1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 19 /* Just an arbitrary number so we can be sure this happened */ 20 #define BACKREF_FOUND_SHARED 6 21 22 struct extent_inode_elem { 23 u64 inum; 24 u64 offset; 25 struct extent_inode_elem *next; 26 }; 27 28 static int check_extent_in_eb(const struct btrfs_key *key, 29 const struct extent_buffer *eb, 30 const struct btrfs_file_extent_item *fi, 31 u64 extent_item_pos, 32 struct extent_inode_elem **eie, 33 bool ignore_offset) 34 { 35 u64 offset = 0; 36 struct extent_inode_elem *e; 37 38 if (!ignore_offset && 39 !btrfs_file_extent_compression(eb, fi) && 40 !btrfs_file_extent_encryption(eb, fi) && 41 !btrfs_file_extent_other_encoding(eb, fi)) { 42 u64 data_offset; 43 u64 data_len; 44 45 data_offset = btrfs_file_extent_offset(eb, fi); 46 data_len = btrfs_file_extent_num_bytes(eb, fi); 47 48 if (extent_item_pos < data_offset || 49 extent_item_pos >= data_offset + data_len) 50 return 1; 51 offset = extent_item_pos - data_offset; 52 } 53 54 e = kmalloc(sizeof(*e), GFP_NOFS); 55 if (!e) 56 return -ENOMEM; 57 58 e->next = *eie; 59 e->inum = key->objectid; 60 e->offset = key->offset + offset; 61 *eie = e; 62 63 return 0; 64 } 65 66 static void free_inode_elem_list(struct extent_inode_elem *eie) 67 { 68 struct extent_inode_elem *eie_next; 69 70 for (; eie; eie = eie_next) { 71 eie_next = eie->next; 72 kfree(eie); 73 } 74 } 75 76 static int find_extent_in_eb(const struct extent_buffer *eb, 77 u64 wanted_disk_byte, u64 extent_item_pos, 78 struct extent_inode_elem **eie, 79 bool ignore_offset) 80 { 81 u64 disk_byte; 82 struct btrfs_key key; 83 struct btrfs_file_extent_item *fi; 84 int slot; 85 int nritems; 86 int extent_type; 87 int ret; 88 89 /* 90 * from the shared data ref, we only have the leaf but we need 91 * the key. thus, we must look into all items and see that we 92 * find one (some) with a reference to our extent item. 93 */ 94 nritems = btrfs_header_nritems(eb); 95 for (slot = 0; slot < nritems; ++slot) { 96 btrfs_item_key_to_cpu(eb, &key, slot); 97 if (key.type != BTRFS_EXTENT_DATA_KEY) 98 continue; 99 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 100 extent_type = btrfs_file_extent_type(eb, fi); 101 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 102 continue; 103 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 104 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 105 if (disk_byte != wanted_disk_byte) 106 continue; 107 108 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 109 if (ret < 0) 110 return ret; 111 } 112 113 return 0; 114 } 115 116 struct preftree { 117 struct rb_root_cached root; 118 unsigned int count; 119 }; 120 121 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 122 123 struct preftrees { 124 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 125 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 126 struct preftree indirect_missing_keys; 127 }; 128 129 /* 130 * Checks for a shared extent during backref search. 131 * 132 * The share_count tracks prelim_refs (direct and indirect) having a 133 * ref->count >0: 134 * - incremented when a ref->count transitions to >0 135 * - decremented when a ref->count transitions to <1 136 */ 137 struct share_check { 138 u64 root_objectid; 139 u64 inum; 140 int share_count; 141 }; 142 143 static inline int extent_is_shared(struct share_check *sc) 144 { 145 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 146 } 147 148 static struct kmem_cache *btrfs_prelim_ref_cache; 149 150 int __init btrfs_prelim_ref_init(void) 151 { 152 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 153 sizeof(struct prelim_ref), 154 0, 155 SLAB_MEM_SPREAD, 156 NULL); 157 if (!btrfs_prelim_ref_cache) 158 return -ENOMEM; 159 return 0; 160 } 161 162 void __cold btrfs_prelim_ref_exit(void) 163 { 164 kmem_cache_destroy(btrfs_prelim_ref_cache); 165 } 166 167 static void free_pref(struct prelim_ref *ref) 168 { 169 kmem_cache_free(btrfs_prelim_ref_cache, ref); 170 } 171 172 /* 173 * Return 0 when both refs are for the same block (and can be merged). 174 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 175 * indicates a 'higher' block. 176 */ 177 static int prelim_ref_compare(struct prelim_ref *ref1, 178 struct prelim_ref *ref2) 179 { 180 if (ref1->level < ref2->level) 181 return -1; 182 if (ref1->level > ref2->level) 183 return 1; 184 if (ref1->root_id < ref2->root_id) 185 return -1; 186 if (ref1->root_id > ref2->root_id) 187 return 1; 188 if (ref1->key_for_search.type < ref2->key_for_search.type) 189 return -1; 190 if (ref1->key_for_search.type > ref2->key_for_search.type) 191 return 1; 192 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 193 return -1; 194 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 195 return 1; 196 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 197 return -1; 198 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 199 return 1; 200 if (ref1->parent < ref2->parent) 201 return -1; 202 if (ref1->parent > ref2->parent) 203 return 1; 204 205 return 0; 206 } 207 208 static void update_share_count(struct share_check *sc, int oldcount, 209 int newcount) 210 { 211 if ((!sc) || (oldcount == 0 && newcount < 1)) 212 return; 213 214 if (oldcount > 0 && newcount < 1) 215 sc->share_count--; 216 else if (oldcount < 1 && newcount > 0) 217 sc->share_count++; 218 } 219 220 /* 221 * Add @newref to the @root rbtree, merging identical refs. 222 * 223 * Callers should assume that newref has been freed after calling. 224 */ 225 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 226 struct preftree *preftree, 227 struct prelim_ref *newref, 228 struct share_check *sc) 229 { 230 struct rb_root_cached *root; 231 struct rb_node **p; 232 struct rb_node *parent = NULL; 233 struct prelim_ref *ref; 234 int result; 235 bool leftmost = true; 236 237 root = &preftree->root; 238 p = &root->rb_root.rb_node; 239 240 while (*p) { 241 parent = *p; 242 ref = rb_entry(parent, struct prelim_ref, rbnode); 243 result = prelim_ref_compare(ref, newref); 244 if (result < 0) { 245 p = &(*p)->rb_left; 246 } else if (result > 0) { 247 p = &(*p)->rb_right; 248 leftmost = false; 249 } else { 250 /* Identical refs, merge them and free @newref */ 251 struct extent_inode_elem *eie = ref->inode_list; 252 253 while (eie && eie->next) 254 eie = eie->next; 255 256 if (!eie) 257 ref->inode_list = newref->inode_list; 258 else 259 eie->next = newref->inode_list; 260 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 261 preftree->count); 262 /* 263 * A delayed ref can have newref->count < 0. 264 * The ref->count is updated to follow any 265 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 266 */ 267 update_share_count(sc, ref->count, 268 ref->count + newref->count); 269 ref->count += newref->count; 270 free_pref(newref); 271 return; 272 } 273 } 274 275 update_share_count(sc, 0, newref->count); 276 preftree->count++; 277 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 278 rb_link_node(&newref->rbnode, parent, p); 279 rb_insert_color_cached(&newref->rbnode, root, leftmost); 280 } 281 282 /* 283 * Release the entire tree. We don't care about internal consistency so 284 * just free everything and then reset the tree root. 285 */ 286 static void prelim_release(struct preftree *preftree) 287 { 288 struct prelim_ref *ref, *next_ref; 289 290 rbtree_postorder_for_each_entry_safe(ref, next_ref, 291 &preftree->root.rb_root, rbnode) 292 free_pref(ref); 293 294 preftree->root = RB_ROOT_CACHED; 295 preftree->count = 0; 296 } 297 298 /* 299 * the rules for all callers of this function are: 300 * - obtaining the parent is the goal 301 * - if you add a key, you must know that it is a correct key 302 * - if you cannot add the parent or a correct key, then we will look into the 303 * block later to set a correct key 304 * 305 * delayed refs 306 * ============ 307 * backref type | shared | indirect | shared | indirect 308 * information | tree | tree | data | data 309 * --------------------+--------+----------+--------+---------- 310 * parent logical | y | - | - | - 311 * key to resolve | - | y | y | y 312 * tree block logical | - | - | - | - 313 * root for resolving | y | y | y | y 314 * 315 * - column 1: we've the parent -> done 316 * - column 2, 3, 4: we use the key to find the parent 317 * 318 * on disk refs (inline or keyed) 319 * ============================== 320 * backref type | shared | indirect | shared | indirect 321 * information | tree | tree | data | data 322 * --------------------+--------+----------+--------+---------- 323 * parent logical | y | - | y | - 324 * key to resolve | - | - | - | y 325 * tree block logical | y | y | y | y 326 * root for resolving | - | y | y | y 327 * 328 * - column 1, 3: we've the parent -> done 329 * - column 2: we take the first key from the block to find the parent 330 * (see add_missing_keys) 331 * - column 4: we use the key to find the parent 332 * 333 * additional information that's available but not required to find the parent 334 * block might help in merging entries to gain some speed. 335 */ 336 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 337 struct preftree *preftree, u64 root_id, 338 const struct btrfs_key *key, int level, u64 parent, 339 u64 wanted_disk_byte, int count, 340 struct share_check *sc, gfp_t gfp_mask) 341 { 342 struct prelim_ref *ref; 343 344 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 345 return 0; 346 347 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 348 if (!ref) 349 return -ENOMEM; 350 351 ref->root_id = root_id; 352 if (key) 353 ref->key_for_search = *key; 354 else 355 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 356 357 ref->inode_list = NULL; 358 ref->level = level; 359 ref->count = count; 360 ref->parent = parent; 361 ref->wanted_disk_byte = wanted_disk_byte; 362 prelim_ref_insert(fs_info, preftree, ref, sc); 363 return extent_is_shared(sc); 364 } 365 366 /* direct refs use root == 0, key == NULL */ 367 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 368 struct preftrees *preftrees, int level, u64 parent, 369 u64 wanted_disk_byte, int count, 370 struct share_check *sc, gfp_t gfp_mask) 371 { 372 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 373 parent, wanted_disk_byte, count, sc, gfp_mask); 374 } 375 376 /* indirect refs use parent == 0 */ 377 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 378 struct preftrees *preftrees, u64 root_id, 379 const struct btrfs_key *key, int level, 380 u64 wanted_disk_byte, int count, 381 struct share_check *sc, gfp_t gfp_mask) 382 { 383 struct preftree *tree = &preftrees->indirect; 384 385 if (!key) 386 tree = &preftrees->indirect_missing_keys; 387 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 388 wanted_disk_byte, count, sc, gfp_mask); 389 } 390 391 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 392 { 393 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 394 struct rb_node *parent = NULL; 395 struct prelim_ref *ref = NULL; 396 struct prelim_ref target = {}; 397 int result; 398 399 target.parent = bytenr; 400 401 while (*p) { 402 parent = *p; 403 ref = rb_entry(parent, struct prelim_ref, rbnode); 404 result = prelim_ref_compare(ref, &target); 405 406 if (result < 0) 407 p = &(*p)->rb_left; 408 else if (result > 0) 409 p = &(*p)->rb_right; 410 else 411 return 1; 412 } 413 return 0; 414 } 415 416 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 417 struct ulist *parents, 418 struct preftrees *preftrees, struct prelim_ref *ref, 419 int level, u64 time_seq, const u64 *extent_item_pos, 420 bool ignore_offset) 421 { 422 int ret = 0; 423 int slot; 424 struct extent_buffer *eb; 425 struct btrfs_key key; 426 struct btrfs_key *key_for_search = &ref->key_for_search; 427 struct btrfs_file_extent_item *fi; 428 struct extent_inode_elem *eie = NULL, *old = NULL; 429 u64 disk_byte; 430 u64 wanted_disk_byte = ref->wanted_disk_byte; 431 u64 count = 0; 432 u64 data_offset; 433 434 if (level != 0) { 435 eb = path->nodes[level]; 436 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 437 if (ret < 0) 438 return ret; 439 return 0; 440 } 441 442 /* 443 * 1. We normally enter this function with the path already pointing to 444 * the first item to check. But sometimes, we may enter it with 445 * slot == nritems. 