xref: /openbmc/linux/fs/btrfs/backref.c (revision 9665ebd5dba6a2c36cf67827ab074680c4fc2197)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18 
19 /* Just an arbitrary number so we can be sure this happened */
20 #define BACKREF_FOUND_SHARED 6
21 
22 struct extent_inode_elem {
23 	u64 inum;
24 	u64 offset;
25 	struct extent_inode_elem *next;
26 };
27 
28 static int check_extent_in_eb(const struct btrfs_key *key,
29 			      const struct extent_buffer *eb,
30 			      const struct btrfs_file_extent_item *fi,
31 			      u64 extent_item_pos,
32 			      struct extent_inode_elem **eie,
33 			      bool ignore_offset)
34 {
35 	u64 offset = 0;
36 	struct extent_inode_elem *e;
37 
38 	if (!ignore_offset &&
39 	    !btrfs_file_extent_compression(eb, fi) &&
40 	    !btrfs_file_extent_encryption(eb, fi) &&
41 	    !btrfs_file_extent_other_encoding(eb, fi)) {
42 		u64 data_offset;
43 		u64 data_len;
44 
45 		data_offset = btrfs_file_extent_offset(eb, fi);
46 		data_len = btrfs_file_extent_num_bytes(eb, fi);
47 
48 		if (extent_item_pos < data_offset ||
49 		    extent_item_pos >= data_offset + data_len)
50 			return 1;
51 		offset = extent_item_pos - data_offset;
52 	}
53 
54 	e = kmalloc(sizeof(*e), GFP_NOFS);
55 	if (!e)
56 		return -ENOMEM;
57 
58 	e->next = *eie;
59 	e->inum = key->objectid;
60 	e->offset = key->offset + offset;
61 	*eie = e;
62 
63 	return 0;
64 }
65 
66 static void free_inode_elem_list(struct extent_inode_elem *eie)
67 {
68 	struct extent_inode_elem *eie_next;
69 
70 	for (; eie; eie = eie_next) {
71 		eie_next = eie->next;
72 		kfree(eie);
73 	}
74 }
75 
76 static int find_extent_in_eb(const struct extent_buffer *eb,
77 			     u64 wanted_disk_byte, u64 extent_item_pos,
78 			     struct extent_inode_elem **eie,
79 			     bool ignore_offset)
80 {
81 	u64 disk_byte;
82 	struct btrfs_key key;
83 	struct btrfs_file_extent_item *fi;
84 	int slot;
85 	int nritems;
86 	int extent_type;
87 	int ret;
88 
89 	/*
90 	 * from the shared data ref, we only have the leaf but we need
91 	 * the key. thus, we must look into all items and see that we
92 	 * find one (some) with a reference to our extent item.
93 	 */
94 	nritems = btrfs_header_nritems(eb);
95 	for (slot = 0; slot < nritems; ++slot) {
96 		btrfs_item_key_to_cpu(eb, &key, slot);
97 		if (key.type != BTRFS_EXTENT_DATA_KEY)
98 			continue;
99 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
100 		extent_type = btrfs_file_extent_type(eb, fi);
101 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
102 			continue;
103 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
104 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
105 		if (disk_byte != wanted_disk_byte)
106 			continue;
107 
108 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
109 		if (ret < 0)
110 			return ret;
111 	}
112 
113 	return 0;
114 }
115 
116 struct preftree {
117 	struct rb_root_cached root;
118 	unsigned int count;
119 };
120 
121 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
122 
123 struct preftrees {
124 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
125 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
126 	struct preftree indirect_missing_keys;
127 };
128 
129 /*
130  * Checks for a shared extent during backref search.
131  *
132  * The share_count tracks prelim_refs (direct and indirect) having a
133  * ref->count >0:
134  *  - incremented when a ref->count transitions to >0
135  *  - decremented when a ref->count transitions to <1
136  */
137 struct share_check {
138 	u64 root_objectid;
139 	u64 inum;
140 	int share_count;
141 };
142 
143 static inline int extent_is_shared(struct share_check *sc)
144 {
145 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
146 }
147 
148 static struct kmem_cache *btrfs_prelim_ref_cache;
149 
150 int __init btrfs_prelim_ref_init(void)
151 {
152 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
153 					sizeof(struct prelim_ref),
154 					0,
155 					SLAB_MEM_SPREAD,
156 					NULL);
157 	if (!btrfs_prelim_ref_cache)
158 		return -ENOMEM;
159 	return 0;
160 }
161 
162 void __cold btrfs_prelim_ref_exit(void)
163 {
164 	kmem_cache_destroy(btrfs_prelim_ref_cache);
165 }
166 
167 static void free_pref(struct prelim_ref *ref)
168 {
169 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
170 }
171 
172 /*
173  * Return 0 when both refs are for the same block (and can be merged).
174  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
175  * indicates a 'higher' block.
176  */
177 static int prelim_ref_compare(struct prelim_ref *ref1,
178 			      struct prelim_ref *ref2)
179 {
180 	if (ref1->level < ref2->level)
181 		return -1;
182 	if (ref1->level > ref2->level)
183 		return 1;
184 	if (ref1->root_id < ref2->root_id)
185 		return -1;
186 	if (ref1->root_id > ref2->root_id)
187 		return 1;
188 	if (ref1->key_for_search.type < ref2->key_for_search.type)
189 		return -1;
190 	if (ref1->key_for_search.type > ref2->key_for_search.type)
191 		return 1;
192 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
193 		return -1;
194 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
195 		return 1;
196 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
197 		return -1;
198 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
199 		return 1;
200 	if (ref1->parent < ref2->parent)
201 		return -1;
202 	if (ref1->parent > ref2->parent)
203 		return 1;
204 
205 	return 0;
206 }
207 
208 static void update_share_count(struct share_check *sc, int oldcount,
209 			       int newcount)
210 {
211 	if ((!sc) || (oldcount == 0 && newcount < 1))
212 		return;
213 
214 	if (oldcount > 0 && newcount < 1)
215 		sc->share_count--;
216 	else if (oldcount < 1 && newcount > 0)
217 		sc->share_count++;
218 }
219 
220 /*
221  * Add @newref to the @root rbtree, merging identical refs.
222  *
223  * Callers should assume that newref has been freed after calling.
224  */
225 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
226 			      struct preftree *preftree,
227 			      struct prelim_ref *newref,
228 			      struct share_check *sc)
229 {
230 	struct rb_root_cached *root;
231 	struct rb_node **p;
232 	struct rb_node *parent = NULL;
233 	struct prelim_ref *ref;
234 	int result;
235 	bool leftmost = true;
236 
237 	root = &preftree->root;
238 	p = &root->rb_root.rb_node;
239 
240 	while (*p) {
241 		parent = *p;
242 		ref = rb_entry(parent, struct prelim_ref, rbnode);
243 		result = prelim_ref_compare(ref, newref);
244 		if (result < 0) {
245 			p = &(*p)->rb_left;
246 		} else if (result > 0) {
247 			p = &(*p)->rb_right;
248 			leftmost = false;
249 		} else {
250 			/* Identical refs, merge them and free @newref */
251 			struct extent_inode_elem *eie = ref->inode_list;
252 
253 			while (eie && eie->next)
254 				eie = eie->next;
255 
256 			if (!eie)
257 				ref->inode_list = newref->inode_list;
258 			else
259 				eie->next = newref->inode_list;
260 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
261 						     preftree->count);
262 			/*
263 			 * A delayed ref can have newref->count < 0.
264 			 * The ref->count is updated to follow any
265 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
266 			 */
267 			update_share_count(sc, ref->count,
268 					   ref->count + newref->count);
269 			ref->count += newref->count;
270 			free_pref(newref);
271 			return;
272 		}
273 	}
274 
275 	update_share_count(sc, 0, newref->count);
276 	preftree->count++;
277 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
278 	rb_link_node(&newref->rbnode, parent, p);
279 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
280 }
281 
282 /*
283  * Release the entire tree.  We don't care about internal consistency so
284  * just free everything and then reset the tree root.
285  */
286 static void prelim_release(struct preftree *preftree)
287 {
288 	struct prelim_ref *ref, *next_ref;
289 
290 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
291 					     &preftree->root.rb_root, rbnode)
292 		free_pref(ref);
293 
294 	preftree->root = RB_ROOT_CACHED;
295 	preftree->count = 0;
296 }
297 
298 /*
299  * the rules for all callers of this function are:
300  * - obtaining the parent is the goal
301  * - if you add a key, you must know that it is a correct key
302  * - if you cannot add the parent or a correct key, then we will look into the
303  *   block later to set a correct key
304  *
305  * delayed refs
306  * ============
307  *        backref type | shared | indirect | shared | indirect
308  * information         |   tree |     tree |   data |     data
309  * --------------------+--------+----------+--------+----------
310  *      parent logical |    y   |     -    |    -   |     -
311  *      key to resolve |    -   |     y    |    y   |     y
312  *  tree block logical |    -   |     -    |    -   |     -
313  *  root for resolving |    y   |     y    |    y   |     y
314  *
315  * - column 1:       we've the parent -> done
316  * - column 2, 3, 4: we use the key to find the parent
317  *
318  * on disk refs (inline or keyed)
319  * ==============================
320  *        backref type | shared | indirect | shared | indirect
321  * information         |   tree |     tree |   data |     data
322  * --------------------+--------+----------+--------+----------
323  *      parent logical |    y   |     -    |    y   |     -
324  *      key to resolve |    -   |     -    |    -   |     y
325  *  tree block logical |    y   |     y    |    y   |     y
326  *  root for resolving |    -   |     y    |    y   |     y
327  *
328  * - column 1, 3: we've the parent -> done
329  * - column 2:    we take the first key from the block to find the parent
330  *                (see add_missing_keys)
331  * - column 4:    we use the key to find the parent
332  *
333  * additional information that's available but not required to find the parent
334  * block might help in merging entries to gain some speed.
335  */
336 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
337 			  struct preftree *preftree, u64 root_id,
338 			  const struct btrfs_key *key, int level, u64 parent,
339 			  u64 wanted_disk_byte, int count,
340 			  struct share_check *sc, gfp_t gfp_mask)
341 {
342 	struct prelim_ref *ref;
343 
344 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
345 		return 0;
346 
347 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
348 	if (!ref)
349 		return -ENOMEM;
350 
351 	ref->root_id = root_id;
352 	if (key)
353 		ref->key_for_search = *key;
354 	else
355 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
356 
357 	ref->inode_list = NULL;
358 	ref->level = level;
359 	ref->count = count;
360 	ref->parent = parent;
361 	ref->wanted_disk_byte = wanted_disk_byte;
362 	prelim_ref_insert(fs_info, preftree, ref, sc);
363 	return extent_is_shared(sc);
364 }
365 
366 /* direct refs use root == 0, key == NULL */
367 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
368 			  struct preftrees *preftrees, int level, u64 parent,
369 			  u64 wanted_disk_byte, int count,
370 			  struct share_check *sc, gfp_t gfp_mask)
371 {
372 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
373 			      parent, wanted_disk_byte, count, sc, gfp_mask);
374 }
375 
376 /* indirect refs use parent == 0 */
377 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
378 			    struct preftrees *preftrees, u64 root_id,
379 			    const struct btrfs_key *key, int level,
380 			    u64 wanted_disk_byte, int count,
381 			    struct share_check *sc, gfp_t gfp_mask)
382 {
383 	struct preftree *tree = &preftrees->indirect;
384 
385 	if (!key)
386 		tree = &preftrees->indirect_missing_keys;
387 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
388 			      wanted_disk_byte, count, sc, gfp_mask);
389 }
390 
391 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
392 {
393 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
394 	struct rb_node *parent = NULL;
395 	struct prelim_ref *ref = NULL;
396 	struct prelim_ref target = {};
397 	int result;
398 
399 	target.parent = bytenr;
400 
401 	while (*p) {
402 		parent = *p;
403 		ref = rb_entry(parent, struct prelim_ref, rbnode);
404 		result = prelim_ref_compare(ref, &target);
405 
406 		if (result < 0)
407 			p = &(*p)->rb_left;
408 		else if (result > 0)
409 			p = &(*p)->rb_right;
410 		else
411 			return 1;
412 	}
413 	return 0;
414 }
415 
416 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
417 			   struct ulist *parents,
418 			   struct preftrees *preftrees, struct prelim_ref *ref,
419 			   int level, u64 time_seq, const u64 *extent_item_pos,
420 			   bool ignore_offset)
421 {
422 	int ret = 0;
423 	int slot;
424 	struct extent_buffer *eb;
425 	struct btrfs_key key;
426 	struct btrfs_key *key_for_search = &ref->key_for_search;
427 	struct btrfs_file_extent_item *fi;
428 	struct extent_inode_elem *eie = NULL, *old = NULL;
429 	u64 disk_byte;
430 	u64 wanted_disk_byte = ref->wanted_disk_byte;
431 	u64 count = 0;
432 	u64 data_offset;
433 
434 	if (level != 0) {
435 		eb = path->nodes[level];
436 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
437 		if (ret < 0)
438 			return ret;
439 		return 0;
440 	}
441 
442 	/*
443 	 * 1. We normally enter this function with the path already pointing to
444 	 *    the first item to check. But sometimes, we may enter it with
445 	 *    slot == nritems.
