1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 #include "tree-mod-log.h" 18 #include "fs.h" 19 #include "accessors.h" 20 #include "extent-tree.h" 21 #include "relocation.h" 22 23 /* Just arbitrary numbers so we can be sure one of these happened. */ 24 #define BACKREF_FOUND_SHARED 6 25 #define BACKREF_FOUND_NOT_SHARED 7 26 27 struct extent_inode_elem { 28 u64 inum; 29 u64 offset; 30 u64 num_bytes; 31 struct extent_inode_elem *next; 32 }; 33 34 static int check_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 35 const struct btrfs_key *key, 36 const struct extent_buffer *eb, 37 const struct btrfs_file_extent_item *fi, 38 struct extent_inode_elem **eie) 39 { 40 const u64 data_len = btrfs_file_extent_num_bytes(eb, fi); 41 u64 offset = key->offset; 42 struct extent_inode_elem *e; 43 const u64 *root_ids; 44 int root_count; 45 bool cached; 46 47 if (!btrfs_file_extent_compression(eb, fi) && 48 !btrfs_file_extent_encryption(eb, fi) && 49 !btrfs_file_extent_other_encoding(eb, fi)) { 50 u64 data_offset; 51 52 data_offset = btrfs_file_extent_offset(eb, fi); 53 54 if (ctx->extent_item_pos < data_offset || 55 ctx->extent_item_pos >= data_offset + data_len) 56 return 1; 57 offset += ctx->extent_item_pos - data_offset; 58 } 59 60 if (!ctx->indirect_ref_iterator || !ctx->cache_lookup) 61 goto add_inode_elem; 62 63 cached = ctx->cache_lookup(eb->start, ctx->user_ctx, &root_ids, 64 &root_count); 65 if (!cached) 66 goto add_inode_elem; 67 68 for (int i = 0; i < root_count; i++) { 69 int ret; 70 71 ret = ctx->indirect_ref_iterator(key->objectid, offset, 72 data_len, root_ids[i], 73 ctx->user_ctx); 74 if (ret) 75 return ret; 76 } 77 78 add_inode_elem: 79 e = kmalloc(sizeof(*e), GFP_NOFS); 80 if (!e) 81 return -ENOMEM; 82 83 e->next = *eie; 84 e->inum = key->objectid; 85 e->offset = offset; 86 e->num_bytes = data_len; 87 *eie = e; 88 89 return 0; 90 } 91 92 static void free_inode_elem_list(struct extent_inode_elem *eie) 93 { 94 struct extent_inode_elem *eie_next; 95 96 for (; eie; eie = eie_next) { 97 eie_next = eie->next; 98 kfree(eie); 99 } 100 } 101 102 static int find_extent_in_eb(struct btrfs_backref_walk_ctx *ctx, 103 const struct extent_buffer *eb, 104 struct extent_inode_elem **eie) 105 { 106 u64 disk_byte; 107 struct btrfs_key key; 108 struct btrfs_file_extent_item *fi; 109 int slot; 110 int nritems; 111 int extent_type; 112 int ret; 113 114 /* 115 * from the shared data ref, we only have the leaf but we need 116 * the key. thus, we must look into all items and see that we 117 * find one (some) with a reference to our extent item. 118 */ 119 nritems = btrfs_header_nritems(eb); 120 for (slot = 0; slot < nritems; ++slot) { 121 btrfs_item_key_to_cpu(eb, &key, slot); 122 if (key.type != BTRFS_EXTENT_DATA_KEY) 123 continue; 124 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 125 extent_type = btrfs_file_extent_type(eb, fi); 126 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 127 continue; 128 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 129 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 130 if (disk_byte != ctx->bytenr) 131 continue; 132 133 ret = check_extent_in_eb(ctx, &key, eb, fi, eie); 134 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 135 return ret; 136 } 137 138 return 0; 139 } 140 141 struct preftree { 142 struct rb_root_cached root; 143 unsigned int count; 144 }; 145 146 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 147 148 struct preftrees { 149 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 150 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 151 struct preftree indirect_missing_keys; 152 }; 153 154 /* 155 * Checks for a shared extent during backref search. 156 * 157 * The share_count tracks prelim_refs (direct and indirect) having a 158 * ref->count >0: 159 * - incremented when a ref->count transitions to >0 160 * - decremented when a ref->count transitions to <1 161 */ 162 struct share_check { 163 struct btrfs_backref_share_check_ctx *ctx; 164 struct btrfs_root *root; 165 u64 inum; 166 u64 data_bytenr; 167 u64 data_extent_gen; 168 /* 169 * Counts number of inodes that refer to an extent (different inodes in 170 * the same root or different roots) that we could find. The sharedness 171 * check typically stops once this counter gets greater than 1, so it 172 * may not reflect the total number of inodes. 173 */ 174 int share_count; 175 /* 176 * The number of times we found our inode refers to the data extent we 177 * are determining the sharedness. In other words, how many file extent 178 * items we could find for our inode that point to our target data 179 * extent. The value we get here after finishing the extent sharedness 180 * check may be smaller than reality, but if it ends up being greater 181 * than 1, then we know for sure the inode has multiple file extent 182 * items that point to our inode, and we can safely assume it's useful 183 * to cache the sharedness check result. 184 */ 185 int self_ref_count; 186 bool have_delayed_delete_refs; 187 }; 188 189 static inline int extent_is_shared(struct share_check *sc) 190 { 191 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 192 } 193 194 static struct kmem_cache *btrfs_prelim_ref_cache; 195 196 int __init btrfs_prelim_ref_init(void) 197 { 198 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 199 sizeof(struct prelim_ref), 200 0, 201 SLAB_MEM_SPREAD, 202 NULL); 203 if (!btrfs_prelim_ref_cache) 204 return -ENOMEM; 205 return 0; 206 } 207 208 void __cold btrfs_prelim_ref_exit(void) 209 { 210 kmem_cache_destroy(btrfs_prelim_ref_cache); 211 } 212 213 static void free_pref(struct prelim_ref *ref) 214 { 215 kmem_cache_free(btrfs_prelim_ref_cache, ref); 216 } 217 218 /* 219 * Return 0 when both refs are for the same block (and can be merged). 220 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 221 * indicates a 'higher' block. 222 */ 223 static int prelim_ref_compare(struct prelim_ref *ref1, 224 struct prelim_ref *ref2) 225 { 226 if (ref1->level < ref2->level) 227 return -1; 228 if (ref1->level > ref2->level) 229 return 1; 230 if (ref1->root_id < ref2->root_id) 231 return -1; 232 if (ref1->root_id > ref2->root_id) 233 return 1; 234 if (ref1->key_for_search.type < ref2->key_for_search.type) 235 return -1; 236 if (ref1->key_for_search.type > ref2->key_for_search.type) 237 return 1; 238 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 239 return -1; 240 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 241 return 1; 242 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 243 return -1; 244 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 245 return 1; 246 if (ref1->parent < ref2->parent) 247 return -1; 248 if (ref1->parent > ref2->parent) 249 return 1; 250 251 return 0; 252 } 253 254 static void update_share_count(struct share_check *sc, int oldcount, 255 int newcount, struct prelim_ref *newref) 256 { 257 if ((!sc) || (oldcount == 0 && newcount < 1)) 258 return; 259 260 if (oldcount > 0 && newcount < 1) 261 sc->share_count--; 262 else if (oldcount < 1 && newcount > 0) 263 sc->share_count++; 264 265 if (newref->root_id == sc->root->root_key.objectid && 266 newref->wanted_disk_byte == sc->data_bytenr && 267 newref->key_for_search.objectid == sc->inum) 268 sc->self_ref_count += newref->count; 269 } 270 271 /* 272 * Add @newref to the @root rbtree, merging identical refs. 273 * 274 * Callers should assume that newref has been freed after calling. 275 */ 276 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 277 struct preftree *preftree, 278 struct prelim_ref *newref, 279 struct share_check *sc) 280 { 281 struct rb_root_cached *root; 282 struct rb_node **p; 283 struct rb_node *parent = NULL; 284 struct prelim_ref *ref; 285 int result; 286 bool leftmost = true; 287 288 root = &preftree->root; 289 p = &root->rb_root.rb_node; 290 291 while (*p) { 292 parent = *p; 293 ref = rb_entry(parent, struct prelim_ref, rbnode); 294 result = prelim_ref_compare(ref, newref); 295 if (result < 0) { 296 p = &(*p)->rb_left; 297 } else if (result > 0) { 298 p = &(*p)->rb_right; 299 leftmost = false; 300 } else { 301 /* Identical refs, merge them and free @newref */ 302 struct extent_inode_elem *eie = ref->inode_list; 303 304 while (eie && eie->next) 305 eie = eie->next; 306 307 if (!eie) 308 ref->inode_list = newref->inode_list; 309 else 310 eie->next = newref->inode_list; 311 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 312 preftree->count); 313 /* 314 * A delayed ref can have newref->count < 0. 315 * The ref->count is updated to follow any 316 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 317 */ 318 update_share_count(sc, ref->count, 319 ref->count + newref->count, newref); 320 ref->count += newref->count; 321 free_pref(newref); 322 return; 323 } 324 } 325 326 update_share_count(sc, 0, newref->count, newref); 327 preftree->count++; 328 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 329 rb_link_node(&newref->rbnode, parent, p); 330 rb_insert_color_cached(&newref->rbnode, root, leftmost); 331 } 332 333 /* 334 * Release the entire tree. We don't care about internal consistency so 335 * just free everything and then reset the tree root. 336 */ 337 static void prelim_release(struct preftree *preftree) 338 { 339 struct prelim_ref *ref, *next_ref; 340 341 rbtree_postorder_for_each_entry_safe(ref, next_ref, 342 &preftree->root.rb_root, rbnode) { 343 free_inode_elem_list(ref->inode_list); 344 free_pref(ref); 345 } 346 347 preftree->root = RB_ROOT_CACHED; 348 preftree->count = 0; 349 } 350 351 /* 352 * the rules for all callers of this function are: 353 * - obtaining the parent is the goal 354 * - if you add a key, you must know that it is a correct key 355 * - if you cannot add the parent or a correct key, then we will look into the 356 * block later to set a correct key 357 * 358 * delayed refs 359 * ============ 360 * backref type | shared | indirect | shared | indirect 361 * information | tree | tree | data | data 362 * --------------------+--------+----------+--------+---------- 363 * parent logical | y | - | - | - 364 * key to resolve | - | y | y | y 365 * tree block logical | - | - | - | - 366 * root for resolving | y | y | y | y 367 * 368 * - column 1: we've the parent -> done 369 * - column 2, 3, 4: we use the key to find the parent 370 * 371 * on disk refs (inline or keyed) 372 * ============================== 373 * backref type | shared | indirect | shared | indirect 374 * information | tree | tree | data | data 375 * --------------------+--------+----------+--------+---------- 376 * parent logical | y | - | y | - 377 * key to resolve | - | - | - | y 378 * tree block logical | y | y | y | y 379 * root for resolving | - | y | y | y 380 * 381 * - column 1, 3: we've the parent -> done 382 * - column 2: we take the first key from the block to find the parent 383 * (see add_missing_keys) 384 * - column 4: we use the key to find the parent 385 * 386 * additional information that's available but not required to find the parent 387 * block might help in merging entries to gain some speed. 388 */ 389 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 390 struct preftree *preftree, u64 root_id, 391 const struct btrfs_key *key, int level, u64 parent, 392 u64 wanted_disk_byte, int count, 393 struct share_check *sc, gfp_t gfp_mask) 394 { 395 struct prelim_ref *ref; 396 397 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 398 return 0; 399 400 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 401 if (!ref) 402 return -ENOMEM; 403 404 ref->root_id = root_id; 405 if (key) 406 ref->key_for_search = *key; 407 else 408 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 409 410 ref->inode_list = NULL; 411 ref->level = level; 412 ref->count = count; 413 ref->parent = parent; 414 ref->wanted_disk_byte = wanted_disk_byte; 415 prelim_ref_insert(fs_info, preftree, ref, sc); 416 return extent_is_shared(sc); 417 } 418 419 /* direct refs use root == 0, key == NULL */ 420 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 421 struct preftrees *preftrees, int level, u64 parent, 422 u64 wanted_disk_byte, int count, 423 struct share_check *sc, gfp_t gfp_mask) 424 { 425 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 426 parent, wanted_disk_byte, count, sc, gfp_mask); 427 } 428 429 /* indirect refs use parent == 0 */ 430 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 431 struct preftrees *preftrees, u64 root_id, 432 const struct btrfs_key *key, int level, 433 u64 wanted_disk_byte, int count, 434 struct share_check *sc, gfp_t gfp_mask) 435 { 436 struct preftree *tree = &preftrees->indirect; 437 438 if (!key) 439 tree = &preftrees->indirect_missing_keys; 440 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 441 wanted_disk_byte, count, sc, gfp_mask); 442 } 443 444 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 445 { 446 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 447 struct rb_node *parent = NULL; 448 struct prelim_ref *ref = NULL; 449 struct prelim_ref target = {}; 450 int result; 451 452 target.parent = bytenr; 453 454 while (*p) { 455 parent = *p; 456 ref = rb_entry(parent, struct prelim_ref, rbnode); 457 result = prelim_ref_compare(ref, &target); 458 459 if (result < 0) 460 p = &(*p)->rb_left; 461 else if (result > 0) 462 p = &(*p)->rb_right; 463 else 464 return 1; 465 } 466 return 0; 467 } 468 469 static int add_all_parents(struct btrfs_backref_walk_ctx *ctx, 470 struct btrfs_root *root, struct btrfs_path *path, 471 struct ulist *parents, 472 struct preftrees *preftrees, struct prelim_ref *ref, 473 int level) 474 { 475 int ret = 0; 476 int slot; 477 struct extent_buffer *eb; 478 struct btrfs_key key; 479 struct btrfs_key *key_for_search = &ref->key_for_search; 480 struct btrfs_file_extent_item *fi; 481 struct extent_inode_elem *eie = NULL, *old = NULL; 482 u64 disk_byte; 483 u64 wanted_disk_byte = ref->wanted_disk_byte; 484 u64 count = 0; 485 u64 data_offset; 486 487 if (level != 0) { 488 eb = path->nodes[level]; 489 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 490 if (ret < 0) 491 return ret; 492 return 0; 493 } 494 495 /* 496 * 1. We normally enter this function with the path already pointing to 497 * the first item to check. But sometimes, we may enter it with 498 * slot == nritems. 