446 * 2. We are searching for normal backref but bytenr of this leaf 447 * matches shared data backref 448 * 3. The leaf owner is not equal to the root we are searching 449 * 450 * For these cases, go to the next leaf before we continue. 451 */ 452 eb = path->nodes[0]; 453 if (path->slots[0] >= btrfs_header_nritems(eb) || 454 is_shared_data_backref(preftrees, eb->start) || 455 ref->root_id != btrfs_header_owner(eb)) { 456 if (time_seq == BTRFS_SEQ_LAST) 457 ret = btrfs_next_leaf(root, path); 458 else 459 ret = btrfs_next_old_leaf(root, path, time_seq); 460 } 461 462 while (!ret && count < ref->count) { 463 eb = path->nodes[0]; 464 slot = path->slots[0]; 465 466 btrfs_item_key_to_cpu(eb, &key, slot); 467 468 if (key.objectid != key_for_search->objectid || 469 key.type != BTRFS_EXTENT_DATA_KEY) 470 break; 471 472 /* 473 * We are searching for normal backref but bytenr of this leaf 474 * matches shared data backref, OR 475 * the leaf owner is not equal to the root we are searching for 476 */ 477 if (slot == 0 && 478 (is_shared_data_backref(preftrees, eb->start) || 479 ref->root_id != btrfs_header_owner(eb))) { 480 if (time_seq == BTRFS_SEQ_LAST) 481 ret = btrfs_next_leaf(root, path); 482 else 483 ret = btrfs_next_old_leaf(root, path, time_seq); 484 continue; 485 } 486 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 487 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 488 data_offset = btrfs_file_extent_offset(eb, fi); 489 490 if (disk_byte == wanted_disk_byte) { 491 eie = NULL; 492 old = NULL; 493 if (ref->key_for_search.offset == key.offset - data_offset) 494 count++; 495 else 496 goto next; 497 if (extent_item_pos) { 498 ret = check_extent_in_eb(&key, eb, fi, 499 *extent_item_pos, 500 &eie, ignore_offset); 501 if (ret < 0) 502 break; 503 } 504 if (ret > 0) 505 goto next; 506 ret = ulist_add_merge_ptr(parents, eb->start, 507 eie, (void **)&old, GFP_NOFS); 508 if (ret < 0) 509 break; 510 if (!ret && extent_item_pos) { 511 while (old->next) 512 old = old->next; 513 old->next = eie; 514 } 515 eie = NULL; 516 } 517 next: 518 if (time_seq == BTRFS_SEQ_LAST) 519 ret = btrfs_next_item(root, path); 520 else 521 ret = btrfs_next_old_item(root, path, time_seq); 522 } 523 524 if (ret > 0) 525 ret = 0; 526 else if (ret < 0) 527 free_inode_elem_list(eie); 528 return ret; 529 } 530 531 /* 532 * resolve an indirect backref in the form (root_id, key, level) 533 * to a logical address 534 */ 535 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 536 struct btrfs_path *path, u64 time_seq, 537 struct preftrees *preftrees, 538 struct prelim_ref *ref, struct ulist *parents, 539 const u64 *extent_item_pos, bool ignore_offset) 540 { 541 struct btrfs_root *root; 542 struct extent_buffer *eb; 543 int ret = 0; 544 int root_level; 545 int level = ref->level; 546 struct btrfs_key search_key = ref->key_for_search; 547 548 /* 549 * If we're search_commit_root we could possibly be holding locks on 550 * other tree nodes. This happens when qgroups does backref walks when 551 * adding new delayed refs. To deal with this we need to look in cache 552 * for the root, and if we don't find it then we need to search the 553 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 554 * here. 555 */ 556 if (path->search_commit_root) 557 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id); 558 else 559 root = btrfs_get_fs_root(fs_info, ref->root_id, false); 560 if (IS_ERR(root)) { 561 ret = PTR_ERR(root); 562 goto out_free; 563 } 564 565 if (!path->search_commit_root && 566 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 567 ret = -ENOENT; 568 goto out; 569 } 570 571 if (btrfs_is_testing(fs_info)) { 572 ret = -ENOENT; 573 goto out; 574 } 575 576 if (path->search_commit_root) 577 root_level = btrfs_header_level(root->commit_root); 578 else if (time_seq == BTRFS_SEQ_LAST) 579 root_level = btrfs_header_level(root->node); 580 else 581 root_level = btrfs_old_root_level(root, time_seq); 582 583 if (root_level + 1 == level) 584 goto out; 585 586 /* 587 * We can often find data backrefs with an offset that is too large 588 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 589 * subtracting a file's offset with the data offset of its 590 * corresponding extent data item. This can happen for example in the 591 * clone ioctl. 592 * 593 * So if we detect such case we set the search key's offset to zero to 594 * make sure we will find the matching file extent item at 595 * add_all_parents(), otherwise we will miss it because the offset 596 * taken form the backref is much larger then the offset of the file 597 * extent item. This can make us scan a very large number of file 598 * extent items, but at least it will not make us miss any. 599 * 600 * This is an ugly workaround for a behaviour that should have never 601 * existed, but it does and a fix for the clone ioctl would touch a lot 602 * of places, cause backwards incompatibility and would not fix the 603 * problem for extents cloned with older kernels. 604 */ 605 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 606 search_key.offset >= LLONG_MAX) 607 search_key.offset = 0; 608 path->lowest_level = level; 609 if (time_seq == BTRFS_SEQ_LAST) 610 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 611 else 612 ret = btrfs_search_old_slot(root, &search_key, path, time_seq); 613 614 btrfs_debug(fs_info, 615 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 616 ref->root_id, level, ref->count, ret, 617 ref->key_for_search.objectid, ref->key_for_search.type, 618 ref->key_for_search.offset); 619 if (ret < 0) 620 goto out; 621 622 eb = path->nodes[level]; 623 while (!eb) { 624 if (WARN_ON(!level)) { 625 ret = 1; 626 goto out; 627 } 628 level--; 629 eb = path->nodes[level]; 630 } 631 632 ret = add_all_parents(root, path, parents, preftrees, ref, level, 633 time_seq, extent_item_pos, ignore_offset); 634 out: 635 btrfs_put_root(root); 636 out_free: 637 path->lowest_level = 0; 638 btrfs_release_path(path); 639 return ret; 640 } 641 642 static struct extent_inode_elem * 643 unode_aux_to_inode_list(struct ulist_node *node) 644 { 645 if (!node) 646 return NULL; 647 return (struct extent_inode_elem *)(uintptr_t)node->aux; 648 } 649 650 /* 651 * We maintain three separate rbtrees: one for direct refs, one for 652 * indirect refs which have a key, and one for indirect refs which do not 653 * have a key. Each tree does merge on insertion. 654 * 655 * Once all of the references are located, we iterate over the tree of 656 * indirect refs with missing keys. An appropriate key is located and 657 * the ref is moved onto the tree for indirect refs. After all missing 658 * keys are thus located, we iterate over the indirect ref tree, resolve 659 * each reference, and then insert the resolved reference onto the 660 * direct tree (merging there too). 661 * 662 * New backrefs (i.e., for parent nodes) are added to the appropriate 663 * rbtree as they are encountered. The new backrefs are subsequently 664 * resolved as above. 665 */ 666 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 667 struct btrfs_path *path, u64 time_seq, 668 struct preftrees *preftrees, 669 const u64 *extent_item_pos, 670 struct share_check *sc, bool ignore_offset) 671 { 672 int err; 673 int ret = 0; 674 struct ulist *parents; 675 struct ulist_node *node; 676 struct ulist_iterator uiter; 677 struct rb_node *rnode; 678 679 parents = ulist_alloc(GFP_NOFS); 680 if (!parents) 681 return -ENOMEM; 682 683 /* 684 * We could trade memory usage for performance here by iterating 685 * the tree, allocating new refs for each insertion, and then 686 * freeing the entire indirect tree when we're done. In some test 687 * cases, the tree can grow quite large (~200k objects). 688 */ 689 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 690 struct prelim_ref *ref; 691 692 ref = rb_entry(rnode, struct prelim_ref, rbnode); 693 if (WARN(ref->parent, 694 "BUG: direct ref found in indirect tree")) { 695 ret = -EINVAL; 696 goto out; 697 } 698 699 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 700 preftrees->indirect.count--; 701 702 if (ref->count == 0) { 703 free_pref(ref); 704 continue; 705 } 706 707 if (sc && sc->root_objectid && 708 ref->root_id != sc->root_objectid) { 709 free_pref(ref); 710 ret = BACKREF_FOUND_SHARED; 711 goto out; 712 } 713 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees, 714 ref, parents, extent_item_pos, 715 ignore_offset); 716 /* 717 * we can only tolerate ENOENT,otherwise,we should catch error 718 * and return directly. 719 */ 720 if (err == -ENOENT) { 721 prelim_ref_insert(fs_info, &preftrees->direct, ref, 722 NULL); 723 continue; 724 } else if (err) { 725 free_pref(ref); 726 ret = err; 727 goto out; 728 } 729 730 /* we put the first parent into the ref at hand */ 731 ULIST_ITER_INIT(&uiter); 732 node = ulist_next(parents, &uiter); 733 ref->parent = node ? node->val : 0; 734 ref->inode_list = unode_aux_to_inode_list(node); 735 736 /* Add a prelim_ref(s) for any other parent(s). */ 737 while ((node = ulist_next(parents, &uiter))) { 738 struct prelim_ref *new_ref; 739 740 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 741 GFP_NOFS); 742 if (!new_ref) { 743 free_pref(ref); 744 ret = -ENOMEM; 745 goto out; 746 } 747 memcpy(new_ref, ref, sizeof(*ref)); 748 new_ref->parent = node->val; 749 new_ref->inode_list = unode_aux_to_inode_list(node); 750 prelim_ref_insert(fs_info, &preftrees->direct, 751 new_ref, NULL); 752 } 753 754 /* 755 * Now it's a direct ref, put it in the direct tree. We must 756 * do this last because the ref could be merged/freed here. 757 */ 758 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 759 760 ulist_reinit(parents); 761 cond_resched(); 762 } 763 out: 764 ulist_free(parents); 765 return ret; 766 } 767 768 /* 769 * read tree blocks and add keys where required. 