446 	 * 2. We are searching for normal backref but bytenr of this leaf
447 	 *    matches shared data backref
448 	 * 3. The leaf owner is not equal to the root we are searching
449 	 *
450 	 * For these cases, go to the next leaf before we continue.
451 	 */
452 	eb = path->nodes[0];
453 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
454 	    is_shared_data_backref(preftrees, eb->start) ||
455 	    ref->root_id != btrfs_header_owner(eb)) {
456 		if (time_seq == BTRFS_SEQ_LAST)
457 			ret = btrfs_next_leaf(root, path);
458 		else
459 			ret = btrfs_next_old_leaf(root, path, time_seq);
460 	}
461 
462 	while (!ret && count < ref->count) {
463 		eb = path->nodes[0];
464 		slot = path->slots[0];
465 
466 		btrfs_item_key_to_cpu(eb, &key, slot);
467 
468 		if (key.objectid != key_for_search->objectid ||
469 		    key.type != BTRFS_EXTENT_DATA_KEY)
470 			break;
471 
472 		/*
473 		 * We are searching for normal backref but bytenr of this leaf
474 		 * matches shared data backref, OR
475 		 * the leaf owner is not equal to the root we are searching for
476 		 */
477 		if (slot == 0 &&
478 		    (is_shared_data_backref(preftrees, eb->start) ||
479 		     ref->root_id != btrfs_header_owner(eb))) {
480 			if (time_seq == BTRFS_SEQ_LAST)
481 				ret = btrfs_next_leaf(root, path);
482 			else
483 				ret = btrfs_next_old_leaf(root, path, time_seq);
484 			continue;
485 		}
486 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
487 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
488 		data_offset = btrfs_file_extent_offset(eb, fi);
489 
490 		if (disk_byte == wanted_disk_byte) {
491 			eie = NULL;
492 			old = NULL;
493 			if (ref->key_for_search.offset == key.offset - data_offset)
494 				count++;
495 			else
496 				goto next;
497 			if (extent_item_pos) {
498 				ret = check_extent_in_eb(&key, eb, fi,
499 						*extent_item_pos,
500 						&eie, ignore_offset);
501 				if (ret < 0)
502 					break;
503 			}
504 			if (ret > 0)
505 				goto next;
506 			ret = ulist_add_merge_ptr(parents, eb->start,
507 						  eie, (void **)&old, GFP_NOFS);
508 			if (ret < 0)
509 				break;
510 			if (!ret && extent_item_pos) {
511 				while (old->next)
512 					old = old->next;
513 				old->next = eie;
514 			}
515 			eie = NULL;
516 		}
517 next:
518 		if (time_seq == BTRFS_SEQ_LAST)
519 			ret = btrfs_next_item(root, path);
520 		else
521 			ret = btrfs_next_old_item(root, path, time_seq);
522 	}
523 
524 	if (ret > 0)
525 		ret = 0;
526 	else if (ret < 0)
527 		free_inode_elem_list(eie);
528 	return ret;
529 }
530 
531 /*
532  * resolve an indirect backref in the form (root_id, key, level)
533  * to a logical address
534  */
535 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
536 				struct btrfs_path *path, u64 time_seq,
537 				struct preftrees *preftrees,
538 				struct prelim_ref *ref, struct ulist *parents,
539 				const u64 *extent_item_pos, bool ignore_offset)
540 {
541 	struct btrfs_root *root;
542 	struct extent_buffer *eb;
543 	int ret = 0;
544 	int root_level;
545 	int level = ref->level;
546 	struct btrfs_key search_key = ref->key_for_search;
547 
548 	/*
549 	 * If we're search_commit_root we could possibly be holding locks on
550 	 * other tree nodes.  This happens when qgroups does backref walks when
551 	 * adding new delayed refs.  To deal with this we need to look in cache
552 	 * for the root, and if we don't find it then we need to search the
553 	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
554 	 * here.
555 	 */
556 	if (path->search_commit_root)
557 		root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
558 	else
559 		root = btrfs_get_fs_root(fs_info, ref->root_id, false);
560 	if (IS_ERR(root)) {
561 		ret = PTR_ERR(root);
562 		goto out_free;
563 	}
564 
565 	if (!path->search_commit_root &&
566 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
567 		ret = -ENOENT;
568 		goto out;
569 	}
570 
571 	if (btrfs_is_testing(fs_info)) {
572 		ret = -ENOENT;
573 		goto out;
574 	}
575 
576 	if (path->search_commit_root)
577 		root_level = btrfs_header_level(root->commit_root);
578 	else if (time_seq == BTRFS_SEQ_LAST)
579 		root_level = btrfs_header_level(root->node);
580 	else
581 		root_level = btrfs_old_root_level(root, time_seq);
582 
583 	if (root_level + 1 == level)
584 		goto out;
585 
586 	/*
587 	 * We can often find data backrefs with an offset that is too large
588 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
589 	 * subtracting a file's offset with the data offset of its
590 	 * corresponding extent data item. This can happen for example in the
591 	 * clone ioctl.
592 	 *
593 	 * So if we detect such case we set the search key's offset to zero to
594 	 * make sure we will find the matching file extent item at
595 	 * add_all_parents(), otherwise we will miss it because the offset
596 	 * taken form the backref is much larger then the offset of the file
597 	 * extent item. This can make us scan a very large number of file
598 	 * extent items, but at least it will not make us miss any.
599 	 *
600 	 * This is an ugly workaround for a behaviour that should have never
601 	 * existed, but it does and a fix for the clone ioctl would touch a lot
602 	 * of places, cause backwards incompatibility and would not fix the
603 	 * problem for extents cloned with older kernels.
604 	 */
605 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
606 	    search_key.offset >= LLONG_MAX)
607 		search_key.offset = 0;
608 	path->lowest_level = level;
609 	if (time_seq == BTRFS_SEQ_LAST)
610 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
611 	else
612 		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
613 
614 	btrfs_debug(fs_info,
615 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
616 		 ref->root_id, level, ref->count, ret,
617 		 ref->key_for_search.objectid, ref->key_for_search.type,
618 		 ref->key_for_search.offset);
619 	if (ret < 0)
620 		goto out;
621 
622 	eb = path->nodes[level];
623 	while (!eb) {
624 		if (WARN_ON(!level)) {
625 			ret = 1;
626 			goto out;
627 		}
628 		level--;
629 		eb = path->nodes[level];
630 	}
631 
632 	ret = add_all_parents(root, path, parents, preftrees, ref, level,
633 			      time_seq, extent_item_pos, ignore_offset);
634 out:
635 	btrfs_put_root(root);
636 out_free:
637 	path->lowest_level = 0;
638 	btrfs_release_path(path);
639 	return ret;
640 }
641 
642 static struct extent_inode_elem *
643 unode_aux_to_inode_list(struct ulist_node *node)
644 {
645 	if (!node)
646 		return NULL;
647 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
648 }
649 
650 /*
651  * We maintain three separate rbtrees: one for direct refs, one for
652  * indirect refs which have a key, and one for indirect refs which do not
653  * have a key. Each tree does merge on insertion.
654  *
655  * Once all of the references are located, we iterate over the tree of
656  * indirect refs with missing keys. An appropriate key is located and
657  * the ref is moved onto the tree for indirect refs. After all missing
658  * keys are thus located, we iterate over the indirect ref tree, resolve
659  * each reference, and then insert the resolved reference onto the
660  * direct tree (merging there too).
661  *
662  * New backrefs (i.e., for parent nodes) are added to the appropriate
663  * rbtree as they are encountered. The new backrefs are subsequently
664  * resolved as above.
665  */
666 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
667 				 struct btrfs_path *path, u64 time_seq,
668 				 struct preftrees *preftrees,
669 				 const u64 *extent_item_pos,
670 				 struct share_check *sc, bool ignore_offset)
671 {
672 	int err;
673 	int ret = 0;
674 	struct ulist *parents;
675 	struct ulist_node *node;
676 	struct ulist_iterator uiter;
677 	struct rb_node *rnode;
678 
679 	parents = ulist_alloc(GFP_NOFS);
680 	if (!parents)
681 		return -ENOMEM;
682 
683 	/*
684 	 * We could trade memory usage for performance here by iterating
685 	 * the tree, allocating new refs for each insertion, and then
686 	 * freeing the entire indirect tree when we're done.  In some test
687 	 * cases, the tree can grow quite large (~200k objects).
688 	 */
689 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
690 		struct prelim_ref *ref;
691 
692 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
693 		if (WARN(ref->parent,
694 			 "BUG: direct ref found in indirect tree")) {
695 			ret = -EINVAL;
696 			goto out;
697 		}
698 
699 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
700 		preftrees->indirect.count--;
701 
702 		if (ref->count == 0) {
703 			free_pref(ref);
704 			continue;
705 		}
706 
707 		if (sc && sc->root_objectid &&
708 		    ref->root_id != sc->root_objectid) {
709 			free_pref(ref);
710 			ret = BACKREF_FOUND_SHARED;
711 			goto out;
712 		}
713 		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
714 					   ref, parents, extent_item_pos,
715 					   ignore_offset);
716 		/*
717 		 * we can only tolerate ENOENT,otherwise,we should catch error
718 		 * and return directly.
719 		 */
720 		if (err == -ENOENT) {
721 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
722 					  NULL);
723 			continue;
724 		} else if (err) {
725 			free_pref(ref);
726 			ret = err;
727 			goto out;
728 		}
729 
730 		/* we put the first parent into the ref at hand */
731 		ULIST_ITER_INIT(&uiter);
732 		node = ulist_next(parents, &uiter);
733 		ref->parent = node ? node->val : 0;
734 		ref->inode_list = unode_aux_to_inode_list(node);
735 
736 		/* Add a prelim_ref(s) for any other parent(s). */
737 		while ((node = ulist_next(parents, &uiter))) {
738 			struct prelim_ref *new_ref;
739 
740 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
741 						   GFP_NOFS);
742 			if (!new_ref) {
743 				free_pref(ref);
744 				ret = -ENOMEM;
745 				goto out;
746 			}
747 			memcpy(new_ref, ref, sizeof(*ref));
748 			new_ref->parent = node->val;
749 			new_ref->inode_list = unode_aux_to_inode_list(node);
750 			prelim_ref_insert(fs_info, &preftrees->direct,
751 					  new_ref, NULL);
752 		}
753 
754 		/*
755 		 * Now it's a direct ref, put it in the direct tree. We must
756 		 * do this last because the ref could be merged/freed here.
757 		 */
758 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
759 
760 		ulist_reinit(parents);
761 		cond_resched();
762 	}
763 out:
764 	ulist_free(parents);
765 	return ret;
766 }
767 
768 /*
769  * read tree blocks and add keys where required.
