xref: /openbmc/linux/fs/btrfs/backref.c (revision c1c9ff7c94e83fae89a742df74db51156869bad5)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	struct extent_inode_elem *next;
32 };
33 
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 				struct btrfs_file_extent_item *fi,
36 				u64 extent_item_pos,
37 				struct extent_inode_elem **eie)
38 {
39 	u64 offset = 0;
40 	struct extent_inode_elem *e;
41 
42 	if (!btrfs_file_extent_compression(eb, fi) &&
43 	    !btrfs_file_extent_encryption(eb, fi) &&
44 	    !btrfs_file_extent_other_encoding(eb, fi)) {
45 		u64 data_offset;
46 		u64 data_len;
47 
48 		data_offset = btrfs_file_extent_offset(eb, fi);
49 		data_len = btrfs_file_extent_num_bytes(eb, fi);
50 
51 		if (extent_item_pos < data_offset ||
52 		    extent_item_pos >= data_offset + data_len)
53 			return 1;
54 		offset = extent_item_pos - data_offset;
55 	}
56 
57 	e = kmalloc(sizeof(*e), GFP_NOFS);
58 	if (!e)
59 		return -ENOMEM;
60 
61 	e->next = *eie;
62 	e->inum = key->objectid;
63 	e->offset = key->offset + offset;
64 	*eie = e;
65 
66 	return 0;
67 }
68 
69 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
70 				u64 extent_item_pos,
71 				struct extent_inode_elem **eie)
72 {
73 	u64 disk_byte;
74 	struct btrfs_key key;
75 	struct btrfs_file_extent_item *fi;
76 	int slot;
77 	int nritems;
78 	int extent_type;
79 	int ret;
80 
81 	/*
82 	 * from the shared data ref, we only have the leaf but we need
83 	 * the key. thus, we must look into all items and see that we
84 	 * find one (some) with a reference to our extent item.
85 	 */
86 	nritems = btrfs_header_nritems(eb);
87 	for (slot = 0; slot < nritems; ++slot) {
88 		btrfs_item_key_to_cpu(eb, &key, slot);
89 		if (key.type != BTRFS_EXTENT_DATA_KEY)
90 			continue;
91 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
92 		extent_type = btrfs_file_extent_type(eb, fi);
93 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
94 			continue;
95 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
96 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
97 		if (disk_byte != wanted_disk_byte)
98 			continue;
99 
100 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
101 		if (ret < 0)
102 			return ret;
103 	}
104 
105 	return 0;
106 }
107 
108 /*
109  * this structure records all encountered refs on the way up to the root
110  */
111 struct __prelim_ref {
112 	struct list_head list;
113 	u64 root_id;
114 	struct btrfs_key key_for_search;
115 	int level;
116 	int count;
117 	struct extent_inode_elem *inode_list;
118 	u64 parent;
119 	u64 wanted_disk_byte;
120 };
121 
122 /*
123  * the rules for all callers of this function are:
124  * - obtaining the parent is the goal
125  * - if you add a key, you must know that it is a correct key
126  * - if you cannot add the parent or a correct key, then we will look into the
127  *   block later to set a correct key
128  *
129  * delayed refs
130  * ============
131  *        backref type | shared | indirect | shared | indirect
132  * information         |   tree |     tree |   data |     data
133  * --------------------+--------+----------+--------+----------
134  *      parent logical |    y   |     -    |    -   |     -
135  *      key to resolve |    -   |     y    |    y   |     y
136  *  tree block logical |    -   |     -    |    -   |     -
137  *  root for resolving |    y   |     y    |    y   |     y
138  *
139  * - column 1:       we've the parent -> done
140  * - column 2, 3, 4: we use the key to find the parent
141  *
142  * on disk refs (inline or keyed)
143  * ==============================
144  *        backref type | shared | indirect | shared | indirect
145  * information         |   tree |     tree |   data |     data
146  * --------------------+--------+----------+--------+----------
147  *      parent logical |    y   |     -    |    y   |     -
148  *      key to resolve |    -   |     -    |    -   |     y
149  *  tree block logical |    y   |     y    |    y   |     y
150  *  root for resolving |    -   |     y    |    y   |     y
151  *
152  * - column 1, 3: we've the parent -> done
153  * - column 2:    we take the first key from the block to find the parent
154  *                (see __add_missing_keys)
155  * - column 4:    we use the key to find the parent
156  *
157  * additional information that's available but not required to find the parent
158  * block might help in merging entries to gain some speed.
159  */
160 
161 static int __add_prelim_ref(struct list_head *head, u64 root_id,
162 			    struct btrfs_key *key, int level,
163 			    u64 parent, u64 wanted_disk_byte, int count)
164 {
165 	struct __prelim_ref *ref;
166 
167 	/* in case we're adding delayed refs, we're holding the refs spinlock */
168 	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
169 	if (!ref)
170 		return -ENOMEM;
171 
172 	ref->root_id = root_id;
173 	if (key)
174 		ref->key_for_search = *key;
175 	else
176 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
177 
178 	ref->inode_list = NULL;
179 	ref->level = level;
180 	ref->count = count;
181 	ref->parent = parent;
182 	ref->wanted_disk_byte = wanted_disk_byte;
183 	list_add_tail(&ref->list, head);
184 
185 	return 0;
186 }
187 
188 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
189 				struct ulist *parents, int level,
190 				struct btrfs_key *key_for_search, u64 time_seq,
191 				u64 wanted_disk_byte,
192 				const u64 *extent_item_pos)
193 {
194 	int ret = 0;
195 	int slot;
196 	struct extent_buffer *eb;
197 	struct btrfs_key key;
198 	struct btrfs_file_extent_item *fi;
199 	struct extent_inode_elem *eie = NULL, *old = NULL;
200 	u64 disk_byte;
201 
202 	if (level != 0) {
203 		eb = path->nodes[level];
204 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
205 		if (ret < 0)
206 			return ret;
207 		return 0;
208 	}
209 
210 	/*
211 	 * We normally enter this function with the path already pointing to
212 	 * the first item to check. But sometimes, we may enter it with
213 	 * slot==nritems. In that case, go to the next leaf before we continue.
