xref: /openbmc/linux/fs/btrfs/backref.c (revision 95def2ede1a9dd12b164932eaf5fefb67aefc41c)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	struct extent_inode_elem *next;
32 };
33 
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 				struct btrfs_file_extent_item *fi,
36 				u64 extent_item_pos,
37 				struct extent_inode_elem **eie)
38 {
39 	u64 offset = 0;
40 	struct extent_inode_elem *e;
41 
42 	if (!btrfs_file_extent_compression(eb, fi) &&
43 	    !btrfs_file_extent_encryption(eb, fi) &&
44 	    !btrfs_file_extent_other_encoding(eb, fi)) {
45 		u64 data_offset;
46 		u64 data_len;
47 
48 		data_offset = btrfs_file_extent_offset(eb, fi);
49 		data_len = btrfs_file_extent_num_bytes(eb, fi);
50 
51 		if (extent_item_pos < data_offset ||
52 		    extent_item_pos >= data_offset + data_len)
53 			return 1;
54 		offset = extent_item_pos - data_offset;
55 	}
56 
57 	e = kmalloc(sizeof(*e), GFP_NOFS);
58 	if (!e)
59 		return -ENOMEM;
60 
61 	e->next = *eie;
62 	e->inum = key->objectid;
63 	e->offset = key->offset + offset;
64 	*eie = e;
65 
66 	return 0;
67 }
68 
69 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
70 				u64 extent_item_pos,
71 				struct extent_inode_elem **eie)
72 {
73 	u64 disk_byte;
74 	struct btrfs_key key;
75 	struct btrfs_file_extent_item *fi;
76 	int slot;
77 	int nritems;
78 	int extent_type;
79 	int ret;
80 
81 	/*
82 	 * from the shared data ref, we only have the leaf but we need
83 	 * the key. thus, we must look into all items and see that we
84 	 * find one (some) with a reference to our extent item.
85 	 */
86 	nritems = btrfs_header_nritems(eb);
87 	for (slot = 0; slot < nritems; ++slot) {
88 		btrfs_item_key_to_cpu(eb, &key, slot);
89 		if (key.type != BTRFS_EXTENT_DATA_KEY)
90 			continue;
91 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
92 		extent_type = btrfs_file_extent_type(eb, fi);
93 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
94 			continue;
95 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
96 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
97 		if (disk_byte != wanted_disk_byte)
98 			continue;
99 
100 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
101 		if (ret < 0)
102 			return ret;
103 	}
104 
105 	return 0;
106 }
107 
108 /*
109  * this structure records all encountered refs on the way up to the root
110  */
111 struct __prelim_ref {
112 	struct list_head list;
113 	u64 root_id;
114 	struct btrfs_key key_for_search;
115 	int level;
116 	int count;
117 	struct extent_inode_elem *inode_list;
118 	u64 parent;
119 	u64 wanted_disk_byte;
120 };
121 
122 static struct kmem_cache *btrfs_prelim_ref_cache;
123 
124 int __init btrfs_prelim_ref_init(void)
125 {
126 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
127 					sizeof(struct __prelim_ref),
128 					0,
129 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
130 					NULL);
131 	if (!btrfs_prelim_ref_cache)
132 		return -ENOMEM;
133 	return 0;
134 }
135 
136 void btrfs_prelim_ref_exit(void)
137 {
138 	if (btrfs_prelim_ref_cache)
139 		kmem_cache_destroy(btrfs_prelim_ref_cache);
140 }
141 
142 /*
143  * the rules for all callers of this function are:
144  * - obtaining the parent is the goal
145  * - if you add a key, you must know that it is a correct key
146  * - if you cannot add the parent or a correct key, then we will look into the
147  *   block later to set a correct key
148  *
149  * delayed refs
150  * ============
151  *        backref type | shared | indirect | shared | indirect
152  * information         |   tree |     tree |   data |     data
153  * --------------------+--------+----------+--------+----------
154  *      parent logical |    y   |     -    |    -   |     -
155  *      key to resolve |    -   |     y    |    y   |     y
156  *  tree block logical |    -   |     -    |    -   |     -
157  *  root for resolving |    y   |     y    |    y   |     y
158  *
159  * - column 1:       we've the parent -> done
160  * - column 2, 3, 4: we use the key to find the parent
161  *
162  * on disk refs (inline or keyed)
163  * ==============================
164  *        backref type | shared | indirect | shared | indirect
165  * information         |   tree |     tree |   data |     data
166  * --------------------+--------+----------+--------+----------
167  *      parent logical |    y   |     -    |    y   |     -
168  *      key to resolve |    -   |     -    |    -   |     y
169  *  tree block logical |    y   |     y    |    y   |     y
170  *  root for resolving |    -   |     y    |    y   |     y
171  *
172  * - column 1, 3: we've the parent -> done
173  * - column 2:    we take the first key from the block to find the parent
174  *                (see __add_missing_keys)
175  * - column 4:    we use the key to find the parent
176  *
177  * additional information that's available but not required to find the parent
178  * block might help in merging entries to gain some speed.
179  */
180 
181 static int __add_prelim_ref(struct list_head *head, u64 root_id,
182 			    struct btrfs_key *key, int level,
183 			    u64 parent, u64 wanted_disk_byte, int count,
184 			    gfp_t gfp_mask)
185 {
186 	struct __prelim_ref *ref;
187 
188 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
189 		return 0;
190 
191 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
192 	if (!ref)
193 		return -ENOMEM;
194 
195 	ref->root_id = root_id;
196 	if (key)
197 		ref->key_for_search = *key;
198 	else
199 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
200 
201 	ref->inode_list = NULL;
202 	ref->level = level;
203 	ref->count = count;
204 	ref->parent = parent;
205 	ref->wanted_disk_byte = wanted_disk_byte;
206 	list_add_tail(&ref->list, head);
207 
208 	return 0;
209 }
210 
211 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
212 			   struct ulist *parents, struct __prelim_ref *ref,
213 			   int level, u64 time_seq, const u64 *extent_item_pos)
214 {
215 	int ret = 0;
216 	int slot;
217 	struct extent_buffer *eb;
218 	struct btrfs_key key;
219 	struct btrfs_key *key_for_search = &ref->key_for_search;
220 	struct btrfs_file_extent_item *fi;
221 	struct extent_inode_elem *eie = NULL, *old = NULL;
222 	u64 disk_byte;
223 	u64 wanted_disk_byte = ref->wanted_disk_byte;
224 	u64 count = 0;
225 
226 	if (level != 0) {
227 		eb = path->nodes[level];
228 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
229 		if (ret < 0)
230 			return ret;
231 		return 0;
232 	}
233 
234 	/*
235 	 * We normally enter this function with the path already pointing to
236 	 * the first item to check. But sometimes, we may enter it with
237 	 * slot==nritems. In that case, go to the next leaf before we continue.