770  */
771 static int add_missing_keys(struct btrfs_fs_info *fs_info,
772 			    struct preftrees *preftrees, bool lock)
773 {
774 	struct prelim_ref *ref;
775 	struct extent_buffer *eb;
776 	struct preftree *tree = &preftrees->indirect_missing_keys;
777 	struct rb_node *node;
778 
779 	while ((node = rb_first_cached(&tree->root))) {
780 		ref = rb_entry(node, struct prelim_ref, rbnode);
781 		rb_erase_cached(node, &tree->root);
782 
783 		BUG_ON(ref->parent);	/* should not be a direct ref */
784 		BUG_ON(ref->key_for_search.type);
785 		BUG_ON(!ref->wanted_disk_byte);
786 
787 		eb = read_tree_block(fs_info, ref->wanted_disk_byte,
788 				     ref->root_id, 0, ref->level - 1, NULL);
789 		if (IS_ERR(eb)) {
790 			free_pref(ref);
791 			return PTR_ERR(eb);
792 		} else if (!extent_buffer_uptodate(eb)) {
793 			free_pref(ref);
794 			free_extent_buffer(eb);
795 			return -EIO;
796 		}
797 		if (lock)
798 			btrfs_tree_read_lock(eb);
799 		if (btrfs_header_level(eb) == 0)
800 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
801 		else
802 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
803 		if (lock)
804 			btrfs_tree_read_unlock(eb);
805 		free_extent_buffer(eb);
806 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
807 		cond_resched();
808 	}
809 	return 0;
810 }
811 
812 /*
813  * add all currently queued delayed refs from this head whose seq nr is
814  * smaller or equal that seq to the list
815  */
816 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
817 			    struct btrfs_delayed_ref_head *head, u64 seq,
818 			    struct preftrees *preftrees, struct share_check *sc)
819 {
820 	struct btrfs_delayed_ref_node *node;
821 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
822 	struct btrfs_key key;
823 	struct btrfs_key tmp_op_key;
824 	struct rb_node *n;
825 	int count;
826 	int ret = 0;
827 
828 	if (extent_op && extent_op->update_key)
829 		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
830 
831 	spin_lock(&head->lock);
832 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
833 		node = rb_entry(n, struct btrfs_delayed_ref_node,
834 				ref_node);
835 		if (node->seq > seq)
836 			continue;
837 
838 		switch (node->action) {
839 		case BTRFS_ADD_DELAYED_EXTENT:
840 		case BTRFS_UPDATE_DELAYED_HEAD:
841 			WARN_ON(1);
842 			continue;
843 		case BTRFS_ADD_DELAYED_REF:
844 			count = node->ref_mod;
845 			break;
846 		case BTRFS_DROP_DELAYED_REF:
847 			count = node->ref_mod * -1;
848 			break;
849 		default:
850 			BUG();
851 		}
852 		switch (node->type) {
853 		case BTRFS_TREE_BLOCK_REF_KEY: {
854 			/* NORMAL INDIRECT METADATA backref */
855 			struct btrfs_delayed_tree_ref *ref;
856 
857 			ref = btrfs_delayed_node_to_tree_ref(node);
858 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
859 					       &tmp_op_key, ref->level + 1,
860 					       node->bytenr, count, sc,
861 					       GFP_ATOMIC);
862 			break;
863 		}
864 		case BTRFS_SHARED_BLOCK_REF_KEY: {
865 			/* SHARED DIRECT METADATA backref */
866 			struct btrfs_delayed_tree_ref *ref;
867 
868 			ref = btrfs_delayed_node_to_tree_ref(node);
869 
870 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
871 					     ref->parent, node->bytenr, count,
872 					     sc, GFP_ATOMIC);
873 			break;
874 		}
875 		case BTRFS_EXTENT_DATA_REF_KEY: {
876 			/* NORMAL INDIRECT DATA backref */
877 			struct btrfs_delayed_data_ref *ref;
878 			ref = btrfs_delayed_node_to_data_ref(node);
879 
880 			key.objectid = ref->objectid;
881 			key.type = BTRFS_EXTENT_DATA_KEY;
882 			key.offset = ref->offset;
883 
884 			/*
885 			 * Found a inum that doesn't match our known inum, we
886 			 * know it's shared.
887 			 */
888 			if (sc && sc->inum && ref->objectid != sc->inum) {
889 				ret = BACKREF_FOUND_SHARED;
890 				goto out;
891 			}
892 
893 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
894 					       &key, 0, node->bytenr, count, sc,
895 					       GFP_ATOMIC);
896 			break;
897 		}
898 		case BTRFS_SHARED_DATA_REF_KEY: {
899 			/* SHARED DIRECT FULL backref */
900 			struct btrfs_delayed_data_ref *ref;
901 
902 			ref = btrfs_delayed_node_to_data_ref(node);
903 
904 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
905 					     node->bytenr, count, sc,
906 					     GFP_ATOMIC);
907 			break;
908 		}
909 		default:
910 			WARN_ON(1);
911 		}
912 		/*
913 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
914 		 * refs have been checked.
915 		 */
916 		if (ret && (ret != BACKREF_FOUND_SHARED))
917 			break;
918 	}
919 	if (!ret)
920 		ret = extent_is_shared(sc);
921 out:
922 	spin_unlock(&head->lock);
923 	return ret;
924 }
925 
926 /*
927  * add all inline backrefs for bytenr to the list
928  *
929  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
930  */
931 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
932 			   struct btrfs_path *path, u64 bytenr,
933 			   int *info_level, struct preftrees *preftrees,
934 			   struct share_check *sc)
935 {
936 	int ret = 0;
937 	int slot;
938 	struct extent_buffer *leaf;
939 	struct btrfs_key key;
940 	struct btrfs_key found_key;
941 	unsigned long ptr;
942 	unsigned long end;
943 	struct btrfs_extent_item *ei;
944 	u64 flags;
945 	u64 item_size;
946 
947 	/*
948 	 * enumerate all inline refs
949 	 */
950 	leaf = path->nodes[0];
951 	slot = path->slots[0];
952 
953 	item_size = btrfs_item_size(leaf, slot);
954 	BUG_ON(item_size < sizeof(*ei));
955 
956 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
957 	flags = btrfs_extent_flags(leaf, ei);
958 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
959 
960 	ptr = (unsigned long)(ei + 1);
961 	end = (unsigned long)ei + item_size;
962 
963 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
964 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
965 		struct btrfs_tree_block_info *info;
966 
967 		info = (struct btrfs_tree_block_info *)ptr;
968 		*info_level = btrfs_tree_block_level(leaf, info);
969 		ptr += sizeof(struct btrfs_tree_block_info);
970 		BUG_ON(ptr > end);
971 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
972 		*info_level = found_key.offset;
973 	} else {
974 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
975 	}
976 
977 	while (ptr < end) {
978 		struct btrfs_extent_inline_ref *iref;
979 		u64 offset;
980 		int type;
981 
982 		iref = (struct btrfs_extent_inline_ref *)ptr;
983 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
984 							BTRFS_REF_TYPE_ANY);
985 		if (type == BTRFS_REF_TYPE_INVALID)
986 			return -EUCLEAN;
987 
988 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
989 
990 		switch (type) {
991 		case BTRFS_SHARED_BLOCK_REF_KEY:
992 			ret = add_direct_ref(fs_info, preftrees,
993 					     *info_level + 1, offset,
994 					     bytenr, 1, NULL, GFP_NOFS);
995 			break;
996 		case BTRFS_SHARED_DATA_REF_KEY: {
997 			struct btrfs_shared_data_ref *sdref;
998 			int count;
999 
1000 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1001 			count = btrfs_shared_data_ref_count(leaf, sdref);
1002 
1003 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
1004 					     bytenr, count, sc, GFP_NOFS);
1005 			break;
1006 		}
1007 		case BTRFS_TREE_BLOCK_REF_KEY:
1008 			ret = add_indirect_ref(fs_info, preftrees, offset,
1009 					       NULL, *info_level + 1,
1010 					       bytenr, 1, NULL, GFP_NOFS);
1011 			break;
1012 		case BTRFS_EXTENT_DATA_REF_KEY: {
1013 			struct btrfs_extent_data_ref *dref;
1014 			int count;
1015 			u64 root;
1016 
1017 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1018 			count = btrfs_extent_data_ref_count(leaf, dref);
1019 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1020 								      dref);
1021 			key.type = BTRFS_EXTENT_DATA_KEY;
1022 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1023 
1024 			if (sc && sc->inum && key.objectid != sc->inum) {
1025 				ret = BACKREF_FOUND_SHARED;
1026 				break;
1027 			}
1028 
1029 			root = btrfs_extent_data_ref_root(leaf, dref);
1030 
1031 			ret = add_indirect_ref(fs_info, preftrees, root,
1032 					       &key, 0, bytenr, count,
1033 					       sc, GFP_NOFS);
1034 			break;
1035 		}
1036 		default:
1037 			WARN_ON(1);
1038 		}
1039 		if (ret)
1040 			return ret;
1041 		ptr += btrfs_extent_inline_ref_size(type);
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 /*
1048  * add all non-inline backrefs for bytenr to the list
1049  *
1050  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1051  */
1052 static int add_keyed_refs(struct btrfs_root *extent_root,
1053 			  struct btrfs_path *path, u64 bytenr,
1054 			  int info_level, struct preftrees *preftrees,
1055 			  struct share_check *sc)
1056 {
1057 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1058 	int ret;
1059 	int slot;
1060 	struct extent_buffer *leaf;
1061 	struct btrfs_key key;
1062 
1063 	while (1) {
1064 		ret = btrfs_next_item(extent_root, path);
1065 		if (ret < 0)
1066 			break;
1067 		if (ret) {
1068 			ret = 0;
1069 			break;
1070 		}
1071 
1072 		slot = path->slots[0];
1073 		leaf = path->nodes[0];
1074 		btrfs_item_key_to_cpu(leaf, &key, slot);
1075 
1076 		if (key.objectid != bytenr)
1077 			break;
1078 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1079 			continue;
1080 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1081 			break;
1082 
1083 		switch (key.type) {
1084 		case BTRFS_SHARED_BLOCK_REF_KEY:
1085 			/* SHARED DIRECT METADATA backref */
1086 			ret = add_direct_ref(fs_info, preftrees,
1087 					     info_level + 1, key.offset,
1088 					     bytenr, 1, NULL, GFP_NOFS);
1089 			break;
1090 		case BTRFS_SHARED_DATA_REF_KEY: {
1091 			/* SHARED DIRECT FULL backref */
1092 			struct btrfs_shared_data_ref *sdref;
1093 			int count;
1094 
1095 			sdref = btrfs_item_ptr(leaf, slot,
1096 					      struct btrfs_shared_data_ref);
1097 			count = btrfs_shared_data_ref_count(leaf, sdref);
1098 			ret = add_direct_ref(fs_info, preftrees, 0,
1099 					     key.offset, bytenr, count,
1100 					     sc, GFP_NOFS);
1101 			break;
1102 		}
1103 		case BTRFS_TREE_BLOCK_REF_KEY:
1104 			/* NORMAL INDIRECT METADATA backref */
1105 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1106 					       NULL, info_level + 1, bytenr,
1107 					       1, NULL, GFP_NOFS);
1108 			break;
1109 		case BTRFS_EXTENT_DATA_REF_KEY: {
1110 			/* NORMAL INDIRECT DATA backref */
1111 			struct btrfs_extent_data_ref *dref;
1112 			int count;
1113 			u64 root;
1114 
1115 			dref = btrfs_item_ptr(leaf, slot,
1116 					      struct btrfs_extent_data_ref);
1117 			count = btrfs_extent_data_ref_count(leaf, dref);
1118 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1119 								      dref);
1120 			key.type = BTRFS_EXTENT_DATA_KEY;
1121 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1122 
1123 			if (sc && sc->inum && key.objectid != sc->inum) {
1124 				ret = BACKREF_FOUND_SHARED;
1125 				break;
1126 			}
1127 
1128 			root = btrfs_extent_data_ref_root(leaf, dref);
1129 			ret = add_indirect_ref(fs_info, preftrees, root,
1130 					       &key, 0, bytenr, count,
1131 					       sc, GFP_NOFS);
1132 			break;
1133 		}
1134 		default:
1135 			WARN_ON(1);
1136 		}
1137 		if (ret)
1138 			return ret;
1139 
1140 	}
1141 
1142 	return ret;
1143 }
1144 
1145 /*
1146  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1147  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1148  * indirect refs to their parent bytenr.
1149  * When roots are found, they're added to the roots list
1150  *
1151  * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
1152  * behave much like trans == NULL case, the difference only lies in it will not
1153  * commit root.
1154  * The special case is for qgroup to search roots in commit_transaction().
1155  *
1156  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1157  * shared extent is detected.
1158  *
1159  * Otherwise this returns 0 for success and <0 for an error.
1160  *
1161  * If ignore_offset is set to false, only extent refs whose offsets match
1162  * extent_item_pos are returned.  If true, every extent ref is returned
1163  * and extent_item_pos is ignored.
