xref: /openbmc/linux/fs/btrfs/backref.c (revision 4e541b06b0e8ae6ebd85a913dba8db43d3ce6fe3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17 #include "tree-mod-log.h"
18 
19 /* Just an arbitrary number so we can be sure this happened */
20 #define BACKREF_FOUND_SHARED 6
21 
22 struct extent_inode_elem {
23 	u64 inum;
24 	u64 offset;
25 	struct extent_inode_elem *next;
26 };
27 
28 static int check_extent_in_eb(const struct btrfs_key *key,
29 			      const struct extent_buffer *eb,
30 			      const struct btrfs_file_extent_item *fi,
31 			      u64 extent_item_pos,
32 			      struct extent_inode_elem **eie,
33 			      bool ignore_offset)
34 {
35 	u64 offset = 0;
36 	struct extent_inode_elem *e;
37 
38 	if (!ignore_offset &&
39 	    !btrfs_file_extent_compression(eb, fi) &&
40 	    !btrfs_file_extent_encryption(eb, fi) &&
41 	    !btrfs_file_extent_other_encoding(eb, fi)) {
42 		u64 data_offset;
43 		u64 data_len;
44 
45 		data_offset = btrfs_file_extent_offset(eb, fi);
46 		data_len = btrfs_file_extent_num_bytes(eb, fi);
47 
48 		if (extent_item_pos < data_offset ||
49 		    extent_item_pos >= data_offset + data_len)
50 			return 1;
51 		offset = extent_item_pos - data_offset;
52 	}
53 
54 	e = kmalloc(sizeof(*e), GFP_NOFS);
55 	if (!e)
56 		return -ENOMEM;
57 
58 	e->next = *eie;
59 	e->inum = key->objectid;
60 	e->offset = key->offset + offset;
61 	*eie = e;
62 
63 	return 0;
64 }
65 
66 static void free_inode_elem_list(struct extent_inode_elem *eie)
67 {
68 	struct extent_inode_elem *eie_next;
69 
70 	for (; eie; eie = eie_next) {
71 		eie_next = eie->next;
72 		kfree(eie);
73 	}
74 }
75 
76 static int find_extent_in_eb(const struct extent_buffer *eb,
77 			     u64 wanted_disk_byte, u64 extent_item_pos,
78 			     struct extent_inode_elem **eie,
79 			     bool ignore_offset)
80 {
81 	u64 disk_byte;
82 	struct btrfs_key key;
83 	struct btrfs_file_extent_item *fi;
84 	int slot;
85 	int nritems;
86 	int extent_type;
87 	int ret;
88 
89 	/*
90 	 * from the shared data ref, we only have the leaf but we need
91 	 * the key. thus, we must look into all items and see that we
92 	 * find one (some) with a reference to our extent item.
93 	 */
94 	nritems = btrfs_header_nritems(eb);
95 	for (slot = 0; slot < nritems; ++slot) {
96 		btrfs_item_key_to_cpu(eb, &key, slot);
97 		if (key.type != BTRFS_EXTENT_DATA_KEY)
98 			continue;
99 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
100 		extent_type = btrfs_file_extent_type(eb, fi);
101 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
102 			continue;
103 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
104 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
105 		if (disk_byte != wanted_disk_byte)
106 			continue;
107 
108 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
109 		if (ret < 0)
110 			return ret;
111 	}
112 
113 	return 0;
114 }
115 
116 struct preftree {
117 	struct rb_root_cached root;
118 	unsigned int count;
119 };
120 
121 #define PREFTREE_INIT	{ .root = RB_ROOT_CACHED, .count = 0 }
122 
123 struct preftrees {
124 	struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
125 	struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
126 	struct preftree indirect_missing_keys;
127 };
128 
129 /*
130  * Checks for a shared extent during backref search.
131  *
132  * The share_count tracks prelim_refs (direct and indirect) having a
133  * ref->count >0:
134  *  - incremented when a ref->count transitions to >0
135  *  - decremented when a ref->count transitions to <1
136  */
137 struct share_check {
138 	u64 root_objectid;
139 	u64 inum;
140 	int share_count;
141 };
142 
143 static inline int extent_is_shared(struct share_check *sc)
144 {
145 	return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
146 }
147 
148 static struct kmem_cache *btrfs_prelim_ref_cache;
149 
150 int __init btrfs_prelim_ref_init(void)
151 {
152 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
153 					sizeof(struct prelim_ref),
154 					0,
155 					SLAB_MEM_SPREAD,
156 					NULL);
157 	if (!btrfs_prelim_ref_cache)
158 		return -ENOMEM;
159 	return 0;
160 }
161 
162 void __cold btrfs_prelim_ref_exit(void)
163 {
164 	kmem_cache_destroy(btrfs_prelim_ref_cache);
165 }
166 
167 static void free_pref(struct prelim_ref *ref)
168 {
169 	kmem_cache_free(btrfs_prelim_ref_cache, ref);
170 }
171 
172 /*
173  * Return 0 when both refs are for the same block (and can be merged).
174  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
175  * indicates a 'higher' block.
176  */
177 static int prelim_ref_compare(struct prelim_ref *ref1,
178 			      struct prelim_ref *ref2)
179 {
180 	if (ref1->level < ref2->level)
181 		return -1;
182 	if (ref1->level > ref2->level)
183 		return 1;
184 	if (ref1->root_id < ref2->root_id)
185 		return -1;
186 	if (ref1->root_id > ref2->root_id)
187 		return 1;
188 	if (ref1->key_for_search.type < ref2->key_for_search.type)
189 		return -1;
190 	if (ref1->key_for_search.type > ref2->key_for_search.type)
191 		return 1;
192 	if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
193 		return -1;
194 	if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
195 		return 1;
196 	if (ref1->key_for_search.offset < ref2->key_for_search.offset)
197 		return -1;
198 	if (ref1->key_for_search.offset > ref2->key_for_search.offset)
199 		return 1;
200 	if (ref1->parent < ref2->parent)
201 		return -1;
202 	if (ref1->parent > ref2->parent)
203 		return 1;
204 
205 	return 0;
206 }
207 
208 static void update_share_count(struct share_check *sc, int oldcount,
209 			       int newcount)
210 {
211 	if ((!sc) || (oldcount == 0 && newcount < 1))
212 		return;
213 
214 	if (oldcount > 0 && newcount < 1)
215 		sc->share_count--;
216 	else if (oldcount < 1 && newcount > 0)
217 		sc->share_count++;
218 }
219 
220 /*
221  * Add @newref to the @root rbtree, merging identical refs.
222  *
223  * Callers should assume that newref has been freed after calling.
224  */
225 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
226 			      struct preftree *preftree,
227 			      struct prelim_ref *newref,
228 			      struct share_check *sc)
229 {
230 	struct rb_root_cached *root;
231 	struct rb_node **p;
232 	struct rb_node *parent = NULL;
233 	struct prelim_ref *ref;
234 	int result;
235 	bool leftmost = true;
236 
237 	root = &preftree->root;
238 	p = &root->rb_root.rb_node;
239 
240 	while (*p) {
241 		parent = *p;
242 		ref = rb_entry(parent, struct prelim_ref, rbnode);
243 		result = prelim_ref_compare(ref, newref);
244 		if (result < 0) {
245 			p = &(*p)->rb_left;
246 		} else if (result > 0) {
247 			p = &(*p)->rb_right;
248 			leftmost = false;
249 		} else {
250 			/* Identical refs, merge them and free @newref */
251 			struct extent_inode_elem *eie = ref->inode_list;
252 
253 			while (eie && eie->next)
254 				eie = eie->next;
255 
256 			if (!eie)
257 				ref->inode_list = newref->inode_list;
258 			else
259 				eie->next = newref->inode_list;
260 			trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
261 						     preftree->count);
262 			/*
263 			 * A delayed ref can have newref->count < 0.
264 			 * The ref->count is updated to follow any
265 			 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
266 			 */
267 			update_share_count(sc, ref->count,
268 					   ref->count + newref->count);
269 			ref->count += newref->count;
270 			free_pref(newref);
271 			return;
272 		}
273 	}
274 
275 	update_share_count(sc, 0, newref->count);
276 	preftree->count++;
277 	trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
278 	rb_link_node(&newref->rbnode, parent, p);
279 	rb_insert_color_cached(&newref->rbnode, root, leftmost);
280 }
281 
282 /*
283  * Release the entire tree.  We don't care about internal consistency so
284  * just free everything and then reset the tree root.
