 1130 &key, 0, bytenr, count, 1131 sc, GFP_NOFS); 1132 break; 1133 } 1134 default: 1135 WARN_ON(1); 1136 } 1137 if (ret) 1138 return ret; 1139 1140 } 1141 1142 return ret; 1143 } 1144 1145 /* 1146 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1147 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1148 * indirect refs to their parent bytenr. 1149 * When roots are found, they're added to the roots list 1150 * 1151 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and 1152 * behave much like trans == NULL case, the difference only lies in it will not 1153 * commit root. 1154 * The special case is for qgroup to search roots in commit_transaction(). 1155 * 1156 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1157 * shared extent is detected. 1158 * 1159 * Otherwise this returns 0 for success and <0 for an error. 1160 * 1161 * If ignore_offset is set to false, only extent refs whose offsets match 1162 * extent_item_pos are returned. If true, every extent ref is returned 1163 * and extent_item_pos is ignored. 1164 * 1165 * FIXME some caching might speed things up 1166 */ 1167 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1168 struct btrfs_fs_info *fs_info, u64 bytenr, 1169 u64 time_seq, struct ulist *refs, 1170 struct ulist *roots, const u64 *extent_item_pos, 1171 struct share_check *sc, bool ignore_offset) 1172 { 1173 struct btrfs_root *root = fs_info->extent_root; 1174 struct btrfs_key key; 1175 struct btrfs_path *path; 1176 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1177 struct btrfs_delayed_ref_head *head; 1178 int info_level = 0; 1179 int ret; 1180 struct prelim_ref *ref; 1181 struct rb_node *node; 1182 struct extent_inode_elem *eie = NULL; 1183 struct preftrees preftrees = { 1184 .direct = PREFTREE_INIT, 1185 .indirect = PREFTREE_INIT, 1186 .indirect_missing_keys = PREFTREE_INIT 1187 }; 1188 1189 key.objectid = bytenr; 1190 key.offset = (u64)-1; 1191 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1192 key.type = BTRFS_METADATA_ITEM_KEY; 1193 else 1194 key.type = BTRFS_EXTENT_ITEM_KEY; 1195 1196 path = btrfs_alloc_path(); 1197 if (!path) 1198 return -ENOMEM; 1199 if (!trans) { 1200 path->search_commit_root = 1; 1201 path->skip_locking = 1; 1202 } 1203 1204 if (time_seq == BTRFS_SEQ_LAST) 1205 path->skip_locking = 1; 1206 1207 again: 1208 head = NULL; 1209 1210 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1211 if (ret < 0) 1212 goto out; 1213 BUG_ON(ret == 0); 1214 1215 if (trans && likely(trans->type != __TRANS_DUMMY) && 1216 time_seq != BTRFS_SEQ_LAST) { 1217 /* 1218 * We have a specific time_seq we care about and trans which 1219 * means we have the path lock, we need to grab the ref head and 1220 * lock it so we have a consistent view of the refs at the given 1221 * time. 1222 */ 1223 delayed_refs = &trans->transaction->delayed_refs; 1224 spin_lock(&delayed_refs->lock); 1225 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1226 if (head) { 1227 if (!mutex_trylock(&head->mutex)) { 1228 refcount_inc(&head->refs); 1229 spin_unlock(&delayed_refs->lock); 1230 1231 btrfs_release_path(path); 1232 1233 /* 1234 * Mutex was contended, block until it's 1235 * released and try again 1236 */ 1237 mutex_lock(&head->mutex); 1238 mutex_unlock(&head->mutex); 1239 btrfs_put_delayed_ref_head(head); 1240 goto again; 1241 } 1242 spin_unlock(&delayed_refs->lock); 1243 ret = add_delayed_refs(fs_info, head, time_seq, 1244 &preftrees, sc); 1245 mutex_unlock(&head->mutex); 1246 if (ret) 1247 goto out; 1248 } else { 1249 spin_unlock(&delayed_refs->lock); 1250 } 1251 } 1252 1253 if (path->slots[0]) { 1254 struct extent_buffer *leaf; 1255 int slot; 1256 1257 path->slots[0]--; 1258 leaf = path->nodes[0]; 1259 slot = path->slots[0]; 1260 btrfs_item_key_to_cpu(leaf, &key, slot); 1261 if (key.objectid == bytenr && 1262 (key.type == BTRFS_EXTENT_ITEM_KEY || 1263 key.type == BTRFS_METADATA_ITEM_KEY)) { 1264 ret = add_inline_refs(fs_info, path, bytenr, 1265 &info_level, &preftrees, sc); 1266 if (ret) 1267 goto out; 1268 ret = add_keyed_refs(root, path, bytenr, info_level, 1269 &preftrees, sc); 1270 if (ret) 1271 goto out; 1272 } 1273 } 1274 1275 btrfs_release_path(path); 1276 1277 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0); 1278 if (ret) 1279 goto out; 1280 1281 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1282 1283 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1284 extent_item_pos, sc, ignore_offset); 1285 if (ret) 1286 goto out; 1287 1288 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1289 1290 /* 1291 * This walks the tree of merged and resolved refs. Tree blocks are 1292 * read in as needed. Unique entries are added to the ulist, and 1293 * the list of found roots is updated. 1294 * 1295 * We release the entire tree in one go before returning. 1296 */ 1297 node = rb_first_cached(&preftrees.direct.root); 1298 while (node) { 1299 ref = rb_entry(node, struct prelim_ref, rbnode); 1300 node = rb_next(&ref->rbnode); 1301 /* 1302 * ref->count < 0 can happen here if there are delayed 1303 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1304 * prelim_ref_insert() relies on this when merging 1305 * identical refs to keep the overall count correct. 1306 * prelim_ref_insert() will merge only those refs 1307 * which compare identically. Any refs having 1308 * e.g. different offsets would not be merged, 1309 * and would retain their original ref->count < 0. 1310 */ 1311 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1312 if (sc && sc->root_objectid && 1313 ref->root_id != sc->root_objectid) { 1314 ret = BACKREF_FOUND_SHARED; 1315 goto out; 1316 } 1317 1318 /* no parent == root of tree */ 1319 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1320 if (ret < 0) 1321 goto out; 1322 } 1323 if (ref->count && ref->parent) { 1324 if (extent_item_pos && !ref->inode_list && 1325 ref->level == 0) { 1326 struct extent_buffer *eb; 1327 1328 eb = read_tree_block(fs_info, ref->parent, 0, 1329 0, ref->level, NULL); 1330 if (IS_ERR(eb)) { 1331 ret = PTR_ERR(eb); 1332 goto out; 1333 } else if (!extent_buffer_uptodate(eb)) { 1334 free_extent_buffer(eb); 1335 ret = -EIO; 1336 goto out; 1337 } 1338 1339 if (!path->skip_locking) 1340 btrfs_tree_read_lock(eb); 1341 ret = find_extent_in_eb(eb, bytenr, 1342 *extent_item_pos, &eie, ignore_offset); 1343 if (!path->skip_locking) 1344 btrfs_tree_read_unlock(eb); 1345 free_extent_buffer(eb); 1346 if (ret < 0) 1347 goto out; 1348 ref->inode_list = eie; 1349 } 1350 ret = ulist_add_merge_ptr(refs, ref->parent, 1351 ref->inode_list, 1352 (void **)&eie, GFP_NOFS); 1353 if (ret < 0) 1354 goto out; 1355 if (!ret && extent_item_pos) { 1356 /* 1357 * we've recorded that parent, so we must extend 1358 * its inode list here 1359 */ 1360 BUG_ON(!eie); 1361 while (eie->next) 1362 eie = eie->next; 1363 eie->next = ref->inode_list; 1364 } 1365 eie = NULL; 1366 } 1367 cond_resched(); 1368 } 1369 1370 out: 1371 btrfs_free_path(path); 1372 1373 prelim_release(&preftrees.direct); 1374 prelim_release(&preftrees.indirect); 1375 prelim_release(&preftrees.indirect_missing_keys); 1376 1377 if (ret < 0) 1378 free_inode_elem_list(eie); 1379 return ret; 1380 } 1381 1382 static void free_leaf_list(struct ulist *blocks) 1383 { 1384 struct ulist_node *node = NULL; 1385 struct extent_inode_elem *eie; 1386 struct ulist_iterator uiter; 1387 1388 ULIST_ITER_INIT(&uiter); 1389 while ((node = ulist_next(blocks, &uiter))) { 1390 if (!node->aux) 1391 continue; 1392 eie = unode_aux_to_inode_list(node); 1393 free_inode_elem_list(eie); 1394 node->aux = 0; 1395 } 1396 1397 ulist_free(blocks); 1398 } 1399 1400 /* 1401 * Finds all leafs with a reference to the specified combination of bytenr and 1402 * offset. key_list_head will point to a list of corresponding keys (caller must 1403 * free each list element). The leafs will be stored in the leafs ulist, which 1404 * must be freed with ulist_free. 1405 * 1406 * returns 0 on success, <0 on error 1407 */ 1408 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1409 struct btrfs_fs_info *fs_info, u64 bytenr, 1410 u64 time_seq, struct ulist **leafs, 1411 const u64 *extent_item_pos, bool ignore_offset) 1412 { 1413 int ret; 1414 1415 *leafs = ulist_alloc(GFP_NOFS); 1416 if (!