1164  *
1165  * FIXME some caching might speed things up
1166  */
1167 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1168 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1169 			     u64 time_seq, struct ulist *refs,
1170 			     struct ulist *roots, const u64 *extent_item_pos,
1171 			     struct share_check *sc, bool ignore_offset)
1172 {
1173 	struct btrfs_root *root = fs_info->extent_root;
1174 	struct btrfs_key key;
1175 	struct btrfs_path *path;
1176 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1177 	struct btrfs_delayed_ref_head *head;
1178 	int info_level = 0;
1179 	int ret;
1180 	struct prelim_ref *ref;
1181 	struct rb_node *node;
1182 	struct extent_inode_elem *eie = NULL;
1183 	struct preftrees preftrees = {
1184 		.direct = PREFTREE_INIT,
1185 		.indirect = PREFTREE_INIT,
1186 		.indirect_missing_keys = PREFTREE_INIT
1187 	};
1188 
1189 	key.objectid = bytenr;
1190 	key.offset = (u64)-1;
1191 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1192 		key.type = BTRFS_METADATA_ITEM_KEY;
1193 	else
1194 		key.type = BTRFS_EXTENT_ITEM_KEY;
1195 
1196 	path = btrfs_alloc_path();
1197 	if (!path)
1198 		return -ENOMEM;
1199 	if (!trans) {
1200 		path->search_commit_root = 1;
1201 		path->skip_locking = 1;
1202 	}
1203 
1204 	if (time_seq == BTRFS_SEQ_LAST)
1205 		path->skip_locking = 1;
1206 
1207 again:
1208 	head = NULL;
1209 
1210 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1211 	if (ret < 0)
1212 		goto out;
1213 	BUG_ON(ret == 0);
1214 
1215 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1216 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1217 	    time_seq != BTRFS_SEQ_LAST) {
1218 #else
1219 	if (trans && time_seq != BTRFS_SEQ_LAST) {
1220 #endif
1221 		/*
1222 		 * We have a specific time_seq we care about and trans which
1223 		 * means we have the path lock, we need to grab the ref head and
1224 		 * lock it so we have a consistent view of the refs at the given
1225 		 * time.
1226 		 */
1227 		delayed_refs = &trans->transaction->delayed_refs;
1228 		spin_lock(&delayed_refs->lock);
1229 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1230 		if (head) {
1231 			if (!mutex_trylock(&head->mutex)) {
1232 				refcount_inc(&head->refs);
1233 				spin_unlock(&delayed_refs->lock);
1234 
1235 				btrfs_release_path(path);
1236 
1237 				/*
1238 				 * Mutex was contended, block until it's
1239 				 * released and try again
1240 				 */
1241 				mutex_lock(&head->mutex);
1242 				mutex_unlock(&head->mutex);
1243 				btrfs_put_delayed_ref_head(head);
1244 				goto again;
1245 			}
1246 			spin_unlock(&delayed_refs->lock);
1247 			ret = add_delayed_refs(fs_info, head, time_seq,
1248 					       &preftrees, sc);
1249 			mutex_unlock(&head->mutex);
1250 			if (ret)
1251 				goto out;
1252 		} else {
1253 			spin_unlock(&delayed_refs->lock);
1254 		}
1255 	}
1256 
1257 	if (path->slots[0]) {
1258 		struct extent_buffer *leaf;
1259 		int slot;
1260 
1261 		path->slots[0]--;
1262 		leaf = path->nodes[0];
1263 		slot = path->slots[0];
1264 		btrfs_item_key_to_cpu(leaf, &key, slot);
1265 		if (key.objectid == bytenr &&
1266 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1267 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1268 			ret = add_inline_refs(fs_info, path, bytenr,
1269 					      &info_level, &preftrees, sc);
1270 			if (ret)
1271 				goto out;
1272 			ret = add_keyed_refs(root, path, bytenr, info_level,
1273 					     &preftrees, sc);
1274 			if (ret)
1275 				goto out;
1276 		}
1277 	}
1278 
1279 	btrfs_release_path(path);
1280 
1281 	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1282 	if (ret)
1283 		goto out;
1284 
1285 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1286 
1287 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1288 				    extent_item_pos, sc, ignore_offset);
1289 	if (ret)
1290 		goto out;
1291 
1292 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1293 
1294 	/*
1295 	 * This walks the tree of merged and resolved refs. Tree blocks are
1296 	 * read in as needed. Unique entries are added to the ulist, and
1297 	 * the list of found roots is updated.
1298 	 *
1299 	 * We release the entire tree in one go before returning.
1300 	 */
1301 	node = rb_first_cached(&preftrees.direct.root);
1302 	while (node) {
1303 		ref = rb_entry(node, struct prelim_ref, rbnode);
1304 		node = rb_next(&ref->rbnode);
1305 		/*
1306 		 * ref->count < 0 can happen here if there are delayed
1307 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1308 		 * prelim_ref_insert() relies on this when merging
1309 		 * identical refs to keep the overall count correct.
1310 		 * prelim_ref_insert() will merge only those refs
1311 		 * which compare identically.  Any refs having
1312 		 * e.g. different offsets would not be merged,
1313 		 * and would retain their original ref->count < 0.
1314 		 */
1315 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1316 			if (sc && sc->root_objectid &&
1317 			    ref->root_id != sc->root_objectid) {
1318 				ret = BACKREF_FOUND_SHARED;
1319 				goto out;
1320 			}
1321 
1322 			/* no parent == root of tree */
1323 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1324 			if (ret < 0)
1325 				goto out;
1326 		}
1327 		if (ref->count && ref->parent) {
1328 			if (extent_item_pos && !ref->inode_list &&
1329 			    ref->level == 0) {
1330 				struct extent_buffer *eb;
1331 
1332 				eb = read_tree_block(fs_info, ref->parent, 0,
1333 						     0, ref->level, NULL);
1334 				if (IS_ERR(eb)) {
1335 					ret = PTR_ERR(eb);
1336 					goto out;
1337 				} else if (!extent_buffer_uptodate(eb)) {
1338 					free_extent_buffer(eb);
1339 					ret = -EIO;
1340 					goto out;
1341 				}
1342 
1343 				if (!path->skip_locking)
1344 					btrfs_tree_read_lock(eb);
1345 				ret = find_extent_in_eb(eb, bytenr,
1346 							*extent_item_pos, &eie, ignore_offset);
1347 				if (!path->skip_locking)
1348 					btrfs_tree_read_unlock(eb);
1349 				free_extent_buffer(eb);
1350 				if (ret < 0)
1351 					goto out;
1352 				ref->inode_list = eie;
1353 			}
1354 			ret = ulist_add_merge_ptr(refs, ref->parent,
1355 						  ref->inode_list,
1356 						  (void **)&eie, GFP_NOFS);
1357 			if (ret < 0)
1358 				goto out;
1359 			if (!ret && extent_item_pos) {
1360 				/*
1361 				 * we've recorded that parent, so we must extend
1362 				 * its inode list here
1363 				 */
1364 				BUG_ON(!eie);
1365 				while (eie->next)
1366 					eie = eie->next;
1367 				eie->next = ref->inode_list;
1368 			}
1369 			eie = NULL;
1370 		}
1371 		cond_resched();
1372 	}
1373 
1374 out:
1375 	btrfs_free_path(path);
1376 
1377 	prelim_release(&preftrees.direct);
1378 	prelim_release(&preftrees.indirect);
1379 	prelim_release(&preftrees.indirect_missing_keys);
1380 
1381 	if (ret < 0)
1382 		free_inode_elem_list(eie);
1383 	return ret;
1384 }
1385 
1386 static void free_leaf_list(struct ulist *blocks)
1387 {
1388 	struct ulist_node *node = NULL;
1389 	struct extent_inode_elem *eie;
1390 	struct ulist_iterator uiter;
1391 
1392 	ULIST_ITER_INIT(&uiter);
1393 	while ((node = ulist_next(blocks, &uiter))) {
1394 		if (!node->aux)
1395 			continue;
1396 		eie = unode_aux_to_inode_list(node);
1397 		free_inode_elem_list(eie);
1398 		node->aux = 0;
1399 	}
1400 
1401 	ulist_free(blocks);
1402 }
1403 
1404 /*
1405  * Finds all leafs with a reference to the specified combination of bytenr and
1406  * offset. key_list_head will point to a list of corresponding keys (caller must
1407  * free each list element). The leafs will be stored in the leafs ulist, which
1408  * must be freed with ulist_free.
1409  *
1410  * returns 0 on success, <0 on error
1411  */
1412 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1413 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1414 			 u64 time_seq, struct ulist **leafs,
1415 			 const u64 *extent_item_pos, bool ignore_offset)
1416 {
1417 	int ret;
1418 
1419 	*leafs = ulist_alloc(GFP_NOFS);
1420 	if (!*leafs)
1421 		return -ENOMEM;
1422 
1423 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1424 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1425 	if (ret < 0 && ret != -ENOENT) {
1426 		free_leaf_list(*leafs);
1427 		return ret;
1428 	}
1429 
1430 	return 0;
1431 }
1432 
1433 /*
1434  * walk all backrefs for a given extent to find all roots that reference this
1435  * extent. Walking a backref means finding all extents that reference this
1436  * extent and in turn walk the backrefs of those, too. Naturally this is a
1437  * recursive process, but here it is implemented in an iterative fashion: We
1438  * find all referencing extents for the extent in question and put them on a
1439  * list. In turn, we find all referencing extents for those, further appending
1440  * to the list. The way we iterate the list allows adding more elements after
1441  * the current while iterating. The process stops when we reach the end of the
1442  * list. Found roots are added to the roots list.
1443  *
1444  * returns 0 on success, < 0 on error.
1445  */
1446 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1447 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1448 				     u64 time_seq, struct ulist **roots,
1449 				     bool ignore_offset)
1450 {
1451 	struct ulist *tmp;
1452 	struct ulist_node *node = NULL;
1453 	struct ulist_iterator uiter;
1454 	int ret;
1455 
1456 	tmp = ulist_alloc(GFP_NOFS);
1457 	if (!tmp)
1458 		return -ENOMEM;
1459 	*roots = ulist_alloc(GFP_NOFS);
1460 	if (!*roots) {
1461 		ulist_free(tmp);
1462 		return -ENOMEM;
1463 	}
1464 
1465 	ULIST_ITER_INIT(&uiter);
1466 	while (1) {
1467 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1468 					tmp, *roots, NULL, NULL, ignore_offset);
1469 		if (ret < 0 && ret != -ENOENT) {
1470 			ulist_free(tmp);
1471 			ulist_free(*roots);
1472 			*roots = NULL;
1473 			return ret;
1474 		}
1475 		node = ulist_next(tmp, &uiter);
1476 		if (!node)
1477 			break;
1478 		bytenr = node->val;
1479 		cond_resched();
1480 	}
1481 
1482 	ulist_free(tmp);
1483 	return 0;
1484 }
1485 
1486 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1487 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1488 			 u64 time_seq, struct ulist **roots,
1489 			 bool skip_commit_root_sem)
1490 {
1491 	int ret;
1492 
1493 	if (!trans && !skip_commit_root_sem)
1494 		down_read(&fs_info->commit_root_sem);
1495 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1496 					time_seq, roots, false);
1497 	if (!trans && !skip_commit_root_sem)
1498 		up_read(&fs_info->commit_root_sem);
1499 	return ret;
1500 }
1501 
1502 /**
1503  * Check if an extent is shared or not
1504  *
1505  * @root:   root inode belongs to
1506  * @inum:   inode number of the inode whose extent we are checking
1507  * @bytenr: logical bytenr of the extent we are checking
1508  * @roots:  list of roots this extent is shared among
1509  * @tmp:    temporary list used for iteration
1510  *
1511  * btrfs_check_shared uses the backref walking code but will short
1512  * circuit as soon as it finds a root or inode that doesn't match the
1513  * one passed in. This provides a significant performance benefit for
1514  * callers (such as fiemap) which want to know whether the extent is
1515  * shared but do not need a ref count.
1516  *
1517  * This attempts to attach to the running transaction in order to account for
1518  * delayed refs, but continues on even when no running transaction exists.
