xref: /openbmc/linux/fs/btrfs/backref.c (revision bf61c8840efe60fd8f91446860b63338fb424158)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	struct extent_inode_elem *next;
32 };
33 
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 				struct btrfs_file_extent_item *fi,
36 				u64 extent_item_pos,
37 				struct extent_inode_elem **eie)
38 {
39 	u64 data_offset;
40 	u64 data_len;
41 	struct extent_inode_elem *e;
42 
43 	data_offset = btrfs_file_extent_offset(eb, fi);
44 	data_len = btrfs_file_extent_num_bytes(eb, fi);
45 
46 	if (extent_item_pos < data_offset ||
47 	    extent_item_pos >= data_offset + data_len)
48 		return 1;
49 
50 	e = kmalloc(sizeof(*e), GFP_NOFS);
51 	if (!e)
52 		return -ENOMEM;
53 
54 	e->next = *eie;
55 	e->inum = key->objectid;
56 	e->offset = key->offset + (extent_item_pos - data_offset);
57 	*eie = e;
58 
59 	return 0;
60 }
61 
62 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
63 				u64 extent_item_pos,
64 				struct extent_inode_elem **eie)
65 {
66 	u64 disk_byte;
67 	struct btrfs_key key;
68 	struct btrfs_file_extent_item *fi;
69 	int slot;
70 	int nritems;
71 	int extent_type;
72 	int ret;
73 
74 	/*
75 	 * from the shared data ref, we only have the leaf but we need
76 	 * the key. thus, we must look into all items and see that we
77 	 * find one (some) with a reference to our extent item.
78 	 */
79 	nritems = btrfs_header_nritems(eb);
80 	for (slot = 0; slot < nritems; ++slot) {
81 		btrfs_item_key_to_cpu(eb, &key, slot);
82 		if (key.type != BTRFS_EXTENT_DATA_KEY)
83 			continue;
84 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
85 		extent_type = btrfs_file_extent_type(eb, fi);
86 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
87 			continue;
88 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
89 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
90 		if (disk_byte != wanted_disk_byte)
91 			continue;
92 
93 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
94 		if (ret < 0)
95 			return ret;
96 	}
97 
98 	return 0;
99 }
100 
101 /*
102  * this structure records all encountered refs on the way up to the root
103  */
104 struct __prelim_ref {
105 	struct list_head list;
106 	u64 root_id;
107 	struct btrfs_key key_for_search;
108 	int level;
109 	int count;
110 	struct extent_inode_elem *inode_list;
111 	u64 parent;
112 	u64 wanted_disk_byte;
113 };
114 
115 /*
116  * the rules for all callers of this function are:
117  * - obtaining the parent is the goal
118  * - if you add a key, you must know that it is a correct key
119  * - if you cannot add the parent or a correct key, then we will look into the
120  *   block later to set a correct key
121  *
122  * delayed refs
123  * ============
124  *        backref type | shared | indirect | shared | indirect
125  * information         |   tree |     tree |   data |     data
126  * --------------------+--------+----------+--------+----------
127  *      parent logical |    y   |     -    |    -   |     -
128  *      key to resolve |    -   |     y    |    y   |     y
129  *  tree block logical |    -   |     -    |    -   |     -
130  *  root for resolving |    y   |     y    |    y   |     y
131  *
132  * - column 1:       we've the parent -> done
133  * - column 2, 3, 4: we use the key to find the parent
134  *
135  * on disk refs (inline or keyed)
136  * ==============================
137  *        backref type | shared | indirect | shared | indirect
138  * information         |   tree |     tree |   data |     data
139  * --------------------+--------+----------+--------+----------
140  *      parent logical |    y   |     -    |    y   |     -
141  *      key to resolve |    -   |     -    |    -   |     y
142  *  tree block logical |    y   |     y    |    y   |     y
143  *  root for resolving |    -   |     y    |    y   |     y
144  *
145  * - column 1, 3: we've the parent -> done
146  * - column 2:    we take the first key from the block to find the parent
147  *                (see __add_missing_keys)
148  * - column 4:    we use the key to find the parent
149  *
150  * additional information that's available but not required to find the parent
151  * block might help in merging entries to gain some speed.
152  */
153 
154 static int __add_prelim_ref(struct list_head *head, u64 root_id,
155 			    struct btrfs_key *key, int level,
156 			    u64 parent, u64 wanted_disk_byte, int count)
157 {
158 	struct __prelim_ref *ref;
159 
160 	/* in case we're adding delayed refs, we're holding the refs spinlock */
161 	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
162 	if (!ref)
163 		return -ENOMEM;
164 
165 	ref->root_id = root_id;
166 	if (key)
167 		ref->key_for_search = *key;
168 	else
169 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
170 
171 	ref->inode_list = NULL;
172 	ref->level = level;
173 	ref->count = count;
174 	ref->parent = parent;
175 	ref->wanted_disk_byte = wanted_disk_byte;
176 	list_add_tail(&ref->list, head);
177 
178 	return 0;
179 }
180 
181 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
182 				struct ulist *parents, int level,
183 				struct btrfs_key *key_for_search, u64 time_seq,
184 				u64 wanted_disk_byte,
185 				const u64 *extent_item_pos)
186 {
187 	int ret = 0;
188 	int slot;
189 	struct extent_buffer *eb;
190 	struct btrfs_key key;
191 	struct btrfs_file_extent_item *fi;
192 	struct extent_inode_elem *eie = NULL;
193 	u64 disk_byte;
194 
195 	if (level != 0) {
196 		eb = path->nodes[level];
197 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
198 		if (ret < 0)
199 			return ret;
200 		return 0;
201 	}
202 
203 	/*
204 	 * We normally enter this function with the path already pointing to
205 	 * the first item to check. But sometimes, we may enter it with
206 	 * slot==nritems. In that case, go to the next leaf before we continue.
