xref: /openbmc/linux/fs/btrfs/backref.c (revision 6c336b212bef66e507897c78551b3bb4e613a857)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/mm.h>
20 #include <linux/rbtree.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "backref.h"
24 #include "ulist.h"
25 #include "transaction.h"
26 #include "delayed-ref.h"
27 #include "locking.h"
28 
29 /* Just an arbitrary number so we can be sure this happened */
30 #define BACKREF_FOUND_SHARED 6
31 
32 struct extent_inode_elem {
33 	u64 inum;
34 	u64 offset;
35 	struct extent_inode_elem *next;
36 };
37 
38 static int check_extent_in_eb(const struct btrfs_key *key,
39 			      const struct extent_buffer *eb,
40 			      const struct btrfs_file_extent_item *fi,
41 			      u64 extent_item_pos,
42 			      struct extent_inode_elem **eie)
43 {
44 	u64 offset = 0;
45 	struct extent_inode_elem *e;
46 
47 	if (!btrfs_file_extent_compression(eb, fi) &&
48 	    !btrfs_file_extent_encryption(eb, fi) &&
49 	    !btrfs_file_extent_other_encoding(eb, fi)) {
50 		u64 data_offset;
51 		u64 data_len;
52 
53 		data_offset = btrfs_file_extent_offset(eb, fi);
54 		data_len = btrfs_file_extent_num_bytes(eb, fi);
55 
56 		if (extent_item_pos < data_offset ||
57 		    extent_item_pos >= data_offset + data_len)
58 			return 1;
59 		offset = extent_item_pos - data_offset;
60 	}
61 
62 	e = kmalloc(sizeof(*e), GFP_NOFS);
63 	if (!e)
64 		return -ENOMEM;
65 
66 	e->next = *eie;
67 	e->inum = key->objectid;
68 	e->offset = key->offset + offset;
69 	*eie = e;
70 
71 	return 0;
72 }
73 
74 static void free_inode_elem_list(struct extent_inode_elem *eie)
75 {
76 	struct extent_inode_elem *eie_next;
77 
78 	for (; eie; eie = eie_next) {
79 		eie_next = eie->next;
80 		kfree(eie);
81 	}
82 }
83 
84 static int find_extent_in_eb(const struct extent_buffer *eb,
85 			     u64 wanted_disk_byte, u64 extent_item_pos,
86 			     struct extent_inode_elem **eie)
87 {
88 	u64 disk_byte;
89 	struct btrfs_key key;
90 	struct btrfs_file_extent_item *fi;
91 	int slot;
92 	int nritems;
93 	int extent_type;
94 	int ret;
95 
96 	/*
97 	 * from the shared data ref, we only have the leaf but we need
98 	 * the key. thus, we must look into all items and see that we
99 	 * find one (some) with a reference to our extent item.
100 	 */
101 	nritems = btrfs_header_nritems(eb);
102 	for (slot = 0; slot < nritems; ++slot) {
103 		btrfs_item_key_to_cpu(eb, &key, slot);
104 		if (key.type != BTRFS_EXTENT_DATA_KEY)
105 			continue;
106 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
107 		extent_type = btrfs_file_extent_type(eb, fi);
108 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
109 			continue;
110 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
111 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
112 		if (disk_byte != wanted_disk_byte)
113 			continue;
114 
115 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
116 		if (ret < 0)
117 			return ret;
118 	}
119 
120 	return 0;
121 }
122 
123 /*
124  * this structure records all encountered refs on the way up to the root
125  */
126 struct prelim_ref {
127 	struct rb_node rbnode;
128 	u64 root_id;
129 	struct btrfs_key key_for_search;
130 	int level;
131 	int count;
132 	struct extent_inode_elem *inode_list;
133 	u64 parent;
134 	u64 wanted_disk_byte;
135 };
136 
137 struct preftree {
138 	struct rb_root root;
139 	unsigned int count;
140 };
141 
142 #define PREFTREE_INIT	{ .root = RB_ROOT, .count = 0 }
143 
144 struct preftrees {
145 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
146 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
147 	struct preftree indirect_missing_keys;
148 };
149 
150 static struct kmem_cache *btrfs_prelim_ref_cache;
151 
152 int __init btrfs_prelim_ref_init(void)
153 {
154 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
155 					sizeof(struct prelim_ref),
156 					0,
157 					SLAB_MEM_SPREAD,
158 					NULL);
159 	if (!btrfs_prelim_ref_cache)
160 		return -ENOMEM;
161 	return 0;
162 }
163 
164 void btrfs_prelim_ref_exit(void)
165 {
166 	kmem_cache_destroy(btrfs_prelim_ref_cache);
167 }
168 
169 static void free_pref(struct prelim_ref *ref)
170 {
171 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
172 }
173 
174 /*
175  * Return 0 when both refs are for the same block (and can be merged).
176  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
177  * indicates a 'higher' block.
178  */
179 static int prelim_ref_compare(struct prelim_ref *ref1,
180 			      struct prelim_ref *ref2)
181 {
182 	if (ref1->level < ref2->level)
183 		return -1;
184 	if (ref1->level > ref2->level)
185 		return 1;
186 	if (ref1->root_id < ref2->root_id)
187 		return -1;
188 	if (ref1->root_id > ref2->root_id)
189 		return 1;
190 	if (ref1->key_for_search.type < ref2->key_for_search.type)
191 		return -1;
192 	if (ref1->key_for_search.type > ref2->key_for_search.type)
193 		return 1;
194 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
195 		return -1;
196 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
197 		return 1;
198 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
199 		return -1;
200 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
201 		return 1;
202 	if (ref1->parent < ref2->parent)
203 		return -1;
204 	if (ref1->parent > ref2->parent)
205 		return 1;
206 
207 	return 0;
208 }
209 
210 /*
211  * Add @newref to the @root rbtree, merging identical refs.
212  *
213  * Callers should assumed that newref has been freed after calling.
214  */
215 static void prelim_ref_insert(struct preftree *preftree,
216 			      struct prelim_ref *newref)
217 {
218 	struct rb_root *root;
219 	struct rb_node **p;
220 	struct rb_node *parent = NULL;
221 	struct prelim_ref *ref;
222 	int result;
223 
224 	root = &preftree->root;
225 	p = &root->rb_node;
226 
227 	while (*p) {
228 		parent = *p;
229 		ref = rb_entry(parent, struct prelim_ref, rbnode);
230 		result = prelim_ref_compare(ref, newref);
231 		if (result < 0) {
232 			p = &(*p)->rb_left;
233 		} else if (result > 0) {
234 			p = &(*p)->rb_right;
235 		} else {
236 			/* Identical refs, merge them and free @newref */
237 			struct extent_inode_elem *eie = ref->inode_list;
238 
239 			while (eie && eie->next)
240 				eie = eie->next;
241 
242 			if (!eie)
243 				ref->inode_list = newref->inode_list;
244 			else
245 				eie->next = newref->inode_list;
246 			ref->count += newref->count;
247 			free_pref(newref);
248 			return;
249 		}
250 	}
251 
252 	preftree->count++;
253 	rb_link_node(&newref->rbnode, parent, p);
254 	rb_insert_color(&newref->rbnode, root);
255 }
256 
257 /*
258  * Release the entire tree.  We don't care about internal consistency so
259  * just free everything and then reset the tree root.
260  */
261 static void prelim_release(struct preftree *preftree)
262 {
263 	struct prelim_ref *ref, *next_ref;
264 
265 	rbtree_postorder_for_each_entry_safe(ref, next_ref, &preftree->root,
266 					     rbnode)
267 		free_pref(ref);
268 
269 	preftree->root = RB_ROOT;
270 	preftree->count = 0;
271 }
272 
273 /*
274  * the rules for all callers of this function are:
275  * - obtaining the parent is the goal
276  * - if you add a key, you must know that it is a correct key
277  * - if you cannot add the parent or a correct key, then we will look into the
278  *   block later to set a correct key
279  *
280  * delayed refs
281  * ============
282  *        backref type | shared | indirect | shared | indirect
283  * information         |   tree |     tree |   data |     data
284  * --------------------+--------+----------+--------+----------
285  *      parent logical |    y   |     -    |    -   |     -
286  *      key to resolve |    -   |     y    |    y   |     y
287  *  tree block logical |    -   |     -    |    -   |     -
288  *  root for resolving |    y   |     y    |    y   |     y
289  *
290  * - column 1:       we've the parent -> done
291  * - column 2, 3, 4: we use the key to find the parent
292  *
293  * on disk refs (inline or keyed)
294  * ==============================
295  *        backref type | shared | indirect | shared | indirect
296  * information         |   tree |     tree |   data |     data
297  * --------------------+--------+----------+--------+----------
298  *      parent logical |    y   |     -    |    y   |     -
299  *      key to resolve |    -   |     -    |    -   |     y
300  *  tree block logical |    y   |     y    |    y   |     y
301  *  root for resolving |    -   |     y    |    y   |     y
302  *
303  * - column 1, 3: we've the parent -> done
304  * - column 2:    we take the first key from the block to find the parent
305  *                (see add_missing_keys)
306  * - column 4:    we use the key to find the parent
307  *
308  * additional information that's available but not required to find the parent
309  * block might help in merging entries to gain some speed.
