xref: /openbmc/linux/fs/btrfs/backref.c (revision c75e839414d3610e6487ae3145199c500d55f7f7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 
17 /* Just an arbitrary number so we can be sure this happened */
18 #define BACKREF_FOUND_SHARED 6
19 
20 struct extent_inode_elem {
21 	u64 inum;
22 	u64 offset;
23 	struct extent_inode_elem *next;
24 };
25 
26 static int check_extent_in_eb(const struct btrfs_key *key,
27 			      const struct extent_buffer *eb,
28 			      const struct btrfs_file_extent_item *fi,
29 			      u64 extent_item_pos,
30 			      struct extent_inode_elem **eie,
31 			      bool ignore_offset)
32 {
33 	u64 offset = 0;
34 	struct extent_inode_elem *e;
35 
36 	if (!ignore_offset &&
37 	    !btrfs_file_extent_compression(eb, fi) &&
38 	    !btrfs_file_extent_encryption(eb, fi) &&
39 	    !btrfs_file_extent_other_encoding(eb, fi)) {
40 		u64 data_offset;
41 		u64 data_len;
42 
43 		data_offset = btrfs_file_extent_offset(eb, fi);
44 		data_len = btrfs_file_extent_num_bytes(eb, fi);
45 
46 		if (extent_item_pos < data_offset ||
47 		    extent_item_pos >= data_offset + data_len)
48 			return 1;
49 		offset = extent_item_pos - data_offset;
50 	}
51 
52 	e = kmalloc(sizeof(*e), GFP_NOFS);
53 	if (!e)
54 		return -ENOMEM;
55 
56 	e->next = *eie;
57 	e->inum = key->objectid;
58 	e->offset = key->offset + offset;
59 	*eie = e;
60 
61 	return 0;
62 }
63 
64 static void free_inode_elem_list(struct extent_inode_elem *eie)
65 {
66 	struct extent_inode_elem *eie_next;
67 
68 	for (; eie; eie = eie_next) {
69 		eie_next = eie->next;
70 		kfree(eie);
71 	}
72 }
73 
74 static int find_extent_in_eb(const struct extent_buffer *eb,
75 			     u64 wanted_disk_byte, u64 extent_item_pos,
76 			     struct extent_inode_elem **eie,
77 			     bool ignore_offset)
78 {
79 	u64 disk_byte;
80 	struct btrfs_key key;
81 	struct btrfs_file_extent_item *fi;
82 	int slot;
83 	int nritems;
84 	int extent_type;
85 	int ret;
86 
87 	/*
88 	 * from the shared data ref, we only have the leaf but we need
89 	 * the key. thus, we must look into all items and see that we
90 	 * find one (some) with a reference to our extent item.
91 	 */
92 	nritems = btrfs_header_nritems(eb);
93 	for (slot = 0; slot < nritems; ++slot) {
94 		btrfs_item_key_to_cpu(eb, &key, slot);
95 		if (key.type != BTRFS_EXTENT_DATA_KEY)
96 			continue;
97 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
98 		extent_type = btrfs_file_extent_type(eb, fi);
99 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
100 			continue;
101 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
102 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
103 		if (disk_byte != wanted_disk_byte)
104 			continue;
105 
106 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
107 		if (ret < 0)
108 			return ret;
109 	}
110 
111 	return 0;
112 }
113 
114 struct preftree {
115 	struct rb_root_cached root;
116 	unsigned int count;
117 };
118 
119 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
120 
121 struct preftrees {
122 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
123 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
124 	struct preftree indirect_missing_keys;
125 };
126 
127 /*
128  * Checks for a shared extent during backref search.
129  *
130  * The share_count tracks prelim_refs (direct and indirect) having a
131  * ref->count >0:
132  *  - incremented when a ref->count transitions to >0
133  *  - decremented when a ref->count transitions to <1
134  */
135 struct share_check {
136 	u64 root_objectid;
137 	u64 inum;
138 	int share_count;
139 };
140 
141 static inline int extent_is_shared(struct share_check *sc)
142 {
143 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
144 }
145 
146 static struct kmem_cache *btrfs_prelim_ref_cache;
147 
148 int __init btrfs_prelim_ref_init(void)
149 {
150 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
151 					sizeof(struct prelim_ref),
152 					0,
153 					SLAB_MEM_SPREAD,
154 					NULL);
155 	if (!btrfs_prelim_ref_cache)
156 		return -ENOMEM;
157 	return 0;
158 }
159 
160 void __cold btrfs_prelim_ref_exit(void)
161 {
162 	kmem_cache_destroy(btrfs_prelim_ref_cache);
163 }
164 
165 static void free_pref(struct prelim_ref *ref)
166 {
167 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
168 }
169 
170 /*
171  * Return 0 when both refs are for the same block (and can be merged).
172  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
173  * indicates a 'higher' block.
174  */
175 static int prelim_ref_compare(struct prelim_ref *ref1,
176 			      struct prelim_ref *ref2)
177 {
178 	if (ref1->level < ref2->level)
179 		return -1;
180 	if (ref1->level > ref2->level)
181 		return 1;
182 	if (ref1->root_id < ref2->root_id)
183 		return -1;
184 	if (ref1->root_id > ref2->root_id)
185 		return 1;
186 	if (ref1->key_for_search.type < ref2->key_for_search.type)
187 		return -1;
188 	if (ref1->key_for_search.type > ref2->key_for_search.type)
189 		return 1;
190 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
191 		return -1;
192 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
193 		return 1;
194 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
195 		return -1;
196 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
197 		return 1;
198 	if (ref1->parent < ref2->parent)
199 		return -1;
200 	if (ref1->parent > ref2->parent)
201 		return 1;
202 
203 	return 0;
204 }
205 
206 static void update_share_count(struct share_check *sc, int oldcount,
207 			       int newcount)
208 {
209 	if ((!sc) || (oldcount == 0 && newcount < 1))
210 		return;
211 
212 	if (oldcount > 0 && newcount < 1)
213 		sc->share_count--;
214 	else if (oldcount < 1 && newcount > 0)
215 		sc->share_count++;
216 }
217 
218 /*
219  * Add @newref to the @root rbtree, merging identical refs.
220  *
221  * Callers should assume that newref has been freed after calling.
222  */
223 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
224 			      struct preftree *preftree,
225 			      struct prelim_ref *newref,
226 			      struct share_check *sc)
227 {
228 	struct rb_root_cached *root;
229 	struct rb_node **p;
230 	struct rb_node *parent = NULL;
231 	struct prelim_ref *ref;
232 	int result;
233 	bool leftmost = true;
234 
235 	root = &preftree->root;
236 	p = &root->rb_root.rb_node;
237 
238 	while (*p) {
239 		parent = *p;
240 		ref = rb_entry(parent, struct prelim_ref, rbnode);
241 		result = prelim_ref_compare(ref, newref);
242 		if (result < 0) {
243 			p = &(*p)->rb_left;
244 		} else if (result > 0) {
245 			p = &(*p)->rb_right;
246 			leftmost = false;
247 		} else {
248 			/* Identical refs, merge them and free @newref */
249 			struct extent_inode_elem *eie = ref->inode_list;
250 
251 			while (eie && eie->next)
252 				eie = eie->next;
253 
254 			if (!eie)
255 				ref->inode_list = newref->inode_list;
256 			else
257 				eie->next = newref->inode_list;
258 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
259 						     preftree->count);
260 			/*
261 			 * A delayed ref can have newref->count < 0.
262 			 * The ref->count is updated to follow any
263 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
264 			 */
265 			update_share_count(sc, ref->count,
266 					   ref->count + newref->count);
267 			ref->count += newref->count;
268 			free_pref(newref);
269 			return;
270 		}
271 	}
272 
273 	update_share_count(sc, 0, newref->count);
274 	preftree->count++;
275 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
276 	rb_link_node(&newref->rbnode, parent, p);
277 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
278 }
279 
280 /*
281  * Release the entire tree.  We don't care about internal consistency so
282  * just free everything and then reset the tree root.
283  */
284 static void prelim_release(struct preftree *preftree)
285 {
286 	struct prelim_ref *ref, *next_ref;
287 
288 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
289 					     &preftree->root.rb_root, rbnode)
290 		free_pref(ref);
291 
292 	preftree->root = RB_ROOT_CACHED;
293 	preftree->count = 0;
294 }
295 
296 /*
297  * the rules for all callers of this function are:
298  * - obtaining the parent is the goal
299  * - if you add a key, you must know that it is a correct key
300  * - if you cannot add the parent or a correct key, then we will look into the
301  *   block later to set a correct key
302  *
303  * delayed refs
304  * ============
305  *        backref type | shared | indirect | shared | indirect
306  * information         |   tree |     tree |   data |     data
307  * --------------------+--------+----------+--------+----------
308  *      parent logical |    y   |     -    |    -   |     -
309  *      key to resolve |    -   |     y    |    y   |     y
310  *  tree block logical |    -   |     -    |    -   |     -
311  *  root for resolving |    y   |     y    |    y   |     y
312  *
313  * - column 1:       we've the parent -> done
314  * - column 2, 3, 4: we use the key to find the parent
315  *
316  * on disk refs (inline or keyed)
317  * ==============================
318  *        backref type | shared | indirect | shared | indirect
319  * information         |   tree |     tree |   data |     data
320  * --------------------+--------+----------+--------+----------
321  *      parent logical |    y   |     -    |    y   |     -
322  *      key to resolve |    -   |     -    |    -   |     y
323  *  tree block logical |    y   |     y    |    y   |     y
324  *  root for resolving |    -   |     y    |    y   |     y
325  *
326  * - column 1, 3: we've the parent -> done
327  * - column 2:    we take the first key from the block to find the parent
328  *                (see add_missing_keys)
329  * - column 4:    we use the key to find the parent
330  *
331  * additional information that's available but not required to find the parent
332  * block might help in merging entries to gain some speed.