770 */ 771 static int add_missing_keys(struct btrfs_fs_info *fs_info, 772 struct preftrees *preftrees, bool lock) 773 { 774 struct prelim_ref *ref; 775 struct extent_buffer *eb; 776 struct preftree *tree = &preftrees->indirect_missing_keys; 777 struct rb_node *node; 778 779 while ((node = rb_first_cached(&tree->root))) { 780 ref = rb_entry(node, struct prelim_ref, rbnode); 781 rb_erase_cached(node, &tree->root); 782 783 BUG_ON(ref->parent); /* should not be a direct ref */ 784 BUG_ON(ref->key_for_search.type); 785 BUG_ON(!ref->wanted_disk_byte); 786 787 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 788 ref->root_id, 0, ref->level - 1, NULL); 789 if (IS_ERR(eb)) { 790 free_pref(ref); 791 return PTR_ERR(eb); 792 } else if (!extent_buffer_uptodate(eb)) { 793 free_pref(ref); 794 free_extent_buffer(eb); 795 return -EIO; 796 } 797 if (lock) 798 btrfs_tree_read_lock(eb); 799 if (btrfs_header_level(eb) == 0) 800 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 801 else 802 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 803 if (lock) 804 btrfs_tree_read_unlock(eb); 805 free_extent_buffer(eb); 806 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 807 cond_resched(); 808 } 809 return 0; 810 } 811 812 /* 813 * add all currently queued delayed refs from this head whose seq nr is 814 * smaller or equal that seq to the list 815 */ 816 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 817 struct btrfs_delayed_ref_head *head, u64 seq, 818 struct preftrees *preftrees, struct share_check *sc) 819 { 820 struct btrfs_delayed_ref_node *node; 821 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 822 struct btrfs_key key; 823 struct btrfs_key tmp_op_key; 824 struct rb_node *n; 825 int count; 826 int ret = 0; 827 828 if (extent_op && extent_op->update_key) 829 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 830 831 spin_lock(&head->lock); 832 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 833 node = rb_entry(n, struct btrfs_delayed_ref_node, 834 ref_node); 835 if (node->seq > seq) 836 continue; 837 838 switch (node->action) { 839 case BTRFS_ADD_DELAYED_EXTENT: 840 case BTRFS_UPDATE_DELAYED_HEAD: 841 WARN_ON(1); 842 continue; 843 case BTRFS_ADD_DELAYED_REF: 844 count = node->ref_mod; 845 break; 846 case BTRFS_DROP_DELAYED_REF: 847 count = node->ref_mod * -1; 848 break; 849 default: 850 BUG(); 851 } 852 switch (node->type) { 853 case BTRFS_TREE_BLOCK_REF_KEY: { 854 /* NORMAL INDIRECT METADATA backref */ 855 struct btrfs_delayed_tree_ref *ref; 856 857 ref = btrfs_delayed_node_to_tree_ref(node); 858 ret = add_indirect_ref(fs_info, preftrees, ref->root, 859 &tmp_op_key, ref->level + 1, 860 node->bytenr, count, sc, 861 GFP_ATOMIC); 862 break; 863 } 864 case BTRFS_SHARED_BLOCK_REF_KEY: { 865 /* SHARED DIRECT METADATA backref */ 866 struct btrfs_delayed_tree_ref *ref; 867 868 ref = btrfs_delayed_node_to_tree_ref(node); 869 870 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 871 ref->parent, node->bytenr, count, 872 sc, GFP_ATOMIC); 873 break; 874 } 875 case BTRFS_EXTENT_DATA_REF_KEY: { 876 /* NORMAL INDIRECT DATA backref */ 877 struct btrfs_delayed_data_ref *ref; 878 ref = btrfs_delayed_node_to_data_ref(node); 879 880 key.objectid = ref->objectid; 881 key.type = BTRFS_EXTENT_DATA_KEY; 882 key.offset = ref->offset; 883 884 /* 885 * Found a inum that doesn't match our known inum, we 886 * know it's shared. 887 */ 888 if (sc && sc->inum && ref->objectid != sc->inum) { 889 ret = BACKREF_FOUND_SHARED; 890 goto out; 891 } 892 893 ret = add_indirect_ref(fs_info, preftrees, ref->root, 894 &key, 0, node->bytenr, count, sc, 895 GFP_ATOMIC); 896 break; 897 } 898 case BTRFS_SHARED_DATA_REF_KEY: { 899 /* SHARED DIRECT FULL backref */ 900 struct btrfs_delayed_data_ref *ref; 901 902 ref = btrfs_delayed_node_to_data_ref(node); 903 904 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 905 node->bytenr, count, sc, 906 GFP_ATOMIC); 907 break; 908 } 909 default: 910 WARN_ON(1); 911 } 912 /* 913 * We must ignore BACKREF_FOUND_SHARED until all delayed 914 * refs have been checked. 915 */ 916 if (ret && (ret != BACKREF_FOUND_SHARED)) 917 break; 918 } 919 if (!ret) 920 ret = extent_is_shared(sc); 921 out: 922 spin_unlock(&head->lock); 923 return ret; 924 } 925 926 /* 927 * add all inline backrefs for bytenr to the list 928 * 929 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 930 */ 931 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 932 struct btrfs_path *path, u64 bytenr, 933 int *info_level, struct preftrees *preftrees, 934 struct share_check *sc) 935 { 936 int ret = 0; 937 int slot; 938 struct extent_buffer *leaf; 939 struct btrfs_key key; 940 struct btrfs_key found_key; 941 unsigned long ptr; 942 unsigned long end; 943 struct btrfs_extent_item *ei; 944 u64 flags; 945 u64 item_size; 946 947 /* 948 * enumerate all inline refs 949 */ 950 leaf = path->nodes[0]; 951 slot = path->slots[0]; 952 953 item_size = btrfs_item_size(leaf, slot); 954 BUG_ON(item_size < sizeof(*ei)); 955 956 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 957 flags = btrfs_extent_flags(leaf, ei); 958 btrfs_item_key_to_cpu(leaf, &found_key, slot); 959 960 ptr = (unsigned long)(ei + 1); 961 end = (unsigned long)ei + item_size; 962 963 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 964 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 965 struct btrfs_tree_block_info *info; 966 967 info = (struct btrfs_tree_block_info *)ptr; 968 *info_level = btrfs_tree_block_level(leaf, info); 969 ptr += sizeof(struct btrfs_tree_block_info); 970 BUG_ON(ptr > end); 971 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 972 *info_level = found_key.offset; 973 } else { 974 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 975 } 976 977 while (ptr < end) { 978 struct btrfs_extent_inline_ref *iref; 979 u64 offset; 980 int type; 981 982 iref = (struct btrfs_extent_inline_ref *)ptr; 983 type = btrfs_get_extent_inline_ref_type(leaf, iref, 984 BTRFS_REF_TYPE_ANY); 985 if (type == BTRFS_REF_TYPE_INVALID) 986 return -EUCLEAN; 987 988 offset = btrfs_extent_inline_ref_offset(leaf, iref); 989 990 switch (type) { 991 case BTRFS_SHARED_BLOCK_REF_KEY: 992 ret = add_direct_ref(fs_info, preftrees, 993 *info_level + 1, offset, 994 bytenr, 1, NULL, GFP_NOFS); 995 break; 996 case BTRFS_SHARED_DATA_REF_KEY: { 997 struct btrfs_shared_data_ref *sdref; 998 int count; 999 1000 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1001 count = btrfs_shared_data_ref_count(leaf, sdref); 1002 1003 ret = add_direct_ref(fs_info, preftrees, 0, offset, 1004 bytenr, count, sc, GFP_NOFS); 1005 break; 1006 } 1007 case BTRFS_TREE_BLOCK_REF_KEY: 1008 ret = add_indirect_ref(fs_info, preftrees, offset, 1009 NULL, *info_level + 1, 1010 bytenr, 1, NULL, GFP_NOFS); 1011 break; 1012 case BTRFS_EXTENT_DATA_REF_KEY: { 1013 struct btrfs_extent_data_ref *dref; 1014 int count; 1015 u64 root; 1016 1017 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1018 count = btrfs_extent_data_ref_count(leaf, dref); 1019 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1020 dref); 1021 key.type = BTRFS_EXTENT_DATA_KEY; 1022 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1023 1024 if (sc && sc->inum && key.objectid != sc->inum) { 1025 ret = BACKREF_FOUND_SHARED; 1026 break; 1027 } 1028 1029 root = btrfs_extent_data_ref_root(leaf, dref); 1030 1031 ret = add_indirect_ref(fs_info, preftrees, root, 1032 &key, 0, bytenr, count, 1033 sc, GFP_NOFS); 1034 break; 1035 } 1036 default: 1037 WARN_ON(1); 1038 } 1039 if (ret) 1040 return ret; 1041 ptr += btrfs_extent_inline_ref_size(type); 1042 } 1043 1044 return 0; 1045 } 1046 1047 /* 1048 * add all non-inline backrefs for bytenr to the list 1049 * 1050 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1051 */ 1052 static int add_keyed_refs(struct btrfs_root *extent_root, 1053 struct btrfs_path *path, u64 bytenr, 1054 int info_level, struct preftrees *preftrees, 1055 struct share_check *sc) 1056 { 1057 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1058 int ret; 1059 int slot; 1060 struct extent_buffer *leaf; 1061 struct btrfs_key key; 1062 1063 while (1) { 1064 ret = btrfs_next_item(extent_root, path); 1065 if (ret < 0) 1066 break; 1067 if (ret) { 1068 ret = 0; 1069 break; 1070 } 1071 1072 slot = path->slots[0]; 1073 leaf = path->nodes[0]; 1074 btrfs_item_key_to_cpu(leaf, &key, slot); 1075 1076 if (key.objectid != bytenr) 1077 break; 1078 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1079 continue; 1080 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1081 break; 1082 1083 switch (key.type) { 1084 case BTRFS_SHARED_BLOCK_REF_KEY: 1085 /* SHARED DIRECT METADATA backref */ 1086 ret = add_direct_ref(fs_info, preftrees, 1087 info_level + 1, key.offset, 1088 bytenr, 1, NULL, GFP_NOFS); 1089 break; 1090 case BTRFS_SHARED_DATA_REF_KEY: { 1091 /* SHARED DIRECT FULL backref */ 1092 struct btrfs_shared_data_ref *sdref; 1093 int count; 1094 1095 sdref = btrfs_item_ptr(leaf, slot, 1096 struct btrfs_shared_data_ref); 1097 count = btrfs_shared_data_ref_count(leaf, sdref); 1098 ret = add_direct_ref(fs_info, preftrees, 0, 1099 key.offset, bytenr, count, 1100 sc, GFP_NOFS); 1101 break; 1102 } 1103 case BTRFS_TREE_BLOCK_REF_KEY: 1104 /* NORMAL INDIRECT METADATA backref */ 1105 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1106 NULL, info_level + 1, bytenr, 1107 1, NULL, GFP_NOFS); 1108 break; 1109 case BTRFS_EXTENT_DATA_REF_KEY: { 1110 /* NORMAL INDIRECT DATA backref */ 1111 struct btrfs_extent_data_ref *dref; 1112 int count; 1113 u64 root; 1114 1115 dref = btrfs_item_ptr(leaf, slot, 1116 struct btrfs_extent_data_ref); 1117 count = btrfs_extent_data_ref_count(leaf, dref); 1118 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1119 dref); 1120 key.type = BTRFS_EXTENT_DATA_KEY; 1121 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1122 1123 if (sc && sc->inum && key.objectid != sc->inum) { 1124 ret = BACKREF_FOUND_SHARED; 1125 break; 1126 } 1127 1128 root = btrfs_extent_data_ref_root(leaf, dref); 1129 ret = add_indirect_ref(fs_info, preftrees, root, 1130 &key, 0, bytenr, count, 1131 sc, GFP_NOFS); 1132 break; 1133 } 1134 default: 1135 WARN_ON(1); 1136 } 1137 if (ret) 1138 return ret; 1139 1140 } 1141 1142 return ret; 1143 } 1144 1145 /* 1146 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1147 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1148 * indirect refs to their parent bytenr. 1149 * When roots are found, they're added to the roots list 1150 * 1151 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and 1152 * behave much like trans == NULL case, the difference only lies in it will not 1153 * commit root. 1154 * The special case is for qgroup to search roots in commit_transaction(). 1155 * 1156 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1157 * shared extent is detected. 1158 * 1159 * Otherwise this returns 0 for success and <0 for an error. 1160 * 1161 * If ignore_offset is set to false, only extent refs whose offsets match 1162 * extent_item_pos are returned. If true, every extent ref is returned 1163 * and extent_item_pos is ignored. 