1519  *
1520  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1521  */
1522 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1523 		struct ulist *roots, struct ulist *tmp)
1524 {
1525 	struct btrfs_fs_info *fs_info = root->fs_info;
1526 	struct btrfs_trans_handle *trans;
1527 	struct ulist_iterator uiter;
1528 	struct ulist_node *node;
1529 	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1530 	int ret = 0;
1531 	struct share_check shared = {
1532 		.root_objectid = root->root_key.objectid,
1533 		.inum = inum,
1534 		.share_count = 0,
1535 	};
1536 
1537 	ulist_init(roots);
1538 	ulist_init(tmp);
1539 
1540 	trans = btrfs_join_transaction_nostart(root);
1541 	if (IS_ERR(trans)) {
1542 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1543 			ret = PTR_ERR(trans);
1544 			goto out;
1545 		}
1546 		trans = NULL;
1547 		down_read(&fs_info->commit_root_sem);
1548 	} else {
1549 		btrfs_get_tree_mod_seq(fs_info, &elem);
1550 	}
1551 
1552 	ULIST_ITER_INIT(&uiter);
1553 	while (1) {
1554 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1555 					roots, NULL, &shared, false);
1556 		if (ret == BACKREF_FOUND_SHARED) {
1557 			/* this is the only condition under which we return 1 */
1558 			ret = 1;
1559 			break;
1560 		}
1561 		if (ret < 0 && ret != -ENOENT)
1562 			break;
1563 		ret = 0;
1564 		node = ulist_next(tmp, &uiter);
1565 		if (!node)
1566 			break;
1567 		bytenr = node->val;
1568 		shared.share_count = 0;
1569 		cond_resched();
1570 	}
1571 
1572 	if (trans) {
1573 		btrfs_put_tree_mod_seq(fs_info, &elem);
1574 		btrfs_end_transaction(trans);
1575 	} else {
1576 		up_read(&fs_info->commit_root_sem);
1577 	}
1578 out:
1579 	ulist_release(roots);
1580 	ulist_release(tmp);
1581 	return ret;
1582 }
1583 
1584 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1585 			  u64 start_off, struct btrfs_path *path,
1586 			  struct btrfs_inode_extref **ret_extref,
1587 			  u64 *found_off)
1588 {
1589 	int ret, slot;
1590 	struct btrfs_key key;
1591 	struct btrfs_key found_key;
1592 	struct btrfs_inode_extref *extref;
1593 	const struct extent_buffer *leaf;
1594 	unsigned long ptr;
1595 
1596 	key.objectid = inode_objectid;
1597 	key.type = BTRFS_INODE_EXTREF_KEY;
1598 	key.offset = start_off;
1599 
1600 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1601 	if (ret < 0)
1602 		return ret;
1603 
1604 	while (1) {
1605 		leaf = path->nodes[0];
1606 		slot = path->slots[0];
1607 		if (slot >= btrfs_header_nritems(leaf)) {
1608 			/*
1609 			 * If the item at offset is not found,
1610 			 * btrfs_search_slot will point us to the slot
1611 			 * where it should be inserted. In our case
1612 			 * that will be the slot directly before the
1613 			 * next INODE_REF_KEY_V2 item. In the case
1614 			 * that we're pointing to the last slot in a
1615 			 * leaf, we must move one leaf over.
1616 			 */
1617 			ret = btrfs_next_leaf(root, path);
1618 			if (ret) {
1619 				if (ret >= 1)
1620 					ret = -ENOENT;
1621 				break;
1622 			}
1623 			continue;
1624 		}
1625 
1626 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1627 
1628 		/*
1629 		 * Check that we're still looking at an extended ref key for
1630 		 * this particular objectid. If we have different
1631 		 * objectid or type then there are no more to be found
1632 		 * in the tree and we can exit.
1633 		 */
1634 		ret = -ENOENT;
1635 		if (found_key.objectid != inode_objectid)
1636 			break;
1637 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1638 			break;
1639 
1640 		ret = 0;
1641 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1642 		extref = (struct btrfs_inode_extref *)ptr;
1643 		*ret_extref = extref;
1644 		if (found_off)
1645 			*found_off = found_key.offset;
1646 		break;
1647 	}
1648 
1649 	return ret;
1650 }
1651 
1652 /*
1653  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1654  * Elements of the path are separated by '/' and the path is guaranteed to be
1655  * 0-terminated. the path is only given within the current file system.
1656  * Therefore, it never starts with a '/'. the caller is responsible to provide
1657  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1658  * the start point of the resulting string is returned. this pointer is within
1659  * dest, normally.
1660  * in case the path buffer would overflow, the pointer is decremented further
1661  * as if output was written to the buffer, though no more output is actually
1662  * generated. that way, the caller can determine how much space would be
1663  * required for the path to fit into the buffer. in that case, the returned
1664  * value will be smaller than dest. callers must check this!
1665  */
1666 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1667 			u32 name_len, unsigned long name_off,
1668 			struct extent_buffer *eb_in, u64 parent,
1669 			char *dest, u32 size)
1670 {
1671 	int slot;
1672 	u64 next_inum;
1673 	int ret;
1674 	s64 bytes_left = ((s64)size) - 1;
1675 	struct extent_buffer *eb = eb_in;
1676 	struct btrfs_key found_key;
1677 	struct btrfs_inode_ref *iref;
1678 
1679 	if (bytes_left >= 0)
1680 		dest[bytes_left] = '\0';
1681 
1682 	while (1) {
1683 		bytes_left -= name_len;
1684 		if (bytes_left >= 0)
1685 			read_extent_buffer(eb, dest + bytes_left,
1686 					   name_off, name_len);
1687 		if (eb != eb_in) {
1688 			if (!path->skip_locking)
1689 				btrfs_tree_read_unlock(eb);
1690 			free_extent_buffer(eb);
1691 		}
1692 		ret = btrfs_find_item(fs_root, path, parent, 0,
1693 				BTRFS_INODE_REF_KEY, &found_key);
1694 		if (ret > 0)
1695 			ret = -ENOENT;
1696 		if (ret)
1697 			break;
1698 
1699 		next_inum = found_key.offset;
1700 
1701 		/* regular exit ahead */
1702 		if (parent == next_inum)
1703 			break;
1704 
1705 		slot = path->slots[0];
1706 		eb = path->nodes[0];
1707 		/* make sure we can use eb after releasing the path */
1708 		if (eb != eb_in) {
1709 			path->nodes[0] = NULL;
1710 			path->locks[0] = 0;
1711 		}
1712 		btrfs_release_path(path);
1713 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1714 
1715 		name_len = btrfs_inode_ref_name_len(eb, iref);
1716 		name_off = (unsigned long)(iref + 1);
1717 
1718 		parent = next_inum;
1719 		--bytes_left;
1720 		if (bytes_left >= 0)
1721 			dest[bytes_left] = '/';
1722 	}
1723 
1724 	btrfs_release_path(path);
1725 
1726 	if (ret)
1727 		return ERR_PTR(ret);
1728 
1729 	return dest + bytes_left;
1730 }
1731 
1732 /*
1733  * this makes the path point to (logical EXTENT_ITEM *)
1734  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1735  * tree blocks and <0 on error.
1736  */
1737 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1738 			struct btrfs_path *path, struct btrfs_key *found_key,
1739 			u64 *flags_ret)
1740 {
1741 	int ret;
1742 	u64 flags;
1743 	u64 size = 0;
1744 	u32 item_size;
1745 	const struct extent_buffer *eb;
1746 	struct btrfs_extent_item *ei;
1747 	struct btrfs_key key;
1748 
1749 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1750 		key.type = BTRFS_METADATA_ITEM_KEY;
1751 	else
1752 		key.type = BTRFS_EXTENT_ITEM_KEY;
1753 	key.objectid = logical;
1754 	key.offset = (u64)-1;
1755 
1756 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1757 	if (ret < 0)
1758 		return ret;
1759 
1760 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1761 	if (ret) {
1762 		if (ret > 0)
1763 			ret = -ENOENT;
1764 		return ret;
1765 	}
1766 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1767 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1768 		size = fs_info->nodesize;
1769 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1770 		size = found_key->offset;
1771 
1772 	if (found_key->objectid > logical ||
1773 	    found_key->objectid + size <= logical) {
1774 		btrfs_debug(fs_info,
1775 			"logical %llu is not within any extent", logical);
1776 		return -ENOENT;
1777 	}
1778 
1779 	eb = path->nodes[0];
1780 	item_size = btrfs_item_size(eb, path->slots[0]);
1781 	BUG_ON(item_size < sizeof(*ei));
1782 
1783 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1784 	flags = btrfs_extent_flags(eb, ei);
1785 
1786 	btrfs_debug(fs_info,
1787 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1788 		 logical, logical - found_key->objectid, found_key->objectid,
1789 		 found_key->offset, flags, item_size);
1790 
1791 	WARN_ON(!flags_ret);
1792 	if (flags_ret) {
1793 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1794 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1795 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1796 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1797 		else
1798 			BUG();
1799 		return 0;
1800 	}
1801 
1802 	return -EIO;
1803 }
1804 
1805 /*
1806  * helper function to iterate extent inline refs. ptr must point to a 0 value
1807  * for the first call and may be modified. it is used to track state.
1808  * if more refs exist, 0 is returned and the next call to
1809  * get_extent_inline_ref must pass the modified ptr parameter to get the
1810  * next ref. after the last ref was processed, 1 is returned.
1811  * returns <0 on error
1812  */
1813 static int get_extent_inline_ref(unsigned long *ptr,
1814 				 const struct extent_buffer *eb,
1815 				 const struct btrfs_key *key,
1816 				 const struct btrfs_extent_item *ei,
1817 				 u32 item_size,
1818 				 struct btrfs_extent_inline_ref **out_eiref,
1819 				 int *out_type)
1820 {
1821 	unsigned long end;
1822 	u64 flags;
1823 	struct btrfs_tree_block_info *info;
1824 
1825 	if (!*ptr) {
1826 		/* first call */
1827 		flags = btrfs_extent_flags(eb, ei);
1828 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1829 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1830 				/* a skinny metadata extent */
1831 				*out_eiref =
1832 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1833 			} else {
1834 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1835 				info = (struct btrfs_tree_block_info *)(ei + 1);
1836 				*out_eiref =
1837 				   (struct btrfs_extent_inline_ref *)(info + 1);
1838 			}
1839 		} else {
1840 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1841 		}
1842 		*ptr = (unsigned long)*out_eiref;
1843 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1844 			return -ENOENT;
1845 	}
1846 
1847 	end = (unsigned long)ei + item_size;
1848 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1849 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1850 						     BTRFS_REF_TYPE_ANY);
1851 	if (*out_type == BTRFS_REF_TYPE_INVALID)
1852 		return -EUCLEAN;
1853 
1854 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1855 	WARN_ON(*ptr > end);
1856 	if (*ptr == end)
1857 		return 1; /* last */
1858 
1859 	return 0;
1860 }
1861 
1862 /*
1863  * reads the tree block backref for an extent. tree level and root are returned
1864  * through out_level and out_root. ptr must point to a 0 value for the first
1865  * call and may be modified (see get_extent_inline_ref comment).
1866  * returns 0 if data was provided, 1 if there was no more data to provide or
1867  * <0 on error.
1868  */
1869 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1870 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1871 			    u32 item_size, u64 *out_root, u8 *out_level)
1872 {
1873 	int ret;
1874 	int type;
1875 	struct btrfs_extent_inline_ref *eiref;
1876 
1877 	if (*ptr == (unsigned long)-1)
1878 		return 1;
1879 
1880 	while (1) {
1881 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1882 					      &eiref, &type);
1883 		if (ret < 0)
1884 			return ret;
1885 
1886 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1887 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1888 			break;
1889 
1890 		if (ret == 1)
1891 			return 1;
1892 	}
1893 
1894 	/* we can treat both ref types equally here */
1895 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1896 
1897 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1898 		struct btrfs_tree_block_info *info;
1899 
1900 		info = (struct btrfs_tree_block_info *)(ei + 1);
1901 		*out_level = btrfs_tree_block_level(eb, info);
1902 	} else {
1903 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1904 		*out_level = (u8)key->offset;
1905 	}
1906 
1907 	if (ret == 1)
1908 		*ptr = (unsigned long)-1;
1909 
1910 	return 0;
1911 }
1912 
1913 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1914 			     struct extent_inode_elem *inode_list,
1915 			     u64 root, u64 extent_item_objectid,
1916 			     iterate_extent_inodes_t *iterate, void *ctx)
1917 {
1918 	struct extent_inode_elem *eie;
1919 	int ret = 0;
1920 
1921 	for (eie = inode_list; eie; eie = eie->next) {
1922 		btrfs_debug(fs_info,
1923 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1924 			    extent_item_objectid, eie->inum,
1925 			    eie->offset, root);
1926 		ret = iterate(eie->inum, eie->offset, root, ctx);
1927 		if (ret) {
1928 			btrfs_debug(fs_info,
1929 				    "stopping iteration for %llu due to ret=%d",
1930 				    extent_item_objectid, ret);
1931 			break;
1932 		}
1933 	}
1934 
1935 	return ret;
1936 }
1937 
1938 /*
1939  * calls iterate() for every inode that references the extent identified by
1940  * the given parameters.
1941  * when the iterator function returns a non-zero value, iteration stops.
