1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "backref.h" 23 #include "ulist.h" 24 #include "transaction.h" 25 #include "delayed-ref.h" 26 #include "locking.h" 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 struct extent_inode_elem *next; 32 }; 33 34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 35 struct btrfs_file_extent_item *fi, 36 u64 extent_item_pos, 37 struct extent_inode_elem **eie) 38 { 39 u64 offset = 0; 40 struct extent_inode_elem *e; 41 42 if (!btrfs_file_extent_compression(eb, fi) && 43 !btrfs_file_extent_encryption(eb, fi) && 44 !btrfs_file_extent_other_encoding(eb, fi)) { 45 u64 data_offset; 46 u64 data_len; 47 48 data_offset = btrfs_file_extent_offset(eb, fi); 49 data_len = btrfs_file_extent_num_bytes(eb, fi); 50 51 if (extent_item_pos < data_offset || 52 extent_item_pos >= data_offset + data_len) 53 return 1; 54 offset = extent_item_pos - data_offset; 55 } 56 57 e = kmalloc(sizeof(*e), GFP_NOFS); 58 if (!e) 59 return -ENOMEM; 60 61 e->next = *eie; 62 e->inum = key->objectid; 63 e->offset = key->offset + offset; 64 *eie = e; 65 66 return 0; 67 } 68 69 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 70 u64 extent_item_pos, 71 struct extent_inode_elem **eie) 72 { 73 u64 disk_byte; 74 struct btrfs_key key; 75 struct btrfs_file_extent_item *fi; 76 int slot; 77 int nritems; 78 int extent_type; 79 int ret; 80 81 /* 82 * from the shared data ref, we only have the leaf but we need 83 * the key. thus, we must look into all items and see that we 84 * find one (some) with a reference to our extent item. 85 */ 86 nritems = btrfs_header_nritems(eb); 87 for (slot = 0; slot < nritems; ++slot) { 88 btrfs_item_key_to_cpu(eb, &key, slot); 89 if (key.type != BTRFS_EXTENT_DATA_KEY) 90 continue; 91 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 92 extent_type = btrfs_file_extent_type(eb, fi); 93 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 94 continue; 95 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 96 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 97 if (disk_byte != wanted_disk_byte) 98 continue; 99 100 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 101 if (ret < 0) 102 return ret; 103 } 104 105 return 0; 106 } 107 108 /* 109 * this structure records all encountered refs on the way up to the root 110 */ 111 struct __prelim_ref { 112 struct list_head list; 113 u64 root_id; 114 struct btrfs_key key_for_search; 115 int level; 116 int count; 117 struct extent_inode_elem *inode_list; 118 u64 parent; 119 u64 wanted_disk_byte; 120 }; 121 122 static struct kmem_cache *btrfs_prelim_ref_cache; 123 124 int __init btrfs_prelim_ref_init(void) 125 { 126 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 127 sizeof(struct __prelim_ref), 128 0, 129 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 130 NULL); 131 if (!btrfs_prelim_ref_cache) 132 return -ENOMEM; 133 return 0; 134 } 135 136 void btrfs_prelim_ref_exit(void) 137 { 138 if (btrfs_prelim_ref_cache) 139 kmem_cache_destroy(btrfs_prelim_ref_cache); 140 } 141 142 /* 143 * the rules for all callers of this function are: 144 * - obtaining the parent is the goal 145 * - if you add a key, you must know that it is a correct key 146 * - if you cannot add the parent or a correct key, then we will look into the 147 * block later to set a correct key 148 * 149 * delayed refs 150 * ============ 151 * backref type | shared | indirect | shared | indirect 152 * information | tree | tree | data | data 153 * --------------------+--------+----------+--------+---------- 154 * parent logical | y | - | - | - 155 * key to resolve | - | y | y | y 156 * tree block logical | - | - | - | - 157 * root for resolving | y | y | y | y 158 * 159 * - column 1: we've the parent -> done 160 * - column 2, 3, 4: we use the key to find the parent 161 * 162 * on disk refs (inline or keyed) 163 * ============================== 164 * backref type | shared | indirect | shared | indirect 165 * information | tree | tree | data | data 166 * --------------------+--------+----------+--------+---------- 167 * parent logical | y | - | y | - 168 * key to resolve | - | - | - | y 169 * tree block logical | y | y | y | y 170 * root for resolving | - | y | y | y 171 * 172 * - column 1, 3: we've the parent -> done 173 * - column 2: we take the first key from the block to find the parent 174 * (see __add_missing_keys) 175 * - column 4: we use the key to find the parent 176 * 177 * additional information that's available but not required to find the parent 178 * block might help in merging entries to gain some speed. 179 */ 180 181 static int __add_prelim_ref(struct list_head *head, u64 root_id, 182 struct btrfs_key *key, int level, 183 u64 parent, u64 wanted_disk_byte, int count, 184 gfp_t gfp_mask) 185 { 186 struct __prelim_ref *ref; 187 188 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 189 return 0; 190 191 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 192 if (!ref) 193 return -ENOMEM; 194 195 ref->root_id = root_id; 196 if (key) 197 ref->key_for_search = *key; 198 else 199 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 200 201 ref->inode_list = NULL; 202 ref->level = level; 203 ref->count = count; 204 ref->parent = parent; 205 ref->wanted_disk_byte = wanted_disk_byte; 206 list_add_tail(&ref->list, head); 207 208 return 0; 209 } 210 211 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 212 struct ulist *parents, struct __prelim_ref *ref, 213 int level, u64 time_seq, const u64 *extent_item_pos) 214 { 215 int ret = 0; 216 int slot; 217 struct extent_buffer *eb; 218 struct btrfs_key key; 219 struct btrfs_key *key_for_search = &ref->key_for_search; 220 struct btrfs_file_extent_item *fi; 221 struct extent_inode_elem *eie = NULL, *old = NULL; 222 u64 disk_byte; 223 u64 wanted_disk_byte = ref->wanted_disk_byte; 224 u64 count = 0; 225 226 if (level != 0) { 227 eb = path->nodes[level]; 228 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 229 if (ret < 0) 230 return ret; 231 return 0; 232 } 233 234 /* 235 * We normally enter this function with the path already pointing to 236 * the first item to check. But sometimes, we may enter it with 237 * slot==nritems. In that case, go to the next leaf before we continue. 