1164 * 1165 * FIXME some caching might speed things up 1166 */ 1167 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1168 struct btrfs_fs_info *fs_info, u64 bytenr, 1169 u64 time_seq, struct ulist *refs, 1170 struct ulist *roots, const u64 *extent_item_pos, 1171 struct share_check *sc, bool ignore_offset) 1172 { 1173 struct btrfs_root *root = fs_info->extent_root; 1174 struct btrfs_key key; 1175 struct btrfs_path *path; 1176 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1177 struct btrfs_delayed_ref_head *head; 1178 int info_level = 0; 1179 int ret; 1180 struct prelim_ref *ref; 1181 struct rb_node *node; 1182 struct extent_inode_elem *eie = NULL; 1183 struct preftrees preftrees = { 1184 .direct = PREFTREE_INIT, 1185 .indirect = PREFTREE_INIT, 1186 .indirect_missing_keys = PREFTREE_INIT 1187 }; 1188 1189 key.objectid = bytenr; 1190 key.offset = (u64)-1; 1191 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1192 key.type = BTRFS_METADATA_ITEM_KEY; 1193 else 1194 key.type = BTRFS_EXTENT_ITEM_KEY; 1195 1196 path = btrfs_alloc_path(); 1197 if (!path) 1198 return -ENOMEM; 1199 if (!trans) { 1200 path->search_commit_root = 1; 1201 path->skip_locking = 1; 1202 } 1203 1204 if (time_seq == BTRFS_SEQ_LAST) 1205 path->skip_locking = 1; 1206 1207 again: 1208 head = NULL; 1209 1210 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1211 if (ret < 0) 1212 goto out; 1213 BUG_ON(ret == 0); 1214 1215 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1216 if (trans && likely(trans->type != __TRANS_DUMMY) && 1217 time_seq != BTRFS_SEQ_LAST) { 1218 #else 1219 if (trans && time_seq != BTRFS_SEQ_LAST) { 1220 #endif 1221 /* 1222 * We have a specific time_seq we care about and trans which 1223 * means we have the path lock, we need to grab the ref head and 1224 * lock it so we have a consistent view of the refs at the given 1225 * time. 1226 */ 1227 delayed_refs = &trans->transaction->delayed_refs; 1228 spin_lock(&delayed_refs->lock); 1229 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1230 if (head) { 1231 if (!mutex_trylock(&head->mutex)) { 1232 refcount_inc(&head->refs); 1233 spin_unlock(&delayed_refs->lock); 1234 1235 btrfs_release_path(path); 1236 1237 /* 1238 * Mutex was contended, block until it's 1239 * released and try again 1240 */ 1241 mutex_lock(&head->mutex); 1242 mutex_unlock(&head->mutex); 1243 btrfs_put_delayed_ref_head(head); 1244 goto again; 1245 } 1246 spin_unlock(&delayed_refs->lock); 1247 ret = add_delayed_refs(fs_info, head, time_seq, 1248 &preftrees, sc); 1249 mutex_unlock(&head->mutex); 1250 if (ret) 1251 goto out; 1252 } else { 1253 spin_unlock(&delayed_refs->lock); 1254 } 1255 } 1256 1257 if (path->slots[0]) { 1258 struct extent_buffer *leaf; 1259 int slot; 1260 1261 path->slots[0]--; 1262 leaf = path->nodes[0]; 1263 slot = path->slots[0]; 1264 btrfs_item_key_to_cpu(leaf, &key, slot); 1265 if (key.objectid == bytenr && 1266 (key.type == BTRFS_EXTENT_ITEM_KEY || 1267 key.type == BTRFS_METADATA_ITEM_KEY)) { 1268 ret = add_inline_refs(fs_info, path, bytenr, 1269 &info_level, &preftrees, sc); 1270 if (ret) 1271 goto out; 1272 ret = add_keyed_refs(root, path, bytenr, info_level, 1273 &preftrees, sc); 1274 if (ret) 1275 goto out; 1276 } 1277 } 1278 1279 btrfs_release_path(path); 1280 1281 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0); 1282 if (ret) 1283 goto out; 1284 1285 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1286 1287 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1288 extent_item_pos, sc, ignore_offset); 1289 if (ret) 1290 goto out; 1291 1292 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1293 1294 /* 1295 * This walks the tree of merged and resolved refs. Tree blocks are 1296 * read in as needed. Unique entries are added to the ulist, and 1297 * the list of found roots is updated. 1298 * 1299 * We release the entire tree in one go before returning. 1300 */ 1301 node = rb_first_cached(&preftrees.direct.root); 1302 while (node) { 1303 ref = rb_entry(node, struct prelim_ref, rbnode); 1304 node = rb_next(&ref->rbnode); 1305 /* 1306 * ref->count < 0 can happen here if there are delayed 1307 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1308 * prelim_ref_insert() relies on this when merging 1309 * identical refs to keep the overall count correct. 1310 * prelim_ref_insert() will merge only those refs 1311 * which compare identically. Any refs having 1312 * e.g. different offsets would not be merged, 1313 * and would retain their original ref->count < 0. 1314 */ 1315 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1316 if (sc && sc->root_objectid && 1317 ref->root_id != sc->root_objectid) { 1318 ret = BACKREF_FOUND_SHARED; 1319 goto out; 1320 } 1321 1322 /* no parent == root of tree */ 1323 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1324 if (ret < 0) 1325 goto out; 1326 } 1327 if (ref->count && ref->parent) { 1328 if (extent_item_pos && !ref->inode_list && 1329 ref->level == 0) { 1330 struct extent_buffer *eb; 1331 1332 eb = read_tree_block(fs_info, ref->parent, 0, 1333 0, ref->level, NULL); 1334 if (IS_ERR(eb)) { 1335 ret = PTR_ERR(eb); 1336 goto out; 1337 } else if (!extent_buffer_uptodate(eb)) { 1338 free_extent_buffer(eb); 1339 ret = -EIO; 1340 goto out; 1341 } 1342 1343 if (!path->skip_locking) 1344 btrfs_tree_read_lock(eb); 1345 ret = find_extent_in_eb(eb, bytenr, 1346 *extent_item_pos, &eie, ignore_offset); 1347 if (!path->skip_locking) 1348 btrfs_tree_read_unlock(eb); 1349 free_extent_buffer(eb); 1350 if (ret < 0) 1351 goto out; 1352 ref->inode_list = eie; 1353 } 1354 ret = ulist_add_merge_ptr(refs, ref->parent, 1355 ref->inode_list, 1356 (void **)&eie, GFP_NOFS); 1357 if (ret < 0) 1358 goto out; 1359 if (!ret && extent_item_pos) { 1360 /* 1361 * we've recorded that parent, so we must extend 1362 * its inode list here 1363 */ 1364 BUG_ON(!eie); 1365 while (eie->next) 1366 eie = eie->next; 1367 eie->next = ref->inode_list; 1368 } 1369 eie = NULL; 1370 } 1371 cond_resched(); 1372 } 1373 1374 out: 1375 btrfs_free_path(path); 1376 1377 prelim_release(&preftrees.direct); 1378 prelim_release(&preftrees.indirect); 1379 prelim_release(&preftrees.indirect_missing_keys); 1380 1381 if (ret < 0) 1382 free_inode_elem_list(eie); 1383 return ret; 1384 } 1385 1386 static void free_leaf_list(struct ulist *blocks) 1387 { 1388 struct ulist_node *node = NULL; 1389 struct extent_inode_elem *eie; 1390 struct ulist_iterator uiter; 1391 1392 ULIST_ITER_INIT(&uiter); 1393 while ((node = ulist_next(blocks, &uiter))) { 1394 if (!node->aux) 1395 continue; 1396 eie = unode_aux_to_inode_list(node); 1397 free_inode_elem_list(eie); 1398 node->aux = 0; 1399 } 1400 1401 ulist_free(blocks); 1402 } 1403 1404 /* 1405 * Finds all leafs with a reference to the specified combination of bytenr and 1406 * offset. key_list_head will point to a list of corresponding keys (caller must 1407 * free each list element). The leafs will be stored in the leafs ulist, which 1408 * must be freed with ulist_free. 1409 * 1410 * returns 0 on success, <0 on error 1411 */ 1412 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1413 struct btrfs_fs_info *fs_info, u64 bytenr, 1414 u64 time_seq, struct ulist **leafs, 1415 const u64 *extent_item_pos, bool ignore_offset) 1416 { 1417 int ret; 1418 1419 *leafs = ulist_alloc(GFP_NOFS); 1420 if (!*leafs) 1421 return -ENOMEM; 1422 1423 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1424 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1425 if (ret < 0 && ret != -ENOENT) { 1426 free_leaf_list(*leafs); 1427 return ret; 1428 } 1429 1430 return 0; 1431 } 1432 1433 /* 1434 * walk all backrefs for a given extent to find all roots that reference this 1435 * extent. Walking a backref means finding all extents that reference this 1436 * extent and in turn walk the backrefs of those, too. Naturally this is a 1437 * recursive process, but here it is implemented in an iterative fashion: We 1438 * find all referencing extents for the extent in question and put them on a 1439 * list. In turn, we find all referencing extents for those, further appending 1440 * to the list. The way we iterate the list allows adding more elements after 1441 * the current while iterating. The process stops when we reach the end of the 1442 * list. Found roots are added to the roots list. 1443 * 1444 * returns 0 on success, < 0 on error. 1445 */ 1446 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1447 struct btrfs_fs_info *fs_info, u64 bytenr, 1448 u64 time_seq, struct ulist **roots, 1449 bool ignore_offset) 1450 { 1451 struct ulist *tmp; 1452 struct ulist_node *node = NULL; 1453 struct ulist_iterator uiter; 1454 int ret; 1455 1456 tmp = ulist_alloc(GFP_NOFS); 1457 if (!tmp) 1458 return -ENOMEM; 1459 *roots = ulist_alloc(GFP_NOFS); 1460 if (!*roots) { 1461 ulist_free(tmp); 1462 return -ENOMEM; 1463 } 1464 1465 ULIST_ITER_INIT(&uiter); 1466 while (1) { 1467 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1468 tmp, *roots, NULL, NULL, ignore_offset); 1469 if (ret < 0 && ret != -ENOENT) { 1470 ulist_free(tmp); 1471 ulist_free(*roots); 1472 *roots = NULL; 1473 return ret; 1474 } 1475 node = ulist_next(tmp, &uiter); 1476 if (!node) 1477 break; 1478 bytenr = node->val; 1479 cond_resched(); 1480 } 1481 1482 ulist_free(tmp); 1483 return 0; 1484 } 1485 1486 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1487 struct btrfs_fs_info *fs_info, u64 bytenr, 1488 u64 time_seq, struct ulist **roots, 1489 bool skip_commit_root_sem) 1490 { 1491 int ret; 1492 1493 if (!trans && !skip_commit_root_sem) 1494 down_read(&fs_info->commit_root_sem); 1495 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1496 time_seq, roots, false); 1497 if (!trans && !skip_commit_root_sem) 1498 up_read(&fs_info->commit_root_sem); 1499 return ret; 1500 } 1501 1502 /** 1503 * Check if an extent is shared or not 1504 * 1505 * @root: root inode belongs to 1506 * @inum: inode number of the inode whose extent we are checking 1507 * @bytenr: logical bytenr of the extent we are checking 1508 * @roots: list of roots this extent is shared among 1509 * @tmp: temporary list used for iteration 1510 * 1511 * btrfs_check_shared uses the backref walking code but will short 1512 * circuit as soon as it finds a root or inode that doesn't match the 1513 * one passed in. This provides a significant performance benefit for 1514 * callers (such as fiemap) which want to know whether the extent is 1515 * shared but do not need a ref count. 1516 * 1517 * This attempts to attach to the running transaction in order to account for 1518 * delayed refs, but continues on even when no running transaction exists. 