214 	 */
215 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
216 		ret = btrfs_next_old_leaf(root, path, time_seq);
217 
218 	while (!ret) {
219 		eb = path->nodes[0];
220 		slot = path->slots[0];
221 
222 		btrfs_item_key_to_cpu(eb, &key, slot);
223 
224 		if (key.objectid != key_for_search->objectid ||
225 		    key.type != BTRFS_EXTENT_DATA_KEY)
226 			break;
227 
228 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
229 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
230 
231 		if (disk_byte == wanted_disk_byte) {
232 			eie = NULL;
233 			old = NULL;
234 			if (extent_item_pos) {
235 				ret = check_extent_in_eb(&key, eb, fi,
236 						*extent_item_pos,
237 						&eie);
238 				if (ret < 0)
239 					break;
240 			}
241 			if (ret > 0)
242 				goto next;
243 			ret = ulist_add_merge(parents, eb->start,
244 					      (uintptr_t)eie,
245 					      (u64 *)&old, GFP_NOFS);
246 			if (ret < 0)
247 				break;
248 			if (!ret && extent_item_pos) {
249 				while (old->next)
250 					old = old->next;
251 				old->next = eie;
252 			}
253 		}
254 next:
255 		ret = btrfs_next_old_item(root, path, time_seq);
256 	}
257 
258 	if (ret > 0)
259 		ret = 0;
260 	return ret;
261 }
262 
263 /*
264  * resolve an indirect backref in the form (root_id, key, level)
265  * to a logical address
266  */
267 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
268 				  struct btrfs_path *path, u64 time_seq,
269 				  struct __prelim_ref *ref,
270 				  struct ulist *parents,
271 				  const u64 *extent_item_pos)
272 {
273 	struct btrfs_root *root;
274 	struct btrfs_key root_key;
275 	struct extent_buffer *eb;
276 	int ret = 0;
277 	int root_level;
278 	int level = ref->level;
279 
280 	root_key.objectid = ref->root_id;
281 	root_key.type = BTRFS_ROOT_ITEM_KEY;
282 	root_key.offset = (u64)-1;
283 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
284 	if (IS_ERR(root)) {
285 		ret = PTR_ERR(root);
286 		goto out;
287 	}
288 
289 	root_level = btrfs_old_root_level(root, time_seq);
290 
291 	if (root_level + 1 == level)
292 		goto out;
293 
294 	path->lowest_level = level;
295 	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
296 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
297 		 "%d for key (%llu %u %llu)\n",
298 		 ref->root_id, level, ref->count, ret,
299 		 ref->key_for_search.objectid, ref->key_for_search.type,
300 		 ref->key_for_search.offset);
301 	if (ret < 0)
302 		goto out;
303 
304 	eb = path->nodes[level];
305 	while (!eb) {
306 		if (!level) {
307 			WARN_ON(1);
308 			ret = 1;
309 			goto out;
310 		}
311 		level--;
312 		eb = path->nodes[level];
313 	}
314 
315 	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
316 				time_seq, ref->wanted_disk_byte,
317 				extent_item_pos);
318 out:
319 	path->lowest_level = 0;
320 	btrfs_release_path(path);
321 	return ret;
322 }
323 
324 /*
325  * resolve all indirect backrefs from the list
326  */
327 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
328 				   struct btrfs_path *path, u64 time_seq,
329 				   struct list_head *head,
330 				   const u64 *extent_item_pos)
331 {
332 	int err;
333 	int ret = 0;
334 	struct __prelim_ref *ref;
335 	struct __prelim_ref *ref_safe;
336 	struct __prelim_ref *new_ref;
337 	struct ulist *parents;
338 	struct ulist_node *node;
339 	struct ulist_iterator uiter;
340 
341 	parents = ulist_alloc(GFP_NOFS);
342 	if (!parents)
343 		return -ENOMEM;
344 
345 	/*
346 	 * _safe allows us to insert directly after the current item without
347 	 * iterating over the newly inserted items.
348 	 * we're also allowed to re-assign ref during iteration.
349 	 */
350 	list_for_each_entry_safe(ref, ref_safe, head, list) {
351 		if (ref->parent)	/* already direct */
352 			continue;
353 		if (ref->count == 0)
354 			continue;
355 		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
356 					     parents, extent_item_pos);
357 		if (err == -ENOMEM)
358 			goto out;
359 		if (err)
360 			continue;
361 
362 		/* we put the first parent into the ref at hand */
363 		ULIST_ITER_INIT(&uiter);
364 		node = ulist_next(parents, &uiter);
365 		ref->parent = node ? node->val : 0;
366 		ref->inode_list = node ?
367 			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
368 
369 		/* additional parents require new refs being added here */
370 		while ((node = ulist_next(parents, &uiter))) {
371 			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
372 			if (!new_ref) {
373 				ret = -ENOMEM;
374 				goto out;
375 			}
376 			memcpy(new_ref, ref, sizeof(*ref));
377 			new_ref->parent = node->val;
378 			new_ref->inode_list = (struct extent_inode_elem *)
379 							(uintptr_t)node->aux;
380 			list_add(&new_ref->list, &ref->list);
381 		}
382 		ulist_reinit(parents);
383 	}
384 out:
385 	ulist_free(parents);
386 	return ret;
387 }
388 
389 static inline int ref_for_same_block(struct __prelim_ref *ref1,
390 				     struct __prelim_ref *ref2)
391 {
392 	if (ref1->level != ref2->level)
393 		return 0;
394 	if (ref1->root_id != ref2->root_id)
395 		return 0;
396 	if (ref1->key_for_search.type != ref2->key_for_search.type)
397 		return 0;
398 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
399 		return 0;
400 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
401 		return 0;
402 	if (ref1->parent != ref2->parent)
403 		return 0;
404 
405 	return 1;
406 }
407 
408 /*
409  * read tree blocks and add keys where required.
410  */
411 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
412 			      struct list_head *head)
413 {
414 	struct list_head *pos;
415 	struct extent_buffer *eb;
416 
417 	list_for_each(pos, head) {
418 		struct __prelim_ref *ref;
419 		ref = list_entry(pos, struct __prelim_ref, list);
420 
421 		if (ref->parent)
422 			continue;
423 		if (ref->key_for_search.type)
424 			continue;
425 		BUG_ON(!ref->wanted_disk_byte);
426 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
427 				     fs_info->tree_root->leafsize, 0);
428 		if (!eb || !extent_buffer_uptodate(eb)) {
429 			free_extent_buffer(eb);
430 			return -EIO;
431 		}
432 		btrfs_tree_read_lock(eb);
433 		if (btrfs_header_level(eb) == 0)
434 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
435 		else
436 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
437 		btrfs_tree_read_unlock(eb);
438 		free_extent_buffer(eb);
439 	}
440 	return 0;
441 }
442 
443 /*
444  * merge two lists of backrefs and adjust counts accordingly
445  *
446  * mode = 1: merge identical keys, if key is set
447  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
448  *           additionally, we could even add a key range for the blocks we
449  *           looked into to merge even more (-> replace unresolved refs by those
450  *           having a parent).