310  */
311 static int add_prelim_ref(struct preftree *preftree, u64 root_id,
312 			  const struct btrfs_key *key, int level, u64 parent,
313 			  u64 wanted_disk_byte, int count, gfp_t gfp_mask)
314 {
315 	struct prelim_ref *ref;
316 
317 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
318 		return 0;
319 
320 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
321 	if (!ref)
322 		return -ENOMEM;
323 
324 	ref->root_id = root_id;
325 	if (key) {
326 		ref->key_for_search = *key;
327 		/*
328 		 * We can often find data backrefs with an offset that is too
329 		 * large (>= LLONG_MAX, maximum allowed file offset) due to
330 		 * underflows when subtracting a file's offset with the data
331 		 * offset of its corresponding extent data item. This can
332 		 * happen for example in the clone ioctl.
333 		 * So if we detect such case we set the search key's offset to
334 		 * zero to make sure we will find the matching file extent item
335 		 * at add_all_parents(), otherwise we will miss it because the
336 		 * offset taken form the backref is much larger then the offset
337 		 * of the file extent item. This can make us scan a very large
338 		 * number of file extent items, but at least it will not make
339 		 * us miss any.
340 		 * This is an ugly workaround for a behaviour that should have
341 		 * never existed, but it does and a fix for the clone ioctl
342 		 * would touch a lot of places, cause backwards incompatibility
343 		 * and would not fix the problem for extents cloned with older
344 		 * kernels.
345 		 */
346 		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
347 		    ref->key_for_search.offset >= LLONG_MAX)
348 			ref->key_for_search.offset = 0;
349 	} else {
350 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
351 	}
352 
353 	ref->inode_list = NULL;
354 	ref->level = level;
355 	ref->count = count;
356 	ref->parent = parent;
357 	ref->wanted_disk_byte = wanted_disk_byte;
358 	prelim_ref_insert(preftree, ref);
359 
360 	return 0;
361 }
362 
363 /* direct refs use root == 0, key == NULL */
364 static int add_direct_ref(struct preftrees *preftrees, int level, u64 parent,
365 			  u64 wanted_disk_byte, int count, gfp_t gfp_mask)
366 {
367 	return add_prelim_ref(&preftrees->direct, 0, NULL, level, parent,
368 			      wanted_disk_byte, count, gfp_mask);
369 }
370 
371 /* indirect refs use parent == 0 */
372 static int add_indirect_ref(struct preftrees *preftrees, u64 root_id,
373 			    const struct btrfs_key *key, int level,
374 			    u64 wanted_disk_byte, int count, gfp_t gfp_mask)
375 {
376 	struct preftree *tree = &preftrees->indirect;
377 
378 	if (!key)
379 		tree = &preftrees->indirect_missing_keys;
380 	return add_prelim_ref(tree, root_id, key, level, 0,
381 			      wanted_disk_byte, count, gfp_mask);
382 }
383 
384 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
385 			   struct ulist *parents, struct prelim_ref *ref,
386 			   int level, u64 time_seq, const u64 *extent_item_pos,
387 			   u64 total_refs)
388 {
389 	int ret = 0;
390 	int slot;
391 	struct extent_buffer *eb;
392 	struct btrfs_key key;
393 	struct btrfs_key *key_for_search = &ref->key_for_search;
394 	struct btrfs_file_extent_item *fi;
395 	struct extent_inode_elem *eie = NULL, *old = NULL;
396 	u64 disk_byte;
397 	u64 wanted_disk_byte = ref->wanted_disk_byte;
398 	u64 count = 0;
399 
400 	if (level != 0) {
401 		eb = path->nodes[level];
402 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
403 		if (ret < 0)
404 			return ret;
405 		return 0;
406 	}
407 
408 	/*
409 	 * We normally enter this function with the path already pointing to
410 	 * the first item to check. But sometimes, we may enter it with
411 	 * slot==nritems. In that case, go to the next leaf before we continue.
412 	 */
413 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
414 		if (time_seq == SEQ_LAST)
415 			ret = btrfs_next_leaf(root, path);
416 		else
417 			ret = btrfs_next_old_leaf(root, path, time_seq);
418 	}
419 
420 	while (!ret && count < total_refs) {
421 		eb = path->nodes[0];
422 		slot = path->slots[0];
423 
424 		btrfs_item_key_to_cpu(eb, &key, slot);
425 
426 		if (key.objectid != key_for_search->objectid ||
427 		    key.type != BTRFS_EXTENT_DATA_KEY)
428 			break;
429 
430 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
431 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
432 
433 		if (disk_byte == wanted_disk_byte) {
434 			eie = NULL;
435 			old = NULL;
436 			count++;
437 			if (extent_item_pos) {
438 				ret = check_extent_in_eb(&key, eb, fi,
439 						*extent_item_pos,
440 						&eie);
441 				if (ret < 0)
442 					break;
443 			}
444 			if (ret > 0)
445 				goto next;
446 			ret = ulist_add_merge_ptr(parents, eb->start,
447 						  eie, (void **)&old, GFP_NOFS);
448 			if (ret < 0)
449 				break;
450 			if (!ret && extent_item_pos) {
451 				while (old->next)
452 					old = old->next;
453 				old->next = eie;
454 			}
455 			eie = NULL;
456 		}
457 next:
458 		if (time_seq == SEQ_LAST)
459 			ret = btrfs_next_item(root, path);
460 		else
461 			ret = btrfs_next_old_item(root, path, time_seq);
462 	}
463 
464 	if (ret > 0)
465 		ret = 0;
466 	else if (ret < 0)
467 		free_inode_elem_list(eie);
468 	return ret;
469 }
470 
471 /*
472  * resolve an indirect backref in the form (root_id, key, level)
473  * to a logical address
474  */
475 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
476 				struct btrfs_path *path, u64 time_seq,
477 				struct prelim_ref *ref, struct ulist *parents,
478 				const u64 *extent_item_pos, u64 total_refs)
479 {
480 	struct btrfs_root *root;
481 	struct btrfs_key root_key;
482 	struct extent_buffer *eb;
483 	int ret = 0;
484 	int root_level;
485 	int level = ref->level;
486 	int index;
487 
488 	root_key.objectid = ref->root_id;
489 	root_key.type = BTRFS_ROOT_ITEM_KEY;
490 	root_key.offset = (u64)-1;
491 
492 	index = srcu_read_lock(&fs_info->subvol_srcu);
493 
494 	root = btrfs_get_fs_root(fs_info, &root_key, false);
495 	if (IS_ERR(root)) {
496 		srcu_read_unlock(&fs_info->subvol_srcu, index);
497 		ret = PTR_ERR(root);
498 		goto out;
499 	}
500 
501 	if (btrfs_is_testing(fs_info)) {
502 		srcu_read_unlock(&fs_info->subvol_srcu, index);
503 		ret = -ENOENT;
504 		goto out;
505 	}
506 
507 	if (path->search_commit_root)
508 		root_level = btrfs_header_level(root->commit_root);
509 	else if (time_seq == SEQ_LAST)
510 		root_level = btrfs_header_level(root->node);
511 	else
512 		root_level = btrfs_old_root_level(root, time_seq);
513 
514 	if (root_level + 1 == level) {
515 		srcu_read_unlock(&fs_info->subvol_srcu, index);
516 		goto out;
517 	}
518 
519 	path->lowest_level = level;
520 	if (time_seq == SEQ_LAST)
521 		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
522 					0, 0);
523 	else
524 		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
525 					    time_seq);
526 
527 	/* root node has been locked, we can release @subvol_srcu safely here */
528 	srcu_read_unlock(&fs_info->subvol_srcu, index);
529 
530 	btrfs_debug(fs_info,
531 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
532 		 ref->root_id, level, ref->count, ret,
533 		 ref->key_for_search.objectid, ref->key_for_search.type,
534 		 ref->key_for_search.offset);
535 	if (ret < 0)
536 		goto out;
537 
538 	eb = path->nodes[level];
539 	while (!eb) {
540 		if (WARN_ON(!level)) {
541 			ret = 1;
542 			goto out;
543 		}
544 		level--;
545 		eb = path->nodes[level];
546 	}
547 
548 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
549 			      extent_item_pos, total_refs);
550 out:
551 	path->lowest_level = 0;
552 	btrfs_release_path(path);
553 	return ret;
554 }
555 
556 static struct extent_inode_elem *
557 unode_aux_to_inode_list(struct ulist_node *node)
558 {
559 	if (!node)
560 		return NULL;
561 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
562 }
563 
564 /*
565  * We maintain three seperate rbtrees: one for direct refs, one for
566  * indirect refs which have a key, and one for indirect refs which do not
567  * have a key. Each tree does merge on insertion.
