1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 17 /* Just an arbitrary number so we can be sure this happened */ 18 #define BACKREF_FOUND_SHARED 6 19 20 struct extent_inode_elem { 21 u64 inum; 22 u64 offset; 23 struct extent_inode_elem *next; 24 }; 25 26 static int check_extent_in_eb(const struct btrfs_key *key, 27 const struct extent_buffer *eb, 28 const struct btrfs_file_extent_item *fi, 29 u64 extent_item_pos, 30 struct extent_inode_elem **eie, 31 bool ignore_offset) 32 { 33 u64 offset = 0; 34 struct extent_inode_elem *e; 35 36 if (!ignore_offset && 37 !btrfs_file_extent_compression(eb, fi) && 38 !btrfs_file_extent_encryption(eb, fi) && 39 !btrfs_file_extent_other_encoding(eb, fi)) { 40 u64 data_offset; 41 u64 data_len; 42 43 data_offset = btrfs_file_extent_offset(eb, fi); 44 data_len = btrfs_file_extent_num_bytes(eb, fi); 45 46 if (extent_item_pos < data_offset || 47 extent_item_pos >= data_offset + data_len) 48 return 1; 49 offset = extent_item_pos - data_offset; 50 } 51 52 e = kmalloc(sizeof(*e), GFP_NOFS); 53 if (!e) 54 return -ENOMEM; 55 56 e->next = *eie; 57 e->inum = key->objectid; 58 e->offset = key->offset + offset; 59 *eie = e; 60 61 return 0; 62 } 63 64 static void free_inode_elem_list(struct extent_inode_elem *eie) 65 { 66 struct extent_inode_elem *eie_next; 67 68 for (; eie; eie = eie_next) { 69 eie_next = eie->next; 70 kfree(eie); 71 } 72 } 73 74 static int find_extent_in_eb(const struct extent_buffer *eb, 75 u64 wanted_disk_byte, u64 extent_item_pos, 76 struct extent_inode_elem **eie, 77 bool ignore_offset) 78 { 79 u64 disk_byte; 80 struct btrfs_key key; 81 struct btrfs_file_extent_item *fi; 82 int slot; 83 int nritems; 84 int extent_type; 85 int ret; 86 87 /* 88 * from the shared data ref, we only have the leaf but we need 89 * the key. thus, we must look into all items and see that we 90 * find one (some) with a reference to our extent item. 91 */ 92 nritems = btrfs_header_nritems(eb); 93 for (slot = 0; slot < nritems; ++slot) { 94 btrfs_item_key_to_cpu(eb, &key, slot); 95 if (key.type != BTRFS_EXTENT_DATA_KEY) 96 continue; 97 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 98 extent_type = btrfs_file_extent_type(eb, fi); 99 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 100 continue; 101 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 102 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 103 if (disk_byte != wanted_disk_byte) 104 continue; 105 106 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 107 if (ret < 0) 108 return ret; 109 } 110 111 return 0; 112 } 113 114 struct preftree { 115 struct rb_root_cached root; 116 unsigned int count; 117 }; 118 119 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 120 121 struct preftrees { 122 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 123 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 124 struct preftree indirect_missing_keys; 125 }; 126 127 /* 128 * Checks for a shared extent during backref search. 129 * 130 * The share_count tracks prelim_refs (direct and indirect) having a 131 * ref->count >0: 132 * - incremented when a ref->count transitions to >0 133 * - decremented when a ref->count transitions to <1 134 */ 135 struct share_check { 136 u64 root_objectid; 137 u64 inum; 138 int share_count; 139 }; 140 141 static inline int extent_is_shared(struct share_check *sc) 142 { 143 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 144 } 145 146 static struct kmem_cache *btrfs_prelim_ref_cache; 147 148 int __init btrfs_prelim_ref_init(void) 149 { 150 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 151 sizeof(struct prelim_ref), 152 0, 153 SLAB_MEM_SPREAD, 154 NULL); 155 if (!btrfs_prelim_ref_cache) 156 return -ENOMEM; 157 return 0; 158 } 159 160 void __cold btrfs_prelim_ref_exit(void) 161 { 162 kmem_cache_destroy(btrfs_prelim_ref_cache); 163 } 164 165 static void free_pref(struct prelim_ref *ref) 166 { 167 kmem_cache_free(btrfs_prelim_ref_cache, ref); 168 } 169 170 /* 171 * Return 0 when both refs are for the same block (and can be merged). 172 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 173 * indicates a 'higher' block. 174 */ 175 static int prelim_ref_compare(struct prelim_ref *ref1, 176 struct prelim_ref *ref2) 177 { 178 if (ref1->level < ref2->level) 179 return -1; 180 if (ref1->level > ref2->level) 181 return 1; 182 if (ref1->root_id < ref2->root_id) 183 return -1; 184 if (ref1->root_id > ref2->root_id) 185 return 1; 186 if (ref1->key_for_search.type < ref2->key_for_search.type) 187 return -1; 188 if (ref1->key_for_search.type > ref2->key_for_search.type) 189 return 1; 190 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 191 return -1; 192 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 193 return 1; 194 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 195 return -1; 196 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 197 return 1; 198 if (ref1->parent < ref2->parent) 199 return -1; 200 if (ref1->parent > ref2->parent) 201 return 1; 202 203 return 0; 204 } 205 206 static void update_share_count(struct share_check *sc, int oldcount, 207 int newcount) 208 { 209 if ((!sc) || (oldcount == 0 && newcount < 1)) 210 return; 211 212 if (oldcount > 0 && newcount < 1) 213 sc->share_count--; 214 else if (oldcount < 1 && newcount > 0) 215 sc->share_count++; 216 } 217 218 /* 219 * Add @newref to the @root rbtree, merging identical refs. 220 * 221 * Callers should assume that newref has been freed after calling. 222 */ 223 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 224 struct preftree *preftree, 225 struct prelim_ref *newref, 226 struct share_check *sc) 227 { 228 struct rb_root_cached *root; 229 struct rb_node **p; 230 struct rb_node *parent = NULL; 231 struct prelim_ref *ref; 232 int result; 233 bool leftmost = true; 234 235 root = &preftree->root; 236 p = &root->rb_root.rb_node; 237 238 while (*p) { 239 parent = *p; 240 ref = rb_entry(parent, struct prelim_ref, rbnode); 241 result = prelim_ref_compare(ref, newref); 242 if (result < 0) { 243 p = &(*p)->rb_left; 244 } else if (result > 0) { 245 p = &(*p)->rb_right; 246 leftmost = false; 247 } else { 248 /* Identical refs, merge them and free @newref */ 249 struct extent_inode_elem *eie = ref->inode_list; 250 251 while (eie && eie->next) 252 eie = eie->next; 253 254 if (!eie) 255 ref->inode_list = newref->inode_list; 256 else 257 eie->next = newref->inode_list; 258 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 259 preftree->count); 260 /* 261 * A delayed ref can have newref->count < 0. 262 * The ref->count is updated to follow any 263 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 264 */ 265 update_share_count(sc, ref->count, 266 ref->count + newref->count); 267 ref->count += newref->count; 268 free_pref(newref); 269 return; 270 } 271 } 272 273 update_share_count(sc, 0, newref->count); 274 preftree->count++; 275 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 276 rb_link_node(&newref->rbnode, parent, p); 277 rb_insert_color_cached(&newref->rbnode, root, leftmost); 278 } 279 280 /* 281 * Release the entire tree. We don't care about internal consistency so 282 * just free everything and then reset the tree root. 283 */ 284 static void prelim_release(struct preftree *preftree) 285 { 286 struct prelim_ref *ref, *next_ref; 287 288 rbtree_postorder_for_each_entry_safe(ref, next_ref, 289 &preftree->root.rb_root, rbnode) 290 free_pref(ref); 291 292 preftree->root = RB_ROOT_CACHED; 293 preftree->count = 0; 294 } 295 296 /* 297 * the rules for all callers of this function are: 298 * - obtaining the parent is the goal 299 * - if you add a key, you must know that it is a correct key 300 * - if you cannot add the parent or a correct key, then we will look into the 301 * block later to set a correct key 302 * 303 * delayed refs 304 * ============ 305 * backref type | shared | indirect | shared | indirect 306 * information | tree | tree | data | data 307 * --------------------+--------+----------+--------+---------- 308 * parent logical | y | - | - | - 309 * key to resolve | - | y | y | y 310 * tree block logical | - | - | - | - 311 * root for resolving | y | y | y | y 312 * 313 * - column 1: we've the parent -> done 314 * - column 2, 3, 4: we use the key to find the parent 315 * 316 * on disk refs (inline or keyed) 317 * ============================== 318 * backref type | shared | indirect | shared | indirect 319 * information | tree | tree | data | data 320 * --------------------+--------+----------+--------+---------- 321 * parent logical | y | - | y | - 322 * key to resolve | - | - | - | y 323 * tree block logical | y | y | y | y 324 * root for resolving | - | y | y | y 325 * 326 * - column 1, 3: we've the parent -> done 327 * - column 2: we take the first key from the block to find the parent 328 * (see add_missing_keys) 329 * - column 4: we use the key to find the parent 330 * 331 * additional information that's available but not required to find the parent 332 * block might help in merging entries to gain some speed. 