1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "extent-tree.h" 21 #include "relocation.h" 22 23 /* Just arbitrary numbers so we can be sure one of these happened. */ 24 #define BACKREF_FOUND_SHARED 6 25 #define BACKREF_FOUND_NOT_SHARED 7 26 27 struct extent_inode_elem { 28 u64 inum; 29 u64 offset; 30 u64 num_bytes; 31 struct extent_inode_elem *next; 32 }; 33 34 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 35 const struct btrfs_key *key, 36 const struct extent_buffer *eb, 37 const struct btrfs_file_extent_item *fi, 38 struct extent_inode_elem **eie) 39 { 40 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi); 41 u64 offset = key->offset; 42 struct extent_inode_elem *e; 43 const u64 *root_ids; 44 int root_count; 45 bool cached; 46 47 if (!btrfs_file_extent_compression(eb, fi) && 48 !btrfs_file_extent_encryption(eb, fi) && 49 !btrfs_file_extent_other_encoding(eb, fi)) { 50 u64 data_offset; 51 52 data_offset = btrfs_file_extent_offset(eb, fi); 53 54 if (ctx->extent_item_pos < data_offset || 55 ctx->extent_item_pos >= data_offset + data_len) 56 return 1; 57 offset += ctx->extent_item_pos - data_offset; 58 } 59 60 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup) 61 goto add_inode_elem; 62 63 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids, 64 &root_count); 65 if (!cached) 66 goto add_inode_elem; 67 68 for (int i = 0; i < root_count; i++) { 69 int ret; 70 71 ret = ctx->indirect_ref_iterator(key->objectid, offset, 72 data_len, root_ids[i], 73 ctx->user_ctx); 74 if (ret) 75 return ret; 76 } 77 78 add_inode_elem: 79 e = kmalloc(sizeof(*e), GFP_NOFS); 80 if (!e) 81 return -ENOMEM; 82 83 e->next = *eie; 84 e->inum = key->objectid; 85 e->offset = offset; 86 e->num_bytes = data_len; 87 *eie = e; 88 89 return 0; 90 } 91 92 static void free_inode_elem_list(struct extent_inode_elem *eie) 93 { 94 struct extent_inode_elem *eie_next; 95 96 for (; eie; eie = eie_next) { 97 eie_next = eie->next; 98 kfree(eie); 99 } 100 } 101 102 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 103 const struct extent_buffer *eb, 104 struct extent_inode_elem **eie) 105 { 106 u64 disk_byte; 107 struct btrfs_key key; 108 struct btrfs_file_extent_item *fi; 109 int slot; 110 int nritems; 111 int extent_type; 112 int ret; 113 114 /* 115 * from the shared data ref, we only have the leaf but we need 116 * the key. thus, we must look into all items and see that we 117 * find one (some) with a reference to our extent item. 118 */ 119 nritems = btrfs_header_nritems(eb); 120 for (slot = 0; slot < nritems; ++slot) { 121 btrfs_item_key_to_cpu(eb, &key, slot); 122 if (key.type != BTRFS_EXTENT_DATA_KEY) 123 continue; 124 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 125 extent_type = btrfs_file_extent_type(eb, fi); 126 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 127 continue; 128 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 129 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 130 if (disk_byte != ctx->bytenr) 131 continue; 132 133 ret = check_extent_in_eb(ctx, &key, eb, fi, eie); 134 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 135 return ret; 136 } 137 138 return 0; 139 } 140 141 struct preftree { 142 struct rb_root_cached root; 143 unsigned int count; 144 }; 145 146 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 147 148 struct preftrees { 149 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 150 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 151 struct preftree indirect_missing_keys; 152 }; 153 154 /* 155 * Checks for a shared extent during backref search. 156 * 157 * The share_count tracks prelim_refs (direct and indirect) having a 158 * ref->count >0: 159 * - incremented when a ref->count transitions to >0 160 * - decremented when a ref->count transitions to <1 161 */ 162 struct share_check { 163 struct btrfs_backref_share_check_ctx *ctx; 164 struct btrfs_root *root; 165 u64 inum; 166 u64 data_bytenr; 167 u64 data_extent_gen; 168 /* 169 * Counts number of inodes that refer to an extent (different inodes in 170 * the same root or different roots) that we could find. The sharedness 171 * check typically stops once this counter gets greater than 1, so it 172 * may not reflect the total number of inodes. 173 */ 174 int share_count; 175 /* 176 * The number of times we found our inode refers to the data extent we 177 * are determining the sharedness. In other words, how many file extent 178 * items we could find for our inode that point to our target data 179 * extent. The value we get here after finishing the extent sharedness 180 * check may be smaller than reality, but if it ends up being greater 181 * than 1, then we know for sure the inode has multiple file extent 182 * items that point to our inode, and we can safely assume it's useful 183 * to cache the sharedness check result. 184 */ 185 int self_ref_count; 186 bool have_delayed_delete_refs; 187 }; 188 189 static inline int extent_is_shared(struct share_check *sc) 190 { 191 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 192 } 193 194 static struct kmem_cache *btrfs_prelim_ref_cache; 195 196 int __init btrfs_prelim_ref_init(void) 197 { 198 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 199 sizeof(struct prelim_ref), 200 0, 201 SLAB_MEM_SPREAD, 202 NULL); 203 if (!btrfs_prelim_ref_cache) 204 return -ENOMEM; 205 return 0; 206 } 207 208 void __cold btrfs_prelim_ref_exit(void) 209 { 210 kmem_cache_destroy(btrfs_prelim_ref_cache); 211 } 212 213 static void free_pref(struct prelim_ref *ref) 214 { 215 kmem_cache_free(btrfs_prelim_ref_cache, ref); 216 } 217 218 /* 219 * Return 0 when both refs are for the same block (and can be merged). 220 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 221 * indicates a 'higher' block. 222 */ 223 static int prelim_ref_compare(struct prelim_ref *ref1, 224 struct prelim_ref *ref2) 225 { 226 if (ref1->level < ref2->level) 227 return -1; 228 if (ref1->level > ref2->level) 229 return 1; 230 if (ref1->root_id < ref2->root_id) 231 return -1; 232 if (ref1->root_id > ref2->root_id) 233 return 1; 234 if (ref1->key_for_search.type < ref2->key_for_search.type) 235 return -1; 236 if (ref1->key_for_search.type > ref2->key_for_search.type) 237 return 1; 238 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 239 return -1; 240 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 241 return 1; 242 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 243 return -1; 244 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 245 return 1; 246 if (ref1->parent < ref2->parent) 247 return -1; 248 if (ref1->parent > ref2->parent) 249 return 1; 250 251 return 0; 252 } 253 254 static void update_share_count(struct share_check *sc, int oldcount, 255 int newcount, struct prelim_ref *newref) 256 { 257 if ((!sc) || (oldcount == 0 && newcount < 1)) 258 return; 259 260 if (oldcount > 0 && newcount < 1) 261 sc->share_count--; 262 else if (oldcount < 1 && newcount > 0) 263 sc->share_count++; 264 265 if (newref->root_id == sc->root->root_key.objectid && 266 newref->wanted_disk_byte == sc->data_bytenr && 267 newref->key_for_search.objectid == sc->inum) 268 sc->self_ref_count += newref->count; 269 } 270 271 /* 272 * Add @newref to the @root rbtree, merging identical refs. 273 * 274 * Callers should assume that newref has been freed after calling. 275 */ 276 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 277 struct preftree *preftree, 278 struct prelim_ref *newref, 279 struct share_check *sc) 280 { 281 struct rb_root_cached *root; 282 struct rb_node **p; 283 struct rb_node *parent = NULL; 284 struct prelim_ref *ref; 285 int result; 286 bool leftmost = true; 287 288 root = &preftree->root; 289 p = &root->rb_root.rb_node; 290 291 while (*p) { 292 parent = *p; 293 ref = rb_entry(parent, struct prelim_ref, rbnode); 294 result = prelim_ref_compare(ref, newref); 295 if (result < 0) { 296 p = &(*p)->rb_left; 297 } else if (result > 0) { 298 p = &(*p)->rb_right; 299 leftmost = false; 300 } else { 301 /* Identical refs, merge them and free @newref */ 302 struct extent_inode_elem *eie = ref->inode_list; 303 304 while (eie && eie->next) 305 eie = eie->next; 306 307 if (!eie) 308 ref->inode_list = newref->inode_list; 309 else 310 eie->next = newref->inode_list; 311 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 312 preftree->count); 313 /* 314 * A delayed ref can have newref->count < 0. 315 * The ref->count is updated to follow any 316 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 317 */ 318 update_share_count(sc, ref->count, 319 ref->count + newref->count, newref); 320 ref->count += newref->count; 321 free_pref(newref); 322 return; 323 } 324 } 325 326 update_share_count(sc, 0, newref->count, newref); 327 preftree->count++; 328 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 329 rb_link_node(&newref->rbnode, parent, p); 330 rb_insert_color_cached(&newref->rbnode, root, leftmost); 331 } 332 333 /* 334 * Release the entire tree. We don't care about internal consistency so 335 * just free everything and then reset the tree root. 336 */ 337 static void prelim_release(struct preftree *preftree) 338 { 339 struct prelim_ref *ref, *next_ref; 340 341 rbtree_postorder_for_each_entry_safe(ref, next_ref, 342 &preftree->root.rb_root, rbnode) { 343 free_inode_elem_list(ref->inode_list); 344 free_pref(ref); 345 } 346 347 preftree->root = RB_ROOT_CACHED; 348 preftree->count = 0; 349 } 350 351 /* 352 * the rules for all callers of this function are: 353 * - obtaining the parent is the goal 354 * - if you add a key, you must know that it is a correct key 355 * - if you cannot add the parent or a correct key, then we will look into the 356 * block later to set a correct key 357 * 358 * delayed refs 359 * ============ 360 * backref type | shared | indirect | shared | indirect 361 * information | tree | tree | data | data 362 * --------------------+--------+----------+--------+---------- 363 * parent logical | y | - | - | - 364 * key to resolve | - | y | y | y 365 * tree block logical | - | - | - | - 366 * root for resolving | y | y | y | y 367 * 368 * - column 1: we've the parent -> done 369 * - column 2, 3, 4: we use the key to find the parent 370 * 371 * on disk refs (inline or keyed) 372 * ============================== 373 * backref type | shared | indirect | shared | indirect 374 * information | tree | tree | data | data 375 * --------------------+--------+----------+--------+---------- 376 * parent logical | y | - | y | - 377 * key to resolve | - | - | - | y 378 * tree block logical | y | y | y | y 379 * root for resolving | - | y | y | y 380 * 381 * - column 1, 3: we've the parent -> done 382 * - column 2: we take the first key from the block to find the parent 383 * (see add_missing_keys) 384 * - column 4: we use the key to find the parent 385 * 386 * additional information that's available but not required to find the parent 387 * block might help in merging entries to gain some speed. 388 */ 389 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 390 struct preftree *preftree, u64 root_id, 391 const struct btrfs_key *key, int level, u64 parent, 392 u64 wanted_disk_byte, int count, 393 struct share_check *sc, gfp_t gfp_mask) 394 { 395 struct prelim_ref *ref; 396 397 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 398 return 0; 399 400 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 401 if (!ref) 402 return -ENOMEM; 403 404 ref->root_id = root_id; 405 if (key) 406 ref->key_for_search = *key; 407 else 408 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 409 410 ref->inode_list = NULL; 411 ref->level = level; 412 ref->count = count; 413 ref->parent = parent; 414 ref->wanted_disk_byte = wanted_disk_byte; 415 prelim_ref_insert(fs_info, preftree, ref, sc); 416 return extent_is_shared(sc); 417 } 418 419 /* direct refs use root == 0, key == NULL */ 420 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 421 struct preftrees *preftrees, int level, u64 parent, 422 u64 wanted_disk_byte, int count, 423 struct share_check *sc, gfp_t gfp_mask) 424 { 425 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 426 parent, wanted_disk_byte, count, sc, gfp_mask); 427 } 428 429 /* indirect refs use parent == 0 */ 430 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 431 struct preftrees *preftrees, u64 root_id, 432 const struct btrfs_key *key, int level, 433 u64 wanted_disk_byte, int count, 434 struct share_check *sc, gfp_t gfp_mask) 435 { 436 struct preftree *tree = &preftrees->indirect; 437 438 if (!key) 439 tree = &preftrees->indirect_missing_keys; 440 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 441 wanted_disk_byte, count, sc, gfp_mask); 442 } 443 444 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 445 { 446 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 447 struct rb_node *parent = NULL; 448 struct prelim_ref *ref = NULL; 449 struct prelim_ref target = {}; 450 int result; 451 452 target.parent = bytenr; 453 454 while (*p) { 455 parent = *p; 456 ref = rb_entry(parent, struct prelim_ref, rbnode); 457 result = prelim_ref_compare(ref, &target); 458 459 if (result < 0) 460 p = &(*p)->rb_left; 461 else if (result > 0) 462 p = &(*p)->rb_right; 463 else 464 return 1; 465 } 466 return 0; 467 } 468 469 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx, 470 struct btrfs_root *root, struct btrfs_path *path, 471 struct ulist *parents, 472 struct preftrees *preftrees, struct prelim_ref *ref, 473 int level) 474 { 475 int ret = 0; 476 int slot; 477 struct extent_buffer *eb; 478 struct btrfs_key key; 479 struct btrfs_key *key_for_search = &ref->key_for_search; 480 struct btrfs_file_extent_item *fi; 481 struct extent_inode_elem *eie = NULL, *old = NULL; 482 u64 disk_byte; 483 u64 wanted_disk_byte = ref->wanted_disk_byte; 484 u64 count = 0; 485 u64 data_offset; 486 487 if (level != 0) { 488 eb = path->nodes[level]; 489 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 490 if (ret < 0) 491 return ret; 492 return 0; 493 } 494 495 /* 496 * 1. We normally enter this function with the path already pointing to 497 * the first item to check. But sometimes, we may enter it with 498 * slot == nritems. 