238 */ 239 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) 240 ret = btrfs_next_old_leaf(root, path, time_seq); 241 242 while (!ret && count < ref->count) { 243 eb = path->nodes[0]; 244 slot = path->slots[0]; 245 246 btrfs_item_key_to_cpu(eb, &key, slot); 247 248 if (key.objectid != key_for_search->objectid || 249 key.type != BTRFS_EXTENT_DATA_KEY) 250 break; 251 252 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 253 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 254 255 if (disk_byte == wanted_disk_byte) { 256 eie = NULL; 257 old = NULL; 258 count++; 259 if (extent_item_pos) { 260 ret = check_extent_in_eb(&key, eb, fi, 261 *extent_item_pos, 262 &eie); 263 if (ret < 0) 264 break; 265 } 266 if (ret > 0) 267 goto next; 268 ret = ulist_add_merge(parents, eb->start, 269 (uintptr_t)eie, 270 (u64 *)&old, GFP_NOFS); 271 if (ret < 0) 272 break; 273 if (!ret && extent_item_pos) { 274 while (old->next) 275 old = old->next; 276 old->next = eie; 277 } 278 } 279 next: 280 ret = btrfs_next_old_item(root, path, time_seq); 281 } 282 283 if (ret > 0) 284 ret = 0; 285 return ret; 286 } 287 288 /* 289 * resolve an indirect backref in the form (root_id, key, level) 290 * to a logical address 291 */ 292 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 293 struct btrfs_path *path, u64 time_seq, 294 struct __prelim_ref *ref, 295 struct ulist *parents, 296 const u64 *extent_item_pos) 297 { 298 struct btrfs_root *root; 299 struct btrfs_key root_key; 300 struct extent_buffer *eb; 301 int ret = 0; 302 int root_level; 303 int level = ref->level; 304 int index; 305 306 root_key.objectid = ref->root_id; 307 root_key.type = BTRFS_ROOT_ITEM_KEY; 308 root_key.offset = (u64)-1; 309 310 index = srcu_read_lock(&fs_info->subvol_srcu); 311 312 root = btrfs_read_fs_root_no_name(fs_info, &root_key); 313 if (IS_ERR(root)) { 314 srcu_read_unlock(&fs_info->subvol_srcu, index); 315 ret = PTR_ERR(root); 316 goto out; 317 } 318 319 root_level = btrfs_old_root_level(root, time_seq); 320 321 if (root_level + 1 == level) { 322 srcu_read_unlock(&fs_info->subvol_srcu, index); 323 goto out; 324 } 325 326 path->lowest_level = level; 327 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq); 328 329 /* root node has been locked, we can release @subvol_srcu safely here */ 330 srcu_read_unlock(&fs_info->subvol_srcu, index); 331 332 pr_debug("search slot in root %llu (level %d, ref count %d) returned " 333 "%d for key (%llu %u %llu)\n", 334 ref->root_id, level, ref->count, ret, 335 ref->key_for_search.objectid, ref->key_for_search.type, 336 ref->key_for_search.offset); 337 if (ret < 0) 338 goto out; 339 340 eb = path->nodes[level]; 341 while (!eb) { 342 if (WARN_ON(!level)) { 343 ret = 1; 344 goto out; 345 } 346 level--; 347 eb = path->nodes[level]; 348 } 349 350 ret = add_all_parents(root, path, parents, ref, level, time_seq, 351 extent_item_pos); 352 out: 353 path->lowest_level = 0; 354 btrfs_release_path(path); 355 return ret; 356 } 357 358 /* 359 * resolve all indirect backrefs from the list 360 */ 361 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 362 struct btrfs_path *path, u64 time_seq, 363 struct list_head *head, 364 const u64 *extent_item_pos) 365 { 366 int err; 367 int ret = 0; 368 struct __prelim_ref *ref; 369 struct __prelim_ref *ref_safe; 370 struct __prelim_ref *new_ref; 371 struct ulist *parents; 372 struct ulist_node *node; 373 struct ulist_iterator uiter; 374 375 parents = ulist_alloc(GFP_NOFS); 376 if (!parents) 377 return -ENOMEM; 378 379 /* 380 * _safe allows us to insert directly after the current item without 381 * iterating over the newly inserted items. 382 * we're also allowed to re-assign ref during iteration. 383 */ 384 list_for_each_entry_safe(ref, ref_safe, head, list) { 385 if (ref->parent) /* already direct */ 386 continue; 387 if (ref->count == 0) 388 continue; 389 err = __resolve_indirect_ref(fs_info, path, time_seq, ref, 390 parents, extent_item_pos); 391 /* 392 * we can only tolerate ENOENT,otherwise,we should catch error 393 * and return directly. 394 */ 395 if (err == -ENOENT) { 396 continue; 397 } else if (err) { 398 ret = err; 399 goto out; 400 } 401 402 /* we put the first parent into the ref at hand */ 403 ULIST_ITER_INIT(&uiter); 404 node = ulist_next(parents, &uiter); 405 ref->parent = node ? node->val : 0; 406 ref->inode_list = node ? 407 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL; 408 409 /* additional parents require new refs being added here */ 410 while ((node = ulist_next(parents, &uiter))) { 411 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 412 GFP_NOFS); 413 if (!new_ref) { 414 ret = -ENOMEM; 415 goto out; 416 } 417 memcpy(new_ref, ref, sizeof(*ref)); 418 new_ref->parent = node->val; 419 new_ref->inode_list = (struct extent_inode_elem *) 420 (uintptr_t)node->aux; 421 list_add(&new_ref->list, &ref->list); 422 } 423 ulist_reinit(parents); 424 } 425 out: 426 ulist_free(parents); 427 return ret; 428 } 429 430 static inline int ref_for_same_block(struct __prelim_ref *ref1, 431 struct __prelim_ref *ref2) 432 { 433 if (ref1->level != ref2->level) 434 return 0; 435 if (ref1->root_id != ref2->root_id) 436 return 0; 437 if (ref1->key_for_search.type != ref2->key_for_search.type) 438 return 0; 439 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 440 return 0; 441 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 442 return 0; 443 if (ref1->parent != ref2->parent) 444 return 0; 445 446 return 1; 447 } 448 449 /* 450 * read tree blocks and add keys where required. 451 */ 452 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 453 struct list_head *head) 454 { 455 struct list_head *pos; 456 struct extent_buffer *eb; 457 458 list_for_each(pos, head) { 459 struct __prelim_ref *ref; 460 ref = list_entry(pos, struct __prelim_ref, list); 461 462 if (ref->parent) 463 continue; 464 if (ref->key_for_search.type) 465 continue; 466 BUG_ON(!ref->wanted_disk_byte); 467 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 468 fs_info->tree_root->leafsize, 0); 469 if (!eb || !extent_buffer_uptodate(eb)) { 470 free_extent_buffer(eb); 471 return -EIO; 472 } 473 btrfs_tree_read_lock(eb); 474 if (btrfs_header_level(eb) == 0) 475 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 476 else 477 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 478 btrfs_tree_read_unlock(eb); 479 free_extent_buffer(eb); 480 } 481 return 0; 482 } 483 484 /* 485 * merge two lists of backrefs and adjust counts accordingly 486 * 487 * mode = 1: merge identical keys, if key is set 488 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 489 * additionally, we could even add a key range for the blocks we 490 * looked into to merge even more (-> replace unresolved refs by those 491 * having a parent). 