1519 * 1520 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1521 */ 1522 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr, 1523 struct ulist *roots, struct ulist *tmp) 1524 { 1525 struct btrfs_fs_info *fs_info = root->fs_info; 1526 struct btrfs_trans_handle *trans; 1527 struct ulist_iterator uiter; 1528 struct ulist_node *node; 1529 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1530 int ret = 0; 1531 struct share_check shared = { 1532 .root_objectid = root->root_key.objectid, 1533 .inum = inum, 1534 .share_count = 0, 1535 }; 1536 1537 ulist_init(roots); 1538 ulist_init(tmp); 1539 1540 trans = btrfs_join_transaction_nostart(root); 1541 if (IS_ERR(trans)) { 1542 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1543 ret = PTR_ERR(trans); 1544 goto out; 1545 } 1546 trans = NULL; 1547 down_read(&fs_info->commit_root_sem); 1548 } else { 1549 btrfs_get_tree_mod_seq(fs_info, &elem); 1550 } 1551 1552 ULIST_ITER_INIT(&uiter); 1553 while (1) { 1554 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1555 roots, NULL, &shared, false); 1556 if (ret == BACKREF_FOUND_SHARED) { 1557 /* this is the only condition under which we return 1 */ 1558 ret = 1; 1559 break; 1560 } 1561 if (ret < 0 && ret != -ENOENT) 1562 break; 1563 ret = 0; 1564 node = ulist_next(tmp, &uiter); 1565 if (!node) 1566 break; 1567 bytenr = node->val; 1568 shared.share_count = 0; 1569 cond_resched(); 1570 } 1571 1572 if (trans) { 1573 btrfs_put_tree_mod_seq(fs_info, &elem); 1574 btrfs_end_transaction(trans); 1575 } else { 1576 up_read(&fs_info->commit_root_sem); 1577 } 1578 out: 1579 ulist_release(roots); 1580 ulist_release(tmp); 1581 return ret; 1582 } 1583 1584 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1585 u64 start_off, struct btrfs_path *path, 1586 struct btrfs_inode_extref **ret_extref, 1587 u64 *found_off) 1588 { 1589 int ret, slot; 1590 struct btrfs_key key; 1591 struct btrfs_key found_key; 1592 struct btrfs_inode_extref *extref; 1593 const struct extent_buffer *leaf; 1594 unsigned long ptr; 1595 1596 key.objectid = inode_objectid; 1597 key.type = BTRFS_INODE_EXTREF_KEY; 1598 key.offset = start_off; 1599 1600 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1601 if (ret < 0) 1602 return ret; 1603 1604 while (1) { 1605 leaf = path->nodes[0]; 1606 slot = path->slots[0]; 1607 if (slot >= btrfs_header_nritems(leaf)) { 1608 /* 1609 * If the item at offset is not found, 1610 * btrfs_search_slot will point us to the slot 1611 * where it should be inserted. In our case 1612 * that will be the slot directly before the 1613 * next INODE_REF_KEY_V2 item. In the case 1614 * that we're pointing to the last slot in a 1615 * leaf, we must move one leaf over. 1616 */ 1617 ret = btrfs_next_leaf(root, path); 1618 if (ret) { 1619 if (ret >= 1) 1620 ret = -ENOENT; 1621 break; 1622 } 1623 continue; 1624 } 1625 1626 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1627 1628 /* 1629 * Check that we're still looking at an extended ref key for 1630 * this particular objectid. If we have different 1631 * objectid or type then there are no more to be found 1632 * in the tree and we can exit. 1633 */ 1634 ret = -ENOENT; 1635 if (found_key.objectid != inode_objectid) 1636 break; 1637 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1638 break; 1639 1640 ret = 0; 1641 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1642 extref = (struct btrfs_inode_extref *)ptr; 1643 *ret_extref = extref; 1644 if (found_off) 1645 *found_off = found_key.offset; 1646 break; 1647 } 1648 1649 return ret; 1650 } 1651 1652 /* 1653 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1654 * Elements of the path are separated by '/' and the path is guaranteed to be 1655 * 0-terminated. the path is only given within the current file system. 1656 * Therefore, it never starts with a '/'. the caller is responsible to provide 1657 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1658 * the start point of the resulting string is returned. this pointer is within 1659 * dest, normally. 1660 * in case the path buffer would overflow, the pointer is decremented further 1661 * as if output was written to the buffer, though no more output is actually 1662 * generated. that way, the caller can determine how much space would be 1663 * required for the path to fit into the buffer. in that case, the returned 1664 * value will be smaller than dest. callers must check this! 1665 */ 1666 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1667 u32 name_len, unsigned long name_off, 1668 struct extent_buffer *eb_in, u64 parent, 1669 char *dest, u32 size) 1670 { 1671 int slot; 1672 u64 next_inum; 1673 int ret; 1674 s64 bytes_left = ((s64)size) - 1; 1675 struct extent_buffer *eb = eb_in; 1676 struct btrfs_key found_key; 1677 struct btrfs_inode_ref *iref; 1678 1679 if (bytes_left >= 0) 1680 dest[bytes_left] = '\0'; 1681 1682 while (1) { 1683 bytes_left -= name_len; 1684 if (bytes_left >= 0) 1685 read_extent_buffer(eb, dest + bytes_left, 1686 name_off, name_len); 1687 if (eb != eb_in) { 1688 if (!path->skip_locking) 1689 btrfs_tree_read_unlock(eb); 1690 free_extent_buffer(eb); 1691 } 1692 ret = btrfs_find_item(fs_root, path, parent, 0, 1693 BTRFS_INODE_REF_KEY, &found_key); 1694 if (ret > 0) 1695 ret = -ENOENT; 1696 if (ret) 1697 break; 1698 1699 next_inum = found_key.offset; 1700 1701 /* regular exit ahead */ 1702 if (parent == next_inum) 1703 break; 1704 1705 slot = path->slots[0]; 1706 eb = path->nodes[0]; 1707 /* make sure we can use eb after releasing the path */ 1708 if (eb != eb_in) { 1709 path->nodes[0] = NULL; 1710 path->locks[0] = 0; 1711 } 1712 btrfs_release_path(path); 1713 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1714 1715 name_len = btrfs_inode_ref_name_len(eb, iref); 1716 name_off = (unsigned long)(iref + 1); 1717 1718 parent = next_inum; 1719 --bytes_left; 1720 if (bytes_left >= 0) 1721 dest[bytes_left] = '/'; 1722 } 1723 1724 btrfs_release_path(path); 1725 1726 if (ret) 1727 return ERR_PTR(ret); 1728 1729 return dest + bytes_left; 1730 } 1731 1732 /* 1733 * this makes the path point to (logical EXTENT_ITEM *) 1734 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1735 * tree blocks and <0 on error. 1736 */ 1737 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1738 struct btrfs_path *path, struct btrfs_key *found_key, 1739 u64 *flags_ret) 1740 { 1741 int ret; 1742 u64 flags; 1743 u64 size = 0; 1744 u32 item_size; 1745 const struct extent_buffer *eb; 1746 struct btrfs_extent_item *ei; 1747 struct btrfs_key key; 1748 1749 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1750 key.type = BTRFS_METADATA_ITEM_KEY; 1751 else 1752 key.type = BTRFS_EXTENT_ITEM_KEY; 1753 key.objectid = logical; 1754 key.offset = (u64)-1; 1755 1756 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1757 if (ret < 0) 1758 return ret; 1759 1760 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1761 if (ret) { 1762 if (ret > 0) 1763 ret = -ENOENT; 1764 return ret; 1765 } 1766 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1767 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1768 size = fs_info->nodesize; 1769 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1770 size = found_key->offset; 1771 1772 if (found_key->objectid > logical || 1773 found_key->objectid + size <= logical) { 1774 btrfs_debug(fs_info, 1775 "logical %llu is not within any extent", logical); 1776 return -ENOENT; 1777 } 1778 1779 eb = path->nodes[0]; 1780 item_size = btrfs_item_size(eb, path->slots[0]); 1781 BUG_ON(item_size < sizeof(*ei)); 1782 1783 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1784 flags = btrfs_extent_flags(eb, ei); 1785 1786 btrfs_debug(fs_info, 1787 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1788 logical, logical - found_key->objectid, found_key->objectid, 1789 found_key->offset, flags, item_size); 1790 1791 WARN_ON(!flags_ret); 1792 if (flags_ret) { 1793 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1794 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1795 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1796 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1797 else 1798 BUG(); 1799 return 0; 1800 } 1801 1802 return -EIO; 1803 } 1804 1805 /* 1806 * helper function to iterate extent inline refs. ptr must point to a 0 value 1807 * for the first call and may be modified. it is used to track state. 1808 * if more refs exist, 0 is returned and the next call to 1809 * get_extent_inline_ref must pass the modified ptr parameter to get the 1810 * next ref. after the last ref was processed, 1 is returned. 1811 * returns <0 on error 1812 */ 1813 static int get_extent_inline_ref(unsigned long *ptr, 1814 const struct extent_buffer *eb, 1815 const struct btrfs_key *key, 1816 const struct btrfs_extent_item *ei, 1817 u32 item_size, 1818 struct btrfs_extent_inline_ref **out_eiref, 1819 int *out_type) 1820 { 1821 unsigned long end; 1822 u64 flags; 1823 struct btrfs_tree_block_info *info; 1824 1825 if (!*ptr) { 1826 /* first call */ 1827 flags = btrfs_extent_flags(eb, ei); 1828 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1829 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1830 /* a skinny metadata extent */ 1831 *out_eiref = 1832 (struct btrfs_extent_inline_ref *)(ei + 1); 1833 } else { 1834 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1835 info = (struct btrfs_tree_block_info *)(ei + 1); 1836 *out_eiref = 1837 (struct btrfs_extent_inline_ref *)(info + 1); 1838 } 1839 } else { 1840 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1841 } 1842 *ptr = (unsigned long)*out_eiref; 1843 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1844 return -ENOENT; 1845 } 1846 1847 end = (unsigned long)ei + item_size; 1848 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1849 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1850 BTRFS_REF_TYPE_ANY); 1851 if (*out_type == BTRFS_REF_TYPE_INVALID) 1852 return -EUCLEAN; 1853 1854 *ptr += btrfs_extent_inline_ref_size(*out_type); 1855 WARN_ON(*ptr > end); 1856 if (*ptr == end) 1857 return 1; /* last */ 1858 1859 return 0; 1860 } 1861 1862 /* 1863 * reads the tree block backref for an extent. tree level and root are returned 1864 * through out_level and out_root. ptr must point to a 0 value for the first 1865 * call and may be modified (see get_extent_inline_ref comment). 1866 * returns 0 if data was provided, 1 if there was no more data to provide or 1867 * <0 on error. 1868 */ 1869 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1870 struct btrfs_key *key, struct btrfs_extent_item *ei, 1871 u32 item_size, u64 *out_root, u8 *out_level) 1872 { 1873 int ret; 1874 int type; 1875 struct btrfs_extent_inline_ref *eiref; 1876 1877 if (*ptr == (unsigned long)-1) 1878 return 1; 1879 1880 while (1) { 1881 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1882 &eiref, &type); 1883 if (ret < 0) 1884 return ret; 1885 1886 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1887 type == BTRFS_SHARED_BLOCK_REF_KEY) 1888 break; 1889 1890 if (ret == 1) 1891 return 1; 1892 } 1893 1894 /* we can treat both ref types equally here */ 1895 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1896 1897 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1898 struct btrfs_tree_block_info *info; 1899 1900 info = (struct btrfs_tree_block_info *)(ei + 1); 1901 *out_level = btrfs_tree_block_level(eb, info); 1902 } else { 1903 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1904 *out_level = (u8)key->offset; 1905 } 1906 1907 if (ret == 1) 1908 *ptr = (unsigned long)-1; 1909 1910 return 0; 1911 } 1912 1913 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1914 struct extent_inode_elem *inode_list, 1915 u64 root, u64 extent_item_objectid, 1916 iterate_extent_inodes_t *iterate, void *ctx) 1917 { 1918 struct extent_inode_elem *eie; 1919 int ret = 0; 1920 1921 for (eie = inode_list; eie; eie = eie->next) { 1922 btrfs_debug(fs_info, 1923 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1924 extent_item_objectid, eie->inum, 1925 eie->offset, root); 1926 ret = iterate(eie->inum, eie->offset, root, ctx); 1927 if (ret) { 1928 btrfs_debug(fs_info, 1929 "stopping iteration for %llu due to ret=%d", 1930 extent_item_objectid, ret); 1931 break; 1932 } 1933 } 1934 1935 return ret; 1936 } 1937 1938 /* 1939 * calls iterate() for every inode that references the extent identified by 1940 * the given parameters. 1941 * when the iterator function returns a non-zero value, iteration stops. 