*leafs) 1417 return -ENOMEM; 1418 1419 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1420 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1421 if (ret < 0 && ret != -ENOENT) { 1422 free_leaf_list(*leafs); 1423 return ret; 1424 } 1425 1426 return 0; 1427 } 1428 1429 /* 1430 * walk all backrefs for a given extent to find all roots that reference this 1431 * extent. Walking a backref means finding all extents that reference this 1432 * extent and in turn walk the backrefs of those, too. Naturally this is a 1433 * recursive process, but here it is implemented in an iterative fashion: We 1434 * find all referencing extents for the extent in question and put them on a 1435 * list. In turn, we find all referencing extents for those, further appending 1436 * to the list. The way we iterate the list allows adding more elements after 1437 * the current while iterating. The process stops when we reach the end of the 1438 * list. Found roots are added to the roots list. 1439 * 1440 * returns 0 on success, < 0 on error. 1441 */ 1442 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1443 struct btrfs_fs_info *fs_info, u64 bytenr, 1444 u64 time_seq, struct ulist **roots, 1445 bool ignore_offset) 1446 { 1447 struct ulist *tmp; 1448 struct ulist_node *node = NULL; 1449 struct ulist_iterator uiter; 1450 int ret; 1451 1452 tmp = ulist_alloc(GFP_NOFS); 1453 if (!tmp) 1454 return -ENOMEM; 1455 *roots = ulist_alloc(GFP_NOFS); 1456 if (!*roots) { 1457 ulist_free(tmp); 1458 return -ENOMEM; 1459 } 1460 1461 ULIST_ITER_INIT(&uiter); 1462 while (1) { 1463 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1464 tmp, *roots, NULL, NULL, ignore_offset); 1465 if (ret < 0 && ret != -ENOENT) { 1466 ulist_free(tmp); 1467 ulist_free(*roots); 1468 *roots = NULL; 1469 return ret; 1470 } 1471 node = ulist_next(tmp, &uiter); 1472 if (!node) 1473 break; 1474 bytenr = node->val; 1475 cond_resched(); 1476 } 1477 1478 ulist_free(tmp); 1479 return 0; 1480 } 1481 1482 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1483 struct btrfs_fs_info *fs_info, u64 bytenr, 1484 u64 time_seq, struct ulist **roots, 1485 bool skip_commit_root_sem) 1486 { 1487 int ret; 1488 1489 if (!trans && !skip_commit_root_sem) 1490 down_read(&fs_info->commit_root_sem); 1491 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1492 time_seq, roots, false); 1493 if (!trans && !skip_commit_root_sem) 1494 up_read(&fs_info->commit_root_sem); 1495 return ret; 1496 } 1497 1498 /** 1499 * Check if an extent is shared or not 1500 * 1501 * @root: root inode belongs to 1502 * @inum: inode number of the inode whose extent we are checking 1503 * @bytenr: logical bytenr of the extent we are checking 1504 * @roots: list of roots this extent is shared among 1505 * @tmp: temporary list used for iteration 1506 * 1507 * btrfs_check_shared uses the backref walking code but will short 1508 * circuit as soon as it finds a root or inode that doesn't match the 1509 * one passed in. This provides a significant performance benefit for 1510 * callers (such as fiemap) which want to know whether the extent is 1511 * shared but do not need a ref count. 1512 * 1513 * This attempts to attach to the running transaction in order to account for 1514 * delayed refs, but continues on even when no running transaction exists. 1515 * 1516 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1517 */ 1518 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr, 1519 struct ulist *roots, struct ulist *tmp) 1520 { 1521 struct btrfs_fs_info *fs_info = root->fs_info; 1522 struct btrfs_trans_handle *trans; 1523 struct ulist_iterator uiter; 1524 struct ulist_node *node; 1525 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1526 int ret = 0; 1527 struct share_check shared = { 1528 .root_objectid = root->root_key.objectid, 1529 .inum = inum, 1530 .share_count = 0, 1531 }; 1532 1533 ulist_init(roots); 1534 ulist_init(tmp); 1535 1536 trans = btrfs_join_transaction_nostart(root); 1537 if (IS_ERR(trans)) { 1538 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1539 ret = PTR_ERR(trans); 1540 goto out; 1541 } 1542 trans = NULL; 1543 down_read(&fs_info->commit_root_sem); 1544 } else { 1545 btrfs_get_tree_mod_seq(fs_info, &elem); 1546 } 1547 1548 ULIST_ITER_INIT(&uiter); 1549 while (1) { 1550 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1551 roots, NULL, &shared, false); 1552 if (ret == BACKREF_FOUND_SHARED) { 1553 /* this is the only condition under which we return 1 */ 1554 ret = 1; 1555 break; 1556 } 1557 if (ret < 0 && ret != -ENOENT) 1558 break; 1559 ret = 0; 1560 node = ulist_next(tmp, &uiter); 1561 if (!node) 1562 break; 1563 bytenr = node->val; 1564 shared.share_count = 0; 1565 cond_resched(); 1566 } 1567 1568 if (trans) { 1569 btrfs_put_tree_mod_seq(fs_info, &elem); 1570 btrfs_end_transaction(trans); 1571 } else { 1572 up_read(&fs_info->commit_root_sem); 1573 } 1574 out: 1575 ulist_release(roots); 1576 ulist_release(tmp); 1577 return ret; 1578 } 1579 1580 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1581 u64 start_off, struct btrfs_path *path, 1582 struct btrfs_inode_extref **ret_extref, 1583 u64 *found_off) 1584 { 1585 int ret, slot; 1586 struct btrfs_key key; 1587 struct btrfs_key found_key; 1588 struct btrfs_inode_extref *extref; 1589 const struct extent_buffer *leaf; 1590 unsigned long ptr; 1591 1592 key.objectid = inode_objectid; 1593 key.type = BTRFS_INODE_EXTREF_KEY; 1594 key.offset = start_off; 1595 1596 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1597 if (ret < 0) 1598 return ret; 1599 1600 while (1) { 1601 leaf = path->nodes[0]; 1602 slot = path->slots[0]; 1603 if (slot >= btrfs_header_nritems(leaf)) { 1604 /* 1605 * If the item at offset is not found, 1606 * btrfs_search_slot will point us to the slot 1607 * where it should be inserted. In our case 1608 * that will be the slot directly before the 1609 * next INODE_REF_KEY_V2 item. In the case 1610 * that we're pointing to the last slot in a 1611 * leaf, we must move one leaf over. 1612 */ 1613 ret = btrfs_next_leaf(root, path); 1614 if (ret) { 1615 if (ret >= 1) 1616 ret = -ENOENT; 1617 break; 1618 } 1619 continue; 1620 } 1621 1622 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1623 1624 /* 1625 * Check that we're still looking at an extended ref key for 1626 * this particular objectid. If we have different 1627 * objectid or type then there are no more to be found 1628 * in the tree and we can exit. 1629 */ 1630 ret = -ENOENT; 1631 if (found_key.objectid != inode_objectid) 1632 break; 1633 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1634 break; 1635 1636 ret = 0; 1637 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1638 extref = (struct btrfs_inode_extref *)ptr; 1639 *ret_extref = extref; 1640 if (found_off) 1641 *found_off = found_key.offset; 1642 break; 1643 } 1644 1645 return ret; 1646 } 1647 1648 /* 1649 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1650 * Elements of the path are separated by '/' and the path is guaranteed to be 1651 * 0-terminated. the path is only given within the current file system. 