207 	 */
208 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
209 		ret = btrfs_next_old_leaf(root, path, time_seq);
210 
211 	while (!ret) {
212 		eb = path->nodes[0];
213 		slot = path->slots[0];
214 
215 		btrfs_item_key_to_cpu(eb, &key, slot);
216 
217 		if (key.objectid != key_for_search->objectid ||
218 		    key.type != BTRFS_EXTENT_DATA_KEY)
219 			break;
220 
221 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
222 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
223 
224 		if (disk_byte == wanted_disk_byte) {
225 			eie = NULL;
226 			if (extent_item_pos) {
227 				ret = check_extent_in_eb(&key, eb, fi,
228 						*extent_item_pos,
229 						&eie);
230 				if (ret < 0)
231 					break;
232 			}
233 			if (!ret) {
234 				ret = ulist_add(parents, eb->start,
235 						(uintptr_t)eie, GFP_NOFS);
236 				if (ret < 0)
237 					break;
238 				if (!extent_item_pos) {
239 					ret = btrfs_next_old_leaf(root, path,
240 							time_seq);
241 					continue;
242 				}
243 			}
244 		}
245 		ret = btrfs_next_old_item(root, path, time_seq);
246 	}
247 
248 	if (ret > 0)
249 		ret = 0;
250 	return ret;
251 }
252 
253 /*
254  * resolve an indirect backref in the form (root_id, key, level)
255  * to a logical address
256  */
257 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
258 					int search_commit_root,
259 					u64 time_seq,
260 					struct __prelim_ref *ref,
261 					struct ulist *parents,
262 					const u64 *extent_item_pos)
263 {
264 	struct btrfs_path *path;
265 	struct btrfs_root *root;
266 	struct btrfs_key root_key;
267 	struct extent_buffer *eb;
268 	int ret = 0;
269 	int root_level;
270 	int level = ref->level;
271 
272 	path = btrfs_alloc_path();
273 	if (!path)
274 		return -ENOMEM;
275 	path->search_commit_root = !!search_commit_root;
276 
277 	root_key.objectid = ref->root_id;
278 	root_key.type = BTRFS_ROOT_ITEM_KEY;
279 	root_key.offset = (u64)-1;
280 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
281 	if (IS_ERR(root)) {
282 		ret = PTR_ERR(root);
283 		goto out;
284 	}
285 
286 	root_level = btrfs_old_root_level(root, time_seq);
287 
288 	if (root_level + 1 == level)
289 		goto out;
290 
291 	path->lowest_level = level;
292 	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
293 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
294 		 "%d for key (%llu %u %llu)\n",
295 		 (unsigned long long)ref->root_id, level, ref->count, ret,
296 		 (unsigned long long)ref->key_for_search.objectid,
297 		 ref->key_for_search.type,
298 		 (unsigned long long)ref->key_for_search.offset);
299 	if (ret < 0)
300 		goto out;
301 
302 	eb = path->nodes[level];
303 	while (!eb) {
304 		if (!level) {
305 			WARN_ON(1);
306 			ret = 1;
307 			goto out;
308 		}
309 		level--;
310 		eb = path->nodes[level];
311 	}
312 
313 	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
314 				time_seq, ref->wanted_disk_byte,
315 				extent_item_pos);
316 out:
317 	btrfs_free_path(path);
318 	return ret;
319 }
320 
321 /*
322  * resolve all indirect backrefs from the list
323  */
324 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
325 				   int search_commit_root, u64 time_seq,
326 				   struct list_head *head,
327 				   const u64 *extent_item_pos)
328 {
329 	int err;
330 	int ret = 0;
331 	struct __prelim_ref *ref;
332 	struct __prelim_ref *ref_safe;
333 	struct __prelim_ref *new_ref;
334 	struct ulist *parents;
335 	struct ulist_node *node;
336 	struct ulist_iterator uiter;
337 
338 	parents = ulist_alloc(GFP_NOFS);
339 	if (!parents)
340 		return -ENOMEM;
341 
342 	/*
343 	 * _safe allows us to insert directly after the current item without
344 	 * iterating over the newly inserted items.
345 	 * we're also allowed to re-assign ref during iteration.
346 	 */
347 	list_for_each_entry_safe(ref, ref_safe, head, list) {
348 		if (ref->parent)	/* already direct */
349 			continue;
350 		if (ref->count == 0)
351 			continue;
352 		err = __resolve_indirect_ref(fs_info, search_commit_root,
353 					     time_seq, ref, parents,
354 					     extent_item_pos);
355 		if (err)
356 			continue;
357 
358 		/* we put the first parent into the ref at hand */
359 		ULIST_ITER_INIT(&uiter);
360 		node = ulist_next(parents, &uiter);
361 		ref->parent = node ? node->val : 0;
362 		ref->inode_list = node ?
363 			(struct extent_inode_elem *)(uintptr_t)node->aux : 0;
364 
365 		/* additional parents require new refs being added here */
366 		while ((node = ulist_next(parents, &uiter))) {
367 			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
368 			if (!new_ref) {
369 				ret = -ENOMEM;
370 				break;
371 			}
372 			memcpy(new_ref, ref, sizeof(*ref));
373 			new_ref->parent = node->val;
374 			new_ref->inode_list = (struct extent_inode_elem *)
375 							(uintptr_t)node->aux;
376 			list_add(&new_ref->list, &ref->list);
377 		}
378 		ulist_reinit(parents);
379 	}
380 
381 	ulist_free(parents);
382 	return ret;
383 }
384 
385 static inline int ref_for_same_block(struct __prelim_ref *ref1,
386 				     struct __prelim_ref *ref2)
387 {
388 	if (ref1->level != ref2->level)
389 		return 0;
390 	if (ref1->root_id != ref2->root_id)
391 		return 0;
392 	if (ref1->key_for_search.type != ref2->key_for_search.type)
393 		return 0;
394 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
395 		return 0;
396 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
397 		return 0;
398 	if (ref1->parent != ref2->parent)
399 		return 0;
400 
401 	return 1;
402 }
403 
404 /*
405  * read tree blocks and add keys where required.
406  */
407 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
408 			      struct list_head *head)
409 {
410 	struct list_head *pos;
411 	struct extent_buffer *eb;
412 
413 	list_for_each(pos, head) {
414 		struct __prelim_ref *ref;
415 		ref = list_entry(pos, struct __prelim_ref, list);
416 
417 		if (ref->parent)
418 			continue;
419 		if (ref->key_for_search.type)
420 			continue;
421 		BUG_ON(!ref->wanted_disk_byte);
422 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
423 				     fs_info->tree_root->leafsize, 0);
424 		BUG_ON(!eb);
425 		btrfs_tree_read_lock(eb);
426 		if (btrfs_header_level(eb) == 0)
427 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
428 		else
429 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
430 		btrfs_tree_read_unlock(eb);
431 		free_extent_buffer(eb);
432 	}
433 	return 0;
434 }
435 
436 /*
437  * merge two lists of backrefs and adjust counts accordingly
438  *
439  * mode = 1: merge identical keys, if key is set
440  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
441  *           additionally, we could even add a key range for the blocks we
442  *           looked into to merge even more (-> replace unresolved refs by those
443  *           having a parent).