451  * mode = 2: merge identical parents
452  */
453 static void __merge_refs(struct list_head *head, int mode)
454 {
455 	struct list_head *pos1;
456 
457 	list_for_each(pos1, head) {
458 		struct list_head *n2;
459 		struct list_head *pos2;
460 		struct __prelim_ref *ref1;
461 
462 		ref1 = list_entry(pos1, struct __prelim_ref, list);
463 
464 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
465 		     pos2 = n2, n2 = pos2->next) {
466 			struct __prelim_ref *ref2;
467 			struct __prelim_ref *xchg;
468 			struct extent_inode_elem *eie;
469 
470 			ref2 = list_entry(pos2, struct __prelim_ref, list);
471 
472 			if (mode == 1) {
473 				if (!ref_for_same_block(ref1, ref2))
474 					continue;
475 				if (!ref1->parent && ref2->parent) {
476 					xchg = ref1;
477 					ref1 = ref2;
478 					ref2 = xchg;
479 				}
480 			} else {
481 				if (ref1->parent != ref2->parent)
482 					continue;
483 			}
484 
485 			eie = ref1->inode_list;
486 			while (eie && eie->next)
487 				eie = eie->next;
488 			if (eie)
489 				eie->next = ref2->inode_list;
490 			else
491 				ref1->inode_list = ref2->inode_list;
492 			ref1->count += ref2->count;
493 
494 			list_del(&ref2->list);
495 			kfree(ref2);
496 		}
497 
498 	}
499 }
500 
501 /*
502  * add all currently queued delayed refs from this head whose seq nr is
503  * smaller or equal that seq to the list
504  */
505 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
506 			      struct list_head *prefs)
507 {
508 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
509 	struct rb_node *n = &head->node.rb_node;
510 	struct btrfs_key key;
511 	struct btrfs_key op_key = {0};
512 	int sgn;
513 	int ret = 0;
514 
515 	if (extent_op && extent_op->update_key)
516 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
517 
518 	while ((n = rb_prev(n))) {
519 		struct btrfs_delayed_ref_node *node;
520 		node = rb_entry(n, struct btrfs_delayed_ref_node,
521 				rb_node);
522 		if (node->bytenr != head->node.bytenr)
523 			break;
524 		WARN_ON(node->is_head);
525 
526 		if (node->seq > seq)
527 			continue;
528 
529 		switch (node->action) {
530 		case BTRFS_ADD_DELAYED_EXTENT:
531 		case BTRFS_UPDATE_DELAYED_HEAD:
532 			WARN_ON(1);
533 			continue;
534 		case BTRFS_ADD_DELAYED_REF:
535 			sgn = 1;
536 			break;
537 		case BTRFS_DROP_DELAYED_REF:
538 			sgn = -1;
539 			break;
540 		default:
541 			BUG_ON(1);
542 		}
543 		switch (node->type) {
544 		case BTRFS_TREE_BLOCK_REF_KEY: {
545 			struct btrfs_delayed_tree_ref *ref;
546 
547 			ref = btrfs_delayed_node_to_tree_ref(node);
548 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
549 					       ref->level + 1, 0, node->bytenr,
550 					       node->ref_mod * sgn);
551 			break;
552 		}
553 		case BTRFS_SHARED_BLOCK_REF_KEY: {
554 			struct btrfs_delayed_tree_ref *ref;
555 
556 			ref = btrfs_delayed_node_to_tree_ref(node);
557 			ret = __add_prelim_ref(prefs, ref->root, NULL,
558 					       ref->level + 1, ref->parent,
559 					       node->bytenr,
560 					       node->ref_mod * sgn);
561 			break;
562 		}
563 		case BTRFS_EXTENT_DATA_REF_KEY: {
564 			struct btrfs_delayed_data_ref *ref;
565 			ref = btrfs_delayed_node_to_data_ref(node);
566 
567 			key.objectid = ref->objectid;
568 			key.type = BTRFS_EXTENT_DATA_KEY;
569 			key.offset = ref->offset;
570 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
571 					       node->bytenr,
572 					       node->ref_mod * sgn);
573 			break;
574 		}
575 		case BTRFS_SHARED_DATA_REF_KEY: {
576 			struct btrfs_delayed_data_ref *ref;
577 
578 			ref = btrfs_delayed_node_to_data_ref(node);
579 
580 			key.objectid = ref->objectid;
581 			key.type = BTRFS_EXTENT_DATA_KEY;
582 			key.offset = ref->offset;
583 			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
584 					       ref->parent, node->bytenr,
585 					       node->ref_mod * sgn);
586 			break;
587 		}
588 		default:
589 			WARN_ON(1);
590 		}
591 		if (ret)
592 			return ret;
593 	}
594 
595 	return 0;
596 }
597 
598 /*
599  * add all inline backrefs for bytenr to the list
600  */
601 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
602 			     struct btrfs_path *path, u64 bytenr,
603 			     int *info_level, struct list_head *prefs)
604 {
605 	int ret = 0;
606 	int slot;
607 	struct extent_buffer *leaf;
608 	struct btrfs_key key;
609 	struct btrfs_key found_key;
610 	unsigned long ptr;
611 	unsigned long end;
612 	struct btrfs_extent_item *ei;
613 	u64 flags;
614 	u64 item_size;
615 
616 	/*
617 	 * enumerate all inline refs
618 	 */
619 	leaf = path->nodes[0];
620 	slot = path->slots[0];
621 
622 	item_size = btrfs_item_size_nr(leaf, slot);
623 	BUG_ON(item_size < sizeof(*ei));
624 
625 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
626 	flags = btrfs_extent_flags(leaf, ei);
627 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
628 
629 	ptr = (unsigned long)(ei + 1);
630 	end = (unsigned long)ei + item_size;
631 
632 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
633 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
634 		struct btrfs_tree_block_info *info;
635 
636 		info = (struct btrfs_tree_block_info *)ptr;
637 		*info_level = btrfs_tree_block_level(leaf, info);
638 		ptr += sizeof(struct btrfs_tree_block_info);
639 		BUG_ON(ptr > end);
640 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
641 		*info_level = found_key.offset;
642 	} else {
643 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
644 	}
645 
646 	while (ptr < end) {
647 		struct btrfs_extent_inline_ref *iref;
648 		u64 offset;
649 		int type;
650 
651 		iref = (struct btrfs_extent_inline_ref *)ptr;
652 		type = btrfs_extent_inline_ref_type(leaf, iref);
653 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
654 
655 		switch (type) {
656 		case BTRFS_SHARED_BLOCK_REF_KEY:
657 			ret = __add_prelim_ref(prefs, 0, NULL,
658 						*info_level + 1, offset,
659 						bytenr, 1);
660 			break;
661 		case BTRFS_SHARED_DATA_REF_KEY: {
662 			struct btrfs_shared_data_ref *sdref;
663 			int count;
664 
665 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
666 			count = btrfs_shared_data_ref_count(leaf, sdref);
667 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
668 					       bytenr, count);
669 			break;
670 		}
671 		case BTRFS_TREE_BLOCK_REF_KEY:
672 			ret = __add_prelim_ref(prefs, offset, NULL,
673 					       *info_level + 1, 0,
674 					       bytenr, 1);
675 			break;
676 		case BTRFS_EXTENT_DATA_REF_KEY: {
677 			struct btrfs_extent_data_ref *dref;
678 			int count;
679 			u64 root;
680 
681 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
682 			count = btrfs_extent_data_ref_count(leaf, dref);
683 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
684 								      dref);
685 			key.type = BTRFS_EXTENT_DATA_KEY;
686 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
687 			root = btrfs_extent_data_ref_root(leaf, dref);