1652 * Therefore, it never starts with a '/'. the caller is responsible to provide 1653 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1654 * the start point of the resulting string is returned. this pointer is within 1655 * dest, normally. 1656 * in case the path buffer would overflow, the pointer is decremented further 1657 * as if output was written to the buffer, though no more output is actually 1658 * generated. that way, the caller can determine how much space would be 1659 * required for the path to fit into the buffer. in that case, the returned 1660 * value will be smaller than dest. callers must check this! 1661 */ 1662 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1663 u32 name_len, unsigned long name_off, 1664 struct extent_buffer *eb_in, u64 parent, 1665 char *dest, u32 size) 1666 { 1667 int slot; 1668 u64 next_inum; 1669 int ret; 1670 s64 bytes_left = ((s64)size) - 1; 1671 struct extent_buffer *eb = eb_in; 1672 struct btrfs_key found_key; 1673 struct btrfs_inode_ref *iref; 1674 1675 if (bytes_left >= 0) 1676 dest[bytes_left] = '\0'; 1677 1678 while (1) { 1679 bytes_left -= name_len; 1680 if (bytes_left >= 0) 1681 read_extent_buffer(eb, dest + bytes_left, 1682 name_off, name_len); 1683 if (eb != eb_in) { 1684 if (!path->skip_locking) 1685 btrfs_tree_read_unlock(eb); 1686 free_extent_buffer(eb); 1687 } 1688 ret = btrfs_find_item(fs_root, path, parent, 0, 1689 BTRFS_INODE_REF_KEY, &found_key); 1690 if (ret > 0) 1691 ret = -ENOENT; 1692 if (ret) 1693 break; 1694 1695 next_inum = found_key.offset; 1696 1697 /* regular exit ahead */ 1698 if (parent == next_inum) 1699 break; 1700 1701 slot = path->slots[0]; 1702 eb = path->nodes[0]; 1703 /* make sure we can use eb after releasing the path */ 1704 if (eb != eb_in) { 1705 path->nodes[0] = NULL; 1706 path->locks[0] = 0; 1707 } 1708 btrfs_release_path(path); 1709 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1710 1711 name_len = btrfs_inode_ref_name_len(eb, iref); 1712 name_off = (unsigned long)(iref + 1); 1713 1714 parent = next_inum; 1715 --bytes_left; 1716 if (bytes_left >= 0) 1717 dest[bytes_left] = '/'; 1718 } 1719 1720 btrfs_release_path(path); 1721 1722 if (ret) 1723 return ERR_PTR(ret); 1724 1725 return dest + bytes_left; 1726 } 1727 1728 /* 1729 * this makes the path point to (logical EXTENT_ITEM *) 1730 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1731 * tree blocks and <0 on error. 1732 */ 1733 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1734 struct btrfs_path *path, struct btrfs_key *found_key, 1735 u64 *flags_ret) 1736 { 1737 int ret; 1738 u64 flags; 1739 u64 size = 0; 1740 u32 item_size; 1741 const struct extent_buffer *eb; 1742 struct btrfs_extent_item *ei; 1743 struct btrfs_key key; 1744 1745 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1746 key.type = BTRFS_METADATA_ITEM_KEY; 1747 else 1748 key.type = BTRFS_EXTENT_ITEM_KEY; 1749 key.objectid = logical; 1750 key.offset = (u64)-1; 1751 1752 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1753 if (ret < 0) 1754 return ret; 1755 1756 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1757 if (ret) { 1758 if (ret > 0) 1759 ret = -ENOENT; 1760 return ret; 1761 } 1762 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1763 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1764 size = fs_info->nodesize; 1765 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1766 size = found_key->offset; 1767 1768 if (found_key->objectid > logical || 1769 found_key->objectid + size <= logical) { 1770 btrfs_debug(fs_info, 1771 "logical %llu is not within any extent", logical); 1772 return -ENOENT; 1773 } 1774 1775 eb = path->nodes[0]; 1776 item_size = btrfs_item_size(eb, path->slots[0]); 1777 BUG_ON(item_size < sizeof(*ei)); 1778 1779 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1780 flags = btrfs_extent_flags(eb, ei); 1781 1782 btrfs_debug(fs_info, 1783 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1784 logical, logical - found_key->objectid, found_key->objectid, 1785 found_key->offset, flags, item_size); 1786 1787 WARN_ON(!flags_ret); 1788 if (flags_ret) { 1789 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1790 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1791 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1792 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1793 else 1794 BUG(); 1795 return 0; 1796 } 1797 1798 return -EIO; 1799 } 1800 1801 /* 1802 * helper function to iterate extent inline refs. ptr must point to a 0 value 1803 * for the first call and may be modified. it is used to track state. 1804 * if more refs exist, 0 is returned and the next call to 1805 * get_extent_inline_ref must pass the modified ptr parameter to get the 1806 * next ref. after the last ref was processed, 1 is returned. 1807 * returns <0 on error 1808 */ 1809 static int get_extent_inline_ref(unsigned long *ptr, 1810 const struct extent_buffer *eb, 1811 const struct btrfs_key *key, 1812 const struct btrfs_extent_item *ei, 1813 u32 item_size, 1814 struct btrfs_extent_inline_ref **out_eiref, 1815 int *out_type) 1816 { 1817 unsigned long end; 1818 u64 flags; 1819 struct btrfs_tree_block_info *info; 1820 1821 if (!*ptr) { 1822 /* first call */ 1823 flags = btrfs_extent_flags(eb, ei); 1824 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1825 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1826 /* a skinny metadata extent */ 1827 *out_eiref = 1828 (struct btrfs_extent_inline_ref *)(ei + 1); 1829 } else { 1830 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1831 info = (struct btrfs_tree_block_info *)(ei + 1); 1832 *out_eiref = 1833 (struct btrfs_extent_inline_ref *)(info + 1); 1834 } 1835 } else { 1836 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1837 } 1838 *ptr = (unsigned long)*out_eiref; 1839 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1840 return -ENOENT; 1841 } 1842 1843 end = (unsigned long)ei + item_size; 1844 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1845 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1846 BTRFS_REF_TYPE_ANY); 1847 if (*out_type == BTRFS_REF_TYPE_INVALID) 1848 return -EUCLEAN; 1849 1850 *ptr += btrfs_extent_inline_ref_size(*out_type); 1851 WARN_ON(*ptr > end); 1852 if (*ptr == end) 1853 return 1; /* last */ 1854 1855 return 0; 1856 } 1857 1858 /* 1859 * reads the tree block backref for an extent. tree level and root are returned 1860 * through out_level and out_root. ptr must point to a 0 value for the first 1861 * call and may be modified (see get_extent_inline_ref comment). 1862 * returns 0 if data was provided, 1 if there was no more data to provide or 1863 * <0 on error. 