333 */ 334 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 335 struct preftree *preftree, u64 root_id, 336 const struct btrfs_key *key, int level, u64 parent, 337 u64 wanted_disk_byte, int count, 338 struct share_check *sc, gfp_t gfp_mask) 339 { 340 struct prelim_ref *ref; 341 342 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 343 return 0; 344 345 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 346 if (!ref) 347 return -ENOMEM; 348 349 ref->root_id = root_id; 350 if (key) 351 ref->key_for_search = *key; 352 else 353 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 354 355 ref->inode_list = NULL; 356 ref->level = level; 357 ref->count = count; 358 ref->parent = parent; 359 ref->wanted_disk_byte = wanted_disk_byte; 360 prelim_ref_insert(fs_info, preftree, ref, sc); 361 return extent_is_shared(sc); 362 } 363 364 /* direct refs use root == 0, key == NULL */ 365 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 366 struct preftrees *preftrees, int level, u64 parent, 367 u64 wanted_disk_byte, int count, 368 struct share_check *sc, gfp_t gfp_mask) 369 { 370 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 371 parent, wanted_disk_byte, count, sc, gfp_mask); 372 } 373 374 /* indirect refs use parent == 0 */ 375 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 376 struct preftrees *preftrees, u64 root_id, 377 const struct btrfs_key *key, int level, 378 u64 wanted_disk_byte, int count, 379 struct share_check *sc, gfp_t gfp_mask) 380 { 381 struct preftree *tree = &preftrees->indirect; 382 383 if (!key) 384 tree = &preftrees->indirect_missing_keys; 385 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 386 wanted_disk_byte, count, sc, gfp_mask); 387 } 388 389 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 390 { 391 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 392 struct rb_node *parent = NULL; 393 struct prelim_ref *ref = NULL; 394 struct prelim_ref target = {0}; 395 int result; 396 397 target.parent = bytenr; 398 399 while (*p) { 400 parent = *p; 401 ref = rb_entry(parent, struct prelim_ref, rbnode); 402 result = prelim_ref_compare(ref, &target); 403 404 if (result < 0) 405 p = &(*p)->rb_left; 406 else if (result > 0) 407 p = &(*p)->rb_right; 408 else 409 return 1; 410 } 411 return 0; 412 } 413 414 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 415 struct ulist *parents, 416 struct preftrees *preftrees, struct prelim_ref *ref, 417 int level, u64 time_seq, const u64 *extent_item_pos, 418 bool ignore_offset) 419 { 420 int ret = 0; 421 int slot; 422 struct extent_buffer *eb; 423 struct btrfs_key key; 424 struct btrfs_key *key_for_search = &ref->key_for_search; 425 struct btrfs_file_extent_item *fi; 426 struct extent_inode_elem *eie = NULL, *old = NULL; 427 u64 disk_byte; 428 u64 wanted_disk_byte = ref->wanted_disk_byte; 429 u64 count = 0; 430 u64 data_offset; 431 432 if (level != 0) { 433 eb = path->nodes[level]; 434 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 435 if (ret < 0) 436 return ret; 437 return 0; 438 } 439 440 /* 441 * 1. We normally enter this function with the path already pointing to 442 * the first item to check. But sometimes, we may enter it with 443 * slot == nritems. 444 * 2. We are searching for normal backref but bytenr of this leaf 445 * matches shared data backref 446 * 3. The leaf owner is not equal to the root we are searching 447 * 448 * For these cases, go to the next leaf before we continue. 449 */ 450 eb = path->nodes[0]; 451 if (path->slots[0] >= btrfs_header_nritems(eb) || 452 is_shared_data_backref(preftrees, eb->start) || 453 ref->root_id != btrfs_header_owner(eb)) { 454 if (time_seq == SEQ_LAST) 455 ret = btrfs_next_leaf(root, path); 456 else 457 ret = btrfs_next_old_leaf(root, path, time_seq); 458 } 459 460 while (!ret && count < ref->count) { 461 eb = path->nodes[0]; 462 slot = path->slots[0]; 463 464 btrfs_item_key_to_cpu(eb, &key, slot); 465 466 if (key.objectid != key_for_search->objectid || 467 key.type != BTRFS_EXTENT_DATA_KEY) 468 break; 469 470 /* 471 * We are searching for normal backref but bytenr of this leaf 472 * matches shared data backref, OR 473 * the leaf owner is not equal to the root we are searching for 474 */ 475 if (slot == 0 && 476 (is_shared_data_backref(preftrees, eb->start) || 477 ref->root_id != btrfs_header_owner(eb))) { 478 if (time_seq == SEQ_LAST) 479 ret = btrfs_next_leaf(root, path); 480 else 481 ret = btrfs_next_old_leaf(root, path, time_seq); 482 continue; 483 } 484 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 485 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 486 data_offset = btrfs_file_extent_offset(eb, fi); 487 488 if (disk_byte == wanted_disk_byte) { 489 eie = NULL; 490 old = NULL; 491 if (ref->key_for_search.offset == key.offset - data_offset) 492 count++; 493 else 494 goto next; 495 if (extent_item_pos) { 496 ret = check_extent_in_eb(&key, eb, fi, 497 *extent_item_pos, 498 &eie, ignore_offset); 499 if (ret < 0) 500 break; 501 } 502 if (ret > 0) 503 goto next; 504 ret = ulist_add_merge_ptr(parents, eb->start, 505 eie, (void **)&old, GFP_NOFS); 506 if (ret < 0) 507 break; 508 if (!ret && extent_item_pos) { 509 while (old->next) 510 old = old->next; 511 old->next = eie; 512 } 513 eie = NULL; 514 } 515 next: 516 if (time_seq == SEQ_LAST) 517 ret = btrfs_next_item(root, path); 518 else 519 ret = btrfs_next_old_item(root, path, time_seq); 520 } 521 522 if (ret > 0) 523 ret = 0; 524 else if (ret < 0) 525 free_inode_elem_list(eie); 526 return ret; 527 } 528 529 /* 530 * resolve an indirect backref in the form (root_id, key, level) 531 * to a logical address 532 */ 533 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 534 struct btrfs_path *path, u64 time_seq, 535 struct preftrees *preftrees, 536 struct prelim_ref *ref, struct ulist *parents, 537 const u64 *extent_item_pos, bool ignore_offset) 538 { 539 struct btrfs_root *root; 540 struct btrfs_key root_key; 541 struct extent_buffer *eb; 542 int ret = 0; 543 int root_level; 544 int level = ref->level; 545 struct btrfs_key search_key = ref->key_for_search; 546 547 root_key.objectid = ref->root_id; 548 root_key.type = BTRFS_ROOT_ITEM_KEY; 549 root_key.offset = (u64)-1; 550 551 root = btrfs_get_fs_root(fs_info, &root_key, false); 552 if (IS_ERR(root)) { 553 ret = PTR_ERR(root); 554 goto out_free; 555 } 556 557 if (btrfs_is_testing(fs_info)) { 558 ret = -ENOENT; 559 goto out; 560 } 561 562 if (path->search_commit_root) 563 root_level = btrfs_header_level(root->commit_root); 564 else if (time_seq == SEQ_LAST) 565 root_level = btrfs_header_level(root->node); 566 else 567 root_level = btrfs_old_root_level(root, time_seq); 568 569 if (root_level + 1 == level) 570 goto out; 571 572 /* 573 * We can often find data backrefs with an offset that is too large 574 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 575 * subtracting a file's offset with the data offset of its 576 * corresponding extent data item. This can happen for example in the 577 * clone ioctl. 578 * 579 * So if we detect such case we set the search key's offset to zero to 580 * make sure we will find the matching file extent item at 581 * add_all_parents(), otherwise we will miss it because the offset 582 * taken form the backref is much larger then the offset of the file 583 * extent item. This can make us scan a very large number of file 584 * extent items, but at least it will not make us miss any. 585 * 586 * This is an ugly workaround for a behaviour that should have never 587 * existed, but it does and a fix for the clone ioctl would touch a lot 588 * of places, cause backwards incompatibility and would not fix the 589 * problem for extents cloned with older kernels. 