238 	 */
239 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
240 		ret = btrfs_next_old_leaf(root, path, time_seq);
241 
242 	while (!ret && count < ref->count) {
243 		eb = path->nodes[0];
244 		slot = path->slots[0];
245 
246 		btrfs_item_key_to_cpu(eb, &key, slot);
247 
248 		if (key.objectid != key_for_search->objectid ||
249 		    key.type != BTRFS_EXTENT_DATA_KEY)
250 			break;
251 
252 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
253 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
254 
255 		if (disk_byte == wanted_disk_byte) {
256 			eie = NULL;
257 			old = NULL;
258 			count++;
259 			if (extent_item_pos) {
260 				ret = check_extent_in_eb(&key, eb, fi,
261 						*extent_item_pos,
262 						&eie);
263 				if (ret < 0)
264 					break;
265 			}
266 			if (ret > 0)
267 				goto next;
268 			ret = ulist_add_merge(parents, eb->start,
269 					      (uintptr_t)eie,
270 					      (u64 *)&old, GFP_NOFS);
271 			if (ret < 0)
272 				break;
273 			if (!ret && extent_item_pos) {
274 				while (old->next)
275 					old = old->next;
276 				old->next = eie;
277 			}
278 		}
279 next:
280 		ret = btrfs_next_old_item(root, path, time_seq);
281 	}
282 
283 	if (ret > 0)
284 		ret = 0;
285 	return ret;
286 }
287 
288 /*
289  * resolve an indirect backref in the form (root_id, key, level)
290  * to a logical address
291  */
292 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
293 				  struct btrfs_path *path, u64 time_seq,
294 				  struct __prelim_ref *ref,
295 				  struct ulist *parents,
296 				  const u64 *extent_item_pos)
297 {
298 	struct btrfs_root *root;
299 	struct btrfs_key root_key;
300 	struct extent_buffer *eb;
301 	int ret = 0;
302 	int root_level;
303 	int level = ref->level;
304 	int index;
305 
306 	root_key.objectid = ref->root_id;
307 	root_key.type = BTRFS_ROOT_ITEM_KEY;
308 	root_key.offset = (u64)-1;
309 
310 	index = srcu_read_lock(&fs_info->subvol_srcu);
311 
312 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
313 	if (IS_ERR(root)) {
314 		srcu_read_unlock(&fs_info->subvol_srcu, index);
315 		ret = PTR_ERR(root);
316 		goto out;
317 	}
318 
319 	root_level = btrfs_old_root_level(root, time_seq);
320 
321 	if (root_level + 1 == level) {
322 		srcu_read_unlock(&fs_info->subvol_srcu, index);
323 		goto out;
324 	}
325 
326 	path->lowest_level = level;
327 	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
328 
329 	/* root node has been locked, we can release @subvol_srcu safely here */
330 	srcu_read_unlock(&fs_info->subvol_srcu, index);
331 
332 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
333 		 "%d for key (%llu %u %llu)\n",
334 		 ref->root_id, level, ref->count, ret,
335 		 ref->key_for_search.objectid, ref->key_for_search.type,
336 		 ref->key_for_search.offset);
337 	if (ret < 0)
338 		goto out;
339 
340 	eb = path->nodes[level];
341 	while (!eb) {
342 		if (WARN_ON(!level)) {
343 			ret = 1;
344 			goto out;
345 		}
346 		level--;
347 		eb = path->nodes[level];
348 	}
349 
350 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
351 			      extent_item_pos);
352 out:
353 	path->lowest_level = 0;
354 	btrfs_release_path(path);
355 	return ret;
356 }
357 
358 /*
359  * resolve all indirect backrefs from the list
360  */
361 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
362 				   struct btrfs_path *path, u64 time_seq,
363 				   struct list_head *head,
364 				   const u64 *extent_item_pos)
365 {
366 	int err;
367 	int ret = 0;
368 	struct __prelim_ref *ref;
369 	struct __prelim_ref *ref_safe;
370 	struct __prelim_ref *new_ref;
371 	struct ulist *parents;
372 	struct ulist_node *node;
373 	struct ulist_iterator uiter;
374 
375 	parents = ulist_alloc(GFP_NOFS);
376 	if (!parents)
377 		return -ENOMEM;
378 
379 	/*
380 	 * _safe allows us to insert directly after the current item without
381 	 * iterating over the newly inserted items.
382 	 * we're also allowed to re-assign ref during iteration.
383 	 */
384 	list_for_each_entry_safe(ref, ref_safe, head, list) {
385 		if (ref->parent)	/* already direct */
386 			continue;
387 		if (ref->count == 0)
388 			continue;
389 		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
390 					     parents, extent_item_pos);
391 		/*
392 		 * we can only tolerate ENOENT,otherwise,we should catch error
393 		 * and return directly.
394 		 */
395 		if (err == -ENOENT) {
396 			continue;
397 		} else if (err) {
398 			ret = err;
399 			goto out;
400 		}
401 
402 		/* we put the first parent into the ref at hand */
403 		ULIST_ITER_INIT(&uiter);
404 		node = ulist_next(parents, &uiter);
405 		ref->parent = node ? node->val : 0;
406 		ref->inode_list = node ?
407 			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
408 
409 		/* additional parents require new refs being added here */
410 		while ((node = ulist_next(parents, &uiter))) {
411 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
412 						   GFP_NOFS);
413 			if (!new_ref) {
414 				ret = -ENOMEM;
415 				goto out;
416 			}
417 			memcpy(new_ref, ref, sizeof(*ref));
418 			new_ref->parent = node->val;
419 			new_ref->inode_list = (struct extent_inode_elem *)
420 							(uintptr_t)node->aux;
421 			list_add(&new_ref->list, &ref->list);
422 		}
423 		ulist_reinit(parents);
424 	}
425 out:
426 	ulist_free(parents);
427 	return ret;
428 }
429 
430 static inline int ref_for_same_block(struct __prelim_ref *ref1,
431 				     struct __prelim_ref *ref2)
432 {
433 	if (ref1->level != ref2->level)
434 		return 0;
435 	if (ref1->root_id != ref2->root_id)
436 		return 0;
437 	if (ref1->key_for_search.type != ref2->key_for_search.type)
438 		return 0;
439 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
440 		return 0;
441 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
442 		return 0;
443 	if (ref1->parent != ref2->parent)
444 		return 0;
445 
446 	return 1;
447 }
448 
449 /*
450  * read tree blocks and add keys where required.
451  */
452 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
453 			      struct list_head *head)
454 {
455 	struct list_head *pos;
456 	struct extent_buffer *eb;
457 
458 	list_for_each(pos, head) {
459 		struct __prelim_ref *ref;
460 		ref = list_entry(pos, struct __prelim_ref, list);
461 
462 		if (ref->parent)
463 			continue;
464 		if (ref->key_for_search.type)
465 			continue;
466 		BUG_ON(!ref->wanted_disk_byte);
467 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
468 				     fs_info->tree_root->leafsize, 0);
469 		if (!eb || !extent_buffer_uptodate(eb)) {
470 			free_extent_buffer(eb);
471 			return -EIO;
472 		}
473 		btrfs_tree_read_lock(eb);
474 		if (btrfs_header_level(eb) == 0)
475 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
476 		else
477 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
478 		btrfs_tree_read_unlock(eb);
479 		free_extent_buffer(eb);
480 	}
481 	return 0;
482 }
483 
484 /*
485  * merge two lists of backrefs and adjust counts accordingly
486  *
487  * mode = 1: merge identical keys, if key is set
488  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
489  *           additionally, we could even add a key range for the blocks we
490  *           looked into to merge even more (-> replace unresolved refs by those
491  *           having a parent).