492 * mode = 2: merge identical parents 493 */ 494 static void __merge_refs(struct list_head *head, int mode) 495 { 496 struct list_head *pos1; 497 498 list_for_each(pos1, head) { 499 struct list_head *n2; 500 struct list_head *pos2; 501 struct __prelim_ref *ref1; 502 503 ref1 = list_entry(pos1, struct __prelim_ref, list); 504 505 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head; 506 pos2 = n2, n2 = pos2->next) { 507 struct __prelim_ref *ref2; 508 struct __prelim_ref *xchg; 509 struct extent_inode_elem *eie; 510 511 ref2 = list_entry(pos2, struct __prelim_ref, list); 512 513 if (mode == 1) { 514 if (!ref_for_same_block(ref1, ref2)) 515 continue; 516 if (!ref1->parent && ref2->parent) { 517 xchg = ref1; 518 ref1 = ref2; 519 ref2 = xchg; 520 } 521 } else { 522 if (ref1->parent != ref2->parent) 523 continue; 524 } 525 526 eie = ref1->inode_list; 527 while (eie && eie->next) 528 eie = eie->next; 529 if (eie) 530 eie->next = ref2->inode_list; 531 else 532 ref1->inode_list = ref2->inode_list; 533 ref1->count += ref2->count; 534 535 list_del(&ref2->list); 536 kmem_cache_free(btrfs_prelim_ref_cache, ref2); 537 } 538 539 } 540 } 541 542 /* 543 * add all currently queued delayed refs from this head whose seq nr is 544 * smaller or equal that seq to the list 545 */ 546 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 547 struct list_head *prefs) 548 { 549 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 550 struct rb_node *n = &head->node.rb_node; 551 struct btrfs_key key; 552 struct btrfs_key op_key = {0}; 553 int sgn; 554 int ret = 0; 555 556 if (extent_op && extent_op->update_key) 557 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 558 559 spin_lock(&head->lock); 560 n = rb_first(&head->ref_root); 561 while (n) { 562 struct btrfs_delayed_ref_node *node; 563 node = rb_entry(n, struct btrfs_delayed_ref_node, 564 rb_node); 565 n = rb_next(n); 566 if (node->seq > seq) 567 continue; 568 569 switch (node->action) { 570 case BTRFS_ADD_DELAYED_EXTENT: 571 case BTRFS_UPDATE_DELAYED_HEAD: 572 WARN_ON(1); 573 continue; 574 case BTRFS_ADD_DELAYED_REF: 575 sgn = 1; 576 break; 577 case BTRFS_DROP_DELAYED_REF: 578 sgn = -1; 579 break; 580 default: 581 BUG_ON(1); 582 } 583 switch (node->type) { 584 case BTRFS_TREE_BLOCK_REF_KEY: { 585 struct btrfs_delayed_tree_ref *ref; 586 587 ref = btrfs_delayed_node_to_tree_ref(node); 588 ret = __add_prelim_ref(prefs, ref->root, &op_key, 589 ref->level + 1, 0, node->bytenr, 590 node->ref_mod * sgn, GFP_ATOMIC); 591 break; 592 } 593 case BTRFS_SHARED_BLOCK_REF_KEY: { 594 struct btrfs_delayed_tree_ref *ref; 595 596 ref = btrfs_delayed_node_to_tree_ref(node); 597 ret = __add_prelim_ref(prefs, ref->root, NULL, 598 ref->level + 1, ref->parent, 599 node->bytenr, 600 node->ref_mod * sgn, GFP_ATOMIC); 601 break; 602 } 603 case BTRFS_EXTENT_DATA_REF_KEY: { 604 struct btrfs_delayed_data_ref *ref; 605 ref = btrfs_delayed_node_to_data_ref(node); 606 607 key.objectid = ref->objectid; 608 key.type = BTRFS_EXTENT_DATA_KEY; 609 key.offset = ref->offset; 610 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 611 node->bytenr, 612 node->ref_mod * sgn, GFP_ATOMIC); 613 break; 614 } 615 case BTRFS_SHARED_DATA_REF_KEY: { 616 struct btrfs_delayed_data_ref *ref; 617 618 ref = btrfs_delayed_node_to_data_ref(node); 619 620 key.objectid = ref->objectid; 621 key.type = BTRFS_EXTENT_DATA_KEY; 622 key.offset = ref->offset; 623 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 624 ref->parent, node->bytenr, 625 node->ref_mod * sgn, GFP_ATOMIC); 626 break; 627 } 628 default: 629 WARN_ON(1); 630 } 631 if (ret) 632 break; 633 } 634 spin_unlock(&head->lock); 635 return ret; 636 } 637 638 /* 639 * add all inline backrefs for bytenr to the list 640 */ 641 static int __add_inline_refs(struct btrfs_fs_info *fs_info, 642 struct btrfs_path *path, u64 bytenr, 643 int *info_level, struct list_head *prefs) 644 { 645 int ret = 0; 646 int slot; 647 struct extent_buffer *leaf; 648 struct btrfs_key key; 649 struct btrfs_key found_key; 650 unsigned long ptr; 651 unsigned long end; 652 struct btrfs_extent_item *ei; 653 u64 flags; 654 u64 item_size; 655 656 /* 657 * enumerate all inline refs 658 */ 659 leaf = path->nodes[0]; 660 slot = path->slots[0]; 661 662 item_size = btrfs_item_size_nr(leaf, slot); 663 BUG_ON(item_size < sizeof(*ei)); 664 665 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 666 flags = btrfs_extent_flags(leaf, ei); 667 btrfs_item_key_to_cpu(leaf, &found_key, slot); 668 669 ptr = (unsigned long)(ei + 1); 670 end = (unsigned long)ei + item_size; 671 672 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 673 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 674 struct btrfs_tree_block_info *info; 675 676 info = (struct btrfs_tree_block_info *)ptr; 677 *info_level = btrfs_tree_block_level(leaf, info); 678 ptr += sizeof(struct btrfs_tree_block_info); 679 BUG_ON(ptr > end); 680 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 681 *info_level = found_key.offset; 682 } else { 683 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 684 } 685 686 while (ptr < end) { 687 struct btrfs_extent_inline_ref *iref; 688 u64 offset; 689 int type; 690 691 iref = (struct btrfs_extent_inline_ref *)ptr; 692 type = btrfs_extent_inline_ref_type(leaf, iref); 693 offset = btrfs_extent_inline_ref_offset(leaf, iref); 694 695 switch (type) { 696 case BTRFS_SHARED_BLOCK_REF_KEY: 697 ret = __add_prelim_ref(prefs, 0, NULL, 698 *info_level + 1, offset, 699 bytenr, 1, GFP_NOFS); 700 break; 701 case BTRFS_SHARED_DATA_REF_KEY: { 702 struct btrfs_shared_data_ref *sdref; 703 int count; 704 705 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 706 count = btrfs_shared_data_ref_count(leaf, sdref); 707 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 708 bytenr, count, GFP_NOFS); 709 break; 710 } 711 case BTRFS_TREE_BLOCK_REF_KEY: 712 ret = __add_prelim_ref(prefs, offset, NULL, 713 *info_level + 1, 0, 714 bytenr, 1, GFP_NOFS); 715 break; 716 case BTRFS_EXTENT_DATA_REF_KEY: { 717 struct btrfs_extent_data_ref *dref; 718 int count; 719 u64 root; 720 721 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 722 count = btrfs_extent_data_ref_count(leaf, dref); 723 key.objectid = btrfs_extent_data_ref_objectid(leaf, 724 dref); 725 key.type = BTRFS_EXTENT_DATA_KEY; 726 