444  * mode = 2: merge identical parents
445  */
446 static int __merge_refs(struct list_head *head, int mode)
447 {
448 	struct list_head *pos1;
449 
450 	list_for_each(pos1, head) {
451 		struct list_head *n2;
452 		struct list_head *pos2;
453 		struct __prelim_ref *ref1;
454 
455 		ref1 = list_entry(pos1, struct __prelim_ref, list);
456 
457 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
458 		     pos2 = n2, n2 = pos2->next) {
459 			struct __prelim_ref *ref2;
460 			struct __prelim_ref *xchg;
461 			struct extent_inode_elem *eie;
462 
463 			ref2 = list_entry(pos2, struct __prelim_ref, list);
464 
465 			if (mode == 1) {
466 				if (!ref_for_same_block(ref1, ref2))
467 					continue;
468 				if (!ref1->parent && ref2->parent) {
469 					xchg = ref1;
470 					ref1 = ref2;
471 					ref2 = xchg;
472 				}
473 			} else {
474 				if (ref1->parent != ref2->parent)
475 					continue;
476 			}
477 
478 			eie = ref1->inode_list;
479 			while (eie && eie->next)
480 				eie = eie->next;
481 			if (eie)
482 				eie->next = ref2->inode_list;
483 			else
484 				ref1->inode_list = ref2->inode_list;
485 			ref1->count += ref2->count;
486 
487 			list_del(&ref2->list);
488 			kfree(ref2);
489 		}
490 
491 	}
492 	return 0;
493 }
494 
495 /*
496  * add all currently queued delayed refs from this head whose seq nr is
497  * smaller or equal that seq to the list
498  */
499 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
500 			      struct list_head *prefs)
501 {
502 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
503 	struct rb_node *n = &head->node.rb_node;
504 	struct btrfs_key key;
505 	struct btrfs_key op_key = {0};
506 	int sgn;
507 	int ret = 0;
508 
509 	if (extent_op && extent_op->update_key)
510 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
511 
512 	while ((n = rb_prev(n))) {
513 		struct btrfs_delayed_ref_node *node;
514 		node = rb_entry(n, struct btrfs_delayed_ref_node,
515 				rb_node);
516 		if (node->bytenr != head->node.bytenr)
517 			break;
518 		WARN_ON(node->is_head);
519 
520 		if (node->seq > seq)
521 			continue;
522 
523 		switch (node->action) {
524 		case BTRFS_ADD_DELAYED_EXTENT:
525 		case BTRFS_UPDATE_DELAYED_HEAD:
526 			WARN_ON(1);
527 			continue;
528 		case BTRFS_ADD_DELAYED_REF:
529 			sgn = 1;
530 			break;
531 		case BTRFS_DROP_DELAYED_REF:
532 			sgn = -1;
533 			break;
534 		default:
535 			BUG_ON(1);
536 		}
537 		switch (node->type) {
538 		case BTRFS_TREE_BLOCK_REF_KEY: {
539 			struct btrfs_delayed_tree_ref *ref;
540 
541 			ref = btrfs_delayed_node_to_tree_ref(node);
542 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
543 					       ref->level + 1, 0, node->bytenr,
544 					       node->ref_mod * sgn);
545 			break;
546 		}
547 		case BTRFS_SHARED_BLOCK_REF_KEY: {
548 			struct btrfs_delayed_tree_ref *ref;
549 
550 			ref = btrfs_delayed_node_to_tree_ref(node);
551 			ret = __add_prelim_ref(prefs, ref->root, NULL,
552 					       ref->level + 1, ref->parent,
553 					       node->bytenr,
554 					       node->ref_mod * sgn);
555 			break;
556 		}
557 		case BTRFS_EXTENT_DATA_REF_KEY: {
558 			struct btrfs_delayed_data_ref *ref;
559 			ref = btrfs_delayed_node_to_data_ref(node);
560 
561 			key.objectid = ref->objectid;
562 			key.type = BTRFS_EXTENT_DATA_KEY;
563 			key.offset = ref->offset;
564 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
565 					       node->bytenr,
566 					       node->ref_mod * sgn);
567 			break;
568 		}
569 		case BTRFS_SHARED_DATA_REF_KEY: {
570 			struct btrfs_delayed_data_ref *ref;
571 
572 			ref = btrfs_delayed_node_to_data_ref(node);
573 
574 			key.objectid = ref->objectid;
575 			key.type = BTRFS_EXTENT_DATA_KEY;
576 			key.offset = ref->offset;
577 			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
578 					       ref->parent, node->bytenr,
579 					       node->ref_mod * sgn);
580 			break;
581 		}
582 		default:
583 			WARN_ON(1);
584 		}
585 		BUG_ON(ret);
586 	}
587 
588 	return 0;
589 }
590 
591 /*
592  * add all inline backrefs for bytenr to the list
593  */
594 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
595 			     struct btrfs_path *path, u64 bytenr,
596 			     int *info_level, struct list_head *prefs)
597 {
598 	int ret = 0;
599 	int slot;
600 	struct extent_buffer *leaf;
601 	struct btrfs_key key;
602 	unsigned long ptr;
603 	unsigned long end;
604 	struct btrfs_extent_item *ei;
605 	u64 flags;
606 	u64 item_size;
607 
608 	/*
609 	 * enumerate all inline refs
610 	 */
611 	leaf = path->nodes[0];
612 	slot = path->slots[0];
613 
614 	item_size = btrfs_item_size_nr(leaf, slot);
615 	BUG_ON(item_size < sizeof(*ei));
616 
617 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
618 	flags = btrfs_extent_flags(leaf, ei);
619 
620 	ptr = (unsigned long)(ei + 1);
621 	end = (unsigned long)ei + item_size;
622 
623 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
624 		struct btrfs_tree_block_info *info;
625 
626 		info = (struct btrfs_tree_block_info *)ptr;
627 		*info_level = btrfs_tree_block_level(leaf, info);
628 		ptr += sizeof(struct btrfs_tree_block_info);
629 		BUG_ON(ptr > end);
630 	} else {
631 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
632 	}
633 
634 	while (ptr < end) {
635 		struct btrfs_extent_inline_ref *iref;
636 		u64 offset;
637 		int type;
638 
639 		iref = (struct btrfs_extent_inline_ref *)ptr;
640 		type = btrfs_extent_inline_ref_type(leaf, iref);
641 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
642 
643 		switch (type) {
644 		case BTRFS_SHARED_BLOCK_REF_KEY:
645 			ret = __add_prelim_ref(prefs, 0, NULL,
646 						*info_level + 1, offset,
647 						bytenr, 1);
648 			break;
649 		case BTRFS_SHARED_DATA_REF_KEY: {
650 			struct btrfs_shared_data_ref *sdref;
651 			int count;
652 
653 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
654 			count = btrfs_shared_data_ref_count(leaf, sdref);
655 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
656 					       bytenr, count);
657 			break;
658 		}
659 		case BTRFS_TREE_BLOCK_REF_KEY:
660 			ret = __add_prelim_ref(prefs, offset, NULL,
661 					       *info_level + 1, 0,
662 					       bytenr, 1);
663 			break;
664 		case BTRFS_EXTENT_DATA_REF_KEY: {
665 			struct btrfs_extent_data_ref *dref;
666 			int count;
667 			u64 root;
668 
669 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
670 			count = btrfs_extent_data_ref_count(leaf, dref);
671 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
672 								      dref);
673 			key.type = BTRFS_EXTENT_DATA_KEY;
674 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
675 			root = btrfs_extent_data_ref_root(leaf, dref);
676 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
677 					       bytenr, count);
678 			break;
679 		}
680 		default:
681 			WARN_ON(1);
682 		}
683 		BUG_ON(ret);
684 		ptr += btrfs_extent_inline_ref_size(type);
685 	}
686 
687 	return 0;
688 }
689 
690 /*
691  * add all non-inline backrefs for bytenr to the list
692  */
693 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
694 			    struct btrfs_path *path, u64 bytenr,
695 			    int info_level, struct list_head *prefs)
696 {
697 	struct btrfs_root *extent_root = fs_info->extent_root;
698 	int ret;
699 	int slot;
700 	struct extent_buffer *leaf;
701 	struct btrfs_key key;
702 
703 	while (1) {
704 		ret = btrfs_next_item(extent_root, path);
705 		if (ret < 0)
706 			break;
707 		if (ret) {
708 			ret = 0;
709 			break;
710 		}
711 
712 		slot = path->slots[0];
713 		leaf = path->nodes[0];
714 		btrfs_item_key_to_cpu(leaf, &key, slot);
715 
716 		if (key.objectid != bytenr)
717 			break;
718 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