499 * 2. We are searching for normal backref but bytenr of this leaf 500 * matches shared data backref 501 * 3. The leaf owner is not equal to the root we are searching 502 * 503 * For these cases, go to the next leaf before we continue. 504 */ 505 eb = path->nodes[0]; 506 if (path->slots[0] >= btrfs_header_nritems(eb) || 507 is_shared_data_backref(preftrees, eb->start) || 508 ref->root_id != btrfs_header_owner(eb)) { 509 if (ctx->time_seq == BTRFS_SEQ_LAST) 510 ret = btrfs_next_leaf(root, path); 511 else 512 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 513 } 514 515 while (!ret && count < ref->count) { 516 eb = path->nodes[0]; 517 slot = path->slots[0]; 518 519 btrfs_item_key_to_cpu(eb, &key, slot); 520 521 if (key.objectid != key_for_search->objectid || 522 key.type != BTRFS_EXTENT_DATA_KEY) 523 break; 524 525 /* 526 * We are searching for normal backref but bytenr of this leaf 527 * matches shared data backref, OR 528 * the leaf owner is not equal to the root we are searching for 529 */ 530 if (slot == 0 && 531 (is_shared_data_backref(preftrees, eb->start) || 532 ref->root_id != btrfs_header_owner(eb))) { 533 if (ctx->time_seq == BTRFS_SEQ_LAST) 534 ret = btrfs_next_leaf(root, path); 535 else 536 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 537 continue; 538 } 539 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 540 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 541 data_offset = btrfs_file_extent_offset(eb, fi); 542 543 if (disk_byte == wanted_disk_byte) { 544 eie = NULL; 545 old = NULL; 546 if (ref->key_for_search.offset == key.offset - data_offset) 547 count++; 548 else 549 goto next; 550 if (!ctx->ignore_extent_item_pos) { 551 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie); 552 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 553 ret < 0) 554 break; 555 } 556 if (ret > 0) 557 goto next; 558 ret = ulist_add_merge_ptr(parents, eb->start, 559 eie, (void **)&old, GFP_NOFS); 560 if (ret < 0) 561 break; 562 if (!ret && !ctx->ignore_extent_item_pos) { 563 while (old->next) 564 old = old->next; 565 old->next = eie; 566 } 567 eie = NULL; 568 } 569 next: 570 if (ctx->time_seq == BTRFS_SEQ_LAST) 571 ret = btrfs_next_item(root, path); 572 else 573 ret = btrfs_next_old_item(root, path, ctx->time_seq); 574 } 575 576 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 577 free_inode_elem_list(eie); 578 else if (ret > 0) 579 ret = 0; 580 581 return ret; 582 } 583 584 /* 585 * resolve an indirect backref in the form (root_id, key, level) 586 * to a logical address 587 */ 588 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx, 589 struct btrfs_path *path, 590 struct preftrees *preftrees, 591 struct prelim_ref *ref, struct ulist *parents) 592 { 593 struct btrfs_root *root; 594 struct extent_buffer *eb; 595 int ret = 0; 596 int root_level; 597 int level = ref->level; 598 struct btrfs_key search_key = ref->key_for_search; 599 600 /* 601 * If we're search_commit_root we could possibly be holding locks on 602 * other tree nodes. This happens when qgroups does backref walks when 603 * adding new delayed refs. To deal with this we need to look in cache 604 * for the root, and if we don't find it then we need to search the 605 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 606 * here. 607 */ 608 if (path->search_commit_root) 609 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id); 610 else 611 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false); 612 if (IS_ERR(root)) { 613 ret = PTR_ERR(root); 614 goto out_free; 615 } 616 617 if (!path->search_commit_root && 618 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 619 ret = -ENOENT; 620 goto out; 621 } 622 623 if (btrfs_is_testing(ctx->fs_info)) { 624 ret = -ENOENT; 625 goto out; 626 } 627 628 if (path->search_commit_root) 629 root_level = btrfs_header_level(root->commit_root); 630 else if (ctx->time_seq == BTRFS_SEQ_LAST) 631 root_level = btrfs_header_level(root->node); 632 else 633 root_level = btrfs_old_root_level(root, ctx->time_seq); 634 635 if (root_level + 1 == level) 636 goto out; 637 638 /* 639 * We can often find data backrefs with an offset that is too large 640 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 641 * subtracting a file's offset with the data offset of its 642 * corresponding extent data item. This can happen for example in the 643 * clone ioctl. 644 * 645 * So if we detect such case we set the search key's offset to zero to 646 * make sure we will find the matching file extent item at 647 * add_all_parents(), otherwise we will miss it because the offset 648 * taken form the backref is much larger then the offset of the file 649 * extent item. This can make us scan a very large number of file 650 * extent items, but at least it will not make us miss any. 651 * 652 * This is an ugly workaround for a behaviour that should have never 653 * existed, but it does and a fix for the clone ioctl would touch a lot 654 * of places, cause backwards incompatibility and would not fix the 655 * problem for extents cloned with older kernels. 656 */ 657 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 658 search_key.offset >= LLONG_MAX) 659 search_key.offset = 0; 660 path->lowest_level = level; 661 if (ctx->time_seq == BTRFS_SEQ_LAST) 662 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 663 else 664 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq); 665 666 btrfs_debug(ctx->fs_info, 667 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 668 ref->root_id, level, ref->count, ret, 669 ref->key_for_search.objectid, ref->key_for_search.type, 670 ref->key_for_search.offset); 671 if (ret < 0) 672 goto out; 673 674 eb = path->nodes[level]; 675 while (!eb) { 676 if (WARN_ON(!level)) { 677 ret = 1; 678 goto out; 679 } 680 level--; 681 eb = path->nodes[level]; 682 } 683 684 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level); 685 out: 686 btrfs_put_root(root); 687 out_free: 688 path->lowest_level = 0; 689 btrfs_release_path(path); 690 return ret; 691 } 692 693 static struct extent_inode_elem * 694 unode_aux_to_inode_list(struct ulist_node *node) 695 { 696 if (!node) 697 return NULL; 698 return (struct extent_inode_elem *)(uintptr_t)node->aux; 699 } 700 701 static void free_leaf_list(struct ulist *ulist) 702 { 703 struct ulist_node *node; 704 struct ulist_iterator uiter; 705 706 ULIST_ITER_INIT(&uiter); 707 while ((node = ulist_next(ulist, &uiter))) 708 free_inode_elem_list(unode_aux_to_inode_list(node)); 709 710 ulist_free(ulist); 711 } 712 713 /* 714 * We maintain three separate rbtrees: one for direct refs, one for 715 * indirect refs which have a key, and one for indirect refs which do not 716 * have a key. Each tree does merge on insertion. 717 * 718 * Once all of the references are located, we iterate over the tree of 719 * indirect refs with missing keys. An appropriate key is located and 720 * the ref is moved onto the tree for indirect refs. After all missing 721 * keys are thus located, we iterate over the indirect ref tree, resolve 722 * each reference, and then insert the resolved reference onto the 723 * direct tree (merging there too). 724 * 725 * New backrefs (i.e., for parent nodes) are added to the appropriate 726 * rbtree as they are encountered. The new backrefs are subsequently 727 * resolved as above. 728 */ 729 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx, 730 struct btrfs_path *path, 731 struct preftrees *preftrees, 732 struct share_check *sc) 733 { 734 int err; 735 int ret = 0; 736 struct ulist *parents; 737 struct ulist_node *node; 738 struct ulist_iterator uiter; 739 struct rb_node *rnode; 740 741 parents = ulist_alloc(GFP_NOFS); 742 if (!parents) 743 return -ENOMEM; 744 745 /* 746 * We could trade memory usage for performance here by iterating 747 * the tree, allocating new refs for each insertion, and then 748 * freeing the entire indirect tree when we're done. In some test 749 * cases, the tree can grow quite large (~200k objects). 750 */ 751 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 752 struct prelim_ref *ref; 753 754 ref = rb_entry(rnode, struct prelim_ref, rbnode); 755 if (WARN(ref->parent, 756 "BUG: direct ref found in indirect tree")) { 757 ret = -EINVAL; 758 goto out; 759 } 760 761 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 762 preftrees->indirect.count--; 763 764 if (ref->count == 0) { 765 free_pref(ref); 766 continue; 767 } 768 769 if (sc && ref->root_id != sc->root->root_key.objectid) { 770 free_pref(ref); 771 ret = BACKREF_FOUND_SHARED; 772 goto out; 773 } 774 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents); 775 /* 776 * we can only tolerate ENOENT,otherwise,we should catch error 777 * and return directly. 778 */ 779 if (err == -ENOENT) { 780 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, 781 NULL); 782 continue; 783 } else if (err) { 784 free_pref(ref); 785 ret = err; 786 goto out; 787 } 788 789 /* we put the first parent into the ref at hand */ 790 ULIST_ITER_INIT(&uiter); 791 node = ulist_next(parents, &uiter); 792 ref->parent = node ? node->val : 0; 793 ref->inode_list = unode_aux_to_inode_list(node); 794 795 /* Add a prelim_ref(s) for any other parent(s). */ 796 while ((node = ulist_next(parents, &uiter))) { 797 struct prelim_ref *new_ref; 798 799 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 800 GFP_NOFS); 801 if (!new_ref) { 802 free_pref(ref); 803 ret = -ENOMEM; 804 goto out; 805 } 806 memcpy(new_ref, ref, sizeof(*ref)); 807 new_ref->parent = node->val; 808 new_ref->inode_list = unode_aux_to_inode_list(node); 809 prelim_ref_insert(ctx->fs_info, &preftrees->direct, 810 new_ref, NULL); 811 } 812 813 /* 814 * Now it's a direct ref, put it in the direct tree. We must 815 * do this last because the ref could be merged/freed here. 816 */ 817 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL); 818 819 ulist_reinit(parents); 820 cond_resched(); 821 } 822 out: 823 /* 824 * We may have inode lists attached to refs in the parents ulist, so we 825 * must free them before freeing the ulist and its refs. 826 */ 827 free_leaf_list(parents); 828 return ret; 829 } 830 831 /* 832 * read tree blocks and add keys where required. 833 */ 834 static int add_missing_keys(struct btrfs_fs_info *fs_info, 835 struct preftrees *preftrees, bool lock) 836 { 837 struct prelim_ref *ref; 838 struct extent_buffer *eb; 839 struct preftree *tree = &preftrees->indirect_missing_keys; 840 struct rb_node *node; 841 842 while ((node = rb_first_cached(&tree->root))) { 843 ref = rb_entry(node, struct prelim_ref, rbnode); 844 rb_erase_cached(node, &tree->root); 845 846 BUG_ON(ref->parent); /* should not be a direct ref */ 847 BUG_ON(ref->key_for_search.type); 848 BUG_ON(!ref->wanted_disk_byte); 849 850 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 851 ref->root_id, 0, ref->level - 1, NULL); 852 if (IS_ERR(eb)) { 853 free_pref(ref); 854 return PTR_ERR(eb); 855 } 856 if (!extent_buffer_uptodate(eb)) { 857 free_pref(ref); 858 free_extent_buffer(eb); 859 return -EIO; 860 } 861 862 if (lock) 863 btrfs_tree_read_lock(eb); 864 if (btrfs_header_level(eb) == 0) 865 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 866 else 867 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 868 if (lock) 869 btrfs_tree_read_unlock(eb); 870 free_extent_buffer(eb); 871 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 872 cond_resched(); 873 } 874 return 0; 875 } 876 877 /* 878 * add all currently queued delayed refs from this head whose seq nr is 879 * smaller or equal that seq to the list 880 */ 881 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 882 struct btrfs_delayed_ref_head *head, u64 seq, 883 struct preftrees *preftrees, struct share_check *sc) 884 { 885 struct btrfs_delayed_ref_node *node; 886 struct btrfs_key key; 887 struct rb_node *n; 888 int count; 889 int ret = 0; 890 891 spin_lock(&head->lock); 892 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 893 node = rb_entry(n, struct btrfs_delayed_ref_node, 894 ref_node); 895 if (node->seq > seq) 896 continue; 897 898 switch (node->action) { 899 case BTRFS_ADD_DELAYED_EXTENT: 900 case BTRFS_UPDATE_DELAYED_HEAD: 901 WARN_ON(1); 902 continue; 903 case BTRFS_ADD_DELAYED_REF: 904 count = node->ref_mod; 905 break; 906 case BTRFS_DROP_DELAYED_REF: 907 count = node->ref_mod * -1; 908 break; 909 default: 910 BUG(); 911 } 912 switch (node->type) { 913 case BTRFS_TREE_BLOCK_REF_KEY: { 914 /* NORMAL INDIRECT METADATA backref */ 915 struct btrfs_delayed_tree_ref *ref; 916 struct btrfs_key *key_ptr = NULL; 917 918 if (head->extent_op && head->extent_op->update_key) { 919 btrfs_disk_key_to_cpu(&key, &head->extent_op->key); 920 key_ptr = &key; 921 } 922 923 ref = btrfs_delayed_node_to_tree_ref(node); 924 ret = add_indirect_ref(fs_info, preftrees, ref->root, 925 key_ptr, ref->level + 1, 926 node->bytenr, count, sc, 927 GFP_ATOMIC); 928 break; 929 } 930 case BTRFS_SHARED_BLOCK_REF_KEY: { 931 /* SHARED DIRECT METADATA backref */ 932 struct btrfs_delayed_tree_ref *ref; 933 934 ref = btrfs_delayed_node_to_tree_ref(node); 935 936 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 937 ref->parent, node->bytenr, count, 938 sc, GFP_ATOMIC); 939 break; 940 } 941 case BTRFS_EXTENT_DATA_REF_KEY: { 942 /* NORMAL INDIRECT DATA backref */ 943 struct btrfs_delayed_data_ref *ref; 944 ref = btrfs_delayed_node_to_data_ref(node); 945 946 key.objectid = ref->objectid; 947 key.type = BTRFS_EXTENT_DATA_KEY; 948 key.offset = ref->offset; 949 950 /* 951 * If we have a share check context and a reference for 952 * another inode, we can't exit immediately. This is 953 * because even if this is a BTRFS_ADD_DELAYED_REF 954 * reference we may find next a BTRFS_DROP_DELAYED_REF 955 * which cancels out this ADD reference. 