492  * mode = 2: merge identical parents
493  */
494 static void __merge_refs(struct list_head *head, int mode)
495 {
496 	struct list_head *pos1;
497 
498 	list_for_each(pos1, head) {
499 		struct list_head *n2;
500 		struct list_head *pos2;
501 		struct __prelim_ref *ref1;
502 
503 		ref1 = list_entry(pos1, struct __prelim_ref, list);
504 
505 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
506 		     pos2 = n2, n2 = pos2->next) {
507 			struct __prelim_ref *ref2;
508 			struct __prelim_ref *xchg;
509 			struct extent_inode_elem *eie;
510 
511 			ref2 = list_entry(pos2, struct __prelim_ref, list);
512 
513 			if (mode == 1) {
514 				if (!ref_for_same_block(ref1, ref2))
515 					continue;
516 				if (!ref1->parent && ref2->parent) {
517 					xchg = ref1;
518 					ref1 = ref2;
519 					ref2 = xchg;
520 				}
521 			} else {
522 				if (ref1->parent != ref2->parent)
523 					continue;
524 			}
525 
526 			eie = ref1->inode_list;
527 			while (eie && eie->next)
528 				eie = eie->next;
529 			if (eie)
530 				eie->next = ref2->inode_list;
531 			else
532 				ref1->inode_list = ref2->inode_list;
533 			ref1->count += ref2->count;
534 
535 			list_del(&ref2->list);
536 			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
537 		}
538 
539 	}
540 }
541 
542 /*
543  * add all currently queued delayed refs from this head whose seq nr is
544  * smaller or equal that seq to the list
545  */
546 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
547 			      struct list_head *prefs)
548 {
549 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
550 	struct rb_node *n = &head->node.rb_node;
551 	struct btrfs_key key;
552 	struct btrfs_key op_key = {0};
553 	int sgn;
554 	int ret = 0;
555 
556 	if (extent_op && extent_op->update_key)
557 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
558 
559 	spin_lock(&head->lock);
560 	n = rb_first(&head->ref_root);
561 	while (n) {
562 		struct btrfs_delayed_ref_node *node;
563 		node = rb_entry(n, struct btrfs_delayed_ref_node,
564 				rb_node);
565 		n = rb_next(n);
566 		if (node->seq > seq)
567 			continue;
568 
569 		switch (node->action) {
570 		case BTRFS_ADD_DELAYED_EXTENT:
571 		case BTRFS_UPDATE_DELAYED_HEAD:
572 			WARN_ON(1);
573 			continue;
574 		case BTRFS_ADD_DELAYED_REF:
575 			sgn = 1;
576 			break;
577 		case BTRFS_DROP_DELAYED_REF:
578 			sgn = -1;
579 			break;
580 		default:
581 			BUG_ON(1);
582 		}
583 		switch (node->type) {
584 		case BTRFS_TREE_BLOCK_REF_KEY: {
585 			struct btrfs_delayed_tree_ref *ref;
586 
587 			ref = btrfs_delayed_node_to_tree_ref(node);
588 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
589 					       ref->level + 1, 0, node->bytenr,
590 					       node->ref_mod * sgn, GFP_ATOMIC);
591 			break;
592 		}
593 		case BTRFS_SHARED_BLOCK_REF_KEY: {
594 			struct btrfs_delayed_tree_ref *ref;
595 
596 			ref = btrfs_delayed_node_to_tree_ref(node);
597 			ret = __add_prelim_ref(prefs, ref->root, NULL,
598 					       ref->level + 1, ref->parent,
599 					       node->bytenr,
600 					       node->ref_mod * sgn, GFP_ATOMIC);
601 			break;
602 		}
603 		case BTRFS_EXTENT_DATA_REF_KEY: {
604 			struct btrfs_delayed_data_ref *ref;
605 			ref = btrfs_delayed_node_to_data_ref(node);
606 
607 			key.objectid = ref->objectid;
608 			key.type = BTRFS_EXTENT_DATA_KEY;
609 			key.offset = ref->offset;
610 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
611 					       node->bytenr,
612 					       node->ref_mod * sgn, GFP_ATOMIC);
613 			break;
614 		}
615 		case BTRFS_SHARED_DATA_REF_KEY: {
616 			struct btrfs_delayed_data_ref *ref;
617 
618 			ref = btrfs_delayed_node_to_data_ref(node);
619 
620 			key.objectid = ref->objectid;
621 			key.type = BTRFS_EXTENT_DATA_KEY;
622 			key.offset = ref->offset;
623 			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
624 					       ref->parent, node->bytenr,
625 					       node->ref_mod * sgn, GFP_ATOMIC);
626 			break;
627 		}
628 		default:
629 			WARN_ON(1);
630 		}
631 		if (ret)
632 			break;
633 	}
634 	spin_unlock(&head->lock);
635 	return ret;
636 }
637 
638 /*
639  * add all inline backrefs for bytenr to the list
640  */
641 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
642 			     struct btrfs_path *path, u64 bytenr,
643 			     int *info_level, struct list_head *prefs)
644 {
645 	int ret = 0;
646 	int slot;
647 	struct extent_buffer *leaf;
648 	struct btrfs_key key;
649 	struct btrfs_key found_key;
650 	unsigned long ptr;
651 	unsigned long end;
652 	struct btrfs_extent_item *ei;
653 	u64 flags;
654 	u64 item_size;
655 
656 	/*
657 	 * enumerate all inline refs
658 	 */
659 	leaf = path->nodes[0];
660 	slot = path->slots[0];
661 
662 	item_size = btrfs_item_size_nr(leaf, slot);
663 	BUG_ON(item_size < sizeof(*ei));
664 
665 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
666 	flags = btrfs_extent_flags(leaf, ei);
667 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
668 
669 	ptr = (unsigned long)(ei + 1);
670 	end = (unsigned long)ei + item_size;
671 
672 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
673 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
674 		struct btrfs_tree_block_info *info;
675 
676 		info = (struct btrfs_tree_block_info *)ptr;
677 		*info_level = btrfs_tree_block_level(leaf, info);
678 		ptr += sizeof(struct btrfs_tree_block_info);
679 		BUG_ON(ptr > end);
680 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
681 		*info_level = found_key.offset;
682 	} else {
683 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
684 	}
685 
686 	while (ptr < end) {
687 		struct btrfs_extent_inline_ref *iref;
688 		u64 offset;
689 		int type;
690 
691 		iref = (struct btrfs_extent_inline_ref *)ptr;
692 		type = btrfs_extent_inline_ref_type(leaf, iref);
693 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
694 
695 		switch (type) {
696 		case BTRFS_SHARED_BLOCK_REF_KEY:
697 			ret = __add_prelim_ref(prefs, 0, NULL,
698 						*info_level + 1, offset,
699 						bytenr, 1, GFP_NOFS);
700 			break;
701 		case BTRFS_SHARED_DATA_REF_KEY: {
702 			struct btrfs_shared_data_ref *sdref;
703 			int count;
704 
705 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
706 			count = btrfs_shared_data_ref_count(leaf, sdref);
707 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
708 					       bytenr, count, GFP_NOFS);
709 			break;
710 		}
711 		case BTRFS_TREE_BLOCK_REF_KEY:
712 			ret = __add_prelim_ref(prefs, offset, NULL,
713 					       *info_level + 1, 0,
714 					       bytenr, 1, GFP_NOFS);
715 			break;
716 		case BTRFS_EXTENT_DATA_REF_KEY: {
717 			struct btrfs_extent_data_ref *dref;
718 			int count;
719 			u64 root;
720 
721 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
722 			count = btrfs_extent_data_ref_count(leaf, dref);