333  */
334 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
335 			  struct preftree *preftree, u64 root_id,
336 			  const struct btrfs_key *key, int level, u64 parent,
337 			  u64 wanted_disk_byte, int count,
338 			  struct share_check *sc, gfp_t gfp_mask)
339 {
340 	struct prelim_ref *ref;
341 
342 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
343 		return 0;
344 
345 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
346 	if (!ref)
347 		return -ENOMEM;
348 
349 	ref->root_id = root_id;
350 	if (key)
351 		ref->key_for_search = *key;
352 	else
353 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
354 
355 	ref->inode_list = NULL;
356 	ref->level = level;
357 	ref->count = count;
358 	ref->parent = parent;
359 	ref->wanted_disk_byte = wanted_disk_byte;
360 	prelim_ref_insert(fs_info, preftree, ref, sc);
361 	return extent_is_shared(sc);
362 }
363 
364 /* direct refs use root == 0, key == NULL */
365 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
366 			  struct preftrees *preftrees, int level, u64 parent,
367 			  u64 wanted_disk_byte, int count,
368 			  struct share_check *sc, gfp_t gfp_mask)
369 {
370 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
371 			      parent, wanted_disk_byte, count, sc, gfp_mask);
372 }
373 
374 /* indirect refs use parent == 0 */
375 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
376 			    struct preftrees *preftrees, u64 root_id,
377 			    const struct btrfs_key *key, int level,
378 			    u64 wanted_disk_byte, int count,
379 			    struct share_check *sc, gfp_t gfp_mask)
380 {
381 	struct preftree *tree = &preftrees->indirect;
382 
383 	if (!key)
384 		tree = &preftrees->indirect_missing_keys;
385 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
386 			      wanted_disk_byte, count, sc, gfp_mask);
387 }
388 
389 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
390 {
391 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
392 	struct rb_node *parent = NULL;
393 	struct prelim_ref *ref = NULL;
394 	struct prelim_ref target = {0};
395 	int result;
396 
397 	target.parent = bytenr;
398 
399 	while (*p) {
400 		parent = *p;
401 		ref = rb_entry(parent, struct prelim_ref, rbnode);
402 		result = prelim_ref_compare(ref, &target);
403 
404 		if (result < 0)
405 			p = &(*p)->rb_left;
406 		else if (result > 0)
407 			p = &(*p)->rb_right;
408 		else
409 			return 1;
410 	}
411 	return 0;
412 }
413 
414 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
415 			   struct ulist *parents,
416 			   struct preftrees *preftrees, struct prelim_ref *ref,
417 			   int level, u64 time_seq, const u64 *extent_item_pos,
418 			   bool ignore_offset)
419 {
420 	int ret = 0;
421 	int slot;
422 	struct extent_buffer *eb;
423 	struct btrfs_key key;
424 	struct btrfs_key *key_for_search = &ref->key_for_search;
425 	struct btrfs_file_extent_item *fi;
426 	struct extent_inode_elem *eie = NULL, *old = NULL;
427 	u64 disk_byte;
428 	u64 wanted_disk_byte = ref->wanted_disk_byte;
429 	u64 count = 0;
430 	u64 data_offset;
431 
432 	if (level != 0) {
433 		eb = path->nodes[level];
434 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
435 		if (ret < 0)
436 			return ret;
437 		return 0;
438 	}
439 
440 	/*
441 	 * 1. We normally enter this function with the path already pointing to
442 	 *    the first item to check. But sometimes, we may enter it with
443 	 *    slot == nritems.
444 	 * 2. We are searching for normal backref but bytenr of this leaf
445 	 *    matches shared data backref
446 	 * 3. The leaf owner is not equal to the root we are searching
447 	 *
448 	 * For these cases, go to the next leaf before we continue.
449 	 */
450 	eb = path->nodes[0];
451 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
452 	    is_shared_data_backref(preftrees, eb->start) ||
453 	    ref->root_id != btrfs_header_owner(eb)) {
454 		if (time_seq == SEQ_LAST)
455 			ret = btrfs_next_leaf(root, path);
456 		else
457 			ret = btrfs_next_old_leaf(root, path, time_seq);
458 	}
459 
460 	while (!ret && count < ref->count) {
461 		eb = path->nodes[0];
462 		slot = path->slots[0];
463 
464 		btrfs_item_key_to_cpu(eb, &key, slot);
465 
466 		if (key.objectid != key_for_search->objectid ||
467 		    key.type != BTRFS_EXTENT_DATA_KEY)
468 			break;
469 
470 		/*
471 		 * We are searching for normal backref but bytenr of this leaf
472 		 * matches shared data backref, OR
473 		 * the leaf owner is not equal to the root we are searching for
474 		 */
475 		if (slot == 0 &&
476 		    (is_shared_data_backref(preftrees, eb->start) ||
477 		     ref->root_id != btrfs_header_owner(eb))) {
478 			if (time_seq == SEQ_LAST)
479 				ret = btrfs_next_leaf(root, path);
480 			else
481 				ret = btrfs_next_old_leaf(root, path, time_seq);
482 			continue;
483 		}
484 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
485 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
486 		data_offset = btrfs_file_extent_offset(eb, fi);
487 
488 		if (disk_byte == wanted_disk_byte) {
489 			eie = NULL;
490 			old = NULL;
491 			if (ref->key_for_search.offset == key.offset - data_offset)
492 				count++;
493 			else
494 				goto next;
495 			if (extent_item_pos) {
496 				ret = check_extent_in_eb(&key, eb, fi,
497 						*extent_item_pos,
498 						&eie, ignore_offset);
499 				if (ret < 0)
500 					break;
501 			}
502 			if (ret > 0)
503 				goto next;
504 			ret = ulist_add_merge_ptr(parents, eb->start,
505 						  eie, (void **)&old, GFP_NOFS);
506 			if (ret < 0)
507 				break;
508 			if (!ret && extent_item_pos) {
509 				while (old->next)
510 					old = old->next;
511 				old->next = eie;
512 			}
513 			eie = NULL;
514 		}
515 next:
516 		if (time_seq == SEQ_LAST)
517 			ret = btrfs_next_item(root, path);
518 		else
519 			ret = btrfs_next_old_item(root, path, time_seq);
520 	}
521 
522 	if (ret > 0)
523 		ret = 0;
524 	else if (ret < 0)
525 		free_inode_elem_list(eie);
526 	return ret;
527 }
528 
529 /*
530  * resolve an indirect backref in the form (root_id, key, level)
531  * to a logical address
532  */
533 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
534 				struct btrfs_path *path, u64 time_seq,
535 				struct preftrees *preftrees,
536 				struct prelim_ref *ref, struct ulist *parents,
537 				const u64 *extent_item_pos, bool ignore_offset)
538 {
539 	struct btrfs_root *root;
540 	struct btrfs_key root_key;
541 	struct extent_buffer *eb;
542 	int ret = 0;
543 	int root_level;
544 	int level = ref->level;
545 	struct btrfs_key search_key = ref->key_for_search;
546 
547 	root_key.objectid = ref->root_id;
548 	root_key.type = BTRFS_ROOT_ITEM_KEY;
549 	root_key.offset = (u64)-1;
550 
551 	root = btrfs_get_fs_root(fs_info, &root_key, false);
552 	if (IS_ERR(root)) {
553 		ret = PTR_ERR(root);
554 		goto out_free;
555 	}
556 
557 	if (btrfs_is_testing(fs_info)) {
558 		ret = -ENOENT;
559 		goto out;
560 	}
561 
562 	if (path->search_commit_root)
563 		root_level = btrfs_header_level(root->commit_root);
564 	else if (time_seq == SEQ_LAST)
565 		root_level = btrfs_header_level(root->node);
566 	else
567 		root_level = btrfs_old_root_level(root, time_seq);
568 
569 	if (root_level + 1 == level)
570 		goto out;
571 
572 	/*
573 	 * We can often find data backrefs with an offset that is too large
574 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
575 	 * subtracting a file's offset with the data offset of its
576 	 * corresponding extent data item. This can happen for example in the
577 	 * clone ioctl.
578 	 *
579 	 * So if we detect such case we set the search key's offset to zero to
580 	 * make sure we will find the matching file extent item at
581 	 * add_all_parents(), otherwise we will miss it because the offset
582 	 * taken form the backref is much larger then the offset of the file
583 	 * extent item. This can make us scan a very large number of file
584 	 * extent items, but at least it will not make us miss any.