956 * 957 * If this is a DROP reference and there was no previous 958 * ADD reference, then we need to signal that when we 959 * process references from the extent tree (through 960 * add_inline_refs() and add_keyed_refs()), we should 961 * not exit early if we find a reference for another 962 * inode, because one of the delayed DROP references 963 * may cancel that reference in the extent tree. 964 */ 965 if (sc && count < 0) 966 sc->have_delayed_delete_refs = true; 967 968 ret = add_indirect_ref(fs_info, preftrees, ref->root, 969 &key, 0, node->bytenr, count, sc, 970 GFP_ATOMIC); 971 break; 972 } 973 case BTRFS_SHARED_DATA_REF_KEY: { 974 /* SHARED DIRECT FULL backref */ 975 struct btrfs_delayed_data_ref *ref; 976 977 ref = btrfs_delayed_node_to_data_ref(node); 978 979 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 980 node->bytenr, count, sc, 981 GFP_ATOMIC); 982 break; 983 } 984 default: 985 WARN_ON(1); 986 } 987 /* 988 * We must ignore BACKREF_FOUND_SHARED until all delayed 989 * refs have been checked. 990 */ 991 if (ret && (ret != BACKREF_FOUND_SHARED)) 992 break; 993 } 994 if (!ret) 995 ret = extent_is_shared(sc); 996 997 spin_unlock(&head->lock); 998 return ret; 999 } 1000 1001 /* 1002 * add all inline backrefs for bytenr to the list 1003 * 1004 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1005 */ 1006 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 1007 struct btrfs_path *path, u64 bytenr, 1008 int *info_level, struct preftrees *preftrees, 1009 struct share_check *sc) 1010 { 1011 int ret = 0; 1012 int slot; 1013 struct extent_buffer *leaf; 1014 struct btrfs_key key; 1015 struct btrfs_key found_key; 1016 unsigned long ptr; 1017 unsigned long end; 1018 struct btrfs_extent_item *ei; 1019 u64 flags; 1020 u64 item_size; 1021 1022 /* 1023 * enumerate all inline refs 1024 */ 1025 leaf = path->nodes[0]; 1026 slot = path->slots[0]; 1027 1028 item_size = btrfs_item_size(leaf, slot); 1029 BUG_ON(item_size < sizeof(*ei)); 1030 1031 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1032 flags = btrfs_extent_flags(leaf, ei); 1033 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1034 1035 ptr = (unsigned long)(ei + 1); 1036 end = (unsigned long)ei + item_size; 1037 1038 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 1039 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1040 struct btrfs_tree_block_info *info; 1041 1042 info = (struct btrfs_tree_block_info *)ptr; 1043 *info_level = btrfs_tree_block_level(leaf, info); 1044 ptr += sizeof(struct btrfs_tree_block_info); 1045 BUG_ON(ptr > end); 1046 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1047 *info_level = found_key.offset; 1048 } else { 1049 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1050 } 1051 1052 while (ptr < end) { 1053 struct btrfs_extent_inline_ref *iref; 1054 u64 offset; 1055 int type; 1056 1057 iref = (struct btrfs_extent_inline_ref *)ptr; 1058 type = btrfs_get_extent_inline_ref_type(leaf, iref, 1059 BTRFS_REF_TYPE_ANY); 1060 if (type == BTRFS_REF_TYPE_INVALID) 1061 return -EUCLEAN; 1062 1063 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1064 1065 switch (type) { 1066 case BTRFS_SHARED_BLOCK_REF_KEY: 1067 ret = add_direct_ref(fs_info, preftrees, 1068 *info_level + 1, offset, 1069 bytenr, 1, NULL, GFP_NOFS); 1070 break; 1071 case BTRFS_SHARED_DATA_REF_KEY: { 1072 struct btrfs_shared_data_ref *sdref; 1073 int count; 1074 1075 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1076 count = btrfs_shared_data_ref_count(leaf, sdref); 1077 1078 ret = add_direct_ref(fs_info, preftrees, 0, offset, 1079 bytenr, count, sc, GFP_NOFS); 1080 break; 1081 } 1082 case BTRFS_TREE_BLOCK_REF_KEY: 1083 ret = add_indirect_ref(fs_info, preftrees, offset, 1084 NULL, *info_level + 1, 1085 bytenr, 1, NULL, GFP_NOFS); 1086 break; 1087 case BTRFS_EXTENT_DATA_REF_KEY: { 1088 struct btrfs_extent_data_ref *dref; 1089 int count; 1090 u64 root; 1091 1092 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1093 count = btrfs_extent_data_ref_count(leaf, dref); 1094 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1095 dref); 1096 key.type = BTRFS_EXTENT_DATA_KEY; 1097 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1098 1099 if (sc && key.objectid != sc->inum && 1100 !sc->have_delayed_delete_refs) { 1101 ret = BACKREF_FOUND_SHARED; 1102 break; 1103 } 1104 1105 root = btrfs_extent_data_ref_root(leaf, dref); 1106 1107 ret = add_indirect_ref(fs_info, preftrees, root, 1108 &key, 0, bytenr, count, 1109 sc, GFP_NOFS); 1110 1111 break; 1112 } 1113 default: 1114 WARN_ON(1); 1115 } 1116 if (ret) 1117 return ret; 1118 ptr += btrfs_extent_inline_ref_size(type); 1119 } 1120 1121 return 0; 1122 } 1123 1124 /* 1125 * add all non-inline backrefs for bytenr to the list 1126 * 1127 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1128 */ 1129 static int add_keyed_refs(struct btrfs_root *extent_root, 1130 struct btrfs_path *path, u64 bytenr, 1131 int info_level, struct preftrees *preftrees, 1132 struct share_check *sc) 1133 { 1134 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1135 int ret; 1136 int slot; 1137 struct extent_buffer *leaf; 1138 struct btrfs_key key; 1139 1140 while (1) { 1141 ret = btrfs_next_item(extent_root, path); 1142 if (ret < 0) 1143 break; 1144 if (ret) { 1145 ret = 0; 1146 break; 1147 } 1148 1149 slot = path->slots[0]; 1150 leaf = path->nodes[0]; 1151 btrfs_item_key_to_cpu(leaf, &key, slot); 1152 1153 if (key.objectid != bytenr) 1154 break; 1155 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1156 continue; 1157 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1158 break; 1159 1160 switch (key.type) { 1161 case BTRFS_SHARED_BLOCK_REF_KEY: 1162 /* SHARED DIRECT METADATA backref */ 1163 ret = add_direct_ref(fs_info, preftrees, 1164 info_level + 1, key.offset, 1165 bytenr, 1, NULL, GFP_NOFS); 1166 break; 1167 case BTRFS_SHARED_DATA_REF_KEY: { 1168 /* SHARED DIRECT FULL backref */ 1169 struct btrfs_shared_data_ref *sdref; 1170 int count; 1171 1172 sdref = btrfs_item_ptr(leaf, slot, 1173 struct btrfs_shared_data_ref); 1174 count = btrfs_shared_data_ref_count(leaf, sdref); 1175 ret = add_direct_ref(fs_info, preftrees, 0, 1176 key.offset, bytenr, count, 1177 sc, GFP_NOFS); 1178 break; 1179 } 1180 case BTRFS_TREE_BLOCK_REF_KEY: 1181 /* NORMAL INDIRECT METADATA backref */ 1182 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1183 NULL, info_level + 1, bytenr, 1184 1, NULL, GFP_NOFS); 1185 break; 1186 case BTRFS_EXTENT_DATA_REF_KEY: { 1187 /* NORMAL INDIRECT DATA backref */ 1188 struct btrfs_extent_data_ref *dref; 1189 int count; 1190 u64 root; 1191 1192 dref = btrfs_item_ptr(leaf, slot, 1193 struct btrfs_extent_data_ref); 1194 count = btrfs_extent_data_ref_count(leaf, dref); 1195 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1196 dref); 1197 key.type = BTRFS_EXTENT_DATA_KEY; 1198 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1199 1200 if (sc && key.objectid != sc->inum && 1201 !sc->have_delayed_delete_refs) { 1202 ret = BACKREF_FOUND_SHARED; 1203 break; 1204 } 1205 1206 root = btrfs_extent_data_ref_root(leaf, dref); 1207 ret = add_indirect_ref(fs_info, preftrees, root, 1208 &key, 0, bytenr, count, 1209 sc, GFP_NOFS); 1210 break; 1211 } 1212 default: 1213 WARN_ON(1); 1214 } 1215 if (ret) 1216 return ret; 1217 1218 } 1219 1220 return ret; 1221 } 1222 1223 /* 1224 * The caller has joined a transaction or is holding a read lock on the 1225 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1226 * snapshot field changing while updating or checking the cache. 1227 */ 1228 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1229 struct btrfs_root *root, 1230 u64 bytenr, int level, bool *is_shared) 1231 { 1232 struct btrfs_backref_shared_cache_entry *entry; 1233 1234 if (!ctx->use_path_cache) 1235 return false; 1236 1237 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1238 return false; 1239 1240 /* 1241 * Level -1 is used for the data extent, which is not reliable to cache 1242 * because its reference count can increase or decrease without us 1243 * realizing. We cache results only for extent buffers that lead from 1244 * the root node down to the leaf with the file extent item. 1245 */ 1246 ASSERT(level >= 0); 1247 1248 entry = &ctx->path_cache_entries[level]; 1249 1250 /* Unused cache entry or being used for some other extent buffer. */ 1251 if (entry->bytenr != bytenr) 1252 return false; 1253 1254 /* 1255 * We cached a false result, but the last snapshot generation of the 1256 * root changed, so we now have a snapshot. Don't trust the result. 1257 */ 1258 if (!entry->is_shared && 1259 entry->gen != btrfs_root_last_snapshot(&root->root_item)) 1260 return false; 1261 1262 /* 1263 * If we cached a true result and the last generation used for dropping 1264 * a root changed, we can not trust the result, because the dropped root 1265 * could be a snapshot sharing this extent buffer. 1266 */ 1267 if (entry->is_shared && 1268 entry->gen != btrfs_get_last_root_drop_gen(root->fs_info)) 1269 return false; 1270 1271 *is_shared = entry->is_shared; 1272 /* 1273 * If the node at this level is shared, than all nodes below are also 1274 * shared. Currently some of the nodes below may be marked as not shared 1275 * because we have just switched from one leaf to another, and switched 1276 * also other nodes above the leaf and below the current level, so mark 1277 * them as shared. 1278 */ 1279 if (*is_shared) { 1280 for (int i = 0; i < level; i++) { 1281 ctx->path_cache_entries[i].is_shared = true; 1282 ctx->path_cache_entries[i].gen = entry->gen; 1283 } 1284 } 1285 1286 return true; 1287 } 1288 1289 /* 1290 * The caller has joined a transaction or is holding a read lock on the 1291 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1292 * snapshot field changing while updating or checking the cache. 1293 */ 1294 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1295 struct btrfs_root *root, 1296 u64 bytenr, int level, bool is_shared) 1297 { 1298 struct btrfs_backref_shared_cache_entry *entry; 1299 u64 gen; 1300 1301 if (!ctx->use_path_cache) 1302 return; 1303 1304 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1305 return; 1306 1307 /* 1308 * Level -1 is used for the data extent, which is not reliable to cache 1309 * because its reference count can increase or decrease without us 1310 * realizing. We cache results only for extent buffers that lead from 1311 * the root node down to the leaf with the file extent item. 1312 */ 1313 ASSERT(level >= 0); 1314 1315 if (is_shared) 1316 gen = btrfs_get_last_root_drop_gen(root->fs_info); 1317 else 1318 gen = btrfs_root_last_snapshot(&root->root_item); 1319 1320 entry = &ctx->path_cache_entries[level]; 1321 entry->bytenr = bytenr; 1322 entry->is_shared = is_shared; 1323 entry->gen = gen; 1324 1325 /* 1326 * If we found an extent buffer is shared, set the cache result for all 1327 * extent buffers below it to true. As nodes in the path are COWed, 1328 * their sharedness is moved to their children, and if a leaf is COWed, 1329 * then the sharedness of a data extent becomes direct, the refcount of 1330 * data extent is increased in the extent item at the extent tree. 1331 */ 1332 if (is_shared) { 1333 for (int i = 0; i < level; i++) { 1334 entry = &ctx->path_cache_entries[i]; 1335 entry->is_shared = is_shared; 1336 entry->gen = gen; 1337 } 1338 } 1339 } 1340 1341 /* 1342 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1343 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1344 * indirect refs to their parent bytenr. 1345 * When roots are found, they're added to the roots list 1346 * 1347 * @ctx: Backref walking context object, must be not NULL. 1348 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a 1349 * shared extent is detected. 