568  *
569  * Once all of the references are located, we iterate over the tree of
570  * indirect refs with missing keys. An appropriate key is located and
571  * the ref is moved onto the tree for indirect refs. After all missing
572  * keys are thus located, we iterate over the indirect ref tree, resolve
573  * each reference, and then insert the resolved reference onto the
574  * direct tree (merging there too).
575  *
576  * New backrefs (i.e., for parent nodes) are added to the appropriate
577  * rbtree as they are encountered. The new backrefs are subsequently
578  * resolved as above.
579  */
580 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
581 				 struct btrfs_path *path, u64 time_seq,
582 				 struct preftrees *preftrees,
583 				 const u64 *extent_item_pos, u64 total_refs,
584 				 u64 root_objectid)
585 {
586 	int err;
587 	int ret = 0;
588 	struct ulist *parents;
589 	struct ulist_node *node;
590 	struct ulist_iterator uiter;
591 	struct rb_node *rnode;
592 
593 	parents = ulist_alloc(GFP_NOFS);
594 	if (!parents)
595 		return -ENOMEM;
596 
597 	/*
598 	 * We could trade memory usage for performance here by iterating
599 	 * the tree, allocating new refs for each insertion, and then
600 	 * freeing the entire indirect tree when we're done.  In some test
601 	 * cases, the tree can grow quite large (~200k objects).
602 	 */
603 	while ((rnode = rb_first(&preftrees->indirect.root))) {
604 		struct prelim_ref *ref;
605 
606 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
607 		if (WARN(ref->parent,
608 			 "BUG: direct ref found in indirect tree")) {
609 			ret = -EINVAL;
610 			goto out;
611 		}
612 
613 		rb_erase(&ref->rbnode, &preftrees->indirect.root);
614 		preftrees->indirect.count--;
615 
616 		if (ref->count == 0) {
617 			free_pref(ref);
618 			continue;
619 		}
620 
621 		if (root_objectid && ref->root_id != root_objectid) {
622 			free_pref(ref);
623 			ret = BACKREF_FOUND_SHARED;
624 			goto out;
625 		}
626 		err = resolve_indirect_ref(fs_info, path, time_seq, ref,
627 					   parents, extent_item_pos,
628 					   total_refs);
629 		/*
630 		 * we can only tolerate ENOENT,otherwise,we should catch error
631 		 * and return directly.
632 		 */
633 		if (err == -ENOENT) {
634 			prelim_ref_insert(&preftrees->direct, ref);
635 			continue;
636 		} else if (err) {
637 			free_pref(ref);
638 			ret = err;
639 			goto out;
640 		}
641 
642 		/* we put the first parent into the ref at hand */
643 		ULIST_ITER_INIT(&uiter);
644 		node = ulist_next(parents, &uiter);
645 		ref->parent = node ? node->val : 0;
646 		ref->inode_list = unode_aux_to_inode_list(node);
647 
648 		/* Add a prelim_ref(s) for any other parent(s). */
649 		while ((node = ulist_next(parents, &uiter))) {
650 			struct prelim_ref *new_ref;
651 
652 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
653 						   GFP_NOFS);
654 			if (!new_ref) {
655 				free_pref(ref);
656 				ret = -ENOMEM;
657 				goto out;
658 			}
659 			memcpy(new_ref, ref, sizeof(*ref));
660 			new_ref->parent = node->val;
661 			new_ref->inode_list = unode_aux_to_inode_list(node);
662 			prelim_ref_insert(&preftrees->direct, new_ref);
663 		}
664 
665 		/* Now it's a direct ref, put it in the the direct tree */
666 		prelim_ref_insert(&preftrees->direct, ref);
667 
668 		ulist_reinit(parents);
669 	}
670 out:
671 	ulist_free(parents);
672 	return ret;
673 }
674 
675 /*
676  * read tree blocks and add keys where required.
677  */
678 static int add_missing_keys(struct btrfs_fs_info *fs_info,
679 			    struct preftrees *preftrees)
680 {
681 	struct prelim_ref *ref;
682 	struct extent_buffer *eb;
683 	struct preftree *tree = &preftrees->indirect_missing_keys;
684 	struct rb_node *node;
685 
686 	while ((node = rb_first(&tree->root))) {
687 		ref = rb_entry(node, struct prelim_ref, rbnode);
688 		rb_erase(node, &tree->root);
689 
690 		BUG_ON(ref->parent);	/* should not be a direct ref */
691 		BUG_ON(ref->key_for_search.type);
692 		BUG_ON(!ref->wanted_disk_byte);
693 
694 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
695 		if (IS_ERR(eb)) {
696 			free_pref(ref);
697 			return PTR_ERR(eb);
698 		} else if (!extent_buffer_uptodate(eb)) {
699 			free_pref(ref);
700 			free_extent_buffer(eb);
701 			return -EIO;
702 		}
703 		btrfs_tree_read_lock(eb);
704 		if (btrfs_header_level(eb) == 0)
705 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
706 		else
707 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
708 		btrfs_tree_read_unlock(eb);
709 		free_extent_buffer(eb);
710 		prelim_ref_insert(&preftrees->indirect, ref);
711 	}
712 	return 0;
713 }
714 
715 /*
716  * add all currently queued delayed refs from this head whose seq nr is
717  * smaller or equal that seq to the list
718  */
719 static int add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
720 			    struct preftrees *preftrees, u64 *total_refs,
721 			    u64 inum)
722 {
723 	struct btrfs_delayed_ref_node *node;
724 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
725 	struct btrfs_key key;
726 	struct btrfs_key tmp_op_key;
727 	struct btrfs_key *op_key = NULL;
728 	int sgn;
729 	int ret = 0;
730 
731 	if (extent_op && extent_op->update_key) {
732 		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
733 		op_key = &tmp_op_key;
734 	}
735 
736 	spin_lock(&head->lock);
737 	list_for_each_entry(node, &head->ref_list, list) {
738 		if (node->seq > seq)
739 			continue;
740 
741 		switch (node->action) {
742 		case BTRFS_ADD_DELAYED_EXTENT:
743 		case BTRFS_UPDATE_DELAYED_HEAD:
744 			WARN_ON(1);
745 			continue;
746 		case BTRFS_ADD_DELAYED_REF:
747 			sgn = 1;
748 			break;
749 		case BTRFS_DROP_DELAYED_REF:
750 			sgn = -1;
751 			break;
752 		default:
753 			BUG_ON(1);
754 		}
755 		*total_refs += (node->ref_mod * sgn);
756 		switch (node->type) {
757 		case BTRFS_TREE_BLOCK_REF_KEY: {
758 			/* NORMAL INDIRECT METADATA backref */
759 			struct btrfs_delayed_tree_ref *ref;
760 
761 			ref = btrfs_delayed_node_to_tree_ref(node);
762 			ret = add_indirect_ref(preftrees, ref->root, &tmp_op_key,
763 					       ref->level + 1, node->bytenr,
764 					       node->ref_mod * sgn,
765 					       GFP_ATOMIC);
766 			break;
767 		}
768 		case BTRFS_SHARED_BLOCK_REF_KEY: {
769 			/* SHARED DIRECT METADATA backref */
770 			struct btrfs_delayed_tree_ref *ref;
771 
772 			ref = btrfs_delayed_node_to_tree_ref(node);
773 
774 			ret = add_direct_ref(preftrees, ref->level + 1,
775 					     ref->parent, node->bytenr,
776 					     node->ref_mod * sgn,
777 					     GFP_ATOMIC);
778 			break;
779 		}
780 		case BTRFS_EXTENT_DATA_REF_KEY: {
781 			/* NORMAL INDIRECT DATA backref */
782 			struct btrfs_delayed_data_ref *ref;
783 			ref = btrfs_delayed_node_to_data_ref(node);
784 
785 			key.objectid = ref->objectid;
786 			key.type = BTRFS_EXTENT_DATA_KEY;
787 			key.offset = ref->offset;
788 
789 			/*
790 			 * Found a inum that doesn't match our known inum, we
791 			 * know it's shared.