285  */
286 static void prelim_release(struct preftree *preftree)
287 {
288 	struct prelim_ref *ref, *next_ref;
289 
290 	rbtree_postorder_for_each_entry_safe(ref, next_ref,
291 					     &preftree->root.rb_root, rbnode)
292 		free_pref(ref);
293 
294 	preftree->root = RB_ROOT_CACHED;
295 	preftree->count = 0;
296 }
297 
298 /*
299  * the rules for all callers of this function are:
300  * - obtaining the parent is the goal
301  * - if you add a key, you must know that it is a correct key
302  * - if you cannot add the parent or a correct key, then we will look into the
303  *   block later to set a correct key
304  *
305  * delayed refs
306  * ============
307  *        backref type | shared | indirect | shared | indirect
308  * information         |   tree |     tree |   data |     data
309  * --------------------+--------+----------+--------+----------
310  *      parent logical |    y   |     -    |    -   |     -
311  *      key to resolve |    -   |     y    |    y   |     y
312  *  tree block logical |    -   |     -    |    -   |     -
313  *  root for resolving |    y   |     y    |    y   |     y
314  *
315  * - column 1:       we've the parent -> done
316  * - column 2, 3, 4: we use the key to find the parent
317  *
318  * on disk refs (inline or keyed)
319  * ==============================
320  *        backref type | shared | indirect | shared | indirect
321  * information         |   tree |     tree |   data |     data
322  * --------------------+--------+----------+--------+----------
323  *      parent logical |    y   |     -    |    y   |     -
324  *      key to resolve |    -   |     -    |    -   |     y
325  *  tree block logical |    y   |     y    |    y   |     y
326  *  root for resolving |    -   |     y    |    y   |     y
327  *
328  * - column 1, 3: we've the parent -> done
329  * - column 2:    we take the first key from the block to find the parent
330  *                (see add_missing_keys)
331  * - column 4:    we use the key to find the parent
332  *
333  * additional information that's available but not required to find the parent
334  * block might help in merging entries to gain some speed.
335  */
336 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
337 			  struct preftree *preftree, u64 root_id,
338 			  const struct btrfs_key *key, int level, u64 parent,
339 			  u64 wanted_disk_byte, int count,
340 			  struct share_check *sc, gfp_t gfp_mask)
341 {
342 	struct prelim_ref *ref;
343 
344 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
345 		return 0;
346 
347 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
348 	if (!ref)
349 		return -ENOMEM;
350 
351 	ref->root_id = root_id;
352 	if (key)
353 		ref->key_for_search = *key;
354 	else
355 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
356 
357 	ref->inode_list = NULL;
358 	ref->level = level;
359 	ref->count = count;
360 	ref->parent = parent;
361 	ref->wanted_disk_byte = wanted_disk_byte;
362 	prelim_ref_insert(fs_info, preftree, ref, sc);
363 	return extent_is_shared(sc);
364 }
365 
366 /* direct refs use root == 0, key == NULL */
367 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
368 			  struct preftrees *preftrees, int level, u64 parent,
369 			  u64 wanted_disk_byte, int count,
370 			  struct share_check *sc, gfp_t gfp_mask)
371 {
372 	return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
373 			      parent, wanted_disk_byte, count, sc, gfp_mask);
374 }
375 
376 /* indirect refs use parent == 0 */
377 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
378 			    struct preftrees *preftrees, u64 root_id,
379 			    const struct btrfs_key *key, int level,
380 			    u64 wanted_disk_byte, int count,
381 			    struct share_check *sc, gfp_t gfp_mask)
382 {
383 	struct preftree *tree = &preftrees->indirect;
384 
385 	if (!key)
386 		tree = &preftrees->indirect_missing_keys;
387 	return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
388 			      wanted_disk_byte, count, sc, gfp_mask);
389 }
390 
391 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
392 {
393 	struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
394 	struct rb_node *parent = NULL;
395 	struct prelim_ref *ref = NULL;
396 	struct prelim_ref target = {};
397 	int result;
398 
399 	target.parent = bytenr;
400 
401 	while (*p) {
402 		parent = *p;
403 		ref = rb_entry(parent, struct prelim_ref, rbnode);
404 		result = prelim_ref_compare(ref, &target);
405 
406 		if (result < 0)
407 			p = &(*p)->rb_left;
408 		else if (result > 0)
409 			p = &(*p)->rb_right;
410 		else
411 			return 1;
412 	}
413 	return 0;
414 }
415 
416 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
417 			   struct ulist *parents,
418 			   struct preftrees *preftrees, struct prelim_ref *ref,
419 			   int level, u64 time_seq, const u64 *extent_item_pos,
420 			   bool ignore_offset)
421 {
422 	int ret = 0;
423 	int slot;
424 	struct extent_buffer *eb;
425 	struct btrfs_key key;
426 	struct btrfs_key *key_for_search = &ref->key_for_search;
427 	struct btrfs_file_extent_item *fi;
428 	struct extent_inode_elem *eie = NULL, *old = NULL;
429 	u64 disk_byte;
430 	u64 wanted_disk_byte = ref->wanted_disk_byte;
431 	u64 count = 0;
432 	u64 data_offset;
433 
434 	if (level != 0) {
435 		eb = path->nodes[level];
436 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
437 		if (ret < 0)
438 			return ret;
439 		return 0;
440 	}
441 
442 	/*
443 	 * 1. We normally enter this function with the path already pointing to
444 	 *    the first item to check. But sometimes, we may enter it with
445 	 *    slot == nritems.
446 	 * 2. We are searching for normal backref but bytenr of this leaf
447 	 *    matches shared data backref
448 	 * 3. The leaf owner is not equal to the root we are searching
449 	 *
450 	 * For these cases, go to the next leaf before we continue.
451 	 */
452 	eb = path->nodes[0];
453 	if (path->slots[0] >= btrfs_header_nritems(eb) ||
454 	    is_shared_data_backref(preftrees, eb->start) ||
455 	    ref->root_id != btrfs_header_owner(eb)) {
456 		if (time_seq == BTRFS_SEQ_LAST)
457 			ret = btrfs_next_leaf(root, path);
458 		else
459 			ret = btrfs_next_old_leaf(root, path, time_seq);
460 	}
461 
462 	while (!ret && count < ref->count) {
463 		eb = path->nodes[0];
464 		slot = path->slots[0];
465 
466 		btrfs_item_key_to_cpu(eb, &key, slot);
467 
468 		if (key.objectid != key_for_search->objectid ||
469 		    key.type != BTRFS_EXTENT_DATA_KEY)
470 			break;
471 
472 		/*
473 		 * We are searching for normal backref but bytenr of this leaf
474 		 * matches shared data backref, OR
475 		 * the leaf owner is not equal to the root we are searching for
476 		 */
477 		if (slot == 0 &&
478 		    (is_shared_data_backref(preftrees, eb->start) ||
479 		     ref->root_id != btrfs_header_owner(eb))) {
480 			if (time_seq == BTRFS_SEQ_LAST)
481 				ret = btrfs_next_leaf(root, path);
482 			else
483 				ret = btrfs_next_old_leaf(root, path, time_seq);
484 			continue;
485 		}
486 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
487 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
488 		data_offset = btrfs_file_extent_offset(eb, fi);
489 
490 		if (disk_byte == wanted_disk_byte) {
491 			eie = NULL;
492 			old = NULL;
493 			if (ref->key_for_search.offset == key.offset - data_offset)
494 				count++;
495 			else
496 				goto next;
497 			if (extent_item_pos) {
498 				ret = check_extent_in_eb(&key, eb, fi,
499 						*extent_item_pos,
500 						&eie, ignore_offset);
501 				if (ret < 0)
502 					break;
503 			}
504 			if (ret > 0)
505 				goto next;
506 			ret = ulist_add_merge_ptr(parents, eb->start,
507 						  eie, (void **)&old, GFP_NOFS);
508 			if (ret < 0)
509 				break;
510 			if (!ret && extent_item_pos) {
511 				while (old->next)
512 					old = old->next;
513 				old->next = eie;
514 			}
515 			eie = NULL;
516 		}
517 next:
518 		if (time_seq == BTRFS_SEQ_LAST)
519 			ret = btrfs_next_item(root, path);
520 		else
521 			ret = btrfs_next_old_item(root, path, time_seq);
522 	}
523 
524 	if (ret > 0)
525 		ret = 0;
526 	else if (ret < 0)
527 		free_inode_elem_list(eie);
528 	return ret;
529 }
530 
531 /*
532  * resolve an indirect backref in the form (root_id, key, level)
533  * to a logical address
534  */
535 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
536 				struct btrfs_path *path, u64 time_seq,
537 				struct preftrees *preftrees,
538 				struct prelim_ref *ref, struct ulist *parents,
539 				const u64 *extent_item_pos, bool ignore_offset)
540 {
541 	struct btrfs_root *root;
542 	struct extent_buffer *eb;
543 	int ret = 0;
544 	int root_level;
545 	int level = ref->level;
546 	struct btrfs_key search_key = ref->key_for_search;
547 
548 	/*
549 	 * If we're search_commit_root we could possibly be holding locks on
550 	 * other tree nodes.  This happens when qgroups does backref walks when
551 	 * adding new delayed refs.  To deal with this we need to look in cache
552 	 * for the root, and if we don't find it then we need to search the
553 	 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
554 	 * here.