719 			continue;
720 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
721 			break;
722 
723 		switch (key.type) {
724 		case BTRFS_SHARED_BLOCK_REF_KEY:
725 			ret = __add_prelim_ref(prefs, 0, NULL,
726 						info_level + 1, key.offset,
727 						bytenr, 1);
728 			break;
729 		case BTRFS_SHARED_DATA_REF_KEY: {
730 			struct btrfs_shared_data_ref *sdref;
731 			int count;
732 
733 			sdref = btrfs_item_ptr(leaf, slot,
734 					      struct btrfs_shared_data_ref);
735 			count = btrfs_shared_data_ref_count(leaf, sdref);
736 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
737 						bytenr, count);
738 			break;
739 		}
740 		case BTRFS_TREE_BLOCK_REF_KEY:
741 			ret = __add_prelim_ref(prefs, key.offset, NULL,
742 					       info_level + 1, 0,
743 					       bytenr, 1);
744 			break;
745 		case BTRFS_EXTENT_DATA_REF_KEY: {
746 			struct btrfs_extent_data_ref *dref;
747 			int count;
748 			u64 root;
749 
750 			dref = btrfs_item_ptr(leaf, slot,
751 					      struct btrfs_extent_data_ref);
752 			count = btrfs_extent_data_ref_count(leaf, dref);
753 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
754 								      dref);
755 			key.type = BTRFS_EXTENT_DATA_KEY;
756 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
757 			root = btrfs_extent_data_ref_root(leaf, dref);
758 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
759 					       bytenr, count);
760 			break;
761 		}
762 		default:
763 			WARN_ON(1);
764 		}
765 		BUG_ON(ret);
766 	}
767 
768 	return ret;
769 }
770 
771 /*
772  * this adds all existing backrefs (inline backrefs, backrefs and delayed
773  * refs) for the given bytenr to the refs list, merges duplicates and resolves
774  * indirect refs to their parent bytenr.
775  * When roots are found, they're added to the roots list
776  *
777  * FIXME some caching might speed things up
778  */
779 static int find_parent_nodes(struct btrfs_trans_handle *trans,
780 			     struct btrfs_fs_info *fs_info, u64 bytenr,
781 			     u64 time_seq, struct ulist *refs,
782 			     struct ulist *roots, const u64 *extent_item_pos)
783 {
784 	struct btrfs_key key;
785 	struct btrfs_path *path;
786 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
787 	struct btrfs_delayed_ref_head *head;
788 	int info_level = 0;
789 	int ret;
790 	int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
791 	struct list_head prefs_delayed;
792 	struct list_head prefs;
793 	struct __prelim_ref *ref;
794 
795 	INIT_LIST_HEAD(&prefs);
796 	INIT_LIST_HEAD(&prefs_delayed);
797 
798 	key.objectid = bytenr;
799 	key.type = BTRFS_EXTENT_ITEM_KEY;
800 	key.offset = (u64)-1;
801 
802 	path = btrfs_alloc_path();
803 	if (!path)
804 		return -ENOMEM;
805 	path->search_commit_root = !!search_commit_root;
806 
807 	/*
808 	 * grab both a lock on the path and a lock on the delayed ref head.
809 	 * We need both to get a consistent picture of how the refs look
810 	 * at a specified point in time
811 	 */
812 again:
813 	head = NULL;
814 
815 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
816 	if (ret < 0)
817 		goto out;
818 	BUG_ON(ret == 0);
819 
820 	if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
821 		/*
822 		 * look if there are updates for this ref queued and lock the
823 		 * head
824 		 */
825 		delayed_refs = &trans->transaction->delayed_refs;
826 		spin_lock(&delayed_refs->lock);
827 		head = btrfs_find_delayed_ref_head(trans, bytenr);
828 		if (head) {
829 			if (!mutex_trylock(&head->mutex)) {
830 				atomic_inc(&head->node.refs);
831 				spin_unlock(&delayed_refs->lock);
832 
833 				btrfs_release_path(path);
834 
835 				/*
836 				 * Mutex was contended, block until it's
837 				 * released and try again
838 				 */
839 				mutex_lock(&head->mutex);
840 				mutex_unlock(&head->mutex);
841 				btrfs_put_delayed_ref(&head->node);
842 				goto again;
843 			}
844 			ret = __add_delayed_refs(head, time_seq,
845 						 &prefs_delayed);
846 			mutex_unlock(&head->mutex);
847 			if (ret) {
848 				spin_unlock(&delayed_refs->lock);
849 				goto out;
850 			}
851 		}
852 		spin_unlock(&delayed_refs->lock);
853 	}
854 
855 	if (path->slots[0]) {
856 		struct extent_buffer *leaf;
857 		int slot;
858 
859 		path->slots[0]--;
860 		leaf = path->nodes[0];
861 		slot = path->slots[0];
862 		btrfs_item_key_to_cpu(leaf, &key, slot);
863 		if (key.objectid == bytenr &&
864 		    key.type == BTRFS_EXTENT_ITEM_KEY) {
865 			ret = __add_inline_refs(fs_info, path, bytenr,
866 						&info_level, &prefs);
867 			if (ret)
868 				goto out;
869 			ret = __add_keyed_refs(fs_info, path, bytenr,
870 					       info_level, &prefs);
871 			if (ret)
872 				goto out;
873 		}
874 	}
875 	btrfs_release_path(path);
876 
877 	list_splice_init(&prefs_delayed, &prefs);
878 
879 	ret = __add_missing_keys(fs_info, &prefs);
880 	if (ret)
881 		goto out;
882 
883 	ret = __merge_refs(&prefs, 1);
884 	if (ret)
885 		goto out;
886 
887 	ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
888 				      &prefs, extent_item_pos);
889 	if (ret)
890 		goto out;
891 
892 	ret = __merge_refs(&prefs, 2);
893 	if (ret)
894 		goto out;
895 
896 	while (!list_empty(&prefs)) {
897 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
898 		list_del(&ref->list);
899 		WARN_ON(ref->count < 0);
900 		if (ref->count && ref->root_id && ref->parent == 0) {
901 			/* no parent == root of tree */
902 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
903 			BUG_ON(ret < 0);
904 		}
905 		if (ref->count && ref->parent) {
906 			struct extent_inode_elem *eie = NULL;
907 			if (extent_item_pos && !ref->inode_list) {
908 				u32 bsz;
909 				struct extent_buffer *eb;
910 				bsz = btrfs_level_size(fs_info->extent_root,
911 							info_level);
912 				eb = read_tree_block(fs_info->extent_root,
913 							   ref->parent, bsz, 0);
914 				BUG_ON(!eb);
915 				ret = find_extent_in_eb(eb, bytenr,
916 							*extent_item_pos, &eie);
917 				ref->inode_list = eie;
918 				free_extent_buffer(eb);
919 			}
920 			ret = ulist_add_merge(refs, ref->parent,
921 					      (uintptr_t)ref->inode_list,
922 					      (u64 *)&eie, GFP_NOFS);
923 			if (!ret && extent_item_pos) {
924 				/*
925 				 * we've recorded that parent, so we must extend
926 				 * its inode list here
927 				 */
928 				BUG_ON(!eie);
929 				while (eie->next)
930 					eie = eie->next;
931 				eie->next = ref->inode_list;
932 			}
933 			BUG_ON(ret < 0);
934 		}
935 		kfree(ref);
936 	}
937 
938 out:
939 	btrfs_free_path(path);
940 	while (!list_empty(&prefs)) {
941 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
942 		list_del(&ref->list);
943 		kfree(ref);
944 	}
945 	while (!list_empty(&prefs_delayed)) {
946 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
947 				       list);
948 		list_del(&ref->list);
949 		kfree(ref);
950 	}
951 
952 	return ret;
953 }
954 
955 static void free_leaf_list(struct ulist *blocks)
956 {
957 	struct ulist_node *node = NULL;
958 	struct extent_inode_elem *eie;
959 	struct extent_inode_elem *eie_next;
960 	struct ulist_iterator uiter;
961 
962 	ULIST_ITER_INIT(&uiter);
963 	while ((node = ulist_next(blocks, &uiter))) {
964 		if (!node->aux)
965 			continue;
966 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
967 		for (; eie; eie = eie_next) {
968 			eie_next = eie->next;
969 			kfree(eie);
970 		}
971 		node->aux = 0;
972 	}
973 
974 	ulist_free(blocks);
975 }
976 
977 /*
978  * Finds all leafs with a reference to the specified combination of bytenr and
979  * offset. key_list_head will point to a list of corresponding keys (caller must
980  * free each list element). The leafs will be stored in the leafs ulist, which
981  * must be freed with ulist_free.