1942  */
1943 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1944 				u64 extent_item_objectid, u64 extent_item_pos,
1945 				int search_commit_root,
1946 				iterate_extent_inodes_t *iterate, void *ctx,
1947 				bool ignore_offset)
1948 {
1949 	int ret;
1950 	struct btrfs_trans_handle *trans = NULL;
1951 	struct ulist *refs = NULL;
1952 	struct ulist *roots = NULL;
1953 	struct ulist_node *ref_node = NULL;
1954 	struct ulist_node *root_node = NULL;
1955 	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
1956 	struct ulist_iterator ref_uiter;
1957 	struct ulist_iterator root_uiter;
1958 
1959 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1960 			extent_item_objectid);
1961 
1962 	if (!search_commit_root) {
1963 		trans = btrfs_attach_transaction(fs_info->extent_root);
1964 		if (IS_ERR(trans)) {
1965 			if (PTR_ERR(trans) != -ENOENT &&
1966 			    PTR_ERR(trans) != -EROFS)
1967 				return PTR_ERR(trans);
1968 			trans = NULL;
1969 		}
1970 	}
1971 
1972 	if (trans)
1973 		btrfs_get_tree_mod_seq(fs_info, &seq_elem);
1974 	else
1975 		down_read(&fs_info->commit_root_sem);
1976 
1977 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1978 				   seq_elem.seq, &refs,
1979 				   &extent_item_pos, ignore_offset);
1980 	if (ret)
1981 		goto out;
1982 
1983 	ULIST_ITER_INIT(&ref_uiter);
1984 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1985 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1986 						seq_elem.seq, &roots,
1987 						ignore_offset);
1988 		if (ret)
1989 			break;
1990 		ULIST_ITER_INIT(&root_uiter);
1991 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1992 			btrfs_debug(fs_info,
1993 				    "root %llu references leaf %llu, data list %#llx",
1994 				    root_node->val, ref_node->val,
1995 				    ref_node->aux);
1996 			ret = iterate_leaf_refs(fs_info,
1997 						(struct extent_inode_elem *)
1998 						(uintptr_t)ref_node->aux,
1999 						root_node->val,
2000 						extent_item_objectid,
2001 						iterate, ctx);
2002 		}
2003 		ulist_free(roots);
2004 	}
2005 
2006 	free_leaf_list(refs);
2007 out:
2008 	if (trans) {
2009 		btrfs_put_tree_mod_seq(fs_info, &seq_elem);
2010 		btrfs_end_transaction(trans);
2011 	} else {
2012 		up_read(&fs_info->commit_root_sem);
2013 	}
2014 
2015 	return ret;
2016 }
2017 
2018 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2019 				struct btrfs_path *path,
2020 				iterate_extent_inodes_t *iterate, void *ctx,
2021 				bool ignore_offset)
2022 {
2023 	int ret;
2024 	u64 extent_item_pos;
2025 	u64 flags = 0;
2026 	struct btrfs_key found_key;
2027 	int search_commit_root = path->search_commit_root;
2028 
2029 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2030 	btrfs_release_path(path);
2031 	if (ret < 0)
2032 		return ret;
2033 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2034 		return -EINVAL;
2035 
2036 	extent_item_pos = logical - found_key.objectid;
2037 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2038 					extent_item_pos, search_commit_root,
2039 					iterate, ctx, ignore_offset);
2040 
2041 	return ret;
2042 }
2043 
2044 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2045 			      struct extent_buffer *eb, void *ctx);
2046 
2047 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2048 			      struct btrfs_path *path,
2049 			      iterate_irefs_t *iterate, void *ctx)
2050 {
2051 	int ret = 0;
2052 	int slot;
2053 	u32 cur;
2054 	u32 len;
2055 	u32 name_len;
2056 	u64 parent = 0;
2057 	int found = 0;
2058 	struct extent_buffer *eb;
2059 	struct btrfs_inode_ref *iref;
2060 	struct btrfs_key found_key;
2061 
2062 	while (!ret) {
2063 		ret = btrfs_find_item(fs_root, path, inum,
2064 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2065 				&found_key);
2066 
2067 		if (ret < 0)
2068 			break;
2069 		if (ret) {
2070 			ret = found ? 0 : -ENOENT;
2071 			break;
2072 		}
2073 		++found;
2074 
2075 		parent = found_key.offset;
2076 		slot = path->slots[0];
2077 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2078 		if (!eb) {
2079 			ret = -ENOMEM;
2080 			break;
2081 		}
2082 		btrfs_release_path(path);
2083 
2084 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2085 
2086 		for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2087 			name_len = btrfs_inode_ref_name_len(eb, iref);
2088 			/* path must be released before calling iterate()! */
2089 			btrfs_debug(fs_root->fs_info,
2090 				"following ref at offset %u for inode %llu in tree %llu",
2091 				cur, found_key.objectid,
2092 				fs_root->root_key.objectid);
2093 			ret = iterate(parent, name_len,
2094 				      (unsigned long)(iref + 1), eb, ctx);
2095 			if (ret)
2096 				break;
2097 			len = sizeof(*iref) + name_len;
2098 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2099 		}
2100 		free_extent_buffer(eb);
2101 	}
2102 
2103 	btrfs_release_path(path);
2104 
2105 	return ret;
2106 }
2107 
2108 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2109 				 struct btrfs_path *path,
2110 				 iterate_irefs_t *iterate, void *ctx)
2111 {
2112 	int ret;
2113 	int slot;
2114 	u64 offset = 0;
2115 	u64 parent;
2116 	int found = 0;
2117 	struct extent_buffer *eb;
2118 	struct btrfs_inode_extref *extref;
2119 	u32 item_size;
2120 	u32 cur_offset;
2121 	unsigned long ptr;
2122 
2123 	while (1) {
2124 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2125 					    &offset);
2126 		if (ret < 0)
2127 			break;
2128 		if (ret) {
2129 			ret = found ? 0 : -ENOENT;
2130 			break;
2131 		}
2132 		++found;
2133 
2134 		slot = path->slots[0];
2135 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2136 		if (!eb) {
2137 			ret = -ENOMEM;
2138 			break;
2139 		}
2140 		btrfs_release_path(path);
2141 
2142 		item_size = btrfs_item_size(eb, slot);
2143 		ptr = btrfs_item_ptr_offset(eb, slot);
2144 		cur_offset = 0;
2145 
2146 		while (cur_offset < item_size) {
2147 			u32 name_len;
2148 
2149 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2150 			parent = btrfs_inode_extref_parent(eb, extref);
2151 			name_len = btrfs_inode_extref_name_len(eb, extref);
2152 			ret = iterate(parent, name_len,
2153 				      (unsigned long)&extref->name, eb, ctx);
2154 			if (ret)
2155 				break;
2156 
2157 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2158 			cur_offset += sizeof(*extref);
2159 		}
2160 		free_extent_buffer(eb);
2161 
2162 		offset++;
2163 	}
2164 
2165 	btrfs_release_path(path);
2166 
2167 	return ret;
2168 }
2169 
2170 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2171 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2172 			 void *ctx)
2173 {
2174 	int ret;
2175 	int found_refs = 0;
2176 
2177 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2178 	if (!ret)
2179 		++found_refs;
2180 	else if (ret != -ENOENT)
2181 		return ret;
2182 
2183 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2184 	if (ret == -ENOENT && found_refs)
2185 		return 0;
2186 
2187 	return ret;
2188 }
2189 
2190 /*
2191  * returns 0 if the path could be dumped (probably truncated)
2192  * returns <0 in case of an error
2193  */
2194 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2195 			 struct extent_buffer *eb, void *ctx)
2196 {
2197 	struct inode_fs_paths *ipath = ctx;
2198 	char *fspath;
2199 	char *fspath_min;
2200 	int i = ipath->fspath->elem_cnt;
2201 	const int s_ptr = sizeof(char *);
2202 	u32 bytes_left;
2203 
2204 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2205 					ipath->fspath->bytes_left - s_ptr : 0;
2206 
2207 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2208 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2209 				   name_off, eb, inum, fspath_min, bytes_left);
2210 	if (IS_ERR(fspath))
2211 		return PTR_ERR(fspath);
2212 
2213 	if (fspath > fspath_min) {
2214 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2215 		++ipath->fspath->elem_cnt;
2216 		ipath->fspath->bytes_left = fspath - fspath_min;
2217 	} else {
2218 		++ipath->fspath->elem_missed;
2219 		ipath->fspath->bytes_missing += fspath_min - fspath;
2220 		ipath->fspath->bytes_left = 0;
2221 	}
2222 
2223 	return 0;
2224 }
2225 
2226 /*
2227  * this dumps all file system paths to the inode into the ipath struct, provided
2228  * is has been created large enough. each path is zero-terminated and accessed
2229  * from ipath->fspath->val[i].
2230  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2231  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2232  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2233  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2234  * have been needed to return all paths.
2235  */
2236 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2237 {
2238 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2239 			     inode_to_path, ipath);
2240 }
2241 
2242 struct btrfs_data_container *init_data_container(u32 total_bytes)
2243 {
2244 	struct btrfs_data_container *data;
2245 	size_t alloc_bytes;
2246 
2247 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2248 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2249 	if (!data)
2250 		return ERR_PTR(-ENOMEM);
2251 
2252 	if (total_bytes >= sizeof(*data)) {
2253 		data->bytes_left = total_bytes - sizeof(*data);
2254 		data->bytes_missing = 0;
2255 	} else {
2256 		data->bytes_missing = sizeof(*data) - total_bytes;
2257 		data->bytes_left = 0;
2258 	}
2259 
2260 	data->elem_cnt = 0;
2261 	data->elem_missed = 0;
2262 
2263 	return data;
2264 }
2265 
2266 /*
2267  * allocates space to return multiple file system paths for an inode.
2268  * total_bytes to allocate are passed, note that space usable for actual path
2269  * information will be total_bytes - sizeof(struct inode_fs_paths).
2270  * the returned pointer must be freed with free_ipath() in the end.
2271  */
2272 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2273 					struct btrfs_path *path)
2274 {
2275 	struct inode_fs_paths *ifp;
2276 	struct btrfs_data_container *fspath;
2277 
2278 	fspath = init_data_container(total_bytes);
2279 	if (IS_ERR(fspath))
2280 		return ERR_CAST(fspath);
2281 
2282 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2283 	if (!ifp) {
2284 		kvfree(fspath);
2285 		return ERR_PTR(-ENOMEM);
2286 	}
2287 
2288 	ifp->btrfs_path = path;
2289 	ifp->fspath = fspath;
2290 	ifp->fs_root = fs_root;
2291 
2292 	return ifp;
2293 }
2294 
2295 void free_ipath(struct inode_fs_paths *ipath)
2296 {
2297 	if (!ipath)
2298 		return;
2299 	kvfree(ipath->fspath);
2300 	kfree(ipath);
2301 }
2302 
2303 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2304 		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2305 {
2306 	struct btrfs_backref_iter *ret;
2307 
2308 	ret = kzalloc(sizeof(*ret), gfp_flag);
2309 	if (!ret)
2310 		return NULL;
2311 
2312 	ret->path = btrfs_alloc_path();
2313 	if (!ret->path) {
2314 		kfree(ret);
2315 		return NULL;
2316 	}
2317 
2318 	/* Current backref iterator only supports iteration in commit root */
2319 	ret->path->search_commit_root = 1;
2320 	ret->path->skip_locking = 1;
2321 	ret->fs_info = fs_info;
2322 
2323 	return ret;
2324 }
2325 
2326 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2327 {
2328 	struct btrfs_fs_info *fs_info = iter->fs_info;
2329 	struct btrfs_path *path = iter->path;
2330 	struct btrfs_extent_item *ei;
2331 	struct btrfs_key key;
2332 	int ret;
2333 
2334 	key.objectid = bytenr;
2335 	key.type = BTRFS_METADATA_ITEM_KEY;
2336 	key.offset = (u64)-1;
2337 	iter->bytenr = bytenr;
2338 
2339 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2340 	if (ret < 0)
2341 		return ret;
2342 	if (ret == 0) {
2343 		ret = -EUCLEAN;
2344 		goto release;
2345 	}
2346 	if (path->slots[0] == 0) {
2347 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2348 		ret = -EUCLEAN;
2349 		goto release;
2350 	}
2351 	path->slots[0]--;
2352 
2353 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2354 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2355 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2356 		ret = -ENOENT;
2357 		goto release;
2358 	}
2359 	memcpy(&iter->cur_key, &key, sizeof(key));
2360 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2361 						    path->slots[0]);
2362 	iter->end_ptr = (u32)(iter->item_ptr +
2363 			btrfs_item_size(path->nodes[0], path->slots[0]));
2364 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2365 			    struct btrfs_extent_item);
2366 
2367 	/*
2368 	 * Only support iteration on tree backref yet.
2369 	 *
2370 	 * This is an extra precaution for non skinny-metadata, where
2371 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2372 	 * extent flags to determine if it's a tree block.