555 	 */
556 	if (path->search_commit_root)
557 		root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
558 	else
559 		root = btrfs_get_fs_root(fs_info, ref->root_id, false);
560 	if (IS_ERR(root)) {
561 		ret = PTR_ERR(root);
562 		goto out_free;
563 	}
564 
565 	if (!path->search_commit_root &&
566 	    test_bit(BTRFS_ROOT_DELETING, &root->state)) {
567 		ret = -ENOENT;
568 		goto out;
569 	}
570 
571 	if (btrfs_is_testing(fs_info)) {
572 		ret = -ENOENT;
573 		goto out;
574 	}
575 
576 	if (path->search_commit_root)
577 		root_level = btrfs_header_level(root->commit_root);
578 	else if (time_seq == BTRFS_SEQ_LAST)
579 		root_level = btrfs_header_level(root->node);
580 	else
581 		root_level = btrfs_old_root_level(root, time_seq);
582 
583 	if (root_level + 1 == level)
584 		goto out;
585 
586 	/*
587 	 * We can often find data backrefs with an offset that is too large
588 	 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
589 	 * subtracting a file's offset with the data offset of its
590 	 * corresponding extent data item. This can happen for example in the
591 	 * clone ioctl.
592 	 *
593 	 * So if we detect such case we set the search key's offset to zero to
594 	 * make sure we will find the matching file extent item at
595 	 * add_all_parents(), otherwise we will miss it because the offset
596 	 * taken form the backref is much larger then the offset of the file
597 	 * extent item. This can make us scan a very large number of file
598 	 * extent items, but at least it will not make us miss any.
599 	 *
600 	 * This is an ugly workaround for a behaviour that should have never
601 	 * existed, but it does and a fix for the clone ioctl would touch a lot
602 	 * of places, cause backwards incompatibility and would not fix the
603 	 * problem for extents cloned with older kernels.
604 	 */
605 	if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
606 	    search_key.offset >= LLONG_MAX)
607 		search_key.offset = 0;
608 	path->lowest_level = level;
609 	if (time_seq == BTRFS_SEQ_LAST)
610 		ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
611 	else
612 		ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
613 
614 	btrfs_debug(fs_info,
615 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
616 		 ref->root_id, level, ref->count, ret,
617 		 ref->key_for_search.objectid, ref->key_for_search.type,
618 		 ref->key_for_search.offset);
619 	if (ret < 0)
620 		goto out;
621 
622 	eb = path->nodes[level];
623 	while (!eb) {
624 		if (WARN_ON(!level)) {
625 			ret = 1;
626 			goto out;
627 		}
628 		level--;
629 		eb = path->nodes[level];
630 	}
631 
632 	ret = add_all_parents(root, path, parents, preftrees, ref, level,
633 			      time_seq, extent_item_pos, ignore_offset);
634 out:
635 	btrfs_put_root(root);
636 out_free:
637 	path->lowest_level = 0;
638 	btrfs_release_path(path);
639 	return ret;
640 }
641 
642 static struct extent_inode_elem *
643 unode_aux_to_inode_list(struct ulist_node *node)
644 {
645 	if (!node)
646 		return NULL;
647 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
648 }
649 
650 /*
651  * We maintain three separate rbtrees: one for direct refs, one for
652  * indirect refs which have a key, and one for indirect refs which do not
653  * have a key. Each tree does merge on insertion.
654  *
655  * Once all of the references are located, we iterate over the tree of
656  * indirect refs with missing keys. An appropriate key is located and
657  * the ref is moved onto the tree for indirect refs. After all missing
658  * keys are thus located, we iterate over the indirect ref tree, resolve
659  * each reference, and then insert the resolved reference onto the
660  * direct tree (merging there too).
661  *
662  * New backrefs (i.e., for parent nodes) are added to the appropriate
663  * rbtree as they are encountered. The new backrefs are subsequently
664  * resolved as above.
665  */
666 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
667 				 struct btrfs_path *path, u64 time_seq,
668 				 struct preftrees *preftrees,
669 				 const u64 *extent_item_pos,
670 				 struct share_check *sc, bool ignore_offset)
671 {
672 	int err;
673 	int ret = 0;
674 	struct ulist *parents;
675 	struct ulist_node *node;
676 	struct ulist_iterator uiter;
677 	struct rb_node *rnode;
678 
679 	parents = ulist_alloc(GFP_NOFS);
680 	if (!parents)
681 		return -ENOMEM;
682 
683 	/*
684 	 * We could trade memory usage for performance here by iterating
685 	 * the tree, allocating new refs for each insertion, and then
686 	 * freeing the entire indirect tree when we're done.  In some test
687 	 * cases, the tree can grow quite large (~200k objects).
688 	 */
689 	while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
690 		struct prelim_ref *ref;
691 
692 		ref = rb_entry(rnode, struct prelim_ref, rbnode);
693 		if (WARN(ref->parent,
694 			 "BUG: direct ref found in indirect tree")) {
695 			ret = -EINVAL;
696 			goto out;
697 		}
698 
699 		rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
700 		preftrees->indirect.count--;
701 
702 		if (ref->count == 0) {
703 			free_pref(ref);
704 			continue;
705 		}
706 
707 		if (sc && sc->root_objectid &&
708 		    ref->root_id != sc->root_objectid) {
709 			free_pref(ref);
710 			ret = BACKREF_FOUND_SHARED;
711 			goto out;
712 		}
713 		err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
714 					   ref, parents, extent_item_pos,
715 					   ignore_offset);
716 		/*
717 		 * we can only tolerate ENOENT,otherwise,we should catch error
718 		 * and return directly.
719 		 */
720 		if (err == -ENOENT) {
721 			prelim_ref_insert(fs_info, &preftrees->direct, ref,
722 					  NULL);
723 			continue;
724 		} else if (err) {
725 			free_pref(ref);
726 			ret = err;
727 			goto out;
728 		}
729 
730 		/* we put the first parent into the ref at hand */
731 		ULIST_ITER_INIT(&uiter);
732 		node = ulist_next(parents, &uiter);
733 		ref->parent = node ? node->val : 0;
734 		ref->inode_list = unode_aux_to_inode_list(node);
735 
736 		/* Add a prelim_ref(s) for any other parent(s). */
737 		while ((node = ulist_next(parents, &uiter))) {
738 			struct prelim_ref *new_ref;
739 
740 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
741 						   GFP_NOFS);
742 			if (!new_ref) {
743 				free_pref(ref);
744 				ret = -ENOMEM;
745 				goto out;
746 			}
747 			memcpy(new_ref, ref, sizeof(*ref));
748 			new_ref->parent = node->val;
749 			new_ref->inode_list = unode_aux_to_inode_list(node);
750 			prelim_ref_insert(fs_info, &preftrees->direct,
751 					  new_ref, NULL);
752 		}
753 
754 		/*
755 		 * Now it's a direct ref, put it in the direct tree. We must
756 		 * do this last because the ref could be merged/freed here.