585 	 *
586 	 * This is an ugly workaround for a behaviour that should have never
587 	 * existed, but it does and a fix for the clone ioctl would touch a lot
588 	 * of places, cause backwards incompatibility and would not fix the
589 	 * problem for extents cloned with older kernels.
590 	 */
591 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
592 	    search_key.offset >= LLONG_MAX)
593 		search_key.offset = 0;
594 	path->lowest_level = level;
595 	if (time_seq == SEQ_LAST)
596 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
597 	else
598 		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
599 
600 	btrfs_debug(fs_info,
601 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
602 		 ref->root_id, level, ref->count, ret,
603 		 ref->key_for_search.objectid, ref->key_for_search.type,
604 		 ref->key_for_search.offset);
605 	if (ret < 0)
606 		goto out;
607 
608 	eb = path->nodes[level];
609 	while (!eb) {
610 		if (WARN_ON(!level)) {
611 			ret = 1;
612 			goto out;
613 		}
614 		level--;
615 		eb = path->nodes[level];
616 	}
617 
618 	ret = add_all_parents(root, path, parents, preftrees, ref, level,
619 			      time_seq, extent_item_pos, ignore_offset);
620 out:
621 	btrfs_put_root(root);
622 out_free:
623 	path->lowest_level = 0;
624 	btrfs_release_path(path);
625 	return ret;
626 }
627 
628 static struct extent_inode_elem *
629 unode_aux_to_inode_list(struct ulist_node *node)
630 {
631 	if (!node)
632 		return NULL;
633 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
634 }
635 
636 /*
637  * We maintain three separate rbtrees: one for direct refs, one for
638  * indirect refs which have a key, and one for indirect refs which do not
639  * have a key. Each tree does merge on insertion.
640  *
641  * Once all of the references are located, we iterate over the tree of
642  * indirect refs with missing keys. An appropriate key is located and
643  * the ref is moved onto the tree for indirect refs. After all missing
644  * keys are thus located, we iterate over the indirect ref tree, resolve
645  * each reference, and then insert the resolved reference onto the
646  * direct tree (merging there too).
647  *
648  * New backrefs (i.e., for parent nodes) are added to the appropriate
649  * rbtree as they are encountered. The new backrefs are subsequently
650  * resolved as above.
651  */
652 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
653 				 struct btrfs_path *path, u64 time_seq,
654 				 struct preftrees *preftrees,
655 				 const u64 *extent_item_pos,
656 				 struct share_check *sc, bool ignore_offset)
657 {
658 	int err;
659 	int ret = 0;
660 	struct ulist *parents;
661 	struct ulist_node *node;
662 	struct ulist_iterator uiter;
663 	struct rb_node *rnode;
664 
665 	parents = ulist_alloc(GFP_NOFS);
666 	if (!parents)
667 		return -ENOMEM;
668 
669 	/*
670 	 * We could trade memory usage for performance here by iterating
671 	 * the tree, allocating new refs for each insertion, and then
672 	 * freeing the entire indirect tree when we're done.  In some test
673 	 * cases, the tree can grow quite large (~200k objects).
674 	 */
675 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
676 		struct prelim_ref *ref;
677 
678 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
679 		if (WARN(ref->parent,
680 			 "BUG: direct ref found in indirect tree")) {
681 			ret = -EINVAL;
682 			goto out;
683 		}
684 
685 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
686 		preftrees->indirect.count--;
687 
688 		if (ref->count == 0) {
689 			free_pref(ref);
690 			continue;
691 		}
692 
693 		if (sc && sc->root_objectid &&
694 		    ref->root_id != sc->root_objectid) {
695 			free_pref(ref);
696 			ret = BACKREF_FOUND_SHARED;
697 			goto out;
698 		}
699 		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
700 					   ref, parents, extent_item_pos,
701 					   ignore_offset);
702 		/*
703 		 * we can only tolerate ENOENT,otherwise,we should catch error
704 		 * and return directly.
705 		 */
706 		if (err == -ENOENT) {
707 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
708 					  NULL);
709 			continue;
710 		} else if (err) {
711 			free_pref(ref);
712 			ret = err;
713 			goto out;
714 		}
715 
716 		/* we put the first parent into the ref at hand */
717 		ULIST_ITER_INIT(&uiter);
718 		node = ulist_next(parents, &uiter);
719 		ref->parent = node ? node->val : 0;
720 		ref->inode_list = unode_aux_to_inode_list(node);
721 
722 		/* Add a prelim_ref(s) for any other parent(s). */
723 		while ((node = ulist_next(parents, &uiter))) {
724 			struct prelim_ref *new_ref;
725 
726 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
727 						   GFP_NOFS);
728 			if (!new_ref) {
729 				free_pref(ref);
730 				ret = -ENOMEM;
731 				goto out;
732 			}
733 			memcpy(new_ref, ref, sizeof(*ref));
734 			new_ref->parent = node->val;
735 			new_ref->inode_list = unode_aux_to_inode_list(node);
736 			prelim_ref_insert(fs_info, &preftrees->direct,
737 					  new_ref, NULL);
738 		}
739 
740 		/*
741 		 * Now it's a direct ref, put it in the direct tree. We must
742 		 * do this last because the ref could be merged/freed here.
743 		 */
744 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
745 
746 		ulist_reinit(parents);
747 		cond_resched();
748 	}
749 out:
750 	ulist_free(parents);
751 	return ret;
752 }
753 
754 /*
755  * read tree blocks and add keys where required.
756  */
757 static int add_missing_keys(struct btrfs_fs_info *fs_info,
758 			    struct preftrees *preftrees, bool lock)
759 {
760 	struct prelim_ref *ref;
761 	struct extent_buffer *eb;
762 	struct preftree *tree = &preftrees->indirect_missing_keys;
763 	struct rb_node *node;
764 
765 	while ((node = rb_first_cached(&tree->root))) {
766 		ref = rb_entry(node, struct prelim_ref, rbnode);
767 		rb_erase_cached(node, &tree->root);
768 
769 		BUG_ON(ref->parent);	/* should not be a direct ref */
770 		BUG_ON(ref->key_for_search.type);
771 		BUG_ON(!ref->wanted_disk_byte);
772 
773 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
774 				     ref->level - 1, NULL);
775 		if (IS_ERR(eb)) {
776 			free_pref(ref);
777 			return PTR_ERR(eb);
778 		} else if (!extent_buffer_uptodate(eb)) {
779 			free_pref(ref);
780 			free_extent_buffer(eb);
781 			return -EIO;
782 		}
783 		if (lock)
784 			btrfs_tree_read_lock(eb);
785 		if (btrfs_header_level(eb) == 0)
786 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
787 		else
788 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
789 		if (lock)
790 			btrfs_tree_read_unlock(eb);
791 		free_extent_buffer(eb);
792 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
793 		cond_resched();
794 	}
795 	return 0;
796 }
797 
798 /*
799  * add all currently queued delayed refs from this head whose seq nr is
800  * smaller or equal that seq to the list
801  */
802 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
803 			    struct btrfs_delayed_ref_head *head, u64 seq,
804 			    struct preftrees *preftrees, struct share_check *sc)
805 {
806 	struct btrfs_delayed_ref_node *node;
807 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
808 	struct btrfs_key key;
809 	struct btrfs_key tmp_op_key;
810 	struct rb_node *n;
811 	int count;
812 	int ret = 0;
813 
814 	if (extent_op && extent_op->update_key)
815 		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
816 
817 	spin_lock(&head->lock);
818 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
819 		node = rb_entry(n, struct btrfs_delayed_ref_node,
820 				ref_node);
821 		if (node->seq > seq)
822 			continue;
823 
824 		switch (node->action) {
825 		case BTRFS_ADD_DELAYED_EXTENT:
826 		case BTRFS_UPDATE_DELAYED_HEAD:
827 			WARN_ON(1);
828 			continue;
829 		case BTRFS_ADD_DELAYED_REF:
830 			count = node->ref_mod;
831 			break;
832 		case BTRFS_DROP_DELAYED_REF:
833 			count = node->ref_mod * -1;
834 			break;
835 		default:
836 			BUG();
837 		}
838 		switch (node->type) {
839 		case BTRFS_TREE_BLOCK_REF_KEY: {
840 			/* NORMAL INDIRECT METADATA backref */
841 			struct btrfs_delayed_tree_ref *ref;
842 
843 			ref = btrfs_delayed_node_to_tree_ref(node);
844 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
845 					       &tmp_op_key, ref->level + 1,
846 					       node->bytenr, count, sc,
847 					       GFP_ATOMIC);
848 			break;
849 		}
850 		case BTRFS_SHARED_BLOCK_REF_KEY: {
851 			/* SHARED DIRECT METADATA backref */
852 			struct btrfs_delayed_tree_ref *ref;
853 
854 			ref = btrfs_delayed_node_to_tree_ref(node);
855 
856 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
857 					     ref->parent, node->bytenr, count,
858 					     sc, GFP_ATOMIC);
859 			break;
860 		}
861 		case BTRFS_EXTENT_DATA_REF_KEY: {
862 			/* NORMAL INDIRECT DATA backref */
863 			struct btrfs_delayed_data_ref *ref;
864 			ref = btrfs_delayed_node_to_data_ref(node);
865 
866 			key.objectid = ref->objectid;
867 			key.type = BTRFS_EXTENT_DATA_KEY;
868 			key.offset = ref->offset;
869 
870 			/*
871 			 * Found a inum that doesn't match our known inum, we
872 			 * know it's shared.