590 */ 591 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 592 search_key.offset >= LLONG_MAX) 593 search_key.offset = 0; 594 path->lowest_level = level; 595 if (time_seq == SEQ_LAST) 596 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 597 else 598 ret = btrfs_search_old_slot(root, &search_key, path, time_seq); 599 600 btrfs_debug(fs_info, 601 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 602 ref->root_id, level, ref->count, ret, 603 ref->key_for_search.objectid, ref->key_for_search.type, 604 ref->key_for_search.offset); 605 if (ret < 0) 606 goto out; 607 608 eb = path->nodes[level]; 609 while (!eb) { 610 if (WARN_ON(!level)) { 611 ret = 1; 612 goto out; 613 } 614 level--; 615 eb = path->nodes[level]; 616 } 617 618 ret = add_all_parents(root, path, parents, preftrees, ref, level, 619 time_seq, extent_item_pos, ignore_offset); 620 out: 621 btrfs_put_root(root); 622 out_free: 623 path->lowest_level = 0; 624 btrfs_release_path(path); 625 return ret; 626 } 627 628 static struct extent_inode_elem * 629 unode_aux_to_inode_list(struct ulist_node *node) 630 { 631 if (!node) 632 return NULL; 633 return (struct extent_inode_elem *)(uintptr_t)node->aux; 634 } 635 636 /* 637 * We maintain three separate rbtrees: one for direct refs, one for 638 * indirect refs which have a key, and one for indirect refs which do not 639 * have a key. Each tree does merge on insertion. 640 * 641 * Once all of the references are located, we iterate over the tree of 642 * indirect refs with missing keys. An appropriate key is located and 643 * the ref is moved onto the tree for indirect refs. After all missing 644 * keys are thus located, we iterate over the indirect ref tree, resolve 645 * each reference, and then insert the resolved reference onto the 646 * direct tree (merging there too). 647 * 648 * New backrefs (i.e., for parent nodes) are added to the appropriate 649 * rbtree as they are encountered. The new backrefs are subsequently 650 * resolved as above. 651 */ 652 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 653 struct btrfs_path *path, u64 time_seq, 654 struct preftrees *preftrees, 655 const u64 *extent_item_pos, 656 struct share_check *sc, bool ignore_offset) 657 { 658 int err; 659 int ret = 0; 660 struct ulist *parents; 661 struct ulist_node *node; 662 struct ulist_iterator uiter; 663 struct rb_node *rnode; 664 665 parents = ulist_alloc(GFP_NOFS); 666 if (!parents) 667 return -ENOMEM; 668 669 /* 670 * We could trade memory usage for performance here by iterating 671 * the tree, allocating new refs for each insertion, and then 672 * freeing the entire indirect tree when we're done. In some test 673 * cases, the tree can grow quite large (~200k objects). 674 */ 675 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 676 struct prelim_ref *ref; 677 678 ref = rb_entry(rnode, struct prelim_ref, rbnode); 679 if (WARN(ref->parent, 680 "BUG: direct ref found in indirect tree")) { 681 ret = -EINVAL; 682 goto out; 683 } 684 685 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 686 preftrees->indirect.count--; 687 688 if (ref->count == 0) { 689 free_pref(ref); 690 continue; 691 } 692 693 if (sc && sc->root_objectid && 694 ref->root_id != sc->root_objectid) { 695 free_pref(ref); 696 ret = BACKREF_FOUND_SHARED; 697 goto out; 698 } 699 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees, 700 ref, parents, extent_item_pos, 701 ignore_offset); 702 /* 703 * we can only tolerate ENOENT,otherwise,we should catch error 704 * and return directly. 705 */ 706 if (err == -ENOENT) { 707 prelim_ref_insert(fs_info, &preftrees->direct, ref, 708 NULL); 709 continue; 710 } else if (err) { 711 free_pref(ref); 712 ret = err; 713 goto out; 714 } 715 716 /* we put the first parent into the ref at hand */ 717 ULIST_ITER_INIT(&uiter); 718 node = ulist_next(parents, &uiter); 719 ref->parent = node ? node->val : 0; 720 ref->inode_list = unode_aux_to_inode_list(node); 721 722 /* Add a prelim_ref(s) for any other parent(s). */ 723 while ((node = ulist_next(parents, &uiter))) { 724 struct prelim_ref *new_ref; 725 726 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 727 GFP_NOFS); 728 if (!new_ref) { 729 free_pref(ref); 730 ret = -ENOMEM; 731 goto out; 732 } 733 memcpy(new_ref, ref, sizeof(*ref)); 734 new_ref->parent = node->val; 735 new_ref->inode_list = unode_aux_to_inode_list(node); 736 prelim_ref_insert(fs_info, &preftrees->direct, 737 new_ref, NULL); 738 } 739 740 /* 741 * Now it's a direct ref, put it in the direct tree. We must 742 * do this last because the ref could be merged/freed here. 743 */ 744 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 745 746 ulist_reinit(parents); 747 cond_resched(); 748 } 749 out: 750 ulist_free(parents); 751 return ret; 752 } 753 754 /* 755 * read tree blocks and add keys where required. 756 */ 757 static int add_missing_keys(struct btrfs_fs_info *fs_info, 758 struct preftrees *preftrees, bool lock) 759 { 760 struct prelim_ref *ref; 761 struct extent_buffer *eb; 762 struct preftree *tree = &preftrees->indirect_missing_keys; 763 struct rb_node *node; 764 765 while ((node = rb_first_cached(&tree->root))) { 766 ref = rb_entry(node, struct prelim_ref, rbnode); 767 rb_erase_cached(node, &tree->root); 768 769 BUG_ON(ref->parent); /* should not be a direct ref */ 770 BUG_ON(ref->key_for_search.type); 771 BUG_ON(!ref->wanted_disk_byte); 772 773 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0, 774 ref->level - 1, NULL); 775 if (IS_ERR(eb)) { 776 free_pref(ref); 777 return PTR_ERR(eb); 778 } else if (!extent_buffer_uptodate(eb)) { 779 free_pref(ref); 780 free_extent_buffer(eb); 781 return -EIO; 782 } 783 if (lock) 784 btrfs_tree_read_lock(eb); 785 if (btrfs_header_level(eb) == 0) 786 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 787 else 788 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 789 if (lock) 790 btrfs_tree_read_unlock(eb); 791 free_extent_buffer(eb); 792 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 793 cond_resched(); 794 } 795 return 0; 796 } 797 798 /* 799 * add all currently queued delayed refs from this head whose seq nr is 800 * smaller or equal that seq to the list 801 */ 802 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 803 struct btrfs_delayed_ref_head *head, u64 seq, 804 struct preftrees *preftrees, struct share_check *sc) 805 { 806 struct btrfs_delayed_ref_node *node; 807 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 808 struct btrfs_key key; 809 struct btrfs_key tmp_op_key; 810 struct rb_node *n; 811 int count; 812 int ret = 0; 813 814 if (extent_op && extent_op->update_key) 815 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 816 817 spin_lock(&head->lock); 818 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 819 node = rb_entry(n, struct btrfs_delayed_ref_node, 820 ref_node); 821 if (node->seq > seq) 822 continue; 823 824 switch (node->action) { 825 case BTRFS_ADD_DELAYED_EXTENT: 826 case BTRFS_UPDATE_DELAYED_HEAD: 827 WARN_ON(1); 828 continue; 829 case BTRFS_ADD_DELAYED_REF: 830 count = node->ref_mod; 831 break; 832 case BTRFS_DROP_DELAYED_REF: 833 count = node->ref_mod * -1; 834 break; 835 default: 836 BUG(); 837 } 838 switch (node->type) { 839 case BTRFS_TREE_BLOCK_REF_KEY: { 840 /* NORMAL INDIRECT METADATA backref */ 841 struct btrfs_delayed_tree_ref *ref; 842 843 ref = btrfs_delayed_node_to_tree_ref(node); 844 ret = add_indirect_ref(fs_info, preftrees, ref->root, 845 &tmp_op_key, ref->level + 1, 846 node->bytenr, count, sc, 847 GFP_ATOMIC); 848 break; 849 } 850 case BTRFS_SHARED_BLOCK_REF_KEY: { 851 /* SHARED DIRECT METADATA backref */ 852 struct btrfs_delayed_tree_ref *ref; 853 854 ref = btrfs_delayed_node_to_tree_ref(node); 855 856 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 857 ref->parent, node->bytenr, count, 858 sc, GFP_ATOMIC); 859 break; 860 } 861 case BTRFS_EXTENT_DATA_REF_KEY: { 862 /* NORMAL INDIRECT DATA backref */ 863 struct btrfs_delayed_data_ref *ref; 864 ref = btrfs_delayed_node_to_data_ref(node); 865 866 key.objectid = ref->objectid; 867 key.type = BTRFS_EXTENT_DATA_KEY; 868 key.offset = ref->offset; 869 870 /* 871 * Found a inum that doesn't match our known inum, we 872 * know it's shared. 