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 727 root = btrfs_extent_data_ref_root(leaf, dref); 728 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 729 bytenr, count, GFP_NOFS); 730 break; 731 } 732 default: 733 WARN_ON(1); 734 } 735 if (ret) 736 return ret; 737 ptr += btrfs_extent_inline_ref_size(type); 738 } 739 740 return 0; 741 } 742 743 /* 744 * add all non-inline backrefs for bytenr to the list 745 */ 746 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 747 struct btrfs_path *path, u64 bytenr, 748 int info_level, struct list_head *prefs) 749 { 750 struct btrfs_root *extent_root = fs_info->extent_root; 751 int ret; 752 int slot; 753 struct extent_buffer *leaf; 754 struct btrfs_key key; 755 756 while (1) { 757 ret = btrfs_next_item(extent_root, path); 758 if (ret < 0) 759 break; 760 if (ret) { 761 ret = 0; 762 break; 763 } 764 765 slot = path->slots[0]; 766 leaf = path->nodes[0]; 767 btrfs_item_key_to_cpu(leaf, &key, slot); 768 769 if (key.objectid != bytenr) 770 break; 771 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 772 continue; 773 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 774 break; 775 776 switch (key.type) { 777 case BTRFS_SHARED_BLOCK_REF_KEY: 778 ret = __add_prelim_ref(prefs, 0, NULL, 779 info_level + 1, key.offset, 780 bytenr, 1, GFP_NOFS); 781 break; 782 case BTRFS_SHARED_DATA_REF_KEY: { 783 struct btrfs_shared_data_ref *sdref; 784 int count; 785 786 sdref = btrfs_item_ptr(leaf, slot, 787 struct btrfs_shared_data_ref); 788 count = btrfs_shared_data_ref_count(leaf, sdref); 789 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 790 bytenr, count, GFP_NOFS); 791 break; 792 } 793 case BTRFS_TREE_BLOCK_REF_KEY: 794 ret = __add_prelim_ref(prefs, key.offset, NULL, 795 info_level + 1, 0, 796 bytenr, 1, GFP_NOFS); 797 break; 798 case BTRFS_EXTENT_DATA_REF_KEY: { 799 struct btrfs_extent_data_ref *dref; 800 int count; 801 u64 root; 802 803 dref = btrfs_item_ptr(leaf, slot, 804 struct btrfs_extent_data_ref); 805 count = btrfs_extent_data_ref_count(leaf, dref); 806 key.objectid = btrfs_extent_data_ref_objectid(leaf, 807 dref); 808 key.type = BTRFS_EXTENT_DATA_KEY; 809 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 810 root = btrfs_extent_data_ref_root(leaf, dref); 811 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 812 bytenr, count, GFP_NOFS); 813 break; 814 } 815 default: 816 WARN_ON(1); 817 } 818 if (ret) 819 return ret; 820 821 } 822 823 return ret; 824 } 825 826 /* 827 * this adds all existing backrefs (inline backrefs, backrefs and delayed 828 * refs) for the given bytenr to the refs list, merges duplicates and resolves 829 * indirect refs to their parent bytenr. 830 * When roots are found, they're added to the roots list 831 * 832 * FIXME some caching might speed things up 833 */ 834 static int find_parent_nodes(struct btrfs_trans_handle *trans, 835 struct btrfs_fs_info *fs_info, u64 bytenr, 836 u64 time_seq, struct ulist *refs, 837 struct ulist *roots, const u64 *extent_item_pos) 838 { 839 struct btrfs_key key; 840 struct btrfs_path *path; 841 struct btrfs_delayed_ref_root *delayed_refs = NULL; 842 struct btrfs_delayed_ref_head *head; 843 int info_level = 0; 844 int ret; 845 struct list_head prefs_delayed; 846 struct list_head prefs; 847 struct __prelim_ref *ref; 848 849 INIT_LIST_HEAD(&prefs); 850 INIT_LIST_HEAD(&prefs_delayed); 851 852 key.objectid = bytenr; 853 key.offset = (u64)-1; 854 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 855 key.type = BTRFS_METADATA_ITEM_KEY; 856 else 857 key.type = BTRFS_EXTENT_ITEM_KEY; 858 859 path = btrfs_alloc_path(); 860 if (!path) 861 return -ENOMEM; 862 if (!trans) 863 path->search_commit_root = 1; 864 865 /* 866 * grab both a lock on the path and a lock on the delayed ref head. 867 * We need both to get a consistent picture of how the refs look 868 * at a specified point in time 869 */ 870 again: 871 head = NULL; 872 873 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 874 if (ret < 0) 875 goto out; 876 BUG_ON(ret == 0); 877 878 if (trans) { 879 /* 880 * look if there are updates for this ref queued and lock the 881 * head 882 */ 883 delayed_refs = &trans->transaction->delayed_refs; 884 spin_lock(&delayed_refs->lock); 885 head = btrfs_find_delayed_ref_head(trans, bytenr); 886 if (head) { 887 if (!mutex_trylock(&head->mutex)) { 888 atomic_inc(&head->node.refs); 889 spin_unlock(&delayed_refs->lock); 890 891 btrfs_release_path(path); 892 893 /* 894 * Mutex was contended, block until it's 895 * released and try again 896 */ 897 mutex_lock(&head->mutex); 898 mutex_unlock(&head->mutex); 899 btrfs_put_delayed_ref(&head->node); 900 goto again; 901 } 902 spin_unlock(&delayed_refs->lock); 903 ret = __add_delayed_refs(head, time_seq, 904 &prefs_delayed); 905 mutex_unlock(&head->mutex); 906 if (ret) 907 goto out; 908 } else { 909 spin_unlock(&delayed_refs->lock); 910 } 911 } 912 913 if (path->slots[0]) { 914 struct extent_buffer *leaf; 915 int slot; 916 917 path->slots[0]--; 918 leaf = path->nodes[0]; 919 slot = path->slots[0]; 920 btrfs_item_key_to_cpu(leaf, &key, slot); 921 if (key.objectid == bytenr && 922 (key.type == BTRFS_EXTENT_ITEM_KEY || 923 key.type == BTRFS_METADATA_ITEM_KEY)) { 924 ret = __add_inline_refs(fs_info, path, bytenr, 925 &info_level, &prefs); 926 if (ret) 927 goto out; 928 ret = __add_keyed_refs(fs_info, path, bytenr, 929 info_level, &prefs); 930 if (ret) 931 goto out; 932 } 933 } 934 btrfs_release_path(path); 935 936 list_splice_init(&prefs_delayed, &prefs); 937 938 ret = __add_missing_keys(fs_info, &prefs); 939 if (ret) 940 goto out; 941 942 __merge_refs(&prefs, 1); 943 944 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs, 945 extent_item_pos); 946 if (ret) 947 goto out; 948 949 __merge_refs(&prefs, 2); 950 951 while (!list_empty(&prefs)) { 952 ref = list_first_entry(&prefs, struct __prelim_ref, list); 953 WARN_ON(ref->count < 0); 954 if (ref->count && ref->root_id && ref->parent == 0) { 955 /* no parent == root of tree */ 956 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 957 if (ret < 0) 958 goto out; 959 } 960 if (ref->count && ref->parent) { 961 struct extent_inode_elem *eie = NULL; 962 if (extent_item_pos && !ref->inode_list) { 963 u32 bsz; 964 struct extent_buffer *eb; 965 bsz = btrfs_level_size(fs_info->extent_root, 966 info_level); 967 eb = read_tree_block(fs_info->extent_root, 968 ref->parent, bsz, 0); 969 if (!eb || !extent_buffer_uptodate(eb)) { 