982  *
983  * returns 0 on success, <0 on error
984  */
985 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
986 				struct btrfs_fs_info *fs_info, u64 bytenr,
987 				u64 time_seq, struct ulist **leafs,
988 				const u64 *extent_item_pos)
989 {
990 	struct ulist *tmp;
991 	int ret;
992 
993 	tmp = ulist_alloc(GFP_NOFS);
994 	if (!tmp)
995 		return -ENOMEM;
996 	*leafs = ulist_alloc(GFP_NOFS);
997 	if (!*leafs) {
998 		ulist_free(tmp);
999 		return -ENOMEM;
1000 	}
1001 
1002 	ret = find_parent_nodes(trans, fs_info, bytenr,
1003 				time_seq, *leafs, tmp, extent_item_pos);
1004 	ulist_free(tmp);
1005 
1006 	if (ret < 0 && ret != -ENOENT) {
1007 		free_leaf_list(*leafs);
1008 		return ret;
1009 	}
1010 
1011 	return 0;
1012 }
1013 
1014 /*
1015  * walk all backrefs for a given extent to find all roots that reference this
1016  * extent. Walking a backref means finding all extents that reference this
1017  * extent and in turn walk the backrefs of those, too. Naturally this is a
1018  * recursive process, but here it is implemented in an iterative fashion: We
1019  * find all referencing extents for the extent in question and put them on a
1020  * list. In turn, we find all referencing extents for those, further appending
1021  * to the list. The way we iterate the list allows adding more elements after
1022  * the current while iterating. The process stops when we reach the end of the
1023  * list. Found roots are added to the roots list.
1024  *
1025  * returns 0 on success, < 0 on error.
1026  */
1027 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1028 				struct btrfs_fs_info *fs_info, u64 bytenr,
1029 				u64 time_seq, struct ulist **roots)
1030 {
1031 	struct ulist *tmp;
1032 	struct ulist_node *node = NULL;
1033 	struct ulist_iterator uiter;
1034 	int ret;
1035 
1036 	tmp = ulist_alloc(GFP_NOFS);
1037 	if (!tmp)
1038 		return -ENOMEM;
1039 	*roots = ulist_alloc(GFP_NOFS);
1040 	if (!*roots) {
1041 		ulist_free(tmp);
1042 		return -ENOMEM;
1043 	}
1044 
1045 	ULIST_ITER_INIT(&uiter);
1046 	while (1) {
1047 		ret = find_parent_nodes(trans, fs_info, bytenr,
1048 					time_seq, tmp, *roots, NULL);
1049 		if (ret < 0 && ret != -ENOENT) {
1050 			ulist_free(tmp);
1051 			ulist_free(*roots);
1052 			return ret;
1053 		}
1054 		node = ulist_next(tmp, &uiter);
1055 		if (!node)
1056 			break;
1057 		bytenr = node->val;
1058 	}
1059 
1060 	ulist_free(tmp);
1061 	return 0;
1062 }
1063 
1064 
1065 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1066 			struct btrfs_root *fs_root, struct btrfs_path *path,
1067 			struct btrfs_key *found_key)
1068 {
1069 	int ret;
1070 	struct btrfs_key key;
1071 	struct extent_buffer *eb;
1072 
1073 	key.type = key_type;
1074 	key.objectid = inum;
1075 	key.offset = ioff;
1076 
1077 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1078 	if (ret < 0)
1079 		return ret;
1080 
1081 	eb = path->nodes[0];
1082 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1083 		ret = btrfs_next_leaf(fs_root, path);
1084 		if (ret)
1085 			return ret;
1086 		eb = path->nodes[0];
1087 	}
1088 
1089 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1090 	if (found_key->type != key.type || found_key->objectid != key.objectid)
1091 		return 1;
1092 
1093 	return 0;
1094 }
1095 
1096 /*
1097  * this makes the path point to (inum INODE_ITEM ioff)
1098  */
1099 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1100 			struct btrfs_path *path)
1101 {
1102 	struct btrfs_key key;
1103 	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1104 				&key);
1105 }
1106 
1107 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1108 				struct btrfs_path *path,
1109 				struct btrfs_key *found_key)
1110 {
1111 	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1112 				found_key);
1113 }
1114 
1115 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1116 			  u64 start_off, struct btrfs_path *path,
1117 			  struct btrfs_inode_extref **ret_extref,
1118 			  u64 *found_off)
1119 {
1120 	int ret, slot;
1121 	struct btrfs_key key;
1122 	struct btrfs_key found_key;
1123 	struct btrfs_inode_extref *extref;
1124 	struct extent_buffer *leaf;
1125 	unsigned long ptr;
1126 
1127 	key.objectid = inode_objectid;
1128 	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1129 	key.offset = start_off;
1130 
1131 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1132 	if (ret < 0)
1133 		return ret;
1134 
1135 	while (1) {
1136 		leaf = path->nodes[0];
1137 		slot = path->slots[0];
1138 		if (slot >= btrfs_header_nritems(leaf)) {
1139 			/*
1140 			 * If the item at offset is not found,
1141 			 * btrfs_search_slot will point us to the slot
1142 			 * where it should be inserted. In our case
1143 			 * that will be the slot directly before the
1144 			 * next INODE_REF_KEY_V2 item. In the case
1145 			 * that we're pointing to the last slot in a
1146 			 * leaf, we must move one leaf over.