688 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
689 					       bytenr, count);
690 			break;
691 		}
692 		default:
693 			WARN_ON(1);
694 		}
695 		if (ret)
696 			return ret;
697 		ptr += btrfs_extent_inline_ref_size(type);
698 	}
699 
700 	return 0;
701 }
702 
703 /*
704  * add all non-inline backrefs for bytenr to the list
705  */
706 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
707 			    struct btrfs_path *path, u64 bytenr,
708 			    int info_level, struct list_head *prefs)
709 {
710 	struct btrfs_root *extent_root = fs_info->extent_root;
711 	int ret;
712 	int slot;
713 	struct extent_buffer *leaf;
714 	struct btrfs_key key;
715 
716 	while (1) {
717 		ret = btrfs_next_item(extent_root, path);
718 		if (ret < 0)
719 			break;
720 		if (ret) {
721 			ret = 0;
722 			break;
723 		}
724 
725 		slot = path->slots[0];
726 		leaf = path->nodes[0];
727 		btrfs_item_key_to_cpu(leaf, &key, slot);
728 
729 		if (key.objectid != bytenr)
730 			break;
731 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
732 			continue;
733 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
734 			break;
735 
736 		switch (key.type) {
737 		case BTRFS_SHARED_BLOCK_REF_KEY:
738 			ret = __add_prelim_ref(prefs, 0, NULL,
739 						info_level + 1, key.offset,
740 						bytenr, 1);
741 			break;
742 		case BTRFS_SHARED_DATA_REF_KEY: {
743 			struct btrfs_shared_data_ref *sdref;
744 			int count;
745 
746 			sdref = btrfs_item_ptr(leaf, slot,
747 					      struct btrfs_shared_data_ref);
748 			count = btrfs_shared_data_ref_count(leaf, sdref);
749 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
750 						bytenr, count);
751 			break;
752 		}
753 		case BTRFS_TREE_BLOCK_REF_KEY:
754 			ret = __add_prelim_ref(prefs, key.offset, NULL,
755 					       info_level + 1, 0,
756 					       bytenr, 1);
757 			break;
758 		case BTRFS_EXTENT_DATA_REF_KEY: {
759 			struct btrfs_extent_data_ref *dref;
760 			int count;
761 			u64 root;
762 
763 			dref = btrfs_item_ptr(leaf, slot,
764 					      struct btrfs_extent_data_ref);
765 			count = btrfs_extent_data_ref_count(leaf, dref);
766 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
767 								      dref);
768 			key.type = BTRFS_EXTENT_DATA_KEY;
769 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
770 			root = btrfs_extent_data_ref_root(leaf, dref);
771 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
772 					       bytenr, count);
773 			break;
774 		}
775 		default:
776 			WARN_ON(1);
777 		}
778 		if (ret)
779 			return ret;
780 
781 	}
782 
783 	return ret;
784 }
785 
786 /*
787  * this adds all existing backrefs (inline backrefs, backrefs and delayed
788  * refs) for the given bytenr to the refs list, merges duplicates and resolves
789  * indirect refs to their parent bytenr.
790  * When roots are found, they're added to the roots list
791  *
792  * FIXME some caching might speed things up
793  */
794 static int find_parent_nodes(struct btrfs_trans_handle *trans,
795 			     struct btrfs_fs_info *fs_info, u64 bytenr,
796 			     u64 time_seq, struct ulist *refs,
797 			     struct ulist *roots, const u64 *extent_item_pos)
798 {
799 	struct btrfs_key key;
800 	struct btrfs_path *path;
801 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
802 	struct btrfs_delayed_ref_head *head;
803 	int info_level = 0;
804 	int ret;
805 	struct list_head prefs_delayed;
806 	struct list_head prefs;
807 	struct __prelim_ref *ref;
808 
809 	INIT_LIST_HEAD(&prefs);
810 	INIT_LIST_HEAD(&prefs_delayed);
811 
812 	key.objectid = bytenr;
813 	key.offset = (u64)-1;
814 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
815 		key.type = BTRFS_METADATA_ITEM_KEY;
816 	else
817 		key.type = BTRFS_EXTENT_ITEM_KEY;
818 
819 	path = btrfs_alloc_path();
820 	if (!path)
821 		return -ENOMEM;
822 	if (!trans)
823 		path->search_commit_root = 1;
824 
825 	/*
826 	 * grab both a lock on the path and a lock on the delayed ref head.
827 	 * We need both to get a consistent picture of how the refs look
828 	 * at a specified point in time
829 	 */
830 again:
831 	head = NULL;
832 
833 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
834 	if (ret < 0)
835 		goto out;
836 	BUG_ON(ret == 0);
837 
838 	if (trans) {
839 		/*
840 		 * look if there are updates for this ref queued and lock the
841 		 * head
842 		 */
843 		delayed_refs = &trans->transaction->delayed_refs;
844 		spin_lock(&delayed_refs->lock);
845 		head = btrfs_find_delayed_ref_head(trans, bytenr);
846 		if (head) {
847 			if (!mutex_trylock(&head->mutex)) {
848 				atomic_inc(&head->node.refs);
849 				spin_unlock(&delayed_refs->lock);
850 
851 				btrfs_release_path(path);
852 
853 				/*
854 				 * Mutex was contended, block until it's
855 				 * released and try again
856 				 */
857 				mutex_lock(&head->mutex);
858 				mutex_unlock(&head->mutex);
859 				btrfs_put_delayed_ref(&head->node);
860 				goto again;
861 			}
862 			ret = __add_delayed_refs(head, time_seq,
863 						 &prefs_delayed);
864 			mutex_unlock(&head->mutex);
865 			if (ret) {
866 				spin_unlock(&delayed_refs->lock);
867 				goto out;
868 			}
869 		}
870 		spin_unlock(&delayed_refs->lock);
871 	}
872 
873 	if (path->slots[0]) {
874 		struct extent_buffer *leaf;
875 		int slot;
876 
877 		path->slots[0]--;
878 		leaf = path->nodes[0];
879 		slot = path->slots[0];
880 		btrfs_item_key_to_cpu(leaf, &key, slot);
881 		if (key.objectid == bytenr &&
882 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
883 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
884 			ret = __add_inline_refs(fs_info, path, bytenr,
885 						&info_level, &prefs);
886 			if (ret)
887 				goto out;
888 			ret = __add_keyed_refs(fs_info, path, bytenr,
889 					       info_level, &prefs);
890 			if (ret)
891 				goto out;
892 		}
893 	}
894 	btrfs_release_path(path);
895 
896 	list_splice_init(&prefs_delayed, &prefs);
897 
898 	ret = __add_missing_keys(fs_info, &prefs);
899 	if (ret)
900 		goto out;
901 
902 	__merge_refs(&prefs, 1);
903 
904 	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
905 				      extent_item_pos);
906 	if (ret)
907 		goto out;
908 
909 	__merge_refs(&prefs, 2);
910 
911 	while (!list_empty(&prefs)) {
912 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
913 		WARN_ON(ref->count < 0);
914 		if (ref->count && ref->root_id && ref->parent == 0) {
915 			/* no parent == root of tree */
916 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
917 			if (ret < 0)
918 				goto out;
919 		}
920 		if (ref->count && ref->parent) {
921 			struct extent_inode_elem *eie = NULL;
922 			if (extent_item_pos && !ref->inode_list) {
923 				u32 bsz;
924 				struct extent_buffer *eb;
925 				bsz = btrfs_level_size(fs_info->extent_root,
926 							info_level);
927 				eb = read_tree_block(fs_info->extent_root,
928 							   ref->parent, bsz, 0);
929 				if (!eb || !extent_buffer_uptodate(eb)) {
930 					free_extent_buffer(eb);