792 			 */
793 			if (inum && ref->objectid != inum) {
794 				ret = BACKREF_FOUND_SHARED;
795 				break;
796 			}
797 
798 			ret = add_indirect_ref(preftrees, ref->root, &key, 0,
799 					       node->bytenr,
800 					       node->ref_mod * sgn,
801 					       GFP_ATOMIC);
802 			break;
803 		}
804 		case BTRFS_SHARED_DATA_REF_KEY: {
805 			/* SHARED DIRECT FULL backref */
806 			struct btrfs_delayed_data_ref *ref;
807 
808 			ref = btrfs_delayed_node_to_data_ref(node);
809 
810 			ret = add_direct_ref(preftrees, 0, ref->parent,
811 					     node->bytenr,
812 					     node->ref_mod * sgn,
813 					     GFP_ATOMIC);
814 			break;
815 		}
816 		default:
817 			WARN_ON(1);
818 		}
819 		if (ret)
820 			break;
821 	}
822 	spin_unlock(&head->lock);
823 	return ret;
824 }
825 
826 /*
827  * add all inline backrefs for bytenr to the list
828  */
829 static int add_inline_refs(struct btrfs_path *path, u64 bytenr,
830 			   int *info_level, struct preftrees *preftrees,
831 			   u64 *total_refs, u64 inum)
832 {
833 	int ret = 0;
834 	int slot;
835 	struct extent_buffer *leaf;
836 	struct btrfs_key key;
837 	struct btrfs_key found_key;
838 	unsigned long ptr;
839 	unsigned long end;
840 	struct btrfs_extent_item *ei;
841 	u64 flags;
842 	u64 item_size;
843 
844 	/*
845 	 * enumerate all inline refs
846 	 */
847 	leaf = path->nodes[0];
848 	slot = path->slots[0];
849 
850 	item_size = btrfs_item_size_nr(leaf, slot);
851 	BUG_ON(item_size < sizeof(*ei));
852 
853 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
854 	flags = btrfs_extent_flags(leaf, ei);
855 	*total_refs += btrfs_extent_refs(leaf, ei);
856 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
857 
858 	ptr = (unsigned long)(ei + 1);
859 	end = (unsigned long)ei + item_size;
860 
861 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
862 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
863 		struct btrfs_tree_block_info *info;
864 
865 		info = (struct btrfs_tree_block_info *)ptr;
866 		*info_level = btrfs_tree_block_level(leaf, info);
867 		ptr += sizeof(struct btrfs_tree_block_info);
868 		BUG_ON(ptr > end);
869 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
870 		*info_level = found_key.offset;
871 	} else {
872 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
873 	}
874 
875 	while (ptr < end) {
876 		struct btrfs_extent_inline_ref *iref;
877 		u64 offset;
878 		int type;
879 
880 		iref = (struct btrfs_extent_inline_ref *)ptr;
881 		type = btrfs_extent_inline_ref_type(leaf, iref);
882 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
883 
884 		switch (type) {
885 		case BTRFS_SHARED_BLOCK_REF_KEY:
886 			ret = add_direct_ref(preftrees, *info_level + 1, offset,
887 					     bytenr, 1, GFP_NOFS);
888 			break;
889 		case BTRFS_SHARED_DATA_REF_KEY: {
890 			struct btrfs_shared_data_ref *sdref;
891 			int count;
892 
893 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
894 			count = btrfs_shared_data_ref_count(leaf, sdref);
895 
896 			ret = add_direct_ref(preftrees, 0, offset,
897 					     bytenr, count, GFP_NOFS);
898 			break;
899 		}
900 		case BTRFS_TREE_BLOCK_REF_KEY:
901 			ret = add_indirect_ref(preftrees, offset, NULL,
902 					       *info_level + 1, bytenr, 1,
903 					       GFP_NOFS);
904 			break;
905 		case BTRFS_EXTENT_DATA_REF_KEY: {
906 			struct btrfs_extent_data_ref *dref;
907 			int count;
908 			u64 root;
909 
910 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
911 			count = btrfs_extent_data_ref_count(leaf, dref);
912 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
913 								      dref);
914 			key.type = BTRFS_EXTENT_DATA_KEY;
915 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
916 
917 			if (inum && key.objectid != inum) {
918 				ret = BACKREF_FOUND_SHARED;
919 				break;
920 			}
921 
922 			root = btrfs_extent_data_ref_root(leaf, dref);
923 
924 			ret = add_indirect_ref(preftrees, root, &key, 0, bytenr,
925 					       count, GFP_NOFS);
926 			break;
927 		}
928 		default:
929 			WARN_ON(1);
930 		}
931 		if (ret)
932 			return ret;
933 		ptr += btrfs_extent_inline_ref_size(type);
934 	}
935 
936 	return 0;
937 }
938 
939 /*
940  * add all non-inline backrefs for bytenr to the list
941  */
942 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
943 			  struct btrfs_path *path, u64 bytenr,
944 			  int info_level, struct preftrees *preftrees,
945 			  u64 inum)
946 {
947 	struct btrfs_root *extent_root = fs_info->extent_root;
948 	int ret;
949 	int slot;
950 	struct extent_buffer *leaf;
951 	struct btrfs_key key;
952 
953 	while (1) {
954 		ret = btrfs_next_item(extent_root, path);
955 		if (ret < 0)
956 			break;
957 		if (ret) {
958 			ret = 0;
959 			break;
960 		}
961 
962 		slot = path->slots[0];
963 		leaf = path->nodes[0];
964 		btrfs_item_key_to_cpu(leaf, &key, slot);
965 
966 		if (key.objectid != bytenr)
967 			break;
968 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
969 			continue;
970 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
971 			break;
972 
973 		switch (key.type) {
974 		case BTRFS_SHARED_BLOCK_REF_KEY:
975 			/* SHARED DIRECT METADATA backref */
976 			ret = add_direct_ref(preftrees, info_level + 1,
977 					     key.offset, bytenr, 1,
978 					     GFP_NOFS);
979 			break;
980 		case BTRFS_SHARED_DATA_REF_KEY: {
981 			/* SHARED DIRECT FULL backref */
982 			struct btrfs_shared_data_ref *sdref;
983 			int count;
984 
985 			sdref = btrfs_item_ptr(leaf, slot,
986 					      struct btrfs_shared_data_ref);
987 			count = btrfs_shared_data_ref_count(leaf, sdref);
988 			ret = add_direct_ref(preftrees, 0, key.offset, bytenr,
989 					     count, GFP_NOFS);
990 			break;
991 		}
992 		case BTRFS_TREE_BLOCK_REF_KEY:
993 			/* NORMAL INDIRECT METADATA backref */
994 			ret = add_indirect_ref(preftrees, key.offset, NULL,
995 					       info_level + 1, bytenr, 1,
996 					       GFP_NOFS);
997 			break;
998 		case BTRFS_EXTENT_DATA_REF_KEY: {
999 			/* NORMAL INDIRECT DATA backref */
1000 			struct btrfs_extent_data_ref *dref;
1001 			int count;
1002 			u64 root;
1003 
1004 			dref = btrfs_item_ptr(leaf, slot,
1005 					      struct btrfs_extent_data_ref);
1006 			count = btrfs_extent_data_ref_count(leaf, dref);
1007 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1008 								      dref);
1009 			key.type = BTRFS_EXTENT_DATA_KEY;
1010 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1011 
1012 			if (inum && key.objectid != inum) {
1013 				ret = BACKREF_FOUND_SHARED;
1014 				break;
1015 			}
1016 
1017 			root = btrfs_extent_data_ref_root(leaf, dref);
1018 			ret = add_indirect_ref(preftrees, root, &key, 0, bytenr,
1019 					       count, GFP_NOFS);
1020 			break;
1021 		}
1022 		default:
1023 			WARN_ON(1);
1024 		}
1025 		if (ret)
1026 			return ret;
1027 
1028 	}
1029 
1030 	return ret;
1031 }
1032 
1033 /*
1034  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1035  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1036  * indirect refs to their parent bytenr.
1037  * When roots are found, they're added to the roots list
1038  *
1039  * NOTE: This can return values > 0
1040  *
1041  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1042  * much like trans == NULL case, the difference only lies in it will not
1043  * commit root.
1044  * The special case is for qgroup to search roots in commit_transaction().