1147 			 */
1148 			ret = btrfs_next_leaf(root, path);
1149 			if (ret) {
1150 				if (ret >= 1)
1151 					ret = -ENOENT;
1152 				break;
1153 			}
1154 			continue;
1155 		}
1156 
1157 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1158 
1159 		/*
1160 		 * Check that we're still looking at an extended ref key for
1161 		 * this particular objectid. If we have different
1162 		 * objectid or type then there are no more to be found
1163 		 * in the tree and we can exit.
1164 		 */
1165 		ret = -ENOENT;
1166 		if (found_key.objectid != inode_objectid)
1167 			break;
1168 		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1169 			break;
1170 
1171 		ret = 0;
1172 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1173 		extref = (struct btrfs_inode_extref *)ptr;
1174 		*ret_extref = extref;
1175 		if (found_off)
1176 			*found_off = found_key.offset;
1177 		break;
1178 	}
1179 
1180 	return ret;
1181 }
1182 
1183 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1184 			u32 name_len, unsigned long name_off,
1185 			struct extent_buffer *eb_in, u64 parent,
1186 			char *dest, u32 size)
1187 {
1188 	int slot;
1189 	u64 next_inum;
1190 	int ret;
1191 	s64 bytes_left = ((s64)size) - 1;
1192 	struct extent_buffer *eb = eb_in;
1193 	struct btrfs_key found_key;
1194 	int leave_spinning = path->leave_spinning;
1195 	struct btrfs_inode_ref *iref;
1196 
1197 	if (bytes_left >= 0)
1198 		dest[bytes_left] = '\0';
1199 
1200 	path->leave_spinning = 1;
1201 	while (1) {
1202 		bytes_left -= name_len;
1203 		if (bytes_left >= 0)
1204 			read_extent_buffer(eb, dest + bytes_left,
1205 					   name_off, name_len);
1206 		if (eb != eb_in) {
1207 			btrfs_tree_read_unlock_blocking(eb);
1208 			free_extent_buffer(eb);
1209 		}
1210 		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1211 		if (ret > 0)
1212 			ret = -ENOENT;
1213 		if (ret)
1214 			break;
1215 
1216 		next_inum = found_key.offset;
1217 
1218 		/* regular exit ahead */
1219 		if (parent == next_inum)
1220 			break;
1221 
1222 		slot = path->slots[0];
1223 		eb = path->nodes[0];
1224 		/* make sure we can use eb after releasing the path */
1225 		if (eb != eb_in) {
1226 			atomic_inc(&eb->refs);
1227 			btrfs_tree_read_lock(eb);
1228 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1229 		}
1230 		btrfs_release_path(path);
1231 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1232 
1233 		name_len = btrfs_inode_ref_name_len(eb, iref);
1234 		name_off = (unsigned long)(iref + 1);
1235 
1236 		parent = next_inum;
1237 		--bytes_left;
1238 		if (bytes_left >= 0)
1239 			dest[bytes_left] = '/';
1240 	}
1241 
1242 	btrfs_release_path(path);
1243 	path->leave_spinning = leave_spinning;
1244 
1245 	if (ret)
1246 		return ERR_PTR(ret);
1247 
1248 	return dest + bytes_left;
1249 }
1250 
1251 /*
1252  * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
1253  * of the path are separated by '/' and the path is guaranteed to be
1254  * 0-terminated. the path is only given within the current file system.
1255  * Therefore, it never starts with a '/'. the caller is responsible to provide
1256  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1257  * the start point of the resulting string is returned. this pointer is within
1258  * dest, normally.
1259  * in case the path buffer would overflow, the pointer is decremented further
1260  * as if output was written to the buffer, though no more output is actually
1261  * generated. that way, the caller can determine how much space would be
1262  * required for the path to fit into the buffer. in that case, the returned
1263  * value will be smaller than dest. callers must check this!
1264  */
1265 char *btrfs_iref_to_path(struct btrfs_root *fs_root,
1266 			 struct btrfs_path *path,
1267 			 struct btrfs_inode_ref *iref,
1268 			 struct extent_buffer *eb_in, u64 parent,
1269 			 char *dest, u32 size)
1270 {
1271 	return btrfs_ref_to_path(fs_root, path,
1272 				 btrfs_inode_ref_name_len(eb_in, iref),
1273 				 (unsigned long)(iref + 1),
1274 				 eb_in, parent, dest, size);
1275 }
1276 
1277 /*
1278  * this makes the path point to (logical EXTENT_ITEM *)
1279  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1280  * tree blocks and <0 on error.
1281  */
1282 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1283 			struct btrfs_path *path, struct btrfs_key *found_key,
1284 			u64 *flags_ret)
1285 {
1286 	int ret;
1287 	u64 flags;
1288 	u32 item_size;
1289 	struct extent_buffer *eb;
1290 	struct btrfs_extent_item *ei;
1291 	struct btrfs_key key;
1292 
1293 	key.type = BTRFS_EXTENT_ITEM_KEY;
1294 	key.objectid = logical;
1295 	key.offset = (u64)-1;
1296 
1297 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1298 	if (ret < 0)
1299 		return ret;
1300 	ret = btrfs_previous_item(fs_info->extent_root, path,
1301 					0, BTRFS_EXTENT_ITEM_KEY);
1302 	if (ret < 0)
1303 		return ret;
1304 
1305 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1306 	if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1307 	    found_key->objectid > logical ||
1308 	    found_key->objectid + found_key->offset <= logical) {
1309 		pr_debug("logical %llu is not within any extent\n",
1310 			 (unsigned long long)logical);
1311 		return -ENOENT;
1312 	}
1313 
1314 	eb = path->nodes[0];
1315 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1316 	BUG_ON(item_size < sizeof(*ei));
1317 
1318 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1319 	flags = btrfs_extent_flags(eb, ei);
1320 
1321 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1322 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1323 		 (unsigned long long)logical,
1324 		 (unsigned long long)(logical - found_key->objectid),
1325 		 (unsigned long long)found_key->objectid,
1326 		 (unsigned long long)found_key->offset,
1327 		 (unsigned long long)flags, item_size);
1328 
1329 	WARN_ON(!flags_ret);
1330 	if (flags_ret) {
1331 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1332 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1333 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1334 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1335 		else
1336 			BUG_ON(1);
1337 		return 0;
1338 	}
1339 
1340 	return -EIO;
1341 }
1342 
1343 /*
1344  * helper function to iterate extent inline refs. ptr must point to a 0 value
1345  * for the first call and may be modified. it is used to track state.
1346  * if more refs exist, 0 is returned and the next call to
1347  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1348  * next ref. after the last ref was processed, 1 is returned.