1942 */ 1943 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1944 u64 extent_item_objectid, u64 extent_item_pos, 1945 int search_commit_root, 1946 iterate_extent_inodes_t *iterate, void *ctx, 1947 bool ignore_offset) 1948 { 1949 int ret; 1950 struct btrfs_trans_handle *trans = NULL; 1951 struct ulist *refs = NULL; 1952 struct ulist *roots = NULL; 1953 struct ulist_node *ref_node = NULL; 1954 struct ulist_node *root_node = NULL; 1955 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 1956 struct ulist_iterator ref_uiter; 1957 struct ulist_iterator root_uiter; 1958 1959 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1960 extent_item_objectid); 1961 1962 if (!search_commit_root) { 1963 trans = btrfs_attach_transaction(fs_info->extent_root); 1964 if (IS_ERR(trans)) { 1965 if (PTR_ERR(trans) != -ENOENT && 1966 PTR_ERR(trans) != -EROFS) 1967 return PTR_ERR(trans); 1968 trans = NULL; 1969 } 1970 } 1971 1972 if (trans) 1973 btrfs_get_tree_mod_seq(fs_info, &seq_elem); 1974 else 1975 down_read(&fs_info->commit_root_sem); 1976 1977 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1978 seq_elem.seq, &refs, 1979 &extent_item_pos, ignore_offset); 1980 if (ret) 1981 goto out; 1982 1983 ULIST_ITER_INIT(&ref_uiter); 1984 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1985 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 1986 seq_elem.seq, &roots, 1987 ignore_offset); 1988 if (ret) 1989 break; 1990 ULIST_ITER_INIT(&root_uiter); 1991 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1992 btrfs_debug(fs_info, 1993 "root %llu references leaf %llu, data list %#llx", 1994 root_node->val, ref_node->val, 1995 ref_node->aux); 1996 ret = iterate_leaf_refs(fs_info, 1997 (struct extent_inode_elem *) 1998 (uintptr_t)ref_node->aux, 1999 root_node->val, 2000 extent_item_objectid, 2001 iterate, ctx); 2002 } 2003 ulist_free(roots); 2004 } 2005 2006 free_leaf_list(refs); 2007 out: 2008 if (trans) { 2009 btrfs_put_tree_mod_seq(fs_info, &seq_elem); 2010 btrfs_end_transaction(trans); 2011 } else { 2012 up_read(&fs_info->commit_root_sem); 2013 } 2014 2015 return ret; 2016 } 2017 2018 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2019 struct btrfs_path *path, 2020 iterate_extent_inodes_t *iterate, void *ctx, 2021 bool ignore_offset) 2022 { 2023 int ret; 2024 u64 extent_item_pos; 2025 u64 flags = 0; 2026 struct btrfs_key found_key; 2027 int search_commit_root = path->search_commit_root; 2028 2029 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2030 btrfs_release_path(path); 2031 if (ret < 0) 2032 return ret; 2033 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2034 return -EINVAL; 2035 2036 extent_item_pos = logical - found_key.objectid; 2037 ret = iterate_extent_inodes(fs_info, found_key.objectid, 2038 extent_item_pos, search_commit_root, 2039 iterate, ctx, ignore_offset); 2040 2041 return ret; 2042 } 2043 2044 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 2045 struct extent_buffer *eb, void *ctx); 2046 2047 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 2048 struct btrfs_path *path, 2049 iterate_irefs_t *iterate, void *ctx) 2050 { 2051 int ret = 0; 2052 int slot; 2053 u32 cur; 2054 u32 len; 2055 u32 name_len; 2056 u64 parent = 0; 2057 int found = 0; 2058 struct extent_buffer *eb; 2059 struct btrfs_inode_ref *iref; 2060 struct btrfs_key found_key; 2061 2062 while (!ret) { 2063 ret = btrfs_find_item(fs_root, path, inum, 2064 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2065 &found_key); 2066 2067 if (ret < 0) 2068 break; 2069 if (ret) { 2070 ret = found ? 0 : -ENOENT; 2071 break; 2072 } 2073 ++found; 2074 2075 parent = found_key.offset; 2076 slot = path->slots[0]; 2077 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2078 if (!eb) { 2079 ret = -ENOMEM; 2080 break; 2081 } 2082 btrfs_release_path(path); 2083 2084 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2085 2086 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2087 name_len = btrfs_inode_ref_name_len(eb, iref); 2088 /* path must be released before calling iterate()! */ 2089 btrfs_debug(fs_root->fs_info, 2090 "following ref at offset %u for inode %llu in tree %llu", 2091 cur, found_key.objectid, 2092 fs_root->root_key.objectid); 2093 ret = iterate(parent, name_len, 2094 (unsigned long)(iref + 1), eb, ctx); 2095 if (ret) 2096 break; 2097 len = sizeof(*iref) + name_len; 2098 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2099 } 2100 free_extent_buffer(eb); 2101 } 2102 2103 btrfs_release_path(path); 2104 2105 return ret; 2106 } 2107 2108 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2109 struct btrfs_path *path, 2110 iterate_irefs_t *iterate, void *ctx) 2111 { 2112 int ret; 2113 int slot; 2114 u64 offset = 0; 2115 u64 parent; 2116 int found = 0; 2117 struct extent_buffer *eb; 2118 struct btrfs_inode_extref *extref; 2119 u32 item_size; 2120 u32 cur_offset; 2121 unsigned long ptr; 2122 2123 while (1) { 2124 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2125 &offset); 2126 if (ret < 0) 2127 break; 2128 if (ret) { 2129 ret = found ? 0 : -ENOENT; 2130 break; 2131 } 2132 ++found; 2133 2134 slot = path->slots[0]; 2135 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2136 if (!eb) { 2137 ret = -ENOMEM; 2138 break; 2139 } 2140 btrfs_release_path(path); 2141 2142 item_size = btrfs_item_size(eb, slot); 2143 ptr = btrfs_item_ptr_offset(eb, slot); 2144 cur_offset = 0; 2145 2146 while (cur_offset < item_size) { 2147 u32 name_len; 2148 2149 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2150 parent = btrfs_inode_extref_parent(eb, extref); 2151 name_len = btrfs_inode_extref_name_len(eb, extref); 2152 ret = iterate(parent, name_len, 2153 (unsigned long)&extref->name, eb, ctx); 2154 if (ret) 2155 break; 2156 2157 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2158 cur_offset += sizeof(*extref); 2159 } 2160 free_extent_buffer(eb); 2161 2162 offset++; 2163 } 2164 2165 btrfs_release_path(path); 2166 2167 return ret; 2168 } 2169 2170 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2171 struct btrfs_path *path, iterate_irefs_t *iterate, 2172 void *ctx) 2173 { 2174 int ret; 2175 int found_refs = 0; 2176 2177 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2178 if (!ret) 2179 ++found_refs; 2180 else if (ret != -ENOENT) 2181 return ret; 2182 2183 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2184 if (ret == -ENOENT && found_refs) 2185 return 0; 2186 2187 return ret; 2188 } 2189 2190 /* 2191 * returns 0 if the path could be dumped (probably truncated) 2192 * returns <0 in case of an error 2193 */ 2194 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2195 struct extent_buffer *eb, void *ctx) 2196 { 2197 struct inode_fs_paths *ipath = ctx; 2198 char *fspath; 2199 char *fspath_min; 2200 int i = ipath->fspath->elem_cnt; 2201 const int s_ptr = sizeof(char *); 2202 u32 bytes_left; 2203 2204 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2205 ipath->fspath->bytes_left - s_ptr : 0; 2206 2207 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2208 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2209 name_off, eb, inum, fspath_min, bytes_left); 2210 if (IS_ERR(fspath)) 2211 return PTR_ERR(fspath); 2212 2213 if (fspath > fspath_min) { 2214 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2215 ++ipath->fspath->elem_cnt; 2216 ipath->fspath->bytes_left = fspath - fspath_min; 2217 } else { 2218 ++ipath->fspath->elem_missed; 2219 ipath->fspath->bytes_missing += fspath_min - fspath; 2220 ipath->fspath->bytes_left = 0; 2221 } 2222 2223 return 0; 2224 } 2225 2226 /* 2227 * this dumps all file system paths to the inode into the ipath struct, provided 2228 * is has been created large enough. each path is zero-terminated and accessed 2229 * from ipath->fspath->val[i]. 2230 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2231 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2232 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2233 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2234 * have been needed to return all paths. 2235 */ 2236 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2237 { 2238 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2239 inode_to_path, ipath); 2240 } 2241 2242 struct btrfs_data_container *init_data_container(u32 total_bytes) 2243 { 2244 struct btrfs_data_container *data; 2245 size_t alloc_bytes; 2246 2247 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2248 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2249 if (!data) 2250 return ERR_PTR(-ENOMEM); 2251 2252 if (total_bytes >= sizeof(*data)) { 2253 data->bytes_left = total_bytes - sizeof(*data); 2254 data->bytes_missing = 0; 2255 } else { 2256 data->bytes_missing = sizeof(*data) - total_bytes; 2257 data->bytes_left = 0; 2258 } 2259 2260 data->elem_cnt = 0; 2261 data->elem_missed = 0; 2262 2263 return data; 2264 } 2265 2266 /* 2267 * allocates space to return multiple file system paths for an inode. 2268 * total_bytes to allocate are passed, note that space usable for actual path 2269 * information will be total_bytes - sizeof(struct inode_fs_paths). 2270 * the returned pointer must be freed with free_ipath() in the end. 2271 */ 2272 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2273 struct btrfs_path *path) 2274 { 2275 struct inode_fs_paths *ifp; 2276 struct btrfs_data_container *fspath; 2277 2278 fspath = init_data_container(total_bytes); 2279 if (IS_ERR(fspath)) 2280 return ERR_CAST(fspath); 2281 2282 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2283 if (!ifp) { 2284 kvfree(fspath); 2285 return ERR_PTR(-ENOMEM); 2286 } 2287 2288 ifp->btrfs_path = path; 2289 ifp->fspath = fspath; 2290 ifp->fs_root = fs_root; 2291 2292 return ifp; 2293 } 2294 2295 void free_ipath(struct inode_fs_paths *ipath) 2296 { 2297 if (!ipath) 2298 return; 2299 kvfree(ipath->fspath); 2300 kfree(ipath); 2301 } 2302 2303 struct btrfs_backref_iter *btrfs_backref_iter_alloc( 2304 struct btrfs_fs_info *fs_info, gfp_t gfp_flag) 2305 { 2306 struct btrfs_backref_iter *ret; 2307 2308 ret = kzalloc(sizeof(*ret), gfp_flag); 2309 if (!ret) 2310 return NULL; 2311 2312 ret->path = btrfs_alloc_path(); 2313 if (!ret->path) { 2314 kfree(ret); 2315 return NULL; 2316 } 2317 2318 /* Current backref iterator only supports iteration in commit root */ 2319 ret->path->search_commit_root = 1; 2320 ret->path->skip_locking = 1; 2321 ret->fs_info = fs_info; 2322 2323 return ret; 2324 } 2325 2326 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2327 { 2328 struct btrfs_fs_info *fs_info = iter->fs_info; 2329 struct btrfs_path *path = iter->path; 2330 struct btrfs_extent_item *ei; 2331 struct btrfs_key key; 2332 int ret; 2333 2334 key.objectid = bytenr; 2335 key.type = BTRFS_METADATA_ITEM_KEY; 2336 key.offset = (u64)-1; 2337 iter->bytenr = bytenr; 2338 2339 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 2340 if (ret < 0) 2341 return ret; 2342 if (ret == 0) { 2343 ret = -EUCLEAN; 2344 goto release; 2345 } 2346 if (path->slots[0] == 0) { 2347 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2348 ret = -EUCLEAN; 2349 goto release; 2350 } 2351 path->slots[0]--; 2352 2353 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2354 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2355 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2356 ret = -ENOENT; 2357 goto release; 2358 } 2359 memcpy(&iter->cur_key, &key, sizeof(key)); 2360 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2361 path->slots[0]); 2362 iter->end_ptr = (u32)(iter->item_ptr + 2363 btrfs_item_size(path->nodes[0], path->slots[0])); 2364 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2365 struct btrfs_extent_item); 2366 2367 /* 2368 * Only support iteration on tree backref yet. 2369 * 2370 * This is an extra precaution for non skinny-metadata, where 2371 * EXTENT_ITEM is also used for tree blocks, that we can only use 2372 * extent flags to determine if it's a tree block. 