499 * 2. We are searching for normal backref but bytenr of this leaf 500 * matches shared data backref 501 * 3. The leaf owner is not equal to the root we are searching 502 * 503 * For these cases, go to the next leaf before we continue. 504 */ 505 eb = path->nodes[0]; 506 if (path->slots[0] >= btrfs_header_nritems(eb) || 507 is_shared_data_backref(preftrees, eb->start) || 508 ref->root_id != btrfs_header_owner(eb)) { 509 if (ctx->time_seq == BTRFS_SEQ_LAST) 510 ret = btrfs_next_leaf(root, path); 511 else 512 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 513 } 514 515 while (!ret && count < ref->count) { 516 eb = path->nodes[0]; 517 slot = path->slots[0]; 518 519 btrfs_item_key_to_cpu(eb, &key, slot); 520 521 if (key.objectid != key_for_search->objectid || 522 key.type != BTRFS_EXTENT_DATA_KEY) 523 break; 524 525 /* 526 * We are searching for normal backref but bytenr of this leaf 527 * matches shared data backref, OR 528 * the leaf owner is not equal to the root we are searching for 529 */ 530 if (slot == 0 && 531 (is_shared_data_backref(preftrees, eb->start) || 532 ref->root_id != btrfs_header_owner(eb))) { 533 if (ctx->time_seq == BTRFS_SEQ_LAST) 534 ret = btrfs_next_leaf(root, path); 535 else 536 ret = btrfs_next_old_leaf(root, path, ctx->time_seq); 537 continue; 538 } 539 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 540 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 541 data_offset = btrfs_file_extent_offset(eb, fi); 542 543 if (disk_byte == wanted_disk_byte) { 544 eie = NULL; 545 old = NULL; 546 if (ref->key_for_search.offset == key.offset - data_offset) 547 count++; 548 else 549 goto next; 550 if (!ctx->ignore_extent_item_pos) { 551 ret = check_extent_in_eb(ctx, &key, eb, fi, &eie); 552 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 553 ret < 0) 554 break; 555 } 556 if (ret > 0) 557 goto next; 558 ret = ulist_add_merge_ptr(parents, eb->start, 559 eie, (void **)&old, GFP_NOFS); 560 if (ret < 0) 561 break; 562 if (!ret && !ctx->ignore_extent_item_pos) { 563 while (old->next) 564 old = old->next; 565 old->next = eie; 566 } 567 eie = NULL; 568 } 569 next: 570 if (ctx->time_seq == BTRFS_SEQ_LAST) 571 ret = btrfs_next_item(root, path); 572 else 573 ret = btrfs_next_old_item(root, path, ctx->time_seq); 574 } 575 576 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 577 free_inode_elem_list(eie); 578 else if (ret > 0) 579 ret = 0; 580 581 return ret; 582 } 583 584 /* 585 * resolve an indirect backref in the form (root_id, key, level) 586 * to a logical address 587 */ 588 static int resolve_indirect_ref(struct btrfs_backref_walk_ctx *ctx, 589 struct btrfs_path *path, 590 struct preftrees *preftrees, 591 struct prelim_ref *ref, struct ulist *parents) 592 { 593 struct btrfs_root *root; 594 struct extent_buffer *eb; 595 int ret = 0; 596 int root_level; 597 int level = ref->level; 598 struct btrfs_key search_key = ref->key_for_search; 599 600 /* 601 * If we're search_commit_root we could possibly be holding locks on 602 * other tree nodes. This happens when qgroups does backref walks when 603 * adding new delayed refs. To deal with this we need to look in cache 604 * for the root, and if we don't find it then we need to search the 605 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage 606 * here. 607 */ 608 if (path->search_commit_root) 609 root = btrfs_get_fs_root_commit_root(ctx->fs_info, path, ref->root_id); 610 else 611 root = btrfs_get_fs_root(ctx->fs_info, ref->root_id, false); 612 if (IS_ERR(root)) { 613 ret = PTR_ERR(root); 614 goto out_free; 615 } 616 617 if (!path->search_commit_root && 618 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 619 ret = -ENOENT; 620 goto out; 621 } 622 623 if (btrfs_is_testing(ctx->fs_info)) { 624 ret = -ENOENT; 625 goto out; 626 } 627 628 if (path->search_commit_root) 629 root_level = btrfs_header_level(root->commit_root); 630 else if (ctx->time_seq == BTRFS_SEQ_LAST) 631 root_level = btrfs_header_level(root->node); 632 else 633 root_level = btrfs_old_root_level(root, ctx->time_seq); 634 635 if (root_level + 1 == level) 636 goto out; 637 638 /* 639 * We can often find data backrefs with an offset that is too large 640 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 641 * subtracting a file's offset with the data offset of its 642 * corresponding extent data item. This can happen for example in the 643 * clone ioctl. 644 * 645 * So if we detect such case we set the search key's offset to zero to 646 * make sure we will find the matching file extent item at 647 * add_all_parents(), otherwise we will miss it because the offset 648 * taken form the backref is much larger then the offset of the file 649 * extent item. This can make us scan a very large number of file 650 * extent items, but at least it will not make us miss any. 651 * 652 * This is an ugly workaround for a behaviour that should have never 653 * existed, but it does and a fix for the clone ioctl would touch a lot 654 * of places, cause backwards incompatibility and would not fix the 655 * problem for extents cloned with older kernels. 656 */ 657 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 658 search_key.offset >= LLONG_MAX) 659 search_key.offset = 0; 660 path->lowest_level = level; 661 if (ctx->time_seq == BTRFS_SEQ_LAST) 662 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 663 else 664 ret = btrfs_search_old_slot(root, &search_key, path, ctx->time_seq); 665 666 btrfs_debug(ctx->fs_info, 667 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 668 ref->root_id, level, ref->count, ret, 669 ref->key_for_search.objectid, ref->key_for_search.type, 670 ref->key_for_search.offset); 671 if (ret < 0) 672 goto out; 673 674 eb = path->nodes[level]; 675 while (!eb) { 676 if (WARN_ON(!level)) { 677 ret = 1; 678 goto out; 679 } 680 level--; 681 eb = path->nodes[level]; 682 } 683 684 ret = add_all_parents(ctx, root, path, parents, preftrees, ref, level); 685 out: 686 btrfs_put_root(root); 687 out_free: 688 path->lowest_level = 0; 689 btrfs_release_path(path); 690 return ret; 691 } 692 693 static struct extent_inode_elem * 694 unode_aux_to_inode_list(struct ulist_node *node) 695 { 696 if (!node) 697 return NULL; 698 return (struct extent_inode_elem *)(uintptr_t)node->aux; 699 } 700 701 static void free_leaf_list(struct ulist *ulist) 702 { 703 struct ulist_node *node; 704 struct ulist_iterator uiter; 705 706 ULIST_ITER_INIT(&uiter); 707 while ((node = ulist_next(ulist, &uiter))) 708 free_inode_elem_list(unode_aux_to_inode_list(node)); 709 710 ulist_free(ulist); 711 } 712 713 /* 714 * We maintain three separate rbtrees: one for direct refs, one for 715 * indirect refs which have a key, and one for indirect refs which do not 716 * have a key. Each tree does merge on insertion. 717 * 718 * Once all of the references are located, we iterate over the tree of 719 * indirect refs with missing keys. An appropriate key is located and 720 * the ref is moved onto the tree for indirect refs. After all missing 721 * keys are thus located, we iterate over the indirect ref tree, resolve 722 * each reference, and then insert the resolved reference onto the 723 * direct tree (merging there too). 724 * 725 * New backrefs (i.e., for parent nodes) are added to the appropriate 726 * rbtree as they are encountered. The new backrefs are subsequently 727 * resolved as above. 728 */ 729 static int resolve_indirect_refs(struct btrfs_backref_walk_ctx *ctx, 730 struct btrfs_path *path, 731 struct preftrees *preftrees, 732 struct share_check *sc) 733 { 734 int err; 735 int ret = 0; 736 struct ulist *parents; 737 struct ulist_node *node; 738 struct ulist_iterator uiter; 739 struct rb_node *rnode; 740 741 parents = ulist_alloc(GFP_NOFS); 742 if (!parents) 743 return -ENOMEM; 744 745 /* 746 * We could trade memory usage for performance here by iterating 747 * the tree, allocating new refs for each insertion, and then 748 * freeing the entire indirect tree when we're done. In some test 749 * cases, the tree can grow quite large (~200k objects). 750 */ 751 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 752 struct prelim_ref *ref; 753 754 ref = rb_entry(rnode, struct prelim_ref, rbnode); 755 if (WARN(ref->parent, 756 "BUG: direct ref found in indirect tree")) { 757 ret = -EINVAL; 758 goto out; 759 } 760 761 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 762 preftrees->indirect.count--; 763 764 if (ref->count == 0) { 765 free_pref(ref); 766 continue; 767 } 768 769 if (sc && ref->root_id != sc->root->root_key.objectid) { 770 free_pref(ref); 771 ret = BACKREF_FOUND_SHARED; 772 goto out; 773 } 774 err = resolve_indirect_ref(ctx, path, preftrees, ref, parents); 775 /* 776 * we can only tolerate ENOENT,otherwise,we should catch error 777 * and return directly. 778 */ 779 if (err == -ENOENT) { 780 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, 781 NULL); 782 continue; 783 } else if (err) { 784 free_pref(ref); 785 ret = err; 786 goto out; 787 } 788 789 /* we put the first parent into the ref at hand */ 790 ULIST_ITER_INIT(&uiter); 791 node = ulist_next(parents, &uiter); 792 ref->parent = node ? node->val : 0; 793 ref->inode_list = unode_aux_to_inode_list(node); 794 795 /* Add a prelim_ref(s) for any other parent(s). */ 796 while ((node = ulist_next(parents, &uiter))) { 797 struct prelim_ref *new_ref; 798 799 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 800 GFP_NOFS); 801 if (!new_ref) { 802 free_pref(ref); 803 ret = -ENOMEM; 804 goto out; 805 } 806 memcpy(new_ref, ref, sizeof(*ref)); 807 new_ref->parent = node->val; 808 new_ref->inode_list = unode_aux_to_inode_list(node); 809 prelim_ref_insert(ctx->fs_info, &preftrees->direct, 810 new_ref, NULL); 811 } 812 813 /* 814 * Now it's a direct ref, put it in the direct tree. We must 815 * do this last because the ref could be merged/freed here. 816 */ 817 prelim_ref_insert(ctx->fs_info, &preftrees->direct, ref, NULL); 818 819 ulist_reinit(parents); 820 cond_resched(); 821 } 822 out: 823 /* 824 * We may have inode lists attached to refs in the parents ulist, so we 825 * must free them before freeing the ulist and its refs. 826 */ 827 free_leaf_list(parents); 828 return ret; 829 } 830 831 /* 832 * read tree blocks and add keys where required. 833 */ 834 static int add_missing_keys(struct btrfs_fs_info *fs_info, 835 struct preftrees *preftrees, bool lock) 836 { 837 struct prelim_ref *ref; 838 struct extent_buffer *eb; 839 struct preftree *tree = &preftrees->indirect_missing_keys; 840 struct rb_node *node; 841 842 while ((node = rb_first_cached(&tree->root))) { 843 struct btrfs_tree_parent_check check = { 0 }; 844 845 ref = rb_entry(node, struct prelim_ref, rbnode); 846 rb_erase_cached(node, &tree->root); 847 848 BUG_ON(ref->parent); /* should not be a direct ref */ 849 BUG_ON(ref->key_for_search.type); 850 BUG_ON(!ref->wanted_disk_byte); 851 852 check.level = ref->level - 1; 853 check.owner_root = ref->root_id; 854 855 eb = read_tree_block(fs_info, ref->wanted_disk_byte, &check); 856 if (IS_ERR(eb)) { 857 free_pref(ref); 858 return PTR_ERR(eb); 859 } 860 if (!extent_buffer_uptodate(eb)) { 861 free_pref(ref); 862 free_extent_buffer(eb); 863 return -EIO; 864 } 865 866 if (lock) 867 btrfs_tree_read_lock(eb); 868 if (btrfs_header_level(eb) == 0) 869 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 870 else 871 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 872 if (lock) 873 btrfs_tree_read_unlock(eb); 874 free_extent_buffer(eb); 875 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 876 cond_resched(); 877 } 878 return 0; 879 } 880 881 /* 882 * add all currently queued delayed refs from this head whose seq nr is 883 * smaller or equal that seq to the list 884 */ 885 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 886 struct btrfs_delayed_ref_head *head, u64 seq, 887 struct preftrees *preftrees, struct share_check *sc) 888 { 889 struct btrfs_delayed_ref_node *node; 890 struct btrfs_key key; 891 struct rb_node *n; 892 int count; 893 int ret = 0; 894 895 spin_lock(&head->lock); 896 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 897 node = rb_entry(n, struct btrfs_delayed_ref_node, 898 ref_node); 899 if (node->seq > seq) 900 continue; 901 902 switch (node->action) { 903 case BTRFS_ADD_DELAYED_EXTENT: 904 case BTRFS_UPDATE_DELAYED_HEAD: 905 WARN_ON(1); 906 continue; 907 case BTRFS_ADD_DELAYED_REF: 908 count = node->ref_mod; 909 break; 910 case BTRFS_DROP_DELAYED_REF: 911 count = node->ref_mod * -1; 912 break; 913 default: 914 BUG(); 915 } 916 switch (node->type) { 917 case BTRFS_TREE_BLOCK_REF_KEY: { 918 /* NORMAL INDIRECT METADATA backref */ 919 struct btrfs_delayed_tree_ref *ref; 920 struct btrfs_key *key_ptr = NULL; 921 922 if (head->extent_op && head->extent_op->update_key) { 923 btrfs_disk_key_to_cpu(&key, &head->extent_op->key); 924 key_ptr = &key; 925 } 926 927 ref = btrfs_delayed_node_to_tree_ref(node); 928 ret = add_indirect_ref(fs_info, preftrees, ref->root, 929 key_ptr, ref->level + 1, 930 node->bytenr, count, sc, 931 GFP_ATOMIC); 932 break; 933 } 934 case BTRFS_SHARED_BLOCK_REF_KEY: { 935 /* SHARED DIRECT METADATA backref */ 936 struct btrfs_delayed_tree_ref *ref; 937 938 ref = btrfs_delayed_node_to_tree_ref(node); 939 940 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 941 ref->parent, node->bytenr, count, 942 sc, GFP_ATOMIC); 943 break; 944 } 945 case BTRFS_EXTENT_DATA_REF_KEY: { 946 /* NORMAL INDIRECT DATA backref */ 947 struct btrfs_delayed_data_ref *ref; 948 ref = btrfs_delayed_node_to_data_ref(node); 949 950 key.objectid = ref->objectid; 951 key.type = BTRFS_EXTENT_DATA_KEY; 952 key.offset = ref->offset; 953 954 /* 955 * If we have a share check context and a reference for 956 * another inode, we can't exit immediately. This is 957 * because even if this is a BTRFS_ADD_DELAYED_REF 958 * reference we may find next a BTRFS_DROP_DELAYED_REF 959 * which cancels out this ADD reference. 