1045  *
1046  * FIXME some caching might speed things up
1047  */
1048 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1049 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1050 			     u64 time_seq, struct ulist *refs,
1051 			     struct ulist *roots, const u64 *extent_item_pos,
1052 			     u64 root_objectid, u64 inum)
1053 {
1054 	struct btrfs_key key;
1055 	struct btrfs_path *path;
1056 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1057 	struct btrfs_delayed_ref_head *head;
1058 	int info_level = 0;
1059 	int ret;
1060 	struct prelim_ref *ref;
1061 	struct rb_node *node;
1062 	struct extent_inode_elem *eie = NULL;
1063 	/* total of both direct AND indirect refs! */
1064 	u64 total_refs = 0;
1065 	struct preftrees preftrees = {
1066 		.direct = PREFTREE_INIT,
1067 		.indirect = PREFTREE_INIT,
1068 		.indirect_missing_keys = PREFTREE_INIT
1069 	};
1070 
1071 	key.objectid = bytenr;
1072 	key.offset = (u64)-1;
1073 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1074 		key.type = BTRFS_METADATA_ITEM_KEY;
1075 	else
1076 		key.type = BTRFS_EXTENT_ITEM_KEY;
1077 
1078 	path = btrfs_alloc_path();
1079 	if (!path)
1080 		return -ENOMEM;
1081 	if (!trans) {
1082 		path->search_commit_root = 1;
1083 		path->skip_locking = 1;
1084 	}
1085 
1086 	if (time_seq == SEQ_LAST)
1087 		path->skip_locking = 1;
1088 
1089 	/*
1090 	 * grab both a lock on the path and a lock on the delayed ref head.
1091 	 * We need both to get a consistent picture of how the refs look
1092 	 * at a specified point in time
1093 	 */
1094 again:
1095 	head = NULL;
1096 
1097 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1098 	if (ret < 0)
1099 		goto out;
1100 	BUG_ON(ret == 0);
1101 
1102 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1103 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1104 	    time_seq != SEQ_LAST) {
1105 #else
1106 	if (trans && time_seq != SEQ_LAST) {
1107 #endif
1108 		/*
1109 		 * look if there are updates for this ref queued and lock the
1110 		 * head
1111 		 */
1112 		delayed_refs = &trans->transaction->delayed_refs;
1113 		spin_lock(&delayed_refs->lock);
1114 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1115 		if (head) {
1116 			if (!mutex_trylock(&head->mutex)) {
1117 				refcount_inc(&head->node.refs);
1118 				spin_unlock(&delayed_refs->lock);
1119 
1120 				btrfs_release_path(path);
1121 
1122 				/*
1123 				 * Mutex was contended, block until it's
1124 				 * released and try again
1125 				 */
1126 				mutex_lock(&head->mutex);
1127 				mutex_unlock(&head->mutex);
1128 				btrfs_put_delayed_ref(&head->node);
1129 				goto again;
1130 			}
1131 			spin_unlock(&delayed_refs->lock);
1132 			ret = add_delayed_refs(head, time_seq, &preftrees,
1133 					       &total_refs, inum);
1134 			mutex_unlock(&head->mutex);
1135 			if (ret)
1136 				goto out;
1137 		} else {
1138 			spin_unlock(&delayed_refs->lock);
1139 		}
1140 	}
1141 
1142 	if (path->slots[0]) {
1143 		struct extent_buffer *leaf;
1144 		int slot;
1145 
1146 		path->slots[0]--;
1147 		leaf = path->nodes[0];
1148 		slot = path->slots[0];
1149 		btrfs_item_key_to_cpu(leaf, &key, slot);
1150 		if (key.objectid == bytenr &&
1151 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1152 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1153 			ret = add_inline_refs(path, bytenr, &info_level,
1154 					      &preftrees, &total_refs, inum);
1155 			if (ret)
1156 				goto out;
1157 			ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1158 					     &preftrees, inum);
1159 			if (ret)
1160 				goto out;
1161 		}
1162 	}
1163 
1164 	btrfs_release_path(path);
1165 
1166 	ret = add_missing_keys(fs_info, &preftrees);
1167 	if (ret)
1168 		goto out;
1169 
1170 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root));
1171 
1172 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1173 				    extent_item_pos, total_refs,
1174 				    root_objectid);
1175 	if (ret)
1176 		goto out;
1177 
1178 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root));
1179 
1180 	/*
1181 	 * This walks the tree of merged and resolved refs. Tree blocks are
1182 	 * read in as needed. Unique entries are added to the ulist, and
1183 	 * the list of found roots is updated.
1184 	 *
1185 	 * We release the entire tree in one go before returning.
1186 	 */
1187 	node = rb_first(&preftrees.direct.root);
1188 	while (node) {
1189 		ref = rb_entry(node, struct prelim_ref, rbnode);
1190 		node = rb_next(&ref->rbnode);
1191 		WARN_ON(ref->count < 0);
1192 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1193 			if (root_objectid && ref->root_id != root_objectid) {
1194 				ret = BACKREF_FOUND_SHARED;
1195 				goto out;
1196 			}
1197 
1198 			/* no parent == root of tree */
1199 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1200 			if (ret < 0)
1201 				goto out;
1202 		}
1203 		if (ref->count && ref->parent) {
1204 			if (extent_item_pos && !ref->inode_list &&
1205 			    ref->level == 0) {
1206 				struct extent_buffer *eb;
1207 
1208 				eb = read_tree_block(fs_info, ref->parent, 0);
1209 				if (IS_ERR(eb)) {
1210 					ret = PTR_ERR(eb);
1211 					goto out;
1212 				} else if (!extent_buffer_uptodate(eb)) {
1213 					free_extent_buffer(eb);
1214 					ret = -EIO;
1215 					goto out;
1216 				}
1217 				btrfs_tree_read_lock(eb);
1218 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1219 				ret = find_extent_in_eb(eb, bytenr,
1220 							*extent_item_pos, &eie);
1221 				btrfs_tree_read_unlock_blocking(eb);
1222 				free_extent_buffer(eb);
1223 				if (ret < 0)
1224 					goto out;
1225 				ref->inode_list = eie;
1226 			}
1227 			ret = ulist_add_merge_ptr(refs, ref->parent,
1228 						  ref->inode_list,
1229 						  (void **)&eie, GFP_NOFS);
1230 			if (ret < 0)
1231 				goto out;
1232 			if (!ret && extent_item_pos) {
1233 				/*
1234 				 * we've recorded that parent, so we must extend
1235 				 * its inode list here
1236 				 */
1237 				BUG_ON(!eie);
1238 				while (eie->next)
1239 					eie = eie->next;
1240 				eie->next = ref->inode_list;
1241 			}
1242 			eie = NULL;
1243 		}
1244 	}
1245 
1246 out:
1247 	btrfs_free_path(path);
1248 
1249 	prelim_release(&preftrees.direct);
1250 	prelim_release(&preftrees.indirect);
1251 	prelim_release(&preftrees.indirect_missing_keys);
1252 
1253 	if (ret < 0)
1254 		free_inode_elem_list(eie);
1255 	return ret;
1256 }
1257 
1258 static void free_leaf_list(struct ulist *blocks)
1259 {
1260 	struct ulist_node *node = NULL;
1261 	struct extent_inode_elem *eie;
1262 	struct ulist_iterator uiter;
1263 
1264 	ULIST_ITER_INIT(&uiter);
1265 	while ((node = ulist_next(blocks, &uiter))) {
1266 		if (!node->aux)
1267 			continue;
1268 		eie = unode_aux_to_inode_list(node);
1269 		free_inode_elem_list(eie);
1270 		node->aux = 0;
1271 	}
1272 
1273 	ulist_free(blocks);
1274 }
1275 
1276 /*
1277  * Finds all leafs with a reference to the specified combination of bytenr and
1278  * offset. key_list_head will point to a list of corresponding keys (caller must
1279  * free each list element). The leafs will be stored in the leafs ulist, which
1280  * must be freed with ulist_free.
1281  *
1282  * returns 0 on success, <0 on error
1283  */
1284 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1285 				struct btrfs_fs_info *fs_info, u64 bytenr,
1286 				u64 time_seq, struct ulist **leafs,
1287 				const u64 *extent_item_pos)
1288 {
1289 	int ret;
1290 
1291 	*leafs = ulist_alloc(GFP_NOFS);
1292 	if (!*leafs)
1293 		return -ENOMEM;
1294 
1295 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1296 				*leafs, NULL, extent_item_pos, 0, 0);
1297 	if (ret < 0 && ret != -ENOENT) {
1298 		free_leaf_list(*leafs);
1299 		return ret;
1300 	}
1301 
1302 	return 0;
1303 }
1304 
1305 /*
1306  * walk all backrefs for a given extent to find all roots that reference this
1307  * extent. Walking a backref means finding all extents that reference this
1308  * extent and in turn walk the backrefs of those, too. Naturally this is a
1309  * recursive process, but here it is implemented in an iterative fashion: We
1310  * find all referencing extents for the extent in question and put them on a
1311  * list. In turn, we find all referencing extents for those, further appending
1312  * to the list. The way we iterate the list allows adding more elements after
1313  * the current while iterating. The process stops when we reach the end of the
1314  * list. Found roots are added to the roots list.
1315  *
1316  * returns 0 on success, < 0 on error.