873 			 */
874 			if (sc && sc->inum && ref->objectid != sc->inum) {
875 				ret = BACKREF_FOUND_SHARED;
876 				goto out;
877 			}
878 
879 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
880 					       &key, 0, node->bytenr, count, sc,
881 					       GFP_ATOMIC);
882 			break;
883 		}
884 		case BTRFS_SHARED_DATA_REF_KEY: {
885 			/* SHARED DIRECT FULL backref */
886 			struct btrfs_delayed_data_ref *ref;
887 
888 			ref = btrfs_delayed_node_to_data_ref(node);
889 
890 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
891 					     node->bytenr, count, sc,
892 					     GFP_ATOMIC);
893 			break;
894 		}
895 		default:
896 			WARN_ON(1);
897 		}
898 		/*
899 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
900 		 * refs have been checked.
901 		 */
902 		if (ret && (ret != BACKREF_FOUND_SHARED))
903 			break;
904 	}
905 	if (!ret)
906 		ret = extent_is_shared(sc);
907 out:
908 	spin_unlock(&head->lock);
909 	return ret;
910 }
911 
912 /*
913  * add all inline backrefs for bytenr to the list
914  *
915  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
916  */
917 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
918 			   struct btrfs_path *path, u64 bytenr,
919 			   int *info_level, struct preftrees *preftrees,
920 			   struct share_check *sc)
921 {
922 	int ret = 0;
923 	int slot;
924 	struct extent_buffer *leaf;
925 	struct btrfs_key key;
926 	struct btrfs_key found_key;
927 	unsigned long ptr;
928 	unsigned long end;
929 	struct btrfs_extent_item *ei;
930 	u64 flags;
931 	u64 item_size;
932 
933 	/*
934 	 * enumerate all inline refs
935 	 */
936 	leaf = path->nodes[0];
937 	slot = path->slots[0];
938 
939 	item_size = btrfs_item_size_nr(leaf, slot);
940 	BUG_ON(item_size < sizeof(*ei));
941 
942 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
943 	flags = btrfs_extent_flags(leaf, ei);
944 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
945 
946 	ptr = (unsigned long)(ei + 1);
947 	end = (unsigned long)ei + item_size;
948 
949 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
950 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
951 		struct btrfs_tree_block_info *info;
952 
953 		info = (struct btrfs_tree_block_info *)ptr;
954 		*info_level = btrfs_tree_block_level(leaf, info);
955 		ptr += sizeof(struct btrfs_tree_block_info);
956 		BUG_ON(ptr > end);
957 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
958 		*info_level = found_key.offset;
959 	} else {
960 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
961 	}
962 
963 	while (ptr < end) {
964 		struct btrfs_extent_inline_ref *iref;
965 		u64 offset;
966 		int type;
967 
968 		iref = (struct btrfs_extent_inline_ref *)ptr;
969 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
970 							BTRFS_REF_TYPE_ANY);
971 		if (type == BTRFS_REF_TYPE_INVALID)
972 			return -EUCLEAN;
973 
974 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
975 
976 		switch (type) {
977 		case BTRFS_SHARED_BLOCK_REF_KEY:
978 			ret = add_direct_ref(fs_info, preftrees,
979 					     *info_level + 1, offset,
980 					     bytenr, 1, NULL, GFP_NOFS);
981 			break;
982 		case BTRFS_SHARED_DATA_REF_KEY: {
983 			struct btrfs_shared_data_ref *sdref;
984 			int count;
985 
986 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
987 			count = btrfs_shared_data_ref_count(leaf, sdref);
988 
989 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
990 					     bytenr, count, sc, GFP_NOFS);
991 			break;
992 		}
993 		case BTRFS_TREE_BLOCK_REF_KEY:
994 			ret = add_indirect_ref(fs_info, preftrees, offset,
995 					       NULL, *info_level + 1,
996 					       bytenr, 1, NULL, GFP_NOFS);
997 			break;
998 		case BTRFS_EXTENT_DATA_REF_KEY: {
999 			struct btrfs_extent_data_ref *dref;
1000 			int count;
1001 			u64 root;
1002 
1003 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1004 			count = btrfs_extent_data_ref_count(leaf, dref);
1005 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1006 								      dref);
1007 			key.type = BTRFS_EXTENT_DATA_KEY;
1008 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1009 
1010 			if (sc && sc->inum && key.objectid != sc->inum) {
1011 				ret = BACKREF_FOUND_SHARED;
1012 				break;
1013 			}
1014 
1015 			root = btrfs_extent_data_ref_root(leaf, dref);
1016 
1017 			ret = add_indirect_ref(fs_info, preftrees, root,
1018 					       &key, 0, bytenr, count,
1019 					       sc, GFP_NOFS);
1020 			break;
1021 		}
1022 		default:
1023 			WARN_ON(1);
1024 		}
1025 		if (ret)
1026 			return ret;
1027 		ptr += btrfs_extent_inline_ref_size(type);
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 /*
1034  * add all non-inline backrefs for bytenr to the list
1035  *
1036  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1037  */
1038 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1039 			  struct btrfs_path *path, u64 bytenr,
1040 			  int info_level, struct preftrees *preftrees,
1041 			  struct share_check *sc)
1042 {
1043 	struct btrfs_root *extent_root = fs_info->extent_root;
1044 	int ret;
1045 	int slot;
1046 	struct extent_buffer *leaf;
1047 	struct btrfs_key key;
1048 
1049 	while (1) {
1050 		ret = btrfs_next_item(extent_root, path);
1051 		if (ret < 0)
1052 			break;
1053 		if (ret) {
1054 			ret = 0;
1055 			break;
1056 		}
1057 
1058 		slot = path->slots[0];
1059 		leaf = path->nodes[0];
1060 		btrfs_item_key_to_cpu(leaf, &key, slot);
1061 
1062 		if (key.objectid != bytenr)
1063 			break;
1064 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1065 			continue;
1066 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1067 			break;
1068 
1069 		switch (key.type) {
1070 		case BTRFS_SHARED_BLOCK_REF_KEY:
1071 			/* SHARED DIRECT METADATA backref */
1072 			ret = add_direct_ref(fs_info, preftrees,
1073 					     info_level + 1, key.offset,
1074 					     bytenr, 1, NULL, GFP_NOFS);
1075 			break;
1076 		case BTRFS_SHARED_DATA_REF_KEY: {
1077 			/* SHARED DIRECT FULL backref */
1078 			struct btrfs_shared_data_ref *sdref;
1079 			int count;
1080 
1081 			sdref = btrfs_item_ptr(leaf, slot,
1082 					      struct btrfs_shared_data_ref);
1083 			count = btrfs_shared_data_ref_count(leaf, sdref);
1084 			ret = add_direct_ref(fs_info, preftrees, 0,
1085 					     key.offset, bytenr, count,
1086 					     sc, GFP_NOFS);
1087 			break;
1088 		}
1089 		case BTRFS_TREE_BLOCK_REF_KEY:
1090 			/* NORMAL INDIRECT METADATA backref */
1091 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1092 					       NULL, info_level + 1, bytenr,
1093 					       1, NULL, GFP_NOFS);
1094 			break;
1095 		case BTRFS_EXTENT_DATA_REF_KEY: {
1096 			/* NORMAL INDIRECT DATA backref */
1097 			struct btrfs_extent_data_ref *dref;
1098 			int count;
1099 			u64 root;
1100 
1101 			dref = btrfs_item_ptr(leaf, slot,
1102 					      struct btrfs_extent_data_ref);
1103 			count = btrfs_extent_data_ref_count(leaf, dref);
1104 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1105 								      dref);
1106 			key.type = BTRFS_EXTENT_DATA_KEY;
1107 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1108 
1109 			if (sc && sc->inum && key.objectid != sc->inum) {
1110 				ret = BACKREF_FOUND_SHARED;
1111 				break;
1112 			}
1113 
1114 			root = btrfs_extent_data_ref_root(leaf, dref);
1115 			ret = add_indirect_ref(fs_info, preftrees, root,
1116 					       &key, 0, bytenr, count,
1117 					       sc, GFP_NOFS);
1118 			break;
1119 		}
1120 		default:
1121 			WARN_ON(1);
1122 		}
1123 		if (ret)
1124 			return ret;
1125 
1126 	}
1127 
1128 	return ret;
1129 }
1130 
1131 /*
1132  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1133  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1134  * indirect refs to their parent bytenr.
1135  * When roots are found, they're added to the roots list
1136  *
1137  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1138  * much like trans == NULL case, the difference only lies in it will not
1139  * commit root.
1140  * The special case is for qgroup to search roots in commit_transaction().
1141  *
1142  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1143  * shared extent is detected.
1144  *
1145  * Otherwise this returns 0 for success and <0 for an error.