970 free_extent_buffer(eb); 971 ret = -EIO; 972 goto out; 973 } 974 ret = find_extent_in_eb(eb, bytenr, 975 *extent_item_pos, &eie); 976 free_extent_buffer(eb); 977 if (ret < 0) 978 goto out; 979 ref->inode_list = eie; 980 } 981 ret = ulist_add_merge(refs, ref->parent, 982 (uintptr_t)ref->inode_list, 983 (u64 *)&eie, GFP_NOFS); 984 if (ret < 0) 985 goto out; 986 if (!ret && extent_item_pos) { 987 /* 988 * we've recorded that parent, so we must extend 989 * its inode list here 990 */ 991 BUG_ON(!eie); 992 while (eie->next) 993 eie = eie->next; 994 eie->next = ref->inode_list; 995 } 996 } 997 list_del(&ref->list); 998 kmem_cache_free(btrfs_prelim_ref_cache, ref); 999 } 1000 1001 out: 1002 btrfs_free_path(path); 1003 while (!list_empty(&prefs)) { 1004 ref = list_first_entry(&prefs, struct __prelim_ref, list); 1005 list_del(&ref->list); 1006 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1007 } 1008 while (!list_empty(&prefs_delayed)) { 1009 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 1010 list); 1011 list_del(&ref->list); 1012 kmem_cache_free(btrfs_prelim_ref_cache, ref); 1013 } 1014 1015 return ret; 1016 } 1017 1018 static void free_leaf_list(struct ulist *blocks) 1019 { 1020 struct ulist_node *node = NULL; 1021 struct extent_inode_elem *eie; 1022 struct extent_inode_elem *eie_next; 1023 struct ulist_iterator uiter; 1024 1025 ULIST_ITER_INIT(&uiter); 1026 while ((node = ulist_next(blocks, &uiter))) { 1027 if (!node->aux) 1028 continue; 1029 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 1030 for (; eie; eie = eie_next) { 1031 eie_next = eie->next; 1032 kfree(eie); 1033 } 1034 node->aux = 0; 1035 } 1036 1037 ulist_free(blocks); 1038 } 1039 1040 /* 1041 * Finds all leafs with a reference to the specified combination of bytenr and 1042 * offset. key_list_head will point to a list of corresponding keys (caller must 1043 * free each list element). The leafs will be stored in the leafs ulist, which 1044 * must be freed with ulist_free. 1045 * 1046 * returns 0 on success, <0 on error 1047 */ 1048 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1049 struct btrfs_fs_info *fs_info, u64 bytenr, 1050 u64 time_seq, struct ulist **leafs, 1051 const u64 *extent_item_pos) 1052 { 1053 struct ulist *tmp; 1054 int ret; 1055 1056 tmp = ulist_alloc(GFP_NOFS); 1057 if (!tmp) 1058 return -ENOMEM; 1059 *leafs = ulist_alloc(GFP_NOFS); 1060 if (!*leafs) { 1061 ulist_free(tmp); 1062 return -ENOMEM; 1063 } 1064 1065 ret = find_parent_nodes(trans, fs_info, bytenr, 1066 time_seq, *leafs, tmp, extent_item_pos); 1067 ulist_free(tmp); 1068 1069 if (ret < 0 && ret != -ENOENT) { 1070 free_leaf_list(*leafs); 1071 return ret; 1072 } 1073 1074 return 0; 1075 } 1076 1077 /* 1078 * walk all backrefs for a given extent to find all roots that reference this 1079 * extent. Walking a backref means finding all extents that reference this 1080 * extent and in turn walk the backrefs of those, too. Naturally this is a 1081 * recursive process, but here it is implemented in an iterative fashion: We 1082 * find all referencing extents for the extent in question and put them on a 1083 * list. In turn, we find all referencing extents for those, further appending 1084 * to the list. The way we iterate the list allows adding more elements after 1085 * the current while iterating. The process stops when we reach the end of the 1086 * list. Found roots are added to the roots list. 1087 * 1088 * returns 0 on success, < 0 on error. 1089 */ 1090 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1091 struct btrfs_fs_info *fs_info, u64 bytenr, 1092 u64 time_seq, struct ulist **roots) 1093 { 1094 struct ulist *tmp; 1095 struct ulist_node *node = NULL; 1096 struct ulist_iterator uiter; 1097 int ret; 1098 1099 tmp = ulist_alloc(GFP_NOFS); 1100 if (!tmp) 1101 return -ENOMEM; 1102 *roots = ulist_alloc(GFP_NOFS); 1103 if (!*roots) { 1104 ulist_free(tmp); 1105 return -ENOMEM; 1106 } 1107 1108 ULIST_ITER_INIT(&uiter); 1109 while (1) { 1110 ret = find_parent_nodes(trans, fs_info, bytenr, 1111 time_seq, tmp, *roots, NULL); 1112 if (ret < 0 && ret != -ENOENT) { 1113 ulist_free(tmp); 1114 ulist_free(*roots); 1115 return ret; 1116 } 1117 node = ulist_next(tmp, &uiter); 1118 if (!node) 1119 break; 1120 bytenr = node->val; 1121 } 1122 1123 ulist_free(tmp); 1124 return 0; 1125 } 1126 1127 /* 1128 * this makes the path point to (inum INODE_ITEM ioff) 1129 */ 1130 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1131 struct btrfs_path *path) 1132 { 1133 struct btrfs_key key; 1134 return btrfs_find_item(fs_root, path, inum, ioff, 1135 BTRFS_INODE_ITEM_KEY, &key); 1136 } 1137 1138 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1139 struct btrfs_path *path, 1140 struct btrfs_key *found_key) 1141 { 1142 return btrfs_find_item(fs_root, path, inum, ioff, 1143 BTRFS_INODE_REF_KEY, found_key); 1144 } 1145 1146 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1147 u64 start_off, struct btrfs_path *path, 1148 struct btrfs_inode_extref **ret_extref, 1149 u64 *found_off) 1150 { 1151 int ret, slot; 1152 struct btrfs_key key; 1153 struct btrfs_key found_key; 1154 struct btrfs_inode_extref *extref; 1155 struct extent_buffer *leaf; 1156 unsigned long ptr; 1157 1158 key.objectid = inode_objectid; 1159 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY); 1160 key.offset = start_off; 1161 1162 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1163 if (ret < 0) 1164 return ret; 1165 1166 while (1) { 1167 leaf = path->nodes[0]; 1168 slot = path->slots[0]; 1169 if (slot >= btrfs_header_nritems(leaf)) { 1170 /* 1171 * If the item at offset is not found, 1172 * btrfs_search_slot will point us to the slot 1173 * where it should be inserted. In our case 1174 * that will be the slot directly before the 1175 * next INODE_REF_KEY_V2 item. In the case 1176 * that we're pointing to the last slot in a 1177 * leaf, we must move one leaf over. 1178 */ 1179 ret = btrfs_next_leaf(root, path); 1180 if (ret) { 1181 if (ret >= 1) 1182 ret = -ENOENT; 1183 break; 1184 } 1185 continue; 1186 } 1187 1188 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1189 1190 /* 1191 * Check that we're still looking at an extended ref key for 1192 * this particular objectid. If we have different 1193 * objectid or type then there are no more to be found 1194 * in the tree and we can exit. 1195 */ 1196 ret = -ENOENT; 1197 if (found_key.objectid != inode_objectid) 1198 break; 1199 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY) 1200 break; 1201 1202 ret = 0; 1203 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1204 extref = (struct btrfs_inode_extref *)ptr; 1205 *ret_extref = extref; 1206 if (found_off) 1207 *found_off = found_key.offset; 1208 break; 1209 } 1210 1211 return ret; 1212 } 1213 1214 /* 1215 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1216 * Elements of the path are separated by '/' and the path is guaranteed to be 1217 * 0-terminated. the path is only given within the current file system. 