2373 	 */
2374 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2375 		ret = -ENOTSUPP;
2376 		goto release;
2377 	}
2378 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2379 
2380 	/* If there is no inline backref, go search for keyed backref */
2381 	if (iter->cur_ptr >= iter->end_ptr) {
2382 		ret = btrfs_next_item(fs_info->extent_root, path);
2383 
2384 		/* No inline nor keyed ref */
2385 		if (ret > 0) {
2386 			ret = -ENOENT;
2387 			goto release;
2388 		}
2389 		if (ret < 0)
2390 			goto release;
2391 
2392 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2393 				path->slots[0]);
2394 		if (iter->cur_key.objectid != bytenr ||
2395 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2396 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2397 			ret = -ENOENT;
2398 			goto release;
2399 		}
2400 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2401 							   path->slots[0]);
2402 		iter->item_ptr = iter->cur_ptr;
2403 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2404 				      path->nodes[0], path->slots[0]));
2405 	}
2406 
2407 	return 0;
2408 release:
2409 	btrfs_backref_iter_release(iter);
2410 	return ret;
2411 }
2412 
2413 /*
2414  * Go to the next backref item of current bytenr, can be either inlined or
2415  * keyed.
2416  *
2417  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2418  *
2419  * Return 0 if we get next backref without problem.
2420  * Return >0 if there is no extra backref for this bytenr.
2421  * Return <0 if there is something wrong happened.
2422  */
2423 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2424 {
2425 	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2426 	struct btrfs_path *path = iter->path;
2427 	struct btrfs_extent_inline_ref *iref;
2428 	int ret;
2429 	u32 size;
2430 
2431 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2432 		/* We're still inside the inline refs */
2433 		ASSERT(iter->cur_ptr < iter->end_ptr);
2434 
2435 		if (btrfs_backref_has_tree_block_info(iter)) {
2436 			/* First tree block info */
2437 			size = sizeof(struct btrfs_tree_block_info);
2438 		} else {
2439 			/* Use inline ref type to determine the size */
2440 			int type;
2441 
2442 			iref = (struct btrfs_extent_inline_ref *)
2443 				((unsigned long)iter->cur_ptr);
2444 			type = btrfs_extent_inline_ref_type(eb, iref);
2445 
2446 			size = btrfs_extent_inline_ref_size(type);
2447 		}
2448 		iter->cur_ptr += size;
2449 		if (iter->cur_ptr < iter->end_ptr)
2450 			return 0;
2451 
2452 		/* All inline items iterated, fall through */
2453 	}
2454 
2455 	/* We're at keyed items, there is no inline item, go to the next one */
2456 	ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2457 	if (ret)
2458 		return ret;
2459 
2460 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2461 	if (iter->cur_key.objectid != iter->bytenr ||
2462 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2463 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2464 		return 1;
2465 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2466 					path->slots[0]);
2467 	iter->cur_ptr = iter->item_ptr;
2468 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
2469 						path->slots[0]);
2470 	return 0;
2471 }
2472 
2473 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2474 			      struct btrfs_backref_cache *cache, int is_reloc)
2475 {
2476 	int i;
2477 
2478 	cache->rb_root = RB_ROOT;
2479 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2480 		INIT_LIST_HEAD(&cache->pending[i]);
2481 	INIT_LIST_HEAD(&cache->changed);
2482 	INIT_LIST_HEAD(&cache->detached);
2483 	INIT_LIST_HEAD(&cache->leaves);
2484 	INIT_LIST_HEAD(&cache->pending_edge);
2485 	INIT_LIST_HEAD(&cache->useless_node);
2486 	cache->fs_info = fs_info;
2487 	cache->is_reloc = is_reloc;
2488 }
2489 
2490 struct btrfs_backref_node *btrfs_backref_alloc_node(
2491 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2492 {
2493 	struct btrfs_backref_node *node;
2494 
2495 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2496 	node = kzalloc(sizeof(*node), GFP_NOFS);
2497 	if (!node)
2498 		return node;
2499 
2500 	INIT_LIST_HEAD(&node->list);
2501 	INIT_LIST_HEAD(&node->upper);
2502 	INIT_LIST_HEAD(&node->lower);
2503 	RB_CLEAR_NODE(&node->rb_node);
2504 	cache->nr_nodes++;
2505 	node->level = level;
2506 	node->bytenr = bytenr;
2507 
2508 	return node;
2509 }
2510 
2511 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2512 		struct btrfs_backref_cache *cache)
2513 {
2514 	struct btrfs_backref_edge *edge;
2515 
2516 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2517 	if (edge)
2518 		cache->nr_edges++;
2519 	return edge;
2520 }
2521 
2522 /*
2523  * Drop the backref node from cache, also cleaning up all its
2524  * upper edges and any uncached nodes in the path.
2525  *
2526  * This cleanup happens bottom up, thus the node should either
2527  * be the lowest node in the cache or a detached node.
2528  */
2529 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2530 				struct btrfs_backref_node *node)
2531 {
2532 	struct btrfs_backref_node *upper;
2533 	struct btrfs_backref_edge *edge;
2534 
2535 	if (!node)
2536 		return;
2537 
2538 	BUG_ON(!node->lowest && !node->detached);
2539 	while (!list_empty(&node->upper)) {
2540 		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2541 				  list[LOWER]);
2542 		upper = edge->node[UPPER];
2543 		list_del(&edge->list[LOWER]);
2544 		list_del(&edge->list[UPPER]);
2545 		btrfs_backref_free_edge(cache, edge);
2546 
2547 		/*
2548 		 * Add the node to leaf node list if no other child block
2549 		 * cached.
2550 		 */
2551 		if (list_empty(&upper->lower)) {
2552 			list_add_tail(&upper->lower, &cache->leaves);
2553 			upper->lowest = 1;
2554 		}
2555 	}
2556 
2557 	btrfs_backref_drop_node(cache, node);
2558 }
2559 
2560 /*
2561  * Release all nodes/edges from current cache
2562  */
2563 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2564 {
2565 	struct btrfs_backref_node *node;
2566 	int i;
2567 
2568 	while (!list_empty(&cache->detached)) {
2569 		node = list_entry(cache->detached.next,
2570 				  struct btrfs_backref_node, list);
2571 		btrfs_backref_cleanup_node(cache, node);
2572 	}
2573 
2574 	while (!list_empty(&cache->leaves)) {
2575 		node = list_entry(cache->leaves.next,
2576 				  struct btrfs_backref_node, lower);
2577 		btrfs_backref_cleanup_node(cache, node);
2578 	}
2579 
2580 	cache->last_trans = 0;
2581 
2582 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2583 		ASSERT(list_empty(&cache->pending[i]));
2584 	ASSERT(list_empty(&cache->pending_edge));
2585 	ASSERT(list_empty(&cache->useless_node));
2586 	ASSERT(list_empty(&cache->changed));
2587 	ASSERT(list_empty(&cache->detached));
2588 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2589 	ASSERT(!cache->nr_nodes);
2590 	ASSERT(!cache->nr_edges);
2591 }
2592 
2593 /*
2594  * Handle direct tree backref
2595  *
2596  * Direct tree backref means, the backref item shows its parent bytenr
2597  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2598  *
2599  * @ref_key:	The converted backref key.
2600  *		For keyed backref, it's the item key.
2601  *		For inlined backref, objectid is the bytenr,
2602  *		type is btrfs_inline_ref_type, offset is
2603  *		btrfs_inline_ref_offset.
2604  */
2605 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2606 				      struct btrfs_key *ref_key,
2607 				      struct btrfs_backref_node *cur)
2608 {
2609 	struct btrfs_backref_edge *edge;
2610 	struct btrfs_backref_node *upper;
2611 	struct rb_node *rb_node;
2612 
2613 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2614 
2615 	/* Only reloc root uses backref pointing to itself */
2616 	if (ref_key->objectid == ref_key->offset) {
2617 		struct btrfs_root *root;
2618 
2619 		cur->is_reloc_root = 1;
2620 		/* Only reloc backref cache cares about a specific root */
2621 		if (cache->is_reloc) {
2622 			root = find_reloc_root(cache->fs_info, cur->bytenr);
2623 			if (!root)
2624 				return -ENOENT;
2625 			cur->root = root;
2626 		} else {
2627 			/*
2628 			 * For generic purpose backref cache, reloc root node
2629 			 * is useless.
2630 			 */
2631 			list_add(&cur->list, &cache->useless_node);
2632 		}
2633 		return 0;
2634 	}
2635 
2636 	edge = btrfs_backref_alloc_edge(cache);
2637 	if (!edge)
2638 		return -ENOMEM;
2639 
2640 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2641 	if (!rb_node) {
2642 		/* Parent node not yet cached */
2643 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2644 					   cur->level + 1);
2645 		if (!upper) {
2646 			btrfs_backref_free_edge(cache, edge);
2647 			return -ENOMEM;
2648 		}
2649 
2650 		/*
2651 		 *  Backrefs for the upper level block isn't cached, add the
2652 		 *  block to pending list
2653 		 */
2654 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2655 	} else {
2656 		/* Parent node already cached */
2657 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2658 		ASSERT(upper->checked);
2659 		INIT_LIST_HEAD(&edge->list[UPPER]);
2660 	}
2661 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2662 	return 0;
2663 }
2664 
2665 /*
2666  * Handle indirect tree backref
2667  *
2668  * Indirect tree backref means, we only know which tree the node belongs to.
2669  * We still need to do a tree search to find out the parents. This is for
2670  * TREE_BLOCK_REF backref (keyed or inlined).
2671  *
2672  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
2673  * @tree_key:	The first key of this tree block.
2674  * @path:	A clean (released) path, to avoid allocating path every time
2675  *		the function get called.
2676  */
2677 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2678 					struct btrfs_path *path,
2679 					struct btrfs_key *ref_key,
2680 					struct btrfs_key *tree_key,
2681 					struct btrfs_backref_node *cur)
2682 {
2683 	struct btrfs_fs_info *fs_info = cache->fs_info;
2684 	struct btrfs_backref_node *upper;
2685 	struct btrfs_backref_node *lower;
2686 	struct btrfs_backref_edge *edge;
2687 	struct extent_buffer *eb;
2688 	struct btrfs_root *root;
2689 	struct rb_node *rb_node;
2690 	int level;
2691 	bool need_check = true;
2692 	int ret;
2693 
2694 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2695 	if (IS_ERR(root))
2696 		return PTR_ERR(root);
2697 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2698 		cur->cowonly = 1;
2699 
2700 	if (btrfs_root_level(&root->root_item) == cur->level) {
2701 		/* Tree root */
2702 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2703 		/*
2704 		 * For reloc backref cache, we may ignore reloc root.  But for
2705 		 * general purpose backref cache, we can't rely on
2706 		 * btrfs_should_ignore_reloc_root() as it may conflict with
2707 		 * current running relocation and lead to missing root.
2708 		 *
2709 		 * For general purpose backref cache, reloc root detection is
2710 		 * completely relying on direct backref (key->offset is parent
2711 		 * bytenr), thus only do such check for reloc cache.
2712 		 */
2713 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2714 			btrfs_put_root(root);
2715 			list_add(&cur->list, &cache->useless_node);
2716 		} else {
2717 			cur->root = root;
2718 		}
2719 		return 0;
2720 	}
2721 
2722 	level = cur->level + 1;
2723 
2724 	/* Search the tree to find parent blocks referring to the block */
2725 	path->search_commit_root = 1;
2726 	path->skip_locking = 1;
2727 	path->lowest_level = level;
2728 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2729 	path->lowest_level = 0;
2730 	if (ret < 0) {
2731 		btrfs_put_root(root);
2732 		return ret;
2733 	}
2734 	if (ret > 0 && path->slots[level] > 0)
2735 		path->slots[level]--;
2736 
2737 	eb = path->nodes[level];
2738 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2739 		btrfs_err(fs_info,
2740 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2741 			  cur->bytenr, level - 1, root->root_key.objectid,
2742 			  tree_key->objectid, tree_key->type, tree_key->offset);
2743 		btrfs_put_root(root);
2744 		ret = -ENOENT;
2745 		goto out;
2746 	}
2747 	lower = cur;
2748 
2749 	/* Add all nodes and edges in the path */
2750 	for (; level < BTRFS_MAX_LEVEL; level++) {
2751 		if (!path->nodes[level]) {
2752 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
2753 			       lower->bytenr);
2754 			/* Same as previous should_ignore_reloc_root() call */
2755 			if (btrfs_should_ignore_reloc_root(root) &&
2756 			    cache->is_reloc) {
2757 				btrfs_put_root(root);
2758 				list_add(&lower->list, &cache->useless_node);
2759 			} else {
2760 				lower->root = root;
2761 			}
2762 			break;
2763 		}
2764 
2765 		edge = btrfs_backref_alloc_edge(cache);
2766 		if (!edge) {
2767 			btrfs_put_root(root);
2768 			ret = -ENOMEM;
2769 			goto out;
2770 		}
2771 
2772 		eb = path->nodes[level];
2773 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
2774 		if (!rb_node) {
2775 			upper = btrfs_backref_alloc_node(cache, eb->start,
2776 							 lower->level + 1);
2777 			if (!upper) {
2778 				btrfs_put_root(root);
2779 				btrfs_backref_free_edge(cache, edge);
2780 				ret = -ENOMEM;
2781 				goto out;
2782 			}
2783 			upper->owner = btrfs_header_owner(eb);
2784 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2785 				upper->cowonly = 1;
2786 
2787 			/*
2788 			 * If we know the block isn't shared we can avoid
2789 			 * checking its backrefs.