757 		 */
758 		prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
759 
760 		ulist_reinit(parents);
761 		cond_resched();
762 	}
763 out:
764 	ulist_free(parents);
765 	return ret;
766 }
767 
768 /*
769  * read tree blocks and add keys where required.
770  */
771 static int add_missing_keys(struct btrfs_fs_info *fs_info,
772 			    struct preftrees *preftrees, bool lock)
773 {
774 	struct prelim_ref *ref;
775 	struct extent_buffer *eb;
776 	struct preftree *tree = &preftrees->indirect_missing_keys;
777 	struct rb_node *node;
778 
779 	while ((node = rb_first_cached(&tree->root))) {
780 		ref = rb_entry(node, struct prelim_ref, rbnode);
781 		rb_erase_cached(node, &tree->root);
782 
783 		BUG_ON(ref->parent);	/* should not be a direct ref */
784 		BUG_ON(ref->key_for_search.type);
785 		BUG_ON(!ref->wanted_disk_byte);
786 
787 		eb = read_tree_block(fs_info, ref->wanted_disk_byte,
788 				     ref->root_id, 0, ref->level - 1, NULL);
789 		if (IS_ERR(eb)) {
790 			free_pref(ref);
791 			return PTR_ERR(eb);
792 		} else if (!extent_buffer_uptodate(eb)) {
793 			free_pref(ref);
794 			free_extent_buffer(eb);
795 			return -EIO;
796 		}
797 		if (lock)
798 			btrfs_tree_read_lock(eb);
799 		if (btrfs_header_level(eb) == 0)
800 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
801 		else
802 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
803 		if (lock)
804 			btrfs_tree_read_unlock(eb);
805 		free_extent_buffer(eb);
806 		prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
807 		cond_resched();
808 	}
809 	return 0;
810 }
811 
812 /*
813  * add all currently queued delayed refs from this head whose seq nr is
814  * smaller or equal that seq to the list
815  */
816 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
817 			    struct btrfs_delayed_ref_head *head, u64 seq,
818 			    struct preftrees *preftrees, struct share_check *sc)
819 {
820 	struct btrfs_delayed_ref_node *node;
821 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
822 	struct btrfs_key key;
823 	struct btrfs_key tmp_op_key;
824 	struct rb_node *n;
825 	int count;
826 	int ret = 0;
827 
828 	if (extent_op && extent_op->update_key)
829 		btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
830 
831 	spin_lock(&head->lock);
832 	for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
833 		node = rb_entry(n, struct btrfs_delayed_ref_node,
834 				ref_node);
835 		if (node->seq > seq)
836 			continue;
837 
838 		switch (node->action) {
839 		case BTRFS_ADD_DELAYED_EXTENT:
840 		case BTRFS_UPDATE_DELAYED_HEAD:
841 			WARN_ON(1);
842 			continue;
843 		case BTRFS_ADD_DELAYED_REF:
844 			count = node->ref_mod;
845 			break;
846 		case BTRFS_DROP_DELAYED_REF:
847 			count = node->ref_mod * -1;
848 			break;
849 		default:
850 			BUG();
851 		}
852 		switch (node->type) {
853 		case BTRFS_TREE_BLOCK_REF_KEY: {
854 			/* NORMAL INDIRECT METADATA backref */
855 			struct btrfs_delayed_tree_ref *ref;
856 
857 			ref = btrfs_delayed_node_to_tree_ref(node);
858 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
859 					       &tmp_op_key, ref->level + 1,
860 					       node->bytenr, count, sc,
861 					       GFP_ATOMIC);
862 			break;
863 		}
864 		case BTRFS_SHARED_BLOCK_REF_KEY: {
865 			/* SHARED DIRECT METADATA backref */
866 			struct btrfs_delayed_tree_ref *ref;
867 
868 			ref = btrfs_delayed_node_to_tree_ref(node);
869 
870 			ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
871 					     ref->parent, node->bytenr, count,
872 					     sc, GFP_ATOMIC);
873 			break;
874 		}
875 		case BTRFS_EXTENT_DATA_REF_KEY: {
876 			/* NORMAL INDIRECT DATA backref */
877 			struct btrfs_delayed_data_ref *ref;
878 			ref = btrfs_delayed_node_to_data_ref(node);
879 
880 			key.objectid = ref->objectid;
881 			key.type = BTRFS_EXTENT_DATA_KEY;
882 			key.offset = ref->offset;
883 
884 			/*
885 			 * Found a inum that doesn't match our known inum, we
886 			 * know it's shared.
887 			 */
888 			if (sc && sc->inum && ref->objectid != sc->inum) {
889 				ret = BACKREF_FOUND_SHARED;
890 				goto out;
891 			}
892 
893 			ret = add_indirect_ref(fs_info, preftrees, ref->root,
894 					       &key, 0, node->bytenr, count, sc,
895 					       GFP_ATOMIC);
896 			break;
897 		}
898 		case BTRFS_SHARED_DATA_REF_KEY: {
899 			/* SHARED DIRECT FULL backref */
900 			struct btrfs_delayed_data_ref *ref;
901 
902 			ref = btrfs_delayed_node_to_data_ref(node);
903 
904 			ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
905 					     node->bytenr, count, sc,
906 					     GFP_ATOMIC);
907 			break;
908 		}
909 		default:
910 			WARN_ON(1);
911 		}
912 		/*
913 		 * We must ignore BACKREF_FOUND_SHARED until all delayed
914 		 * refs have been checked.
915 		 */
916 		if (ret && (ret != BACKREF_FOUND_SHARED))
917 			break;
918 	}
919 	if (!ret)
920 		ret = extent_is_shared(sc);
921 out:
922 	spin_unlock(&head->lock);
923 	return ret;
924 }
925 
926 /*
927  * add all inline backrefs for bytenr to the list
928  *
929  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
930  */
931 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
932 			   struct btrfs_path *path, u64 bytenr,
933 			   int *info_level, struct preftrees *preftrees,
934 			   struct share_check *sc)
935 {
936 	int ret = 0;
937 	int slot;
938 	struct extent_buffer *leaf;
939 	struct btrfs_key key;
940 	struct btrfs_key found_key;
941 	unsigned long ptr;
942 	unsigned long end;
943 	struct btrfs_extent_item *ei;
944 	u64 flags;
945 	u64 item_size;
946 
947 	/*
948 	 * enumerate all inline refs
949 	 */
950 	leaf = path->nodes[0];
951 	slot = path->slots[0];
952 
953 	item_size = btrfs_item_size(leaf, slot);
954 	BUG_ON(item_size < sizeof(*ei));
955 
956 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
957 	flags = btrfs_extent_flags(leaf, ei);
958 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
959 
960 	ptr = (unsigned long)(ei + 1);
961 	end = (unsigned long)ei + item_size;
962 
963 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
964 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
965 		struct btrfs_tree_block_info *info;
966 
967 		info = (struct btrfs_tree_block_info *)ptr;
968 		*info_level = btrfs_tree_block_level(leaf, info);
969 		ptr += sizeof(struct btrfs_tree_block_info);
970 		BUG_ON(ptr > end);
971 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
972 		*info_level = found_key.offset;
973 	} else {
974 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
975 	}
976 
977 	while (ptr < end) {
978 		struct btrfs_extent_inline_ref *iref;
979 		u64 offset;
980 		int type;
981 
982 		iref = (struct btrfs_extent_inline_ref *)ptr;
983 		type = btrfs_get_extent_inline_ref_type(leaf, iref,
984 							BTRFS_REF_TYPE_ANY);
985 		if (type == BTRFS_REF_TYPE_INVALID)
986 			return -EUCLEAN;
987 
988 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
989 
990 		switch (type) {
991 		case BTRFS_SHARED_BLOCK_REF_KEY:
992 			ret = add_direct_ref(fs_info, preftrees,
993 					     *info_level + 1, offset,
994 					     bytenr, 1, NULL, GFP_NOFS);
995 			break;
996 		case BTRFS_SHARED_DATA_REF_KEY: {
997 			struct btrfs_shared_data_ref *sdref;
998 			int count;
999 