873 */ 874 if (sc && sc->inum && ref->objectid != sc->inum) { 875 ret = BACKREF_FOUND_SHARED; 876 goto out; 877 } 878 879 ret = add_indirect_ref(fs_info, preftrees, ref->root, 880 &key, 0, node->bytenr, count, sc, 881 GFP_ATOMIC); 882 break; 883 } 884 case BTRFS_SHARED_DATA_REF_KEY: { 885 /* SHARED DIRECT FULL backref */ 886 struct btrfs_delayed_data_ref *ref; 887 888 ref = btrfs_delayed_node_to_data_ref(node); 889 890 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 891 node->bytenr, count, sc, 892 GFP_ATOMIC); 893 break; 894 } 895 default: 896 WARN_ON(1); 897 } 898 /* 899 * We must ignore BACKREF_FOUND_SHARED until all delayed 900 * refs have been checked. 901 */ 902 if (ret && (ret != BACKREF_FOUND_SHARED)) 903 break; 904 } 905 if (!ret) 906 ret = extent_is_shared(sc); 907 out: 908 spin_unlock(&head->lock); 909 return ret; 910 } 911 912 /* 913 * add all inline backrefs for bytenr to the list 914 * 915 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 916 */ 917 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 918 struct btrfs_path *path, u64 bytenr, 919 int *info_level, struct preftrees *preftrees, 920 struct share_check *sc) 921 { 922 int ret = 0; 923 int slot; 924 struct extent_buffer *leaf; 925 struct btrfs_key key; 926 struct btrfs_key found_key; 927 unsigned long ptr; 928 unsigned long end; 929 struct btrfs_extent_item *ei; 930 u64 flags; 931 u64 item_size; 932 933 /* 934 * enumerate all inline refs 935 */ 936 leaf = path->nodes[0]; 937 slot = path->slots[0]; 938 939 item_size = btrfs_item_size_nr(leaf, slot); 940 BUG_ON(item_size < sizeof(*ei)); 941 942 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 943 flags = btrfs_extent_flags(leaf, ei); 944 btrfs_item_key_to_cpu(leaf, &found_key, slot); 945 946 ptr = (unsigned long)(ei + 1); 947 end = (unsigned long)ei + item_size; 948 949 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 950 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 951 struct btrfs_tree_block_info *info; 952 953 info = (struct btrfs_tree_block_info *)ptr; 954 *info_level = btrfs_tree_block_level(leaf, info); 955 ptr += sizeof(struct btrfs_tree_block_info); 956 BUG_ON(ptr > end); 957 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 958 *info_level = found_key.offset; 959 } else { 960 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 961 } 962 963 while (ptr < end) { 964 struct btrfs_extent_inline_ref *iref; 965 u64 offset; 966 int type; 967 968 iref = (struct btrfs_extent_inline_ref *)ptr; 969 type = btrfs_get_extent_inline_ref_type(leaf, iref, 970 BTRFS_REF_TYPE_ANY); 971 if (type == BTRFS_REF_TYPE_INVALID) 972 return -EUCLEAN; 973 974 offset = btrfs_extent_inline_ref_offset(leaf, iref); 975 976 switch (type) { 977 case BTRFS_SHARED_BLOCK_REF_KEY: 978 ret = add_direct_ref(fs_info, preftrees, 979 *info_level + 1, offset, 980 bytenr, 1, NULL, GFP_NOFS); 981 break; 982 case BTRFS_SHARED_DATA_REF_KEY: { 983 struct btrfs_shared_data_ref *sdref; 984 int count; 985 986 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 987 count = btrfs_shared_data_ref_count(leaf, sdref); 988 989 ret = add_direct_ref(fs_info, preftrees, 0, offset, 990 bytenr, count, sc, GFP_NOFS); 991 break; 992 } 993 case BTRFS_TREE_BLOCK_REF_KEY: 994 ret = add_indirect_ref(fs_info, preftrees, offset, 995 NULL, *info_level + 1, 996 bytenr, 1, NULL, GFP_NOFS); 997 break; 998 case BTRFS_EXTENT_DATA_REF_KEY: { 999 struct btrfs_extent_data_ref *dref; 1000 int count; 1001 u64 root; 1002 1003 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1004 count = btrfs_extent_data_ref_count(leaf, dref); 1005 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1006 dref); 1007 key.type = BTRFS_EXTENT_DATA_KEY; 1008 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1009 1010 if (sc && sc->inum && key.objectid != sc->inum) { 1011 ret = BACKREF_FOUND_SHARED; 1012 break; 1013 } 1014 1015 root = btrfs_extent_data_ref_root(leaf, dref); 1016 1017 ret = add_indirect_ref(fs_info, preftrees, root, 1018 &key, 0, bytenr, count, 1019 sc, GFP_NOFS); 1020 break; 1021 } 1022 default: 1023 WARN_ON(1); 1024 } 1025 if (ret) 1026 return ret; 1027 ptr += btrfs_extent_inline_ref_size(type); 1028 } 1029 1030 return 0; 1031 } 1032 1033 /* 1034 * add all non-inline backrefs for bytenr to the list 1035 * 1036 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1037 */ 1038 static int add_keyed_refs(struct btrfs_fs_info *fs_info, 1039 struct btrfs_path *path, u64 bytenr, 1040 int info_level, struct preftrees *preftrees, 1041 struct share_check *sc) 1042 { 1043 struct btrfs_root *extent_root = fs_info->extent_root; 1044 int ret; 1045 int slot; 1046 struct extent_buffer *leaf; 1047 struct btrfs_key key; 1048 1049 while (1) { 1050 ret = btrfs_next_item(extent_root, path); 1051 if (ret < 0) 1052 break; 1053 if (ret) { 1054 ret = 0; 1055 break; 1056 } 1057 1058 slot = path->slots[0]; 1059 leaf = path->nodes[0]; 1060 btrfs_item_key_to_cpu(leaf, &key, slot); 1061 1062 if (key.objectid != bytenr) 1063 break; 1064 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1065 continue; 1066 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1067 break; 1068 1069 switch (key.type) { 1070 case BTRFS_SHARED_BLOCK_REF_KEY: 1071 /* SHARED DIRECT METADATA backref */ 1072 ret = add_direct_ref(fs_info, preftrees, 1073 info_level + 1, key.offset, 1074 bytenr, 1, NULL, GFP_NOFS); 1075 break; 1076 case BTRFS_SHARED_DATA_REF_KEY: { 1077 /* SHARED DIRECT FULL backref */ 1078 struct btrfs_shared_data_ref *sdref; 1079 int count; 1080 1081 sdref = btrfs_item_ptr(leaf, slot, 1082 struct btrfs_shared_data_ref); 1083 count = btrfs_shared_data_ref_count(leaf, sdref); 1084 ret = add_direct_ref(fs_info, preftrees, 0, 1085 key.offset, bytenr, count, 1086 sc, GFP_NOFS); 1087 break; 1088 } 1089 case BTRFS_TREE_BLOCK_REF_KEY: 1090 /* NORMAL INDIRECT METADATA backref */ 1091 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1092 NULL, info_level + 1, bytenr, 1093 1, NULL, GFP_NOFS); 1094 break; 1095 case BTRFS_EXTENT_DATA_REF_KEY: { 1096 /* NORMAL INDIRECT DATA backref */ 1097 struct btrfs_extent_data_ref *dref; 1098 int count; 1099 u64 root; 1100 1101 dref = btrfs_item_ptr(leaf, slot, 1102 struct btrfs_extent_data_ref); 1103 count = btrfs_extent_data_ref_count(leaf, dref); 1104 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1105 dref); 1106 key.type = BTRFS_EXTENT_DATA_KEY; 1107 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1108 1109 if (sc && sc->inum && key.objectid != sc->inum) { 1110 ret = BACKREF_FOUND_SHARED; 1111 break; 1112 } 1113 1114 root = btrfs_extent_data_ref_root(leaf, dref); 1115 ret = add_indirect_ref(fs_info, preftrees, root, 1116 &key, 0, bytenr, count, 1117 sc, GFP_NOFS); 1118 break; 1119 } 1120 default: 1121 WARN_ON(1); 1122 } 1123 if (ret) 1124 return ret; 1125 1126 } 1127 1128 return ret; 1129 } 1130 1131 /* 1132 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1133 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1134 * indirect refs to their parent bytenr. 1135 * When roots are found, they're added to the roots list 1136 * 1137 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave 1138 * much like trans == NULL case, the difference only lies in it will not 1139 * commit root. 1140 * The special case is for qgroup to search roots in commit_transaction(). 1141 * 1142 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1143 * shared extent is detected. 1144 * 1145 * Otherwise this returns 0 for success and <0 for an error. 1146 * 1147 * If ignore_offset is set to false, only extent refs whose offsets match 1148 * extent_item_pos are returned. If true, every extent ref is returned 1149 * and extent_item_pos is ignored. 