1349  * returns <0 on error
1350  */
1351 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1352 				struct btrfs_extent_item *ei, u32 item_size,
1353 				struct btrfs_extent_inline_ref **out_eiref,
1354 				int *out_type)
1355 {
1356 	unsigned long end;
1357 	u64 flags;
1358 	struct btrfs_tree_block_info *info;
1359 
1360 	if (!*ptr) {
1361 		/* first call */
1362 		flags = btrfs_extent_flags(eb, ei);
1363 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1364 			info = (struct btrfs_tree_block_info *)(ei + 1);
1365 			*out_eiref =
1366 				(struct btrfs_extent_inline_ref *)(info + 1);
1367 		} else {
1368 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1369 		}
1370 		*ptr = (unsigned long)*out_eiref;
1371 		if ((void *)*ptr >= (void *)ei + item_size)
1372 			return -ENOENT;
1373 	}
1374 
1375 	end = (unsigned long)ei + item_size;
1376 	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1377 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1378 
1379 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1380 	WARN_ON(*ptr > end);
1381 	if (*ptr == end)
1382 		return 1; /* last */
1383 
1384 	return 0;
1385 }
1386 
1387 /*
1388  * reads the tree block backref for an extent. tree level and root are returned
1389  * through out_level and out_root. ptr must point to a 0 value for the first
1390  * call and may be modified (see __get_extent_inline_ref comment).
1391  * returns 0 if data was provided, 1 if there was no more data to provide or
1392  * <0 on error.
1393  */
1394 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1395 				struct btrfs_extent_item *ei, u32 item_size,
1396 				u64 *out_root, u8 *out_level)
1397 {
1398 	int ret;
1399 	int type;
1400 	struct btrfs_tree_block_info *info;
1401 	struct btrfs_extent_inline_ref *eiref;
1402 
1403 	if (*ptr == (unsigned long)-1)
1404 		return 1;
1405 
1406 	while (1) {
1407 		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1408 						&eiref, &type);
1409 		if (ret < 0)
1410 			return ret;
1411 
1412 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1413 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1414 			break;
1415 
1416 		if (ret == 1)
1417 			return 1;
1418 	}
1419 
1420 	/* we can treat both ref types equally here */
1421 	info = (struct btrfs_tree_block_info *)(ei + 1);
1422 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1423 	*out_level = btrfs_tree_block_level(eb, info);
1424 
1425 	if (ret == 1)
1426 		*ptr = (unsigned long)-1;
1427 
1428 	return 0;
1429 }
1430 
1431 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1432 				u64 root, u64 extent_item_objectid,
1433 				iterate_extent_inodes_t *iterate, void *ctx)
1434 {
1435 	struct extent_inode_elem *eie;
1436 	int ret = 0;
1437 
1438 	for (eie = inode_list; eie; eie = eie->next) {
1439 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1440 			 "root %llu\n", extent_item_objectid,
1441 			 eie->inum, eie->offset, root);
1442 		ret = iterate(eie->inum, eie->offset, root, ctx);
1443 		if (ret) {
1444 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1445 				 extent_item_objectid, ret);
1446 			break;
1447 		}
1448 	}
1449 
1450 	return ret;
1451 }
1452 
1453 /*
1454  * calls iterate() for every inode that references the extent identified by
1455  * the given parameters.
1456  * when the iterator function returns a non-zero value, iteration stops.
1457  */
1458 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1459 				u64 extent_item_objectid, u64 extent_item_pos,
1460 				int search_commit_root,
1461 				iterate_extent_inodes_t *iterate, void *ctx)
1462 {
1463 	int ret;
1464 	struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1465 	struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
1466 	struct btrfs_trans_handle *trans;
1467 	struct ulist *refs = NULL;
1468 	struct ulist *roots = NULL;
1469 	struct ulist_node *ref_node = NULL;
1470 	struct ulist_node *root_node = NULL;
1471 	struct seq_list tree_mod_seq_elem = {};
1472 	struct ulist_iterator ref_uiter;
1473 	struct ulist_iterator root_uiter;
1474 
1475 	pr_debug("resolving all inodes for extent %llu\n",
1476 			extent_item_objectid);
1477 
1478 	if (search_commit_root) {
1479 		trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1480 	} else {
1481 		trans = btrfs_join_transaction(fs_info->extent_root);
1482 		if (IS_ERR(trans))
1483 			return PTR_ERR(trans);
1484 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1485 	}
1486 
1487 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1488 				   tree_mod_seq_elem.seq, &refs,
1489 				   &extent_item_pos);
1490 	if (ret)
1491 		goto out;
1492 
1493 	ULIST_ITER_INIT(&ref_uiter);
1494 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1495 		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1496 					   tree_mod_seq_elem.seq, &roots);
1497 		if (ret)
1498 			break;
1499 		ULIST_ITER_INIT(&root_uiter);
1500 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1501 			pr_debug("root %llu references leaf %llu, data list "
1502 				 "%#llx\n", root_node->val, ref_node->val,
1503 				 (long long)ref_node->aux);
1504 			ret = iterate_leaf_refs((struct extent_inode_elem *)
1505 						(uintptr_t)ref_node->aux,
1506 						root_node->val,
1507 						extent_item_objectid,
1508 						iterate, ctx);
1509 		}
1510 		ulist_free(roots);
1511 		roots = NULL;
1512 	}
1513 
1514 	free_leaf_list(refs);
1515 	ulist_free(roots);
1516 out:
1517 	if (!search_commit_root) {
1518 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1519 		btrfs_end_transaction(trans, fs_info->extent_root);
1520 	}
1521 
1522 	return ret;
1523 }
1524 
1525 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1526 				struct btrfs_path *path,
1527 				iterate_extent_inodes_t *iterate, void *ctx)
1528 {
1529 	int ret;
1530 	u64 extent_item_pos;
1531 	u64 flags = 0;
1532 	struct btrfs_key found_key;
1533 	int search_commit_root = path->search_commit_root;
1534 
1535 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1536 	btrfs_release_path(path);
1537 	if (ret < 0)
1538 		return ret;
1539 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1540 		return -EINVAL;
1541 
1542 	extent_item_pos = logical - found_key.objectid;
1543 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1544 					extent_item_pos, search_commit_root,
1545 					iterate, ctx);
1546 
1547 	return ret;
1548 }
1549 
1550 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1551 			      struct extent_buffer *eb, void *ctx);
1552 
1553 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1554 			      struct btrfs_path *path,
1555 			      iterate_irefs_t *iterate, void *ctx)
1556 {
1557 	int ret = 0;
1558 	int slot;
1559 	u32 cur;
1560 	u32 len;
1561 	u32 name_len;
1562 	u64 parent = 0;
1563 	int found = 0;
1564 	struct extent_buffer *eb;
1565 	struct btrfs_item *item;
1566 	struct btrfs_inode_ref *iref;
1567 	struct btrfs_key found_key;
1568 
1569 	while (!ret) {
1570 		path->leave_spinning = 1;
1571 		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1572 				     &found_key);
1573 		if (ret < 0)
1574 			break;