1000 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1001 			count = btrfs_shared_data_ref_count(leaf, sdref);
1002 
1003 			ret = add_direct_ref(fs_info, preftrees, 0, offset,
1004 					     bytenr, count, sc, GFP_NOFS);
1005 			break;
1006 		}
1007 		case BTRFS_TREE_BLOCK_REF_KEY:
1008 			ret = add_indirect_ref(fs_info, preftrees, offset,
1009 					       NULL, *info_level + 1,
1010 					       bytenr, 1, NULL, GFP_NOFS);
1011 			break;
1012 		case BTRFS_EXTENT_DATA_REF_KEY: {
1013 			struct btrfs_extent_data_ref *dref;
1014 			int count;
1015 			u64 root;
1016 
1017 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1018 			count = btrfs_extent_data_ref_count(leaf, dref);
1019 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1020 								      dref);
1021 			key.type = BTRFS_EXTENT_DATA_KEY;
1022 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1023 
1024 			if (sc && sc->inum && key.objectid != sc->inum) {
1025 				ret = BACKREF_FOUND_SHARED;
1026 				break;
1027 			}
1028 
1029 			root = btrfs_extent_data_ref_root(leaf, dref);
1030 
1031 			ret = add_indirect_ref(fs_info, preftrees, root,
1032 					       &key, 0, bytenr, count,
1033 					       sc, GFP_NOFS);
1034 			break;
1035 		}
1036 		default:
1037 			WARN_ON(1);
1038 		}
1039 		if (ret)
1040 			return ret;
1041 		ptr += btrfs_extent_inline_ref_size(type);
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 /*
1048  * add all non-inline backrefs for bytenr to the list
1049  *
1050  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1051  */
1052 static int add_keyed_refs(struct btrfs_root *extent_root,
1053 			  struct btrfs_path *path, u64 bytenr,
1054 			  int info_level, struct preftrees *preftrees,
1055 			  struct share_check *sc)
1056 {
1057 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
1058 	int ret;
1059 	int slot;
1060 	struct extent_buffer *leaf;
1061 	struct btrfs_key key;
1062 
1063 	while (1) {
1064 		ret = btrfs_next_item(extent_root, path);
1065 		if (ret < 0)
1066 			break;
1067 		if (ret) {
1068 			ret = 0;
1069 			break;
1070 		}
1071 
1072 		slot = path->slots[0];
1073 		leaf = path->nodes[0];
1074 		btrfs_item_key_to_cpu(leaf, &key, slot);
1075 
1076 		if (key.objectid != bytenr)
1077 			break;
1078 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1079 			continue;
1080 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1081 			break;
1082 
1083 		switch (key.type) {
1084 		case BTRFS_SHARED_BLOCK_REF_KEY:
1085 			/* SHARED DIRECT METADATA backref */
1086 			ret = add_direct_ref(fs_info, preftrees,
1087 					     info_level + 1, key.offset,
1088 					     bytenr, 1, NULL, GFP_NOFS);
1089 			break;
1090 		case BTRFS_SHARED_DATA_REF_KEY: {
1091 			/* SHARED DIRECT FULL backref */
1092 			struct btrfs_shared_data_ref *sdref;
1093 			int count;
1094 
1095 			sdref = btrfs_item_ptr(leaf, slot,
1096 					      struct btrfs_shared_data_ref);
1097 			count = btrfs_shared_data_ref_count(leaf, sdref);
1098 			ret = add_direct_ref(fs_info, preftrees, 0,
1099 					     key.offset, bytenr, count,
1100 					     sc, GFP_NOFS);
1101 			break;
1102 		}
1103 		case BTRFS_TREE_BLOCK_REF_KEY:
1104 			/* NORMAL INDIRECT METADATA backref */
1105 			ret = add_indirect_ref(fs_info, preftrees, key.offset,
1106 					       NULL, info_level + 1, bytenr,
1107 					       1, NULL, GFP_NOFS);
1108 			break;
1109 		case BTRFS_EXTENT_DATA_REF_KEY: {
1110 			/* NORMAL INDIRECT DATA backref */
1111 			struct btrfs_extent_data_ref *dref;
1112 			int count;
1113 			u64 root;
1114 
1115 			dref = btrfs_item_ptr(leaf, slot,
1116 					      struct btrfs_extent_data_ref);
1117 			count = btrfs_extent_data_ref_count(leaf, dref);
1118 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1119 								      dref);
1120 			key.type = BTRFS_EXTENT_DATA_KEY;
1121 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1122 
1123 			if (sc && sc->inum && key.objectid != sc->inum) {
1124 				ret = BACKREF_FOUND_SHARED;
1125 				break;
1126 			}
1127 
1128 			root = btrfs_extent_data_ref_root(leaf, dref);
1129 			ret = add_indirect_ref(fs_info, preftrees, root,
1130 					       &key, 0, bytenr, count,
1131 					       sc, GFP_NOFS);
1132 			break;
1133 		}
1134 		default:
1135 			WARN_ON(1);
1136 		}
1137 		if (ret)
1138 			return ret;
1139 
1140 	}
1141 
1142 	return ret;
1143 }
1144 
1145 /*
1146  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1147  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1148  * indirect refs to their parent bytenr.
1149  * When roots are found, they're added to the roots list
1150  *
1151  * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
1152  * behave much like trans == NULL case, the difference only lies in it will not
1153  * commit root.
1154  * The special case is for qgroup to search roots in commit_transaction().
1155  *
1156  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1157  * shared extent is detected.
1158  *
1159  * Otherwise this returns 0 for success and <0 for an error.
1160  *
1161  * If ignore_offset is set to false, only extent refs whose offsets match
1162  * extent_item_pos are returned.  If true, every extent ref is returned
1163  * and extent_item_pos is ignored.
1164  *
1165  * FIXME some caching might speed things up
1166  */
1167 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1168 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1169 			     u64 time_seq, struct ulist *refs,
1170 			     struct ulist *roots, const u64 *extent_item_pos,
1171 			     struct share_check *sc, bool ignore_offset)
1172 {
1173 	struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
1174 	struct btrfs_key key;
1175 	struct btrfs_path *path;
1176 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1177 	struct btrfs_delayed_ref_head *head;
1178 	int info_level = 0;
1179 	int ret;
1180 	struct prelim_ref *ref;
1181 	struct rb_node *node;
1182 	struct extent_inode_elem *eie = NULL;
1183 	struct preftrees preftrees = {
1184 		.direct = PREFTREE_INIT,
1185 		.indirect = PREFTREE_INIT,
1186 		.indirect_missing_keys = PREFTREE_INIT
1187 	};
1188 
1189 	key.objectid = bytenr;
1190 	key.offset = (u64)-1;
1191 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1192 		key.type = BTRFS_METADATA_ITEM_KEY;
1193 	else
1194 		key.type = BTRFS_EXTENT_ITEM_KEY;
1195 
1196 	path = btrfs_alloc_path();
1197 	if (!path)
1198 		return -ENOMEM;
1199 	if (!trans) {
1200 		path->search_commit_root = 1;
1201 		path->skip_locking = 1;
1202 	}
1203 
1204 	if (time_seq == BTRFS_SEQ_LAST)
1205 		path->skip_locking = 1;
1206 
1207 again:
1208 	head = NULL;
1209 
1210 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1211 	if (ret < 0)
1212 		goto out;
1213 	if (ret == 0) {
1214 		/* This shouldn't happen, indicates a bug or fs corruption. */
1215 		ASSERT(ret != 0);
1216 		ret = -EUCLEAN;
1217 		goto out;
1218 	}
1219 
1220 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1221 	    time_seq != BTRFS_SEQ_LAST) {
1222 		/*
1223 		 * We have a specific time_seq we care about and trans which
1224 		 * means we have the path lock, we need to grab the ref head and
1225 		 * lock it so we have a consistent view of the refs at the given
1226 		 * time.