1864 */ 1865 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1866 struct btrfs_key *key, struct btrfs_extent_item *ei, 1867 u32 item_size, u64 *out_root, u8 *out_level) 1868 { 1869 int ret; 1870 int type; 1871 struct btrfs_extent_inline_ref *eiref; 1872 1873 if (*ptr == (unsigned long)-1) 1874 return 1; 1875 1876 while (1) { 1877 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1878 &eiref, &type); 1879 if (ret < 0) 1880 return ret; 1881 1882 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1883 type == BTRFS_SHARED_BLOCK_REF_KEY) 1884 break; 1885 1886 if (ret == 1) 1887 return 1; 1888 } 1889 1890 /* we can treat both ref types equally here */ 1891 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1892 1893 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1894 struct btrfs_tree_block_info *info; 1895 1896 info = (struct btrfs_tree_block_info *)(ei + 1); 1897 *out_level = btrfs_tree_block_level(eb, info); 1898 } else { 1899 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1900 *out_level = (u8)key->offset; 1901 } 1902 1903 if (ret == 1) 1904 *ptr = (unsigned long)-1; 1905 1906 return 0; 1907 } 1908 1909 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1910 struct extent_inode_elem *inode_list, 1911 u64 root, u64 extent_item_objectid, 1912 iterate_extent_inodes_t *iterate, void *ctx) 1913 { 1914 struct extent_inode_elem *eie; 1915 int ret = 0; 1916 1917 for (eie = inode_list; eie; eie = eie->next) { 1918 btrfs_debug(fs_info, 1919 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1920 extent_item_objectid, eie->inum, 1921 eie->offset, root); 1922 ret = iterate(eie->inum, eie->offset, root, ctx); 1923 if (ret) { 1924 btrfs_debug(fs_info, 1925 "stopping iteration for %llu due to ret=%d", 1926 extent_item_objectid, ret); 1927 break; 1928 } 1929 } 1930 1931 return ret; 1932 } 1933 1934 /* 1935 * calls iterate() for every inode that references the extent identified by 1936 * the given parameters. 1937 * when the iterator function returns a non-zero value, iteration stops. 1938 */ 1939 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1940 u64 extent_item_objectid, u64 extent_item_pos, 1941 int search_commit_root, 1942 iterate_extent_inodes_t *iterate, void *ctx, 1943 bool ignore_offset) 1944 { 1945 int ret; 1946 struct btrfs_trans_handle *trans = NULL; 1947 struct ulist *refs = NULL; 1948 struct ulist *roots = NULL; 1949 struct ulist_node *ref_node = NULL; 1950 struct ulist_node *root_node = NULL; 1951 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 1952 struct ulist_iterator ref_uiter; 1953 struct ulist_iterator root_uiter; 1954 1955 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1956 extent_item_objectid); 1957 1958 if (!search_commit_root) { 1959 trans = btrfs_attach_transaction(fs_info->extent_root); 1960 if (IS_ERR(trans)) { 1961 if (PTR_ERR(trans) != -ENOENT && 1962 PTR_ERR(trans) != -EROFS) 1963 return PTR_ERR(trans); 1964 trans = NULL; 1965 } 1966 } 1967 1968 if (trans) 1969 btrfs_get_tree_mod_seq(fs_info, &seq_elem); 1970 else 1971 down_read(&fs_info->commit_root_sem); 1972 1973 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1974 seq_elem.seq, &refs, 1975 &extent_item_pos, ignore_offset); 1976 if (ret) 1977 goto out; 1978 1979 ULIST_ITER_INIT(&ref_uiter); 1980 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1981 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 1982 seq_elem.seq, &roots, 1983 ignore_offset); 1984 if (ret) 1985 break; 1986 ULIST_ITER_INIT(&root_uiter); 1987 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1988 btrfs_debug(fs_info, 1989 "root %llu references leaf %llu, data list %#llx", 1990 root_node->val, ref_node->val, 1991 ref_node->aux); 1992 ret = iterate_leaf_refs(fs_info, 1993 (struct extent_inode_elem *) 1994 (uintptr_t)ref_node->aux, 1995 root_node->val, 1996 extent_item_objectid, 1997 iterate, ctx); 1998 } 1999 ulist_free(roots); 2000 } 2001 2002 free_leaf_list(refs); 2003 out: 2004 if (trans) { 2005 btrfs_put_tree_mod_seq(fs_info, &seq_elem); 2006 btrfs_end_transaction(trans); 2007 } else { 2008 up_read(&fs_info->commit_root_sem); 2009 } 2010 2011 return ret; 2012 } 2013 2014 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2015 struct btrfs_path *path, 2016 iterate_extent_inodes_t *iterate, void *ctx, 2017 bool ignore_offset) 2018 { 2019 int ret; 2020 u64 extent_item_pos; 2021 u64 flags = 0; 2022 struct btrfs_key found_key; 2023 int search_commit_root = path->search_commit_root; 2024 2025 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2026 btrfs_release_path(path); 2027 if (ret < 0) 2028 return ret; 2029 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2030 return -EINVAL; 2031 2032 extent_item_pos = logical - found_key.objectid; 2033 ret = iterate_extent_inodes(fs_info, found_key.objectid, 2034 extent_item_pos, search_commit_root, 2035 iterate, ctx, ignore_offset); 2036 2037 return ret; 2038 } 2039 2040 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 2041 struct extent_buffer *eb, void *ctx); 2042 2043 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 2044 struct btrfs_path *path, 2045 iterate_irefs_t *iterate, void *ctx) 2046 { 2047 int ret = 0; 2048 int slot; 2049 u32 cur; 2050 u32 len; 2051 u32 name_len; 2052 u64 parent = 0; 2053 int found = 0; 2054 struct extent_buffer *eb; 2055 struct btrfs_inode_ref *iref; 2056 struct btrfs_key found_key; 2057 2058 while (!ret) { 2059 ret = btrfs_find_item(fs_root, path, inum, 2060 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2061 &found_key); 2062 2063 if (ret < 0) 2064 break; 2065 if (ret) { 2066 ret = found ? 0 : -ENOENT; 2067 break; 2068 } 2069 ++found; 2070 2071 parent = found_key.offset; 2072 slot = path->slots[0]; 2073 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2074 if (!eb) { 2075 ret = -ENOMEM; 2076 break; 2077 } 2078 btrfs_release_path(path); 2079 2080 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2081 2082 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2083 name_len = btrfs_inode_ref_name_len(eb, iref); 2084 /* path must be released before calling iterate()! */ 2085 btrfs_debug(fs_root->fs_info, 2086 "following ref at offset %u for inode %llu in tree %llu", 2087 cur, found_key.objectid, 2088 fs_root->root_key.objectid); 2089 ret = iterate(parent, name_len, 2090 (unsigned long)(iref + 1), eb, ctx); 2091 if (ret) 2092 break; 2093 len = sizeof(*iref) + name_len; 2094 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2095 } 2096 free_extent_buffer(eb); 2097 } 2098 2099 btrfs_release_path(path); 2100 2101 return ret; 2102 } 2103 2104 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2105 struct btrfs_path *path, 2106 iterate_irefs_t *iterate, void *ctx) 2107 { 2108 int ret; 2109 int slot; 2110 u64 offset = 0; 2111 u64 parent; 2112 int found = 0; 2113 struct extent_buffer *eb; 2114 struct btrfs_inode_extref *extref; 2115 u32 item_size; 2116 u32 cur_offset; 2117 unsigned long ptr; 2118 2119 while (1) { 2120 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2121 &offset); 2122 if (ret < 0) 2123 break; 2124 if (ret) { 2125 ret = found ? 