931 					ret = -EIO;
932 					goto out;
933 				}
934 				ret = find_extent_in_eb(eb, bytenr,
935 							*extent_item_pos, &eie);
936 				free_extent_buffer(eb);
937 				if (ret < 0)
938 					goto out;
939 				ref->inode_list = eie;
940 			}
941 			ret = ulist_add_merge(refs, ref->parent,
942 					      (uintptr_t)ref->inode_list,
943 					      (u64 *)&eie, GFP_NOFS);
944 			if (ret < 0)
945 				goto out;
946 			if (!ret && extent_item_pos) {
947 				/*
948 				 * we've recorded that parent, so we must extend
949 				 * its inode list here
950 				 */
951 				BUG_ON(!eie);
952 				while (eie->next)
953 					eie = eie->next;
954 				eie->next = ref->inode_list;
955 			}
956 		}
957 		list_del(&ref->list);
958 		kfree(ref);
959 	}
960 
961 out:
962 	btrfs_free_path(path);
963 	while (!list_empty(&prefs)) {
964 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
965 		list_del(&ref->list);
966 		kfree(ref);
967 	}
968 	while (!list_empty(&prefs_delayed)) {
969 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
970 				       list);
971 		list_del(&ref->list);
972 		kfree(ref);
973 	}
974 
975 	return ret;
976 }
977 
978 static void free_leaf_list(struct ulist *blocks)
979 {
980 	struct ulist_node *node = NULL;
981 	struct extent_inode_elem *eie;
982 	struct extent_inode_elem *eie_next;
983 	struct ulist_iterator uiter;
984 
985 	ULIST_ITER_INIT(&uiter);
986 	while ((node = ulist_next(blocks, &uiter))) {
987 		if (!node->aux)
988 			continue;
989 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
990 		for (; eie; eie = eie_next) {
991 			eie_next = eie->next;
992 			kfree(eie);
993 		}
994 		node->aux = 0;
995 	}
996 
997 	ulist_free(blocks);
998 }
999 
1000 /*
1001  * Finds all leafs with a reference to the specified combination of bytenr and
1002  * offset. key_list_head will point to a list of corresponding keys (caller must
1003  * free each list element). The leafs will be stored in the leafs ulist, which
1004  * must be freed with ulist_free.
1005  *
1006  * returns 0 on success, <0 on error
1007  */
1008 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1009 				struct btrfs_fs_info *fs_info, u64 bytenr,
1010 				u64 time_seq, struct ulist **leafs,
1011 				const u64 *extent_item_pos)
1012 {
1013 	struct ulist *tmp;
1014 	int ret;
1015 
1016 	tmp = ulist_alloc(GFP_NOFS);
1017 	if (!tmp)
1018 		return -ENOMEM;
1019 	*leafs = ulist_alloc(GFP_NOFS);
1020 	if (!*leafs) {
1021 		ulist_free(tmp);
1022 		return -ENOMEM;
1023 	}
1024 
1025 	ret = find_parent_nodes(trans, fs_info, bytenr,
1026 				time_seq, *leafs, tmp, extent_item_pos);
1027 	ulist_free(tmp);
1028 
1029 	if (ret < 0 && ret != -ENOENT) {
1030 		free_leaf_list(*leafs);
1031 		return ret;
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 /*
1038  * walk all backrefs for a given extent to find all roots that reference this
1039  * extent. Walking a backref means finding all extents that reference this
1040  * extent and in turn walk the backrefs of those, too. Naturally this is a
1041  * recursive process, but here it is implemented in an iterative fashion: We
1042  * find all referencing extents for the extent in question and put them on a
1043  * list. In turn, we find all referencing extents for those, further appending
1044  * to the list. The way we iterate the list allows adding more elements after
1045  * the current while iterating. The process stops when we reach the end of the
1046  * list. Found roots are added to the roots list.
1047  *
1048  * returns 0 on success, < 0 on error.
1049  */
1050 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1051 				struct btrfs_fs_info *fs_info, u64 bytenr,
1052 				u64 time_seq, struct ulist **roots)
1053 {
1054 	struct ulist *tmp;
1055 	struct ulist_node *node = NULL;
1056 	struct ulist_iterator uiter;
1057 	int ret;
1058 
1059 	tmp = ulist_alloc(GFP_NOFS);
1060 	if (!tmp)
1061 		return -ENOMEM;
1062 	*roots = ulist_alloc(GFP_NOFS);
1063 	if (!*roots) {
1064 		ulist_free(tmp);
1065 		return -ENOMEM;
1066 	}
1067 
1068 	ULIST_ITER_INIT(&uiter);
1069 	while (1) {
1070 		ret = find_parent_nodes(trans, fs_info, bytenr,
1071 					time_seq, tmp, *roots, NULL);
1072 		if (ret < 0 && ret != -ENOENT) {
1073 			ulist_free(tmp);
1074 			ulist_free(*roots);
1075 			return ret;
1076 		}
1077 		node = ulist_next(tmp, &uiter);
1078 		if (!node)
1079 			break;
1080 		bytenr = node->val;
1081 	}
1082 
1083 	ulist_free(tmp);
1084 	return 0;
1085 }
1086 
1087 
1088 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1089 			struct btrfs_root *fs_root, struct btrfs_path *path,
1090 			struct btrfs_key *found_key)
1091 {
1092 	int ret;
1093 	struct btrfs_key key;
1094 	struct extent_buffer *eb;
1095 
1096 	key.type = key_type;
1097 	key.objectid = inum;
1098 	key.offset = ioff;
1099 
1100 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1101 	if (ret < 0)
1102 		return ret;
1103 
1104 	eb = path->nodes[0];
1105 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1106 		ret = btrfs_next_leaf(fs_root, path);
1107 		if (ret)
1108 			return ret;
1109 		eb = path->nodes[0];
1110 	}
1111 
1112 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1113 	if (found_key->type != key.type || found_key->objectid != key.objectid)
1114 		return 1;
1115 
1116 	return 0;
1117 }
1118 
1119 /*
1120  * this makes the path point to (inum INODE_ITEM ioff)
1121  */
1122 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1123 			struct btrfs_path *path)
1124 {
1125 	struct btrfs_key key;
1126 	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1127 				&key);
1128 }
1129 
1130 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1131 				struct btrfs_path *path,
1132 				struct btrfs_key *found_key)
1133 {
1134 	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1135 				found_key);
1136 }
1137 
1138 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1139 			  u64 start_off, struct btrfs_path *path,
1140 			  struct btrfs_inode_extref **ret_extref,
1141 			  u64 *found_off)
1142 {
1143 	int ret, slot;
1144 	struct btrfs_key key;
1145 	struct btrfs_key found_key;
1146 	struct btrfs_inode_extref *extref;
1147 	struct extent_buffer *leaf;
1148 	unsigned long ptr;
1149 
1150 	key.objectid = inode_objectid;
1151 	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1152 	key.offset = start_off;
1153 
1154 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1155 	if (ret < 0)
1156 		return ret;
1157 
1158 	while (1) {
1159 		leaf = path->nodes[0];
1160 		slot = path->slots[0];
1161 		if (slot >= btrfs_header_nritems(leaf)) {
1162 			/*
1163 			 * If the item at offset is not found,
1164 			 * btrfs_search_slot will point us to the slot
1165 			 * where it should be inserted. In our case
1166 			 * that will be the slot directly before the
1167 			 * next INODE_REF_KEY_V2 item. In the case
1168 			 * that we're pointing to the last slot in a
1169 			 * leaf, we must move one leaf over.