2373 */ 2374 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2375 ret = -ENOTSUPP; 2376 goto release; 2377 } 2378 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2379 2380 /* If there is no inline backref, go search for keyed backref */ 2381 if (iter->cur_ptr >= iter->end_ptr) { 2382 ret = btrfs_next_item(fs_info->extent_root, path); 2383 2384 /* No inline nor keyed ref */ 2385 if (ret > 0) { 2386 ret = -ENOENT; 2387 goto release; 2388 } 2389 if (ret < 0) 2390 goto release; 2391 2392 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2393 path->slots[0]); 2394 if (iter->cur_key.objectid != bytenr || 2395 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2396 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2397 ret = -ENOENT; 2398 goto release; 2399 } 2400 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2401 path->slots[0]); 2402 iter->item_ptr = iter->cur_ptr; 2403 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2404 path->nodes[0], path->slots[0])); 2405 } 2406 2407 return 0; 2408 release: 2409 btrfs_backref_iter_release(iter); 2410 return ret; 2411 } 2412 2413 /* 2414 * Go to the next backref item of current bytenr, can be either inlined or 2415 * keyed. 2416 * 2417 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2418 * 2419 * Return 0 if we get next backref without problem. 2420 * Return >0 if there is no extra backref for this bytenr. 2421 * Return <0 if there is something wrong happened. 2422 */ 2423 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2424 { 2425 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2426 struct btrfs_path *path = iter->path; 2427 struct btrfs_extent_inline_ref *iref; 2428 int ret; 2429 u32 size; 2430 2431 if (btrfs_backref_iter_is_inline_ref(iter)) { 2432 /* We're still inside the inline refs */ 2433 ASSERT(iter->cur_ptr < iter->end_ptr); 2434 2435 if (btrfs_backref_has_tree_block_info(iter)) { 2436 /* First tree block info */ 2437 size = sizeof(struct btrfs_tree_block_info); 2438 } else { 2439 /* Use inline ref type to determine the size */ 2440 int type; 2441 2442 iref = (struct btrfs_extent_inline_ref *) 2443 ((unsigned long)iter->cur_ptr); 2444 type = btrfs_extent_inline_ref_type(eb, iref); 2445 2446 size = btrfs_extent_inline_ref_size(type); 2447 } 2448 iter->cur_ptr += size; 2449 if (iter->cur_ptr < iter->end_ptr) 2450 return 0; 2451 2452 /* All inline items iterated, fall through */ 2453 } 2454 2455 /* We're at keyed items, there is no inline item, go to the next one */ 2456 ret = btrfs_next_item(iter->fs_info->extent_root, iter->path); 2457 if (ret) 2458 return ret; 2459 2460 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2461 if (iter->cur_key.objectid != iter->bytenr || 2462 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2463 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2464 return 1; 2465 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2466 path->slots[0]); 2467 iter->cur_ptr = iter->item_ptr; 2468 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 2469 path->slots[0]); 2470 return 0; 2471 } 2472 2473 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 2474 struct btrfs_backref_cache *cache, int is_reloc) 2475 { 2476 int i; 2477 2478 cache->rb_root = RB_ROOT; 2479 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2480 INIT_LIST_HEAD(&cache->pending[i]); 2481 INIT_LIST_HEAD(&cache->changed); 2482 INIT_LIST_HEAD(&cache->detached); 2483 INIT_LIST_HEAD(&cache->leaves); 2484 INIT_LIST_HEAD(&cache->pending_edge); 2485 INIT_LIST_HEAD(&cache->useless_node); 2486 cache->fs_info = fs_info; 2487 cache->is_reloc = is_reloc; 2488 } 2489 2490 struct btrfs_backref_node *btrfs_backref_alloc_node( 2491 struct btrfs_backref_cache *cache, u64 bytenr, int level) 2492 { 2493 struct btrfs_backref_node *node; 2494 2495 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 2496 node = kzalloc(sizeof(*node), GFP_NOFS); 2497 if (!node) 2498 return node; 2499 2500 INIT_LIST_HEAD(&node->list); 2501 INIT_LIST_HEAD(&node->upper); 2502 INIT_LIST_HEAD(&node->lower); 2503 RB_CLEAR_NODE(&node->rb_node); 2504 cache->nr_nodes++; 2505 node->level = level; 2506 node->bytenr = bytenr; 2507 2508 return node; 2509 } 2510 2511 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 2512 struct btrfs_backref_cache *cache) 2513 { 2514 struct btrfs_backref_edge *edge; 2515 2516 edge = kzalloc(sizeof(*edge), GFP_NOFS); 2517 if (edge) 2518 cache->nr_edges++; 2519 return edge; 2520 } 2521 2522 /* 2523 * Drop the backref node from cache, also cleaning up all its 2524 * upper edges and any uncached nodes in the path. 2525 * 2526 * This cleanup happens bottom up, thus the node should either 2527 * be the lowest node in the cache or a detached node. 2528 */ 2529 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 2530 struct btrfs_backref_node *node) 2531 { 2532 struct btrfs_backref_node *upper; 2533 struct btrfs_backref_edge *edge; 2534 2535 if (!node) 2536 return; 2537 2538 BUG_ON(!node->lowest && !node->detached); 2539 while (!list_empty(&node->upper)) { 2540 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 2541 list[LOWER]); 2542 upper = edge->node[UPPER]; 2543 list_del(&edge->list[LOWER]); 2544 list_del(&edge->list[UPPER]); 2545 btrfs_backref_free_edge(cache, edge); 2546 2547 /* 2548 * Add the node to leaf node list if no other child block 2549 * cached. 2550 */ 2551 if (list_empty(&upper->lower)) { 2552 list_add_tail(&upper->lower, &cache->leaves); 2553 upper->lowest = 1; 2554 } 2555 } 2556 2557 btrfs_backref_drop_node(cache, node); 2558 } 2559 2560 /* 2561 * Release all nodes/edges from current cache 2562 */ 2563 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 2564 { 2565 struct btrfs_backref_node *node; 2566 int i; 2567 2568 while (!list_empty(&cache->detached)) { 2569 node = list_entry(cache->detached.next, 2570 struct btrfs_backref_node, list); 2571 btrfs_backref_cleanup_node(cache, node); 2572 } 2573 2574 while (!list_empty(&cache->leaves)) { 2575 node = list_entry(cache->leaves.next, 2576 struct btrfs_backref_node, lower); 2577 btrfs_backref_cleanup_node(cache, node); 2578 } 2579 2580 cache->last_trans = 0; 2581 2582 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2583 ASSERT(list_empty(&cache->pending[i])); 2584 ASSERT(list_empty(&cache->pending_edge)); 2585 ASSERT(list_empty(&cache->useless_node)); 2586 ASSERT(list_empty(&cache->changed)); 2587 ASSERT(list_empty(&cache->detached)); 2588 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 2589 ASSERT(!cache->nr_nodes); 2590 ASSERT(!cache->nr_edges); 2591 } 2592 2593 /* 2594 * Handle direct tree backref 2595 * 2596 * Direct tree backref means, the backref item shows its parent bytenr 2597 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 2598 * 2599 * @ref_key: The converted backref key. 2600 * For keyed backref, it's the item key. 2601 * For inlined backref, objectid is the bytenr, 2602 * type is btrfs_inline_ref_type, offset is 2603 * btrfs_inline_ref_offset. 2604 */ 2605 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 2606 struct btrfs_key *ref_key, 2607 struct btrfs_backref_node *cur) 2608 { 2609 struct btrfs_backref_edge *edge; 2610 struct btrfs_backref_node *upper; 2611 struct rb_node *rb_node; 2612 2613 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 2614 2615 /* Only reloc root uses backref pointing to itself */ 2616 if (ref_key->objectid == ref_key->offset) { 2617 struct btrfs_root *root; 2618 2619 cur->is_reloc_root = 1; 2620 /* Only reloc backref cache cares about a specific root */ 2621 if (cache->is_reloc) { 2622 root = find_reloc_root(cache->fs_info, cur->bytenr); 2623 if (!root) 2624 return -ENOENT; 2625 cur->root = root; 2626 } else { 2627 /* 2628 * For generic purpose backref cache, reloc root node 2629 * is useless. 2630 */ 2631 list_add(&cur->list, &cache->useless_node); 2632 } 2633 return 0; 2634 } 2635 2636 edge = btrfs_backref_alloc_edge(cache); 2637 if (!edge) 2638 return -ENOMEM; 2639 2640 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 2641 if (!rb_node) { 2642 /* Parent node not yet cached */ 2643 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 2644 cur->level + 1); 2645 if (!upper) { 2646 btrfs_backref_free_edge(cache, edge); 2647 return -ENOMEM; 2648 } 2649 2650 /* 2651 * Backrefs for the upper level block isn't cached, add the 2652 * block to pending list 2653 */ 2654 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2655 } else { 2656 /* Parent node already cached */ 2657 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 2658 ASSERT(upper->checked); 2659 INIT_LIST_HEAD(&edge->list[UPPER]); 2660 } 2661 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 2662 return 0; 2663 } 2664 2665 /* 2666 * Handle indirect tree backref 2667 * 2668 * Indirect tree backref means, we only know which tree the node belongs to. 2669 * We still need to do a tree search to find out the parents. This is for 2670 * TREE_BLOCK_REF backref (keyed or inlined). 2671 * 2672 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 2673 * @tree_key: The first key of this tree block. 2674 * @path: A clean (released) path, to avoid allocating path every time 2675 * the function get called. 2676 */ 2677 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 2678 struct btrfs_path *path, 2679 struct btrfs_key *ref_key, 2680 struct btrfs_key *tree_key, 2681 struct btrfs_backref_node *cur) 2682 { 2683 struct btrfs_fs_info *fs_info = cache->fs_info; 2684 struct btrfs_backref_node *upper; 2685 struct btrfs_backref_node *lower; 2686 struct btrfs_backref_edge *edge; 2687 struct extent_buffer *eb; 2688 struct btrfs_root *root; 2689 struct rb_node *rb_node; 2690 int level; 2691 bool need_check = true; 2692 int ret; 2693 2694 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 2695 if (IS_ERR(root)) 2696 return PTR_ERR(root); 2697 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2698 cur->cowonly = 1; 2699 2700 if (btrfs_root_level(&root->root_item) == cur->level) { 2701 /* Tree root */ 2702 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 2703 /* 2704 * For reloc backref cache, we may ignore reloc root. But for 2705 * general purpose backref cache, we can't rely on 2706 * btrfs_should_ignore_reloc_root() as it may conflict with 2707 * current running relocation and lead to missing root. 2708 * 2709 * For general purpose backref cache, reloc root detection is 2710 * completely relying on direct backref (key->offset is parent 2711 * bytenr), thus only do such check for reloc cache. 