0 : -ENOENT; 2126 break; 2127 } 2128 ++found; 2129 2130 slot = path->slots[0]; 2131 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2132 if (!eb) { 2133 ret = -ENOMEM; 2134 break; 2135 } 2136 btrfs_release_path(path); 2137 2138 item_size = btrfs_item_size(eb, slot); 2139 ptr = btrfs_item_ptr_offset(eb, slot); 2140 cur_offset = 0; 2141 2142 while (cur_offset < item_size) { 2143 u32 name_len; 2144 2145 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2146 parent = btrfs_inode_extref_parent(eb, extref); 2147 name_len = btrfs_inode_extref_name_len(eb, extref); 2148 ret = iterate(parent, name_len, 2149 (unsigned long)&extref->name, eb, ctx); 2150 if (ret) 2151 break; 2152 2153 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2154 cur_offset += sizeof(*extref); 2155 } 2156 free_extent_buffer(eb); 2157 2158 offset++; 2159 } 2160 2161 btrfs_release_path(path); 2162 2163 return ret; 2164 } 2165 2166 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2167 struct btrfs_path *path, iterate_irefs_t *iterate, 2168 void *ctx) 2169 { 2170 int ret; 2171 int found_refs = 0; 2172 2173 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2174 if (!ret) 2175 ++found_refs; 2176 else if (ret != -ENOENT) 2177 return ret; 2178 2179 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2180 if (ret == -ENOENT && found_refs) 2181 return 0; 2182 2183 return ret; 2184 } 2185 2186 /* 2187 * returns 0 if the path could be dumped (probably truncated) 2188 * returns <0 in case of an error 2189 */ 2190 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2191 struct extent_buffer *eb, void *ctx) 2192 { 2193 struct inode_fs_paths *ipath = ctx; 2194 char *fspath; 2195 char *fspath_min; 2196 int i = ipath->fspath->elem_cnt; 2197 const int s_ptr = sizeof(char *); 2198 u32 bytes_left; 2199 2200 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2201 ipath->fspath->bytes_left - s_ptr : 0; 2202 2203 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2204 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2205 name_off, eb, inum, fspath_min, bytes_left); 2206 if (IS_ERR(fspath)) 2207 return PTR_ERR(fspath); 2208 2209 if (fspath > fspath_min) { 2210 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2211 ++ipath->fspath->elem_cnt; 2212 ipath->fspath->bytes_left = fspath - fspath_min; 2213 } else { 2214 ++ipath->fspath->elem_missed; 2215 ipath->fspath->bytes_missing += fspath_min - fspath; 2216 ipath->fspath->bytes_left = 0; 2217 } 2218 2219 return 0; 2220 } 2221 2222 /* 2223 * this dumps all file system paths to the inode into the ipath struct, provided 2224 * is has been created large enough. each path is zero-terminated and accessed 2225 * from ipath->fspath->val[i]. 2226 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2227 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2228 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2229 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2230 * have been needed to return all paths. 2231 */ 2232 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2233 { 2234 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2235 inode_to_path, ipath); 2236 } 2237 2238 struct btrfs_data_container *init_data_container(u32 total_bytes) 2239 { 2240 struct btrfs_data_container *data; 2241 size_t alloc_bytes; 2242 2243 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2244 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2245 if (!data) 2246 return ERR_PTR(-ENOMEM); 2247 2248 if (total_bytes >= sizeof(*data)) { 2249 data->bytes_left = total_bytes - sizeof(*data); 2250 data->bytes_missing = 0; 2251 } else { 2252 data->bytes_missing = sizeof(*data) - total_bytes; 2253 data->bytes_left = 0; 2254 } 2255 2256 data->elem_cnt = 0; 2257 data->elem_missed = 0; 2258 2259 return data; 2260 } 2261 2262 /* 2263 * allocates space to return multiple file system paths for an inode. 2264 * total_bytes to allocate are passed, note that space usable for actual path 2265 * information will be total_bytes - sizeof(struct inode_fs_paths). 2266 * the returned pointer must be freed with free_ipath() in the end. 2267 */ 2268 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2269 struct btrfs_path *path) 2270 { 2271 struct inode_fs_paths *ifp; 2272 struct btrfs_data_container *fspath; 2273 2274 fspath = init_data_container(total_bytes); 2275 if (IS_ERR(fspath)) 2276 return ERR_CAST(fspath); 2277 2278 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2279 if (!ifp) { 2280 kvfree(fspath); 2281 return ERR_PTR(-ENOMEM); 2282 } 2283 2284 ifp->btrfs_path = path; 2285 ifp->fspath = fspath; 2286 ifp->fs_root = fs_root; 2287 2288 return ifp; 2289 } 2290 2291 void free_ipath(struct inode_fs_paths *ipath) 2292 { 2293 if (!ipath) 2294 return; 2295 kvfree(ipath->fspath); 2296 kfree(ipath); 2297 } 2298 2299 struct btrfs_backref_iter *btrfs_backref_iter_alloc( 2300 struct btrfs_fs_info *fs_info, gfp_t gfp_flag) 2301 { 2302 struct btrfs_backref_iter *ret; 2303 2304 ret = kzalloc(sizeof(*ret), gfp_flag); 2305 if (!ret) 2306 return NULL; 2307 2308 ret->path = btrfs_alloc_path(); 2309 if (!ret->path) { 2310 kfree(ret); 2311 return NULL; 2312 } 2313 2314 /* Current backref iterator only supports iteration in commit root */ 2315 ret->path->search_commit_root = 1; 2316 ret->path->skip_locking = 1; 2317 ret->fs_info = fs_info; 2318 2319 return ret; 2320 } 2321 2322 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2323 { 2324 struct btrfs_fs_info *fs_info = iter->fs_info; 2325 struct btrfs_path *path = iter->path; 2326 struct btrfs_extent_item *ei; 2327 struct btrfs_key key; 2328 int ret; 2329 2330 key.objectid = bytenr; 2331 key.type = BTRFS_METADATA_ITEM_KEY; 2332 key.offset = (u64)-1; 2333 iter->bytenr = bytenr; 2334 2335 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 2336 if (ret < 0) 2337 return ret; 2338 if (ret == 0) { 2339 ret = -EUCLEAN; 2340 goto release; 2341 } 2342 if (path->slots[0] == 0) { 2343 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2344 ret = -EUCLEAN; 2345 goto release; 2346 } 2347 path->slots[0]--; 2348 2349 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2350 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2351 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2352 ret = -ENOENT; 2353 goto release; 2354 } 2355 memcpy(&iter->cur_key, &key, sizeof(key)); 2356 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2357 path->slots[0]); 2358 iter->end_ptr = (u32)(iter->item_ptr + 2359 btrfs_item_size(path->nodes[0], path->slots[0])); 2360 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2361 struct btrfs_extent_item); 2362 2363 /* 2364 * Only support iteration on tree backref yet. 2365 * 2366 * This is an extra precaution for non skinny-metadata, where 2367 * EXTENT_ITEM is also used for tree blocks, that we can only use 2368 * extent flags to determine if it's a tree block. 2369 */ 2370 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2371 ret = -ENOTSUPP; 2372 goto release; 2373 } 2374 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2375 2376 /* If there is no inline backref, go search for keyed backref */ 2377 if (iter->cur_ptr >= iter->end_ptr) { 2378 ret = btrfs_next_item(fs_info->extent_root, path); 2379 2380 /* No inline nor keyed ref */ 2381 if (ret > 0) { 2382 ret = -ENOENT; 2383 goto release; 2384 } 2385 if (ret < 0) 2386 goto release; 2387 2388 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2389 path->slots[0]); 2390 if (iter->cur_key.objectid != bytenr || 2391 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2392 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2393 ret = -ENOENT; 2394 goto release; 2395 } 2396 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2397 path->slots[0]); 2398 iter->item_ptr = iter->cur_ptr; 2399 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2400 path->nodes[0], path->slots[0])); 2401 } 2402 2403 return 0; 2404 release: 2405 btrfs_backref_iter_release(iter); 2406 return ret; 2407 } 2408 2409 /* 2410 * Go to the next backref item of current bytenr, can be either inlined or 2411 * keyed. 