723 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
724 								      dref);
725 			key.type = BTRFS_EXTENT_DATA_KEY;
726 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
727 			root = btrfs_extent_data_ref_root(leaf, dref);
728 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
729 					       bytenr, count, GFP_NOFS);
730 			break;
731 		}
732 		default:
733 			WARN_ON(1);
734 		}
735 		if (ret)
736 			return ret;
737 		ptr += btrfs_extent_inline_ref_size(type);
738 	}
739 
740 	return 0;
741 }
742 
743 /*
744  * add all non-inline backrefs for bytenr to the list
745  */
746 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
747 			    struct btrfs_path *path, u64 bytenr,
748 			    int info_level, struct list_head *prefs)
749 {
750 	struct btrfs_root *extent_root = fs_info->extent_root;
751 	int ret;
752 	int slot;
753 	struct extent_buffer *leaf;
754 	struct btrfs_key key;
755 
756 	while (1) {
757 		ret = btrfs_next_item(extent_root, path);
758 		if (ret < 0)
759 			break;
760 		if (ret) {
761 			ret = 0;
762 			break;
763 		}
764 
765 		slot = path->slots[0];
766 		leaf = path->nodes[0];
767 		btrfs_item_key_to_cpu(leaf, &key, slot);
768 
769 		if (key.objectid != bytenr)
770 			break;
771 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
772 			continue;
773 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
774 			break;
775 
776 		switch (key.type) {
777 		case BTRFS_SHARED_BLOCK_REF_KEY:
778 			ret = __add_prelim_ref(prefs, 0, NULL,
779 						info_level + 1, key.offset,
780 						bytenr, 1, GFP_NOFS);
781 			break;
782 		case BTRFS_SHARED_DATA_REF_KEY: {
783 			struct btrfs_shared_data_ref *sdref;
784 			int count;
785 
786 			sdref = btrfs_item_ptr(leaf, slot,
787 					      struct btrfs_shared_data_ref);
788 			count = btrfs_shared_data_ref_count(leaf, sdref);
789 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
790 						bytenr, count, GFP_NOFS);
791 			break;
792 		}
793 		case BTRFS_TREE_BLOCK_REF_KEY:
794 			ret = __add_prelim_ref(prefs, key.offset, NULL,
795 					       info_level + 1, 0,
796 					       bytenr, 1, GFP_NOFS);
797 			break;
798 		case BTRFS_EXTENT_DATA_REF_KEY: {
799 			struct btrfs_extent_data_ref *dref;
800 			int count;
801 			u64 root;
802 
803 			dref = btrfs_item_ptr(leaf, slot,
804 					      struct btrfs_extent_data_ref);
805 			count = btrfs_extent_data_ref_count(leaf, dref);
806 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
807 								      dref);
808 			key.type = BTRFS_EXTENT_DATA_KEY;
809 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
810 			root = btrfs_extent_data_ref_root(leaf, dref);
811 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
812 					       bytenr, count, GFP_NOFS);
813 			break;
814 		}
815 		default:
816 			WARN_ON(1);
817 		}
818 		if (ret)
819 			return ret;
820 
821 	}
822 
823 	return ret;
824 }
825 
826 /*
827  * this adds all existing backrefs (inline backrefs, backrefs and delayed
828  * refs) for the given bytenr to the refs list, merges duplicates and resolves
829  * indirect refs to their parent bytenr.
830  * When roots are found, they're added to the roots list
831  *
832  * FIXME some caching might speed things up
833  */
834 static int find_parent_nodes(struct btrfs_trans_handle *trans,
835 			     struct btrfs_fs_info *fs_info, u64 bytenr,
836 			     u64 time_seq, struct ulist *refs,
837 			     struct ulist *roots, const u64 *extent_item_pos)
838 {
839 	struct btrfs_key key;
840 	struct btrfs_path *path;
841 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
842 	struct btrfs_delayed_ref_head *head;
843 	int info_level = 0;
844 	int ret;
845 	struct list_head prefs_delayed;
846 	struct list_head prefs;
847 	struct __prelim_ref *ref;
848 
849 	INIT_LIST_HEAD(&prefs);
850 	INIT_LIST_HEAD(&prefs_delayed);
851 
852 	key.objectid = bytenr;
853 	key.offset = (u64)-1;
854 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
855 		key.type = BTRFS_METADATA_ITEM_KEY;
856 	else
857 		key.type = BTRFS_EXTENT_ITEM_KEY;
858 
859 	path = btrfs_alloc_path();
860 	if (!path)
861 		return -ENOMEM;
862 	if (!trans)
863 		path->search_commit_root = 1;
864 
865 	/*
866 	 * grab both a lock on the path and a lock on the delayed ref head.
867 	 * We need both to get a consistent picture of how the refs look
868 	 * at a specified point in time
869 	 */
870 again:
871 	head = NULL;
872 
873 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
874 	if (ret < 0)
875 		goto out;
876 	BUG_ON(ret == 0);
877 
878 	if (trans) {
879 		/*
880 		 * look if there are updates for this ref queued and lock the
881 		 * head
882 		 */
883 		delayed_refs = &trans->transaction->delayed_refs;
884 		spin_lock(&delayed_refs->lock);
885 		head = btrfs_find_delayed_ref_head(trans, bytenr);
886 		if (head) {
887 			if (!mutex_trylock(&head->mutex)) {
888 				atomic_inc(&head->node.refs);
889 				spin_unlock(&delayed_refs->lock);
890 
891 				btrfs_release_path(path);
892 
893 				/*
894 				 * Mutex was contended, block until it's
895 				 * released and try again
896 				 */
897 				mutex_lock(&head->mutex);
898 				mutex_unlock(&head->mutex);
899 				btrfs_put_delayed_ref(&head->node);
900 				goto again;
901 			}
902 			spin_unlock(&delayed_refs->lock);
903 			ret = __add_delayed_refs(head, time_seq,
904 						 &prefs_delayed);
905 			mutex_unlock(&head->mutex);
906 			if (ret)
907 				goto out;
908 		} else {
909 			spin_unlock(&delayed_refs->lock);
910 		}
911 	}
912 
913 	if (path->slots[0]) {
914 		struct extent_buffer *leaf;
915 		int slot;
916 
917 		path->slots[0]--;
918 		leaf = path->nodes[0];
919 		slot = path->slots[0];
920 		btrfs_item_key_to_cpu(leaf, &key, slot);
921 		if (key.objectid == bytenr &&
922 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
923 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
924 			ret = __add_inline_refs(fs_info, path, bytenr,
925 						&info_level, &prefs);
926 			if (ret)
927 				goto out;
928 			ret = __add_keyed_refs(fs_info, path, bytenr,
929 					       info_level, &prefs);
930 			if (ret)
931 				goto out;
932 		}
933 	}
934 	btrfs_release_path(path);
935 
936 	list_splice_init(&prefs_delayed, &prefs);
937 
938 	ret = __add_missing_keys(fs_info, &prefs);
939 	if (ret)
940 		goto out;
941 
942 	__merge_refs(&prefs, 1);
943 
944 	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
945 				      extent_item_pos);
946 	if (ret)
947 		goto out;
948 
949 	__merge_refs(&prefs, 2);
950 
951 	while (!list_empty(&prefs)) {
952 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
953 		WARN_ON(ref->count < 0);
954 		if (ref->count && ref->root_id && ref->parent == 0) {
955 			/* no parent == root of tree */
956 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