1317  */
1318 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1319 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1320 				     u64 time_seq, struct ulist **roots)
1321 {
1322 	struct ulist *tmp;
1323 	struct ulist_node *node = NULL;
1324 	struct ulist_iterator uiter;
1325 	int ret;
1326 
1327 	tmp = ulist_alloc(GFP_NOFS);
1328 	if (!tmp)
1329 		return -ENOMEM;
1330 	*roots = ulist_alloc(GFP_NOFS);
1331 	if (!*roots) {
1332 		ulist_free(tmp);
1333 		return -ENOMEM;
1334 	}
1335 
1336 	ULIST_ITER_INIT(&uiter);
1337 	while (1) {
1338 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1339 					tmp, *roots, NULL, 0, 0);
1340 		if (ret < 0 && ret != -ENOENT) {
1341 			ulist_free(tmp);
1342 			ulist_free(*roots);
1343 			return ret;
1344 		}
1345 		node = ulist_next(tmp, &uiter);
1346 		if (!node)
1347 			break;
1348 		bytenr = node->val;
1349 		cond_resched();
1350 	}
1351 
1352 	ulist_free(tmp);
1353 	return 0;
1354 }
1355 
1356 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1357 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1358 			 u64 time_seq, struct ulist **roots)
1359 {
1360 	int ret;
1361 
1362 	if (!trans)
1363 		down_read(&fs_info->commit_root_sem);
1364 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1365 					time_seq, roots);
1366 	if (!trans)
1367 		up_read(&fs_info->commit_root_sem);
1368 	return ret;
1369 }
1370 
1371 /**
1372  * btrfs_check_shared - tell us whether an extent is shared
1373  *
1374  * btrfs_check_shared uses the backref walking code but will short
1375  * circuit as soon as it finds a root or inode that doesn't match the
1376  * one passed in. This provides a significant performance benefit for
1377  * callers (such as fiemap) which want to know whether the extent is
1378  * shared but do not need a ref count.
1379  *
1380  * This attempts to allocate a transaction in order to account for
1381  * delayed refs, but continues on even when the alloc fails.
1382  *
1383  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1384  */
1385 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr)
1386 {
1387 	struct btrfs_fs_info *fs_info = root->fs_info;
1388 	struct btrfs_trans_handle *trans;
1389 	struct ulist *tmp = NULL;
1390 	struct ulist *roots = NULL;
1391 	struct ulist_iterator uiter;
1392 	struct ulist_node *node;
1393 	struct seq_list elem = SEQ_LIST_INIT(elem);
1394 	int ret = 0;
1395 
1396 	tmp = ulist_alloc(GFP_NOFS);
1397 	roots = ulist_alloc(GFP_NOFS);
1398 	if (!tmp || !roots) {
1399 		ulist_free(tmp);
1400 		ulist_free(roots);
1401 		return -ENOMEM;
1402 	}
1403 
1404 	trans = btrfs_join_transaction(root);
1405 	if (IS_ERR(trans)) {
1406 		trans = NULL;
1407 		down_read(&fs_info->commit_root_sem);
1408 	} else {
1409 		btrfs_get_tree_mod_seq(fs_info, &elem);
1410 	}
1411 
1412 	ULIST_ITER_INIT(&uiter);
1413 	while (1) {
1414 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1415 					roots, NULL, root->objectid, inum);
1416 		if (ret == BACKREF_FOUND_SHARED) {
1417 			/* this is the only condition under which we return 1 */
1418 			ret = 1;
1419 			break;
1420 		}
1421 		if (ret < 0 && ret != -ENOENT)
1422 			break;
1423 		ret = 0;
1424 		node = ulist_next(tmp, &uiter);
1425 		if (!node)
1426 			break;
1427 		bytenr = node->val;
1428 		cond_resched();
1429 	}
1430 
1431 	if (trans) {
1432 		btrfs_put_tree_mod_seq(fs_info, &elem);
1433 		btrfs_end_transaction(trans);
1434 	} else {
1435 		up_read(&fs_info->commit_root_sem);
1436 	}
1437 	ulist_free(tmp);
1438 	ulist_free(roots);
1439 	return ret;
1440 }
1441 
1442 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1443 			  u64 start_off, struct btrfs_path *path,
1444 			  struct btrfs_inode_extref **ret_extref,
1445 			  u64 *found_off)
1446 {
1447 	int ret, slot;
1448 	struct btrfs_key key;
1449 	struct btrfs_key found_key;
1450 	struct btrfs_inode_extref *extref;
1451 	const struct extent_buffer *leaf;
1452 	unsigned long ptr;
1453 
1454 	key.objectid = inode_objectid;
1455 	key.type = BTRFS_INODE_EXTREF_KEY;
1456 	key.offset = start_off;
1457 
1458 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1459 	if (ret < 0)
1460 		return ret;
1461 
1462 	while (1) {
1463 		leaf = path->nodes[0];
1464 		slot = path->slots[0];
1465 		if (slot >= btrfs_header_nritems(leaf)) {
1466 			/*
1467 			 * If the item at offset is not found,
1468 			 * btrfs_search_slot will point us to the slot
1469 			 * where it should be inserted. In our case
1470 			 * that will be the slot directly before the
1471 			 * next INODE_REF_KEY_V2 item. In the case
1472 			 * that we're pointing to the last slot in a
1473 			 * leaf, we must move one leaf over.
1474 			 */
1475 			ret = btrfs_next_leaf(root, path);
1476 			if (ret) {
1477 				if (ret >= 1)
1478 					ret = -ENOENT;
1479 				break;
1480 			}
1481 			continue;
1482 		}
1483 
1484 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1485 
1486 		/*
1487 		 * Check that we're still looking at an extended ref key for
1488 		 * this particular objectid. If we have different
1489 		 * objectid or type then there are no more to be found
1490 		 * in the tree and we can exit.
1491 		 */
1492 		ret = -ENOENT;
1493 		if (found_key.objectid != inode_objectid)
1494 			break;
1495 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1496 			break;
1497 
1498 		ret = 0;
1499 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1500 		extref = (struct btrfs_inode_extref *)ptr;
1501 		*ret_extref = extref;
1502 		if (found_off)
1503 			*found_off = found_key.offset;
1504 		break;
1505 	}
1506 
1507 	return ret;
1508 }
1509 
1510 /*
1511  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1512  * Elements of the path are separated by '/' and the path is guaranteed to be
1513  * 0-terminated. the path is only given within the current file system.
1514  * Therefore, it never starts with a '/'. the caller is responsible to provide
1515  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1516  * the start point of the resulting string is returned. this pointer is within
1517  * dest, normally.
1518  * in case the path buffer would overflow, the pointer is decremented further
1519  * as if output was written to the buffer, though no more output is actually
1520  * generated. that way, the caller can determine how much space would be
1521  * required for the path to fit into the buffer. in that case, the returned
1522  * value will be smaller than dest. callers must check this!
1523  */
1524 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1525 			u32 name_len, unsigned long name_off,
1526 			struct extent_buffer *eb_in, u64 parent,
1527 			char *dest, u32 size)
1528 {
1529 	int slot;
1530 	u64 next_inum;
1531 	int ret;
1532 	s64 bytes_left = ((s64)size) - 1;
1533 	struct extent_buffer *eb = eb_in;
1534 	struct btrfs_key found_key;
1535 	int leave_spinning = path->leave_spinning;
1536 	struct btrfs_inode_ref *iref;
1537 
1538 	if (bytes_left >= 0)
1539 		dest[bytes_left] = '\0';
1540 
1541 	path->leave_spinning = 1;
1542 	while (1) {
1543 		bytes_left -= name_len;
1544 		if (bytes_left >= 0)
1545 			read_extent_buffer(eb, dest + bytes_left,
1546 					   name_off, name_len);
1547 		if (eb != eb_in) {
1548 			if (!path->skip_locking)
1549 				btrfs_tree_read_unlock_blocking(eb);
1550 			free_extent_buffer(eb);
1551 		}
1552 		ret = btrfs_find_item(fs_root, path, parent, 0,
1553 				BTRFS_INODE_REF_KEY, &found_key);
1554 		if (ret > 0)
1555 			ret = -ENOENT;
1556 		if (ret)
1557 			break;
1558 
1559 		next_inum = found_key.offset;
1560 
1561 		/* regular exit ahead */
1562 		if (parent == next_inum)
1563 			break;
1564 
1565 		slot = path->slots[0];
1566 		eb = path->nodes[0];
1567 		/* make sure we can use eb after releasing the path */
1568 		if (eb != eb_in) {
1569 			if (!path->skip_locking)
1570 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1571 			path->nodes[0] = NULL;
1572 			path->locks[0] = 0;
1573 		}
1574 		btrfs_release_path(path);
1575 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1576 
1577 		name_len = btrfs_inode_ref_name_len(eb, iref);
1578 		name_off = (unsigned long)(iref + 1);
1579 
1580 		parent = next_inum;
1581 		--bytes_left;
1582 		if (bytes_left >= 0)
1583 			dest[bytes_left] = '/';
1584 	}
1585 
1586 	btrfs_release_path(path);
1587 	path->leave_spinning = leave_spinning;
1588 
1589 	if (ret)
1590 		return ERR_PTR(ret);
1591 
1592 	return dest + bytes_left;
1593 }
1594 
1595 /*
1596  * this makes the path point to (logical EXTENT_ITEM *)
1597  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1598  * tree blocks and <0 on error.