960 * 961 * If this is a DROP reference and there was no previous 962 * ADD reference, then we need to signal that when we 963 * process references from the extent tree (through 964 * add_inline_refs() and add_keyed_refs()), we should 965 * not exit early if we find a reference for another 966 * inode, because one of the delayed DROP references 967 * may cancel that reference in the extent tree. 968 */ 969 if (sc && count < 0) 970 sc->have_delayed_delete_refs = true; 971 972 ret = add_indirect_ref(fs_info, preftrees, ref->root, 973 &key, 0, node->bytenr, count, sc, 974 GFP_ATOMIC); 975 break; 976 } 977 case BTRFS_SHARED_DATA_REF_KEY: { 978 /* SHARED DIRECT FULL backref */ 979 struct btrfs_delayed_data_ref *ref; 980 981 ref = btrfs_delayed_node_to_data_ref(node); 982 983 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 984 node->bytenr, count, sc, 985 GFP_ATOMIC); 986 break; 987 } 988 default: 989 WARN_ON(1); 990 } 991 /* 992 * We must ignore BACKREF_FOUND_SHARED until all delayed 993 * refs have been checked. 994 */ 995 if (ret && (ret != BACKREF_FOUND_SHARED)) 996 break; 997 } 998 if (!ret) 999 ret = extent_is_shared(sc); 1000 1001 spin_unlock(&head->lock); 1002 return ret; 1003 } 1004 1005 /* 1006 * add all inline backrefs for bytenr to the list 1007 * 1008 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1009 */ 1010 static int add_inline_refs(struct btrfs_backref_walk_ctx *ctx, 1011 struct btrfs_path *path, 1012 int *info_level, struct preftrees *preftrees, 1013 struct share_check *sc) 1014 { 1015 int ret = 0; 1016 int slot; 1017 struct extent_buffer *leaf; 1018 struct btrfs_key key; 1019 struct btrfs_key found_key; 1020 unsigned long ptr; 1021 unsigned long end; 1022 struct btrfs_extent_item *ei; 1023 u64 flags; 1024 u64 item_size; 1025 1026 /* 1027 * enumerate all inline refs 1028 */ 1029 leaf = path->nodes[0]; 1030 slot = path->slots[0]; 1031 1032 item_size = btrfs_item_size(leaf, slot); 1033 BUG_ON(item_size < sizeof(*ei)); 1034 1035 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 1036 1037 if (ctx->check_extent_item) { 1038 ret = ctx->check_extent_item(ctx->bytenr, ei, leaf, ctx->user_ctx); 1039 if (ret) 1040 return ret; 1041 } 1042 1043 flags = btrfs_extent_flags(leaf, ei); 1044 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1045 1046 ptr = (unsigned long)(ei + 1); 1047 end = (unsigned long)ei + item_size; 1048 1049 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 1050 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1051 struct btrfs_tree_block_info *info; 1052 1053 info = (struct btrfs_tree_block_info *)ptr; 1054 *info_level = btrfs_tree_block_level(leaf, info); 1055 ptr += sizeof(struct btrfs_tree_block_info); 1056 BUG_ON(ptr > end); 1057 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 1058 *info_level = found_key.offset; 1059 } else { 1060 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 1061 } 1062 1063 while (ptr < end) { 1064 struct btrfs_extent_inline_ref *iref; 1065 u64 offset; 1066 int type; 1067 1068 iref = (struct btrfs_extent_inline_ref *)ptr; 1069 type = btrfs_get_extent_inline_ref_type(leaf, iref, 1070 BTRFS_REF_TYPE_ANY); 1071 if (type == BTRFS_REF_TYPE_INVALID) 1072 return -EUCLEAN; 1073 1074 offset = btrfs_extent_inline_ref_offset(leaf, iref); 1075 1076 switch (type) { 1077 case BTRFS_SHARED_BLOCK_REF_KEY: 1078 ret = add_direct_ref(ctx->fs_info, preftrees, 1079 *info_level + 1, offset, 1080 ctx->bytenr, 1, NULL, GFP_NOFS); 1081 break; 1082 case BTRFS_SHARED_DATA_REF_KEY: { 1083 struct btrfs_shared_data_ref *sdref; 1084 int count; 1085 1086 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 1087 count = btrfs_shared_data_ref_count(leaf, sdref); 1088 1089 ret = add_direct_ref(ctx->fs_info, preftrees, 0, offset, 1090 ctx->bytenr, count, sc, GFP_NOFS); 1091 break; 1092 } 1093 case BTRFS_TREE_BLOCK_REF_KEY: 1094 ret = add_indirect_ref(ctx->fs_info, preftrees, offset, 1095 NULL, *info_level + 1, 1096 ctx->bytenr, 1, NULL, GFP_NOFS); 1097 break; 1098 case BTRFS_EXTENT_DATA_REF_KEY: { 1099 struct btrfs_extent_data_ref *dref; 1100 int count; 1101 u64 root; 1102 1103 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1104 count = btrfs_extent_data_ref_count(leaf, dref); 1105 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1106 dref); 1107 key.type = BTRFS_EXTENT_DATA_KEY; 1108 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1109 1110 if (sc && key.objectid != sc->inum && 1111 !sc->have_delayed_delete_refs) { 1112 ret = BACKREF_FOUND_SHARED; 1113 break; 1114 } 1115 1116 root = btrfs_extent_data_ref_root(leaf, dref); 1117 1118 if (!ctx->skip_data_ref || 1119 !ctx->skip_data_ref(root, key.objectid, key.offset, 1120 ctx->user_ctx)) 1121 ret = add_indirect_ref(ctx->fs_info, preftrees, 1122 root, &key, 0, ctx->bytenr, 1123 count, sc, GFP_NOFS); 1124 break; 1125 } 1126 default: 1127 WARN_ON(1); 1128 } 1129 if (ret) 1130 return ret; 1131 ptr += btrfs_extent_inline_ref_size(type); 1132 } 1133 1134 return 0; 1135 } 1136 1137 /* 1138 * add all non-inline backrefs for bytenr to the list 1139 * 1140 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1141 */ 1142 static int add_keyed_refs(struct btrfs_backref_walk_ctx *ctx, 1143 struct btrfs_root *extent_root, 1144 struct btrfs_path *path, 1145 int info_level, struct preftrees *preftrees, 1146 struct share_check *sc) 1147 { 1148 struct btrfs_fs_info *fs_info = extent_root->fs_info; 1149 int ret; 1150 int slot; 1151 struct extent_buffer *leaf; 1152 struct btrfs_key key; 1153 1154 while (1) { 1155 ret = btrfs_next_item(extent_root, path); 1156 if (ret < 0) 1157 break; 1158 if (ret) { 1159 ret = 0; 1160 break; 1161 } 1162 1163 slot = path->slots[0]; 1164 leaf = path->nodes[0]; 1165 btrfs_item_key_to_cpu(leaf, &key, slot); 1166 1167 if (key.objectid != ctx->bytenr) 1168 break; 1169 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1170 continue; 1171 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1172 break; 1173 1174 switch (key.type) { 1175 case BTRFS_SHARED_BLOCK_REF_KEY: 1176 /* SHARED DIRECT METADATA backref */ 1177 ret = add_direct_ref(fs_info, preftrees, 1178 info_level + 1, key.offset, 1179 ctx->bytenr, 1, NULL, GFP_NOFS); 1180 break; 1181 case BTRFS_SHARED_DATA_REF_KEY: { 1182 /* SHARED DIRECT FULL backref */ 1183 struct btrfs_shared_data_ref *sdref; 1184 int count; 1185 1186 sdref = btrfs_item_ptr(leaf, slot, 1187 struct btrfs_shared_data_ref); 1188 count = btrfs_shared_data_ref_count(leaf, sdref); 1189 ret = add_direct_ref(fs_info, preftrees, 0, 1190 key.offset, ctx->bytenr, count, 1191 sc, GFP_NOFS); 1192 break; 1193 } 1194 case BTRFS_TREE_BLOCK_REF_KEY: 1195 /* NORMAL INDIRECT METADATA backref */ 1196 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1197 NULL, info_level + 1, ctx->bytenr, 1198 1, NULL, GFP_NOFS); 1199 break; 1200 case BTRFS_EXTENT_DATA_REF_KEY: { 1201 /* NORMAL INDIRECT DATA backref */ 1202 struct btrfs_extent_data_ref *dref; 1203 int count; 1204 u64 root; 1205 1206 dref = btrfs_item_ptr(leaf, slot, 1207 struct btrfs_extent_data_ref); 1208 count = btrfs_extent_data_ref_count(leaf, dref); 1209 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1210 dref); 1211 key.type = BTRFS_EXTENT_DATA_KEY; 1212 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1213 1214 if (sc && key.objectid != sc->inum && 1215 !sc->have_delayed_delete_refs) { 1216 ret = BACKREF_FOUND_SHARED; 1217 break; 1218 } 1219 1220 root = btrfs_extent_data_ref_root(leaf, dref); 1221 1222 if (!ctx->skip_data_ref || 1223 !ctx->skip_data_ref(root, key.objectid, key.offset, 1224 ctx->user_ctx)) 1225 ret = add_indirect_ref(fs_info, preftrees, root, 1226 &key, 0, ctx->bytenr, 1227 count, sc, GFP_NOFS); 1228 break; 1229 } 1230 default: 1231 WARN_ON(1); 1232 } 1233 if (ret) 1234 return ret; 1235 1236 } 1237 1238 return ret; 1239 } 1240 1241 /* 1242 * The caller has joined a transaction or is holding a read lock on the 1243 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1244 * snapshot field changing while updating or checking the cache. 1245 */ 1246 static bool lookup_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1247 struct btrfs_root *root, 1248 u64 bytenr, int level, bool *is_shared) 1249 { 1250 struct btrfs_backref_shared_cache_entry *entry; 1251 1252 if (!ctx->use_path_cache) 1253 return false; 1254 1255 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1256 return false; 1257 1258 /* 1259 * Level -1 is used for the data extent, which is not reliable to cache 1260 * because its reference count can increase or decrease without us 1261 * realizing. We cache results only for extent buffers that lead from 1262 * the root node down to the leaf with the file extent item. 1263 */ 1264 ASSERT(level >= 0); 1265 1266 entry = &ctx->path_cache_entries[level]; 1267 1268 /* Unused cache entry or being used for some other extent buffer. */ 1269 if (entry->bytenr != bytenr) 1270 return false; 1271 1272 /* 1273 * We cached a false result, but the last snapshot generation of the 1274 * root changed, so we now have a snapshot. Don't trust the result. 1275 */ 1276 if (!entry->is_shared && 1277 entry->gen != btrfs_root_last_snapshot(&root->root_item)) 1278 return false; 1279 1280 /* 1281 * If we cached a true result and the last generation used for dropping 1282 * a root changed, we can not trust the result, because the dropped root 1283 * could be a snapshot sharing this extent buffer. 1284 */ 1285 if (entry->is_shared && 1286 entry->gen != btrfs_get_last_root_drop_gen(root->fs_info)) 1287 return false; 1288 1289 *is_shared = entry->is_shared; 1290 /* 1291 * If the node at this level is shared, than all nodes below are also 1292 * shared. Currently some of the nodes below may be marked as not shared 1293 * because we have just switched from one leaf to another, and switched 1294 * also other nodes above the leaf and below the current level, so mark 1295 * them as shared. 1296 */ 1297 if (*is_shared) { 1298 for (int i = 0; i < level; i++) { 1299 ctx->path_cache_entries[i].is_shared = true; 1300 ctx->path_cache_entries[i].gen = entry->gen; 1301 } 1302 } 1303 1304 return true; 1305 } 1306 1307 /* 1308 * The caller has joined a transaction or is holding a read lock on the 1309 * fs_info->commit_root_sem semaphore, so no need to worry about the root's last 1310 * snapshot field changing while updating or checking the cache. 1311 */ 1312 static void store_backref_shared_cache(struct btrfs_backref_share_check_ctx *ctx, 1313 struct btrfs_root *root, 1314 u64 bytenr, int level, bool is_shared) 1315 { 1316 struct btrfs_backref_shared_cache_entry *entry; 1317 u64 gen; 1318 1319 if (!ctx->use_path_cache) 1320 return; 1321 1322 if (WARN_ON_ONCE(level >= BTRFS_MAX_LEVEL)) 1323 return; 1324 1325 /* 1326 * Level -1 is used for the data extent, which is not reliable to cache 1327 * because its reference count can increase or decrease without us 1328 * realizing. We cache results only for extent buffers that lead from 1329 * the root node down to the leaf with the file extent item. 1330 */ 1331 ASSERT(level >= 0); 1332 1333 if (is_shared) 1334 gen = btrfs_get_last_root_drop_gen(root->fs_info); 1335 else 1336 gen = btrfs_root_last_snapshot(&root->root_item); 1337 1338 entry = &ctx->path_cache_entries[level]; 1339 entry->bytenr = bytenr; 1340 entry->is_shared = is_shared; 1341 entry->gen = gen; 1342 1343 /* 1344 * If we found an extent buffer is shared, set the cache result for all 1345 * extent buffers below it to true. As nodes in the path are COWed, 1346 * their sharedness is moved to their children, and if a leaf is COWed, 1347 * then the sharedness of a data extent becomes direct, the refcount of 1348 * data extent is increased in the extent item at the extent tree. 1349 */ 1350 if (is_shared) { 1351 for (int i = 0; i < level; i++) { 1352 entry = &ctx->path_cache_entries[i]; 1353 entry->is_shared = is_shared; 1354 entry->gen = gen; 1355 } 1356 } 1357 } 1358 1359 /* 1360 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1361 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1362 * indirect refs to their parent bytenr. 