1350 * 1351 * Otherwise this returns 0 for success and <0 for an error. 1352 * 1353 * FIXME some caching might speed things up 1354 */ 1355 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx, 1356 struct share_check *sc) 1357 { 1358 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr); 1359 struct btrfs_key key; 1360 struct btrfs_path *path; 1361 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1362 struct btrfs_delayed_ref_head *head; 1363 int info_level = 0; 1364 int ret; 1365 struct prelim_ref *ref; 1366 struct rb_node *node; 1367 struct extent_inode_elem *eie = NULL; 1368 struct preftrees preftrees = { 1369 .direct = PREFTREE_INIT, 1370 .indirect = PREFTREE_INIT, 1371 .indirect_missing_keys = PREFTREE_INIT 1372 }; 1373 1374 /* Roots ulist is not needed when using a sharedness check context. */ 1375 if (sc) 1376 ASSERT(ctx->roots == NULL); 1377 1378 key.objectid = ctx->bytenr; 1379 key.offset = (u64)-1; 1380 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA)) 1381 key.type = BTRFS_METADATA_ITEM_KEY; 1382 else 1383 key.type = BTRFS_EXTENT_ITEM_KEY; 1384 1385 path = btrfs_alloc_path(); 1386 if (!path) 1387 return -ENOMEM; 1388 if (!ctx->trans) { 1389 path->search_commit_root = 1; 1390 path->skip_locking = 1; 1391 } 1392 1393 if (ctx->time_seq == BTRFS_SEQ_LAST) 1394 path->skip_locking = 1; 1395 1396 again: 1397 head = NULL; 1398 1399 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1400 if (ret < 0) 1401 goto out; 1402 if (ret == 0) { 1403 /* This shouldn't happen, indicates a bug or fs corruption. */ 1404 ASSERT(ret != 0); 1405 ret = -EUCLEAN; 1406 goto out; 1407 } 1408 1409 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) && 1410 ctx->time_seq != BTRFS_SEQ_LAST) { 1411 /* 1412 * We have a specific time_seq we care about and trans which 1413 * means we have the path lock, we need to grab the ref head and 1414 * lock it so we have a consistent view of the refs at the given 1415 * time. 1416 */ 1417 delayed_refs = &ctx->trans->transaction->delayed_refs; 1418 spin_lock(&delayed_refs->lock); 1419 head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr); 1420 if (head) { 1421 if (!mutex_trylock(&head->mutex)) { 1422 refcount_inc(&head->refs); 1423 spin_unlock(&delayed_refs->lock); 1424 1425 btrfs_release_path(path); 1426 1427 /* 1428 * Mutex was contended, block until it's 1429 * released and try again 1430 */ 1431 mutex_lock(&head->mutex); 1432 mutex_unlock(&head->mutex); 1433 btrfs_put_delayed_ref_head(head); 1434 goto again; 1435 } 1436 spin_unlock(&delayed_refs->lock); 1437 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq, 1438 &preftrees, sc); 1439 mutex_unlock(&head->mutex); 1440 if (ret) 1441 goto out; 1442 } else { 1443 spin_unlock(&delayed_refs->lock); 1444 } 1445 } 1446 1447 if (path->slots[0]) { 1448 struct extent_buffer *leaf; 1449 int slot; 1450 1451 path->slots[0]--; 1452 leaf = path->nodes[0]; 1453 slot = path->slots[0]; 1454 btrfs_item_key_to_cpu(leaf, &key, slot); 1455 if (key.objectid == ctx->bytenr && 1456 (key.type == BTRFS_EXTENT_ITEM_KEY || 1457 key.type == BTRFS_METADATA_ITEM_KEY)) { 1458 ret = add_inline_refs(ctx->fs_info, path, ctx->bytenr, 1459 &info_level, &preftrees, sc); 1460 if (ret) 1461 goto out; 1462 ret = add_keyed_refs(root, path, ctx->bytenr, info_level, 1463 &preftrees, sc); 1464 if (ret) 1465 goto out; 1466 } 1467 } 1468 1469 /* 1470 * If we have a share context and we reached here, it means the extent 1471 * is not directly shared (no multiple reference items for it), 1472 * otherwise we would have exited earlier with a return value of 1473 * BACKREF_FOUND_SHARED after processing delayed references or while 1474 * processing inline or keyed references from the extent tree. 1475 * The extent may however be indirectly shared through shared subtrees 1476 * as a result from creating snapshots, so we determine below what is 1477 * its parent node, in case we are dealing with a metadata extent, or 1478 * what's the leaf (or leaves), from a fs tree, that has a file extent 1479 * item pointing to it in case we are dealing with a data extent. 1480 */ 1481 ASSERT(extent_is_shared(sc) == 0); 1482 1483 /* 1484 * If we are here for a data extent and we have a share_check structure 1485 * it means the data extent is not directly shared (does not have 1486 * multiple reference items), so we have to check if a path in the fs 1487 * tree (going from the root node down to the leaf that has the file 1488 * extent item pointing to the data extent) is shared, that is, if any 1489 * of the extent buffers in the path is referenced by other trees. 1490 */ 1491 if (sc && ctx->bytenr == sc->data_bytenr) { 1492 /* 1493 * If our data extent is from a generation more recent than the 1494 * last generation used to snapshot the root, then we know that 1495 * it can not be shared through subtrees, so we can skip 1496 * resolving indirect references, there's no point in 1497 * determining the extent buffers for the path from the fs tree 1498 * root node down to the leaf that has the file extent item that 1499 * points to the data extent. 1500 */ 1501 if (sc->data_extent_gen > 1502 btrfs_root_last_snapshot(&sc->root->root_item)) { 1503 ret = BACKREF_FOUND_NOT_SHARED; 1504 goto out; 1505 } 1506 1507 /* 1508 * If we are only determining if a data extent is shared or not 1509 * and the corresponding file extent item is located in the same 1510 * leaf as the previous file extent item, we can skip resolving 1511 * indirect references for a data extent, since the fs tree path 1512 * is the same (same leaf, so same path). We skip as long as the 1513 * cached result for the leaf is valid and only if there's only 1514 * one file extent item pointing to the data extent, because in 1515 * the case of multiple file extent items, they may be located 1516 * in different leaves and therefore we have multiple paths. 1517 */ 1518 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr && 1519 sc->self_ref_count == 1) { 1520 bool cached; 1521 bool is_shared; 1522 1523 cached = lookup_backref_shared_cache(sc->ctx, sc->root, 1524 sc->ctx->curr_leaf_bytenr, 1525 0, &is_shared); 1526 if (cached) { 1527 if (is_shared) 1528 ret = BACKREF_FOUND_SHARED; 1529 else 1530 ret = BACKREF_FOUND_NOT_SHARED; 1531 goto out; 1532 } 1533 } 1534 } 1535 1536 btrfs_release_path(path); 1537 1538 ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0); 1539 if (ret) 1540 goto out; 1541 1542 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1543 1544 ret = resolve_indirect_refs(ctx, path, &preftrees, sc); 1545 if (ret) 1546 goto out; 1547 1548 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1549 1550 /* 1551 * This walks the tree of merged and resolved refs. Tree blocks are 1552 * read in as needed. Unique entries are added to the ulist, and 1553 * the list of found roots is updated. 1554 * 1555 * We release the entire tree in one go before returning. 1556 */ 1557 node = rb_first_cached(&preftrees.direct.root); 1558 while (node) { 1559 ref = rb_entry(node, struct prelim_ref, rbnode); 1560 node = rb_next(&ref->rbnode); 1561 /* 1562 * ref->count < 0 can happen here if there are delayed 1563 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1564 * prelim_ref_insert() relies on this when merging 1565 * identical refs to keep the overall count correct. 1566 * prelim_ref_insert() will merge only those refs 1567 * which compare identically. Any refs having 1568 * e.g. different offsets would not be merged, 1569 * and would retain their original ref->count < 0. 1570 */ 1571 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) { 1572 /* no parent == root of tree */ 1573 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS); 1574 if (ret < 0) 1575 goto out; 1576 } 1577 if (ref->count && ref->parent) { 1578 if (!ctx->ignore_extent_item_pos && !ref->inode_list && 1579 ref->level == 0) { 1580 struct extent_buffer *eb; 1581 1582 eb = read_tree_block(ctx->fs_info, ref->parent, 0, 1583 0, ref->level, NULL); 1584 if (IS_ERR(eb)) { 1585 ret = PTR_ERR(eb); 1586 goto out; 1587 } 1588 if (!extent_buffer_uptodate(eb)) { 1589 free_extent_buffer(eb); 1590 ret = -EIO; 1591 goto out; 1592 } 1593 1594 if (!path->skip_locking) 1595 btrfs_tree_read_lock(eb); 1596 ret = find_extent_in_eb(ctx, eb, &eie); 1597 if (!path->skip_locking) 1598 btrfs_tree_read_unlock(eb); 1599 free_extent_buffer(eb); 1600 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1601 ret < 0) 1602 goto out; 1603 ref->inode_list = eie; 1604 /* 1605 * We transferred the list ownership to the ref, 1606 * so set to NULL to avoid a double free in case 1607 * an error happens after this. 1608 */ 1609 eie = NULL; 1610 } 1611 ret = ulist_add_merge_ptr(ctx->refs, ref->parent, 1612 ref->inode_list, 1613 (void **)&eie, GFP_NOFS); 1614 if (ret < 0) 1615 goto out; 1616 if (!ret && !ctx->ignore_extent_item_pos) { 1617 /* 1618 * We've recorded that parent, so we must extend 1619 * its inode list here. 1620 * 1621 * However if there was corruption we may not 1622 * have found an eie, return an error in this 1623 * case. 1624 */ 1625 ASSERT(eie); 1626 if (!eie) { 1627 ret = -EUCLEAN; 1628 goto out; 1629 } 1630 while (eie->next) 1631 eie = eie->next; 1632 eie->next = ref->inode_list; 1633 } 1634 eie = NULL; 1635 /* 1636 * We have transferred the inode list ownership from 1637 * this ref to the ref we added to the 'refs' ulist. 1638 * So set this ref's inode list to NULL to avoid 1639 * use-after-free when our caller uses it or double 1640 * frees in case an error happens before we return. 1641 */ 1642 ref->inode_list = NULL; 1643 } 1644 cond_resched(); 1645 } 1646 1647 out: 1648 btrfs_free_path(path); 1649 1650 prelim_release(&preftrees.direct); 1651 prelim_release(&preftrees.indirect); 1652 prelim_release(&preftrees.indirect_missing_keys); 1653 1654 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 1655 free_inode_elem_list(eie); 1656 return ret; 1657 } 1658 1659 /* 1660 * Finds all leaves with a reference to the specified combination of 1661 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are 1662 * added to the ulist at @ctx->refs, and that ulist is allocated by this 1663 * function. The caller should free the ulist with free_leaf_list() if 1664 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is 1665 * enough. 1666 * 1667 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated. 1668 */ 1669 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx) 1670 { 1671 int ret; 1672 1673 ASSERT(ctx->refs == NULL); 1674 1675 ctx->refs = ulist_alloc(GFP_NOFS); 1676 if (!ctx->refs) 1677 return -ENOMEM; 1678 1679 ret = find_parent_nodes(ctx, NULL); 1680 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1681 (ret < 0 && ret != -ENOENT)) { 1682 free_leaf_list(ctx->refs); 1683 ctx->refs = NULL; 1684 return ret; 1685 } 1686 1687 return 0; 1688 } 1689 1690 /* 1691 * Walk all backrefs for a given extent to find all roots that reference this 1692 * extent. Walking a backref means finding all extents that reference this 1693 * extent and in turn walk the backrefs of those, too. Naturally this is a 1694 * recursive process, but here it is implemented in an iterative fashion: We 1695 * find all referencing extents for the extent in question and put them on a 1696 * list. In turn, we find all referencing extents for those, further appending 1697 * to the list. The way we iterate the list allows adding more elements after 1698 * the current while iterating. The process stops when we reach the end of the 1699 * list. 1700 * 1701 * Found roots are added to @ctx->roots, which is allocated by this function if 1702 * it points to NULL, in which case the caller is responsible for freeing it 1703 * after it's not needed anymore. 1704 * This function requires @ctx->refs to be NULL, as it uses it for allocating a 1705 * ulist to do temporary work, and frees it before returning. 1706 * 1707 * Returns 0 on success, < 0 on error. 1708 */ 1709 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx) 1710 { 1711 const u64 orig_bytenr = ctx->bytenr; 1712 const bool orig_ignore_extent_item_pos = ctx->ignore_extent_item_pos; 1713 bool roots_ulist_allocated = false; 1714 struct ulist_iterator uiter; 1715 int ret = 0; 1716 1717 ASSERT(ctx->refs == NULL); 1718 1719 ctx->refs = ulist_alloc(GFP_NOFS); 1720 if (!ctx->refs) 1721 return -ENOMEM; 1722 1723 if (!ctx->roots) { 1724 ctx->roots = ulist_alloc(GFP_NOFS); 1725 if (!ctx->roots) { 1726 ulist_free(ctx->refs); 1727 ctx->refs = NULL; 1728 return -ENOMEM; 1729 } 1730 roots_ulist_allocated = true; 1731 } 1732 1733 ctx->ignore_extent_item_pos = true; 1734 1735 ULIST_ITER_INIT(&uiter); 1736 while (1) { 1737 struct ulist_node *node; 1738 1739 ret = find_parent_nodes(ctx, NULL); 1740 if (ret < 0 && ret != -ENOENT) { 1741 if (roots_ulist_allocated) { 1742 ulist_free(ctx->roots); 1743 ctx->roots = NULL; 1744 } 1745 break; 1746 } 1747 ret = 0; 1748 node = ulist_next(ctx->refs, &uiter); 1749 if (!node) 1750 break; 1751 ctx->bytenr = node->val; 1752 cond_resched(); 1753 } 1754 1755 ulist_free(ctx->refs); 1756 ctx->refs = NULL; 1757 ctx->bytenr = orig_bytenr; 1758 ctx->ignore_extent_item_pos = orig_ignore_extent_item_pos; 1759 1760 return ret; 1761 } 1762 1763 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, 1764 bool skip_commit_root_sem) 1765 { 1766 int ret; 1767 1768 if (!ctx->trans && !skip_commit_root_sem) 1769 down_read(&ctx->fs_info->commit_root_sem); 1770 ret = btrfs_find_all_roots_safe(ctx); 1771 if (!ctx->trans && !skip_commit_root_sem) 1772 up_read(&ctx->fs_info->commit_root_sem); 1773 return ret; 1774 } 1775 1776 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void) 1777 { 1778 struct btrfs_backref_share_check_ctx *ctx; 1779 1780 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1781 if (!ctx) 1782 return NULL; 1783 1784 ulist_init(&ctx->refs); 1785 1786 return ctx; 1787 } 1788 1789 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx) 1790 { 1791 if (!ctx) 1792 return; 1793 1794 ulist_release(&ctx->refs); 1795 kfree(ctx); 1796 } 1797 1798 /* 1799 * Check if a data extent is shared or not. 1800 * 1801 * @inode: The inode whose extent we are checking. 