1227 		 */
1228 		delayed_refs = &trans->transaction->delayed_refs;
1229 		spin_lock(&delayed_refs->lock);
1230 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1231 		if (head) {
1232 			if (!mutex_trylock(&head->mutex)) {
1233 				refcount_inc(&head->refs);
1234 				spin_unlock(&delayed_refs->lock);
1235 
1236 				btrfs_release_path(path);
1237 
1238 				/*
1239 				 * Mutex was contended, block until it's
1240 				 * released and try again
1241 				 */
1242 				mutex_lock(&head->mutex);
1243 				mutex_unlock(&head->mutex);
1244 				btrfs_put_delayed_ref_head(head);
1245 				goto again;
1246 			}
1247 			spin_unlock(&delayed_refs->lock);
1248 			ret = add_delayed_refs(fs_info, head, time_seq,
1249 					       &preftrees, sc);
1250 			mutex_unlock(&head->mutex);
1251 			if (ret)
1252 				goto out;
1253 		} else {
1254 			spin_unlock(&delayed_refs->lock);
1255 		}
1256 	}
1257 
1258 	if (path->slots[0]) {
1259 		struct extent_buffer *leaf;
1260 		int slot;
1261 
1262 		path->slots[0]--;
1263 		leaf = path->nodes[0];
1264 		slot = path->slots[0];
1265 		btrfs_item_key_to_cpu(leaf, &key, slot);
1266 		if (key.objectid == bytenr &&
1267 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1268 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1269 			ret = add_inline_refs(fs_info, path, bytenr,
1270 					      &info_level, &preftrees, sc);
1271 			if (ret)
1272 				goto out;
1273 			ret = add_keyed_refs(root, path, bytenr, info_level,
1274 					     &preftrees, sc);
1275 			if (ret)
1276 				goto out;
1277 		}
1278 	}
1279 
1280 	btrfs_release_path(path);
1281 
1282 	ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1283 	if (ret)
1284 		goto out;
1285 
1286 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1287 
1288 	ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1289 				    extent_item_pos, sc, ignore_offset);
1290 	if (ret)
1291 		goto out;
1292 
1293 	WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1294 
1295 	/*
1296 	 * This walks the tree of merged and resolved refs. Tree blocks are
1297 	 * read in as needed. Unique entries are added to the ulist, and
1298 	 * the list of found roots is updated.
1299 	 *
1300 	 * We release the entire tree in one go before returning.
1301 	 */
1302 	node = rb_first_cached(&preftrees.direct.root);
1303 	while (node) {
1304 		ref = rb_entry(node, struct prelim_ref, rbnode);
1305 		node = rb_next(&ref->rbnode);
1306 		/*
1307 		 * ref->count < 0 can happen here if there are delayed
1308 		 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1309 		 * prelim_ref_insert() relies on this when merging
1310 		 * identical refs to keep the overall count correct.
1311 		 * prelim_ref_insert() will merge only those refs
1312 		 * which compare identically.  Any refs having
1313 		 * e.g. different offsets would not be merged,
1314 		 * and would retain their original ref->count < 0.
1315 		 */
1316 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1317 			if (sc && sc->root_objectid &&
1318 			    ref->root_id != sc->root_objectid) {
1319 				ret = BACKREF_FOUND_SHARED;
1320 				goto out;
1321 			}
1322 
1323 			/* no parent == root of tree */
1324 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1325 			if (ret < 0)
1326 				goto out;
1327 		}
1328 		if (ref->count && ref->parent) {
1329 			if (extent_item_pos && !ref->inode_list &&
1330 			    ref->level == 0) {
1331 				struct extent_buffer *eb;
1332 
1333 				eb = read_tree_block(fs_info, ref->parent, 0,
1334 						     0, ref->level, NULL);
1335 				if (IS_ERR(eb)) {
1336 					ret = PTR_ERR(eb);
1337 					goto out;
1338 				} else if (!extent_buffer_uptodate(eb)) {
1339 					free_extent_buffer(eb);
1340 					ret = -EIO;
1341 					goto out;
1342 				}
1343 
1344 				if (!path->skip_locking)
1345 					btrfs_tree_read_lock(eb);
1346 				ret = find_extent_in_eb(eb, bytenr,
1347 							*extent_item_pos, &eie, ignore_offset);
1348 				if (!path->skip_locking)
1349 					btrfs_tree_read_unlock(eb);
1350 				free_extent_buffer(eb);
1351 				if (ret < 0)
1352 					goto out;
1353 				ref->inode_list = eie;
1354 			}
1355 			ret = ulist_add_merge_ptr(refs, ref->parent,
1356 						  ref->inode_list,
1357 						  (void **)&eie, GFP_NOFS);
1358 			if (ret < 0)
1359 				goto out;
1360 			if (!ret && extent_item_pos) {
1361 				/*
1362 				 * We've recorded that parent, so we must extend
1363 				 * its inode list here.
1364 				 *
1365 				 * However if there was corruption we may not
1366 				 * have found an eie, return an error in this
1367 				 * case.
1368 				 */
1369 				ASSERT(eie);
1370 				if (!eie) {
1371 					ret = -EUCLEAN;
1372 					goto out;
1373 				}
1374 				while (eie->next)
1375 					eie = eie->next;
1376 				eie->next = ref->inode_list;
1377 			}
1378 			eie = NULL;
1379 		}
1380 		cond_resched();
1381 	}
1382 
1383 out:
1384 	btrfs_free_path(path);
1385 
1386 	prelim_release(&preftrees.direct);
1387 	prelim_release(&preftrees.indirect);
1388 	prelim_release(&preftrees.indirect_missing_keys);
1389 
1390 	if (ret < 0)
1391 		free_inode_elem_list(eie);
1392 	return ret;
1393 }
1394 
1395 static void free_leaf_list(struct ulist *blocks)
1396 {
1397 	struct ulist_node *node = NULL;
1398 	struct extent_inode_elem *eie;
1399 	struct ulist_iterator uiter;
1400 
1401 	ULIST_ITER_INIT(&uiter);
1402 	while ((node = ulist_next(blocks, &uiter))) {
1403 		if (!node->aux)
1404 			continue;
1405 		eie = unode_aux_to_inode_list(node);
1406 		free_inode_elem_list(eie);
1407 		node->aux = 0;
1408 	}
1409 
1410 	ulist_free(blocks);
1411 }
1412 
1413 /*
1414  * Finds all leafs with a reference to the specified combination of bytenr and
1415  * offset. key_list_head will point to a list of corresponding keys (caller must
1416  * free each list element). The leafs will be stored in the leafs ulist, which
1417  * must be freed with ulist_free.
1418  *
1419  * returns 0 on success, <0 on error
1420  */
1421 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1422 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1423 			 u64 time_seq, struct ulist **leafs,
1424 			 const u64 *extent_item_pos, bool ignore_offset)
1425 {
1426 	int ret;
1427 
1428 	*leafs = ulist_alloc(GFP_NOFS);
1429 	if (!*leafs)
1430 		return -ENOMEM;
1431 
1432 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1433 				*leafs, NULL, extent_item_pos, NULL, ignore_offset);
1434 	if (ret < 0 && ret != -ENOENT) {
1435 		free_leaf_list(*leafs);
1436 		return ret;
1437 	}
1438 
1439 	return 0;
1440 }
1441 
1442 /*
1443  * walk all backrefs for a given extent to find all roots that reference this
1444  * extent. Walking a backref means finding all extents that reference this
1445  * extent and in turn walk the backrefs of those, too. Naturally this is a
1446  * recursive process, but here it is implemented in an iterative fashion: We
1447  * find all referencing extents for the extent in question and put them on a
1448  * list. In turn, we find all referencing extents for those, further appending
1449  * to the list. The way we iterate the list allows adding more elements after
1450  * the current while iterating. The process stops when we reach the end of the
1451  * list. Found roots are added to the roots list.
1452  *
1453  * returns 0 on success, < 0 on error.