1150 * 1151 * FIXME some caching might speed things up 1152 */ 1153 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1154 struct btrfs_fs_info *fs_info, u64 bytenr, 1155 u64 time_seq, struct ulist *refs, 1156 struct ulist *roots, const u64 *extent_item_pos, 1157 struct share_check *sc, bool ignore_offset) 1158 { 1159 struct btrfs_key key; 1160 struct btrfs_path *path; 1161 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1162 struct btrfs_delayed_ref_head *head; 1163 int info_level = 0; 1164 int ret; 1165 struct prelim_ref *ref; 1166 struct rb_node *node; 1167 struct extent_inode_elem *eie = NULL; 1168 struct preftrees preftrees = { 1169 .direct = PREFTREE_INIT, 1170 .indirect = PREFTREE_INIT, 1171 .indirect_missing_keys = PREFTREE_INIT 1172 }; 1173 1174 key.objectid = bytenr; 1175 key.offset = (u64)-1; 1176 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1177 key.type = BTRFS_METADATA_ITEM_KEY; 1178 else 1179 key.type = BTRFS_EXTENT_ITEM_KEY; 1180 1181 path = btrfs_alloc_path(); 1182 if (!path) 1183 return -ENOMEM; 1184 if (!trans) { 1185 path->search_commit_root = 1; 1186 path->skip_locking = 1; 1187 } 1188 1189 if (time_seq == SEQ_LAST) 1190 path->skip_locking = 1; 1191 1192 /* 1193 * grab both a lock on the path and a lock on the delayed ref head. 1194 * We need both to get a consistent picture of how the refs look 1195 * at a specified point in time 1196 */ 1197 again: 1198 head = NULL; 1199 1200 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1201 if (ret < 0) 1202 goto out; 1203 BUG_ON(ret == 0); 1204 1205 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1206 if (trans && likely(trans->type != __TRANS_DUMMY) && 1207 time_seq != SEQ_LAST) { 1208 #else 1209 if (trans && time_seq != SEQ_LAST) { 1210 #endif 1211 /* 1212 * look if there are updates for this ref queued and lock the 1213 * head 1214 */ 1215 delayed_refs = &trans->transaction->delayed_refs; 1216 spin_lock(&delayed_refs->lock); 1217 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1218 if (head) { 1219 if (!mutex_trylock(&head->mutex)) { 1220 refcount_inc(&head->refs); 1221 spin_unlock(&delayed_refs->lock); 1222 1223 btrfs_release_path(path); 1224 1225 /* 1226 * Mutex was contended, block until it's 1227 * released and try again 1228 */ 1229 mutex_lock(&head->mutex); 1230 mutex_unlock(&head->mutex); 1231 btrfs_put_delayed_ref_head(head); 1232 goto again; 1233 } 1234 spin_unlock(&delayed_refs->lock); 1235 ret = add_delayed_refs(fs_info, head, time_seq, 1236 &preftrees, sc); 1237 mutex_unlock(&head->mutex); 1238 if (ret) 1239 goto out; 1240 } else { 1241 spin_unlock(&delayed_refs->lock); 1242 } 1243 } 1244 1245 if (path->slots[0]) { 1246 struct extent_buffer *leaf; 1247 int slot; 1248 1249 path->slots[0]--; 1250 leaf = path->nodes[0]; 1251 slot = path->slots[0]; 1252 btrfs_item_key_to_cpu(leaf, &key, slot); 1253 if (key.objectid == bytenr && 1254 (key.type == BTRFS_EXTENT_ITEM_KEY || 1255 key.type == BTRFS_METADATA_ITEM_KEY)) { 1256 ret = add_inline_refs(fs_info, path, bytenr, 1257 &info_level, &preftrees, sc); 1258 if (ret) 1259 goto out; 1260 ret = add_keyed_refs(fs_info, path, bytenr, info_level, 1261 &preftrees, sc); 1262 if (ret) 1263 goto out; 1264 } 1265 } 1266 1267 btrfs_release_path(path); 1268 1269 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0); 1270 if (ret) 1271 goto out; 1272 1273 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1274 1275 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1276 extent_item_pos, sc, ignore_offset); 1277 if (ret) 1278 goto out; 1279 1280 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1281 1282 /* 1283 * This walks the tree of merged and resolved refs. Tree blocks are 1284 * read in as needed. Unique entries are added to the ulist, and 1285 * the list of found roots is updated. 1286 * 1287 * We release the entire tree in one go before returning. 1288 */ 1289 node = rb_first_cached(&preftrees.direct.root); 1290 while (node) { 1291 ref = rb_entry(node, struct prelim_ref, rbnode); 1292 node = rb_next(&ref->rbnode); 1293 /* 1294 * ref->count < 0 can happen here if there are delayed 1295 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1296 * prelim_ref_insert() relies on this when merging 1297 * identical refs to keep the overall count correct. 1298 * prelim_ref_insert() will merge only those refs 1299 * which compare identically. Any refs having 1300 * e.g. different offsets would not be merged, 1301 * and would retain their original ref->count < 0. 1302 */ 1303 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1304 if (sc && sc->root_objectid && 1305 ref->root_id != sc->root_objectid) { 1306 ret = BACKREF_FOUND_SHARED; 1307 goto out; 1308 } 1309 1310 /* no parent == root of tree */ 1311 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1312 if (ret < 0) 1313 goto out; 1314 } 1315 if (ref->count && ref->parent) { 1316 if (extent_item_pos && !ref->inode_list && 1317 ref->level == 0) { 1318 struct extent_buffer *eb; 1319 1320 eb = read_tree_block(fs_info, ref->parent, 0, 1321 ref->level, NULL); 1322 if (IS_ERR(eb)) { 1323 ret = PTR_ERR(eb); 1324 goto out; 1325 } else if (!extent_buffer_uptodate(eb)) { 1326 free_extent_buffer(eb); 1327 ret = -EIO; 1328 goto out; 1329 } 1330 1331 if (!path->skip_locking) { 1332 btrfs_tree_read_lock(eb); 1333 btrfs_set_lock_blocking_read(eb); 1334 } 1335 ret = find_extent_in_eb(eb, bytenr, 1336 *extent_item_pos, &eie, ignore_offset); 1337 if (!path->skip_locking) 1338 btrfs_tree_read_unlock_blocking(eb); 1339 free_extent_buffer(eb); 1340 if (ret < 0) 1341 goto out; 1342 ref->inode_list = eie; 1343 } 1344 ret = ulist_add_merge_ptr(refs, ref->parent, 1345 ref->inode_list, 1346 (void **)&eie, GFP_NOFS); 1347 if (ret < 0) 1348 goto out; 1349 if (!ret && extent_item_pos) { 1350 /* 1351 * we've recorded that parent, so we must extend 1352 * its inode list here 1353 */ 1354 BUG_ON(!eie); 1355 while (eie->next) 1356 eie = eie->next; 1357 eie->next = ref->inode_list; 1358 } 1359 eie = NULL; 1360 } 1361 cond_resched(); 1362 } 1363 1364 out: 1365 btrfs_free_path(path); 1366 1367 prelim_release(&preftrees.direct); 1368 prelim_release(&preftrees.indirect); 1369 prelim_release(&preftrees.indirect_missing_keys); 1370 1371 if (ret < 0) 1372 free_inode_elem_list(eie); 1373 return ret; 1374 } 1375 1376 static void free_leaf_list(struct ulist *blocks) 1377 { 1378 struct ulist_node *node = NULL; 1379 struct extent_inode_elem *eie; 1380 struct ulist_iterator uiter; 1381 1382 ULIST_ITER_INIT(&uiter); 1383 while ((node = ulist_next(blocks, &uiter))) { 1384 if (!node->aux) 1385 continue; 1386 eie = unode_aux_to_inode_list(node); 1387 free_inode_elem_list(eie); 1388 node->aux = 0; 1389 } 1390 1391 ulist_free(blocks); 1392 } 1393 1394 /* 1395 * Finds all leafs with a reference to the specified combination of bytenr and 1396 * offset. key_list_head will point to a list of corresponding keys (caller must 1397 * free each list element). The leafs will be stored in the leafs ulist, which 1398 * must be freed with ulist_free. 1399 * 1400 * returns 0 on success, <0 on error 1401 */ 1402 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1403 struct btrfs_fs_info *fs_info, u64 bytenr, 1404 u64 time_seq, struct ulist **leafs, 1405 const u64 *extent_item_pos, bool ignore_offset) 1406 { 1407 int ret; 1408 1409 *leafs = ulist_alloc(GFP_NOFS); 1410 if (!*leafs) 1411 return -ENOMEM; 1412 1413 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1414 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1415 if (ret < 0 && ret != -ENOENT) { 1416 free_leaf_list(*leafs); 1417 return ret; 1418 } 1419 1420 return 0; 1421 } 1422 1423 /* 1424 * walk all backrefs for a given extent to find all roots that reference this 1425 * extent. Walking a backref means finding all extents that reference this 1426 * extent and in turn walk the backrefs of those, too. Naturally this is a 1427 * recursive process, but here it is implemented in an iterative fashion: We 1428 * find all referencing extents for the extent in question and put them on a 1429 * list. In turn, we find all referencing extents for those, further appending 1430 * to the list. The way we iterate the list allows adding more elements after 1431 * the current while iterating. The process stops when we reach the end of the 1432 * list. Found roots are added to the roots list. 1433 * 1434 * returns 0 on success, < 0 on error. 