957 			if (ret < 0)
958 				goto out;
959 		}
960 		if (ref->count && ref->parent) {
961 			struct extent_inode_elem *eie = NULL;
962 			if (extent_item_pos && !ref->inode_list) {
963 				u32 bsz;
964 				struct extent_buffer *eb;
965 				bsz = btrfs_level_size(fs_info->extent_root,
966 							info_level);
967 				eb = read_tree_block(fs_info->extent_root,
968 							   ref->parent, bsz, 0);
969 				if (!eb || !extent_buffer_uptodate(eb)) {
970 					free_extent_buffer(eb);
971 					ret = -EIO;
972 					goto out;
973 				}
974 				ret = find_extent_in_eb(eb, bytenr,
975 							*extent_item_pos, &eie);
976 				free_extent_buffer(eb);
977 				if (ret < 0)
978 					goto out;
979 				ref->inode_list = eie;
980 			}
981 			ret = ulist_add_merge(refs, ref->parent,
982 					      (uintptr_t)ref->inode_list,
983 					      (u64 *)&eie, GFP_NOFS);
984 			if (ret < 0)
985 				goto out;
986 			if (!ret && extent_item_pos) {
987 				/*
988 				 * we've recorded that parent, so we must extend
989 				 * its inode list here
990 				 */
991 				BUG_ON(!eie);
992 				while (eie->next)
993 					eie = eie->next;
994 				eie->next = ref->inode_list;
995 			}
996 		}
997 		list_del(&ref->list);
998 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
999 	}
1000 
1001 out:
1002 	btrfs_free_path(path);
1003 	while (!list_empty(&prefs)) {
1004 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1005 		list_del(&ref->list);
1006 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1007 	}
1008 	while (!list_empty(&prefs_delayed)) {
1009 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1010 				       list);
1011 		list_del(&ref->list);
1012 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1013 	}
1014 
1015 	return ret;
1016 }
1017 
1018 static void free_leaf_list(struct ulist *blocks)
1019 {
1020 	struct ulist_node *node = NULL;
1021 	struct extent_inode_elem *eie;
1022 	struct extent_inode_elem *eie_next;
1023 	struct ulist_iterator uiter;
1024 
1025 	ULIST_ITER_INIT(&uiter);
1026 	while ((node = ulist_next(blocks, &uiter))) {
1027 		if (!node->aux)
1028 			continue;
1029 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1030 		for (; eie; eie = eie_next) {
1031 			eie_next = eie->next;
1032 			kfree(eie);
1033 		}
1034 		node->aux = 0;
1035 	}
1036 
1037 	ulist_free(blocks);
1038 }
1039 
1040 /*
1041  * Finds all leafs with a reference to the specified combination of bytenr and
1042  * offset. key_list_head will point to a list of corresponding keys (caller must
1043  * free each list element). The leafs will be stored in the leafs ulist, which
1044  * must be freed with ulist_free.
1045  *
1046  * returns 0 on success, <0 on error
1047  */
1048 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1049 				struct btrfs_fs_info *fs_info, u64 bytenr,
1050 				u64 time_seq, struct ulist **leafs,
1051 				const u64 *extent_item_pos)
1052 {
1053 	struct ulist *tmp;
1054 	int ret;
1055 
1056 	tmp = ulist_alloc(GFP_NOFS);
1057 	if (!tmp)
1058 		return -ENOMEM;
1059 	*leafs = ulist_alloc(GFP_NOFS);
1060 	if (!*leafs) {
1061 		ulist_free(tmp);
1062 		return -ENOMEM;
1063 	}
1064 
1065 	ret = find_parent_nodes(trans, fs_info, bytenr,
1066 				time_seq, *leafs, tmp, extent_item_pos);
1067 	ulist_free(tmp);
1068 
1069 	if (ret < 0 && ret != -ENOENT) {
1070 		free_leaf_list(*leafs);
1071 		return ret;
1072 	}
1073 
1074 	return 0;
1075 }
1076 
1077 /*
1078  * walk all backrefs for a given extent to find all roots that reference this
1079  * extent. Walking a backref means finding all extents that reference this
1080  * extent and in turn walk the backrefs of those, too. Naturally this is a
1081  * recursive process, but here it is implemented in an iterative fashion: We
1082  * find all referencing extents for the extent in question and put them on a
1083  * list. In turn, we find all referencing extents for those, further appending
1084  * to the list. The way we iterate the list allows adding more elements after
1085  * the current while iterating. The process stops when we reach the end of the
1086  * list. Found roots are added to the roots list.
1087  *
1088  * returns 0 on success, < 0 on error.
1089  */
1090 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1091 				struct btrfs_fs_info *fs_info, u64 bytenr,
1092 				u64 time_seq, struct ulist **roots)
1093 {
1094 	struct ulist *tmp;
1095 	struct ulist_node *node = NULL;
1096 	struct ulist_iterator uiter;
1097 	int ret;
1098 
1099 	tmp = ulist_alloc(GFP_NOFS);
1100 	if (!tmp)
1101 		return -ENOMEM;
1102 	*roots = ulist_alloc(GFP_NOFS);
1103 	if (!*roots) {
1104 		ulist_free(tmp);
1105 		return -ENOMEM;
1106 	}
1107 
1108 	ULIST_ITER_INIT(&uiter);
1109 	while (1) {
1110 		ret = find_parent_nodes(trans, fs_info, bytenr,
1111 					time_seq, tmp, *roots, NULL);
1112 		if (ret < 0 && ret != -ENOENT) {
1113 			ulist_free(tmp);
1114 			ulist_free(*roots);
1115 			return ret;
1116 		}
1117 		node = ulist_next(tmp, &uiter);
1118 		if (!node)
1119 			break;
1120 		bytenr = node->val;
1121 	}
1122 
1123 	ulist_free(tmp);
1124 	return 0;
1125 }
1126 
1127 /*
1128  * this makes the path point to (inum INODE_ITEM ioff)
1129  */
1130 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1131 			struct btrfs_path *path)
1132 {
1133 	struct btrfs_key key;
1134 	return btrfs_find_item(fs_root, path, inum, ioff,
1135 			BTRFS_INODE_ITEM_KEY, &key);
1136 }
1137 
1138 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1139 				struct btrfs_path *path,
1140 				struct btrfs_key *found_key)
1141 {
1142 	return btrfs_find_item(fs_root, path, inum, ioff,
1143 			BTRFS_INODE_REF_KEY, found_key);
1144 }
1145 
1146 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1147 			  u64 start_off, struct btrfs_path *path,
1148 			  struct btrfs_inode_extref **ret_extref,
1149 			  u64 *found_off)
1150 {
1151 	int ret, slot;
1152 	struct btrfs_key key;
1153 	struct btrfs_key found_key;
1154 	struct btrfs_inode_extref *extref;
1155 	struct extent_buffer *leaf;
1156 	unsigned long ptr;
1157 
1158 	key.objectid = inode_objectid;
1159 	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1160 	key.offset = start_off;
1161 
1162 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1163 	if (ret < 0)
1164 		return ret;
1165 
1166 	while (1) {
1167 		leaf = path->nodes[0];
1168 		slot = path->slots[0];
1169 		if (slot >= btrfs_header_nritems(leaf)) {
1170 			/*
1171 			 * If the item at offset is not found,
1172 			 * btrfs_search_slot will point us to the slot
1173 			 * where it should be inserted. In our case
1174 			 * that will be the slot directly before the
1175 			 * next INODE_REF_KEY_V2 item. In the case
1176 			 * that we're pointing to the last slot in a
1177 			 * leaf, we must move one leaf over.