1599  */
1600 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1601 			struct btrfs_path *path, struct btrfs_key *found_key,
1602 			u64 *flags_ret)
1603 {
1604 	int ret;
1605 	u64 flags;
1606 	u64 size = 0;
1607 	u32 item_size;
1608 	const struct extent_buffer *eb;
1609 	struct btrfs_extent_item *ei;
1610 	struct btrfs_key key;
1611 
1612 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1613 		key.type = BTRFS_METADATA_ITEM_KEY;
1614 	else
1615 		key.type = BTRFS_EXTENT_ITEM_KEY;
1616 	key.objectid = logical;
1617 	key.offset = (u64)-1;
1618 
1619 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1620 	if (ret < 0)
1621 		return ret;
1622 
1623 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1624 	if (ret) {
1625 		if (ret > 0)
1626 			ret = -ENOENT;
1627 		return ret;
1628 	}
1629 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1630 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1631 		size = fs_info->nodesize;
1632 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1633 		size = found_key->offset;
1634 
1635 	if (found_key->objectid > logical ||
1636 	    found_key->objectid + size <= logical) {
1637 		btrfs_debug(fs_info,
1638 			"logical %llu is not within any extent", logical);
1639 		return -ENOENT;
1640 	}
1641 
1642 	eb = path->nodes[0];
1643 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1644 	BUG_ON(item_size < sizeof(*ei));
1645 
1646 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1647 	flags = btrfs_extent_flags(eb, ei);
1648 
1649 	btrfs_debug(fs_info,
1650 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1651 		 logical, logical - found_key->objectid, found_key->objectid,
1652 		 found_key->offset, flags, item_size);
1653 
1654 	WARN_ON(!flags_ret);
1655 	if (flags_ret) {
1656 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1657 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1658 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1659 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1660 		else
1661 			BUG_ON(1);
1662 		return 0;
1663 	}
1664 
1665 	return -EIO;
1666 }
1667 
1668 /*
1669  * helper function to iterate extent inline refs. ptr must point to a 0 value
1670  * for the first call and may be modified. it is used to track state.
1671  * if more refs exist, 0 is returned and the next call to
1672  * get_extent_inline_ref must pass the modified ptr parameter to get the
1673  * next ref. after the last ref was processed, 1 is returned.
1674  * returns <0 on error
1675  */
1676 static int get_extent_inline_ref(unsigned long *ptr,
1677 				 const struct extent_buffer *eb,
1678 				 const struct btrfs_key *key,
1679 				 const struct btrfs_extent_item *ei,
1680 				 u32 item_size,
1681 				 struct btrfs_extent_inline_ref **out_eiref,
1682 				 int *out_type)
1683 {
1684 	unsigned long end;
1685 	u64 flags;
1686 	struct btrfs_tree_block_info *info;
1687 
1688 	if (!*ptr) {
1689 		/* first call */
1690 		flags = btrfs_extent_flags(eb, ei);
1691 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1692 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1693 				/* a skinny metadata extent */
1694 				*out_eiref =
1695 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1696 			} else {
1697 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1698 				info = (struct btrfs_tree_block_info *)(ei + 1);
1699 				*out_eiref =
1700 				   (struct btrfs_extent_inline_ref *)(info + 1);
1701 			}
1702 		} else {
1703 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1704 		}
1705 		*ptr = (unsigned long)*out_eiref;
1706 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1707 			return -ENOENT;
1708 	}
1709 
1710 	end = (unsigned long)ei + item_size;
1711 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1712 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1713 
1714 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1715 	WARN_ON(*ptr > end);
1716 	if (*ptr == end)
1717 		return 1; /* last */
1718 
1719 	return 0;
1720 }
1721 
1722 /*
1723  * reads the tree block backref for an extent. tree level and root are returned
1724  * through out_level and out_root. ptr must point to a 0 value for the first
1725  * call and may be modified (see get_extent_inline_ref comment).
1726  * returns 0 if data was provided, 1 if there was no more data to provide or
1727  * <0 on error.
1728  */
1729 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1730 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1731 			    u32 item_size, u64 *out_root, u8 *out_level)
1732 {
1733 	int ret;
1734 	int type;
1735 	struct btrfs_extent_inline_ref *eiref;
1736 
1737 	if (*ptr == (unsigned long)-1)
1738 		return 1;
1739 
1740 	while (1) {
1741 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1742 					      &eiref, &type);
1743 		if (ret < 0)
1744 			return ret;
1745 
1746 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1747 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1748 			break;
1749 
1750 		if (ret == 1)
1751 			return 1;
1752 	}
1753 
1754 	/* we can treat both ref types equally here */
1755 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1756 
1757 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1758 		struct btrfs_tree_block_info *info;
1759 
1760 		info = (struct btrfs_tree_block_info *)(ei + 1);
1761 		*out_level = btrfs_tree_block_level(eb, info);
1762 	} else {
1763 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1764 		*out_level = (u8)key->offset;
1765 	}
1766 
1767 	if (ret == 1)
1768 		*ptr = (unsigned long)-1;
1769 
1770 	return 0;
1771 }
1772 
1773 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1774 			     struct extent_inode_elem *inode_list,
1775 			     u64 root, u64 extent_item_objectid,
1776 			     iterate_extent_inodes_t *iterate, void *ctx)
1777 {
1778 	struct extent_inode_elem *eie;
1779 	int ret = 0;
1780 
1781 	for (eie = inode_list; eie; eie = eie->next) {
1782 		btrfs_debug(fs_info,
1783 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1784 			    extent_item_objectid, eie->inum,
1785 			    eie->offset, root);
1786 		ret = iterate(eie->inum, eie->offset, root, ctx);
1787 		if (ret) {
1788 			btrfs_debug(fs_info,
1789 				    "stopping iteration for %llu due to ret=%d",
1790 				    extent_item_objectid, ret);
1791 			break;
1792 		}
1793 	}
1794 
1795 	return ret;
1796 }
1797 
1798 /*
1799  * calls iterate() for every inode that references the extent identified by
1800  * the given parameters.
1801  * when the iterator function returns a non-zero value, iteration stops.