1363 * When roots are found, they're added to the roots list 1364 * 1365 * @ctx: Backref walking context object, must be not NULL. 1366 * @sc: If !NULL, then immediately return BACKREF_FOUND_SHARED when a 1367 * shared extent is detected. 1368 * 1369 * Otherwise this returns 0 for success and <0 for an error. 1370 * 1371 * FIXME some caching might speed things up 1372 */ 1373 static int find_parent_nodes(struct btrfs_backref_walk_ctx *ctx, 1374 struct share_check *sc) 1375 { 1376 struct btrfs_root *root = btrfs_extent_root(ctx->fs_info, ctx->bytenr); 1377 struct btrfs_key key; 1378 struct btrfs_path *path; 1379 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1380 struct btrfs_delayed_ref_head *head; 1381 int info_level = 0; 1382 int ret; 1383 struct prelim_ref *ref; 1384 struct rb_node *node; 1385 struct extent_inode_elem *eie = NULL; 1386 struct preftrees preftrees = { 1387 .direct = PREFTREE_INIT, 1388 .indirect = PREFTREE_INIT, 1389 .indirect_missing_keys = PREFTREE_INIT 1390 }; 1391 1392 /* Roots ulist is not needed when using a sharedness check context. */ 1393 if (sc) 1394 ASSERT(ctx->roots == NULL); 1395 1396 key.objectid = ctx->bytenr; 1397 key.offset = (u64)-1; 1398 if (btrfs_fs_incompat(ctx->fs_info, SKINNY_METADATA)) 1399 key.type = BTRFS_METADATA_ITEM_KEY; 1400 else 1401 key.type = BTRFS_EXTENT_ITEM_KEY; 1402 1403 path = btrfs_alloc_path(); 1404 if (!path) 1405 return -ENOMEM; 1406 if (!ctx->trans) { 1407 path->search_commit_root = 1; 1408 path->skip_locking = 1; 1409 } 1410 1411 if (ctx->time_seq == BTRFS_SEQ_LAST) 1412 path->skip_locking = 1; 1413 1414 again: 1415 head = NULL; 1416 1417 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1418 if (ret < 0) 1419 goto out; 1420 if (ret == 0) { 1421 /* This shouldn't happen, indicates a bug or fs corruption. */ 1422 ASSERT(ret != 0); 1423 ret = -EUCLEAN; 1424 goto out; 1425 } 1426 1427 if (ctx->trans && likely(ctx->trans->type != __TRANS_DUMMY) && 1428 ctx->time_seq != BTRFS_SEQ_LAST) { 1429 /* 1430 * We have a specific time_seq we care about and trans which 1431 * means we have the path lock, we need to grab the ref head and 1432 * lock it so we have a consistent view of the refs at the given 1433 * time. 1434 */ 1435 delayed_refs = &ctx->trans->transaction->delayed_refs; 1436 spin_lock(&delayed_refs->lock); 1437 head = btrfs_find_delayed_ref_head(delayed_refs, ctx->bytenr); 1438 if (head) { 1439 if (!mutex_trylock(&head->mutex)) { 1440 refcount_inc(&head->refs); 1441 spin_unlock(&delayed_refs->lock); 1442 1443 btrfs_release_path(path); 1444 1445 /* 1446 * Mutex was contended, block until it's 1447 * released and try again 1448 */ 1449 mutex_lock(&head->mutex); 1450 mutex_unlock(&head->mutex); 1451 btrfs_put_delayed_ref_head(head); 1452 goto again; 1453 } 1454 spin_unlock(&delayed_refs->lock); 1455 ret = add_delayed_refs(ctx->fs_info, head, ctx->time_seq, 1456 &preftrees, sc); 1457 mutex_unlock(&head->mutex); 1458 if (ret) 1459 goto out; 1460 } else { 1461 spin_unlock(&delayed_refs->lock); 1462 } 1463 } 1464 1465 if (path->slots[0]) { 1466 struct extent_buffer *leaf; 1467 int slot; 1468 1469 path->slots[0]--; 1470 leaf = path->nodes[0]; 1471 slot = path->slots[0]; 1472 btrfs_item_key_to_cpu(leaf, &key, slot); 1473 if (key.objectid == ctx->bytenr && 1474 (key.type == BTRFS_EXTENT_ITEM_KEY || 1475 key.type == BTRFS_METADATA_ITEM_KEY)) { 1476 ret = add_inline_refs(ctx, path, &info_level, 1477 &preftrees, sc); 1478 if (ret) 1479 goto out; 1480 ret = add_keyed_refs(ctx, root, path, info_level, 1481 &preftrees, sc); 1482 if (ret) 1483 goto out; 1484 } 1485 } 1486 1487 /* 1488 * If we have a share context and we reached here, it means the extent 1489 * is not directly shared (no multiple reference items for it), 1490 * otherwise we would have exited earlier with a return value of 1491 * BACKREF_FOUND_SHARED after processing delayed references or while 1492 * processing inline or keyed references from the extent tree. 1493 * The extent may however be indirectly shared through shared subtrees 1494 * as a result from creating snapshots, so we determine below what is 1495 * its parent node, in case we are dealing with a metadata extent, or 1496 * what's the leaf (or leaves), from a fs tree, that has a file extent 1497 * item pointing to it in case we are dealing with a data extent. 1498 */ 1499 ASSERT(extent_is_shared(sc) == 0); 1500 1501 /* 1502 * If we are here for a data extent and we have a share_check structure 1503 * it means the data extent is not directly shared (does not have 1504 * multiple reference items), so we have to check if a path in the fs 1505 * tree (going from the root node down to the leaf that has the file 1506 * extent item pointing to the data extent) is shared, that is, if any 1507 * of the extent buffers in the path is referenced by other trees. 1508 */ 1509 if (sc && ctx->bytenr == sc->data_bytenr) { 1510 /* 1511 * If our data extent is from a generation more recent than the 1512 * last generation used to snapshot the root, then we know that 1513 * it can not be shared through subtrees, so we can skip 1514 * resolving indirect references, there's no point in 1515 * determining the extent buffers for the path from the fs tree 1516 * root node down to the leaf that has the file extent item that 1517 * points to the data extent. 1518 */ 1519 if (sc->data_extent_gen > 1520 btrfs_root_last_snapshot(&sc->root->root_item)) { 1521 ret = BACKREF_FOUND_NOT_SHARED; 1522 goto out; 1523 } 1524 1525 /* 1526 * If we are only determining if a data extent is shared or not 1527 * and the corresponding file extent item is located in the same 1528 * leaf as the previous file extent item, we can skip resolving 1529 * indirect references for a data extent, since the fs tree path 1530 * is the same (same leaf, so same path). We skip as long as the 1531 * cached result for the leaf is valid and only if there's only 1532 * one file extent item pointing to the data extent, because in 1533 * the case of multiple file extent items, they may be located 1534 * in different leaves and therefore we have multiple paths. 1535 */ 1536 if (sc->ctx->curr_leaf_bytenr == sc->ctx->prev_leaf_bytenr && 1537 sc->self_ref_count == 1) { 1538 bool cached; 1539 bool is_shared; 1540 1541 cached = lookup_backref_shared_cache(sc->ctx, sc->root, 1542 sc->ctx->curr_leaf_bytenr, 1543 0, &is_shared); 1544 if (cached) { 1545 if (is_shared) 1546 ret = BACKREF_FOUND_SHARED; 1547 else 1548 ret = BACKREF_FOUND_NOT_SHARED; 1549 goto out; 1550 } 1551 } 1552 } 1553 1554 btrfs_release_path(path); 1555 1556 ret = add_missing_keys(ctx->fs_info, &preftrees, path->skip_locking == 0); 1557 if (ret) 1558 goto out; 1559 1560 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1561 1562 ret = resolve_indirect_refs(ctx, path, &preftrees, sc); 1563 if (ret) 1564 goto out; 1565 1566 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1567 1568 /* 1569 * This walks the tree of merged and resolved refs. Tree blocks are 1570 * read in as needed. Unique entries are added to the ulist, and 1571 * the list of found roots is updated. 1572 * 1573 * We release the entire tree in one go before returning. 1574 */ 1575 node = rb_first_cached(&preftrees.direct.root); 1576 while (node) { 1577 ref = rb_entry(node, struct prelim_ref, rbnode); 1578 node = rb_next(&ref->rbnode); 1579 /* 1580 * ref->count < 0 can happen here if there are delayed 1581 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1582 * prelim_ref_insert() relies on this when merging 1583 * identical refs to keep the overall count correct. 1584 * prelim_ref_insert() will merge only those refs 1585 * which compare identically. Any refs having 1586 * e.g. different offsets would not be merged, 1587 * and would retain their original ref->count < 0. 1588 */ 1589 if (ctx->roots && ref->count && ref->root_id && ref->parent == 0) { 1590 /* no parent == root of tree */ 1591 ret = ulist_add(ctx->roots, ref->root_id, 0, GFP_NOFS); 1592 if (ret < 0) 1593 goto out; 1594 } 1595 if (ref->count && ref->parent) { 1596 if (!ctx->ignore_extent_item_pos && !ref->inode_list && 1597 ref->level == 0) { 1598 struct btrfs_tree_parent_check check = { 0 }; 1599 struct extent_buffer *eb; 1600 1601 check.level = ref->level; 1602 1603 eb = read_tree_block(ctx->fs_info, ref->parent, 1604 &check); 1605 if (IS_ERR(eb)) { 1606 ret = PTR_ERR(eb); 1607 goto out; 1608 } 1609 if (!extent_buffer_uptodate(eb)) { 1610 free_extent_buffer(eb); 1611 ret = -EIO; 1612 goto out; 1613 } 1614 1615 if (!path->skip_locking) 1616 btrfs_tree_read_lock(eb); 1617 ret = find_extent_in_eb(ctx, eb, &eie); 1618 if (!path->skip_locking) 1619 btrfs_tree_read_unlock(eb); 1620 free_extent_buffer(eb); 1621 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1622 ret < 0) 1623 goto out; 1624 ref->inode_list = eie; 1625 /* 1626 * We transferred the list ownership to the ref, 1627 * so set to NULL to avoid a double free in case 1628 * an error happens after this. 1629 */ 1630 eie = NULL; 1631 } 1632 ret = ulist_add_merge_ptr(ctx->refs, ref->parent, 1633 ref->inode_list, 1634 (void **)&eie, GFP_NOFS); 1635 if (ret < 0) 1636 goto out; 1637 if (!ret && !ctx->ignore_extent_item_pos) { 1638 /* 1639 * We've recorded that parent, so we must extend 1640 * its inode list here. 1641 * 1642 * However if there was corruption we may not 1643 * have found an eie, return an error in this 1644 * case. 1645 */ 1646 ASSERT(eie); 1647 if (!eie) { 1648 ret = -EUCLEAN; 1649 goto out; 1650 } 1651 while (eie->next) 1652 eie = eie->next; 1653 eie->next = ref->inode_list; 1654 } 1655 eie = NULL; 1656 /* 1657 * We have transferred the inode list ownership from 1658 * this ref to the ref we added to the 'refs' ulist. 1659 * So set this ref's inode list to NULL to avoid 1660 * use-after-free when our caller uses it or double 1661 * frees in case an error happens before we return. 1662 */ 1663 ref->inode_list = NULL; 1664 } 1665 cond_resched(); 1666 } 1667 1668 out: 1669 btrfs_free_path(path); 1670 1671 prelim_release(&preftrees.direct); 1672 prelim_release(&preftrees.indirect); 1673 prelim_release(&preftrees.indirect_missing_keys); 1674 1675 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || ret < 0) 1676 free_inode_elem_list(eie); 1677 return ret; 1678 } 1679 1680 /* 1681 * Finds all leaves with a reference to the specified combination of 1682 * @ctx->bytenr and @ctx->extent_item_pos. The bytenr of the found leaves are 1683 * added to the ulist at @ctx->refs, and that ulist is allocated by this 1684 * function. The caller should free the ulist with free_leaf_list() if 1685 * @ctx->ignore_extent_item_pos is false, otherwise a fimple ulist_free() is 1686 * enough. 1687 * 1688 * Returns 0 on success and < 0 on error. On error @ctx->refs is not allocated. 1689 */ 1690 int btrfs_find_all_leafs(struct btrfs_backref_walk_ctx *ctx) 1691 { 1692 int ret; 1693 1694 ASSERT(ctx->refs == NULL); 1695 1696 ctx->refs = ulist_alloc(GFP_NOFS); 1697 if (!ctx->refs) 1698 return -ENOMEM; 1699 1700 ret = find_parent_nodes(ctx, NULL); 1701 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP || 1702 (ret < 0 && ret != -ENOENT)) { 1703 free_leaf_list(ctx->refs); 1704 ctx->refs = NULL; 1705 return ret; 1706 } 1707 1708 return 0; 1709 } 1710 1711 /* 1712 * Walk all backrefs for a given extent to find all roots that reference this 1713 * extent. Walking a backref means finding all extents that reference this 1714 * extent and in turn walk the backrefs of those, too. Naturally this is a 1715 * recursive process, but here it is implemented in an iterative fashion: We 1716 * find all referencing extents for the extent in question and put them on a 1717 * list. In turn, we find all referencing extents for those, further appending 1718 * to the list. The way we iterate the list allows adding more elements after 1719 * the current while iterating. The process stops when we reach the end of the 1720 * list. 1721 * 1722 * Found roots are added to @ctx->roots, which is allocated by this function if 1723 * it points to NULL, in which case the caller is responsible for freeing it 1724 * after it's not needed anymore. 1725 * This function requires @ctx->refs to be NULL, as it uses it for allocating a 1726 * ulist to do temporary work, and frees it before returning. 1727 * 1728 * Returns 0 on success, < 0 on error. 