1178 			 */
1179 			ret = btrfs_next_leaf(root, path);
1180 			if (ret) {
1181 				if (ret >= 1)
1182 					ret = -ENOENT;
1183 				break;
1184 			}
1185 			continue;
1186 		}
1187 
1188 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1189 
1190 		/*
1191 		 * Check that we're still looking at an extended ref key for
1192 		 * this particular objectid. If we have different
1193 		 * objectid or type then there are no more to be found
1194 		 * in the tree and we can exit.
1195 		 */
1196 		ret = -ENOENT;
1197 		if (found_key.objectid != inode_objectid)
1198 			break;
1199 		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1200 			break;
1201 
1202 		ret = 0;
1203 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1204 		extref = (struct btrfs_inode_extref *)ptr;
1205 		*ret_extref = extref;
1206 		if (found_off)
1207 			*found_off = found_key.offset;
1208 		break;
1209 	}
1210 
1211 	return ret;
1212 }
1213 
1214 /*
1215  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1216  * Elements of the path are separated by '/' and the path is guaranteed to be
1217  * 0-terminated. the path is only given within the current file system.
1218  * Therefore, it never starts with a '/'. the caller is responsible to provide
1219  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1220  * the start point of the resulting string is returned. this pointer is within
1221  * dest, normally.
1222  * in case the path buffer would overflow, the pointer is decremented further
1223  * as if output was written to the buffer, though no more output is actually
1224  * generated. that way, the caller can determine how much space would be
1225  * required for the path to fit into the buffer. in that case, the returned
1226  * value will be smaller than dest. callers must check this!
1227  */
1228 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1229 			u32 name_len, unsigned long name_off,
1230 			struct extent_buffer *eb_in, u64 parent,
1231 			char *dest, u32 size)
1232 {
1233 	int slot;
1234 	u64 next_inum;
1235 	int ret;
1236 	s64 bytes_left = ((s64)size) - 1;
1237 	struct extent_buffer *eb = eb_in;
1238 	struct btrfs_key found_key;
1239 	int leave_spinning = path->leave_spinning;
1240 	struct btrfs_inode_ref *iref;
1241 
1242 	if (bytes_left >= 0)
1243 		dest[bytes_left] = '\0';
1244 
1245 	path->leave_spinning = 1;
1246 	while (1) {
1247 		bytes_left -= name_len;
1248 		if (bytes_left >= 0)
1249 			read_extent_buffer(eb, dest + bytes_left,
1250 					   name_off, name_len);
1251 		if (eb != eb_in) {
1252 			btrfs_tree_read_unlock_blocking(eb);
1253 			free_extent_buffer(eb);
1254 		}
1255 		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1256 		if (ret > 0)
1257 			ret = -ENOENT;
1258 		if (ret)
1259 			break;
1260 
1261 		next_inum = found_key.offset;
1262 
1263 		/* regular exit ahead */
1264 		if (parent == next_inum)
1265 			break;
1266 
1267 		slot = path->slots[0];
1268 		eb = path->nodes[0];
1269 		/* make sure we can use eb after releasing the path */
1270 		if (eb != eb_in) {
1271 			atomic_inc(&eb->refs);
1272 			btrfs_tree_read_lock(eb);
1273 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1274 		}
1275 		btrfs_release_path(path);
1276 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1277 
1278 		name_len = btrfs_inode_ref_name_len(eb, iref);
1279 		name_off = (unsigned long)(iref + 1);
1280 
1281 		parent = next_inum;
1282 		--bytes_left;
1283 		if (bytes_left >= 0)
1284 			dest[bytes_left] = '/';
1285 	}
1286 
1287 	btrfs_release_path(path);
1288 	path->leave_spinning = leave_spinning;
1289 
1290 	if (ret)
1291 		return ERR_PTR(ret);
1292 
1293 	return dest + bytes_left;
1294 }
1295 
1296 /*
1297  * this makes the path point to (logical EXTENT_ITEM *)
1298  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1299  * tree blocks and <0 on error.
1300  */
1301 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1302 			struct btrfs_path *path, struct btrfs_key *found_key,
1303 			u64 *flags_ret)
1304 {
1305 	int ret;
1306 	u64 flags;
1307 	u64 size = 0;
1308 	u32 item_size;
1309 	struct extent_buffer *eb;
1310 	struct btrfs_extent_item *ei;
1311 	struct btrfs_key key;
1312 
1313 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1314 		key.type = BTRFS_METADATA_ITEM_KEY;
1315 	else
1316 		key.type = BTRFS_EXTENT_ITEM_KEY;
1317 	key.objectid = logical;
1318 	key.offset = (u64)-1;
1319 
1320 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1321 	if (ret < 0)
1322 		return ret;
1323 
1324 	while (1) {
1325 		u32 nritems;
1326 		if (path->slots[0] == 0) {
1327 			btrfs_set_path_blocking(path);
1328 			ret = btrfs_prev_leaf(fs_info->extent_root, path);
1329 			if (ret != 0) {
1330 				if (ret > 0) {
1331 					pr_debug("logical %llu is not within "
1332 						 "any extent\n", logical);
1333 					ret = -ENOENT;
1334 				}
1335 				return ret;
1336 			}
1337 		} else {
1338 			path->slots[0]--;
1339 		}
1340 		nritems = btrfs_header_nritems(path->nodes[0]);
1341 		if (nritems == 0) {
1342 			pr_debug("logical %llu is not within any extent\n",
1343 				 logical);
1344 			return -ENOENT;
1345 		}
1346 		if (path->slots[0] == nritems)
1347 			path->slots[0]--;
1348 
1349 		btrfs_item_key_to_cpu(path->nodes[0], found_key,
1350 				      path->slots[0]);
1351 		if (found_key->type == BTRFS_EXTENT_ITEM_KEY ||
1352 		    found_key->type == BTRFS_METADATA_ITEM_KEY)
1353 			break;
1354 	}
1355 
1356 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1357 		size = fs_info->extent_root->leafsize;
1358 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1359 		size = found_key->offset;
1360 
1361 	if (found_key->objectid > logical ||
1362 	    found_key->objectid + size <= logical) {
1363 		pr_debug("logical %llu is not within any extent\n", logical);
1364 		return -ENOENT;
1365 	}
1366 
1367 	eb = path->nodes[0];
1368 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1369 	BUG_ON(item_size < sizeof(*ei));
1370 
1371 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1372 	flags = btrfs_extent_flags(eb, ei);
1373 
1374 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1375 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1376 		 logical, logical - found_key->objectid, found_key->objectid,
1377 		 found_key->offset, flags, item_size);
1378 
1379 	WARN_ON(!flags_ret);
1380 	if (flags_ret) {
1381 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1382 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1383 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1384 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1385 		else
1386 			BUG_ON(1);
1387 		return 0;
1388 	}
1389 
1390 	return -EIO;
1391 }
1392 
1393 /*
1394  * helper function to iterate extent inline refs. ptr must point to a 0 value
1395  * for the first call and may be modified. it is used to track state.