1146  *
1147  * If ignore_offset is set to false, only extent refs whose offsets match
1148  * extent_item_pos are returned.  If true, every extent ref is returned
1149  * and extent_item_pos is ignored.
1150  *
1151  * FIXME some caching might speed things up
1152  */
1153 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1154 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1155 			     u64 time_seq, struct ulist *refs,
1156 			     struct ulist *roots, const u64 *extent_item_pos,
1157 			     struct share_check *sc, bool ignore_offset)
1158 {
1159 	struct btrfs_key key;
1160 	struct btrfs_path *path;
1161 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1162 	struct btrfs_delayed_ref_head *head;
1163 	int info_level = 0;
1164 	int ret;
1165 	struct prelim_ref *ref;
1166 	struct rb_node *node;
1167 	struct extent_inode_elem *eie = NULL;
1168 	struct preftrees preftrees = {
1169 		.direct = PREFTREE_INIT,
1170 		.indirect = PREFTREE_INIT,
1171 		.indirect_missing_keys = PREFTREE_INIT
1172 	};
1173 
1174 	key.objectid = bytenr;
1175 	key.offset = (u64)-1;
1176 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1177 		key.type = BTRFS_METADATA_ITEM_KEY;
1178 	else
1179 		key.type = BTRFS_EXTENT_ITEM_KEY;
1180 
1181 	path = btrfs_alloc_path();
1182 	if (!path)
1183 		return -ENOMEM;
1184 	if (!trans) {
1185 		path->search_commit_root = 1;
1186 		path->skip_locking = 1;
1187 	}
1188 
1189 	if (time_seq == SEQ_LAST)
1190 		path->skip_locking = 1;
1191 
1192 	/*
1193 	 * grab both a lock on the path and a lock on the delayed ref head.
1194 	 * We need both to get a consistent picture of how the refs look
1195 	 * at a specified point in time
1196 	 */
1197 again:
1198 	head = NULL;
1199 
1200 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1201 	if (ret < 0)
1202 		goto out;
1203 	BUG_ON(ret == 0);
1204 
1205 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1206 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1207 	    time_seq != SEQ_LAST) {
1208 #else
1209 	if (trans && time_seq != SEQ_LAST) {
1210 #endif
1211 		/*
1212 		 * look if there are updates for this ref queued and lock the
1213 		 * head
1214 		 */
1215 		delayed_refs = &trans->transaction->delayed_refs;
1216 		spin_lock(&delayed_refs->lock);
1217 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1218 		if (head) {
1219 			if (!mutex_trylock(&head->mutex)) {
1220 				refcount_inc(&head->refs);
1221 				spin_unlock(&delayed_refs->lock);
1222 
1223 				btrfs_release_path(path);
1224 
1225 				/*
1226 				 * Mutex was contended, block until it's
1227 				 * released and try again
1228 				 */
1229 				mutex_lock(&head->mutex);
1230 				mutex_unlock(&head->mutex);
1231 				btrfs_put_delayed_ref_head(head);
1232 				goto again;
1233 			}
1234 			spin_unlock(&delayed_refs->lock);
1235 			ret = add_delayed_refs(fs_info, head, time_seq,
1236 					       &preftrees, sc);
1237 			mutex_unlock(&head->mutex);
1238 			if (ret)
1239 				goto out;
1240 		} else {
1241 			spin_unlock(&delayed_refs->lock);
1242 		}
1243 	}
1244 
1245 	if (path->slots[0]) {
1246 		struct extent_buffer *leaf;
1247 		int slot;
1248 
1249 		path->slots[0]--;
1250 		leaf = path->nodes[0];
1251 		slot = path->slots[0];
1252 		btrfs_item_key_to_cpu(leaf, &key, slot);
1253 		if (key.objectid == bytenr &&
1254 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1255 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1256 			ret = add_inline_refs(fs_info, path, bytenr,
1257 					      &info_level, &preftrees, sc);
1258 			if (ret)
1259 				goto out;
1260 			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1261 					     &preftrees, sc);
1262 			if (ret)
1263 				goto out;
1264 		}
1265 	}
1266 
1267 	btrfs_release_path(path);
1268 
1269 	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1270 	if (ret)
1271 		goto out;
1272 
1273 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1274 
1275 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1276 				    extent_item_pos, sc, ignore_offset);
1277 	if (ret)
1278 		goto out;
1279 
1280 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1281 
1282 	/*
1283 	 * This walks the tree of merged and resolved refs. Tree blocks are
1284 	 * read in as needed. Unique entries are added to the ulist, and
1285 	 * the list of found roots is updated.
1286 	 *
1287 	 * We release the entire tree in one go before returning.
1288 	 */
1289 	node = rb_first_cached(&preftrees.direct.root);
1290 	while (node) {
1291 		ref = rb_entry(node, struct prelim_ref, rbnode);
1292 		node = rb_next(&ref->rbnode);
1293 		/*
1294 		 * ref->count < 0 can happen here if there are delayed
1295 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1296 		 * prelim_ref_insert() relies on this when merging
1297 		 * identical refs to keep the overall count correct.
1298 		 * prelim_ref_insert() will merge only those refs
1299 		 * which compare identically.  Any refs having
1300 		 * e.g. different offsets would not be merged,
1301 		 * and would retain their original ref->count < 0.
1302 		 */
1303 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1304 			if (sc && sc->root_objectid &&
1305 			    ref->root_id != sc->root_objectid) {
1306 				ret = BACKREF_FOUND_SHARED;
1307 				goto out;
1308 			}
1309 
1310 			/* no parent == root of tree */
1311 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1312 			if (ret < 0)
1313 				goto out;
1314 		}
1315 		if (ref->count && ref->parent) {
1316 			if (extent_item_pos && !ref->inode_list &&
1317 			    ref->level == 0) {
1318 				struct extent_buffer *eb;
1319 
1320 				eb = read_tree_block(fs_info, ref->parent, 0,
1321 						     ref->level, NULL);
1322 				if (IS_ERR(eb)) {
1323 					ret = PTR_ERR(eb);
1324 					goto out;
1325 				} else if (!extent_buffer_uptodate(eb)) {
1326 					free_extent_buffer(eb);
1327 					ret = -EIO;
1328 					goto out;
1329 				}
1330 
1331 				if (!path->skip_locking) {
1332 					btrfs_tree_read_lock(eb);
1333 					btrfs_set_lock_blocking_read(eb);
1334 				}
1335 				ret = find_extent_in_eb(eb, bytenr,
1336 							*extent_item_pos, &eie, ignore_offset);
1337 				if (!path->skip_locking)
1338 					btrfs_tree_read_unlock_blocking(eb);
1339 				free_extent_buffer(eb);
1340 				if (ret < 0)
1341 					goto out;
1342 				ref->inode_list = eie;
1343 			}
1344 			ret = ulist_add_merge_ptr(refs, ref->parent,
1345 						  ref->inode_list,
1346 						  (void **)&eie, GFP_NOFS);
1347 			if (ret < 0)
1348 				goto out;
1349 			if (!ret && extent_item_pos) {
1350 				/*
1351 				 * we've recorded that parent, so we must extend
1352 				 * its inode list here
1353 				 */
1354 				BUG_ON(!eie);
1355 				while (eie->next)
1356 					eie = eie->next;
1357 				eie->next = ref->inode_list;
1358 			}
1359 			eie = NULL;
1360 		}
1361 		cond_resched();
1362 	}
1363 
1364 out:
1365 	btrfs_free_path(path);
1366 
1367 	prelim_release(&preftrees.direct);
1368 	prelim_release(&preftrees.indirect);
1369 	prelim_release(&preftrees.indirect_missing_keys);
1370 
1371 	if (ret < 0)
1372 		free_inode_elem_list(eie);
1373 	return ret;
1374 }
1375 
1376 static void free_leaf_list(struct ulist *blocks)
1377 {
1378 	struct ulist_node *node = NULL;
1379 	struct extent_inode_elem *eie;
1380 	struct ulist_iterator uiter;
1381 
1382 	ULIST_ITER_INIT(&uiter);
1383 	while ((node = ulist_next(blocks, &uiter))) {
1384 		if (!node->aux)
1385 			continue;
1386 		eie = unode_aux_to_inode_list(node);
1387 		free_inode_elem_list(eie);
1388 		node->aux = 0;
1389 	}
1390 
1391 	ulist_free(blocks);
1392 }
1393 
1394 /*
1395  * Finds all leafs with a reference to the specified combination of bytenr and
1396  * offset. key_list_head will point to a list of corresponding keys (caller must
1397  * free each list element). The leafs will be stored in the leafs ulist, which
1398  * must be freed with ulist_free.