1218 * Therefore, it never starts with a '/'. the caller is responsible to provide 1219 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1220 * the start point of the resulting string is returned. this pointer is within 1221 * dest, normally. 1222 * in case the path buffer would overflow, the pointer is decremented further 1223 * as if output was written to the buffer, though no more output is actually 1224 * generated. that way, the caller can determine how much space would be 1225 * required for the path to fit into the buffer. in that case, the returned 1226 * value will be smaller than dest. callers must check this! 1227 */ 1228 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1229 u32 name_len, unsigned long name_off, 1230 struct extent_buffer *eb_in, u64 parent, 1231 char *dest, u32 size) 1232 { 1233 int slot; 1234 u64 next_inum; 1235 int ret; 1236 s64 bytes_left = ((s64)size) - 1; 1237 struct extent_buffer *eb = eb_in; 1238 struct btrfs_key found_key; 1239 int leave_spinning = path->leave_spinning; 1240 struct btrfs_inode_ref *iref; 1241 1242 if (bytes_left >= 0) 1243 dest[bytes_left] = '\0'; 1244 1245 path->leave_spinning = 1; 1246 while (1) { 1247 bytes_left -= name_len; 1248 if (bytes_left >= 0) 1249 read_extent_buffer(eb, dest + bytes_left, 1250 name_off, name_len); 1251 if (eb != eb_in) { 1252 btrfs_tree_read_unlock_blocking(eb); 1253 free_extent_buffer(eb); 1254 } 1255 ret = inode_ref_info(parent, 0, fs_root, path, &found_key); 1256 if (ret > 0) 1257 ret = -ENOENT; 1258 if (ret) 1259 break; 1260 1261 next_inum = found_key.offset; 1262 1263 /* regular exit ahead */ 1264 if (parent == next_inum) 1265 break; 1266 1267 slot = path->slots[0]; 1268 eb = path->nodes[0]; 1269 /* make sure we can use eb after releasing the path */ 1270 if (eb != eb_in) { 1271 atomic_inc(&eb->refs); 1272 btrfs_tree_read_lock(eb); 1273 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1274 } 1275 btrfs_release_path(path); 1276 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1277 1278 name_len = btrfs_inode_ref_name_len(eb, iref); 1279 name_off = (unsigned long)(iref + 1); 1280 1281 parent = next_inum; 1282 --bytes_left; 1283 if (bytes_left >= 0) 1284 dest[bytes_left] = '/'; 1285 } 1286 1287 btrfs_release_path(path); 1288 path->leave_spinning = leave_spinning; 1289 1290 if (ret) 1291 return ERR_PTR(ret); 1292 1293 return dest + bytes_left; 1294 } 1295 1296 /* 1297 * this makes the path point to (logical EXTENT_ITEM *) 1298 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1299 * tree blocks and <0 on error. 1300 */ 1301 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1302 struct btrfs_path *path, struct btrfs_key *found_key, 1303 u64 *flags_ret) 1304 { 1305 int ret; 1306 u64 flags; 1307 u64 size = 0; 1308 u32 item_size; 1309 struct extent_buffer *eb; 1310 struct btrfs_extent_item *ei; 1311 struct btrfs_key key; 1312 1313 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1314 key.type = BTRFS_METADATA_ITEM_KEY; 1315 else 1316 key.type = BTRFS_EXTENT_ITEM_KEY; 1317 key.objectid = logical; 1318 key.offset = (u64)-1; 1319 1320 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1321 if (ret < 0) 1322 return ret; 1323 1324 while (1) { 1325 u32 nritems; 1326 if (path->slots[0] == 0) { 1327 btrfs_set_path_blocking(path); 1328 ret = btrfs_prev_leaf(fs_info->extent_root, path); 1329 if (ret != 0) { 1330 if (ret > 0) { 1331 pr_debug("logical %llu is not within " 1332 "any extent\n", logical); 1333 ret = -ENOENT; 1334 } 1335 return ret; 1336 } 1337 } else { 1338 path->slots[0]--; 1339 } 1340 nritems = btrfs_header_nritems(path->nodes[0]); 1341 if (nritems == 0) { 1342 pr_debug("logical %llu is not within any extent\n", 1343 logical); 1344 return -ENOENT; 1345 } 1346 if (path->slots[0] == nritems) 1347 path->slots[0]--; 1348 1349 btrfs_item_key_to_cpu(path->nodes[0], found_key, 1350 path->slots[0]); 1351 if (found_key->type == BTRFS_EXTENT_ITEM_KEY || 1352 found_key->type == BTRFS_METADATA_ITEM_KEY) 1353 break; 1354 } 1355 1356 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1357 size = fs_info->extent_root->leafsize; 1358 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1359 size = found_key->offset; 1360 1361 if (found_key->objectid > logical || 1362 found_key->objectid + size <= logical) { 1363 pr_debug("logical %llu is not within any extent\n", logical); 1364 return -ENOENT; 1365 } 1366 1367 eb = path->nodes[0]; 1368 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1369 BUG_ON(item_size < sizeof(*ei)); 1370 1371 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1372 flags = btrfs_extent_flags(eb, ei); 1373 1374 pr_debug("logical %llu is at position %llu within the extent (%llu " 1375 "EXTENT_ITEM %llu) flags %#llx size %u\n", 1376 logical, logical - found_key->objectid, found_key->objectid, 1377 found_key->offset, flags, item_size); 1378 1379 WARN_ON(!flags_ret); 1380 if (flags_ret) { 1381 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1382 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1383 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1384 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1385 else 1386 BUG_ON(1); 1387 return 0; 1388 } 1389 1390 return -EIO; 1391 } 1392 1393 /* 1394 * helper function to iterate extent inline refs. ptr must point to a 0 value 1395 * for the first call and may be modified. it is used to track state. 1396 * if more refs exist, 0 is returned and the next call to 1397 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1398 * next ref. after the last ref was processed, 1 is returned. 1399 * returns <0 on error 1400 */ 1401 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1402 struct btrfs_extent_item *ei, u32 item_size, 1403 struct btrfs_extent_inline_ref **out_eiref, 1404 int *out_type) 1405 { 1406 unsigned long end; 1407 u64 flags; 1408 struct btrfs_tree_block_info *info; 1409 1410 if (!