2790 			 */
2791 			if (btrfs_block_can_be_shared(root, eb))
2792 				upper->checked = 0;
2793 			else
2794 				upper->checked = 1;
2795 
2796 			/*
2797 			 * Add the block to pending list if we need to check its
2798 			 * backrefs, we only do this once while walking up a
2799 			 * tree as we will catch anything else later on.
2800 			 */
2801 			if (!upper->checked && need_check) {
2802 				need_check = false;
2803 				list_add_tail(&edge->list[UPPER],
2804 					      &cache->pending_edge);
2805 			} else {
2806 				if (upper->checked)
2807 					need_check = true;
2808 				INIT_LIST_HEAD(&edge->list[UPPER]);
2809 			}
2810 		} else {
2811 			upper = rb_entry(rb_node, struct btrfs_backref_node,
2812 					 rb_node);
2813 			ASSERT(upper->checked);
2814 			INIT_LIST_HEAD(&edge->list[UPPER]);
2815 			if (!upper->owner)
2816 				upper->owner = btrfs_header_owner(eb);
2817 		}
2818 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2819 
2820 		if (rb_node) {
2821 			btrfs_put_root(root);
2822 			break;
2823 		}
2824 		lower = upper;
2825 		upper = NULL;
2826 	}
2827 out:
2828 	btrfs_release_path(path);
2829 	return ret;
2830 }
2831 
2832 /*
2833  * Add backref node @cur into @cache.
2834  *
2835  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2836  *	 links aren't yet bi-directional. Needs to finish such links.
2837  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
2838  *
2839  * @path:	Released path for indirect tree backref lookup
2840  * @iter:	Released backref iter for extent tree search
2841  * @node_key:	The first key of the tree block
2842  */
2843 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2844 				struct btrfs_path *path,
2845 				struct btrfs_backref_iter *iter,
2846 				struct btrfs_key *node_key,
2847 				struct btrfs_backref_node *cur)
2848 {
2849 	struct btrfs_fs_info *fs_info = cache->fs_info;
2850 	struct btrfs_backref_edge *edge;
2851 	struct btrfs_backref_node *exist;
2852 	int ret;
2853 
2854 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
2855 	if (ret < 0)
2856 		return ret;
2857 	/*
2858 	 * We skip the first btrfs_tree_block_info, as we don't use the key
2859 	 * stored in it, but fetch it from the tree block
2860 	 */
2861 	if (btrfs_backref_has_tree_block_info(iter)) {
2862 		ret = btrfs_backref_iter_next(iter);
2863 		if (ret < 0)
2864 			goto out;
2865 		/* No extra backref? This means the tree block is corrupted */
2866 		if (ret > 0) {
2867 			ret = -EUCLEAN;
2868 			goto out;
2869 		}
2870 	}
2871 	WARN_ON(cur->checked);
2872 	if (!list_empty(&cur->upper)) {
2873 		/*
2874 		 * The backref was added previously when processing backref of
2875 		 * type BTRFS_TREE_BLOCK_REF_KEY
2876 		 */
2877 		ASSERT(list_is_singular(&cur->upper));
2878 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2879 				  list[LOWER]);
2880 		ASSERT(list_empty(&edge->list[UPPER]));
2881 		exist = edge->node[UPPER];
2882 		/*
2883 		 * Add the upper level block to pending list if we need check
2884 		 * its backrefs
2885 		 */
2886 		if (!exist->checked)
2887 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2888 	} else {
2889 		exist = NULL;
2890 	}
2891 
2892 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2893 		struct extent_buffer *eb;
2894 		struct btrfs_key key;
2895 		int type;
2896 
2897 		cond_resched();
2898 		eb = btrfs_backref_get_eb(iter);
2899 
2900 		key.objectid = iter->bytenr;
2901 		if (btrfs_backref_iter_is_inline_ref(iter)) {
2902 			struct btrfs_extent_inline_ref *iref;
2903 
2904 			/* Update key for inline backref */
2905 			iref = (struct btrfs_extent_inline_ref *)
2906 				((unsigned long)iter->cur_ptr);
2907 			type = btrfs_get_extent_inline_ref_type(eb, iref,
2908 							BTRFS_REF_TYPE_BLOCK);
2909 			if (type == BTRFS_REF_TYPE_INVALID) {
2910 				ret = -EUCLEAN;
2911 				goto out;
2912 			}
2913 			key.type = type;
2914 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2915 		} else {
2916 			key.type = iter->cur_key.type;
2917 			key.offset = iter->cur_key.offset;
2918 		}
2919 
2920 		/*
2921 		 * Parent node found and matches current inline ref, no need to
2922 		 * rebuild this node for this inline ref
2923 		 */
2924 		if (exist &&
2925 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2926 		      exist->owner == key.offset) ||
2927 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2928 		      exist->bytenr == key.offset))) {
2929 			exist = NULL;
2930 			continue;
2931 		}
2932 
2933 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2934 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2935 			ret = handle_direct_tree_backref(cache, &key, cur);
2936 			if (ret < 0)
2937 				goto out;
2938 			continue;
2939 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2940 			ret = -EINVAL;
2941 			btrfs_print_v0_err(fs_info);
2942 			btrfs_handle_fs_error(fs_info, ret, NULL);
2943 			goto out;
2944 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2945 			continue;
2946 		}
2947 
2948 		/*
2949 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2950 		 * means the root objectid. We need to search the tree to get
2951 		 * its parent bytenr.
2952 		 */
2953 		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2954 						   cur);
2955 		if (ret < 0)
2956 			goto out;
2957 	}
2958 	ret = 0;
2959 	cur->checked = 1;
2960 	WARN_ON(exist);
2961 out:
2962 	btrfs_backref_iter_release(iter);
2963 	return ret;
2964 }
2965 
2966 /*
2967  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2968  */
2969 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2970 				     struct btrfs_backref_node *start)
2971 {
2972 	struct list_head *useless_node = &cache->useless_node;
2973 	struct btrfs_backref_edge *edge;
2974 	struct rb_node *rb_node;
2975 	LIST_HEAD(pending_edge);
2976 
2977 	ASSERT(start->checked);
2978 
2979 	/* Insert this node to cache if it's not COW-only */
2980 	if (!start->cowonly) {
2981 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2982 					   &start->rb_node);
2983 		if (rb_node)
2984 			btrfs_backref_panic(cache->fs_info, start->bytenr,
2985 					    -EEXIST);
2986 		list_add_tail(&start->lower, &cache->leaves);
2987 	}
2988 
2989 	/*
2990 	 * Use breadth first search to iterate all related edges.
2991 	 *
2992 	 * The starting points are all the edges of this node
2993 	 */
2994 	list_for_each_entry(edge, &start->upper, list[LOWER])
2995 		list_add_tail(&edge->list[UPPER], &pending_edge);
2996 
2997 	while (!list_empty(&pending_edge)) {
2998 		struct btrfs_backref_node *upper;
2999 		struct btrfs_backref_node *lower;
3000 
3001 		edge = list_first_entry(&pending_edge,
3002 				struct btrfs_backref_edge, list[UPPER]);
3003 		list_del_init(&edge->list[UPPER]);
3004 		upper = edge->node[UPPER];
3005 		lower = edge->node[LOWER];
3006 
3007 		/* Parent is detached, no need to keep any edges */
3008 		if (upper->detached) {
3009 			list_del(&edge->list[LOWER]);
3010 			btrfs_backref_free_edge(cache, edge);
3011 
3012 			/* Lower node is orphan, queue for cleanup */
3013 			if (list_empty(&lower->upper))
3014 				list_add(&lower->list, useless_node);
3015 			continue;
3016 		}
3017 
3018 		/*
3019 		 * All new nodes added in current build_backref_tree() haven't
3020 		 * been linked to the cache rb tree.
3021 		 * So if we have upper->rb_node populated, this means a cache
3022 		 * hit. We only need to link the edge, as @upper and all its
3023 		 * parents have already been linked.
3024 		 */
3025 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3026 			if (upper->lowest) {
3027 				list_del_init(&upper->lower);
3028 				upper->lowest = 0;
3029 			}
3030 
3031 			list_add_tail(&edge->list[UPPER], &upper->lower);
3032 			continue;
3033 		}
3034 
3035 		/* Sanity check, we shouldn't have any unchecked nodes */
3036 		if (!upper->checked) {
3037 			ASSERT(0);
3038 			return -EUCLEAN;
3039 		}
3040 
3041 		/* Sanity check, COW-only node has non-COW-only parent */
3042 		if (start->cowonly != upper->cowonly) {
3043 			ASSERT(0);
3044 			return -EUCLEAN;
3045 		}
3046 
3047 		/* Only cache non-COW-only (subvolume trees) tree blocks */
3048 		if (!upper->cowonly) {
3049 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3050 						   &upper->rb_node);
3051 			if (rb_node) {
3052 				btrfs_backref_panic(cache->fs_info,
3053 						upper->bytenr, -EEXIST);
3054 				return -EUCLEAN;
3055 			}
3056 		}
3057 
3058 		list_add_tail(&edge->list[UPPER], &upper->lower);
3059 
3060 		/*
3061 		 * Also queue all the parent edges of this uncached node
3062 		 * to finish the upper linkage
3063 		 */
3064 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3065 			list_add_tail(&edge->list[UPPER], &pending_edge);
3066 	}
3067 	return 0;
3068 }
3069 
3070 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3071 				 struct btrfs_backref_node *node)
3072 {
3073 	struct btrfs_backref_node *lower;
3074 	struct btrfs_backref_node *upper;
3075 	struct btrfs_backref_edge *edge;
3076 
3077 	while (!list_empty(&cache->useless_node)) {
3078 		lower = list_first_entry(&cache->useless_node,
3079 				   struct btrfs_backref_node, list);
3080 		list_del_init(&lower->list);
3081 	}
3082 	while (!list_empty(&cache->pending_edge)) {
3083 		edge = list_first_entry(&cache->pending_edge,
3084 				struct btrfs_backref_edge, list[UPPER]);
3085 		list_del(&edge->list[UPPER]);
3086 		list_del(&edge->list[LOWER]);
3087 		lower = edge->node[LOWER];
3088 		upper = edge->node[UPPER];
3089 		btrfs_backref_free_edge(cache, edge);
3090 
3091 		/*
3092 		 * Lower is no longer linked to any upper backref nodes and
3093 		 * isn't in the cache, we can free it ourselves.
3094 		 */
3095 		if (list_empty(&lower->upper) &&
3096 		    RB_EMPTY_NODE(&lower->rb_node))
3097 			list_add(&lower->list, &cache->useless_node);
3098 
3099 		if (!RB_EMPTY_NODE(&upper->rb_node))
3100 			continue;
3101 
3102 		/* Add this guy's upper edges to the list to process */
3103 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3104 			list_add_tail(&edge->list[UPPER],
3105 				      &cache->pending_edge);
3106 		if (list_empty(&upper->upper))
3107 			list_add(&upper->list, &cache->useless_node);
3108 	}
3109 
3110 	while (!list_empty(&cache->useless_node)) {
3111 		lower = list_first_entry(&cache->useless_node,
3112 				   struct btrfs_backref_node, list);
3113 		list_del_init(&lower->list);
3114 		if (lower == node)
3115 			node = NULL;
3116 		btrfs_backref_drop_node(cache, lower);
3117 	}
3118 
3119 	btrfs_backref_cleanup_node(cache, node);
3120 	ASSERT(list_empty(&cache->useless_node) &&
3121 	       list_empty(&cache->pending_edge));
3122 }
3123