1399  *
1400  * returns 0 on success, <0 on error
1401  */
1402 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1403 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1404 			 u64 time_seq, struct ulist **leafs,
1405 			 const u64 *extent_item_pos, bool ignore_offset)
1406 {
1407 	int ret;
1408 
1409 	*leafs = ulist_alloc(GFP_NOFS);
1410 	if (!*leafs)
1411 		return -ENOMEM;
1412 
1413 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1414 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1415 	if (ret < 0 && ret != -ENOENT) {
1416 		free_leaf_list(*leafs);
1417 		return ret;
1418 	}
1419 
1420 	return 0;
1421 }
1422 
1423 /*
1424  * walk all backrefs for a given extent to find all roots that reference this
1425  * extent. Walking a backref means finding all extents that reference this
1426  * extent and in turn walk the backrefs of those, too. Naturally this is a
1427  * recursive process, but here it is implemented in an iterative fashion: We
1428  * find all referencing extents for the extent in question and put them on a
1429  * list. In turn, we find all referencing extents for those, further appending
1430  * to the list. The way we iterate the list allows adding more elements after
1431  * the current while iterating. The process stops when we reach the end of the
1432  * list. Found roots are added to the roots list.
1433  *
1434  * returns 0 on success, < 0 on error.
1435  */
1436 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1437 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1438 				     u64 time_seq, struct ulist **roots,
1439 				     bool ignore_offset)
1440 {
1441 	struct ulist *tmp;
1442 	struct ulist_node *node = NULL;
1443 	struct ulist_iterator uiter;
1444 	int ret;
1445 
1446 	tmp = ulist_alloc(GFP_NOFS);
1447 	if (!tmp)
1448 		return -ENOMEM;
1449 	*roots = ulist_alloc(GFP_NOFS);
1450 	if (!*roots) {
1451 		ulist_free(tmp);
1452 		return -ENOMEM;
1453 	}
1454 
1455 	ULIST_ITER_INIT(&uiter);
1456 	while (1) {
1457 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1458 					tmp, *roots, NULL, NULL, ignore_offset);
1459 		if (ret < 0 && ret != -ENOENT) {
1460 			ulist_free(tmp);
1461 			ulist_free(*roots);
1462 			return ret;
1463 		}
1464 		node = ulist_next(tmp, &uiter);
1465 		if (!node)
1466 			break;
1467 		bytenr = node->val;
1468 		cond_resched();
1469 	}
1470 
1471 	ulist_free(tmp);
1472 	return 0;
1473 }
1474 
1475 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1476 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1477 			 u64 time_seq, struct ulist **roots,
1478 			 bool ignore_offset)
1479 {
1480 	int ret;
1481 
1482 	if (!trans)
1483 		down_read(&fs_info->commit_root_sem);
1484 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1485 					time_seq, roots, ignore_offset);
1486 	if (!trans)
1487 		up_read(&fs_info->commit_root_sem);
1488 	return ret;
1489 }
1490 
1491 /**
1492  * btrfs_check_shared - tell us whether an extent is shared
1493  *
1494  * btrfs_check_shared uses the backref walking code but will short
1495  * circuit as soon as it finds a root or inode that doesn't match the
1496  * one passed in. This provides a significant performance benefit for
1497  * callers (such as fiemap) which want to know whether the extent is
1498  * shared but do not need a ref count.
1499  *
1500  * This attempts to attach to the running transaction in order to account for
1501  * delayed refs, but continues on even when no running transaction exists.
1502  *
1503  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1504  */
1505 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1506 		struct ulist *roots, struct ulist *tmp)
1507 {
1508 	struct btrfs_fs_info *fs_info = root->fs_info;
1509 	struct btrfs_trans_handle *trans;
1510 	struct ulist_iterator uiter;
1511 	struct ulist_node *node;
1512 	struct seq_list elem = SEQ_LIST_INIT(elem);
1513 	int ret = 0;
1514 	struct share_check shared = {
1515 		.root_objectid = root->root_key.objectid,
1516 		.inum = inum,
1517 		.share_count = 0,
1518 	};
1519 
1520 	ulist_init(roots);
1521 	ulist_init(tmp);
1522 
1523 	trans = btrfs_join_transaction_nostart(root);
1524 	if (IS_ERR(trans)) {
1525 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1526 			ret = PTR_ERR(trans);
1527 			goto out;
1528 		}
1529 		trans = NULL;
1530 		down_read(&fs_info->commit_root_sem);
1531 	} else {
1532 		btrfs_get_tree_mod_seq(fs_info, &elem);
1533 	}
1534 
1535 	ULIST_ITER_INIT(&uiter);
1536 	while (1) {
1537 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1538 					roots, NULL, &shared, false);
1539 		if (ret == BACKREF_FOUND_SHARED) {
1540 			/* this is the only condition under which we return 1 */
1541 			ret = 1;
1542 			break;
1543 		}
1544 		if (ret < 0 && ret != -ENOENT)
1545 			break;
1546 		ret = 0;
1547 		node = ulist_next(tmp, &uiter);
1548 		if (!node)
1549 			break;
1550 		bytenr = node->val;
1551 		shared.share_count = 0;
1552 		cond_resched();
1553 	}
1554 
1555 	if (trans) {
1556 		btrfs_put_tree_mod_seq(fs_info, &elem);
1557 		btrfs_end_transaction(trans);
1558 	} else {
1559 		up_read(&fs_info->commit_root_sem);
1560 	}
1561 out:
1562 	ulist_release(roots);
1563 	ulist_release(tmp);
1564 	return ret;
1565 }
1566 
1567 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1568 			  u64 start_off, struct btrfs_path *path,
1569 			  struct btrfs_inode_extref **ret_extref,
1570 			  u64 *found_off)
1571 {
1572 	int ret, slot;
1573 	struct btrfs_key key;
1574 	struct btrfs_key found_key;
1575 	struct btrfs_inode_extref *extref;
1576 	const struct extent_buffer *leaf;
1577 	unsigned long ptr;
1578 
1579 	key.objectid = inode_objectid;
1580 	key.type = BTRFS_INODE_EXTREF_KEY;
1581 	key.offset = start_off;
1582 
1583 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1584 	if (ret < 0)
1585 		return ret;
1586 
1587 	while (1) {
1588 		leaf = path->nodes[0];
1589 		slot = path->slots[0];
1590 		if (slot >= btrfs_header_nritems(leaf)) {
1591 			/*
1592 			 * If the item at offset is not found,
1593 			 * btrfs_search_slot will point us to the slot
1594 			 * where it should be inserted. In our case
1595 			 * that will be the slot directly before the
1596 			 * next INODE_REF_KEY_V2 item. In the case
1597 			 * that we're pointing to the last slot in a
1598 			 * leaf, we must move one leaf over.
1599 			 */
1600 			ret = btrfs_next_leaf(root, path);
1601 			if (ret) {
1602 				if (ret >= 1)
1603 					ret = -ENOENT;
1604 				break;
1605 			}
1606 			continue;
1607 		}
1608 
1609 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1610 
1611 		/*
1612 		 * Check that we're still looking at an extended ref key for
1613 		 * this particular objectid. If we have different
1614 		 * objectid or type then there are no more to be found
1615 		 * in the tree and we can exit.
1616 		 */
1617 		ret = -ENOENT;
1618 		if (found_key.objectid != inode_objectid)
1619 			break;
1620 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1621 			break;
1622 
1623 		ret = 0;
1624 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1625 		extref = (struct btrfs_inode_extref *)ptr;
1626 		*ret_extref = extref;
1627 		if (found_off)
1628 			*found_off = found_key.offset;
1629 		break;
1630 	}
1631 
1632 	return ret;
1633 }
1634 
1635 /*
1636  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1637  * Elements of the path are separated by '/' and the path is guaranteed to be
1638  * 0-terminated. the path is only given within the current file system.
1639  * Therefore, it never starts with a '/'. the caller is responsible to provide
1640  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1641  * the start point of the resulting string is returned. this pointer is within
1642  * dest, normally.
1643  * in case the path buffer would overflow, the pointer is decremented further
1644  * as if output was written to the buffer, though no more output is actually
1645  * generated. that way, the caller can determine how much space would be
1646  * required for the path to fit into the buffer. in that case, the returned
1647  * value will be smaller than dest. callers must check this!
1648  */
1649 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1650 			u32 name_len, unsigned long name_off,
1651 			struct extent_buffer *eb_in, u64 parent,
1652 			char *dest, u32 size)
1653 {
1654 	int slot;
1655 	u64 next_inum;
1656 	int ret;
1657 	s64 bytes_left = ((s64)size) - 1;
1658 	struct extent_buffer *eb = eb_in;
1659 	struct btrfs_key found_key;
1660 	int leave_spinning = path->leave_spinning;
1661 	struct btrfs_inode_ref *iref;
1662 
1663 	if (bytes_left >= 0)
1664 		dest[bytes_left] = '\0';
1665 
1666 	path->leave_spinning = 1;
1667 	while (1) {
1668 		bytes_left -= name_len;
1669 		if (bytes_left >= 0)
1670 			read_extent_buffer(eb, dest + bytes_left,
1671 					   name_off, name_len);
1672 		if (eb != eb_in) {
1673 			if (!path->skip_locking)
1674 				btrfs_tree_read_unlock_blocking(eb);
1675 			free_extent_buffer(eb);
1676 		}
1677 		ret = btrfs_find_item(fs_root, path, parent, 0,
1678 				BTRFS_INODE_REF_KEY, &found_key);
1679 		if (ret > 0)
1680 			ret = -ENOENT;
1681 		if (ret)
1682 			break;
1683 
1684 		next_inum = found_key.offset;
1685 
1686 		/* regular exit ahead */
1687 		if (parent == next_inum)
1688 			break;
1689 
1690 		slot = path->slots[0];
1691 		eb = path->nodes[0];
1692 		/* make sure we can use eb after releasing the path */
1693 		if (eb != eb_in) {
1694 			if (!path->skip_locking)
1695 				btrfs_set_lock_blocking_read(eb);
1696 			path->nodes[0] = NULL;
1697 			path->locks[0] = 0;
1698 		}
1699 		btrfs_release_path(path);
1700 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1701 
1702 		name_len = btrfs_inode_ref_name_len(eb, iref);
1703 		name_off = (unsigned long)(iref + 1);
1704 
1705 		parent = next_inum;
1706 		--bytes_left;
1707 		if (bytes_left >= 0)
1708 			dest[bytes_left] = '/';
1709 	}
1710 
1711 	btrfs_release_path(path);
1712 	path->leave_spinning = leave_spinning;
1713 
1714 	if (ret)
1715 		return ERR_PTR(ret);
1716 
1717 	return dest + bytes_left;
1718 }
1719 
1720 /*
1721  * this makes the path point to (logical EXTENT_ITEM *)
1722  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1723  * tree blocks and <0 on error.