1729 */ 1730 static int btrfs_find_all_roots_safe(struct btrfs_backref_walk_ctx *ctx) 1731 { 1732 const u64 orig_bytenr = ctx->bytenr; 1733 const bool orig_ignore_extent_item_pos = ctx->ignore_extent_item_pos; 1734 bool roots_ulist_allocated = false; 1735 struct ulist_iterator uiter; 1736 int ret = 0; 1737 1738 ASSERT(ctx->refs == NULL); 1739 1740 ctx->refs = ulist_alloc(GFP_NOFS); 1741 if (!ctx->refs) 1742 return -ENOMEM; 1743 1744 if (!ctx->roots) { 1745 ctx->roots = ulist_alloc(GFP_NOFS); 1746 if (!ctx->roots) { 1747 ulist_free(ctx->refs); 1748 ctx->refs = NULL; 1749 return -ENOMEM; 1750 } 1751 roots_ulist_allocated = true; 1752 } 1753 1754 ctx->ignore_extent_item_pos = true; 1755 1756 ULIST_ITER_INIT(&uiter); 1757 while (1) { 1758 struct ulist_node *node; 1759 1760 ret = find_parent_nodes(ctx, NULL); 1761 if (ret < 0 && ret != -ENOENT) { 1762 if (roots_ulist_allocated) { 1763 ulist_free(ctx->roots); 1764 ctx->roots = NULL; 1765 } 1766 break; 1767 } 1768 ret = 0; 1769 node = ulist_next(ctx->refs, &uiter); 1770 if (!node) 1771 break; 1772 ctx->bytenr = node->val; 1773 cond_resched(); 1774 } 1775 1776 ulist_free(ctx->refs); 1777 ctx->refs = NULL; 1778 ctx->bytenr = orig_bytenr; 1779 ctx->ignore_extent_item_pos = orig_ignore_extent_item_pos; 1780 1781 return ret; 1782 } 1783 1784 int btrfs_find_all_roots(struct btrfs_backref_walk_ctx *ctx, 1785 bool skip_commit_root_sem) 1786 { 1787 int ret; 1788 1789 if (!ctx->trans && !skip_commit_root_sem) 1790 down_read(&ctx->fs_info->commit_root_sem); 1791 ret = btrfs_find_all_roots_safe(ctx); 1792 if (!ctx->trans && !skip_commit_root_sem) 1793 up_read(&ctx->fs_info->commit_root_sem); 1794 return ret; 1795 } 1796 1797 struct btrfs_backref_share_check_ctx *btrfs_alloc_backref_share_check_ctx(void) 1798 { 1799 struct btrfs_backref_share_check_ctx *ctx; 1800 1801 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); 1802 if (!ctx) 1803 return NULL; 1804 1805 ulist_init(&ctx->refs); 1806 1807 return ctx; 1808 } 1809 1810 void btrfs_free_backref_share_ctx(struct btrfs_backref_share_check_ctx *ctx) 1811 { 1812 if (!ctx) 1813 return; 1814 1815 ulist_release(&ctx->refs); 1816 kfree(ctx); 1817 } 1818 1819 /* 1820 * Check if a data extent is shared or not. 1821 * 1822 * @inode: The inode whose extent we are checking. 1823 * @bytenr: Logical bytenr of the extent we are checking. 1824 * @extent_gen: Generation of the extent (file extent item) or 0 if it is 1825 * not known. 1826 * @ctx: A backref sharedness check context. 1827 * 1828 * btrfs_is_data_extent_shared uses the backref walking code but will short 1829 * circuit as soon as it finds a root or inode that doesn't match the 1830 * one passed in. This provides a significant performance benefit for 1831 * callers (such as fiemap) which want to know whether the extent is 1832 * shared but do not need a ref count. 1833 * 1834 * This attempts to attach to the running transaction in order to account for 1835 * delayed refs, but continues on even when no running transaction exists. 1836 * 1837 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1838 */ 1839 int btrfs_is_data_extent_shared(struct btrfs_inode *inode, u64 bytenr, 1840 u64 extent_gen, 1841 struct btrfs_backref_share_check_ctx *ctx) 1842 { 1843 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 1844 struct btrfs_root *root = inode->root; 1845 struct btrfs_fs_info *fs_info = root->fs_info; 1846 struct btrfs_trans_handle *trans; 1847 struct ulist_iterator uiter; 1848 struct ulist_node *node; 1849 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem); 1850 int ret = 0; 1851 struct share_check shared = { 1852 .ctx = ctx, 1853 .root = root, 1854 .inum = btrfs_ino(inode), 1855 .data_bytenr = bytenr, 1856 .data_extent_gen = extent_gen, 1857 .share_count = 0, 1858 .self_ref_count = 0, 1859 .have_delayed_delete_refs = false, 1860 }; 1861 int level; 1862 1863 for (int i = 0; i < BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; i++) { 1864 if (ctx->prev_extents_cache[i].bytenr == bytenr) 1865 return ctx->prev_extents_cache[i].is_shared; 1866 } 1867 1868 ulist_init(&ctx->refs); 1869 1870 trans = btrfs_join_transaction_nostart(root); 1871 if (IS_ERR(trans)) { 1872 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1873 ret = PTR_ERR(trans); 1874 goto out; 1875 } 1876 trans = NULL; 1877 down_read(&fs_info->commit_root_sem); 1878 } else { 1879 btrfs_get_tree_mod_seq(fs_info, &elem); 1880 walk_ctx.time_seq = elem.seq; 1881 } 1882 1883 walk_ctx.ignore_extent_item_pos = true; 1884 walk_ctx.trans = trans; 1885 walk_ctx.fs_info = fs_info; 1886 walk_ctx.refs = &ctx->refs; 1887 1888 /* -1 means we are in the bytenr of the data extent. */ 1889 level = -1; 1890 ULIST_ITER_INIT(&uiter); 1891 ctx->use_path_cache = true; 1892 while (1) { 1893 bool is_shared; 1894 bool cached; 1895 1896 walk_ctx.bytenr = bytenr; 1897 ret = find_parent_nodes(&walk_ctx, &shared); 1898 if (ret == BACKREF_FOUND_SHARED || 1899 ret == BACKREF_FOUND_NOT_SHARED) { 1900 /* If shared must return 1, otherwise return 0. */ 1901 ret = (ret == BACKREF_FOUND_SHARED) ? 1 : 0; 1902 if (level >= 0) 1903 store_backref_shared_cache(ctx, root, bytenr, 1904 level, ret == 1); 1905 break; 1906 } 1907 if (ret < 0 && ret != -ENOENT) 1908 break; 1909 ret = 0; 1910 1911 /* 1912 * If our data extent was not directly shared (without multiple 1913 * reference items), than it might have a single reference item 1914 * with a count > 1 for the same offset, which means there are 2 1915 * (or more) file extent items that point to the data extent - 1916 * this happens when a file extent item needs to be split and 1917 * then one item gets moved to another leaf due to a b+tree leaf 1918 * split when inserting some item. In this case the file extent 1919 * items may be located in different leaves and therefore some 1920 * of the leaves may be referenced through shared subtrees while 1921 * others are not. Since our extent buffer cache only works for 1922 * a single path (by far the most common case and simpler to 1923 * deal with), we can not use it if we have multiple leaves 1924 * (which implies multiple paths). 1925 */ 1926 if (level == -1 && ctx->refs.nnodes > 1) 1927 ctx->use_path_cache = false; 1928 1929 if (level >= 0) 1930 store_backref_shared_cache(ctx, root, bytenr, 1931 level, false); 1932 node = ulist_next(&ctx->refs, &uiter); 1933 if (!node) 1934 break; 1935 bytenr = node->val; 1936 level++; 1937 cached = lookup_backref_shared_cache(ctx, root, bytenr, level, 1938 &is_shared); 1939 if (cached) { 1940 ret = (is_shared ? 1 : 0); 1941 break; 1942 } 1943 shared.share_count = 0; 1944 shared.have_delayed_delete_refs = false; 1945 cond_resched(); 1946 } 1947 1948 /* 1949 * Cache the sharedness result for the data extent if we know our inode 1950 * has more than 1 file extent item that refers to the data extent. 1951 */ 1952 if (ret >= 0 && shared.self_ref_count > 1) { 1953 int slot = ctx->prev_extents_cache_slot; 1954 1955 ctx->prev_extents_cache[slot].bytenr = shared.data_bytenr; 1956 ctx->prev_extents_cache[slot].is_shared = (ret == 1); 1957 1958 slot = (slot + 1) % BTRFS_BACKREF_CTX_PREV_EXTENTS_SIZE; 1959 ctx->prev_extents_cache_slot = slot; 1960 } 1961 1962 if (trans) { 1963 btrfs_put_tree_mod_seq(fs_info, &elem); 1964 btrfs_end_transaction(trans); 1965 } else { 1966 up_read(&fs_info->commit_root_sem); 1967 } 1968 out: 1969 ulist_release(&ctx->refs); 1970 ctx->prev_leaf_bytenr = ctx->curr_leaf_bytenr; 1971 1972 return ret; 1973 } 1974 1975 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1976 u64 start_off, struct btrfs_path *path, 1977 struct btrfs_inode_extref **ret_extref, 1978 u64 *found_off) 1979 { 1980 int ret, slot; 1981 struct btrfs_key key; 1982 struct btrfs_key found_key; 1983 struct btrfs_inode_extref *extref; 1984 const struct extent_buffer *leaf; 1985 unsigned long ptr; 1986 1987 key.objectid = inode_objectid; 1988 key.type = BTRFS_INODE_EXTREF_KEY; 1989 key.offset = start_off; 1990 1991 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1992 if (ret < 0) 1993 return ret; 1994 1995 while (1) { 1996 leaf = path->nodes[0]; 1997 slot = path->slots[0]; 1998 if (slot >= btrfs_header_nritems(leaf)) { 1999 /* 2000 * If the item at offset is not found, 2001 * btrfs_search_slot will point us to the slot 2002 * where it should be inserted. In our case 2003 * that will be the slot directly before the 2004 * next INODE_REF_KEY_V2 item. In the case 2005 * that we're pointing to the last slot in a 2006 * leaf, we must move one leaf over. 2007 */ 2008 ret = btrfs_next_leaf(root, path); 2009 if (ret) { 2010 if (ret >= 1) 2011 ret = -ENOENT; 2012 break; 2013 } 2014 continue; 2015 } 2016 2017 btrfs_item_key_to_cpu(leaf, &found_key, slot); 2018 2019 /* 2020 * Check that we're still looking at an extended ref key for 2021 * this particular objectid. If we have different 2022 * objectid or type then there are no more to be found 2023 * in the tree and we can exit. 2024 */ 2025 ret = -ENOENT; 2026 if (found_key.objectid != inode_objectid) 2027 break; 2028 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 2029 break; 2030 2031 ret = 0; 2032 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 2033 extref = (struct btrfs_inode_extref *)ptr; 2034 *ret_extref = extref; 2035 if (found_off) 2036 *found_off = found_key.offset; 2037 break; 2038 } 2039 2040 return ret; 2041 } 2042 2043 /* 2044 * this iterates to turn a name (from iref/extref) into a full filesystem path. 2045 * Elements of the path are separated by '/' and the path is guaranteed to be 2046 * 0-terminated. the path is only given within the current file system. 2047 * Therefore, it never starts with a '/'. the caller is responsible to provide 2048 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 2049 * the start point of the resulting string is returned. this pointer is within 2050 * dest, normally. 2051 * in case the path buffer would overflow, the pointer is decremented further 2052 * as if output was written to the buffer, though no more output is actually 2053 * generated. that way, the caller can determine how much space would be 2054 * required for the path to fit into the buffer. in that case, the returned 2055 * value will be smaller than dest. callers must check this! 2056 */ 2057 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 2058 u32 name_len, unsigned long name_off, 2059 struct extent_buffer *eb_in, u64 parent, 2060 char *dest, u32 size) 2061 { 2062 int slot; 2063 u64 next_inum; 2064 int ret; 2065 s64 bytes_left = ((s64)size) - 1; 2066 struct extent_buffer *eb = eb_in; 2067 struct btrfs_key found_key; 2068 struct btrfs_inode_ref *iref; 2069 2070 if (bytes_left >= 0) 2071 dest[bytes_left] = '\0'; 2072 2073 while (1) { 2074 bytes_left -= name_len; 2075 if (bytes_left >= 0) 2076 read_extent_buffer(eb, dest + bytes_left, 2077 name_off, name_len); 2078 if (eb != eb_in) { 2079 if (!path->skip_locking) 2080 btrfs_tree_read_unlock(eb); 2081 free_extent_buffer(eb); 2082 } 2083 ret = btrfs_find_item(fs_root, path, parent, 0, 2084 BTRFS_INODE_REF_KEY, &found_key); 2085 if (ret > 0) 2086 ret = -ENOENT; 2087 if (ret) 2088 break; 2089 2090 next_inum = found_key.offset; 2091 2092 /* regular exit ahead */ 2093 if (parent == next_inum) 2094 break; 2095 2096 slot = path->slots[0]; 2097 eb = path->nodes[0]; 2098 /* make sure we can use eb after releasing the path */ 2099 if (eb != eb_in) { 2100 path->nodes[0] = NULL; 2101 path->locks[0] = 0; 2102 } 2103 btrfs_release_path(path); 2104 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2105 2106 name_len = btrfs_inode_ref_name_len(eb, iref); 2107 name_off = (unsigned long)(iref + 1); 2108 2109 parent = next_inum; 2110 --bytes_left; 2111 if (bytes_left >= 0) 2112 dest[bytes_left] = '/'; 2113 } 2114 2115 btrfs_release_path(path); 2116 2117 if (ret) 2118 return ERR_PTR(ret); 2119 2120 return dest + bytes_left; 2121 } 2122 2123 /* 2124 * this makes the path point to (logical EXTENT_ITEM *) 2125 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 2126 * tree blocks and <0 on error. 2127 */ 2128 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 2129 struct btrfs_path *path, struct btrfs_key *found_key, 2130 u64 *flags_ret) 2131 { 2132 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 2133 int ret; 2134 u64 flags; 2135 u64 size = 0; 2136 u32 item_size; 2137 const struct extent_buffer *eb; 2138 struct btrfs_extent_item *ei; 2139 struct btrfs_key key; 2140 2141 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 2142 key.type = BTRFS_METADATA_ITEM_KEY; 2143 else 2144 key.type = BTRFS_EXTENT_ITEM_KEY; 2145 key.objectid = logical; 2146 key.offset = (u64)-1; 2147 2148 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2149 if (ret < 0) 2150 return ret; 2151 2152 ret = btrfs_previous_extent_item(extent_root, path, 0); 2153 if (ret) { 2154 if (ret > 0) 2155 ret = -ENOENT; 2156 return ret; 2157 } 2158 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 2159 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 2160 size = fs_info->nodesize; 2161 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 2162 size = found_key->offset; 2163 2164 if (found_key->objectid > logical || 2165 found_key->objectid + size <= logical) { 2166 btrfs_debug(fs_info, 2167 "logical %llu is not within any extent", logical); 2168 return -ENOENT; 2169 } 2170 2171 eb = path->nodes[0]; 2172 item_size = btrfs_item_size(eb, path->slots[0]); 2173 BUG_ON(item_size < sizeof(*ei)); 2174 2175 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 2176 flags = btrfs_extent_flags(eb, ei); 2177 2178 btrfs_debug(fs_info, 2179 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 2180 logical, logical - found_key->objectid, found_key->objectid, 2181 found_key->offset, flags, item_size); 2182 2183 WARN_ON(!flags_ret); 2184 if (flags_ret) { 2185 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2186 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 2187 else if (flags & BTRFS_EXTENT_FLAG_DATA) 2188 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 2189 else 2190 BUG(); 2191 return 0; 2192 } 2193 2194 return -EIO; 2195 } 2196 2197 /* 2198 * helper function to iterate extent inline refs. ptr must point to a 0 value 2199 * for the first call and may be modified. it is used to track state. 