1802 * @bytenr: Logical bytenr of the extent we are checking. 1803 * @extent_gen: Generation of the extent (file extent item) or 0 if it is 1804 * not known. 1805 * @ctx: A backref sharedness check context. 1806 * 1807 * btrfs_is_data_extent_shared uses the backref walking code but will short 1808 * circuit as soon as it finds a root or inode that doesn't match the 1809 * one passed in. This provides a significant performance benefit for 1810 * callers (such as fiemap) which want to know whether the extent is 1811 * shared but do not need a ref count. 1812 * 1813 * This attempts to attach to the running transaction in order to account for 1814 * delayed refs, but continues on even when no running transaction exists. 1815 * 1816 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1817 */ 1818 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, 1819 u64 extent_gen, 1820 struct btrfs_backref_share_check_ctx *ctx) 1821 { 1822 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 1823 struct btrfs_root *root = inode->root; 1824 struct btrfs_fs_info *fs_info = root->fs_info; 1825 struct btrfs_trans_handle *trans; 1826 struct ulist_iterator uiter; 1827 struct ulist_node *node; 1828 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1829 int ret = 0; 1830 struct share_check shared = { 1831 .ctx = ctx, 1832 .root = root, 1833 .inum = btrfs_ino(inode), 1834 .data_bytenr = bytenr, 1835 .data_extent_gen = extent_gen, 1836 .share_count = 0, 1837 .self_ref_count = 0, 1838 .have_delayed_delete_refs = false, 1839 }; 1840 int level; 1841 1842 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) { 1843 if (ctx->prev_extents_cache[i].bytenr == bytenr) 1844 return ctx->prev_extents_cache[i].is_shared; 1845 } 1846 1847 ulist_init(&ctx->refs); 1848 1849 trans = btrfs_join_transaction_nostart(root); 1850 if (IS_ERR(trans)) { 1851 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1852 ret = PTR_ERR(trans); 1853 goto out; 1854 } 1855 trans = NULL; 1856 down_read(&fs_info->commit_root_sem); 1857 } else { 1858 btrfs_get_tree_mod_seq(fs_info, &elem); 1859 walk_ctx.time_seq = elem.seq; 1860 } 1861 1862 walk_ctx.ignore_extent_item_pos = true; 1863 walk_ctx.trans = trans; 1864 walk_ctx.fs_info = fs_info; 1865 walk_ctx.refs = &ctx->refs; 1866 1867 /* -1 means we are in the bytenr of the data extent. */ 1868 level = -1; 1869 ULIST_ITER_INIT(&uiter); 1870 ctx->use_path_cache = true; 1871 while (1) { 1872 bool is_shared; 1873 bool cached; 1874 1875 walk_ctx.bytenr = bytenr; 1876 ret = find_parent_nodes(&walk_ctx, &shared); 1877 if (ret == BACKREF_FOUND_SHARED || 1878 ret == BACKREF_FOUND_NOT_SHARED) { 1879 /* If shared must return 1, otherwise return 0. */ 1880 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0; 1881 if (level >= 0) 1882 store_backref_shared_cache(ctx, root, bytenr, 1883 level, ret == 1); 1884 break; 1885 } 1886 if (ret < 0 && ret != -ENOENT) 1887 break; 1888 ret = 0; 1889 1890 /* 1891 * If our data extent was not directly shared (without multiple 1892 * reference items), than it might have a single reference item 1893 * with a count > 1 for the same offset, which means there are 2 1894 * (or more) file extent items that point to the data extent - 1895 * this happens when a file extent item needs to be split and 1896 * then one item gets moved to another leaf due to a b+tree leaf 1897 * split when inserting some item. In this case the file extent 1898 * items may be located in different leaves and therefore some 1899 * of the leaves may be referenced through shared subtrees while 1900 * others are not. Since our extent buffer cache only works for 1901 * a single path (by far the most common case and simpler to 1902 * deal with), we can not use it if we have multiple leaves 1903 * (which implies multiple paths). 1904 */ 1905 if (level == -1 && ctx->refs.nnodes > 1) 1906 ctx->use_path_cache = false; 1907 1908 if (level >= 0) 1909 store_backref_shared_cache(ctx, root, bytenr, 1910 level, false); 1911 node = ulist_next(&ctx->refs, &uiter); 1912 if (!node) 1913 break; 1914 bytenr = node->val; 1915 level++; 1916 cached = lookup_backref_shared_cache(ctx, root, bytenr, level, 1917 &is_shared); 1918 if (cached) { 1919 ret = (is_shared ? 1 : 0); 1920 break; 1921 } 1922 shared.share_count = 0; 1923 shared.have_delayed_delete_refs = false; 1924 cond_resched(); 1925 } 1926 1927 /* 1928 * Cache the sharedness result for the data extent if we know our inode 1929 * has more than 1 file extent item that refers to the data extent. 1930 */ 1931 if (ret >= 0 && shared.self_ref_count > 1) { 1932 int slot = ctx->prev_extents_cache_slot; 1933 1934 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr; 1935 ctx->prev_extents_cache[slot].is_shared = (ret == 1); 1936 1937 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; 1938 ctx->prev_extents_cache_slot = slot; 1939 } 1940 1941 if (trans) { 1942 btrfs_put_tree_mod_seq(fs_info, &elem); 1943 btrfs_end_transaction(trans); 1944 } else { 1945 up_read(&fs_info->commit_root_sem); 1946 } 1947 out: 1948 ulist_release(&ctx->refs); 1949 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr; 1950 1951 return ret; 1952 } 1953 1954 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1955 u64 start_off, struct btrfs_path *path, 1956 struct btrfs_inode_extref **ret_extref, 1957 u64 *found_off) 1958 { 1959 int ret, slot; 1960 struct btrfs_key key; 1961 struct btrfs_key found_key; 1962 struct btrfs_inode_extref *extref; 1963 const struct extent_buffer *leaf; 1964 unsigned long ptr; 1965 1966 key.objectid = inode_objectid; 1967 key.type = BTRFS_INODE_EXTREF_KEY; 1968 key.offset = start_off; 1969 1970 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1971 if (ret < 0) 1972 return ret; 1973 1974 while (1) { 1975 leaf = path->nodes[0]; 1976 slot = path->slots[0]; 1977 if (slot >= btrfs_header_nritems(leaf)) { 1978 /* 1979 * If the item at offset is not found, 1980 * btrfs_search_slot will point us to the slot 1981 * where it should be inserted. In our case 1982 * that will be the slot directly before the 1983 * next INODE_REF_KEY_V2 item. In the case 1984 * that we're pointing to the last slot in a 1985 * leaf, we must move one leaf over. 1986 */ 1987 ret = btrfs_next_leaf(root, path); 1988 if (ret) { 1989 if (ret >= 1) 1990 ret = -ENOENT; 1991 break; 1992 } 1993 continue; 1994 } 1995 1996 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1997 1998 /* 1999 * Check that we're still looking at an extended ref key for 2000 * this particular objectid. If we have different 2001 * objectid or type then there are no more to be found 2002 * in the tree and we can exit. 2003 */ 2004 ret = -ENOENT; 2005 if (found_key.objectid != inode_objectid) 2006 break; 2007 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 2008 break; 2009 2010 ret = 0; 2011 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 2012 extref = (struct btrfs_inode_extref *)ptr; 2013 *ret_extref = extref; 2014 if (found_off) 2015 *found_off = found_key.offset; 2016 break; 2017 } 2018 2019 return ret; 2020 } 2021 2022 /* 2023 * this iterates to turn a name (from iref/extref) into a full filesystem path. 2024 * Elements of the path are separated by '/' and the path is guaranteed to be 2025 * 0-terminated. the path is only given within the current file system. 2026 * Therefore, it never starts with a '/'. the caller is responsible to provide 2027 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 2028 * the start point of the resulting string is returned. this pointer is within 2029 * dest, normally. 2030 * in case the path buffer would overflow, the pointer is decremented further 2031 * as if output was written to the buffer, though no more output is actually 2032 * generated. that way, the caller can determine how much space would be 2033 * required for the path to fit into the buffer. in that case, the returned 2034 * value will be smaller than dest. callers must check this! 2035 */ 2036 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 2037 u32 name_len, unsigned long name_off, 2038 struct extent_buffer *eb_in, u64 parent, 2039 char *dest, u32 size) 2040 { 2041 int slot; 2042 u64 next_inum; 2043 int ret; 2044 s64 bytes_left = ((s64)size) - 1; 2045 struct extent_buffer *eb = eb_in; 2046 struct btrfs_key found_key; 2047 struct btrfs_inode_ref *iref; 2048 2049 if (bytes_left >= 0) 2050 dest[bytes_left] = '\0'; 2051 2052 while (1) { 2053 bytes_left -= name_len; 2054 if (bytes_left >= 0) 2055 read_extent_buffer(eb, dest + bytes_left, 2056 name_off, name_len); 2057 if (eb != eb_in) { 2058 if (!path->skip_locking) 2059 btrfs_tree_read_unlock(eb); 2060 free_extent_buffer(eb); 2061 } 2062 ret = btrfs_find_item(fs_root, path, parent, 0, 2063 BTRFS_INODE_REF_KEY, &found_key); 2064 if (ret > 0) 2065 ret = -ENOENT; 2066 if (ret) 2067 break; 2068 2069 next_inum = found_key.offset; 2070 2071 /* regular exit ahead */ 2072 if (parent == next_inum) 2073 break; 2074 2075 slot = path->slots[0]; 2076 eb = path->nodes[0]; 2077 /* make sure we can use eb after releasing the path */ 2078 if (eb != eb_in) { 2079 path->nodes[0] = NULL; 2080 path->locks[0] = 0; 2081 } 2082 btrfs_release_path(path); 2083 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2084 2085 name_len = btrfs_inode_ref_name_len(eb, iref); 2086 name_off = (unsigned long)(iref + 1); 2087 2088 parent = next_inum; 2089 --bytes_left; 2090 if (bytes_left >= 0) 2091 dest[bytes_left] = '/'; 2092 } 2093 2094 btrfs_release_path(path); 2095 2096 if (ret) 2097 return ERR_PTR(ret); 2098 2099 return dest + bytes_left; 2100 } 2101 2102 /* 2103 * this makes the path point to (logical EXTENT_ITEM *) 2104 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 2105 * tree blocks and <0 on error. 2106 */ 2107 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 2108 struct btrfs_path *path, struct btrfs_key *found_key, 2109 u64 *flags_ret) 2110 { 2111 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 2112 int ret; 2113 u64 flags; 2114 u64 size = 0; 2115 u32 item_size; 2116 const struct extent_buffer *eb; 2117 struct btrfs_extent_item *ei; 2118 struct btrfs_key key; 2119 2120 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2121 key.type = BTRFS_METADATA_ITEM_KEY; 2122 else 2123 key.type = BTRFS_EXTENT_ITEM_KEY; 2124 key.objectid = logical; 2125 key.offset = (u64)-1; 2126 2127 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2128 if (ret < 0) 2129 return ret; 2130 2131 ret = btrfs_previous_extent_item(extent_root, path, 0); 2132 if (ret) { 2133 if (ret > 0) 2134 ret = -ENOENT; 2135 return ret; 2136 } 2137 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 2138 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 2139 size = fs_info->nodesize; 2140 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 2141 size = found_key->offset; 2142 2143 if (found_key->objectid > logical || 2144 found_key->objectid + size <= logical) { 2145 btrfs_debug(fs_info, 2146 "logical %llu is not within any extent", logical); 2147 return -ENOENT; 2148 } 2149 2150 eb = path->nodes[0]; 2151 item_size = btrfs_item_size(eb, path->slots[0]); 2152 BUG_ON(item_size < sizeof(*ei)); 2153 2154 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 2155 flags = btrfs_extent_flags(eb, ei); 2156 2157 btrfs_debug(fs_info, 2158 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 2159 logical, logical - found_key->objectid, found_key->objectid, 2160 found_key->offset, flags, item_size); 2161 2162 WARN_ON(!flags_ret); 2163 if (flags_ret) { 2164 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2165 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 2166 else if (flags & BTRFS_EXTENT_FLAG_DATA) 2167 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 2168 else 2169 BUG(); 2170 return 0; 2171 } 2172 2173 return -EIO; 2174 } 2175 2176 /* 2177 * helper function to iterate extent inline refs. ptr must point to a 0 value 2178 * for the first call and may be modified. it is used to track state. 2179 * if more refs exist, 0 is returned and the next call to 2180 * get_extent_inline_ref must pass the modified ptr parameter to get the 2181 * next ref. after the last ref was processed, 1 is returned. 2182 * returns <0 on error 2183 */ 2184 static int get_extent_inline_ref(unsigned long *ptr, 2185 const struct extent_buffer *eb, 2186 const struct btrfs_key *key, 2187 const struct btrfs_extent_item *ei, 2188 u32 item_size, 2189 struct btrfs_extent_inline_ref **out_eiref, 2190 int *out_type) 2191 { 2192 unsigned long end; 2193 u64 flags; 2194 struct btrfs_tree_block_info *info; 2195 2196 if (!