1724  */
1725 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1726 			struct btrfs_path *path, struct btrfs_key *found_key,
1727 			u64 *flags_ret)
1728 {
1729 	int ret;
1730 	u64 flags;
1731 	u64 size = 0;
1732 	u32 item_size;
1733 	const struct extent_buffer *eb;
1734 	struct btrfs_extent_item *ei;
1735 	struct btrfs_key key;
1736 
1737 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1738 		key.type = BTRFS_METADATA_ITEM_KEY;
1739 	else
1740 		key.type = BTRFS_EXTENT_ITEM_KEY;
1741 	key.objectid = logical;
1742 	key.offset = (u64)-1;
1743 
1744 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1745 	if (ret < 0)
1746 		return ret;
1747 
1748 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1749 	if (ret) {
1750 		if (ret > 0)
1751 			ret = -ENOENT;
1752 		return ret;
1753 	}
1754 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1755 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1756 		size = fs_info->nodesize;
1757 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1758 		size = found_key->offset;
1759 
1760 	if (found_key->objectid > logical ||
1761 	    found_key->objectid + size <= logical) {
1762 		btrfs_debug(fs_info,
1763 			"logical %llu is not within any extent", logical);
1764 		return -ENOENT;
1765 	}
1766 
1767 	eb = path->nodes[0];
1768 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1769 	BUG_ON(item_size < sizeof(*ei));
1770 
1771 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1772 	flags = btrfs_extent_flags(eb, ei);
1773 
1774 	btrfs_debug(fs_info,
1775 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1776 		 logical, logical - found_key->objectid, found_key->objectid,
1777 		 found_key->offset, flags, item_size);
1778 
1779 	WARN_ON(!flags_ret);
1780 	if (flags_ret) {
1781 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1782 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1783 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1784 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1785 		else
1786 			BUG();
1787 		return 0;
1788 	}
1789 
1790 	return -EIO;
1791 }
1792 
1793 /*
1794  * helper function to iterate extent inline refs. ptr must point to a 0 value
1795  * for the first call and may be modified. it is used to track state.
1796  * if more refs exist, 0 is returned and the next call to
1797  * get_extent_inline_ref must pass the modified ptr parameter to get the
1798  * next ref. after the last ref was processed, 1 is returned.
1799  * returns <0 on error
1800  */
1801 static int get_extent_inline_ref(unsigned long *ptr,
1802 				 const struct extent_buffer *eb,
1803 				 const struct btrfs_key *key,
1804 				 const struct btrfs_extent_item *ei,
1805 				 u32 item_size,
1806 				 struct btrfs_extent_inline_ref **out_eiref,
1807 				 int *out_type)
1808 {
1809 	unsigned long end;
1810 	u64 flags;
1811 	struct btrfs_tree_block_info *info;
1812 
1813 	if (!*ptr) {
1814 		/* first call */
1815 		flags = btrfs_extent_flags(eb, ei);
1816 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1817 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1818 				/* a skinny metadata extent */
1819 				*out_eiref =
1820 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1821 			} else {
1822 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1823 				info = (struct btrfs_tree_block_info *)(ei + 1);
1824 				*out_eiref =
1825 				   (struct btrfs_extent_inline_ref *)(info + 1);
1826 			}
1827 		} else {
1828 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1829 		}
1830 		*ptr = (unsigned long)*out_eiref;
1831 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1832 			return -ENOENT;
1833 	}
1834 
1835 	end = (unsigned long)ei + item_size;
1836 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1837 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1838 						     BTRFS_REF_TYPE_ANY);
1839 	if (*out_type == BTRFS_REF_TYPE_INVALID)
1840 		return -EUCLEAN;
1841 
1842 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1843 	WARN_ON(*ptr > end);
1844 	if (*ptr == end)
1845 		return 1; /* last */
1846 
1847 	return 0;
1848 }
1849 
1850 /*
1851  * reads the tree block backref for an extent. tree level and root are returned
1852  * through out_level and out_root. ptr must point to a 0 value for the first
1853  * call and may be modified (see get_extent_inline_ref comment).
1854  * returns 0 if data was provided, 1 if there was no more data to provide or
1855  * <0 on error.
1856  */
1857 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1858 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1859 			    u32 item_size, u64 *out_root, u8 *out_level)
1860 {
1861 	int ret;
1862 	int type;
1863 	struct btrfs_extent_inline_ref *eiref;
1864 
1865 	if (*ptr == (unsigned long)-1)
1866 		return 1;
1867 
1868 	while (1) {
1869 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1870 					      &eiref, &type);
1871 		if (ret < 0)
1872 			return ret;
1873 
1874 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1875 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1876 			break;
1877 
1878 		if (ret == 1)
1879 			return 1;
1880 	}
1881 
1882 	/* we can treat both ref types equally here */
1883 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1884 
1885 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1886 		struct btrfs_tree_block_info *info;
1887 
1888 		info = (struct btrfs_tree_block_info *)(ei + 1);
1889 		*out_level = btrfs_tree_block_level(eb, info);
1890 	} else {
1891 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1892 		*out_level = (u8)key->offset;
1893 	}
1894 
1895 	if (ret == 1)
1896 		*ptr = (unsigned long)-1;
1897 
1898 	return 0;
1899 }
1900 
1901 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1902 			     struct extent_inode_elem *inode_list,
1903 			     u64 root, u64 extent_item_objectid,
1904 			     iterate_extent_inodes_t *iterate, void *ctx)
1905 {
1906 	struct extent_inode_elem *eie;
1907 	int ret = 0;
1908 
1909 	for (eie = inode_list; eie; eie = eie->next) {
1910 		btrfs_debug(fs_info,
1911 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1912 			    extent_item_objectid, eie->inum,
1913 			    eie->offset, root);
1914 		ret = iterate(eie->inum, eie->offset, root, ctx);
1915 		if (ret) {
1916 			btrfs_debug(fs_info,
1917 				    "stopping iteration for %llu due to ret=%d",
1918 				    extent_item_objectid, ret);
1919 			break;
1920 		}
1921 	}
1922 
1923 	return ret;
1924 }
1925 
1926 /*
1927  * calls iterate() for every inode that references the extent identified by
1928  * the given parameters.
1929  * when the iterator function returns a non-zero value, iteration stops.