1435 */ 1436 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1437 struct btrfs_fs_info *fs_info, u64 bytenr, 1438 u64 time_seq, struct ulist **roots, 1439 bool ignore_offset) 1440 { 1441 struct ulist *tmp; 1442 struct ulist_node *node = NULL; 1443 struct ulist_iterator uiter; 1444 int ret; 1445 1446 tmp = ulist_alloc(GFP_NOFS); 1447 if (!tmp) 1448 return -ENOMEM; 1449 *roots = ulist_alloc(GFP_NOFS); 1450 if (!*roots) { 1451 ulist_free(tmp); 1452 return -ENOMEM; 1453 } 1454 1455 ULIST_ITER_INIT(&uiter); 1456 while (1) { 1457 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1458 tmp, *roots, NULL, NULL, ignore_offset); 1459 if (ret < 0 && ret != -ENOENT) { 1460 ulist_free(tmp); 1461 ulist_free(*roots); 1462 return ret; 1463 } 1464 node = ulist_next(tmp, &uiter); 1465 if (!node) 1466 break; 1467 bytenr = node->val; 1468 cond_resched(); 1469 } 1470 1471 ulist_free(tmp); 1472 return 0; 1473 } 1474 1475 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1476 struct btrfs_fs_info *fs_info, u64 bytenr, 1477 u64 time_seq, struct ulist **roots, 1478 bool ignore_offset) 1479 { 1480 int ret; 1481 1482 if (!trans) 1483 down_read(&fs_info->commit_root_sem); 1484 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1485 time_seq, roots, ignore_offset); 1486 if (!trans) 1487 up_read(&fs_info->commit_root_sem); 1488 return ret; 1489 } 1490 1491 /** 1492 * btrfs_check_shared - tell us whether an extent is shared 1493 * 1494 * btrfs_check_shared uses the backref walking code but will short 1495 * circuit as soon as it finds a root or inode that doesn't match the 1496 * one passed in. This provides a significant performance benefit for 1497 * callers (such as fiemap) which want to know whether the extent is 1498 * shared but do not need a ref count. 1499 * 1500 * This attempts to attach to the running transaction in order to account for 1501 * delayed refs, but continues on even when no running transaction exists. 1502 * 1503 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1504 */ 1505 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr, 1506 struct ulist *roots, struct ulist *tmp) 1507 { 1508 struct btrfs_fs_info *fs_info = root->fs_info; 1509 struct btrfs_trans_handle *trans; 1510 struct ulist_iterator uiter; 1511 struct ulist_node *node; 1512 struct seq_list elem = SEQ_LIST_INIT(elem); 1513 int ret = 0; 1514 struct share_check shared = { 1515 .root_objectid = root->root_key.objectid, 1516 .inum = inum, 1517 .share_count = 0, 1518 }; 1519 1520 ulist_init(roots); 1521 ulist_init(tmp); 1522 1523 trans = btrfs_join_transaction_nostart(root); 1524 if (IS_ERR(trans)) { 1525 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1526 ret = PTR_ERR(trans); 1527 goto out; 1528 } 1529 trans = NULL; 1530 down_read(&fs_info->commit_root_sem); 1531 } else { 1532 btrfs_get_tree_mod_seq(fs_info, &elem); 1533 } 1534 1535 ULIST_ITER_INIT(&uiter); 1536 while (1) { 1537 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1538 roots, NULL, &shared, false); 1539 if (ret == BACKREF_FOUND_SHARED) { 1540 /* this is the only condition under which we return 1 */ 1541 ret = 1; 1542 break; 1543 } 1544 if (ret < 0 && ret != -ENOENT) 1545 break; 1546 ret = 0; 1547 node = ulist_next(tmp, &uiter); 1548 if (!node) 1549 break; 1550 bytenr = node->val; 1551 shared.share_count = 0; 1552 cond_resched(); 1553 } 1554 1555 if (trans) { 1556 btrfs_put_tree_mod_seq(fs_info, &elem); 1557 btrfs_end_transaction(trans); 1558 } else { 1559 up_read(&fs_info->commit_root_sem); 1560 } 1561 out: 1562 ulist_release(roots); 1563 ulist_release(tmp); 1564 return ret; 1565 } 1566 1567 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1568 u64 start_off, struct btrfs_path *path, 1569 struct btrfs_inode_extref **ret_extref, 1570 u64 *found_off) 1571 { 1572 int ret, slot; 1573 struct btrfs_key key; 1574 struct btrfs_key found_key; 1575 struct btrfs_inode_extref *extref; 1576 const struct extent_buffer *leaf; 1577 unsigned long ptr; 1578 1579 key.objectid = inode_objectid; 1580 key.type = BTRFS_INODE_EXTREF_KEY; 1581 key.offset = start_off; 1582 1583 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1584 if (ret < 0) 1585 return ret; 1586 1587 while (1) { 1588 leaf = path->nodes[0]; 1589 slot = path->slots[0]; 1590 if (slot >= btrfs_header_nritems(leaf)) { 1591 /* 1592 * If the item at offset is not found, 1593 * btrfs_search_slot will point us to the slot 1594 * where it should be inserted. In our case 1595 * that will be the slot directly before the 1596 * next INODE_REF_KEY_V2 item. In the case 1597 * that we're pointing to the last slot in a 1598 * leaf, we must move one leaf over. 1599 */ 1600 ret = btrfs_next_leaf(root, path); 1601 if (ret) { 1602 if (ret >= 1) 1603 ret = -ENOENT; 1604 break; 1605 } 1606 continue; 1607 } 1608 1609 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1610 1611 /* 1612 * Check that we're still looking at an extended ref key for 1613 * this particular objectid. If we have different 1614 * objectid or type then there are no more to be found 1615 * in the tree and we can exit. 1616 */ 1617 ret = -ENOENT; 1618 if (found_key.objectid != inode_objectid) 1619 break; 1620 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1621 break; 1622 1623 ret = 0; 1624 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1625 extref = (struct btrfs_inode_extref *)ptr; 1626 *ret_extref = extref; 1627 if (found_off) 1628 *found_off = found_key.offset; 1629 break; 1630 } 1631 1632 return ret; 1633 } 1634 1635 /* 1636 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1637 * Elements of the path are separated by '/' and the path is guaranteed to be 1638 * 0-terminated. the path is only given within the current file system. 1639 * Therefore, it never starts with a '/'. the caller is responsible to provide 1640 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1641 * the start point of the resulting string is returned. this pointer is within 1642 * dest, normally. 1643 * in case the path buffer would overflow, the pointer is decremented further 1644 * as if output was written to the buffer, though no more output is actually 1645 * generated. that way, the caller can determine how much space would be 1646 * required for the path to fit into the buffer. in that case, the returned 1647 * value will be smaller than dest. callers must check this! 1648 */ 1649 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1650 u32 name_len, unsigned long name_off, 1651 struct extent_buffer *eb_in, u64 parent, 1652 char *dest, u32 size) 1653 { 1654 int slot; 1655 u64 next_inum; 1656 int ret; 1657 s64 bytes_left = ((s64)size) - 1; 1658 struct extent_buffer *eb = eb_in; 1659 struct btrfs_key found_key; 1660 int leave_spinning = path->leave_spinning; 1661 struct btrfs_inode_ref *iref; 1662 1663 if (bytes_left >= 0) 1664 dest[bytes_left] = '\0'; 1665 1666 path->leave_spinning = 1; 1667 while (1) { 1668 bytes_left -= name_len; 1669 if (bytes_left >= 0) 1670 read_extent_buffer(eb, dest + bytes_left, 1671 name_off, name_len); 1672 if (eb != eb_in) { 1673 if (!path->skip_locking) 1674 btrfs_tree_read_unlock_blocking(eb); 1675 free_extent_buffer(eb); 1676 } 1677 ret = btrfs_find_item(fs_root, path, parent, 0, 1678 BTRFS_INODE_REF_KEY, &found_key); 1679 if (ret > 0) 1680 ret = -ENOENT; 1681 if (ret) 1682 break; 1683 1684 next_inum = found_key.offset; 1685 1686 /* regular exit ahead */ 1687 if (parent == next_inum) 1688 break; 1689 1690 slot = path->slots[0]; 1691 eb = path->nodes[0]; 1692 /* make sure we can use eb after releasing the path */ 1693 if (eb != eb_in) { 1694 if (!path->skip_locking) 1695 btrfs_set_lock_blocking_read(eb); 1696 path->nodes[0] = NULL; 1697 path->locks[0] = 0; 1698 } 1699 btrfs_release_path(path); 1700 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1701 1702 name_len = btrfs_inode_ref_name_len(eb, iref); 1703 name_off = (unsigned long)(iref + 1); 1704 1705 parent = next_inum; 1706 --bytes_left; 1707 if (bytes_left >= 0) 1708 dest[bytes_left] = '/'; 1709 } 1710 1711 btrfs_release_path(path); 1712 path->leave_spinning = leave_spinning; 1713 1714 if (ret) 1715 return ERR_PTR(ret); 1716 1717 return dest + bytes_left; 1718 } 1719 1720 /* 1721 * this makes the path point to (logical EXTENT_ITEM *) 1722 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1723 * tree blocks and <0 on error. 