1170 			 */
1171 			ret = btrfs_next_leaf(root, path);
1172 			if (ret) {
1173 				if (ret >= 1)
1174 					ret = -ENOENT;
1175 				break;
1176 			}
1177 			continue;
1178 		}
1179 
1180 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1181 
1182 		/*
1183 		 * Check that we're still looking at an extended ref key for
1184 		 * this particular objectid. If we have different
1185 		 * objectid or type then there are no more to be found
1186 		 * in the tree and we can exit.
1187 		 */
1188 		ret = -ENOENT;
1189 		if (found_key.objectid != inode_objectid)
1190 			break;
1191 		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1192 			break;
1193 
1194 		ret = 0;
1195 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1196 		extref = (struct btrfs_inode_extref *)ptr;
1197 		*ret_extref = extref;
1198 		if (found_off)
1199 			*found_off = found_key.offset;
1200 		break;
1201 	}
1202 
1203 	return ret;
1204 }
1205 
1206 /*
1207  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1208  * Elements of the path are separated by '/' and the path is guaranteed to be
1209  * 0-terminated. the path is only given within the current file system.
1210  * Therefore, it never starts with a '/'. the caller is responsible to provide
1211  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1212  * the start point of the resulting string is returned. this pointer is within
1213  * dest, normally.
1214  * in case the path buffer would overflow, the pointer is decremented further
1215  * as if output was written to the buffer, though no more output is actually
1216  * generated. that way, the caller can determine how much space would be
1217  * required for the path to fit into the buffer. in that case, the returned
1218  * value will be smaller than dest. callers must check this!
1219  */
1220 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1221 			u32 name_len, unsigned long name_off,
1222 			struct extent_buffer *eb_in, u64 parent,
1223 			char *dest, u32 size)
1224 {
1225 	int slot;
1226 	u64 next_inum;
1227 	int ret;
1228 	s64 bytes_left = ((s64)size) - 1;
1229 	struct extent_buffer *eb = eb_in;
1230 	struct btrfs_key found_key;
1231 	int leave_spinning = path->leave_spinning;
1232 	struct btrfs_inode_ref *iref;
1233 
1234 	if (bytes_left >= 0)
1235 		dest[bytes_left] = '\0';
1236 
1237 	path->leave_spinning = 1;
1238 	while (1) {
1239 		bytes_left -= name_len;
1240 		if (bytes_left >= 0)
1241 			read_extent_buffer(eb, dest + bytes_left,
1242 					   name_off, name_len);
1243 		if (eb != eb_in) {
1244 			btrfs_tree_read_unlock_blocking(eb);
1245 			free_extent_buffer(eb);
1246 		}
1247 		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1248 		if (ret > 0)
1249 			ret = -ENOENT;
1250 		if (ret)
1251 			break;
1252 
1253 		next_inum = found_key.offset;
1254 
1255 		/* regular exit ahead */
1256 		if (parent == next_inum)
1257 			break;
1258 
1259 		slot = path->slots[0];
1260 		eb = path->nodes[0];
1261 		/* make sure we can use eb after releasing the path */
1262 		if (eb != eb_in) {
1263 			atomic_inc(&eb->refs);
1264 			btrfs_tree_read_lock(eb);
1265 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1266 		}
1267 		btrfs_release_path(path);
1268 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1269 
1270 		name_len = btrfs_inode_ref_name_len(eb, iref);
1271 		name_off = (unsigned long)(iref + 1);
1272 
1273 		parent = next_inum;
1274 		--bytes_left;
1275 		if (bytes_left >= 0)
1276 			dest[bytes_left] = '/';
1277 	}
1278 
1279 	btrfs_release_path(path);
1280 	path->leave_spinning = leave_spinning;
1281 
1282 	if (ret)
1283 		return ERR_PTR(ret);
1284 
1285 	return dest + bytes_left;
1286 }
1287 
1288 /*
1289  * this makes the path point to (logical EXTENT_ITEM *)
1290  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1291  * tree blocks and <0 on error.
1292  */
1293 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1294 			struct btrfs_path *path, struct btrfs_key *found_key,
1295 			u64 *flags_ret)
1296 {
1297 	int ret;
1298 	u64 flags;
1299 	u64 size = 0;
1300 	u32 item_size;
1301 	struct extent_buffer *eb;
1302 	struct btrfs_extent_item *ei;
1303 	struct btrfs_key key;
1304 
1305 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1306 		key.type = BTRFS_METADATA_ITEM_KEY;
1307 	else
1308 		key.type = BTRFS_EXTENT_ITEM_KEY;
1309 	key.objectid = logical;
1310 	key.offset = (u64)-1;
1311 
1312 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1313 	if (ret < 0)
1314 		return ret;
1315 	ret = btrfs_previous_item(fs_info->extent_root, path,
1316 					0, BTRFS_EXTENT_ITEM_KEY);
1317 	if (ret < 0)
1318 		return ret;
1319 
1320 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1321 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1322 		size = fs_info->extent_root->leafsize;
1323 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1324 		size = found_key->offset;
1325 
1326 	if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
1327 	     found_key->type != BTRFS_METADATA_ITEM_KEY) ||
1328 	    found_key->objectid > logical ||
1329 	    found_key->objectid + size <= logical) {
1330 		pr_debug("logical %llu is not within any extent\n", logical);
1331 		return -ENOENT;
1332 	}
1333 
1334 	eb = path->nodes[0];
1335 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1336 	BUG_ON(item_size < sizeof(*ei));
1337 
1338 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1339 	flags = btrfs_extent_flags(eb, ei);
1340 
1341 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1342 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1343 		 logical, logical - found_key->objectid, found_key->objectid,
1344 		 found_key->offset, flags, item_size);
1345 
1346 	WARN_ON(!flags_ret);
1347 	if (flags_ret) {
1348 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1349 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1350 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1351 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1352 		else
1353 			BUG_ON(1);
1354 		return 0;
1355 	}
1356 
1357 	return -EIO;
1358 }
1359 
1360 /*
1361  * helper function to iterate extent inline refs. ptr must point to a 0 value
1362  * for the first call and may be modified. it is used to track state.
1363  * if more refs exist, 0 is returned and the next call to
1364  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1365  * next ref. after the last ref was processed, 1 is returned.