*ptr) { 2197 /* first call */ 2198 flags = btrfs_extent_flags(eb, ei); 2199 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2200 if (key->type == BTRFS_METADATA_ITEM_KEY) { 2201 /* a skinny metadata extent */ 2202 *out_eiref = 2203 (struct btrfs_extent_inline_ref *)(ei + 1); 2204 } else { 2205 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 2206 info = (struct btrfs_tree_block_info *)(ei + 1); 2207 *out_eiref = 2208 (struct btrfs_extent_inline_ref *)(info + 1); 2209 } 2210 } else { 2211 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 2212 } 2213 *ptr = (unsigned long)*out_eiref; 2214 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 2215 return -ENOENT; 2216 } 2217 2218 end = (unsigned long)ei + item_size; 2219 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 2220 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 2221 BTRFS_REF_TYPE_ANY); 2222 if (*out_type == BTRFS_REF_TYPE_INVALID) 2223 return -EUCLEAN; 2224 2225 *ptr += btrfs_extent_inline_ref_size(*out_type); 2226 WARN_ON(*ptr > end); 2227 if (*ptr == end) 2228 return 1; /* last */ 2229 2230 return 0; 2231 } 2232 2233 /* 2234 * reads the tree block backref for an extent. tree level and root are returned 2235 * through out_level and out_root. ptr must point to a 0 value for the first 2236 * call and may be modified (see get_extent_inline_ref comment). 2237 * returns 0 if data was provided, 1 if there was no more data to provide or 2238 * <0 on error. 2239 */ 2240 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 2241 struct btrfs_key *key, struct btrfs_extent_item *ei, 2242 u32 item_size, u64 *out_root, u8 *out_level) 2243 { 2244 int ret; 2245 int type; 2246 struct btrfs_extent_inline_ref *eiref; 2247 2248 if (*ptr == (unsigned long)-1) 2249 return 1; 2250 2251 while (1) { 2252 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 2253 &eiref, &type); 2254 if (ret < 0) 2255 return ret; 2256 2257 if (type == BTRFS_TREE_BLOCK_REF_KEY || 2258 type == BTRFS_SHARED_BLOCK_REF_KEY) 2259 break; 2260 2261 if (ret == 1) 2262 return 1; 2263 } 2264 2265 /* we can treat both ref types equally here */ 2266 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 2267 2268 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 2269 struct btrfs_tree_block_info *info; 2270 2271 info = (struct btrfs_tree_block_info *)(ei + 1); 2272 *out_level = btrfs_tree_block_level(eb, info); 2273 } else { 2274 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 2275 *out_level = (u8)key->offset; 2276 } 2277 2278 if (ret == 1) 2279 *ptr = (unsigned long)-1; 2280 2281 return 0; 2282 } 2283 2284 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 2285 struct extent_inode_elem *inode_list, 2286 u64 root, u64 extent_item_objectid, 2287 iterate_extent_inodes_t *iterate, void *ctx) 2288 { 2289 struct extent_inode_elem *eie; 2290 int ret = 0; 2291 2292 for (eie = inode_list; eie; eie = eie->next) { 2293 btrfs_debug(fs_info, 2294 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 2295 extent_item_objectid, eie->inum, 2296 eie->offset, root); 2297 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx); 2298 if (ret) { 2299 btrfs_debug(fs_info, 2300 "stopping iteration for %llu due to ret=%d", 2301 extent_item_objectid, ret); 2302 break; 2303 } 2304 } 2305 2306 return ret; 2307 } 2308 2309 /* 2310 * calls iterate() for every inode that references the extent identified by 2311 * the given parameters. 2312 * when the iterator function returns a non-zero value, iteration stops. 2313 */ 2314 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, 2315 bool search_commit_root, 2316 iterate_extent_inodes_t *iterate, void *user_ctx) 2317 { 2318 int ret; 2319 struct ulist *refs; 2320 struct ulist_node *ref_node; 2321 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 2322 struct ulist_iterator ref_uiter; 2323 2324 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu", 2325 ctx->bytenr); 2326 2327 ASSERT(ctx->trans == NULL); 2328 ASSERT(ctx->roots == NULL); 2329 2330 if (!search_commit_root) { 2331 struct btrfs_trans_handle *trans; 2332 2333 trans = btrfs_attach_transaction(ctx->fs_info->tree_root); 2334 if (IS_ERR(trans)) { 2335 if (PTR_ERR(trans) != -ENOENT && 2336 PTR_ERR(trans) != -EROFS) 2337 return PTR_ERR(trans); 2338 trans = NULL; 2339 } 2340 ctx->trans = trans; 2341 } 2342 2343 if (ctx->trans) { 2344 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem); 2345 ctx->time_seq = seq_elem.seq; 2346 } else { 2347 down_read(&ctx->fs_info->commit_root_sem); 2348 } 2349 2350 ret = btrfs_find_all_leafs(ctx); 2351 if (ret) 2352 goto out; 2353 refs = ctx->refs; 2354 ctx->refs = NULL; 2355 2356 ULIST_ITER_INIT(&ref_uiter); 2357 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2358 const u64 leaf_bytenr = ref_node->val; 2359 struct ulist_node *root_node; 2360 struct ulist_iterator root_uiter; 2361 struct extent_inode_elem *inode_list; 2362 2363 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux; 2364 2365 if (ctx->cache_lookup) { 2366 const u64 *root_ids; 2367 int root_count; 2368 bool cached; 2369 2370 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx, 2371 &root_ids, &root_count); 2372 if (cached) { 2373 for (int i = 0; i < root_count; i++) { 2374 ret = iterate_leaf_refs(ctx->fs_info, 2375 inode_list, 2376 root_ids[i], 2377 leaf_bytenr, 2378 iterate, 2379 user_ctx); 2380 if (ret) 2381 break; 2382 } 2383 continue; 2384 } 2385 } 2386 2387 if (!ctx->roots) { 2388 ctx->roots = ulist_alloc(GFP_NOFS); 2389 if (!ctx->roots) { 2390 ret = -ENOMEM; 2391 break; 2392 } 2393 } 2394 2395 ctx->bytenr = leaf_bytenr; 2396 ret = btrfs_find_all_roots_safe(ctx); 2397 if (ret) 2398 break; 2399 2400 if (ctx->cache_store) 2401 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx); 2402 2403 ULIST_ITER_INIT(&root_uiter); 2404 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) { 2405 btrfs_debug(ctx->fs_info, 2406 "root %llu references leaf %llu, data list %#llx", 2407 root_node->val, ref_node->val, 2408 ref_node->aux); 2409 ret = iterate_leaf_refs(ctx->fs_info, inode_list, 2410 root_node->val, ctx->bytenr, 2411 iterate, user_ctx); 2412 } 2413 ulist_reinit(ctx->roots); 2414 } 2415 2416 free_leaf_list(refs); 2417 out: 2418 if (ctx->trans) { 2419 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem); 2420 btrfs_end_transaction(ctx->trans); 2421 ctx->trans = NULL; 2422 } else { 2423 up_read(&ctx->fs_info->commit_root_sem); 2424 } 2425 2426 ulist_free(ctx->roots); 2427 ctx->roots = NULL; 2428 2429 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP) 2430 ret = 0; 2431 2432 return ret; 2433 } 2434 2435 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx) 2436 { 2437 struct btrfs_data_container *inodes = ctx; 2438 const size_t c = 3 * sizeof(u64); 2439 2440 if (inodes->bytes_left >= c) { 2441 inodes->bytes_left -= c; 2442 inodes->val[inodes->elem_cnt] = inum; 2443 inodes->val[inodes->elem_cnt + 1] = offset; 2444 inodes->val[inodes->elem_cnt + 2] = root; 2445 inodes->elem_cnt += 3; 2446 } else { 2447 inodes->bytes_missing += c - inodes->bytes_left; 2448 inodes->bytes_left = 0; 2449 inodes->elem_missed += 3; 2450 } 2451 2452 return 0; 2453 } 2454 2455 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2456 struct btrfs_path *path, 2457 void *ctx, bool ignore_offset) 2458 { 2459 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 2460 int ret; 2461 u64 flags = 0; 2462 struct btrfs_key found_key; 2463 int search_commit_root = path->search_commit_root; 2464 2465 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2466 btrfs_release_path(path); 2467 if (ret < 0) 2468 return ret; 2469 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2470 return -EINVAL; 2471 2472 walk_ctx.bytenr = found_key.objectid; 2473 if (ignore_offset) 2474 walk_ctx.ignore_extent_item_pos = true; 2475 else 2476 walk_ctx.extent_item_pos = logical - found_key.objectid; 2477 walk_ctx.fs_info = fs_info; 2478 2479 return iterate_extent_inodes(&walk_ctx, search_commit_root, 2480 build_ino_list, ctx); 2481 } 2482 2483 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2484 struct extent_buffer *eb, struct inode_fs_paths *ipath); 2485 2486 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath) 2487 { 2488 int ret = 0; 2489 int slot; 2490 u32 cur; 2491 u32 len; 2492 u32 name_len; 2493 u64 parent = 0; 2494 int found = 0; 2495 struct btrfs_root *fs_root = ipath->fs_root; 2496 struct btrfs_path *path = ipath->btrfs_path; 2497 struct extent_buffer *eb; 2498 struct btrfs_inode_ref *iref; 2499 struct btrfs_key found_key; 2500 2501 while (!ret) { 2502 ret = btrfs_find_item(fs_root, path, inum, 2503 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2504 &found_key); 2505 2506 if (ret < 0) 2507 break; 2508 if (ret) { 2509 ret = found ? 0 : -ENOENT; 2510 break; 2511 } 2512 ++found; 2513 2514 parent = found_key.offset; 2515 slot = path->slots[0]; 2516 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2517 if (!eb) { 2518 ret = -ENOMEM; 2519 break; 2520 } 2521 btrfs_release_path(path); 2522 2523 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2524 2525 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2526 name_len = btrfs_inode_ref_name_len(eb, iref); 2527 /* path must be released before calling iterate()! */ 2528 btrfs_debug(fs_root->fs_info, 2529 "following ref at offset %u for inode %llu in tree %llu", 2530 cur, found_key.objectid, 2531 fs_root->root_key.objectid); 2532 ret = inode_to_path(parent, name_len, 2533 (unsigned long)(iref + 1), eb, ipath); 2534 if (ret) 2535 break; 2536 len = sizeof(*iref) + name_len; 2537 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2538 } 2539 free_extent_buffer(eb); 2540 } 2541 2542 btrfs_release_path(path); 2543 2544 return ret; 2545 } 2546 2547 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath) 2548 { 2549 int ret; 2550 int slot; 2551 u64 offset = 0; 2552 u64 parent; 2553 int found = 0; 2554 struct btrfs_root *fs_root = ipath->fs_root; 2555 struct btrfs_path *path = ipath->btrfs_path; 2556 struct extent_buffer *eb; 2557 struct btrfs_inode_extref *extref; 2558 u32 item_size; 2559 u32 cur_offset; 2560 unsigned long ptr; 2561 2562 while (1) { 2563 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2564 &offset); 2565 if (ret < 0) 2566 break; 2567 if (ret) { 2568 ret = found ? 0 : -ENOENT; 2569 break; 2570 } 2571 ++found; 2572 2573 slot = path->slots[0]; 2574 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2575 if (!eb) { 2576 ret = -ENOMEM; 2577 break; 2578 } 2579 btrfs_release_path(path); 2580 2581 item_size = btrfs_item_size(eb, slot); 2582 ptr = btrfs_item_ptr_offset(eb, slot); 2583 cur_offset = 0; 2584 2585 while (cur_offset < item_size) { 2586 u32 name_len; 2587 2588 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2589 parent = btrfs_inode_extref_parent(eb, extref); 2590 name_len = btrfs_inode_extref_name_len(eb, extref); 2591 ret = inode_to_path(parent, name_len, 2592 (unsigned long)&extref->name, eb, ipath); 2593 if (ret) 2594 break; 2595 2596 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2597 cur_offset += sizeof(*extref); 2598 } 2599 free_extent_buffer(eb); 2600 2601 offset++; 2602 } 2603 2604 btrfs_release_path(path); 2605 2606 return ret; 2607 } 2608 2609 /* 2610 * returns 0 if the path could be dumped (probably truncated) 2611 * returns <0 in case of an error 2612 */ 2613 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2614 struct extent_buffer *eb, struct inode_fs_paths *ipath) 2615 { 2616 char *fspath; 2617 char *fspath_min; 2618 int i = ipath->fspath->elem_cnt; 2619 const int s_ptr = sizeof(char *); 2620 u32 bytes_left; 2621 2622 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2623 ipath->fspath->bytes_left - s_ptr : 0; 2624 2625 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2626 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2627 name_off, eb, inum, fspath_min, bytes_left); 2628 if (IS_ERR(fspath)) 2629 return PTR_ERR(fspath); 2630 2631 if (fspath > fspath_min) { 2632 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2633 ++ipath->fspath->elem_cnt; 2634 ipath->fspath->bytes_left = fspath - fspath_min; 2635 } else { 2636 ++ipath->fspath->elem_missed; 2637 ipath->fspath->bytes_missing += fspath_min - fspath; 2638 ipath->fspath->bytes_left = 0; 2639 } 2640 2641 return 0; 2642 } 2643 2644 /* 2645 * this dumps all file system paths to the inode into the ipath struct, provided 2646 * is has been created large enough. each path is zero-terminated and accessed 2647 * from ipath->fspath->val[i]. 2648 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2649 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2650 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2651 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2652 * have been needed to return all paths. 