1724 */ 1725 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1726 struct btrfs_path *path, struct btrfs_key *found_key, 1727 u64 *flags_ret) 1728 { 1729 int ret; 1730 u64 flags; 1731 u64 size = 0; 1732 u32 item_size; 1733 const struct extent_buffer *eb; 1734 struct btrfs_extent_item *ei; 1735 struct btrfs_key key; 1736 1737 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1738 key.type = BTRFS_METADATA_ITEM_KEY; 1739 else 1740 key.type = BTRFS_EXTENT_ITEM_KEY; 1741 key.objectid = logical; 1742 key.offset = (u64)-1; 1743 1744 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1745 if (ret < 0) 1746 return ret; 1747 1748 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1749 if (ret) { 1750 if (ret > 0) 1751 ret = -ENOENT; 1752 return ret; 1753 } 1754 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1755 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1756 size = fs_info->nodesize; 1757 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1758 size = found_key->offset; 1759 1760 if (found_key->objectid > logical || 1761 found_key->objectid + size <= logical) { 1762 btrfs_debug(fs_info, 1763 "logical %llu is not within any extent", logical); 1764 return -ENOENT; 1765 } 1766 1767 eb = path->nodes[0]; 1768 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1769 BUG_ON(item_size < sizeof(*ei)); 1770 1771 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1772 flags = btrfs_extent_flags(eb, ei); 1773 1774 btrfs_debug(fs_info, 1775 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1776 logical, logical - found_key->objectid, found_key->objectid, 1777 found_key->offset, flags, item_size); 1778 1779 WARN_ON(!flags_ret); 1780 if (flags_ret) { 1781 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1782 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1783 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1784 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1785 else 1786 BUG(); 1787 return 0; 1788 } 1789 1790 return -EIO; 1791 } 1792 1793 /* 1794 * helper function to iterate extent inline refs. ptr must point to a 0 value 1795 * for the first call and may be modified. it is used to track state. 1796 * if more refs exist, 0 is returned and the next call to 1797 * get_extent_inline_ref must pass the modified ptr parameter to get the 1798 * next ref. after the last ref was processed, 1 is returned. 1799 * returns <0 on error 1800 */ 1801 static int get_extent_inline_ref(unsigned long *ptr, 1802 const struct extent_buffer *eb, 1803 const struct btrfs_key *key, 1804 const struct btrfs_extent_item *ei, 1805 u32 item_size, 1806 struct btrfs_extent_inline_ref **out_eiref, 1807 int *out_type) 1808 { 1809 unsigned long end; 1810 u64 flags; 1811 struct btrfs_tree_block_info *info; 1812 1813 if (!*ptr) { 1814 /* first call */ 1815 flags = btrfs_extent_flags(eb, ei); 1816 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1817 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1818 /* a skinny metadata extent */ 1819 *out_eiref = 1820 (struct btrfs_extent_inline_ref *)(ei + 1); 1821 } else { 1822 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1823 info = (struct btrfs_tree_block_info *)(ei + 1); 1824 *out_eiref = 1825 (struct btrfs_extent_inline_ref *)(info + 1); 1826 } 1827 } else { 1828 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1829 } 1830 *ptr = (unsigned long)*out_eiref; 1831 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1832 return -ENOENT; 1833 } 1834 1835 end = (unsigned long)ei + item_size; 1836 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1837 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1838 BTRFS_REF_TYPE_ANY); 1839 if (*out_type == BTRFS_REF_TYPE_INVALID) 1840 return -EUCLEAN; 1841 1842 *ptr += btrfs_extent_inline_ref_size(*out_type); 1843 WARN_ON(*ptr > end); 1844 if (*ptr == end) 1845 return 1; /* last */ 1846 1847 return 0; 1848 } 1849 1850 /* 1851 * reads the tree block backref for an extent. tree level and root are returned 1852 * through out_level and out_root. ptr must point to a 0 value for the first 1853 * call and may be modified (see get_extent_inline_ref comment). 1854 * returns 0 if data was provided, 1 if there was no more data to provide or 1855 * <0 on error. 1856 */ 1857 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1858 struct btrfs_key *key, struct btrfs_extent_item *ei, 1859 u32 item_size, u64 *out_root, u8 *out_level) 1860 { 1861 int ret; 1862 int type; 1863 struct btrfs_extent_inline_ref *eiref; 1864 1865 if (*ptr == (unsigned long)-1) 1866 return 1; 1867 1868 while (1) { 1869 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1870 &eiref, &type); 1871 if (ret < 0) 1872 return ret; 1873 1874 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1875 type == BTRFS_SHARED_BLOCK_REF_KEY) 1876 break; 1877 1878 if (ret == 1) 1879 return 1; 1880 } 1881 1882 /* we can treat both ref types equally here */ 1883 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1884 1885 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1886 struct btrfs_tree_block_info *info; 1887 1888 info = (struct btrfs_tree_block_info *)(ei + 1); 1889 *out_level = btrfs_tree_block_level(eb, info); 1890 } else { 1891 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1892 *out_level = (u8)key->offset; 1893 } 1894 1895 if (ret == 1) 1896 *ptr = (unsigned long)-1; 1897 1898 return 0; 1899 } 1900 1901 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1902 struct extent_inode_elem *inode_list, 1903 u64 root, u64 extent_item_objectid, 1904 iterate_extent_inodes_t *iterate, void *ctx) 1905 { 1906 struct extent_inode_elem *eie; 1907 int ret = 0; 1908 1909 for (eie = inode_list; eie; eie = eie->next) { 1910 btrfs_debug(fs_info, 1911 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1912 extent_item_objectid, eie->inum, 1913 eie->offset, root); 1914 ret = iterate(eie->inum, eie->offset, root, ctx); 1915 if (ret) { 1916 btrfs_debug(fs_info, 1917 "stopping iteration for %llu due to ret=%d", 1918 extent_item_objectid, ret); 1919 break; 1920 } 1921 } 1922 1923 return ret; 1924 } 1925 1926 /* 1927 * calls iterate() for every inode that references the extent identified by 1928 * the given parameters. 1929 * when the iterator function returns a non-zero value, iteration stops. 1930 */ 1931 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1932 u64 extent_item_objectid, u64 extent_item_pos, 1933 int search_commit_root, 1934 iterate_extent_inodes_t *iterate, void *ctx, 1935 bool ignore_offset) 1936 { 1937 int ret; 1938 struct btrfs_trans_handle *trans = NULL; 1939 struct ulist *refs = NULL; 1940 struct ulist *roots = NULL; 1941 struct ulist_node *ref_node = NULL; 1942 struct ulist_node *root_node = NULL; 1943 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 1944 struct ulist_iterator ref_uiter; 1945 struct ulist_iterator root_uiter; 1946 1947 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1948 extent_item_objectid); 1949 1950 if (!search_commit_root) { 1951 trans = btrfs_attach_transaction(fs_info->extent_root); 1952 if (IS_ERR(trans)) { 1953 if (PTR_ERR(trans) != -ENOENT && 1954 PTR_ERR(trans) != -EROFS) 1955 return PTR_ERR(trans); 1956 trans = NULL; 1957 } 1958 } 1959 1960 if (trans) 1961 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1962 else 1963 down_read(&fs_info->commit_root_sem); 1964 1965 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1966 tree_mod_seq_elem.seq, &refs, 1967 &extent_item_pos, ignore_offset); 1968 if (ret) 1969 goto out; 1970 1971 ULIST_ITER_INIT(&ref_uiter); 1972 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1973 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 1974 tree_mod_seq_elem.seq, &roots, 1975 ignore_offset); 1976 if (ret) 1977 break; 1978 ULIST_ITER_INIT(&root_uiter); 1979 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1980 btrfs_debug(fs_info, 1981 "root %llu references leaf %llu, data list %#llx", 1982 root_node->val, ref_node->val, 1983 ref_node->aux); 1984 ret = iterate_leaf_refs(fs_info, 1985 (struct extent_inode_elem *) 1986 (uintptr_t)ref_node->aux, 1987 root_node->val, 1988 extent_item_objectid, 1989 iterate, ctx); 1990 } 1991 ulist_free(roots); 1992 } 1993 1994 free_leaf_list(refs); 1995 out: 1996 if (trans) { 1997 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1998 btrfs_end_transaction(trans); 1999 } else { 2000 up_read(&fs_info->commit_root_sem); 2001 } 2002 2003 return ret; 2004 } 2005 2006 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2007 struct btrfs_path *path, 2008 iterate_extent_inodes_t *iterate, void *ctx, 2009 bool ignore_offset) 2010 { 2011 int ret; 2012 u64 extent_item_pos; 2013 u64 flags = 0; 2014 struct btrfs_key found_key; 2015 int search_commit_root = path->search_commit_root; 2016 2017 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2018 btrfs_release_path(path); 2019 if (ret < 0) 2020 return ret; 2021 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2022 return -EINVAL; 2023 2024 extent_item_pos = logical - found_key.objectid; 2025 ret = iterate_extent_inodes(fs_info, found_key.objectid, 2026 extent_item_pos, search_commit_root, 2027 iterate, ctx, ignore_offset); 2028 2029 return ret; 2030 } 2031 2032 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 2033 struct extent_buffer *eb, void *ctx); 2034 2035 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 2036 struct btrfs_path *path, 2037 iterate_irefs_t *iterate, void *ctx) 2038 { 2039 int ret = 0; 2040 int slot; 2041 u32 cur; 2042 u32 len; 2043 u32 name_len; 2044 u64 parent = 0; 2045 int found = 0; 2046 struct extent_buffer *eb; 2047 struct btrfs_item *item; 2048 struct btrfs_inode_ref *iref; 2049 struct btrfs_key found_key; 2050 2051 while (!ret) { 2052 ret = btrfs_find_item(fs_root, path, inum, 2053 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2054 &found_key); 2055 2056 if (ret < 0) 2057 break; 2058 if (ret) { 2059 ret = found ? 0 : -ENOENT; 2060 break; 2061 } 2062 ++found; 2063 2064 parent = found_key.offset; 2065 slot = path->slots[0]; 2066 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2067 if (!eb) { 2068 ret = -ENOMEM; 2069 break; 2070 } 2071 btrfs_release_path(path); 2072 2073 item = btrfs_item_nr(slot); 2074 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2075 2076 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2077 name_len = btrfs_inode_ref_name_len(eb, iref); 2078 /* path must be released before calling iterate()! */ 2079 btrfs_debug(fs_root->fs_info, 2080 "following ref at offset %u for inode %llu in tree %llu", 2081 cur, found_key.objectid, 2082 fs_root->root_key.objectid); 2083 ret = iterate(parent, name_len, 2084 (unsigned long)(iref + 1), eb, ctx); 2085 if (ret) 2086 break; 2087 len = sizeof(*iref) + name_len; 2088 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2089 } 2090 free_extent_buffer(eb); 2091 } 2092 2093 btrfs_release_path(path); 2094 2095 return ret; 2096 } 2097 2098 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2099 struct btrfs_path *path, 2100 iterate_irefs_t *iterate, void *ctx) 2101 { 2102 int ret; 2103 int slot; 2104 u64 offset = 0; 2105 u64 parent; 2106 int found = 0; 2107 struct extent_buffer *eb; 2108 struct btrfs_inode_extref *extref; 2109 u32 item_size; 2110 u32 cur_offset; 2111 unsigned long ptr; 2112 2113 while (1) { 2114 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2115 &offset); 2116 if (ret < 0) 2117 break; 2118 if (ret) { 2119 ret = found ? 0 : -ENOENT; 2120 break; 2121 } 2122 ++found; 2123 2124 slot = path->slots[0]; 2125 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2126 if (!eb) { 2127 ret = -ENOMEM; 2128 break; 2129 } 2130 btrfs_release_path(path); 2131 2132 item_size = btrfs_item_size_nr(eb, slot); 2133 ptr = btrfs_item_ptr_offset(eb, slot); 2134 cur_offset = 0; 2135 2136 while (cur_offset < item_size) { 2137 u32 name_len; 2138 2139 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2140 parent = btrfs_inode_extref_parent(eb, extref); 2141 name_len = btrfs_inode_extref_name_len(eb, extref); 2142 ret = iterate(parent, name_len, 2143 (unsigned long)&extref->name, eb, ctx); 2144 if (ret) 2145 break; 2146 2147 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2148 cur_offset += sizeof(*extref); 2149 } 2150 free_extent_buffer(eb); 2151 2152 offset++; 2153 } 2154 2155 btrfs_release_path(path); 2156 2157 return ret; 2158 } 2159 2160 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2161 struct btrfs_path *path, iterate_irefs_t *iterate, 2162 void *ctx) 2163 { 2164 int ret; 2165 int found_refs = 0; 2166 2167 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2168 if (!ret) 2169 ++found_refs; 2170 else if (ret != -ENOENT) 2171 return ret; 2172 2173 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2174 if (ret == -ENOENT && found_refs) 2175 return 0; 2176 2177 return ret; 2178 } 2179 2180 /* 2181 * returns 0 if the path could be dumped (probably truncated) 2182 * returns <0 in case of an error 2183 */ 2184 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2185 struct extent_buffer *eb, void *ctx) 2186 { 2187 struct inode_fs_paths *ipath = ctx; 2188 char *fspath; 2189 char *fspath_min; 2190 int i = ipath->fspath->elem_cnt; 2191 const int s_ptr = sizeof(char *); 2192 u32 bytes_left; 2193 2194 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2195 ipath->fspath->bytes_left - s_ptr : 0; 2196 2197 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2198 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2199 name_off, eb, inum, fspath_min, bytes_left); 2200 if (IS_ERR(fspath)) 2201 return PTR_ERR(fspath); 2202 2203 if (fspath > fspath_min) { 2204 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2205 ++ipath->fspath->elem_cnt; 2206 ipath->fspath->bytes_left = fspath - fspath_min; 2207 } else { 2208 ++ipath->fspath->elem_missed; 2209 ipath->fspath->bytes_missing += fspath_min - fspath; 2210 ipath->fspath->bytes_left = 0; 2211 } 2212 2213 return 0; 2214 } 2215 2216 /* 2217 * this dumps all file system paths to the inode into the ipath struct, provided 2218 * is has been created large enough. each path is zero-terminated and accessed 2219 * from ipath->fspath->val[i]. 2220 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2221 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2222 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2223 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2224 * have been needed to return all paths. 2225 */ 2226 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2227 { 2228 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2229 inode_to_path, ipath); 2230 } 2231 2232 struct btrfs_data_container *init_data_container(u32 total_bytes) 2233 { 2234 struct btrfs_data_container *data; 2235 size_t alloc_bytes; 2236 2237 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2238 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2239 if (!data) 2240 return ERR_PTR(-ENOMEM); 2241 2242 if (total_bytes >= sizeof(*data)) { 2243 data->bytes_left = total_bytes - sizeof(*data); 2244 data->bytes_missing = 0; 2245 } else { 2246 data->bytes_missing = sizeof(*data) - total_bytes; 2247 data->bytes_left = 0; 2248 } 2249 2250 data->elem_cnt = 0; 2251 data->elem_missed = 0; 2252 2253 return data; 2254 } 2255 2256 /* 2257 * allocates space to return multiple file system paths for an inode. 2258 * total_bytes to allocate are passed, note that space usable for actual path 2259 * information will be total_bytes - sizeof(struct inode_fs_paths). 2260 * the returned pointer must be freed with free_ipath() in the end. 2261 */ 2262 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2263 struct btrfs_path *path) 2264 { 2265 struct inode_fs_paths *ifp; 2266 struct btrfs_data_container *fspath; 2267 2268 fspath = init_data_container(total_bytes); 2269 if (IS_ERR(fspath)) 2270 return ERR_CAST(fspath); 2271 2272 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2273 if (!ifp) { 2274 kvfree(fspath); 2275 return ERR_PTR(-ENOMEM); 2276 } 2277 2278 ifp->btrfs_path = path; 2279 ifp->fspath = fspath; 2280 ifp->fs_root = fs_root; 2281 2282 return ifp; 2283 } 2284 2285 void free_ipath(struct inode_fs_paths *ipath) 2286 { 2287 if (!ipath) 2288 return; 2289 kvfree(ipath->fspath); 2290 kfree(ipath); 2291 } 2292