1396  * if more refs exist, 0 is returned and the next call to
1397  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1398  * next ref. after the last ref was processed, 1 is returned.
1399  * returns <0 on error
1400  */
1401 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1402 				struct btrfs_extent_item *ei, u32 item_size,
1403 				struct btrfs_extent_inline_ref **out_eiref,
1404 				int *out_type)
1405 {
1406 	unsigned long end;
1407 	u64 flags;
1408 	struct btrfs_tree_block_info *info;
1409 
1410 	if (!*ptr) {
1411 		/* first call */
1412 		flags = btrfs_extent_flags(eb, ei);
1413 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1414 			info = (struct btrfs_tree_block_info *)(ei + 1);
1415 			*out_eiref =
1416 				(struct btrfs_extent_inline_ref *)(info + 1);
1417 		} else {
1418 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1419 		}
1420 		*ptr = (unsigned long)*out_eiref;
1421 		if ((void *)*ptr >= (void *)ei + item_size)
1422 			return -ENOENT;
1423 	}
1424 
1425 	end = (unsigned long)ei + item_size;
1426 	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1427 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1428 
1429 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1430 	WARN_ON(*ptr > end);
1431 	if (*ptr == end)
1432 		return 1; /* last */
1433 
1434 	return 0;
1435 }
1436 
1437 /*
1438  * reads the tree block backref for an extent. tree level and root are returned
1439  * through out_level and out_root. ptr must point to a 0 value for the first
1440  * call and may be modified (see __get_extent_inline_ref comment).
1441  * returns 0 if data was provided, 1 if there was no more data to provide or
1442  * <0 on error.
1443  */
1444 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1445 				struct btrfs_extent_item *ei, u32 item_size,
1446 				u64 *out_root, u8 *out_level)
1447 {
1448 	int ret;
1449 	int type;
1450 	struct btrfs_tree_block_info *info;
1451 	struct btrfs_extent_inline_ref *eiref;
1452 
1453 	if (*ptr == (unsigned long)-1)
1454 		return 1;
1455 
1456 	while (1) {
1457 		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1458 						&eiref, &type);
1459 		if (ret < 0)
1460 			return ret;
1461 
1462 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1463 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1464 			break;
1465 
1466 		if (ret == 1)
1467 			return 1;
1468 	}
1469 
1470 	/* we can treat both ref types equally here */
1471 	info = (struct btrfs_tree_block_info *)(ei + 1);
1472 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1473 	*out_level = btrfs_tree_block_level(eb, info);
1474 
1475 	if (ret == 1)
1476 		*ptr = (unsigned long)-1;
1477 
1478 	return 0;
1479 }
1480 
1481 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1482 				u64 root, u64 extent_item_objectid,
1483 				iterate_extent_inodes_t *iterate, void *ctx)
1484 {
1485 	struct extent_inode_elem *eie;
1486 	int ret = 0;
1487 
1488 	for (eie = inode_list; eie; eie = eie->next) {
1489 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1490 			 "root %llu\n", extent_item_objectid,
1491 			 eie->inum, eie->offset, root);
1492 		ret = iterate(eie->inum, eie->offset, root, ctx);
1493 		if (ret) {
1494 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1495 				 extent_item_objectid, ret);
1496 			break;
1497 		}
1498 	}
1499 
1500 	return ret;
1501 }
1502 
1503 /*
1504  * calls iterate() for every inode that references the extent identified by
1505  * the given parameters.
1506  * when the iterator function returns a non-zero value, iteration stops.
1507  */
1508 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1509 				u64 extent_item_objectid, u64 extent_item_pos,
1510 				int search_commit_root,
1511 				iterate_extent_inodes_t *iterate, void *ctx)
1512 {
1513 	int ret;
1514 	struct btrfs_trans_handle *trans = NULL;
1515 	struct ulist *refs = NULL;
1516 	struct ulist *roots = NULL;
1517 	struct ulist_node *ref_node = NULL;
1518 	struct ulist_node *root_node = NULL;
1519 	struct seq_list tree_mod_seq_elem = {};
1520 	struct ulist_iterator ref_uiter;
1521 	struct ulist_iterator root_uiter;
1522 
1523 	pr_debug("resolving all inodes for extent %llu\n",
1524 			extent_item_objectid);
1525 
1526 	if (!search_commit_root) {
1527 		trans = btrfs_join_transaction(fs_info->extent_root);
1528 		if (IS_ERR(trans))
1529 			return PTR_ERR(trans);
1530 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1531 	}
1532 
1533 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1534 				   tree_mod_seq_elem.seq, &refs,
1535 				   &extent_item_pos);
1536 	if (ret)
1537 		goto out;
1538 
1539 	ULIST_ITER_INIT(&ref_uiter);
1540 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1541 		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1542 					   tree_mod_seq_elem.seq, &roots);
1543 		if (ret)
1544 			break;
1545 		ULIST_ITER_INIT(&root_uiter);
1546 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1547 			pr_debug("root %llu references leaf %llu, data list "
1548 				 "%#llx\n", root_node->val, ref_node->val,
1549 				 ref_node->aux);
1550 			ret = iterate_leaf_refs((struct extent_inode_elem *)
1551 						(uintptr_t)ref_node->aux,
1552 						root_node->val,
1553 						extent_item_objectid,
1554 						iterate, ctx);
1555 		}
1556 		ulist_free(roots);
1557 	}
1558 
1559 	free_leaf_list(refs);
1560 out:
1561 	if (!search_commit_root) {
1562 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1563 		btrfs_end_transaction(trans, fs_info->extent_root);
1564 	}
1565 
1566 	return ret;
1567 }
1568 
1569 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1570 				struct btrfs_path *path,
1571 				iterate_extent_inodes_t *iterate, void *ctx)
1572 {
1573 	int ret;
1574 	u64 extent_item_pos;
1575 	u64 flags = 0;
1576 	struct btrfs_key found_key;
1577 	int search_commit_root = path->search_commit_root;
1578 
1579 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1580 	btrfs_release_path(path);
1581 	if (ret < 0)
1582 		return ret;
1583 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1584 		return -EINVAL;
1585 
1586 	extent_item_pos = logical - found_key.objectid;
1587 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1588 					extent_item_pos, search_commit_root,
1589 					iterate, ctx);
1590 
1591 	return ret;
1592 }
1593 
1594 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1595 			      struct extent_buffer *eb, void *ctx);
1596 
1597 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1598 			      struct btrfs_path *path,
1599 			      iterate_irefs_t *iterate, void *ctx)
1600 {
1601 	int ret = 0;
1602 	int slot;
1603 	u32 cur;
1604 	u32 len;
1605 	u32 name_len;
1606 	u64 parent = 0;
1607 	int found = 0;
1608 	struct extent_buffer *eb;
1609 	struct btrfs_item *item;
1610 	struct btrfs_inode_ref *iref;
1611 	struct btrfs_key found_key;
1612 
1613 	while (!ret) {
1614 		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1615 				     &found_key);
1616 		if (ret < 0)
1617 			break;
1618 		if (ret) {
1619 			ret = found ? 0 : -ENOENT;