2653 */ 2654 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2655 { 2656 int ret; 2657 int found_refs = 0; 2658 2659 ret = iterate_inode_refs(inum, ipath); 2660 if (!ret) 2661 ++found_refs; 2662 else if (ret != -ENOENT) 2663 return ret; 2664 2665 ret = iterate_inode_extrefs(inum, ipath); 2666 if (ret == -ENOENT && found_refs) 2667 return 0; 2668 2669 return ret; 2670 } 2671 2672 struct btrfs_data_container *init_data_container(u32 total_bytes) 2673 { 2674 struct btrfs_data_container *data; 2675 size_t alloc_bytes; 2676 2677 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2678 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2679 if (!data) 2680 return ERR_PTR(-ENOMEM); 2681 2682 if (total_bytes >= sizeof(*data)) { 2683 data->bytes_left = total_bytes - sizeof(*data); 2684 data->bytes_missing = 0; 2685 } else { 2686 data->bytes_missing = sizeof(*data) - total_bytes; 2687 data->bytes_left = 0; 2688 } 2689 2690 data->elem_cnt = 0; 2691 data->elem_missed = 0; 2692 2693 return data; 2694 } 2695 2696 /* 2697 * allocates space to return multiple file system paths for an inode. 2698 * total_bytes to allocate are passed, note that space usable for actual path 2699 * information will be total_bytes - sizeof(struct inode_fs_paths). 2700 * the returned pointer must be freed with free_ipath() in the end. 2701 */ 2702 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2703 struct btrfs_path *path) 2704 { 2705 struct inode_fs_paths *ifp; 2706 struct btrfs_data_container *fspath; 2707 2708 fspath = init_data_container(total_bytes); 2709 if (IS_ERR(fspath)) 2710 return ERR_CAST(fspath); 2711 2712 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2713 if (!ifp) { 2714 kvfree(fspath); 2715 return ERR_PTR(-ENOMEM); 2716 } 2717 2718 ifp->btrfs_path = path; 2719 ifp->fspath = fspath; 2720 ifp->fs_root = fs_root; 2721 2722 return ifp; 2723 } 2724 2725 void free_ipath(struct inode_fs_paths *ipath) 2726 { 2727 if (!ipath) 2728 return; 2729 kvfree(ipath->fspath); 2730 kfree(ipath); 2731 } 2732 2733 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info) 2734 { 2735 struct btrfs_backref_iter *ret; 2736 2737 ret = kzalloc(sizeof(*ret), GFP_NOFS); 2738 if (!ret) 2739 return NULL; 2740 2741 ret->path = btrfs_alloc_path(); 2742 if (!ret->path) { 2743 kfree(ret); 2744 return NULL; 2745 } 2746 2747 /* Current backref iterator only supports iteration in commit root */ 2748 ret->path->search_commit_root = 1; 2749 ret->path->skip_locking = 1; 2750 ret->fs_info = fs_info; 2751 2752 return ret; 2753 } 2754 2755 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2756 { 2757 struct btrfs_fs_info *fs_info = iter->fs_info; 2758 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2759 struct btrfs_path *path = iter->path; 2760 struct btrfs_extent_item *ei; 2761 struct btrfs_key key; 2762 int ret; 2763 2764 key.objectid = bytenr; 2765 key.type = BTRFS_METADATA_ITEM_KEY; 2766 key.offset = (u64)-1; 2767 iter->bytenr = bytenr; 2768 2769 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2770 if (ret < 0) 2771 return ret; 2772 if (ret == 0) { 2773 ret = -EUCLEAN; 2774 goto release; 2775 } 2776 if (path->slots[0] == 0) { 2777 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2778 ret = -EUCLEAN; 2779 goto release; 2780 } 2781 path->slots[0]--; 2782 2783 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2784 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2785 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2786 ret = -ENOENT; 2787 goto release; 2788 } 2789 memcpy(&iter->cur_key, &key, sizeof(key)); 2790 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2791 path->slots[0]); 2792 iter->end_ptr = (u32)(iter->item_ptr + 2793 btrfs_item_size(path->nodes[0], path->slots[0])); 2794 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2795 struct btrfs_extent_item); 2796 2797 /* 2798 * Only support iteration on tree backref yet. 2799 * 2800 * This is an extra precaution for non skinny-metadata, where 2801 * EXTENT_ITEM is also used for tree blocks, that we can only use 2802 * extent flags to determine if it's a tree block. 2803 */ 2804 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2805 ret = -ENOTSUPP; 2806 goto release; 2807 } 2808 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2809 2810 /* If there is no inline backref, go search for keyed backref */ 2811 if (iter->cur_ptr >= iter->end_ptr) { 2812 ret = btrfs_next_item(extent_root, path); 2813 2814 /* No inline nor keyed ref */ 2815 if (ret > 0) { 2816 ret = -ENOENT; 2817 goto release; 2818 } 2819 if (ret < 0) 2820 goto release; 2821 2822 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2823 path->slots[0]); 2824 if (iter->cur_key.objectid != bytenr || 2825 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2826 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2827 ret = -ENOENT; 2828 goto release; 2829 } 2830 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2831 path->slots[0]); 2832 iter->item_ptr = iter->cur_ptr; 2833 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2834 path->nodes[0], path->slots[0])); 2835 } 2836 2837 return 0; 2838 release: 2839 btrfs_backref_iter_release(iter); 2840 return ret; 2841 } 2842 2843 /* 2844 * Go to the next backref item of current bytenr, can be either inlined or 2845 * keyed. 2846 * 2847 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2848 * 2849 * Return 0 if we get next backref without problem. 2850 * Return >0 if there is no extra backref for this bytenr. 2851 * Return <0 if there is something wrong happened. 2852 */ 2853 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2854 { 2855 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2856 struct btrfs_root *extent_root; 2857 struct btrfs_path *path = iter->path; 2858 struct btrfs_extent_inline_ref *iref; 2859 int ret; 2860 u32 size; 2861 2862 if (btrfs_backref_iter_is_inline_ref(iter)) { 2863 /* We're still inside the inline refs */ 2864 ASSERT(iter->cur_ptr < iter->end_ptr); 2865 2866 if (btrfs_backref_has_tree_block_info(iter)) { 2867 /* First tree block info */ 2868 size = sizeof(struct btrfs_tree_block_info); 2869 } else { 2870 /* Use inline ref type to determine the size */ 2871 int type; 2872 2873 iref = (struct btrfs_extent_inline_ref *) 2874 ((unsigned long)iter->cur_ptr); 2875 type = btrfs_extent_inline_ref_type(eb, iref); 2876 2877 size = btrfs_extent_inline_ref_size(type); 2878 } 2879 iter->cur_ptr += size; 2880 if (iter->cur_ptr < iter->end_ptr) 2881 return 0; 2882 2883 /* All inline items iterated, fall through */ 2884 } 2885 2886 /* We're at keyed items, there is no inline item, go to the next one */ 2887 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); 2888 ret = btrfs_next_item(extent_root, iter->path); 2889 if (ret) 2890 return ret; 2891 2892 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2893 if (iter->cur_key.objectid != iter->bytenr || 2894 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2895 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2896 return 1; 2897 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2898 path->slots[0]); 2899 iter->cur_ptr = iter->item_ptr; 2900 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 2901 path->slots[0]); 2902 return 0; 2903 } 2904 2905 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 2906 struct btrfs_backref_cache *cache, int is_reloc) 2907 { 2908 int i; 2909 2910 cache->rb_root = RB_ROOT; 2911 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2912 INIT_LIST_HEAD(&cache->pending[i]); 2913 INIT_LIST_HEAD(&cache->changed); 2914 INIT_LIST_HEAD(&cache->detached); 2915 INIT_LIST_HEAD(&cache->leaves); 2916 INIT_LIST_HEAD(&cache->pending_edge); 2917 INIT_LIST_HEAD(&cache->useless_node); 2918 cache->fs_info = fs_info; 2919 cache->is_reloc = is_reloc; 2920 } 2921 2922 struct btrfs_backref_node *btrfs_backref_alloc_node( 2923 struct btrfs_backref_cache *cache, u64 bytenr, int level) 2924 { 2925 struct btrfs_backref_node *node; 2926 2927 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 2928 node = kzalloc(sizeof(*node), GFP_NOFS); 2929 if (!node) 2930 return node; 2931 2932 INIT_LIST_HEAD(&node->list); 2933 INIT_LIST_HEAD(&node->upper); 2934 INIT_LIST_HEAD(&node->lower); 2935 RB_CLEAR_NODE(&node->rb_node); 2936 cache->nr_nodes++; 2937 node->level = level; 2938 node->bytenr = bytenr; 2939 2940 return node; 2941 } 2942 2943 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 2944 struct btrfs_backref_cache *cache) 2945 { 2946 struct btrfs_backref_edge *edge; 2947 2948 edge = kzalloc(sizeof(*edge), GFP_NOFS); 2949 if (edge) 2950 cache->nr_edges++; 2951 return edge; 2952 } 2953 2954 /* 2955 * Drop the backref node from cache, also cleaning up all its 2956 * upper edges and any uncached nodes in the path. 2957 * 2958 * This cleanup happens bottom up, thus the node should either 2959 * be the lowest node in the cache or a detached node. 2960 */ 2961 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 2962 struct btrfs_backref_node *node) 2963 { 2964 struct btrfs_backref_node *upper; 2965 struct btrfs_backref_edge *edge; 2966 2967 if (!node) 2968 return; 2969 2970 BUG_ON(!node->lowest && !node->detached); 2971 while (!list_empty(&node->upper)) { 2972 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 2973 list[LOWER]); 2974 upper = edge->node[UPPER]; 2975 list_del(&edge->list[LOWER]); 2976 list_del(&edge->list[UPPER]); 2977 btrfs_backref_free_edge(cache, edge); 2978 2979 /* 2980 * Add the node to leaf node list if no other child block 2981 * cached. 2982 */ 2983 if (list_empty(&upper->lower)) { 2984 list_add_tail(&upper->lower, &cache->leaves); 2985 upper->lowest = 1; 2986 } 2987 } 2988 2989 btrfs_backref_drop_node(cache, node); 2990 } 2991 2992 /* 2993 * Release all nodes/edges from current cache 2994 */ 2995 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 2996 { 2997 struct btrfs_backref_node *node; 2998 int i; 2999 3000 while (!list_empty(&cache->detached)) { 3001 node = list_entry(cache->detached.next, 3002 struct btrfs_backref_node, list); 3003 btrfs_backref_cleanup_node(cache, node); 3004 } 3005 3006 while (!list_empty(&cache->leaves)) { 3007 node = list_entry(cache->leaves.next, 3008 struct btrfs_backref_node, lower); 3009 btrfs_backref_cleanup_node(cache, node); 3010 } 3011 3012 cache->last_trans = 0; 3013 3014 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 3015 ASSERT(list_empty(&cache->pending[i])); 3016 ASSERT(list_empty(&cache->pending_edge)); 3017 ASSERT(list_empty(&cache->useless_node)); 3018 ASSERT(list_empty(&cache->changed)); 3019 ASSERT(list_empty(&cache->detached)); 3020 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 3021 ASSERT(!cache->nr_nodes); 3022 ASSERT(!cache->nr_edges); 3023 } 3024 3025 /* 3026 * Handle direct tree backref 3027 * 3028 * Direct tree backref means, the backref item shows its parent bytenr 3029 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 3030 * 3031 * @ref_key: The converted backref key. 3032 * For keyed backref, it's the item key. 3033 * For inlined backref, objectid is the bytenr, 3034 * type is btrfs_inline_ref_type, offset is 3035 * btrfs_inline_ref_offset. 3036 */ 3037 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 3038 struct btrfs_key *ref_key, 3039 struct btrfs_backref_node *cur) 3040 { 3041 struct btrfs_backref_edge *edge; 3042 struct btrfs_backref_node *upper; 3043 struct rb_node *rb_node; 3044 3045 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 3046 3047 /* Only reloc root uses backref pointing to itself */ 3048 if (ref_key->objectid == ref_key->offset) { 3049 struct btrfs_root *root; 3050 3051 cur->is_reloc_root = 1; 3052 /* Only reloc backref cache cares about a specific root */ 3053 if (cache->is_reloc) { 3054 root = find_reloc_root(cache->fs_info, cur->bytenr); 3055 if (!root) 3056 return -ENOENT; 3057 cur->root = root; 3058 } else { 3059 /* 3060 * For generic purpose backref cache, reloc root node 3061 * is useless. 3062 */ 3063 list_add(&cur->list, &cache->useless_node); 3064 } 3065 return 0; 3066 } 3067 3068 edge = btrfs_backref_alloc_edge(cache); 3069 if (!edge) 3070 return -ENOMEM; 3071 3072 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 3073 if (!rb_node) { 3074 /* Parent node not yet cached */ 3075 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 3076 cur->level + 1); 3077 if (!upper) { 3078 btrfs_backref_free_edge(cache, edge); 3079 return -ENOMEM; 3080 } 3081 3082 /* 3083 * Backrefs for the upper level block isn't cached, add the 3084 * block to pending list 3085 */ 3086 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3087 } else { 3088 /* Parent node already cached */ 3089 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 3090 ASSERT(upper->checked); 3091 INIT_LIST_HEAD(&edge->list[UPPER]); 3092 } 3093 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 3094 return 0; 3095 } 3096 3097 /* 3098 * Handle indirect tree backref 3099 * 3100 * Indirect tree backref means, we only know which tree the node belongs to. 3101 * We still need to do a tree search to find out the parents. This is for 3102 * TREE_BLOCK_REF backref (keyed or inlined). 3103 * 3104 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 3105 * @tree_key: The first key of this tree block. 3106 * @path: A clean (released) path, to avoid allocating path every time 3107 * the function get called. 