1454  */
1455 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1456 				     struct btrfs_fs_info *fs_info, u64 bytenr,
1457 				     u64 time_seq, struct ulist **roots,
1458 				     bool ignore_offset)
1459 {
1460 	struct ulist *tmp;
1461 	struct ulist_node *node = NULL;
1462 	struct ulist_iterator uiter;
1463 	int ret;
1464 
1465 	tmp = ulist_alloc(GFP_NOFS);
1466 	if (!tmp)
1467 		return -ENOMEM;
1468 	*roots = ulist_alloc(GFP_NOFS);
1469 	if (!*roots) {
1470 		ulist_free(tmp);
1471 		return -ENOMEM;
1472 	}
1473 
1474 	ULIST_ITER_INIT(&uiter);
1475 	while (1) {
1476 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1477 					tmp, *roots, NULL, NULL, ignore_offset);
1478 		if (ret < 0 && ret != -ENOENT) {
1479 			ulist_free(tmp);
1480 			ulist_free(*roots);
1481 			*roots = NULL;
1482 			return ret;
1483 		}
1484 		node = ulist_next(tmp, &uiter);
1485 		if (!node)
1486 			break;
1487 		bytenr = node->val;
1488 		cond_resched();
1489 	}
1490 
1491 	ulist_free(tmp);
1492 	return 0;
1493 }
1494 
1495 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1496 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1497 			 u64 time_seq, struct ulist **roots,
1498 			 bool skip_commit_root_sem)
1499 {
1500 	int ret;
1501 
1502 	if (!trans && !skip_commit_root_sem)
1503 		down_read(&fs_info->commit_root_sem);
1504 	ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1505 					time_seq, roots, false);
1506 	if (!trans && !skip_commit_root_sem)
1507 		up_read(&fs_info->commit_root_sem);
1508 	return ret;
1509 }
1510 
1511 /**
1512  * Check if an extent is shared or not
1513  *
1514  * @root:   root inode belongs to
1515  * @inum:   inode number of the inode whose extent we are checking
1516  * @bytenr: logical bytenr of the extent we are checking
1517  * @roots:  list of roots this extent is shared among
1518  * @tmp:    temporary list used for iteration
1519  *
1520  * btrfs_check_shared uses the backref walking code but will short
1521  * circuit as soon as it finds a root or inode that doesn't match the
1522  * one passed in. This provides a significant performance benefit for
1523  * callers (such as fiemap) which want to know whether the extent is
1524  * shared but do not need a ref count.
1525  *
1526  * This attempts to attach to the running transaction in order to account for
1527  * delayed refs, but continues on even when no running transaction exists.
1528  *
1529  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1530  */
1531 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1532 		struct ulist *roots, struct ulist *tmp)
1533 {
1534 	struct btrfs_fs_info *fs_info = root->fs_info;
1535 	struct btrfs_trans_handle *trans;
1536 	struct ulist_iterator uiter;
1537 	struct ulist_node *node;
1538 	struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1539 	int ret = 0;
1540 	struct share_check shared = {
1541 		.root_objectid = root->root_key.objectid,
1542 		.inum = inum,
1543 		.share_count = 0,
1544 	};
1545 
1546 	ulist_init(roots);
1547 	ulist_init(tmp);
1548 
1549 	trans = btrfs_join_transaction_nostart(root);
1550 	if (IS_ERR(trans)) {
1551 		if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1552 			ret = PTR_ERR(trans);
1553 			goto out;
1554 		}
1555 		trans = NULL;
1556 		down_read(&fs_info->commit_root_sem);
1557 	} else {
1558 		btrfs_get_tree_mod_seq(fs_info, &elem);
1559 	}
1560 
1561 	ULIST_ITER_INIT(&uiter);
1562 	while (1) {
1563 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1564 					roots, NULL, &shared, false);
1565 		if (ret == BACKREF_FOUND_SHARED) {
1566 			/* this is the only condition under which we return 1 */
1567 			ret = 1;
1568 			break;
1569 		}
1570 		if (ret < 0 && ret != -ENOENT)
1571 			break;
1572 		ret = 0;
1573 		node = ulist_next(tmp, &uiter);
1574 		if (!node)
1575 			break;
1576 		bytenr = node->val;
1577 		shared.share_count = 0;
1578 		cond_resched();
1579 	}
1580 
1581 	if (trans) {
1582 		btrfs_put_tree_mod_seq(fs_info, &elem);
1583 		btrfs_end_transaction(trans);
1584 	} else {
1585 		up_read(&fs_info->commit_root_sem);
1586 	}
1587 out:
1588 	ulist_release(roots);
1589 	ulist_release(tmp);
1590 	return ret;
1591 }
1592 
1593 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1594 			  u64 start_off, struct btrfs_path *path,
1595 			  struct btrfs_inode_extref **ret_extref,
1596 			  u64 *found_off)
1597 {
1598 	int ret, slot;
1599 	struct btrfs_key key;
1600 	struct btrfs_key found_key;
1601 	struct btrfs_inode_extref *extref;
1602 	const struct extent_buffer *leaf;
1603 	unsigned long ptr;
1604 
1605 	key.objectid = inode_objectid;
1606 	key.type = BTRFS_INODE_EXTREF_KEY;
1607 	key.offset = start_off;
1608 
1609 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1610 	if (ret < 0)
1611 		return ret;
1612 
1613 	while (1) {
1614 		leaf = path->nodes[0];
1615 		slot = path->slots[0];
1616 		if (slot >= btrfs_header_nritems(leaf)) {
1617 			/*
1618 			 * If the item at offset is not found,
1619 			 * btrfs_search_slot will point us to the slot
1620 			 * where it should be inserted. In our case
1621 			 * that will be the slot directly before the
1622 			 * next INODE_REF_KEY_V2 item. In the case
1623 			 * that we're pointing to the last slot in a
1624 			 * leaf, we must move one leaf over.
1625 			 */
1626 			ret = btrfs_next_leaf(root, path);
1627 			if (ret) {
1628 				if (ret >= 1)
1629 					ret = -ENOENT;
1630 				break;
1631 			}
1632 			continue;
1633 		}
1634 
1635 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1636 
1637 		/*
1638 		 * Check that we're still looking at an extended ref key for
1639 		 * this particular objectid. If we have different
1640 		 * objectid or type then there are no more to be found
1641 		 * in the tree and we can exit.
1642 		 */
1643 		ret = -ENOENT;
1644 		if (found_key.objectid != inode_objectid)
1645 			break;
1646 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1647 			break;
1648 
1649 		ret = 0;
1650 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1651 		extref = (struct btrfs_inode_extref *)ptr;
1652 		*ret_extref = extref;
1653 		if (found_off)
1654 			*found_off = found_key.offset;
1655 		break;
1656 	}
1657 
1658 	return ret;
1659 }
1660 
1661 /*
1662  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1663  * Elements of the path are separated by '/' and the path is guaranteed to be
1664  * 0-terminated. the path is only given within the current file system.
1665  * Therefore, it never starts with a '/'. the caller is responsible to provide
1666  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1667  * the start point of the resulting string is returned. this pointer is within
1668  * dest, normally.
1669  * in case the path buffer would overflow, the pointer is decremented further
1670  * as if output was written to the buffer, though no more output is actually
1671  * generated. that way, the caller can determine how much space would be
1672  * required for the path to fit into the buffer. in that case, the returned
1673  * value will be smaller than dest. callers must check this!
1674  */
1675 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1676 			u32 name_len, unsigned long name_off,
1677 			struct extent_buffer *eb_in, u64 parent,
1678 			char *dest, u32 size)
1679 {
1680 	int slot;
1681 	u64 next_inum;
1682 	int ret;
1683 	s64 bytes_left = ((s64)size) - 1;
1684 	struct extent_buffer *eb = eb_in;
1685 	struct btrfs_key found_key;
1686 	struct btrfs_inode_ref *iref;
1687 
1688 	if (bytes_left >= 0)
1689 		dest[bytes_left] = '\0';
1690 
1691 	while (1) {
1692 		bytes_left -= name_len;
1693 		if (bytes_left >= 0)
1694 			read_extent_buffer(eb, dest + bytes_left,
1695 					   name_off, name_len);
1696 		if (eb != eb_in) {
1697 			if (!path->skip_locking)
1698 				btrfs_tree_read_unlock(eb);
1699 			free_extent_buffer(eb);
1700 		}
1701 		ret = btrfs_find_item(fs_root, path, parent, 0,
1702 				BTRFS_INODE_REF_KEY, &found_key);
1703 		if (ret > 0)
1704 			ret = -ENOENT;
1705 		if (ret)
1706 			break;
1707 
1708 		next_inum = found_key.offset;
1709 
1710 		/* regular exit ahead */
1711 		if (parent == next_inum)
1712 			break;
1713 
1714 		slot = path->slots[0];
1715 		eb = path->nodes[0];
1716 		/* make sure we can use eb after releasing the path */
1717 		if (eb != eb_in) {
1718 			path->nodes[0] = NULL;
1719 			path->locks[0] = 0;
1720 		}
1721 		btrfs_release_path(path);
1722 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1723 
1724 		name_len = btrfs_inode_ref_name_len(eb, iref);
1725 		name_off = (unsigned long)(iref + 1);
1726 
1727 		parent = next_inum;
1728 		--bytes_left;
1729 		if (bytes_left >= 0)
1730 			dest[bytes_left] = '/';
1731 	}
1732 
1733 	btrfs_release_path(path);
1734 
1735 	if (ret)
1736 		return ERR_PTR(ret);
1737 
1738 	return dest + bytes_left;
1739 }
1740 
1741 /*
1742  * this makes the path point to (logical EXTENT_ITEM *)
1743  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1744  * tree blocks and <0 on error.