1366  * returns <0 on error
1367  */
1368 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1369 				struct btrfs_extent_item *ei, u32 item_size,
1370 				struct btrfs_extent_inline_ref **out_eiref,
1371 				int *out_type)
1372 {
1373 	unsigned long end;
1374 	u64 flags;
1375 	struct btrfs_tree_block_info *info;
1376 
1377 	if (!*ptr) {
1378 		/* first call */
1379 		flags = btrfs_extent_flags(eb, ei);
1380 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1381 			info = (struct btrfs_tree_block_info *)(ei + 1);
1382 			*out_eiref =
1383 				(struct btrfs_extent_inline_ref *)(info + 1);
1384 		} else {
1385 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1386 		}
1387 		*ptr = (unsigned long)*out_eiref;
1388 		if ((void *)*ptr >= (void *)ei + item_size)
1389 			return -ENOENT;
1390 	}
1391 
1392 	end = (unsigned long)ei + item_size;
1393 	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1394 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1395 
1396 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1397 	WARN_ON(*ptr > end);
1398 	if (*ptr == end)
1399 		return 1; /* last */
1400 
1401 	return 0;
1402 }
1403 
1404 /*
1405  * reads the tree block backref for an extent. tree level and root are returned
1406  * through out_level and out_root. ptr must point to a 0 value for the first
1407  * call and may be modified (see __get_extent_inline_ref comment).
1408  * returns 0 if data was provided, 1 if there was no more data to provide or
1409  * <0 on error.
1410  */
1411 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1412 				struct btrfs_extent_item *ei, u32 item_size,
1413 				u64 *out_root, u8 *out_level)
1414 {
1415 	int ret;
1416 	int type;
1417 	struct btrfs_tree_block_info *info;
1418 	struct btrfs_extent_inline_ref *eiref;
1419 
1420 	if (*ptr == (unsigned long)-1)
1421 		return 1;
1422 
1423 	while (1) {
1424 		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1425 						&eiref, &type);
1426 		if (ret < 0)
1427 			return ret;
1428 
1429 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1430 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1431 			break;
1432 
1433 		if (ret == 1)
1434 			return 1;
1435 	}
1436 
1437 	/* we can treat both ref types equally here */
1438 	info = (struct btrfs_tree_block_info *)(ei + 1);
1439 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1440 	*out_level = btrfs_tree_block_level(eb, info);
1441 
1442 	if (ret == 1)
1443 		*ptr = (unsigned long)-1;
1444 
1445 	return 0;
1446 }
1447 
1448 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1449 				u64 root, u64 extent_item_objectid,
1450 				iterate_extent_inodes_t *iterate, void *ctx)
1451 {
1452 	struct extent_inode_elem *eie;
1453 	int ret = 0;
1454 
1455 	for (eie = inode_list; eie; eie = eie->next) {
1456 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1457 			 "root %llu\n", extent_item_objectid,
1458 			 eie->inum, eie->offset, root);
1459 		ret = iterate(eie->inum, eie->offset, root, ctx);
1460 		if (ret) {
1461 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1462 				 extent_item_objectid, ret);
1463 			break;
1464 		}
1465 	}
1466 
1467 	return ret;
1468 }
1469 
1470 /*
1471  * calls iterate() for every inode that references the extent identified by
1472  * the given parameters.
1473  * when the iterator function returns a non-zero value, iteration stops.
1474  */
1475 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1476 				u64 extent_item_objectid, u64 extent_item_pos,
1477 				int search_commit_root,
1478 				iterate_extent_inodes_t *iterate, void *ctx)
1479 {
1480 	int ret;
1481 	struct btrfs_trans_handle *trans = NULL;
1482 	struct ulist *refs = NULL;
1483 	struct ulist *roots = NULL;
1484 	struct ulist_node *ref_node = NULL;
1485 	struct ulist_node *root_node = NULL;
1486 	struct seq_list tree_mod_seq_elem = {};
1487 	struct ulist_iterator ref_uiter;
1488 	struct ulist_iterator root_uiter;
1489 
1490 	pr_debug("resolving all inodes for extent %llu\n",
1491 			extent_item_objectid);
1492 
1493 	if (!search_commit_root) {
1494 		trans = btrfs_join_transaction(fs_info->extent_root);
1495 		if (IS_ERR(trans))
1496 			return PTR_ERR(trans);
1497 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1498 	}
1499 
1500 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1501 				   tree_mod_seq_elem.seq, &refs,
1502 				   &extent_item_pos);
1503 	if (ret)
1504 		goto out;
1505 
1506 	ULIST_ITER_INIT(&ref_uiter);
1507 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1508 		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1509 					   tree_mod_seq_elem.seq, &roots);
1510 		if (ret)
1511 			break;
1512 		ULIST_ITER_INIT(&root_uiter);
1513 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1514 			pr_debug("root %llu references leaf %llu, data list "
1515 				 "%#llx\n", root_node->val, ref_node->val,
1516 				 ref_node->aux);
1517 			ret = iterate_leaf_refs((struct extent_inode_elem *)
1518 						(uintptr_t)ref_node->aux,
1519 						root_node->val,
1520 						extent_item_objectid,
1521 						iterate, ctx);
1522 		}
1523 		ulist_free(roots);
1524 	}
1525 
1526 	free_leaf_list(refs);
1527 out:
1528 	if (!search_commit_root) {
1529 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1530 		btrfs_end_transaction(trans, fs_info->extent_root);
1531 	}
1532 
1533 	return ret;
1534 }
1535 
1536 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1537 				struct btrfs_path *path,
1538 				iterate_extent_inodes_t *iterate, void *ctx)
1539 {
1540 	int ret;
1541 	u64 extent_item_pos;
1542 	u64 flags = 0;
1543 	struct btrfs_key found_key;
1544 	int search_commit_root = path->search_commit_root;
1545 
1546 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1547 	btrfs_release_path(path);
1548 	if (ret < 0)
1549 		return ret;
1550 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1551 		return -EINVAL;
1552 
1553 	extent_item_pos = logical - found_key.objectid;
1554 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1555 					extent_item_pos, search_commit_root,
1556 					iterate, ctx);
1557 
1558 	return ret;
1559 }
1560 
1561 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1562 			      struct extent_buffer *eb, void *ctx);
1563 
1564 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1565 			      struct btrfs_path *path,
1566 			      iterate_irefs_t *iterate, void *ctx)
1567 {
1568 	int ret = 0;
1569 	int slot;
1570 	u32 cur;
1571 	u32 len;
1572 	u32 name_len;
1573 	u64 parent = 0;
1574 	int found = 0;
1575 	struct extent_buffer *eb;
1576 	struct btrfs_item *item;
1577 	struct btrfs_inode_ref *iref;
1578 	struct btrfs_key found_key;
1579 
1580 	while (!ret) {
1581 		path->leave_spinning = 1;
1582 		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1583 				     &found_key);
1584 		if (ret < 0)
1585 			break;
1586 		if (ret) {
1587 			ret = found ? 0 : -ENOENT;
1588 			break;
1589 		}
1590 		++found;
1591 