2412 * 2413 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2414 * 2415 * Return 0 if we get next backref without problem. 2416 * Return >0 if there is no extra backref for this bytenr. 2417 * Return <0 if there is something wrong happened. 2418 */ 2419 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2420 { 2421 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2422 struct btrfs_path *path = iter->path; 2423 struct btrfs_extent_inline_ref *iref; 2424 int ret; 2425 u32 size; 2426 2427 if (btrfs_backref_iter_is_inline_ref(iter)) { 2428 /* We're still inside the inline refs */ 2429 ASSERT(iter->cur_ptr < iter->end_ptr); 2430 2431 if (btrfs_backref_has_tree_block_info(iter)) { 2432 /* First tree block info */ 2433 size = sizeof(struct btrfs_tree_block_info); 2434 } else { 2435 /* Use inline ref type to determine the size */ 2436 int type; 2437 2438 iref = (struct btrfs_extent_inline_ref *) 2439 ((unsigned long)iter->cur_ptr); 2440 type = btrfs_extent_inline_ref_type(eb, iref); 2441 2442 size = btrfs_extent_inline_ref_size(type); 2443 } 2444 iter->cur_ptr += size; 2445 if (iter->cur_ptr < iter->end_ptr) 2446 return 0; 2447 2448 /* All inline items iterated, fall through */ 2449 } 2450 2451 /* We're at keyed items, there is no inline item, go to the next one */ 2452 ret = btrfs_next_item(iter->fs_info->extent_root, iter->path); 2453 if (ret) 2454 return ret; 2455 2456 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2457 if (iter->cur_key.objectid != iter->bytenr || 2458 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2459 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2460 return 1; 2461 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2462 path->slots[0]); 2463 iter->cur_ptr = iter->item_ptr; 2464 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 2465 path->slots[0]); 2466 return 0; 2467 } 2468 2469 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 2470 struct btrfs_backref_cache *cache, int is_reloc) 2471 { 2472 int i; 2473 2474 cache->rb_root = RB_ROOT; 2475 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2476 INIT_LIST_HEAD(&cache->pending[i]); 2477 INIT_LIST_HEAD(&cache->changed); 2478 INIT_LIST_HEAD(&cache->detached); 2479 INIT_LIST_HEAD(&cache->leaves); 2480 INIT_LIST_HEAD(&cache->pending_edge); 2481 INIT_LIST_HEAD(&cache->useless_node); 2482 cache->fs_info = fs_info; 2483 cache->is_reloc = is_reloc; 2484 } 2485 2486 struct btrfs_backref_node *btrfs_backref_alloc_node( 2487 struct btrfs_backref_cache *cache, u64 bytenr, int level) 2488 { 2489 struct btrfs_backref_node *node; 2490 2491 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 2492 node = kzalloc(sizeof(*node), GFP_NOFS); 2493 if (!node) 2494 return node; 2495 2496 INIT_LIST_HEAD(&node->list); 2497 INIT_LIST_HEAD(&node->upper); 2498 INIT_LIST_HEAD(&node->lower); 2499 RB_CLEAR_NODE(&node->rb_node); 2500 cache->nr_nodes++; 2501 node->level = level; 2502 node->bytenr = bytenr; 2503 2504 return node; 2505 } 2506 2507 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 2508 struct btrfs_backref_cache *cache) 2509 { 2510 struct btrfs_backref_edge *edge; 2511 2512 edge = kzalloc(sizeof(*edge), GFP_NOFS); 2513 if (edge) 2514 cache->nr_edges++; 2515 return edge; 2516 } 2517 2518 /* 2519 * Drop the backref node from cache, also cleaning up all its 2520 * upper edges and any uncached nodes in the path. 2521 * 2522 * This cleanup happens bottom up, thus the node should either 2523 * be the lowest node in the cache or a detached node. 2524 */ 2525 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 2526 struct btrfs_backref_node *node) 2527 { 2528 struct btrfs_backref_node *upper; 2529 struct btrfs_backref_edge *edge; 2530 2531 if (!node) 2532 return; 2533 2534 BUG_ON(!node->lowest && !node->detached); 2535 while (!list_empty(&node->upper)) { 2536 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 2537 list[LOWER]); 2538 upper = edge->node[UPPER]; 2539 list_del(&edge->list[LOWER]); 2540 list_del(&edge->list[UPPER]); 2541 btrfs_backref_free_edge(cache, edge); 2542 2543 /* 2544 * Add the node to leaf node list if no other child block 2545 * cached. 2546 */ 2547 if (list_empty(&upper->lower)) { 2548 list_add_tail(&upper->lower, &cache->leaves); 2549 upper->lowest = 1; 2550 } 2551 } 2552 2553 btrfs_backref_drop_node(cache, node); 2554 } 2555 2556 /* 2557 * Release all nodes/edges from current cache 2558 */ 2559 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 2560 { 2561 struct btrfs_backref_node *node; 2562 int i; 2563 2564 while (!list_empty(&cache->detached)) { 2565 node = list_entry(cache->detached.next, 2566 struct btrfs_backref_node, list); 2567 btrfs_backref_cleanup_node(cache, node); 2568 } 2569 2570 while (!list_empty(&cache->leaves)) { 2571 node = list_entry(cache->leaves.next, 2572 struct btrfs_backref_node, lower); 2573 btrfs_backref_cleanup_node(cache, node); 2574 } 2575 2576 cache->last_trans = 0; 2577 2578 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2579 ASSERT(list_empty(&cache->pending[i])); 2580 ASSERT(list_empty(&cache->pending_edge)); 2581 ASSERT(list_empty(&cache->useless_node)); 2582 ASSERT(list_empty(&cache->changed)); 2583 ASSERT(list_empty(&cache->detached)); 2584 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 2585 ASSERT(!cache->nr_nodes); 2586 ASSERT(!cache->nr_edges); 2587 } 2588 2589 /* 2590 * Handle direct tree backref 2591 * 2592 * Direct tree backref means, the backref item shows its parent bytenr 2593 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 2594 * 2595 * @ref_key: The converted backref key. 2596 * For keyed backref, it's the item key. 2597 * For inlined backref, objectid is the bytenr, 2598 * type is btrfs_inline_ref_type, offset is 2599 * btrfs_inline_ref_offset. 2600 */ 2601 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 2602 struct btrfs_key *ref_key, 2603 struct btrfs_backref_node *cur) 2604 { 2605 struct btrfs_backref_edge *edge; 2606 struct btrfs_backref_node *upper; 2607 struct rb_node *rb_node; 2608 2609 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 2610 2611 /* Only reloc root uses backref pointing to itself */ 2612 if (ref_key->objectid == ref_key->offset) { 2613 struct btrfs_root *root; 2614 2615 cur->is_reloc_root = 1; 2616 /* Only reloc backref cache cares about a specific root */ 2617 if (cache->is_reloc) { 2618 root = find_reloc_root(cache->fs_info, cur->bytenr); 2619 if (!root) 2620 return -ENOENT; 2621 cur->root = root; 2622 } else { 2623 /* 2624 * For generic purpose backref cache, reloc root node 2625 * is useless. 