1620 			break;
1621 		}
1622 		++found;
1623 
1624 		parent = found_key.offset;
1625 		slot = path->slots[0];
1626 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1627 		if (!eb) {
1628 			ret = -ENOMEM;
1629 			break;
1630 		}
1631 		extent_buffer_get(eb);
1632 		btrfs_tree_read_lock(eb);
1633 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1634 		btrfs_release_path(path);
1635 
1636 		item = btrfs_item_nr(slot);
1637 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1638 
1639 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1640 			name_len = btrfs_inode_ref_name_len(eb, iref);
1641 			/* path must be released before calling iterate()! */
1642 			pr_debug("following ref at offset %u for inode %llu in "
1643 				 "tree %llu\n", cur, found_key.objectid,
1644 				 fs_root->objectid);
1645 			ret = iterate(parent, name_len,
1646 				      (unsigned long)(iref + 1), eb, ctx);
1647 			if (ret)
1648 				break;
1649 			len = sizeof(*iref) + name_len;
1650 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1651 		}
1652 		btrfs_tree_read_unlock_blocking(eb);
1653 		free_extent_buffer(eb);
1654 	}
1655 
1656 	btrfs_release_path(path);
1657 
1658 	return ret;
1659 }
1660 
1661 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1662 				 struct btrfs_path *path,
1663 				 iterate_irefs_t *iterate, void *ctx)
1664 {
1665 	int ret;
1666 	int slot;
1667 	u64 offset = 0;
1668 	u64 parent;
1669 	int found = 0;
1670 	struct extent_buffer *eb;
1671 	struct btrfs_inode_extref *extref;
1672 	struct extent_buffer *leaf;
1673 	u32 item_size;
1674 	u32 cur_offset;
1675 	unsigned long ptr;
1676 
1677 	while (1) {
1678 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1679 					    &offset);
1680 		if (ret < 0)
1681 			break;
1682 		if (ret) {
1683 			ret = found ? 0 : -ENOENT;
1684 			break;
1685 		}
1686 		++found;
1687 
1688 		slot = path->slots[0];
1689 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1690 		if (!eb) {
1691 			ret = -ENOMEM;
1692 			break;
1693 		}
1694 		extent_buffer_get(eb);
1695 
1696 		btrfs_tree_read_lock(eb);
1697 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1698 		btrfs_release_path(path);
1699 
1700 		leaf = path->nodes[0];
1701 		item_size = btrfs_item_size_nr(leaf, slot);
1702 		ptr = btrfs_item_ptr_offset(leaf, slot);
1703 		cur_offset = 0;
1704 
1705 		while (cur_offset < item_size) {
1706 			u32 name_len;
1707 
1708 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1709 			parent = btrfs_inode_extref_parent(eb, extref);
1710 			name_len = btrfs_inode_extref_name_len(eb, extref);
1711 			ret = iterate(parent, name_len,
1712 				      (unsigned long)&extref->name, eb, ctx);
1713 			if (ret)
1714 				break;
1715 
1716 			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1717 			cur_offset += sizeof(*extref);
1718 		}
1719 		btrfs_tree_read_unlock_blocking(eb);
1720 		free_extent_buffer(eb);
1721 
1722 		offset++;
1723 	}
1724 
1725 	btrfs_release_path(path);
1726 
1727 	return ret;
1728 }
1729 
1730 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1731 			 struct btrfs_path *path, iterate_irefs_t *iterate,
1732 			 void *ctx)
1733 {
1734 	int ret;
1735 	int found_refs = 0;
1736 
1737 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1738 	if (!ret)
1739 		++found_refs;
1740 	else if (ret != -ENOENT)
1741 		return ret;
1742 
1743 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1744 	if (ret == -ENOENT && found_refs)
1745 		return 0;
1746 
1747 	return ret;
1748 }
1749 
1750 /*
1751  * returns 0 if the path could be dumped (probably truncated)
1752  * returns <0 in case of an error
1753  */
1754 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1755 			 struct extent_buffer *eb, void *ctx)
1756 {
1757 	struct inode_fs_paths *ipath = ctx;
1758 	char *fspath;
1759 	char *fspath_min;
1760 	int i = ipath->fspath->elem_cnt;
1761 	const int s_ptr = sizeof(char *);
1762 	u32 bytes_left;
1763 
1764 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1765 					ipath->fspath->bytes_left - s_ptr : 0;
1766 
1767 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1768 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1769 				   name_off, eb, inum, fspath_min, bytes_left);
1770 	if (IS_ERR(fspath))
1771 		return PTR_ERR(fspath);
1772 
1773 	if (fspath > fspath_min) {
1774 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1775 		++ipath->fspath->elem_cnt;
1776 		ipath->fspath->bytes_left = fspath - fspath_min;
1777 	} else {
1778 		++ipath->fspath->elem_missed;
1779 		ipath->fspath->bytes_missing += fspath_min - fspath;
1780 		ipath->fspath->bytes_left = 0;
1781 	}
1782 
1783 	return 0;
1784 }
1785 
1786 /*
1787  * this dumps all file system paths to the inode into the ipath struct, provided
1788  * is has been created large enough. each path is zero-terminated and accessed
1789  * from ipath->fspath->val[i].
1790  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1791  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1792  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1793  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1794  * have been needed to return all paths.
1795  */
1796 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1797 {
1798 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1799 			     inode_to_path, ipath);
1800 }
1801 
1802 struct btrfs_data_container *init_data_container(u32 total_bytes)
1803 {
1804 	struct btrfs_data_container *data;
1805 	size_t alloc_bytes;
1806 
1807 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1808 	data = vmalloc(alloc_bytes);
1809 	if (!data)
1810 		return ERR_PTR(-ENOMEM);
1811 
1812 	if (total_bytes >= sizeof(*data)) {
1813 		data->bytes_left = total_bytes - sizeof(*data);
1814 		data->bytes_missing = 0;
1815 	} else {
1816 		data->bytes_missing = sizeof(*data) - total_bytes;
1817 		data->bytes_left = 0;
1818 	}
1819 
1820 	data->elem_cnt = 0;
1821 	data->elem_missed = 0;
1822 
1823 	return data;
1824 }
1825 
1826 /*
1827  * allocates space to return multiple file system paths for an inode.
1828  * total_bytes to allocate are passed, note that space usable for actual path
1829  * information will be total_bytes - sizeof(struct inode_fs_paths).
1830  * the returned pointer must be freed with free_ipath() in the end.
1831  */
1832 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1833 					struct btrfs_path *path)
1834 {
1835 	struct inode_fs_paths *ifp;
1836 	struct btrfs_data_container *fspath;
1837 
1838 	fspath = init_data_container(total_bytes);
1839 	if (IS_ERR(fspath))
1840 		return (void *)fspath;
1841 
1842 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1843 	if (!ifp) {
1844 		kfree(fspath);
1845 		return ERR_PTR(-ENOMEM);
1846 	}
1847 
1848 	ifp->btrfs_path = path;
1849 	ifp->fspath = fspath;
1850 	ifp->fs_root = fs_root;
1851 
1852 	return ifp;
1853 }
1854 
1855 void free_ipath(struct inode_fs_paths *ipath)
1856 {
1857 	if (!ipath)
1858 		return;
1859 	vfree(ipath->fspath);
1860 	kfree(ipath);
1861 }
1862