1575 		if (ret) {
1576 			ret = found ? 0 : -ENOENT;
1577 			break;
1578 		}
1579 		++found;
1580 
1581 		parent = found_key.offset;
1582 		slot = path->slots[0];
1583 		eb = path->nodes[0];
1584 		/* make sure we can use eb after releasing the path */
1585 		atomic_inc(&eb->refs);
1586 		btrfs_tree_read_lock(eb);
1587 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1588 		btrfs_release_path(path);
1589 
1590 		item = btrfs_item_nr(eb, slot);
1591 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1592 
1593 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1594 			name_len = btrfs_inode_ref_name_len(eb, iref);
1595 			/* path must be released before calling iterate()! */
1596 			pr_debug("following ref at offset %u for inode %llu in "
1597 				 "tree %llu\n", cur,
1598 				 (unsigned long long)found_key.objectid,
1599 				 (unsigned long long)fs_root->objectid);
1600 			ret = iterate(parent, name_len,
1601 				      (unsigned long)(iref + 1), eb, ctx);
1602 			if (ret)
1603 				break;
1604 			len = sizeof(*iref) + name_len;
1605 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1606 		}
1607 		btrfs_tree_read_unlock_blocking(eb);
1608 		free_extent_buffer(eb);
1609 	}
1610 
1611 	btrfs_release_path(path);
1612 
1613 	return ret;
1614 }
1615 
1616 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1617 				 struct btrfs_path *path,
1618 				 iterate_irefs_t *iterate, void *ctx)
1619 {
1620 	int ret;
1621 	int slot;
1622 	u64 offset = 0;
1623 	u64 parent;
1624 	int found = 0;
1625 	struct extent_buffer *eb;
1626 	struct btrfs_inode_extref *extref;
1627 	struct extent_buffer *leaf;
1628 	u32 item_size;
1629 	u32 cur_offset;
1630 	unsigned long ptr;
1631 
1632 	while (1) {
1633 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1634 					    &offset);
1635 		if (ret < 0)
1636 			break;
1637 		if (ret) {
1638 			ret = found ? 0 : -ENOENT;
1639 			break;
1640 		}
1641 		++found;
1642 
1643 		slot = path->slots[0];
1644 		eb = path->nodes[0];
1645 		/* make sure we can use eb after releasing the path */
1646 		atomic_inc(&eb->refs);
1647 
1648 		btrfs_tree_read_lock(eb);
1649 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1650 		btrfs_release_path(path);
1651 
1652 		leaf = path->nodes[0];
1653 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1654 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1655 		cur_offset = 0;
1656 
1657 		while (cur_offset < item_size) {
1658 			u32 name_len;
1659 
1660 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1661 			parent = btrfs_inode_extref_parent(eb, extref);
1662 			name_len = btrfs_inode_extref_name_len(eb, extref);
1663 			ret = iterate(parent, name_len,
1664 				      (unsigned long)&extref->name, eb, ctx);
1665 			if (ret)
1666 				break;
1667 
1668 			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1669 			cur_offset += sizeof(*extref);
1670 		}
1671 		btrfs_tree_read_unlock_blocking(eb);
1672 		free_extent_buffer(eb);
1673 
1674 		offset++;
1675 	}
1676 
1677 	btrfs_release_path(path);
1678 
1679 	return ret;
1680 }
1681 
1682 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1683 			 struct btrfs_path *path, iterate_irefs_t *iterate,
1684 			 void *ctx)
1685 {
1686 	int ret;
1687 	int found_refs = 0;
1688 
1689 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1690 	if (!ret)
1691 		++found_refs;
1692 	else if (ret != -ENOENT)
1693 		return ret;
1694 
1695 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1696 	if (ret == -ENOENT && found_refs)
1697 		return 0;
1698 
1699 	return ret;
1700 }
1701 
1702 /*
1703  * returns 0 if the path could be dumped (probably truncated)
1704  * returns <0 in case of an error
1705  */
1706 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1707 			 struct extent_buffer *eb, void *ctx)
1708 {
1709 	struct inode_fs_paths *ipath = ctx;
1710 	char *fspath;
1711 	char *fspath_min;
1712 	int i = ipath->fspath->elem_cnt;
1713 	const int s_ptr = sizeof(char *);
1714 	u32 bytes_left;
1715 
1716 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1717 					ipath->fspath->bytes_left - s_ptr : 0;
1718 
1719 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1720 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1721 				   name_off, eb, inum, fspath_min, bytes_left);
1722 	if (IS_ERR(fspath))
1723 		return PTR_ERR(fspath);
1724 
1725 	if (fspath > fspath_min) {
1726 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1727 		++ipath->fspath->elem_cnt;
1728 		ipath->fspath->bytes_left = fspath - fspath_min;
1729 	} else {
1730 		++ipath->fspath->elem_missed;
1731 		ipath->fspath->bytes_missing += fspath_min - fspath;
1732 		ipath->fspath->bytes_left = 0;
1733 	}
1734 
1735 	return 0;
1736 }
1737 
1738 /*
1739  * this dumps all file system paths to the inode into the ipath struct, provided
1740  * is has been created large enough. each path is zero-terminated and accessed
1741  * from ipath->fspath->val[i].
1742  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1743  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1744  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1745  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1746  * have been needed to return all paths.
1747  */
1748 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1749 {
1750 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1751 			     inode_to_path, ipath);
1752 }
1753 
1754 struct btrfs_data_container *init_data_container(u32 total_bytes)
1755 {
1756 	struct btrfs_data_container *data;
1757 	size_t alloc_bytes;
1758 
1759 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1760 	data = vmalloc(alloc_bytes);
1761 	if (!data)
1762 		return ERR_PTR(-ENOMEM);
1763 
1764 	if (total_bytes >= sizeof(*data)) {
1765 		data->bytes_left = total_bytes - sizeof(*data);
1766 		data->bytes_missing = 0;
1767 	} else {
1768 		data->bytes_missing = sizeof(*data) - total_bytes;
1769 		data->bytes_left = 0;
1770 	}
1771 
1772 	data->elem_cnt = 0;
1773 	data->elem_missed = 0;
1774 
1775 	return data;
1776 }
1777 
1778 /*
1779  * allocates space to return multiple file system paths for an inode.
1780  * total_bytes to allocate are passed, note that space usable for actual path
1781  * information will be total_bytes - sizeof(struct inode_fs_paths).
1782  * the returned pointer must be freed with free_ipath() in the end.
1783  */
1784 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1785 					struct btrfs_path *path)
1786 {
1787 	struct inode_fs_paths *ifp;
1788 	struct btrfs_data_container *fspath;
1789 
1790 	fspath = init_data_container(total_bytes);
1791 	if (IS_ERR(fspath))
1792 		return (void *)fspath;
1793 
1794 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1795 	if (!ifp) {
1796 		kfree(fspath);
1797 		return ERR_PTR(-ENOMEM);
1798 	}
1799 
1800 	ifp->btrfs_path = path;
1801 	ifp->fspath = fspath;
1802 	ifp->fs_root = fs_root;
1803 
1804 	return ifp;
1805 }
1806 
1807 void free_ipath(struct inode_fs_paths *ipath)
1808 {
1809 	if (!ipath)
1810 		return;
1811 	vfree(ipath->fspath);
1812 	kfree(ipath);
1813 }
1814