2712 */ 2713 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 2714 btrfs_put_root(root); 2715 list_add(&cur->list, &cache->useless_node); 2716 } else { 2717 cur->root = root; 2718 } 2719 return 0; 2720 } 2721 2722 level = cur->level + 1; 2723 2724 /* Search the tree to find parent blocks referring to the block */ 2725 path->search_commit_root = 1; 2726 path->skip_locking = 1; 2727 path->lowest_level = level; 2728 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 2729 path->lowest_level = 0; 2730 if (ret < 0) { 2731 btrfs_put_root(root); 2732 return ret; 2733 } 2734 if (ret > 0 && path->slots[level] > 0) 2735 path->slots[level]--; 2736 2737 eb = path->nodes[level]; 2738 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 2739 btrfs_err(fs_info, 2740 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 2741 cur->bytenr, level - 1, root->root_key.objectid, 2742 tree_key->objectid, tree_key->type, tree_key->offset); 2743 btrfs_put_root(root); 2744 ret = -ENOENT; 2745 goto out; 2746 } 2747 lower = cur; 2748 2749 /* Add all nodes and edges in the path */ 2750 for (; level < BTRFS_MAX_LEVEL; level++) { 2751 if (!path->nodes[level]) { 2752 ASSERT(btrfs_root_bytenr(&root->root_item) == 2753 lower->bytenr); 2754 /* Same as previous should_ignore_reloc_root() call */ 2755 if (btrfs_should_ignore_reloc_root(root) && 2756 cache->is_reloc) { 2757 btrfs_put_root(root); 2758 list_add(&lower->list, &cache->useless_node); 2759 } else { 2760 lower->root = root; 2761 } 2762 break; 2763 } 2764 2765 edge = btrfs_backref_alloc_edge(cache); 2766 if (!edge) { 2767 btrfs_put_root(root); 2768 ret = -ENOMEM; 2769 goto out; 2770 } 2771 2772 eb = path->nodes[level]; 2773 rb_node = rb_simple_search(&cache->rb_root, eb->start); 2774 if (!rb_node) { 2775 upper = btrfs_backref_alloc_node(cache, eb->start, 2776 lower->level + 1); 2777 if (!upper) { 2778 btrfs_put_root(root); 2779 btrfs_backref_free_edge(cache, edge); 2780 ret = -ENOMEM; 2781 goto out; 2782 } 2783 upper->owner = btrfs_header_owner(eb); 2784 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2785 upper->cowonly = 1; 2786 2787 /* 2788 * If we know the block isn't shared we can avoid 2789 * checking its backrefs. 2790 */ 2791 if (btrfs_block_can_be_shared(root, eb)) 2792 upper->checked = 0; 2793 else 2794 upper->checked = 1; 2795 2796 /* 2797 * Add the block to pending list if we need to check its 2798 * backrefs, we only do this once while walking up a 2799 * tree as we will catch anything else later on. 2800 */ 2801 if (!upper->checked && need_check) { 2802 need_check = false; 2803 list_add_tail(&edge->list[UPPER], 2804 &cache->pending_edge); 2805 } else { 2806 if (upper->checked) 2807 need_check = true; 2808 INIT_LIST_HEAD(&edge->list[UPPER]); 2809 } 2810 } else { 2811 upper = rb_entry(rb_node, struct btrfs_backref_node, 2812 rb_node); 2813 ASSERT(upper->checked); 2814 INIT_LIST_HEAD(&edge->list[UPPER]); 2815 if (!upper->owner) 2816 upper->owner = btrfs_header_owner(eb); 2817 } 2818 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 2819 2820 if (rb_node) { 2821 btrfs_put_root(root); 2822 break; 2823 } 2824 lower = upper; 2825 upper = NULL; 2826 } 2827 out: 2828 btrfs_release_path(path); 2829 return ret; 2830 } 2831 2832 /* 2833 * Add backref node @cur into @cache. 2834 * 2835 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 2836 * links aren't yet bi-directional. Needs to finish such links. 2837 * Use btrfs_backref_finish_upper_links() to finish such linkage. 2838 * 2839 * @path: Released path for indirect tree backref lookup 2840 * @iter: Released backref iter for extent tree search 2841 * @node_key: The first key of the tree block 2842 */ 2843 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 2844 struct btrfs_path *path, 2845 struct btrfs_backref_iter *iter, 2846 struct btrfs_key *node_key, 2847 struct btrfs_backref_node *cur) 2848 { 2849 struct btrfs_fs_info *fs_info = cache->fs_info; 2850 struct btrfs_backref_edge *edge; 2851 struct btrfs_backref_node *exist; 2852 int ret; 2853 2854 ret = btrfs_backref_iter_start(iter, cur->bytenr); 2855 if (ret < 0) 2856 return ret; 2857 /* 2858 * We skip the first btrfs_tree_block_info, as we don't use the key 2859 * stored in it, but fetch it from the tree block 2860 */ 2861 if (btrfs_backref_has_tree_block_info(iter)) { 2862 ret = btrfs_backref_iter_next(iter); 2863 if (ret < 0) 2864 goto out; 2865 /* No extra backref? This means the tree block is corrupted */ 2866 if (ret > 0) { 2867 ret = -EUCLEAN; 2868 goto out; 2869 } 2870 } 2871 WARN_ON(cur->checked); 2872 if (!list_empty(&cur->upper)) { 2873 /* 2874 * The backref was added previously when processing backref of 2875 * type BTRFS_TREE_BLOCK_REF_KEY 2876 */ 2877 ASSERT(list_is_singular(&cur->upper)); 2878 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 2879 list[LOWER]); 2880 ASSERT(list_empty(&edge->list[UPPER])); 2881 exist = edge->node[UPPER]; 2882 /* 2883 * Add the upper level block to pending list if we need check 2884 * its backrefs 2885 */ 2886 if (!exist->checked) 2887 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2888 } else { 2889 exist = NULL; 2890 } 2891 2892 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 2893 struct extent_buffer *eb; 2894 struct btrfs_key key; 2895 int type; 2896 2897 cond_resched(); 2898 eb = btrfs_backref_get_eb(iter); 2899 2900 key.objectid = iter->bytenr; 2901 if (btrfs_backref_iter_is_inline_ref(iter)) { 2902 struct btrfs_extent_inline_ref *iref; 2903 2904 /* Update key for inline backref */ 2905 iref = (struct btrfs_extent_inline_ref *) 2906 ((unsigned long)iter->cur_ptr); 2907 type = btrfs_get_extent_inline_ref_type(eb, iref, 2908 BTRFS_REF_TYPE_BLOCK); 2909 if (type == BTRFS_REF_TYPE_INVALID) { 2910 ret = -EUCLEAN; 2911 goto out; 2912 } 2913 key.type = type; 2914 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 2915 } else { 2916 key.type = iter->cur_key.type; 2917 key.offset = iter->cur_key.offset; 2918 } 2919 2920 /* 2921 * Parent node found and matches current inline ref, no need to 2922 * rebuild this node for this inline ref 2923 */ 2924 if (exist && 2925 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 2926 exist->owner == key.offset) || 2927 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 2928 exist->bytenr == key.offset))) { 2929 exist = NULL; 2930 continue; 2931 } 2932 2933 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 2934 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 2935 ret = handle_direct_tree_backref(cache, &key, cur); 2936 if (ret < 0) 2937 goto out; 2938 continue; 2939 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 2940 ret = -EINVAL; 2941 btrfs_print_v0_err(fs_info); 2942 btrfs_handle_fs_error(fs_info, ret, NULL); 2943 goto out; 2944 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 2945 continue; 2946 } 2947 2948 /* 2949 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 2950 * means the root objectid. We need to search the tree to get 2951 * its parent bytenr. 2952 */ 2953 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 2954 cur); 2955 if (ret < 0) 2956 goto out; 2957 } 2958 ret = 0; 2959 cur->checked = 1; 2960 WARN_ON(exist); 2961 out: 2962 btrfs_backref_iter_release(iter); 2963 return ret; 2964 } 2965 2966 /* 2967 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 2968 */ 2969 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 2970 struct btrfs_backref_node *start) 2971 { 2972 struct list_head *useless_node = &cache->useless_node; 2973 struct btrfs_backref_edge *edge; 2974 struct rb_node *rb_node; 2975 LIST_HEAD(pending_edge); 2976 2977 ASSERT(start->checked); 2978 2979 /* Insert this node to cache if it's not COW-only */ 2980 if (!start->cowonly) { 2981 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 2982 &start->rb_node); 2983 if (rb_node) 2984 btrfs_backref_panic(cache->fs_info, start->bytenr, 2985 -EEXIST); 2986 list_add_tail(&start->lower, &cache->leaves); 2987 } 2988 2989 /* 2990 * Use breadth first search to iterate all related edges. 2991 * 2992 * The starting points are all the edges of this node 2993 */ 2994 list_for_each_entry(edge, &start->upper, list[LOWER]) 2995 list_add_tail(&edge->list[UPPER], &pending_edge); 2996 2997 while (!list_empty(&pending_edge)) { 2998 struct btrfs_backref_node *upper; 2999 struct btrfs_backref_node *lower; 3000 3001 edge = list_first_entry(&pending_edge, 3002 struct btrfs_backref_edge, list[UPPER]); 3003 list_del_init(&edge->list[UPPER]); 3004 upper = edge->node[UPPER]; 3005 lower = edge->node[LOWER]; 3006 3007 /* Parent is detached, no need to keep any edges */ 3008 if (upper->detached) { 3009 list_del(&edge->list[LOWER]); 3010 btrfs_backref_free_edge(cache, edge); 3011 3012 /* Lower node is orphan, queue for cleanup */ 3013 if (list_empty(&lower->upper)) 3014 list_add(&lower->list, useless_node); 3015 continue; 3016 } 3017 3018 /* 3019 * All new nodes added in current build_backref_tree() haven't 3020 * been linked to the cache rb tree. 3021 * So if we have upper->rb_node populated, this means a cache 3022 * hit. We only need to link the edge, as @upper and all its 3023 * parents have already been linked. 3024 */ 3025 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3026 if (upper->lowest) { 3027 list_del_init(&upper->lower); 3028 upper->lowest = 0; 3029 } 3030 3031 list_add_tail(&edge->list[UPPER], &upper->lower); 3032 continue; 3033 } 3034 3035 /* Sanity check, we shouldn't have any unchecked nodes */ 3036 if (!upper->checked) { 3037 ASSERT(0); 3038 return -EUCLEAN; 3039 } 3040 3041 /* Sanity check, COW-only node has non-COW-only parent */ 3042 if (start->cowonly != upper->cowonly) { 3043 ASSERT(0); 3044 return -EUCLEAN; 3045 } 3046 3047 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3048 if (!upper->cowonly) { 3049 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3050 &upper->rb_node); 3051 if (rb_node) { 3052 btrfs_backref_panic(cache->fs_info, 3053 upper->bytenr, -EEXIST); 3054 return -EUCLEAN; 3055 } 3056 } 3057 3058 list_add_tail(&edge->list[UPPER], &upper->lower); 3059 3060 /* 3061 * Also queue all the parent edges of this uncached node 3062 * to finish the upper linkage 3063 */ 3064 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3065 list_add_tail(&edge->list[UPPER], &pending_edge); 3066 } 3067 return 0; 3068 } 3069 3070 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3071 struct btrfs_backref_node *node) 3072 { 3073 struct btrfs_backref_node *lower; 3074 struct btrfs_backref_node *upper; 3075 struct btrfs_backref_edge *edge; 3076 3077 while (!list_empty(&cache->useless_node)) { 3078 lower = list_first_entry(&cache->useless_node, 3079 struct btrfs_backref_node, list); 3080 list_del_init(&lower->list); 3081 } 3082 while (!list_empty(&cache->pending_edge)) { 3083 edge = list_first_entry(&cache->pending_edge, 3084 struct btrfs_backref_edge, list[UPPER]); 3085 list_del(&edge->list[UPPER]); 3086 list_del(&edge->list[LOWER]); 3087 lower = edge->node[LOWER]; 3088 upper = edge->node[UPPER]; 3089 btrfs_backref_free_edge(cache, edge); 3090 3091 /* 3092 * Lower is no longer linked to any upper backref nodes and 3093 * isn't in the cache, we can free it ourselves. 3094 */ 3095 if (list_empty(&lower->upper) && 3096 RB_EMPTY_NODE(&lower->rb_node)) 3097 list_add(&lower->list, &cache->useless_node); 3098 3099 if (!RB_EMPTY_NODE(&upper->rb_node)) 3100 continue; 3101 3102 /* Add this guy's upper edges to the list to process */ 3103 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3104 list_add_tail(&edge->list[UPPER], 3105 &cache->pending_edge); 3106 if (list_empty(&upper->upper)) 3107 list_add(&upper->list, &cache->useless_node); 3108 } 3109 3110 while (!list_empty(&cache->useless_node)) { 3111 lower = list_first_entry(&cache->useless_node, 3112 struct btrfs_backref_node, list); 3113 list_del_init(&lower->list); 3114 if (lower == node) 3115 node = NULL; 3116 btrfs_backref_drop_node(cache, lower); 3117 } 3118 3119 btrfs_backref_cleanup_node(cache, node); 3120 ASSERT(list_empty(&cache->useless_node) && 3121 list_empty(&cache->pending_edge)); 3122 } 3123