1930  */
1931 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1932 				u64 extent_item_objectid, u64 extent_item_pos,
1933 				int search_commit_root,
1934 				iterate_extent_inodes_t *iterate, void *ctx,
1935 				bool ignore_offset)
1936 {
1937 	int ret;
1938 	struct btrfs_trans_handle *trans = NULL;
1939 	struct ulist *refs = NULL;
1940 	struct ulist *roots = NULL;
1941 	struct ulist_node *ref_node = NULL;
1942 	struct ulist_node *root_node = NULL;
1943 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1944 	struct ulist_iterator ref_uiter;
1945 	struct ulist_iterator root_uiter;
1946 
1947 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1948 			extent_item_objectid);
1949 
1950 	if (!search_commit_root) {
1951 		trans = btrfs_attach_transaction(fs_info->extent_root);
1952 		if (IS_ERR(trans)) {
1953 			if (PTR_ERR(trans) != -ENOENT &&
1954 			    PTR_ERR(trans) != -EROFS)
1955 				return PTR_ERR(trans);
1956 			trans = NULL;
1957 		}
1958 	}
1959 
1960 	if (trans)
1961 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1962 	else
1963 		down_read(&fs_info->commit_root_sem);
1964 
1965 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1966 				   tree_mod_seq_elem.seq, &refs,
1967 				   &extent_item_pos, ignore_offset);
1968 	if (ret)
1969 		goto out;
1970 
1971 	ULIST_ITER_INIT(&ref_uiter);
1972 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1973 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1974 						tree_mod_seq_elem.seq, &roots,
1975 						ignore_offset);
1976 		if (ret)
1977 			break;
1978 		ULIST_ITER_INIT(&root_uiter);
1979 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1980 			btrfs_debug(fs_info,
1981 				    "root %llu references leaf %llu, data list %#llx",
1982 				    root_node->val, ref_node->val,
1983 				    ref_node->aux);
1984 			ret = iterate_leaf_refs(fs_info,
1985 						(struct extent_inode_elem *)
1986 						(uintptr_t)ref_node->aux,
1987 						root_node->val,
1988 						extent_item_objectid,
1989 						iterate, ctx);
1990 		}
1991 		ulist_free(roots);
1992 	}
1993 
1994 	free_leaf_list(refs);
1995 out:
1996 	if (trans) {
1997 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1998 		btrfs_end_transaction(trans);
1999 	} else {
2000 		up_read(&fs_info->commit_root_sem);
2001 	}
2002 
2003 	return ret;
2004 }
2005 
2006 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2007 				struct btrfs_path *path,
2008 				iterate_extent_inodes_t *iterate, void *ctx,
2009 				bool ignore_offset)
2010 {
2011 	int ret;
2012 	u64 extent_item_pos;
2013 	u64 flags = 0;
2014 	struct btrfs_key found_key;
2015 	int search_commit_root = path->search_commit_root;
2016 
2017 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2018 	btrfs_release_path(path);
2019 	if (ret < 0)
2020 		return ret;
2021 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2022 		return -EINVAL;
2023 
2024 	extent_item_pos = logical - found_key.objectid;
2025 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2026 					extent_item_pos, search_commit_root,
2027 					iterate, ctx, ignore_offset);
2028 
2029 	return ret;
2030 }
2031 
2032 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2033 			      struct extent_buffer *eb, void *ctx);
2034 
2035 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2036 			      struct btrfs_path *path,
2037 			      iterate_irefs_t *iterate, void *ctx)
2038 {
2039 	int ret = 0;
2040 	int slot;
2041 	u32 cur;
2042 	u32 len;
2043 	u32 name_len;
2044 	u64 parent = 0;
2045 	int found = 0;
2046 	struct extent_buffer *eb;
2047 	struct btrfs_item *item;
2048 	struct btrfs_inode_ref *iref;
2049 	struct btrfs_key found_key;
2050 
2051 	while (!ret) {
2052 		ret = btrfs_find_item(fs_root, path, inum,
2053 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2054 				&found_key);
2055 
2056 		if (ret < 0)
2057 			break;
2058 		if (ret) {
2059 			ret = found ? 0 : -ENOENT;
2060 			break;
2061 		}
2062 		++found;
2063 
2064 		parent = found_key.offset;
2065 		slot = path->slots[0];
2066 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2067 		if (!eb) {
2068 			ret = -ENOMEM;
2069 			break;
2070 		}
2071 		btrfs_release_path(path);
2072 
2073 		item = btrfs_item_nr(slot);
2074 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2075 
2076 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2077 			name_len = btrfs_inode_ref_name_len(eb, iref);
2078 			/* path must be released before calling iterate()! */
2079 			btrfs_debug(fs_root->fs_info,
2080 				"following ref at offset %u for inode %llu in tree %llu",
2081 				cur, found_key.objectid,
2082 				fs_root->root_key.objectid);
2083 			ret = iterate(parent, name_len,
2084 				      (unsigned long)(iref + 1), eb, ctx);
2085 			if (ret)
2086 				break;
2087 			len = sizeof(*iref) + name_len;
2088 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2089 		}
2090 		free_extent_buffer(eb);
2091 	}
2092 
2093 	btrfs_release_path(path);
2094 
2095 	return ret;
2096 }
2097 
2098 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2099 				 struct btrfs_path *path,
2100 				 iterate_irefs_t *iterate, void *ctx)
2101 {
2102 	int ret;
2103 	int slot;
2104 	u64 offset = 0;
2105 	u64 parent;
2106 	int found = 0;
2107 	struct extent_buffer *eb;
2108 	struct btrfs_inode_extref *extref;
2109 	u32 item_size;
2110 	u32 cur_offset;
2111 	unsigned long ptr;
2112 
2113 	while (1) {
2114 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2115 					    &offset);
2116 		if (ret < 0)
2117 			break;
2118 		if (ret) {
2119 			ret = found ? 0 : -ENOENT;
2120 			break;
2121 		}
2122 		++found;
2123 
2124 		slot = path->slots[0];
2125 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2126 		if (!eb) {
2127 			ret = -ENOMEM;
2128 			break;
2129 		}
2130 		btrfs_release_path(path);
2131 
2132 		item_size = btrfs_item_size_nr(eb, slot);
2133 		ptr = btrfs_item_ptr_offset(eb, slot);
2134 		cur_offset = 0;
2135 
2136 		while (cur_offset < item_size) {
2137 			u32 name_len;
2138 
2139 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2140 			parent = btrfs_inode_extref_parent(eb, extref);
2141 			name_len = btrfs_inode_extref_name_len(eb, extref);
2142 			ret = iterate(parent, name_len,
2143 				      (unsigned long)&extref->name, eb, ctx);
2144 			if (ret)
2145 				break;
2146 
2147 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2148 			cur_offset += sizeof(*extref);
2149 		}
2150 		free_extent_buffer(eb);
2151 
2152 		offset++;
2153 	}
2154 
2155 	btrfs_release_path(path);
2156 
2157 	return ret;
2158 }
2159 
2160 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2161 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2162 			 void *ctx)
2163 {
2164 	int ret;
2165 	int found_refs = 0;
2166 
2167 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2168 	if (!ret)
2169 		++found_refs;
2170 	else if (ret != -ENOENT)
2171 		return ret;
2172 
2173 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2174 	if (ret == -ENOENT && found_refs)
2175 		return 0;
2176 
2177 	return ret;
2178 }
2179 
2180 /*
2181  * returns 0 if the path could be dumped (probably truncated)
2182  * returns <0 in case of an error
2183  */
2184 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2185 			 struct extent_buffer *eb, void *ctx)
2186 {
2187 	struct inode_fs_paths *ipath = ctx;
2188 	char *fspath;
2189 	char *fspath_min;
2190 	int i = ipath->fspath->elem_cnt;
2191 	const int s_ptr = sizeof(char *);
2192 	u32 bytes_left;
2193 
2194 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2195 					ipath->fspath->bytes_left - s_ptr : 0;
2196 
2197 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2198 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2199 				   name_off, eb, inum, fspath_min, bytes_left);
2200 	if (IS_ERR(fspath))
2201 		return PTR_ERR(fspath);
2202 
2203 	if (fspath > fspath_min) {
2204 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2205 		++ipath->fspath->elem_cnt;
2206 		ipath->fspath->bytes_left = fspath - fspath_min;
2207 	} else {
2208 		++ipath->fspath->elem_missed;
2209 		ipath->fspath->bytes_missing += fspath_min - fspath;
2210 		ipath->fspath->bytes_left = 0;
2211 	}
2212 
2213 	return 0;
2214 }
2215 
2216 /*
2217  * this dumps all file system paths to the inode into the ipath struct, provided
2218  * is has been created large enough. each path is zero-terminated and accessed
2219  * from ipath->fspath->val[i].
2220  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2221  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2222  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2223  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2224  * have been needed to return all paths.
2225  */
2226 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2227 {
2228 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2229 			     inode_to_path, ipath);
2230 }
2231 
2232 struct btrfs_data_container *init_data_container(u32 total_bytes)
2233 {
2234 	struct btrfs_data_container *data;
2235 	size_t alloc_bytes;
2236 
2237 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2238 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2239 	if (!data)
2240 		return ERR_PTR(-ENOMEM);
2241 
2242 	if (total_bytes >= sizeof(*data)) {
2243 		data->bytes_left = total_bytes - sizeof(*data);
2244 		data->bytes_missing = 0;
2245 	} else {
2246 		data->bytes_missing = sizeof(*data) - total_bytes;
2247 		data->bytes_left = 0;
2248 	}
2249 
2250 	data->elem_cnt = 0;
2251 	data->elem_missed = 0;
2252 
2253 	return data;
2254 }
2255 
2256 /*
2257  * allocates space to return multiple file system paths for an inode.
2258  * total_bytes to allocate are passed, note that space usable for actual path
2259  * information will be total_bytes - sizeof(struct inode_fs_paths).
2260  * the returned pointer must be freed with free_ipath() in the end.
2261  */
2262 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2263 					struct btrfs_path *path)
2264 {
2265 	struct inode_fs_paths *ifp;
2266 	struct btrfs_data_container *fspath;
2267 
2268 	fspath = init_data_container(total_bytes);
2269 	if (IS_ERR(fspath))
2270 		return ERR_CAST(fspath);
2271 
2272 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2273 	if (!ifp) {
2274 		kvfree(fspath);
2275 		return ERR_PTR(-ENOMEM);
2276 	}
2277 
2278 	ifp->btrfs_path = path;
2279 	ifp->fspath = fspath;
2280 	ifp->fs_root = fs_root;
2281 
2282 	return ifp;
2283 }
2284 
2285 void free_ipath(struct inode_fs_paths *ipath)
2286 {
2287 	if (!ipath)
2288 		return;
2289 	kvfree(ipath->fspath);
2290 	kfree(ipath);
2291 }
2292