2626 */ 2627 list_add(&cur->list, &cache->useless_node); 2628 } 2629 return 0; 2630 } 2631 2632 edge = btrfs_backref_alloc_edge(cache); 2633 if (!edge) 2634 return -ENOMEM; 2635 2636 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 2637 if (!rb_node) { 2638 /* Parent node not yet cached */ 2639 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 2640 cur->level + 1); 2641 if (!upper) { 2642 btrfs_backref_free_edge(cache, edge); 2643 return -ENOMEM; 2644 } 2645 2646 /* 2647 * Backrefs for the upper level block isn't cached, add the 2648 * block to pending list 2649 */ 2650 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2651 } else { 2652 /* Parent node already cached */ 2653 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 2654 ASSERT(upper->checked); 2655 INIT_LIST_HEAD(&edge->list[UPPER]); 2656 } 2657 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 2658 return 0; 2659 } 2660 2661 /* 2662 * Handle indirect tree backref 2663 * 2664 * Indirect tree backref means, we only know which tree the node belongs to. 2665 * We still need to do a tree search to find out the parents. This is for 2666 * TREE_BLOCK_REF backref (keyed or inlined). 2667 * 2668 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 2669 * @tree_key: The first key of this tree block. 2670 * @path: A clean (released) path, to avoid allocating path every time 2671 * the function get called. 2672 */ 2673 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 2674 struct btrfs_path *path, 2675 struct btrfs_key *ref_key, 2676 struct btrfs_key *tree_key, 2677 struct btrfs_backref_node *cur) 2678 { 2679 struct btrfs_fs_info *fs_info = cache->fs_info; 2680 struct btrfs_backref_node *upper; 2681 struct btrfs_backref_node *lower; 2682 struct btrfs_backref_edge *edge; 2683 struct extent_buffer *eb; 2684 struct btrfs_root *root; 2685 struct rb_node *rb_node; 2686 int level; 2687 bool need_check = true; 2688 int ret; 2689 2690 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 2691 if (IS_ERR(root)) 2692 return PTR_ERR(root); 2693 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2694 cur->cowonly = 1; 2695 2696 if (btrfs_root_level(&root->root_item) == cur->level) { 2697 /* Tree root */ 2698 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 2699 /* 2700 * For reloc backref cache, we may ignore reloc root. But for 2701 * general purpose backref cache, we can't rely on 2702 * btrfs_should_ignore_reloc_root() as it may conflict with 2703 * current running relocation and lead to missing root. 2704 * 2705 * For general purpose backref cache, reloc root detection is 2706 * completely relying on direct backref (key->offset is parent 2707 * bytenr), thus only do such check for reloc cache. 2708 */ 2709 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 2710 btrfs_put_root(root); 2711 list_add(&cur->list, &cache->useless_node); 2712 } else { 2713 cur->root = root; 2714 } 2715 return 0; 2716 } 2717 2718 level = cur->level + 1; 2719 2720 /* Search the tree to find parent blocks referring to the block */ 2721 path->search_commit_root = 1; 2722 path->skip_locking = 1; 2723 path->lowest_level = level; 2724 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 2725 path->lowest_level = 0; 2726 if (ret < 0) { 2727 btrfs_put_root(root); 2728 return ret; 2729 } 2730 if (ret > 0 && path->slots[level] > 0) 2731 path->slots[level]--; 2732 2733 eb = path->nodes[level]; 2734 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 2735 btrfs_err(fs_info, 2736 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 2737 cur->bytenr, level - 1, root->root_key.objectid, 2738 tree_key->objectid, tree_key->type, tree_key->offset); 2739 btrfs_put_root(root); 2740 ret = -ENOENT; 2741 goto out; 2742 } 2743 lower = cur; 2744 2745 /* Add all nodes and edges in the path */ 2746 for (; level < BTRFS_MAX_LEVEL; level++) { 2747 if (!path->nodes[level]) { 2748 ASSERT(btrfs_root_bytenr(&root->root_item) == 2749 lower->bytenr); 2750 /* Same as previous should_ignore_reloc_root() call */ 2751 if (btrfs_should_ignore_reloc_root(root) && 2752 cache->is_reloc) { 2753 btrfs_put_root(root); 2754 list_add(&lower->list, &cache->useless_node); 2755 } else { 2756 lower->root = root; 2757 } 2758 break; 2759 } 2760 2761 edge = btrfs_backref_alloc_edge(cache); 2762 if (!edge) { 2763 btrfs_put_root(root); 2764 ret = -ENOMEM; 2765 goto out; 2766 } 2767 2768 eb = path->nodes[level]; 2769 rb_node = rb_simple_search(&cache->rb_root, eb->start); 2770 if (!rb_node) { 2771 upper = btrfs_backref_alloc_node(cache, eb->start, 2772 lower->level + 1); 2773 if (!upper) { 2774 btrfs_put_root(root); 2775 btrfs_backref_free_edge(cache, edge); 2776 ret = -ENOMEM; 2777 goto out; 2778 } 2779 upper->owner = btrfs_header_owner(eb); 2780 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2781 upper->cowonly = 1; 2782 2783 /* 2784 * If we know the block isn't shared we can avoid 2785 * checking its backrefs. 2786 */ 2787 if (btrfs_block_can_be_shared(root, eb)) 2788 upper->checked = 0; 2789 else 2790 upper->checked = 1; 2791 2792 /* 2793 * Add the block to pending list if we need to check its 2794 * backrefs, we only do this once while walking up a 2795 * tree as we will catch anything else later on. 2796 */ 2797 if (!upper->checked && need_check) { 2798 need_check = false; 2799 list_add_tail(&edge->list[UPPER], 2800 &cache->pending_edge); 2801 } else { 2802 if (upper->checked) 2803 need_check = true; 2804 INIT_LIST_HEAD(&edge->list[UPPER]); 2805 } 2806 } else { 2807 upper = rb_entry(rb_node, struct btrfs_backref_node, 2808 rb_node); 2809 ASSERT(upper->checked); 2810 INIT_LIST_HEAD(&edge->list[UPPER]); 2811 if (!upper->owner) 2812 upper->owner = btrfs_header_owner(eb); 2813 } 2814 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 2815 2816 if (rb_node) { 2817 btrfs_put_root(root); 2818 break; 2819 } 2820 lower = upper; 2821 upper = NULL; 2822 } 2823 out: 2824 btrfs_release_path(path); 2825 return ret; 2826 } 2827 2828 /* 2829 * Add backref node @cur into @cache. 2830 * 2831 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 2832 * links aren't yet bi-directional. Needs to finish such links. 2833 * Use btrfs_backref_finish_upper_links() to finish such linkage. 2834 * 2835 * @path: Released path for indirect tree backref lookup 2836 * @iter: Released backref iter for extent tree search 2837 * @node_key: The first key of the tree block 2838 */ 2839 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 2840 struct btrfs_path *path, 2841 struct btrfs_backref_iter *iter, 2842 struct btrfs_key *node_key, 2843 struct btrfs_backref_node *cur) 2844 { 2845 struct btrfs_fs_info *fs_info = cache->fs_info; 2846 struct btrfs_backref_edge *edge; 2847 struct btrfs_backref_node *exist; 2848 int ret; 2849 2850 ret = btrfs_backref_iter_start(iter, cur->bytenr); 2851 if (ret < 0) 2852 return ret; 2853 /* 2854 * We skip the first btrfs_tree_block_info, as we don't use the key 2855 * stored in it, but fetch it from the tree block 2856 */ 2857 if (btrfs_backref_has_tree_block_info(iter)) { 2858 ret = btrfs_backref_iter_next(iter); 2859 if (ret < 0) 2860 goto out; 2861 /* No extra backref? This means the tree block is corrupted */ 2862 if (ret > 0) { 2863 ret = -EUCLEAN; 2864 goto out; 2865 } 2866 } 2867 WARN_ON(cur->checked); 2868 if (!list_empty(&cur->upper)) { 2869 /* 2870 * The backref was added previously when processing backref of 2871 * type BTRFS_TREE_BLOCK_REF_KEY 2872 */ 2873 ASSERT(list_is_singular(&cur->upper)); 2874 