2200 * if more refs exist, 0 is returned and the next call to 2201 * get_extent_inline_ref must pass the modified ptr parameter to get the 2202 * next ref. after the last ref was processed, 1 is returned. 2203 * returns <0 on error 2204 */ 2205 static int get_extent_inline_ref(unsigned long *ptr, 2206 const struct extent_buffer *eb, 2207 const struct btrfs_key *key, 2208 const struct btrfs_extent_item *ei, 2209 u32 item_size, 2210 struct btrfs_extent_inline_ref **out_eiref, 2211 int *out_type) 2212 { 2213 unsigned long end; 2214 u64 flags; 2215 struct btrfs_tree_block_info *info; 2216 2217 if (!*ptr) { 2218 /* first call */ 2219 flags = btrfs_extent_flags(eb, ei); 2220 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2221 if (key->type == BTRFS_METADATA_ITEM_KEY) { 2222 /* a skinny metadata extent */ 2223 *out_eiref = 2224 (struct btrfs_extent_inline_ref *)(ei + 1); 2225 } else { 2226 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 2227 info = (struct btrfs_tree_block_info *)(ei + 1); 2228 *out_eiref = 2229 (struct btrfs_extent_inline_ref *)(info + 1); 2230 } 2231 } else { 2232 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 2233 } 2234 *ptr = (unsigned long)*out_eiref; 2235 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 2236 return -ENOENT; 2237 } 2238 2239 end = (unsigned long)ei + item_size; 2240 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 2241 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 2242 BTRFS_REF_TYPE_ANY); 2243 if (*out_type == BTRFS_REF_TYPE_INVALID) 2244 return -EUCLEAN; 2245 2246 *ptr += btrfs_extent_inline_ref_size(*out_type); 2247 WARN_ON(*ptr > end); 2248 if (*ptr == end) 2249 return 1; /* last */ 2250 2251 return 0; 2252 } 2253 2254 /* 2255 * reads the tree block backref for an extent. tree level and root are returned 2256 * through out_level and out_root. ptr must point to a 0 value for the first 2257 * call and may be modified (see get_extent_inline_ref comment). 2258 * returns 0 if data was provided, 1 if there was no more data to provide or 2259 * <0 on error. 2260 */ 2261 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 2262 struct btrfs_key *key, struct btrfs_extent_item *ei, 2263 u32 item_size, u64 *out_root, u8 *out_level) 2264 { 2265 int ret; 2266 int type; 2267 struct btrfs_extent_inline_ref *eiref; 2268 2269 if (*ptr == (unsigned long)-1) 2270 return 1; 2271 2272 while (1) { 2273 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 2274 &eiref, &type); 2275 if (ret < 0) 2276 return ret; 2277 2278 if (type == BTRFS_TREE_BLOCK_REF_KEY || 2279 type == BTRFS_SHARED_BLOCK_REF_KEY) 2280 break; 2281 2282 if (ret == 1) 2283 return 1; 2284 } 2285 2286 /* we can treat both ref types equally here */ 2287 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 2288 2289 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 2290 struct btrfs_tree_block_info *info; 2291 2292 info = (struct btrfs_tree_block_info *)(ei + 1); 2293 *out_level = btrfs_tree_block_level(eb, info); 2294 } else { 2295 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 2296 *out_level = (u8)key->offset; 2297 } 2298 2299 if (ret == 1) 2300 *ptr = (unsigned long)-1; 2301 2302 return 0; 2303 } 2304 2305 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 2306 struct extent_inode_elem *inode_list, 2307 u64 root, u64 extent_item_objectid, 2308 iterate_extent_inodes_t *iterate, void *ctx) 2309 { 2310 struct extent_inode_elem *eie; 2311 int ret = 0; 2312 2313 for (eie = inode_list; eie; eie = eie->next) { 2314 btrfs_debug(fs_info, 2315 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 2316 extent_item_objectid, eie->inum, 2317 eie->offset, root); 2318 ret = iterate(eie->inum, eie->offset, eie->num_bytes, root, ctx); 2319 if (ret) { 2320 btrfs_debug(fs_info, 2321 "stopping iteration for %llu due to ret=%d", 2322 extent_item_objectid, ret); 2323 break; 2324 } 2325 } 2326 2327 return ret; 2328 } 2329 2330 /* 2331 * calls iterate() for every inode that references the extent identified by 2332 * the given parameters. 2333 * when the iterator function returns a non-zero value, iteration stops. 2334 */ 2335 int iterate_extent_inodes(struct btrfs_backref_walk_ctx *ctx, 2336 bool search_commit_root, 2337 iterate_extent_inodes_t *iterate, void *user_ctx) 2338 { 2339 int ret; 2340 struct ulist *refs; 2341 struct ulist_node *ref_node; 2342 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem); 2343 struct ulist_iterator ref_uiter; 2344 2345 btrfs_debug(ctx->fs_info, "resolving all inodes for extent %llu", 2346 ctx->bytenr); 2347 2348 ASSERT(ctx->trans == NULL); 2349 ASSERT(ctx->roots == NULL); 2350 2351 if (!search_commit_root) { 2352 struct btrfs_trans_handle *trans; 2353 2354 trans = btrfs_attach_transaction(ctx->fs_info->tree_root); 2355 if (IS_ERR(trans)) { 2356 if (PTR_ERR(trans) != -ENOENT && 2357 PTR_ERR(trans) != -EROFS) 2358 return PTR_ERR(trans); 2359 trans = NULL; 2360 } 2361 ctx->trans = trans; 2362 } 2363 2364 if (ctx->trans) { 2365 btrfs_get_tree_mod_seq(ctx->fs_info, &seq_elem); 2366 ctx->time_seq = seq_elem.seq; 2367 } else { 2368 down_read(&ctx->fs_info->commit_root_sem); 2369 } 2370 2371 ret = btrfs_find_all_leafs(ctx); 2372 if (ret) 2373 goto out; 2374 refs = ctx->refs; 2375 ctx->refs = NULL; 2376 2377 ULIST_ITER_INIT(&ref_uiter); 2378 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 2379 const u64 leaf_bytenr = ref_node->val; 2380 struct ulist_node *root_node; 2381 struct ulist_iterator root_uiter; 2382 struct extent_inode_elem *inode_list; 2383 2384 inode_list = (struct extent_inode_elem *)(uintptr_t)ref_node->aux; 2385 2386 if (ctx->cache_lookup) { 2387 const u64 *root_ids; 2388 int root_count; 2389 bool cached; 2390 2391 cached = ctx->cache_lookup(leaf_bytenr, ctx->user_ctx, 2392 &root_ids, &root_count); 2393 if (cached) { 2394 for (int i = 0; i < root_count; i++) { 2395 ret = iterate_leaf_refs(ctx->fs_info, 2396 inode_list, 2397 root_ids[i], 2398 leaf_bytenr, 2399 iterate, 2400 user_ctx); 2401 if (ret) 2402 break; 2403 } 2404 continue; 2405 } 2406 } 2407 2408 if (!ctx->roots) { 2409 ctx->roots = ulist_alloc(GFP_NOFS); 2410 if (!ctx->roots) { 2411 ret = -ENOMEM; 2412 break; 2413 } 2414 } 2415 2416 ctx->bytenr = leaf_bytenr; 2417 ret = btrfs_find_all_roots_safe(ctx); 2418 if (ret) 2419 break; 2420 2421 if (ctx->cache_store) 2422 ctx->cache_store(leaf_bytenr, ctx->roots, ctx->user_ctx); 2423 2424 ULIST_ITER_INIT(&root_uiter); 2425 while (!ret && (root_node = ulist_next(ctx->roots, &root_uiter))) { 2426 btrfs_debug(ctx->fs_info, 2427 "root %llu references leaf %llu, data list %#llx", 2428 root_node->val, ref_node->val, 2429 ref_node->aux); 2430 ret = iterate_leaf_refs(ctx->fs_info, inode_list, 2431 root_node->val, ctx->bytenr, 2432 iterate, user_ctx); 2433 } 2434 ulist_reinit(ctx->roots); 2435 } 2436 2437 free_leaf_list(refs); 2438 out: 2439 if (ctx->trans) { 2440 btrfs_put_tree_mod_seq(ctx->fs_info, &seq_elem); 2441 btrfs_end_transaction(ctx->trans); 2442 ctx->trans = NULL; 2443 } else { 2444 up_read(&ctx->fs_info->commit_root_sem); 2445 } 2446 2447 ulist_free(ctx->roots); 2448 ctx->roots = NULL; 2449 2450 if (ret == BTRFS_ITERATE_EXTENT_INODES_STOP) 2451 ret = 0; 2452 2453 return ret; 2454 } 2455 2456 static int build_ino_list(u64 inum, u64 offset, u64 num_bytes, u64 root, void *ctx) 2457 { 2458 struct btrfs_data_container *inodes = ctx; 2459 const size_t c = 3 * sizeof(u64); 2460 2461 if (inodes->bytes_left >= c) { 2462 inodes->bytes_left -= c; 2463 inodes->val[inodes->elem_cnt] = inum; 2464 inodes->val[inodes->elem_cnt + 1] = offset; 2465 inodes->val[inodes->elem_cnt + 2] = root; 2466 inodes->elem_cnt += 3; 2467 } else { 2468 inodes->bytes_missing += c - inodes->bytes_left; 2469 inodes->bytes_left = 0; 2470 inodes->elem_missed += 3; 2471 } 2472 2473 return 0; 2474 } 2475 2476 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2477 struct btrfs_path *path, 2478 void *ctx, bool ignore_offset) 2479 { 2480 struct btrfs_backref_walk_ctx walk_ctx = { 0 }; 2481 int ret; 2482 u64 flags = 0; 2483 struct btrfs_key found_key; 2484 int search_commit_root = path->search_commit_root; 2485 2486 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2487 btrfs_release_path(path); 2488 if (ret < 0) 2489 return ret; 2490 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2491 return -EINVAL; 2492 2493 walk_ctx.bytenr = found_key.objectid; 2494 if (ignore_offset) 2495 walk_ctx.ignore_extent_item_pos = true; 2496 else 2497 walk_ctx.extent_item_pos = logical - found_key.objectid; 2498 walk_ctx.fs_info = fs_info; 2499 2500 return iterate_extent_inodes(&walk_ctx, search_commit_root, 2501 build_ino_list, ctx); 2502 } 2503 2504 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2505 struct extent_buffer *eb, struct inode_fs_paths *ipath); 2506 2507 static int iterate_inode_refs(u64 inum, struct inode_fs_paths *ipath) 2508 { 2509 int ret = 0; 2510 int slot; 2511 u32 cur; 2512 u32 len; 2513 u32 name_len; 2514 u64 parent = 0; 2515 int found = 0; 2516 struct btrfs_root *fs_root = ipath->fs_root; 2517 struct btrfs_path *path = ipath->btrfs_path; 2518 struct extent_buffer *eb; 2519 struct btrfs_inode_ref *iref; 2520 struct btrfs_key found_key; 2521 2522 while (!ret) { 2523 ret = btrfs_find_item(fs_root, path, inum, 2524 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2525 &found_key); 2526 2527 if (ret < 0) 2528 break; 2529 if (ret) { 2530 ret = found ? 0 : -ENOENT; 2531 break; 2532 } 2533 ++found; 2534 2535 parent = found_key.offset; 2536 slot = path->slots[0]; 2537 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2538 if (!eb) { 2539 ret = -ENOMEM; 2540 break; 2541 } 2542 btrfs_release_path(path); 2543 2544 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2545 2546 for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) { 2547 name_len = btrfs_inode_ref_name_len(eb, iref); 2548 /* path must be released before calling iterate()! */ 2549 btrfs_debug(fs_root->fs_info, 2550 "following ref at offset %u for inode %llu in tree %llu", 2551 cur, found_key.objectid, 2552 fs_root->root_key.objectid); 2553 ret = inode_to_path(parent, name_len, 2554 (unsigned long)(iref + 1), eb, ipath); 2555 if (ret) 2556 break; 2557 len = sizeof(*iref) + name_len; 2558 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2559 } 2560 free_extent_buffer(eb); 2561 } 2562 2563 btrfs_release_path(path); 2564 2565 return ret; 2566 } 2567 2568 static int iterate_inode_extrefs(u64 inum, struct inode_fs_paths *ipath) 2569 { 2570 int ret; 2571 int slot; 2572 u64 offset = 0; 2573 u64 parent; 2574 int found = 0; 2575 struct btrfs_root *fs_root = ipath->fs_root; 2576 struct btrfs_path *path = ipath->btrfs_path; 2577 struct extent_buffer *eb; 2578 struct btrfs_inode_extref *extref; 2579 u32 item_size; 2580 u32 cur_offset; 2581 unsigned long ptr; 2582 2583 while (1) { 2584 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2585 &offset); 2586 if (ret < 0) 2587 break; 2588 if (ret) { 2589 ret = found ? 0 : -ENOENT; 2590 break; 2591 } 2592 ++found; 2593 2594 slot = path->slots[0]; 2595 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2596 if (!eb) { 2597 ret = -ENOMEM; 2598 break; 2599 } 2600 btrfs_release_path(path); 2601 2602 item_size = btrfs_item_size(eb, slot); 2603 ptr = btrfs_item_ptr_offset(eb, slot); 2604 cur_offset = 0; 2605 2606 while (cur_offset < item_size) { 2607 u32 name_len; 2608 2609 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2610 parent = btrfs_inode_extref_parent(eb, extref); 2611 name_len = btrfs_inode_extref_name_len(eb, extref); 2612 ret = inode_to_path(parent, name_len, 2613 (unsigned long)&extref->name, eb, ipath); 2614 if (ret) 2615 break; 2616 2617 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2618 cur_offset += sizeof(*extref); 2619 } 2620 free_extent_buffer(eb); 2621 2622 offset++; 2623 } 2624 2625 btrfs_release_path(path); 2626 2627 return ret; 2628 } 2629 2630 /* 2631 * returns 0 if the path could be dumped (probably truncated) 2632 * returns <0 in case of an error 2633 */ 2634 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2635 struct extent_buffer *eb, struct inode_fs_paths *ipath) 2636 { 2637 char *fspath; 2638 char *fspath_min; 2639 int i = ipath->fspath->elem_cnt; 2640 const int s_ptr = sizeof(char *); 2641 u32 bytes_left; 2642 2643 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2644 ipath->fspath->bytes_left - s_ptr : 0; 2645 2646 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2647 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2648 name_off, eb, inum, fspath_min, bytes_left); 2649 if (IS_ERR(fspath)) 2650 return PTR_ERR(fspath); 2651 2652 if (fspath > fspath_min) { 2653 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2654 ++ipath->fspath->elem_cnt; 2655 ipath->fspath->bytes_left = fspath - fspath_min; 2656 } else { 2657 ++ipath->fspath->elem_missed; 2658 ipath->fspath->bytes_missing += fspath_min - fspath; 2659 ipath->fspath->bytes_left = 0; 2660 } 2661 2662 return 0; 2663 } 2664 2665 /* 2666 * this dumps all file system paths to the inode into the ipath struct, provided 2667 * is has been created large enough. each path is zero-terminated and accessed 2668 * from ipath->fspath->val[i]. 2669 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2670 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2671 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2672 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2673 * have been needed to return all paths. 