*ptr) { 1411 /* first call */ 1412 flags = btrfs_extent_flags(eb, ei); 1413 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1414 info = (struct btrfs_tree_block_info *)(ei + 1); 1415 *out_eiref = 1416 (struct btrfs_extent_inline_ref *)(info + 1); 1417 } else { 1418 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1419 } 1420 *ptr = (unsigned long)*out_eiref; 1421 if ((void *)*ptr >= (void *)ei + item_size) 1422 return -ENOENT; 1423 } 1424 1425 end = (unsigned long)ei + item_size; 1426 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr; 1427 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1428 1429 *ptr += btrfs_extent_inline_ref_size(*out_type); 1430 WARN_ON(*ptr > end); 1431 if (*ptr == end) 1432 return 1; /* last */ 1433 1434 return 0; 1435 } 1436 1437 /* 1438 * reads the tree block backref for an extent. tree level and root are returned 1439 * through out_level and out_root. ptr must point to a 0 value for the first 1440 * call and may be modified (see __get_extent_inline_ref comment). 1441 * returns 0 if data was provided, 1 if there was no more data to provide or 1442 * <0 on error. 1443 */ 1444 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1445 struct btrfs_extent_item *ei, u32 item_size, 1446 u64 *out_root, u8 *out_level) 1447 { 1448 int ret; 1449 int type; 1450 struct btrfs_tree_block_info *info; 1451 struct btrfs_extent_inline_ref *eiref; 1452 1453 if (*ptr == (unsigned long)-1) 1454 return 1; 1455 1456 while (1) { 1457 ret = __get_extent_inline_ref(ptr, eb, ei, item_size, 1458 &eiref, &type); 1459 if (ret < 0) 1460 return ret; 1461 1462 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1463 type == BTRFS_SHARED_BLOCK_REF_KEY) 1464 break; 1465 1466 if (ret == 1) 1467 return 1; 1468 } 1469 1470 /* we can treat both ref types equally here */ 1471 info = (struct btrfs_tree_block_info *)(ei + 1); 1472 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1473 *out_level = btrfs_tree_block_level(eb, info); 1474 1475 if (ret == 1) 1476 *ptr = (unsigned long)-1; 1477 1478 return 0; 1479 } 1480 1481 static int iterate_leaf_refs(struct extent_inode_elem *inode_list, 1482 u64 root, u64 extent_item_objectid, 1483 iterate_extent_inodes_t *iterate, void *ctx) 1484 { 1485 struct extent_inode_elem *eie; 1486 int ret = 0; 1487 1488 for (eie = inode_list; eie; eie = eie->next) { 1489 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " 1490 "root %llu\n", extent_item_objectid, 1491 eie->inum, eie->offset, root); 1492 ret = iterate(eie->inum, eie->offset, root, ctx); 1493 if (ret) { 1494 pr_debug("stopping iteration for %llu due to ret=%d\n", 1495 extent_item_objectid, ret); 1496 break; 1497 } 1498 } 1499 1500 return ret; 1501 } 1502 1503 /* 1504 * calls iterate() for every inode that references the extent identified by 1505 * the given parameters. 1506 * when the iterator function returns a non-zero value, iteration stops. 1507 */ 1508 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1509 u64 extent_item_objectid, u64 extent_item_pos, 1510 int search_commit_root, 1511 iterate_extent_inodes_t *iterate, void *ctx) 1512 { 1513 int ret; 1514 struct btrfs_trans_handle *trans = NULL; 1515 struct ulist *refs = NULL; 1516 struct ulist *roots = NULL; 1517 struct ulist_node *ref_node = NULL; 1518 struct ulist_node *root_node = NULL; 1519 struct seq_list tree_mod_seq_elem = {}; 1520 struct ulist_iterator ref_uiter; 1521 struct ulist_iterator root_uiter; 1522 1523 pr_debug("resolving all inodes for extent %llu\n", 1524 extent_item_objectid); 1525 1526 if (!search_commit_root) { 1527 trans = btrfs_join_transaction(fs_info->extent_root); 1528 if (IS_ERR(trans)) 1529 return PTR_ERR(trans); 1530 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1531 } 1532 1533 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1534 tree_mod_seq_elem.seq, &refs, 1535 &extent_item_pos); 1536 if (ret) 1537 goto out; 1538 1539 ULIST_ITER_INIT(&ref_uiter); 1540 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1541 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, 1542 tree_mod_seq_elem.seq, &roots); 1543 if (ret) 1544 break; 1545 ULIST_ITER_INIT(&root_uiter); 1546 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1547 pr_debug("root %llu references leaf %llu, data list " 1548 "%#llx\n", root_node->val, ref_node->val, 1549 ref_node->aux); 1550 ret = iterate_leaf_refs((struct extent_inode_elem *) 1551 (uintptr_t)ref_node->aux, 1552 root_node->val, 1553 extent_item_objectid, 1554 iterate, ctx); 1555 } 1556 ulist_free(roots); 1557 } 1558 1559 free_leaf_list(refs); 1560 out: 1561 if (!search_commit_root) { 1562 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1563 btrfs_end_transaction(trans, fs_info->extent_root); 1564 } 1565 1566 return ret; 1567 } 1568 1569 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1570 struct btrfs_path *path, 1571 iterate_extent_inodes_t *iterate, void *ctx) 1572 { 1573 int ret; 1574 u64 extent_item_pos; 1575 u64 flags = 0; 1576 struct btrfs_key found_key; 1577 int search_commit_root = path->search_commit_root; 1578 1579 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1580 btrfs_release_path(path); 1581 if (ret < 0) 1582 return ret; 1583 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1584 return -EINVAL; 1585 1586 extent_item_pos = logical - found_key.objectid; 1587 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1588 extent_item_pos, search_commit_root, 1589 iterate, ctx); 1590 1591 return ret; 1592 } 1593 1594 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1595 struct extent_buffer *eb, void *ctx); 1596 1597 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1598 struct btrfs_path *path, 1599 iterate_irefs_t *iterate, void *ctx) 1600 { 1601 int ret = 0; 1602 int slot; 1603 u32 cur; 1604 u32 len; 1605 u32 name_len; 1606 u64 parent = 0; 1607 int found = 0; 1608 struct extent_buffer *eb; 1609 struct btrfs_item *item; 1610 struct btrfs_inode_ref *iref; 1611 struct btrfs_key found_key; 1612 1613 while (!ret) { 1614 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, 1615 &found_key); 1616 if (ret < 0) 1617 break; 1618 if (ret) { 1619 ret = found ? 