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 2875 list[LOWER]); 2876 ASSERT(list_empty(&edge->list[UPPER])); 2877 exist = edge->node[UPPER]; 2878 /* 2879 * Add the upper level block to pending list if we need check 2880 * its backrefs 2881 */ 2882 if (!exist->checked) 2883 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2884 } else { 2885 exist = NULL; 2886 } 2887 2888 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 2889 struct extent_buffer *eb; 2890 struct btrfs_key key; 2891 int type; 2892 2893 cond_resched(); 2894 eb = btrfs_backref_get_eb(iter); 2895 2896 key.objectid = iter->bytenr; 2897 if (btrfs_backref_iter_is_inline_ref(iter)) { 2898 struct btrfs_extent_inline_ref *iref; 2899 2900 /* Update key for inline backref */ 2901 iref = (struct btrfs_extent_inline_ref *) 2902 ((unsigned long)iter->cur_ptr); 2903 type = btrfs_get_extent_inline_ref_type(eb, iref, 2904 BTRFS_REF_TYPE_BLOCK); 2905 if (type == BTRFS_REF_TYPE_INVALID) { 2906 ret = -EUCLEAN; 2907 goto out; 2908 } 2909 key.type = type; 2910 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 2911 } else { 2912 key.type = iter->cur_key.type; 2913 key.offset = iter->cur_key.offset; 2914 } 2915 2916 /* 2917 * Parent node found and matches current inline ref, no need to 2918 * rebuild this node for this inline ref 2919 */ 2920 if (exist && 2921 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 2922 exist->owner == key.offset) || 2923 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 2924 exist->bytenr == key.offset))) { 2925 exist = NULL; 2926 continue; 2927 } 2928 2929 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 2930 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 2931 ret = handle_direct_tree_backref(cache, &key, cur); 2932 if (ret < 0) 2933 goto out; 2934 continue; 2935 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 2936 ret = -EINVAL; 2937 btrfs_print_v0_err(fs_info); 2938 btrfs_handle_fs_error(fs_info, ret, NULL); 2939 goto out; 2940 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 2941 continue; 2942 } 2943 2944 /* 2945 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 2946 * means the root objectid. We need to search the tree to get 2947 * its parent bytenr. 2948 */ 2949 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 2950 cur); 2951 if (ret < 0) 2952 goto out; 2953 } 2954 ret = 0; 2955 cur->checked = 1; 2956 WARN_ON(exist); 2957 out: 2958 btrfs_backref_iter_release(iter); 2959 return ret; 2960 } 2961 2962 /* 2963 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 2964 */ 2965 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 2966 struct btrfs_backref_node *start) 2967 { 2968 struct list_head *useless_node = &cache->useless_node; 2969 struct btrfs_backref_edge *edge; 2970 struct rb_node *rb_node; 2971 LIST_HEAD(pending_edge); 2972 2973 ASSERT(start->checked); 2974 2975 /* Insert this node to cache if it's not COW-only */ 2976 if (!start->cowonly) { 2977 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 2978 &start->rb_node); 2979 if (rb_node) 2980 btrfs_backref_panic(cache->fs_info, start->bytenr, 2981 -EEXIST); 2982 list_add_tail(&start->lower, &cache->leaves); 2983 } 2984 2985 /* 2986 * Use breadth first search to iterate all related edges. 2987 * 2988 * The starting points are all the edges of this node 2989 */ 2990 list_for_each_entry(edge, &start->upper, list[LOWER]) 2991 list_add_tail(&edge->list[UPPER], &pending_edge); 2992 2993 while (!list_empty(&pending_edge)) { 2994 struct btrfs_backref_node *upper; 2995 struct btrfs_backref_node *lower; 2996 2997 edge = list_first_entry(&pending_edge, 2998 struct btrfs_backref_edge, list[UPPER]); 2999 list_del_init(&edge->list[UPPER]); 3000 upper = edge->node[UPPER]; 3001 lower = edge->node[LOWER]; 3002 3003 /* Parent is detached, no need to keep any edges */ 3004 if (upper->detached) { 3005 list_del(&edge->list[LOWER]); 3006 btrfs_backref_free_edge(cache, edge); 3007 3008 /* Lower node is orphan, queue for cleanup */ 3009 if (list_empty(&lower->upper)) 3010 list_add(&lower->list, useless_node); 3011 continue; 3012 } 3013 3014 /* 3015 * All new nodes added in current build_backref_tree() haven't 3016 * been linked to the cache rb tree. 3017 * So if we have upper->rb_node populated, this means a cache 3018 * hit. We only need to link the edge, as @upper and all its 3019 * parents have already been linked. 3020 */ 3021 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3022 if (upper->lowest) { 3023 list_del_init(&upper->lower); 3024 upper->lowest = 0; 3025 } 3026 3027 list_add_tail(&edge->list[UPPER], &upper->lower); 3028 continue; 3029 } 3030 3031 /* Sanity check, we shouldn't have any unchecked nodes */ 3032 if (!upper->checked) { 3033 ASSERT(0); 3034 return -EUCLEAN; 3035 } 3036 3037 /* Sanity check, COW-only node has non-COW-only parent */ 3038 if (start->cowonly != upper->cowonly) { 3039 ASSERT(0); 3040 return -EUCLEAN; 3041 } 3042 3043 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3044 if (!upper->cowonly) { 3045 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3046 &upper->rb_node); 3047 if (rb_node) { 3048 btrfs_backref_panic(cache->fs_info, 3049 upper->bytenr, -EEXIST); 3050 return -EUCLEAN; 3051 } 3052 } 3053 3054 list_add_tail(&edge->list[UPPER], &upper->lower); 3055 3056 /* 3057 * Also queue all the parent edges of this uncached node 3058 * to finish the upper linkage 3059 */ 3060 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3061 list_add_tail(&edge->list[UPPER], &pending_edge); 3062 } 3063 return 0; 3064 } 3065 3066 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3067 struct btrfs_backref_node *node) 3068 { 3069 struct btrfs_backref_node *lower; 3070 struct btrfs_backref_node *upper; 3071 struct btrfs_backref_edge *edge; 3072 3073 while (!list_empty(&cache->useless_node)) { 3074 lower = list_first_entry(&cache->useless_node, 3075 struct btrfs_backref_node, list); 3076 list_del_init(&lower->list); 3077 } 3078 while (!list_empty(&cache->pending_edge)) { 3079 edge = list_first_entry(&cache->pending_edge, 3080 struct btrfs_backref_edge, list[UPPER]); 3081 list_del(&edge->list[UPPER]); 3082 list_del(&edge->list[LOWER]); 3083 lower = edge->node[LOWER]; 3084 upper = edge->node[UPPER]; 3085 btrfs_backref_free_edge(cache, edge); 3086 3087 /* 3088 * Lower is no longer linked to any upper backref nodes and 3089 * isn't in the cache, we can free it ourselves. 3090 */ 3091 if (list_empty(&lower->upper) && 3092 RB_EMPTY_NODE(&lower->rb_node)) 3093 list_add(&lower->list, &cache->useless_node); 3094 3095 if (!RB_EMPTY_NODE(&upper->rb_node)) 3096 continue; 3097 3098 /* Add this guy's upper edges to the list to process */ 3099 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3100 list_add_tail(&edge->list[UPPER], 3101 &cache->pending_edge); 3102 if (list_empty(&upper->upper)) 3103 list_add(&upper->list, &cache->useless_node); 3104 } 3105 3106 while (!list_empty(&cache->useless_node)) { 3107 lower = list_first_entry(&cache->useless_node, 3108 struct btrfs_backref_node, list); 3109 list_del_init(&lower->list); 3110 if (lower == node) 3111 node = NULL; 3112 btrfs_backref_drop_node(cache, lower); 3113 } 3114 3115 btrfs_backref_cleanup_node(cache, node); 3116 ASSERT(list_empty(&cache->useless_node) && 3117 list_empty(&cache->pending_edge)); 3118 } 3119