3108 */ 3109 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 3110 struct btrfs_path *path, 3111 struct btrfs_key *ref_key, 3112 struct btrfs_key *tree_key, 3113 struct btrfs_backref_node *cur) 3114 { 3115 struct btrfs_fs_info *fs_info = cache->fs_info; 3116 struct btrfs_backref_node *upper; 3117 struct btrfs_backref_node *lower; 3118 struct btrfs_backref_edge *edge; 3119 struct extent_buffer *eb; 3120 struct btrfs_root *root; 3121 struct rb_node *rb_node; 3122 int level; 3123 bool need_check = true; 3124 int ret; 3125 3126 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 3127 if (IS_ERR(root)) 3128 return PTR_ERR(root); 3129 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3130 cur->cowonly = 1; 3131 3132 if (btrfs_root_level(&root->root_item) == cur->level) { 3133 /* Tree root */ 3134 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 3135 /* 3136 * For reloc backref cache, we may ignore reloc root. But for 3137 * general purpose backref cache, we can't rely on 3138 * btrfs_should_ignore_reloc_root() as it may conflict with 3139 * current running relocation and lead to missing root. 3140 * 3141 * For general purpose backref cache, reloc root detection is 3142 * completely relying on direct backref (key->offset is parent 3143 * bytenr), thus only do such check for reloc cache. 3144 */ 3145 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 3146 btrfs_put_root(root); 3147 list_add(&cur->list, &cache->useless_node); 3148 } else { 3149 cur->root = root; 3150 } 3151 return 0; 3152 } 3153 3154 level = cur->level + 1; 3155 3156 /* Search the tree to find parent blocks referring to the block */ 3157 path->search_commit_root = 1; 3158 path->skip_locking = 1; 3159 path->lowest_level = level; 3160 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 3161 path->lowest_level = 0; 3162 if (ret < 0) { 3163 btrfs_put_root(root); 3164 return ret; 3165 } 3166 if (ret > 0 && path->slots[level] > 0) 3167 path->slots[level]--; 3168 3169 eb = path->nodes[level]; 3170 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 3171 btrfs_err(fs_info, 3172 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 3173 cur->bytenr, level - 1, root->root_key.objectid, 3174 tree_key->objectid, tree_key->type, tree_key->offset); 3175 btrfs_put_root(root); 3176 ret = -ENOENT; 3177 goto out; 3178 } 3179 lower = cur; 3180 3181 /* Add all nodes and edges in the path */ 3182 for (; level < BTRFS_MAX_LEVEL; level++) { 3183 if (!path->nodes[level]) { 3184 ASSERT(btrfs_root_bytenr(&root->root_item) == 3185 lower->bytenr); 3186 /* Same as previous should_ignore_reloc_root() call */ 3187 if (btrfs_should_ignore_reloc_root(root) && 3188 cache->is_reloc) { 3189 btrfs_put_root(root); 3190 list_add(&lower->list, &cache->useless_node); 3191 } else { 3192 lower->root = root; 3193 } 3194 break; 3195 } 3196 3197 edge = btrfs_backref_alloc_edge(cache); 3198 if (!edge) { 3199 btrfs_put_root(root); 3200 ret = -ENOMEM; 3201 goto out; 3202 } 3203 3204 eb = path->nodes[level]; 3205 rb_node = rb_simple_search(&cache->rb_root, eb->start); 3206 if (!rb_node) { 3207 upper = btrfs_backref_alloc_node(cache, eb->start, 3208 lower->level + 1); 3209 if (!upper) { 3210 btrfs_put_root(root); 3211 btrfs_backref_free_edge(cache, edge); 3212 ret = -ENOMEM; 3213 goto out; 3214 } 3215 upper->owner = btrfs_header_owner(eb); 3216 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3217 upper->cowonly = 1; 3218 3219 /* 3220 * If we know the block isn't shared we can avoid 3221 * checking its backrefs. 3222 */ 3223 if (btrfs_block_can_be_shared(root, eb)) 3224 upper->checked = 0; 3225 else 3226 upper->checked = 1; 3227 3228 /* 3229 * Add the block to pending list if we need to check its 3230 * backrefs, we only do this once while walking up a 3231 * tree as we will catch anything else later on. 3232 */ 3233 if (!upper->checked && need_check) { 3234 need_check = false; 3235 list_add_tail(&edge->list[UPPER], 3236 &cache->pending_edge); 3237 } else { 3238 if (upper->checked) 3239 need_check = true; 3240 INIT_LIST_HEAD(&edge->list[UPPER]); 3241 } 3242 } else { 3243 upper = rb_entry(rb_node, struct btrfs_backref_node, 3244 rb_node); 3245 ASSERT(upper->checked); 3246 INIT_LIST_HEAD(&edge->list[UPPER]); 3247 if (!upper->owner) 3248 upper->owner = btrfs_header_owner(eb); 3249 } 3250 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 3251 3252 if (rb_node) { 3253 btrfs_put_root(root); 3254 break; 3255 } 3256 lower = upper; 3257 upper = NULL; 3258 } 3259 out: 3260 btrfs_release_path(path); 3261 return ret; 3262 } 3263 3264 /* 3265 * Add backref node @cur into @cache. 3266 * 3267 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 3268 * links aren't yet bi-directional. Needs to finish such links. 3269 * Use btrfs_backref_finish_upper_links() to finish such linkage. 3270 * 3271 * @path: Released path for indirect tree backref lookup 3272 * @iter: Released backref iter for extent tree search 3273 * @node_key: The first key of the tree block 3274 */ 3275 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 3276 struct btrfs_path *path, 3277 struct btrfs_backref_iter *iter, 3278 struct btrfs_key *node_key, 3279 struct btrfs_backref_node *cur) 3280 { 3281 struct btrfs_fs_info *fs_info = cache->fs_info; 3282 struct btrfs_backref_edge *edge; 3283 struct btrfs_backref_node *exist; 3284 int ret; 3285 3286 ret = btrfs_backref_iter_start(iter, cur->bytenr); 3287 if (ret < 0) 3288 return ret; 3289 /* 3290 * We skip the first btrfs_tree_block_info, as we don't use the key 3291 * stored in it, but fetch it from the tree block 3292 */ 3293 if (btrfs_backref_has_tree_block_info(iter)) { 3294 ret = btrfs_backref_iter_next(iter); 3295 if (ret < 0) 3296 goto out; 3297 /* No extra backref? This means the tree block is corrupted */ 3298 if (ret > 0) { 3299 ret = -EUCLEAN; 3300 goto out; 3301 } 3302 } 3303 WARN_ON(cur->checked); 3304 if (!list_empty(&cur->upper)) { 3305 /* 3306 * The backref was added previously when processing backref of 3307 * type BTRFS_TREE_BLOCK_REF_KEY 3308 */ 3309 ASSERT(list_is_singular(&cur->upper)); 3310 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 3311 list[LOWER]); 3312 ASSERT(list_empty(&edge->list[UPPER])); 3313 exist = edge->node[UPPER]; 3314 /* 3315 * Add the upper level block to pending list if we need check 3316 * its backrefs 3317 */ 3318 if (!exist->checked) 3319 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3320 } else { 3321 exist = NULL; 3322 } 3323 3324 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 3325 struct extent_buffer *eb; 3326 struct btrfs_key key; 3327 int type; 3328 3329 cond_resched(); 3330 eb = btrfs_backref_get_eb(iter); 3331 3332 key.objectid = iter->bytenr; 3333 if (btrfs_backref_iter_is_inline_ref(iter)) { 3334 struct btrfs_extent_inline_ref *iref; 3335 3336 /* Update key for inline backref */ 3337 iref = (struct btrfs_extent_inline_ref *) 3338 ((unsigned long)iter->cur_ptr); 3339 type = btrfs_get_extent_inline_ref_type(eb, iref, 3340 BTRFS_REF_TYPE_BLOCK); 3341 if (type == BTRFS_REF_TYPE_INVALID) { 3342 ret = -EUCLEAN; 3343 goto out; 3344 } 3345 key.type = type; 3346 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3347 } else { 3348 key.type = iter->cur_key.type; 3349 key.offset = iter->cur_key.offset; 3350 } 3351 3352 /* 3353 * Parent node found and matches current inline ref, no need to 3354 * rebuild this node for this inline ref 3355 */ 3356 if (exist && 3357 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 3358 exist->owner == key.offset) || 3359 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 3360 exist->bytenr == key.offset))) { 3361 exist = NULL; 3362 continue; 3363 } 3364 3365 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 3366 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 3367 ret = handle_direct_tree_backref(cache, &key, cur); 3368 if (ret < 0) 3369 goto out; 3370 continue; 3371 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 3372 ret = -EINVAL; 3373 btrfs_print_v0_err(fs_info); 3374 btrfs_handle_fs_error(fs_info, ret, NULL); 3375 goto out; 3376 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 3377 continue; 3378 } 3379 3380 /* 3381 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 3382 * means the root objectid. We need to search the tree to get 3383 * its parent bytenr. 3384 */ 3385 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 3386 cur); 3387 if (ret < 0) 3388 goto out; 3389 } 3390 ret = 0; 3391 cur->checked = 1; 3392 WARN_ON(exist); 3393 out: 3394 btrfs_backref_iter_release(iter); 3395 return ret; 3396 } 3397 3398 /* 3399 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 3400 */ 3401 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 3402 struct btrfs_backref_node *start) 3403 { 3404 struct list_head *useless_node = &cache->useless_node; 3405 struct btrfs_backref_edge *edge; 3406 struct rb_node *rb_node; 3407 LIST_HEAD(pending_edge); 3408 3409 ASSERT(start->checked); 3410 3411 /* Insert this node to cache if it's not COW-only */ 3412 if (!start->cowonly) { 3413 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 3414 &start->rb_node); 3415 if (rb_node) 3416 btrfs_backref_panic(cache->fs_info, start->bytenr, 3417 -EEXIST); 3418 list_add_tail(&start->lower, &cache->leaves); 3419 } 3420 3421 /* 3422 * Use breadth first search to iterate all related edges. 3423 * 3424 * The starting points are all the edges of this node 3425 */ 3426 list_for_each_entry(edge, &start->upper, list[LOWER]) 3427 list_add_tail(&edge->list[UPPER], &pending_edge); 3428 3429 while (!list_empty(&pending_edge)) { 3430 struct btrfs_backref_node *upper; 3431 struct btrfs_backref_node *lower; 3432 3433 edge = list_first_entry(&pending_edge, 3434 struct btrfs_backref_edge, list[UPPER]); 3435 list_del_init(&edge->list[UPPER]); 3436 upper = edge->node[UPPER]; 3437 lower = edge->node[LOWER]; 3438 3439 /* Parent is detached, no need to keep any edges */ 3440 if (upper->detached) { 3441 list_del(&edge->list[LOWER]); 3442 btrfs_backref_free_edge(cache, edge); 3443 3444 /* Lower node is orphan, queue for cleanup */ 3445 if (list_empty(&lower->upper)) 3446 list_add(&lower->list, useless_node); 3447 continue; 3448 } 3449 3450 /* 3451 * All new nodes added in current build_backref_tree() haven't 3452 * been linked to the cache rb tree. 3453 * So if we have upper->rb_node populated, this means a cache 3454 * hit. We only need to link the edge, as @upper and all its 3455 * parents have already been linked. 3456 */ 3457 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3458 if (upper->lowest) { 3459 list_del_init(&upper->lower); 3460 upper->lowest = 0; 3461 } 3462 3463 list_add_tail(&edge->list[UPPER], &upper->lower); 3464 continue; 3465 } 3466 3467 /* Sanity check, we shouldn't have any unchecked nodes */ 3468 if (!upper->checked) { 3469 ASSERT(0); 3470 return -EUCLEAN; 3471 } 3472 3473 /* Sanity check, COW-only node has non-COW-only parent */ 3474 if (start->cowonly != upper->cowonly) { 3475 ASSERT(0); 3476 return -EUCLEAN; 3477 } 3478 3479 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3480 if (!upper->cowonly) { 3481 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3482 &upper->rb_node); 3483 if (rb_node) { 3484 btrfs_backref_panic(cache->fs_info, 3485 upper->bytenr, -EEXIST); 3486 return -EUCLEAN; 3487 } 3488 } 3489 3490 list_add_tail(&edge->list[UPPER], &upper->lower); 3491 3492 /* 3493 * Also queue all the parent edges of this uncached node 3494 * to finish the upper linkage 3495 */ 3496 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3497 list_add_tail(&edge->list[UPPER], &pending_edge); 3498 } 3499 return 0; 3500 } 3501 3502 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3503 struct btrfs_backref_node *node) 3504 { 3505 struct btrfs_backref_node *lower; 3506 struct btrfs_backref_node *upper; 3507 struct btrfs_backref_edge *edge; 3508 3509 while (!list_empty(&cache->useless_node)) { 3510 lower = list_first_entry(&cache->useless_node, 3511 struct btrfs_backref_node, list); 3512 list_del_init(&lower->list); 3513 } 3514 while (!list_empty(&cache->pending_edge)) { 3515 edge = list_first_entry(&cache->pending_edge, 3516 struct btrfs_backref_edge, list[UPPER]); 3517 list_del(&edge->list[UPPER]); 3518 list_del(&edge->list[LOWER]); 3519 lower = edge->node[LOWER]; 3520 upper = edge->node[UPPER]; 3521 btrfs_backref_free_edge(cache, edge); 3522 3523 /* 3524 * Lower is no longer linked to any upper backref nodes and 3525 * isn't in the cache, we can free it ourselves. 3526 */ 3527 if (list_empty(&lower->upper) && 3528 RB_EMPTY_NODE(&lower->rb_node)) 3529 list_add(&lower->list, &cache->useless_node); 3530 3531 if (!RB_EMPTY_NODE(&upper->rb_node)) 3532 continue; 3533 3534 /* Add this guy's upper edges to the list to process */ 3535 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3536 list_add_tail(&edge->list[UPPER], 3537 &cache->pending_edge); 3538 if (list_empty(&upper->upper)) 3539 list_add(&upper->list, &cache->useless_node); 3540 } 3541 3542 while (!list_empty(&cache->useless_node)) { 3543 lower = list_first_entry(&cache->useless_node, 3544 struct btrfs_backref_node, list); 3545 list_del_init(&lower->list); 3546 if (lower == node) 3547 node = NULL; 3548 btrfs_backref_drop_node(cache, lower); 3549 } 3550 3551 btrfs_backref_cleanup_node(cache, node); 3552 ASSERT(list_empty(&cache->useless_node) && 3553 list_empty(&cache->pending_edge)); 3554 } 3555