1802  */
1803 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1804 				u64 extent_item_objectid, u64 extent_item_pos,
1805 				int search_commit_root,
1806 				iterate_extent_inodes_t *iterate, void *ctx)
1807 {
1808 	int ret;
1809 	struct btrfs_trans_handle *trans = NULL;
1810 	struct ulist *refs = NULL;
1811 	struct ulist *roots = NULL;
1812 	struct ulist_node *ref_node = NULL;
1813 	struct ulist_node *root_node = NULL;
1814 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1815 	struct ulist_iterator ref_uiter;
1816 	struct ulist_iterator root_uiter;
1817 
1818 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1819 			extent_item_objectid);
1820 
1821 	if (!search_commit_root) {
1822 		trans = btrfs_join_transaction(fs_info->extent_root);
1823 		if (IS_ERR(trans))
1824 			return PTR_ERR(trans);
1825 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1826 	} else {
1827 		down_read(&fs_info->commit_root_sem);
1828 	}
1829 
1830 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1831 				   tree_mod_seq_elem.seq, &refs,
1832 				   &extent_item_pos);
1833 	if (ret)
1834 		goto out;
1835 
1836 	ULIST_ITER_INIT(&ref_uiter);
1837 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1838 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1839 						tree_mod_seq_elem.seq, &roots);
1840 		if (ret)
1841 			break;
1842 		ULIST_ITER_INIT(&root_uiter);
1843 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1844 			btrfs_debug(fs_info,
1845 				    "root %llu references leaf %llu, data list %#llx",
1846 				    root_node->val, ref_node->val,
1847 				    ref_node->aux);
1848 			ret = iterate_leaf_refs(fs_info,
1849 						(struct extent_inode_elem *)
1850 						(uintptr_t)ref_node->aux,
1851 						root_node->val,
1852 						extent_item_objectid,
1853 						iterate, ctx);
1854 		}
1855 		ulist_free(roots);
1856 	}
1857 
1858 	free_leaf_list(refs);
1859 out:
1860 	if (!search_commit_root) {
1861 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1862 		btrfs_end_transaction(trans);
1863 	} else {
1864 		up_read(&fs_info->commit_root_sem);
1865 	}
1866 
1867 	return ret;
1868 }
1869 
1870 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1871 				struct btrfs_path *path,
1872 				iterate_extent_inodes_t *iterate, void *ctx)
1873 {
1874 	int ret;
1875 	u64 extent_item_pos;
1876 	u64 flags = 0;
1877 	struct btrfs_key found_key;
1878 	int search_commit_root = path->search_commit_root;
1879 
1880 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1881 	btrfs_release_path(path);
1882 	if (ret < 0)
1883 		return ret;
1884 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1885 		return -EINVAL;
1886 
1887 	extent_item_pos = logical - found_key.objectid;
1888 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1889 					extent_item_pos, search_commit_root,
1890 					iterate, ctx);
1891 
1892 	return ret;
1893 }
1894 
1895 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1896 			      struct extent_buffer *eb, void *ctx);
1897 
1898 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1899 			      struct btrfs_path *path,
1900 			      iterate_irefs_t *iterate, void *ctx)
1901 {
1902 	int ret = 0;
1903 	int slot;
1904 	u32 cur;
1905 	u32 len;
1906 	u32 name_len;
1907 	u64 parent = 0;
1908 	int found = 0;
1909 	struct extent_buffer *eb;
1910 	struct btrfs_item *item;
1911 	struct btrfs_inode_ref *iref;
1912 	struct btrfs_key found_key;
1913 
1914 	while (!ret) {
1915 		ret = btrfs_find_item(fs_root, path, inum,
1916 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
1917 				&found_key);
1918 
1919 		if (ret < 0)
1920 			break;
1921 		if (ret) {
1922 			ret = found ? 0 : -ENOENT;
1923 			break;
1924 		}
1925 		++found;
1926 
1927 		parent = found_key.offset;
1928 		slot = path->slots[0];
1929 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1930 		if (!eb) {
1931 			ret = -ENOMEM;
1932 			break;
1933 		}
1934 		extent_buffer_get(eb);
1935 		btrfs_tree_read_lock(eb);
1936 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1937 		btrfs_release_path(path);
1938 
1939 		item = btrfs_item_nr(slot);
1940 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1941 
1942 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1943 			name_len = btrfs_inode_ref_name_len(eb, iref);
1944 			/* path must be released before calling iterate()! */
1945 			btrfs_debug(fs_root->fs_info,
1946 				"following ref at offset %u for inode %llu in tree %llu",
1947 				cur, found_key.objectid, fs_root->objectid);
1948 			ret = iterate(parent, name_len,
1949 				      (unsigned long)(iref + 1), eb, ctx);
1950 			if (ret)
1951 				break;
1952 			len = sizeof(*iref) + name_len;
1953 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1954 		}
1955 		btrfs_tree_read_unlock_blocking(eb);
1956 		free_extent_buffer(eb);
1957 	}
1958 
1959 	btrfs_release_path(path);
1960 
1961 	return ret;
1962 }
1963 
1964 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1965 				 struct btrfs_path *path,
1966 				 iterate_irefs_t *iterate, void *ctx)
1967 {
1968 	int ret;
1969 	int slot;
1970 	u64 offset = 0;
1971 	u64 parent;
1972 	int found = 0;
1973 	struct extent_buffer *eb;
1974 	struct btrfs_inode_extref *extref;
1975 	u32 item_size;
1976 	u32 cur_offset;
1977 	unsigned long ptr;
1978 
1979 	while (1) {
1980 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1981 					    &offset);
1982 		if (ret < 0)
1983 			break;
1984 		if (ret) {
1985 			ret = found ? 0 : -ENOENT;
1986 			break;
1987 		}
1988 		++found;
1989 
1990 		slot = path->slots[0];
1991 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1992 		if (!eb) {
1993 			ret = -ENOMEM;
1994 			break;
1995 		}
1996 		extent_buffer_get(eb);
1997 
1998 		btrfs_tree_read_lock(eb);
1999 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2000 		btrfs_release_path(path);
2001 
2002 		item_size = btrfs_item_size_nr(eb, slot);
2003 		ptr = btrfs_item_ptr_offset(eb, slot);
2004 		cur_offset = 0;
2005 
2006 		while (cur_offset < item_size) {
2007 			u32 name_len;
2008 
2009 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2010 			parent = btrfs_inode_extref_parent(eb, extref);
2011 			name_len = btrfs_inode_extref_name_len(eb, extref);
2012 			ret = iterate(parent, name_len,
2013 				      (unsigned long)&extref->name, eb, ctx);
2014 			if (ret)
2015 				break;
2016 
2017 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2018 			cur_offset += sizeof(*extref);
2019 		}
2020 		btrfs_tree_read_unlock_blocking(eb);
2021 		free_extent_buffer(eb);
2022 
2023 		offset++;
2024 	}
2025 
2026 	btrfs_release_path(path);
2027 
2028 	return ret;
2029 }
2030 
2031 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2032 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2033 			 void *ctx)
2034 {
2035 	int ret;
2036 	int found_refs = 0;
2037 
2038 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2039 	if (!ret)
2040 		++found_refs;
2041 	else if (ret != -ENOENT)
2042 		return ret;
2043 
2044 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2045 	if (ret == -ENOENT && found_refs)
2046 		return 0;
2047 
2048 	return ret;
2049 }
2050 
2051 /*
2052  * returns 0 if the path could be dumped (probably truncated)
2053  * returns <0 in case of an error
2054  */
2055 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2056 			 struct extent_buffer *eb, void *ctx)
2057 {
2058 	struct inode_fs_paths *ipath = ctx;
2059 	char *fspath;
2060 	char *fspath_min;
2061 	int i = ipath->fspath->elem_cnt;
2062 	const int s_ptr = sizeof(char *);
2063 	u32 bytes_left;
2064 
2065 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2066 					ipath->fspath->bytes_left - s_ptr : 0;
2067 
2068 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2069 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2070 				   name_off, eb, inum, fspath_min, bytes_left);
2071 	if (IS_ERR(fspath))
2072 		return PTR_ERR(fspath);
2073 
2074 	if (fspath > fspath_min) {
2075 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2076 		++ipath->fspath->elem_cnt;
2077 		ipath->fspath->bytes_left = fspath - fspath_min;
2078 	} else {
2079 		++ipath->fspath->elem_missed;
2080 		ipath->fspath->bytes_missing += fspath_min - fspath;
2081 		ipath->fspath->bytes_left = 0;
2082 	}
2083 
2084 	return 0;
2085 }
2086 
2087 /*
2088  * this dumps all file system paths to the inode into the ipath struct, provided
2089  * is has been created large enough. each path is zero-terminated and accessed
2090  * from ipath->fspath->val[i].
2091  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2092  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2093  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2094  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2095  * have been needed to return all paths.
2096  */
2097 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2098 {
2099 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2100 			     inode_to_path, ipath);
2101 }
2102 
2103 struct btrfs_data_container *init_data_container(u32 total_bytes)
2104 {
2105 	struct btrfs_data_container *data;
2106 	size_t alloc_bytes;
2107 
2108 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2109 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2110 	if (!data)
2111 		return ERR_PTR(-ENOMEM);
2112 
2113 	if (total_bytes >= sizeof(*data)) {
2114 		data->bytes_left = total_bytes - sizeof(*data);
2115 		data->bytes_missing = 0;
2116 	} else {
2117 		data->bytes_missing = sizeof(*data) - total_bytes;
2118 		data->bytes_left = 0;
2119 	}
2120 
2121 	data->elem_cnt = 0;
2122 	data->elem_missed = 0;
2123 
2124 	return data;
2125 }
2126 
2127 /*
2128  * allocates space to return multiple file system paths for an inode.
2129  * total_bytes to allocate are passed, note that space usable for actual path
2130  * information will be total_bytes - sizeof(struct inode_fs_paths).
2131  * the returned pointer must be freed with free_ipath() in the end.
2132  */
2133 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2134 					struct btrfs_path *path)
2135 {
2136 	struct inode_fs_paths *ifp;
2137 	struct btrfs_data_container *fspath;
2138 
2139 	fspath = init_data_container(total_bytes);
2140 	if (IS_ERR(fspath))
2141 		return (void *)fspath;
2142 
2143 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2144 	if (!ifp) {
2145 		kvfree(fspath);
2146 		return ERR_PTR(-ENOMEM);
2147 	}
2148 
2149 	ifp->btrfs_path = path;
2150 	ifp->fspath = fspath;
2151 	ifp->fs_root = fs_root;
2152 
2153 	return ifp;
2154 }
2155 
2156 void free_ipath(struct inode_fs_paths *ipath)
2157 {
2158 	if (!ipath)
2159 		return;
2160 	kvfree(ipath->fspath);
2161 	kfree(ipath);
2162 }
2163