0 : -ENOENT; 1620 break; 1621 } 1622 ++found; 1623 1624 parent = found_key.offset; 1625 slot = path->slots[0]; 1626 eb = btrfs_clone_extent_buffer(path->nodes[0]); 1627 if (!eb) { 1628 ret = -ENOMEM; 1629 break; 1630 } 1631 extent_buffer_get(eb); 1632 btrfs_tree_read_lock(eb); 1633 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1634 btrfs_release_path(path); 1635 1636 item = btrfs_item_nr(slot); 1637 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1638 1639 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 1640 name_len = btrfs_inode_ref_name_len(eb, iref); 1641 /* path must be released before calling iterate()! */ 1642 pr_debug("following ref at offset %u for inode %llu in " 1643 "tree %llu\n", cur, found_key.objectid, 1644 fs_root->objectid); 1645 ret = iterate(parent, name_len, 1646 (unsigned long)(iref + 1), eb, ctx); 1647 if (ret) 1648 break; 1649 len = sizeof(*iref) + name_len; 1650 iref = (struct btrfs_inode_ref *)((char *)iref + len); 1651 } 1652 btrfs_tree_read_unlock_blocking(eb); 1653 free_extent_buffer(eb); 1654 } 1655 1656 btrfs_release_path(path); 1657 1658 return ret; 1659 } 1660 1661 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 1662 struct btrfs_path *path, 1663 iterate_irefs_t *iterate, void *ctx) 1664 { 1665 int ret; 1666 int slot; 1667 u64 offset = 0; 1668 u64 parent; 1669 int found = 0; 1670 struct extent_buffer *eb; 1671 struct btrfs_inode_extref *extref; 1672 struct extent_buffer *leaf; 1673 u32 item_size; 1674 u32 cur_offset; 1675 unsigned long ptr; 1676 1677 while (1) { 1678 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 1679 &offset); 1680 if (ret < 0) 1681 break; 1682 if (ret) { 1683 ret = found ? 0 : -ENOENT; 1684 break; 1685 } 1686 ++found; 1687 1688 slot = path->slots[0]; 1689 eb = btrfs_clone_extent_buffer(path->nodes[0]); 1690 if (!eb) { 1691 ret = -ENOMEM; 1692 break; 1693 } 1694 extent_buffer_get(eb); 1695 1696 btrfs_tree_read_lock(eb); 1697 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1698 btrfs_release_path(path); 1699 1700 leaf = path->nodes[0]; 1701 item_size = btrfs_item_size_nr(leaf, slot); 1702 ptr = btrfs_item_ptr_offset(leaf, slot); 1703 cur_offset = 0; 1704 1705 while (cur_offset < item_size) { 1706 u32 name_len; 1707 1708 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 1709 parent = btrfs_inode_extref_parent(eb, extref); 1710 name_len = btrfs_inode_extref_name_len(eb, extref); 1711 ret = iterate(parent, name_len, 1712 (unsigned long)&extref->name, eb, ctx); 1713 if (ret) 1714 break; 1715 1716 cur_offset += btrfs_inode_extref_name_len(leaf, extref); 1717 cur_offset += sizeof(*extref); 1718 } 1719 btrfs_tree_read_unlock_blocking(eb); 1720 free_extent_buffer(eb); 1721 1722 offset++; 1723 } 1724 1725 btrfs_release_path(path); 1726 1727 return ret; 1728 } 1729 1730 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 1731 struct btrfs_path *path, iterate_irefs_t *iterate, 1732 void *ctx) 1733 { 1734 int ret; 1735 int found_refs = 0; 1736 1737 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 1738 if (!ret) 1739 ++found_refs; 1740 else if (ret != -ENOENT) 1741 return ret; 1742 1743 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 1744 if (ret == -ENOENT && found_refs) 1745 return 0; 1746 1747 return ret; 1748 } 1749 1750 /* 1751 * returns 0 if the path could be dumped (probably truncated) 1752 * returns <0 in case of an error 1753 */ 1754 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 1755 struct extent_buffer *eb, void *ctx) 1756 { 1757 struct inode_fs_paths *ipath = ctx; 1758 char *fspath; 1759 char *fspath_min; 1760 int i = ipath->fspath->elem_cnt; 1761 const int s_ptr = sizeof(char *); 1762 u32 bytes_left; 1763 1764 bytes_left = ipath->fspath->bytes_left > s_ptr ? 1765 ipath->fspath->bytes_left - s_ptr : 0; 1766 1767 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 1768 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 1769 name_off, eb, inum, fspath_min, bytes_left); 1770 if (IS_ERR(fspath)) 1771 return PTR_ERR(fspath); 1772 1773 if (fspath > fspath_min) { 1774 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 1775 ++ipath->fspath->elem_cnt; 1776 ipath->fspath->bytes_left = fspath - fspath_min; 1777 } else { 1778 ++ipath->fspath->elem_missed; 1779 ipath->fspath->bytes_missing += fspath_min - fspath; 1780 ipath->fspath->bytes_left = 0; 1781 } 1782 1783 return 0; 1784 } 1785 1786 /* 1787 * this dumps all file system paths to the inode into the ipath struct, provided 1788 * is has been created large enough. each path is zero-terminated and accessed 1789 * from ipath->fspath->val[i]. 1790 * when it returns, there are ipath->fspath->elem_cnt number of paths available 1791 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 1792 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, 1793 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 1794 * have been needed to return all paths. 1795 */ 1796 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 1797 { 1798 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 1799 inode_to_path, ipath); 1800 } 1801 1802 struct btrfs_data_container *init_data_container(u32 total_bytes) 1803 { 1804 struct btrfs_data_container *data; 1805 size_t alloc_bytes; 1806 1807 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 1808 data = vmalloc(alloc_bytes); 1809 if (!data) 1810 return ERR_PTR(-ENOMEM); 1811 1812 if (total_bytes >= sizeof(*data)) { 1813 data->bytes_left = total_bytes - sizeof(*data); 1814 data->bytes_missing = 0; 1815 } else { 1816 data->bytes_missing = sizeof(*data) - total_bytes; 1817 data->bytes_left = 0; 1818 } 1819 1820 data->elem_cnt = 0; 1821 data->elem_missed = 0; 1822 1823 return data; 1824 } 1825 1826 /* 1827 * allocates space to return multiple file system paths for an inode. 1828 * total_bytes to allocate are passed, note that space usable for actual path 1829 * information will be total_bytes - sizeof(struct inode_fs_paths). 1830 * the returned pointer must be freed with free_ipath() in the end. 1831 */ 1832 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 1833 struct btrfs_path *path) 1834 { 1835 struct inode_fs_paths *ifp; 1836 struct btrfs_data_container *fspath; 1837 1838 fspath = init_data_container(total_bytes); 1839 if (IS_ERR(fspath)) 1840 return (void *)fspath; 1841 1842 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 1843 if (!ifp) { 1844 kfree(fspath); 1845 return ERR_PTR(-ENOMEM); 1846 } 1847 1848 ifp->btrfs_path = path; 1849 ifp->fspath = fspath; 1850 ifp->fs_root = fs_root; 1851 1852 return ifp; 1853 } 1854 1855 void free_ipath(struct inode_fs_paths *ipath) 1856 { 1857 if (!ipath) 1858 return; 1859 vfree(ipath->fspath); 1860 kfree(ipath); 1861 } 1862