1592 		parent = found_key.offset;
1593 		slot = path->slots[0];
1594 		eb = path->nodes[0];
1595 		/* make sure we can use eb after releasing the path */
1596 		atomic_inc(&eb->refs);
1597 		btrfs_tree_read_lock(eb);
1598 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1599 		btrfs_release_path(path);
1600 
1601 		item = btrfs_item_nr(eb, slot);
1602 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1603 
1604 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1605 			name_len = btrfs_inode_ref_name_len(eb, iref);
1606 			/* path must be released before calling iterate()! */
1607 			pr_debug("following ref at offset %u for inode %llu in "
1608 				 "tree %llu\n", cur, found_key.objectid,
1609 				 fs_root->objectid);
1610 			ret = iterate(parent, name_len,
1611 				      (unsigned long)(iref + 1), eb, ctx);
1612 			if (ret)
1613 				break;
1614 			len = sizeof(*iref) + name_len;
1615 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1616 		}
1617 		btrfs_tree_read_unlock_blocking(eb);
1618 		free_extent_buffer(eb);
1619 	}
1620 
1621 	btrfs_release_path(path);
1622 
1623 	return ret;
1624 }
1625 
1626 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1627 				 struct btrfs_path *path,
1628 				 iterate_irefs_t *iterate, void *ctx)
1629 {
1630 	int ret;
1631 	int slot;
1632 	u64 offset = 0;
1633 	u64 parent;
1634 	int found = 0;
1635 	struct extent_buffer *eb;
1636 	struct btrfs_inode_extref *extref;
1637 	struct extent_buffer *leaf;
1638 	u32 item_size;
1639 	u32 cur_offset;
1640 	unsigned long ptr;
1641 
1642 	while (1) {
1643 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1644 					    &offset);
1645 		if (ret < 0)
1646 			break;
1647 		if (ret) {
1648 			ret = found ? 0 : -ENOENT;
1649 			break;
1650 		}
1651 		++found;
1652 
1653 		slot = path->slots[0];
1654 		eb = path->nodes[0];
1655 		/* make sure we can use eb after releasing the path */
1656 		atomic_inc(&eb->refs);
1657 
1658 		btrfs_tree_read_lock(eb);
1659 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1660 		btrfs_release_path(path);
1661 
1662 		leaf = path->nodes[0];
1663 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1664 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1665 		cur_offset = 0;
1666 
1667 		while (cur_offset < item_size) {
1668 			u32 name_len;
1669 
1670 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1671 			parent = btrfs_inode_extref_parent(eb, extref);
1672 			name_len = btrfs_inode_extref_name_len(eb, extref);
1673 			ret = iterate(parent, name_len,
1674 				      (unsigned long)&extref->name, eb, ctx);
1675 			if (ret)
1676 				break;
1677 
1678 			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1679 			cur_offset += sizeof(*extref);
1680 		}
1681 		btrfs_tree_read_unlock_blocking(eb);
1682 		free_extent_buffer(eb);
1683 
1684 		offset++;
1685 	}
1686 
1687 	btrfs_release_path(path);
1688 
1689 	return ret;
1690 }
1691 
1692 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1693 			 struct btrfs_path *path, iterate_irefs_t *iterate,
1694 			 void *ctx)
1695 {
1696 	int ret;
1697 	int found_refs = 0;
1698 
1699 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1700 	if (!ret)
1701 		++found_refs;
1702 	else if (ret != -ENOENT)
1703 		return ret;
1704 
1705 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1706 	if (ret == -ENOENT && found_refs)
1707 		return 0;
1708 
1709 	return ret;
1710 }
1711 
1712 /*
1713  * returns 0 if the path could be dumped (probably truncated)
1714  * returns <0 in case of an error
1715  */
1716 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1717 			 struct extent_buffer *eb, void *ctx)
1718 {
1719 	struct inode_fs_paths *ipath = ctx;
1720 	char *fspath;
1721 	char *fspath_min;
1722 	int i = ipath->fspath->elem_cnt;
1723 	const int s_ptr = sizeof(char *);
1724 	u32 bytes_left;
1725 
1726 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1727 					ipath->fspath->bytes_left - s_ptr : 0;
1728 
1729 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1730 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1731 				   name_off, eb, inum, fspath_min, bytes_left);
1732 	if (IS_ERR(fspath))
1733 		return PTR_ERR(fspath);
1734 
1735 	if (fspath > fspath_min) {
1736 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1737 		++ipath->fspath->elem_cnt;
1738 		ipath->fspath->bytes_left = fspath - fspath_min;
1739 	} else {
1740 		++ipath->fspath->elem_missed;
1741 		ipath->fspath->bytes_missing += fspath_min - fspath;
1742 		ipath->fspath->bytes_left = 0;
1743 	}
1744 
1745 	return 0;
1746 }
1747 
1748 /*
1749  * this dumps all file system paths to the inode into the ipath struct, provided
1750  * is has been created large enough. each path is zero-terminated and accessed
1751  * from ipath->fspath->val[i].
1752  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1753  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1754  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1755  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1756  * have been needed to return all paths.
1757  */
1758 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1759 {
1760 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1761 			     inode_to_path, ipath);
1762 }
1763 
1764 struct btrfs_data_container *init_data_container(u32 total_bytes)
1765 {
1766 	struct btrfs_data_container *data;
1767 	size_t alloc_bytes;
1768 
1769 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1770 	data = vmalloc(alloc_bytes);
1771 	if (!data)
1772 		return ERR_PTR(-ENOMEM);
1773 
1774 	if (total_bytes >= sizeof(*data)) {
1775 		data->bytes_left = total_bytes - sizeof(*data);
1776 		data->bytes_missing = 0;
1777 	} else {
1778 		data->bytes_missing = sizeof(*data) - total_bytes;
1779 		data->bytes_left = 0;
1780 	}
1781 
1782 	data->elem_cnt = 0;
1783 	data->elem_missed = 0;
1784 
1785 	return data;
1786 }
1787 
1788 /*
1789  * allocates space to return multiple file system paths for an inode.
1790  * total_bytes to allocate are passed, note that space usable for actual path
1791  * information will be total_bytes - sizeof(struct inode_fs_paths).
1792  * the returned pointer must be freed with free_ipath() in the end.
1793  */
1794 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1795 					struct btrfs_path *path)
1796 {
1797 	struct inode_fs_paths *ifp;
1798 	struct btrfs_data_container *fspath;
1799 
1800 	fspath = init_data_container(total_bytes);
1801 	if (IS_ERR(fspath))
1802 		return (void *)fspath;
1803 
1804 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1805 	if (!ifp) {
1806 		kfree(fspath);
1807 		return ERR_PTR(-ENOMEM);
1808 	}
1809 
1810 	ifp->btrfs_path = path;
1811 	ifp->fspath = fspath;
1812 	ifp->fs_root = fs_root;
1813 
1814 	return ifp;
1815 }
1816 
1817 void free_ipath(struct inode_fs_paths *ipath)
1818 {
1819 	if (!ipath)
1820 		return;
1821 	vfree(ipath->fspath);
1822 	kfree(ipath);
1823 }
1824