2674 */ 2675 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2676 { 2677 int ret; 2678 int found_refs = 0; 2679 2680 ret = iterate_inode_refs(inum, ipath); 2681 if (!ret) 2682 ++found_refs; 2683 else if (ret != -ENOENT) 2684 return ret; 2685 2686 ret = iterate_inode_extrefs(inum, ipath); 2687 if (ret == -ENOENT && found_refs) 2688 return 0; 2689 2690 return ret; 2691 } 2692 2693 struct btrfs_data_container *init_data_container(u32 total_bytes) 2694 { 2695 struct btrfs_data_container *data; 2696 size_t alloc_bytes; 2697 2698 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2699 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2700 if (!data) 2701 return ERR_PTR(-ENOMEM); 2702 2703 if (total_bytes >= sizeof(*data)) { 2704 data->bytes_left = total_bytes - sizeof(*data); 2705 data->bytes_missing = 0; 2706 } else { 2707 data->bytes_missing = sizeof(*data) - total_bytes; 2708 data->bytes_left = 0; 2709 } 2710 2711 data->elem_cnt = 0; 2712 data->elem_missed = 0; 2713 2714 return data; 2715 } 2716 2717 /* 2718 * allocates space to return multiple file system paths for an inode. 2719 * total_bytes to allocate are passed, note that space usable for actual path 2720 * information will be total_bytes - sizeof(struct inode_fs_paths). 2721 * the returned pointer must be freed with free_ipath() in the end. 2722 */ 2723 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2724 struct btrfs_path *path) 2725 { 2726 struct inode_fs_paths *ifp; 2727 struct btrfs_data_container *fspath; 2728 2729 fspath = init_data_container(total_bytes); 2730 if (IS_ERR(fspath)) 2731 return ERR_CAST(fspath); 2732 2733 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2734 if (!ifp) { 2735 kvfree(fspath); 2736 return ERR_PTR(-ENOMEM); 2737 } 2738 2739 ifp->btrfs_path = path; 2740 ifp->fspath = fspath; 2741 ifp->fs_root = fs_root; 2742 2743 return ifp; 2744 } 2745 2746 void free_ipath(struct inode_fs_paths *ipath) 2747 { 2748 if (!ipath) 2749 return; 2750 kvfree(ipath->fspath); 2751 kfree(ipath); 2752 } 2753 2754 struct btrfs_backref_iter *btrfs_backref_iter_alloc(struct btrfs_fs_info *fs_info) 2755 { 2756 struct btrfs_backref_iter *ret; 2757 2758 ret = kzalloc(sizeof(*ret), GFP_NOFS); 2759 if (!ret) 2760 return NULL; 2761 2762 ret->path = btrfs_alloc_path(); 2763 if (!ret->path) { 2764 kfree(ret); 2765 return NULL; 2766 } 2767 2768 /* Current backref iterator only supports iteration in commit root */ 2769 ret->path->search_commit_root = 1; 2770 ret->path->skip_locking = 1; 2771 ret->fs_info = fs_info; 2772 2773 return ret; 2774 } 2775 2776 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2777 { 2778 struct btrfs_fs_info *fs_info = iter->fs_info; 2779 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr); 2780 struct btrfs_path *path = iter->path; 2781 struct btrfs_extent_item *ei; 2782 struct btrfs_key key; 2783 int ret; 2784 2785 key.objectid = bytenr; 2786 key.type = BTRFS_METADATA_ITEM_KEY; 2787 key.offset = (u64)-1; 2788 iter->bytenr = bytenr; 2789 2790 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 2791 if (ret < 0) 2792 return ret; 2793 if (ret == 0) { 2794 ret = -EUCLEAN; 2795 goto release; 2796 } 2797 if (path->slots[0] == 0) { 2798 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2799 ret = -EUCLEAN; 2800 goto release; 2801 } 2802 path->slots[0]--; 2803 2804 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2805 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2806 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2807 ret = -ENOENT; 2808 goto release; 2809 } 2810 memcpy(&iter->cur_key, &key, sizeof(key)); 2811 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2812 path->slots[0]); 2813 iter->end_ptr = (u32)(iter->item_ptr + 2814 btrfs_item_size(path->nodes[0], path->slots[0])); 2815 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2816 struct btrfs_extent_item); 2817 2818 /* 2819 * Only support iteration on tree backref yet. 2820 * 2821 * This is an extra precaution for non skinny-metadata, where 2822 * EXTENT_ITEM is also used for tree blocks, that we can only use 2823 * extent flags to determine if it's a tree block. 2824 */ 2825 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2826 ret = -ENOTSUPP; 2827 goto release; 2828 } 2829 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2830 2831 /* If there is no inline backref, go search for keyed backref */ 2832 if (iter->cur_ptr >= iter->end_ptr) { 2833 ret = btrfs_next_item(extent_root, path); 2834 2835 /* No inline nor keyed ref */ 2836 if (ret > 0) { 2837 ret = -ENOENT; 2838 goto release; 2839 } 2840 if (ret < 0) 2841 goto release; 2842 2843 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2844 path->slots[0]); 2845 if (iter->cur_key.objectid != bytenr || 2846 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2847 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2848 ret = -ENOENT; 2849 goto release; 2850 } 2851 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2852 path->slots[0]); 2853 iter->item_ptr = iter->cur_ptr; 2854 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size( 2855 path->nodes[0], path->slots[0])); 2856 } 2857 2858 return 0; 2859 release: 2860 btrfs_backref_iter_release(iter); 2861 return ret; 2862 } 2863 2864 /* 2865 * Go to the next backref item of current bytenr, can be either inlined or 2866 * keyed. 2867 * 2868 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2869 * 2870 * Return 0 if we get next backref without problem. 2871 * Return >0 if there is no extra backref for this bytenr. 2872 * Return <0 if there is something wrong happened. 2873 */ 2874 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2875 { 2876 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2877 struct btrfs_root *extent_root; 2878 struct btrfs_path *path = iter->path; 2879 struct btrfs_extent_inline_ref *iref; 2880 int ret; 2881 u32 size; 2882 2883 if (btrfs_backref_iter_is_inline_ref(iter)) { 2884 /* We're still inside the inline refs */ 2885 ASSERT(iter->cur_ptr < iter->end_ptr); 2886 2887 if (btrfs_backref_has_tree_block_info(iter)) { 2888 /* First tree block info */ 2889 size = sizeof(struct btrfs_tree_block_info); 2890 } else { 2891 /* Use inline ref type to determine the size */ 2892 int type; 2893 2894 iref = (struct btrfs_extent_inline_ref *) 2895 ((unsigned long)iter->cur_ptr); 2896 type = btrfs_extent_inline_ref_type(eb, iref); 2897 2898 size = btrfs_extent_inline_ref_size(type); 2899 } 2900 iter->cur_ptr += size; 2901 if (iter->cur_ptr < iter->end_ptr) 2902 return 0; 2903 2904 /* All inline items iterated, fall through */ 2905 } 2906 2907 /* We're at keyed items, there is no inline item, go to the next one */ 2908 extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr); 2909 ret = btrfs_next_item(extent_root, iter->path); 2910 if (ret) 2911 return ret; 2912 2913 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2914 if (iter->cur_key.objectid != iter->bytenr || 2915 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2916 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2917 return 1; 2918 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2919 path->slots[0]); 2920 iter->cur_ptr = iter->item_ptr; 2921 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0], 2922 path->slots[0]); 2923 return 0; 2924 } 2925 2926 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 2927 struct btrfs_backref_cache *cache, int is_reloc) 2928 { 2929 int i; 2930 2931 cache->rb_root = RB_ROOT; 2932 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2933 INIT_LIST_HEAD(&cache->pending[i]); 2934 INIT_LIST_HEAD(&cache->changed); 2935 INIT_LIST_HEAD(&cache->detached); 2936 INIT_LIST_HEAD(&cache->leaves); 2937 INIT_LIST_HEAD(&cache->pending_edge); 2938 INIT_LIST_HEAD(&cache->useless_node); 2939 cache->fs_info = fs_info; 2940 cache->is_reloc = is_reloc; 2941 } 2942 2943 struct btrfs_backref_node *btrfs_backref_alloc_node( 2944 struct btrfs_backref_cache *cache, u64 bytenr, int level) 2945 { 2946 struct btrfs_backref_node *node; 2947 2948 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 2949 node = kzalloc(sizeof(*node), GFP_NOFS); 2950 if (!node) 2951 return node; 2952 2953 INIT_LIST_HEAD(&node->list); 2954 INIT_LIST_HEAD(&node->upper); 2955 INIT_LIST_HEAD(&node->lower); 2956 RB_CLEAR_NODE(&node->rb_node); 2957 cache->nr_nodes++; 2958 node->level = level; 2959 node->bytenr = bytenr; 2960 2961 return node; 2962 } 2963 2964 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 2965 struct btrfs_backref_cache *cache) 2966 { 2967 struct btrfs_backref_edge *edge; 2968 2969 edge = kzalloc(sizeof(*edge), GFP_NOFS); 2970 if (edge) 2971 cache->nr_edges++; 2972 return edge; 2973 } 2974 2975 /* 2976 * Drop the backref node from cache, also cleaning up all its 2977 * upper edges and any uncached nodes in the path. 2978 * 2979 * This cleanup happens bottom up, thus the node should either 2980 * be the lowest node in the cache or a detached node. 2981 */ 2982 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 2983 struct btrfs_backref_node *node) 2984 { 2985 struct btrfs_backref_node *upper; 2986 struct btrfs_backref_edge *edge; 2987 2988 if (!node) 2989 return; 2990 2991 BUG_ON(!node->lowest && !node->detached); 2992 while (!list_empty(&node->upper)) { 2993 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 2994 list[LOWER]); 2995 upper = edge->node[UPPER]; 2996 list_del(&edge->list[LOWER]); 2997 list_del(&edge->list[UPPER]); 2998 btrfs_backref_free_edge(cache, edge); 2999 3000 /* 3001 * Add the node to leaf node list if no other child block 3002 * cached. 3003 */ 3004 if (list_empty(&upper->lower)) { 3005 list_add_tail(&upper->lower, &cache->leaves); 3006 upper->lowest = 1; 3007 } 3008 } 3009 3010 btrfs_backref_drop_node(cache, node); 3011 } 3012 3013 /* 3014 * Release all nodes/edges from current cache 3015 */ 3016 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 3017 { 3018 struct btrfs_backref_node *node; 3019 int i; 3020 3021 while (!list_empty(&cache->detached)) { 3022 node = list_entry(cache->detached.next, 3023 struct btrfs_backref_node, list); 3024 btrfs_backref_cleanup_node(cache, node); 3025 } 3026 3027 while (!list_empty(&cache->leaves)) { 3028 node = list_entry(cache->leaves.next, 3029 struct btrfs_backref_node, lower); 3030 btrfs_backref_cleanup_node(cache, node); 3031 } 3032 3033 cache->last_trans = 0; 3034 3035 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 3036 ASSERT(list_empty(&cache->pending[i])); 3037 ASSERT(list_empty(&cache->pending_edge)); 3038 ASSERT(list_empty(&cache->useless_node)); 3039 ASSERT(list_empty(&cache->changed)); 3040 ASSERT(list_empty(&cache->detached)); 3041 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 3042 ASSERT(!cache->nr_nodes); 3043 ASSERT(!cache->nr_edges); 3044 } 3045 3046 /* 3047 * Handle direct tree backref 3048 * 3049 * Direct tree backref means, the backref item shows its parent bytenr 3050 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 3051 * 3052 * @ref_key: The converted backref key. 3053 * For keyed backref, it's the item key. 3054 * For inlined backref, objectid is the bytenr, 3055 * type is btrfs_inline_ref_type, offset is 3056 * btrfs_inline_ref_offset. 3057 */ 3058 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 3059 struct btrfs_key *ref_key, 3060 struct btrfs_backref_node *cur) 3061 { 3062 struct btrfs_backref_edge *edge; 3063 struct btrfs_backref_node *upper; 3064 struct rb_node *rb_node; 3065 3066 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 3067 3068 /* Only reloc root uses backref pointing to itself */ 3069 if (ref_key->objectid == ref_key->offset) { 3070 struct btrfs_root *root; 3071 3072 cur->is_reloc_root = 1; 3073 /* Only reloc backref cache cares about a specific root */ 3074 if (cache->is_reloc) { 3075 root = find_reloc_root(cache->fs_info, cur->bytenr); 3076 if (!root) 3077 return -ENOENT; 3078 cur->root = root; 3079 } else { 3080 /* 3081 * For generic purpose backref cache, reloc root node 3082 * is useless. 3083 */ 3084 list_add(&cur->list, &cache->useless_node); 3085 } 3086 return 0; 3087 } 3088 3089 edge = btrfs_backref_alloc_edge(cache); 3090 if (!edge) 3091 return -ENOMEM; 3092 3093 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 3094 if (!rb_node) { 3095 /* Parent node not yet cached */ 3096 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 3097 cur->level + 1); 3098 if (!upper) { 3099 btrfs_backref_free_edge(cache, edge); 3100 return -ENOMEM; 3101 } 3102 3103 /* 3104 * Backrefs for the upper level block isn't cached, add the 3105 * block to pending list 3106 */ 3107 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3108 } else { 3109 /* Parent node already cached */ 3110 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 3111 ASSERT(upper->checked); 3112 INIT_LIST_HEAD(&edge->list[UPPER]); 3113 } 3114 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 3115 return 0; 3116 } 3117 3118 /* 3119 * Handle indirect tree backref 3120 * 3121 * Indirect tree backref means, we only know which tree the node belongs to. 3122 * We still need to do a tree search to find out the parents. This is for 3123 * TREE_BLOCK_REF backref (keyed or inlined). 3124 * 3125 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 3126 * @tree_key: The first key of this tree block. 3127 * @path: A clean (released) path, to avoid allocating path every time 3128 * the function get called. 3129 */ 3130 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 3131 struct btrfs_path *path, 3132 struct btrfs_key *ref_key, 3133 struct btrfs_key *tree_key, 3134 struct btrfs_backref_node *cur) 3135 { 3136 struct btrfs_fs_info *fs_info = cache->fs_info; 3137 struct btrfs_backref_node *upper; 3138 struct btrfs_backref_node *lower; 3139 struct btrfs_backref_edge *edge; 3140 struct extent_buffer *eb; 3141 struct btrfs_root *root; 3142 struct rb_node *rb_node; 3143 int level; 3144 bool need_check = true; 3145 int ret; 3146 3147 root = btrfs_get_fs_root(fs_info, ref_key->offset, false); 3148 if (IS_ERR(root)) 3149 return PTR_ERR(root); 3150 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3151 cur->cowonly = 1; 3152 3153 if (btrfs_root_level(&root->root_item) == cur->level) { 3154 /* Tree root */ 3155 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 3156 /* 3157 * For reloc backref cache, we may ignore reloc root. But for 3158 * general purpose backref cache, we can't rely on 3159 * btrfs_should_ignore_reloc_root() as it may conflict with 3160 * current running relocation and lead to missing root. 3161 * 3162 * For general purpose backref cache, reloc root detection is 3163 * completely relying on direct backref (key->offset is parent 3164 * bytenr), thus only do such check for reloc cache. 3165 */ 3166 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) { 3167 btrfs_put_root(root); 3168 list_add(&cur->list, &cache->useless_node); 3169 } else { 3170 cur->root = root; 3171 } 3172 return 0; 3173 } 3174 3175 level = cur->level + 1; 3176 3177 /* Search the tree to find parent blocks referring to the block */ 3178 path->search_commit_root = 1; 3179 path->skip_locking = 1; 3180 path->lowest_level = level; 3181 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 3182 path->lowest_level = 0; 3183 if (ret < 0) { 3184 btrfs_put_root(root); 3185 return ret; 3186 } 3187 if (ret > 0 && path->slots[level] > 0) 3188 path->slots[level]--; 3189 3190 eb = path->nodes[level]; 3191 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 3192 btrfs_err(fs_info, 3193 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 3194 cur->bytenr, level - 1, root->root_key.objectid, 3195 tree_key->objectid, tree_key->type, tree_key->offset); 3196 btrfs_put_root(root); 3197 ret = -ENOENT; 3198 goto out; 3199 } 3200 lower = cur; 3201 3202 /* Add all nodes and edges in the path */ 3203 for (; level < BTRFS_MAX_LEVEL; level++) { 3204 if (!path->nodes[level]) { 3205 ASSERT(btrfs_root_bytenr(&root->root_item) == 3206 lower->bytenr); 3207 /* Same as previous should_ignore_reloc_root() call */ 3208 if (btrfs_should_ignore_reloc_root(root) && 3209 cache->is_reloc) { 3210 btrfs_put_root(root); 3211 list_add(&lower->list, &cache->useless_node); 3212 } else { 3213 lower->root = root; 3214 } 3215 break; 3216 } 3217 3218 edge = btrfs_backref_alloc_edge(cache); 3219 if (!edge) { 3220 btrfs_put_root(root); 3221 ret = -ENOMEM; 3222 goto out; 3223 } 3224 3225 eb = path->nodes[level]; 3226 rb_node = rb_simple_search(&cache->rb_root, eb->start); 3227 if (!rb_node) { 3228 upper = btrfs_backref_alloc_node(cache, eb->start, 3229 lower->level + 1); 3230 if (!upper) { 3231 btrfs_put_root(root); 3232 btrfs_backref_free_edge(cache, edge); 3233 ret = -ENOMEM; 3234 goto out; 3235 } 3236 upper->owner = btrfs_header_owner(eb); 3237 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 3238 upper->cowonly = 1; 3239 3240 /* 3241 * If we know the block isn't shared we can avoid 3242 * checking its backrefs. 3243 */ 3244 if (btrfs_block_can_be_shared(root, eb)) 3245 upper->checked = 0; 3246 else 3247 upper->checked = 1; 3248 3249 /* 3250 * Add the block to pending list if we need to check its 3251 * backrefs, we only do this once while walking up a 3252 * tree as we will catch anything else later on. 3253 */ 3254 if (!upper->checked && need_check) { 3255 need_check = false; 3256 list_add_tail(&edge->list[UPPER], 3257 &cache->pending_edge); 3258 } else { 3259 if (upper->checked) 3260 need_check = true; 3261 INIT_LIST_HEAD(&edge->list[UPPER]); 3262 } 3263 } else { 3264 upper = rb_entry(rb_node, struct btrfs_backref_node, 3265 rb_node); 3266 ASSERT(upper->checked); 3267 INIT_LIST_HEAD(&edge->list[UPPER]); 3268 if (!upper->owner) 3269 upper->owner = btrfs_header_owner(eb); 3270 } 3271 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 3272 3273 if (rb_node) { 3274 btrfs_put_root(root); 3275 break; 3276 } 3277 lower = upper; 3278 upper = NULL; 3279 } 3280 out: 3281 btrfs_release_path(path); 3282 return ret; 3283 } 3284 3285 /* 3286 * Add backref node @cur into @cache. 3287 * 3288 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 3289 * links aren't yet bi-directional. Needs to finish such links. 3290 * Use btrfs_backref_finish_upper_links() to finish such linkage. 3291 * 3292 * @path: Released path for indirect tree backref lookup 3293 * @iter: Released backref iter for extent tree search 3294 * @node_key: The first key of the tree block 3295 */ 3296 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 3297 struct btrfs_path *path, 3298 struct btrfs_backref_iter *iter, 3299 struct btrfs_key *node_key, 3300 struct btrfs_backref_node *cur) 3301 { 3302 struct btrfs_fs_info *fs_info = cache->fs_info; 3303 struct btrfs_backref_edge *edge; 3304 struct btrfs_backref_node *exist; 3305 int ret; 3306 3307 ret = btrfs_backref_iter_start(iter, cur->bytenr); 3308 if (ret < 0) 3309 return ret; 3310 /* 3311 * We skip the first btrfs_tree_block_info, as we don't use the key 3312 * stored in it, but fetch it from the tree block 3313 */ 3314 if (btrfs_backref_has_tree_block_info(iter)) { 3315 ret = btrfs_backref_iter_next(iter); 3316 if (ret < 0) 3317 goto out; 3318 /* No extra backref? This means the tree block is corrupted */ 3319 if (ret > 0) { 3320 ret = -EUCLEAN; 3321 goto out; 3322 } 3323 } 3324 WARN_ON(cur->checked); 3325 if (!list_empty(&cur->upper)) { 3326 /* 3327 * The backref was added previously when processing backref of 3328 * type BTRFS_TREE_BLOCK_REF_KEY 3329 */ 3330 ASSERT(list_is_singular(&cur->upper)); 3331 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 3332 list[LOWER]); 3333 ASSERT(list_empty(&edge->list[UPPER])); 3334 exist = edge->node[UPPER]; 3335 /* 3336 * Add the upper level block to pending list if we need check 3337 * its backrefs 3338 */ 3339 if (!exist->checked) 3340 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 3341 } else { 3342 exist = NULL; 3343 } 3344 3345 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 3346 struct extent_buffer *eb; 3347 struct btrfs_key key; 3348 int type; 3349 3350 cond_resched(); 3351 eb = btrfs_backref_get_eb(iter); 3352 3353 key.objectid = iter->bytenr; 3354 if (btrfs_backref_iter_is_inline_ref(iter)) { 3355 struct btrfs_extent_inline_ref *iref; 3356 3357 /* Update key for inline backref */ 3358 iref = (struct btrfs_extent_inline_ref *) 3359 ((unsigned long)iter->cur_ptr); 3360 type = btrfs_get_extent_inline_ref_type(eb, iref, 3361 BTRFS_REF_TYPE_BLOCK); 3362 if (type == BTRFS_REF_TYPE_INVALID) { 3363 ret = -EUCLEAN; 3364 goto out; 3365 } 3366 key.type = type; 3367 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3368 } else { 3369 key.type = iter->cur_key.type; 3370 key.offset = iter->cur_key.offset; 3371 } 3372 3373 /* 3374 * Parent node found and matches current inline ref, no need to 3375 * rebuild this node for this inline ref 3376 */ 3377 if (exist && 3378 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 3379 exist->owner == key.offset) || 3380 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 3381 exist->bytenr == key.offset))) { 3382 exist = NULL; 3383 continue; 3384 } 3385 3386 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 3387 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 3388 ret = handle_direct_tree_backref(cache, &key, cur); 3389 if (ret < 0) 3390 goto out; 3391 continue; 3392 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 3393 ret = -EINVAL; 3394 btrfs_print_v0_err(fs_info); 3395 btrfs_handle_fs_error(fs_info, ret, NULL); 3396 goto out; 3397 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 3398 continue; 3399 } 3400 3401 /* 3402 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 3403 * means the root objectid. We need to search the tree to get 3404 * its parent bytenr. 3405 */ 3406 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 3407 cur); 3408 if (ret < 0) 3409 goto out; 3410 } 3411 ret = 0; 3412 cur->checked = 1; 3413 WARN_ON(exist); 3414 out: 3415 btrfs_backref_iter_release(iter); 3416 return ret; 3417 } 3418 3419 /* 3420 * Finish the upwards linkage created by btrfs_backref_add_tree_node() 3421 */ 3422 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache, 3423 struct btrfs_backref_node *start) 3424 { 3425 struct list_head *useless_node = &cache->useless_node; 3426 struct btrfs_backref_edge *edge; 3427 struct rb_node *rb_node; 3428 LIST_HEAD(pending_edge); 3429 3430 ASSERT(start->checked); 3431 3432 /* Insert this node to cache if it's not COW-only */ 3433 if (!start->cowonly) { 3434 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr, 3435 &start->rb_node); 3436 if (rb_node) 3437 btrfs_backref_panic(cache->fs_info, start->bytenr, 3438 -EEXIST); 3439 list_add_tail(&start->lower, &cache->leaves); 3440 } 3441 3442 /* 3443 * Use breadth first search to iterate all related edges. 3444 * 3445 * The starting points are all the edges of this node 3446 */ 3447 list_for_each_entry(edge, &start->upper, list[LOWER]) 3448 list_add_tail(&edge->list[UPPER], &pending_edge); 3449 3450 while (!list_empty(&pending_edge)) { 3451 struct btrfs_backref_node *upper; 3452 struct btrfs_backref_node *lower; 3453 3454 edge = list_first_entry(&pending_edge, 3455 struct btrfs_backref_edge, list[UPPER]); 3456 list_del_init(&edge->list[UPPER]); 3457 upper = edge->node[UPPER]; 3458 lower = edge->node[LOWER]; 3459 3460 /* Parent is detached, no need to keep any edges */ 3461 if (upper->detached) { 3462 list_del(&edge->list[LOWER]); 3463 btrfs_backref_free_edge(cache, edge); 3464 3465 /* Lower node is orphan, queue for cleanup */ 3466 if (list_empty(&lower->upper)) 3467 list_add(&lower->list, useless_node); 3468 continue; 3469 } 3470 3471 /* 3472 * All new nodes added in current build_backref_tree() haven't 3473 * been linked to the cache rb tree. 3474 * So if we have upper->rb_node populated, this means a cache 3475 * hit. We only need to link the edge, as @upper and all its 3476 * parents have already been linked. 3477 */ 3478 if (!RB_EMPTY_NODE(&upper->rb_node)) { 3479 if (upper->lowest) { 3480 list_del_init(&upper->lower); 3481 upper->lowest = 0; 3482 } 3483 3484 list_add_tail(&edge->list[UPPER], &upper->lower); 3485 continue; 3486 } 3487 3488 /* Sanity check, we shouldn't have any unchecked nodes */ 3489 if (!upper->checked) { 3490 ASSERT(0); 3491 return -EUCLEAN; 3492 } 3493 3494 /* Sanity check, COW-only node has non-COW-only parent */ 3495 if (start->cowonly != upper->cowonly) { 3496 ASSERT(0); 3497 return -EUCLEAN; 3498 } 3499 3500 /* Only cache non-COW-only (subvolume trees) tree blocks */ 3501 if (!upper->cowonly) { 3502 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr, 3503 &upper->rb_node); 3504 if (rb_node) { 3505 btrfs_backref_panic(cache->fs_info, 3506 upper->bytenr, -EEXIST); 3507 return -EUCLEAN; 3508 } 3509 } 3510 3511 list_add_tail(&edge->list[UPPER], &upper->lower); 3512 3513 /* 3514 * Also queue all the parent edges of this uncached node 3515 * to finish the upper linkage 3516 */ 3517 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3518 list_add_tail(&edge->list[UPPER], &pending_edge); 3519 } 3520 return 0; 3521 } 3522 3523 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache, 3524 struct btrfs_backref_node *node) 3525 { 3526 struct btrfs_backref_node *lower; 3527 struct btrfs_backref_node *upper; 3528 struct btrfs_backref_edge *edge; 3529 3530 while (!list_empty(&cache->useless_node)) { 3531 lower = list_first_entry(&cache->useless_node, 3532 struct btrfs_backref_node, list); 3533 list_del_init(&lower->list); 3534 } 3535 while (!list_empty(&cache->pending_edge)) { 3536 edge = list_first_entry(&cache->pending_edge, 3537 struct btrfs_backref_edge, list[UPPER]); 3538 list_del(&edge->list[UPPER]); 3539 list_del(&edge->list[LOWER]); 3540 lower = edge->node[LOWER]; 3541 upper = edge->node[UPPER]; 3542 btrfs_backref_free_edge(cache, edge); 3543 3544 /* 3545 * Lower is no longer linked to any upper backref nodes and 3546 * isn't in the cache, we can free it ourselves. 3547 */ 3548 if (list_empty(&lower->upper) && 3549 RB_EMPTY_NODE(&lower->rb_node)) 3550 list_add(&lower->list, &cache->useless_node); 3551 3552 if (!RB_EMPTY_NODE(&upper->rb_node)) 3553 continue; 3554 3555 /* Add this guy's upper edges to the list to process */ 3556 list_for_each_entry(edge, &upper->upper, list[LOWER]) 3557 list_add_tail(&edge->list[UPPER], 3558 &cache->pending_edge); 3559 if (list_empty(&upper->upper)) 3560 list_add(&upper->list, &cache->useless_node); 3561 } 3562 3563 while (!list_empty(&cache->useless_node)) { 3564 lower = list_first_entry(&cache->useless_node, 3565 struct btrfs_backref_node, list); 3566 list_del_init(&lower->list); 3567 if (lower == node) 3568 node = NULL; 3569 btrfs_backref_drop_node(cache, lower); 3570 } 3571 3572 btrfs_backref_cleanup_node(cache, node); 3573 ASSERT(list_empty(&cache->useless_node) && 3574 list_empty(&cache->pending_edge)); 3575 } 3576