1745  */
1746 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1747 			struct btrfs_path *path, struct btrfs_key *found_key,
1748 			u64 *flags_ret)
1749 {
1750 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
1751 	int ret;
1752 	u64 flags;
1753 	u64 size = 0;
1754 	u32 item_size;
1755 	const struct extent_buffer *eb;
1756 	struct btrfs_extent_item *ei;
1757 	struct btrfs_key key;
1758 
1759 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1760 		key.type = BTRFS_METADATA_ITEM_KEY;
1761 	else
1762 		key.type = BTRFS_EXTENT_ITEM_KEY;
1763 	key.objectid = logical;
1764 	key.offset = (u64)-1;
1765 
1766 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1767 	if (ret < 0)
1768 		return ret;
1769 
1770 	ret = btrfs_previous_extent_item(extent_root, path, 0);
1771 	if (ret) {
1772 		if (ret > 0)
1773 			ret = -ENOENT;
1774 		return ret;
1775 	}
1776 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1777 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1778 		size = fs_info->nodesize;
1779 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1780 		size = found_key->offset;
1781 
1782 	if (found_key->objectid > logical ||
1783 	    found_key->objectid + size <= logical) {
1784 		btrfs_debug(fs_info,
1785 			"logical %llu is not within any extent", logical);
1786 		return -ENOENT;
1787 	}
1788 
1789 	eb = path->nodes[0];
1790 	item_size = btrfs_item_size(eb, path->slots[0]);
1791 	BUG_ON(item_size < sizeof(*ei));
1792 
1793 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1794 	flags = btrfs_extent_flags(eb, ei);
1795 
1796 	btrfs_debug(fs_info,
1797 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1798 		 logical, logical - found_key->objectid, found_key->objectid,
1799 		 found_key->offset, flags, item_size);
1800 
1801 	WARN_ON(!flags_ret);
1802 	if (flags_ret) {
1803 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1804 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1805 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1806 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1807 		else
1808 			BUG();
1809 		return 0;
1810 	}
1811 
1812 	return -EIO;
1813 }
1814 
1815 /*
1816  * helper function to iterate extent inline refs. ptr must point to a 0 value
1817  * for the first call and may be modified. it is used to track state.
1818  * if more refs exist, 0 is returned and the next call to
1819  * get_extent_inline_ref must pass the modified ptr parameter to get the
1820  * next ref. after the last ref was processed, 1 is returned.
1821  * returns <0 on error
1822  */
1823 static int get_extent_inline_ref(unsigned long *ptr,
1824 				 const struct extent_buffer *eb,
1825 				 const struct btrfs_key *key,
1826 				 const struct btrfs_extent_item *ei,
1827 				 u32 item_size,
1828 				 struct btrfs_extent_inline_ref **out_eiref,
1829 				 int *out_type)
1830 {
1831 	unsigned long end;
1832 	u64 flags;
1833 	struct btrfs_tree_block_info *info;
1834 
1835 	if (!*ptr) {
1836 		/* first call */
1837 		flags = btrfs_extent_flags(eb, ei);
1838 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1839 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1840 				/* a skinny metadata extent */
1841 				*out_eiref =
1842 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1843 			} else {
1844 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1845 				info = (struct btrfs_tree_block_info *)(ei + 1);
1846 				*out_eiref =
1847 				   (struct btrfs_extent_inline_ref *)(info + 1);
1848 			}
1849 		} else {
1850 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1851 		}
1852 		*ptr = (unsigned long)*out_eiref;
1853 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1854 			return -ENOENT;
1855 	}
1856 
1857 	end = (unsigned long)ei + item_size;
1858 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1859 	*out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1860 						     BTRFS_REF_TYPE_ANY);
1861 	if (*out_type == BTRFS_REF_TYPE_INVALID)
1862 		return -EUCLEAN;
1863 
1864 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1865 	WARN_ON(*ptr > end);
1866 	if (*ptr == end)
1867 		return 1; /* last */
1868 
1869 	return 0;
1870 }
1871 
1872 /*
1873  * reads the tree block backref for an extent. tree level and root are returned
1874  * through out_level and out_root. ptr must point to a 0 value for the first
1875  * call and may be modified (see get_extent_inline_ref comment).
1876  * returns 0 if data was provided, 1 if there was no more data to provide or
1877  * <0 on error.
1878  */
1879 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1880 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1881 			    u32 item_size, u64 *out_root, u8 *out_level)
1882 {
1883 	int ret;
1884 	int type;
1885 	struct btrfs_extent_inline_ref *eiref;
1886 
1887 	if (*ptr == (unsigned long)-1)
1888 		return 1;
1889 
1890 	while (1) {
1891 		ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1892 					      &eiref, &type);
1893 		if (ret < 0)
1894 			return ret;
1895 
1896 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1897 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1898 			break;
1899 
1900 		if (ret == 1)
1901 			return 1;
1902 	}
1903 
1904 	/* we can treat both ref types equally here */
1905 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1906 
1907 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1908 		struct btrfs_tree_block_info *info;
1909 
1910 		info = (struct btrfs_tree_block_info *)(ei + 1);
1911 		*out_level = btrfs_tree_block_level(eb, info);
1912 	} else {
1913 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1914 		*out_level = (u8)key->offset;
1915 	}
1916 
1917 	if (ret == 1)
1918 		*ptr = (unsigned long)-1;
1919 
1920 	return 0;
1921 }
1922 
1923 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1924 			     struct extent_inode_elem *inode_list,
1925 			     u64 root, u64 extent_item_objectid,
1926 			     iterate_extent_inodes_t *iterate, void *ctx)
1927 {
1928 	struct extent_inode_elem *eie;
1929 	int ret = 0;
1930 
1931 	for (eie = inode_list; eie; eie = eie->next) {
1932 		btrfs_debug(fs_info,
1933 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1934 			    extent_item_objectid, eie->inum,
1935 			    eie->offset, root);
1936 		ret = iterate(eie->inum, eie->offset, root, ctx);
1937 		if (ret) {
1938 			btrfs_debug(fs_info,
1939 				    "stopping iteration for %llu due to ret=%d",
1940 				    extent_item_objectid, ret);
1941 			break;
1942 		}
1943 	}
1944 
1945 	return ret;
1946 }
1947 
1948 /*
1949  * calls iterate() for every inode that references the extent identified by
1950  * the given parameters.
1951  * when the iterator function returns a non-zero value, iteration stops.
1952  */
1953 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1954 				u64 extent_item_objectid, u64 extent_item_pos,
1955 				int search_commit_root,
1956 				iterate_extent_inodes_t *iterate, void *ctx,
1957 				bool ignore_offset)
1958 {
1959 	int ret;
1960 	struct btrfs_trans_handle *trans = NULL;
1961 	struct ulist *refs = NULL;
1962 	struct ulist *roots = NULL;
1963 	struct ulist_node *ref_node = NULL;
1964 	struct ulist_node *root_node = NULL;
1965 	struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
1966 	struct ulist_iterator ref_uiter;
1967 	struct ulist_iterator root_uiter;
1968 
1969 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1970 			extent_item_objectid);
1971 
1972 	if (!search_commit_root) {
1973 		trans = btrfs_attach_transaction(fs_info->tree_root);
1974 		if (IS_ERR(trans)) {
1975 			if (PTR_ERR(trans) != -ENOENT &&
1976 			    PTR_ERR(trans) != -EROFS)
1977 				return PTR_ERR(trans);
1978 			trans = NULL;
1979 		}
1980 	}
1981 
1982 	if (trans)
1983 		btrfs_get_tree_mod_seq(fs_info, &seq_elem);
1984 	else
1985 		down_read(&fs_info->commit_root_sem);
1986 
1987 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1988 				   seq_elem.seq, &refs,
1989 				   &extent_item_pos, ignore_offset);
1990 	if (ret)
1991 		goto out;
1992 
1993 	ULIST_ITER_INIT(&ref_uiter);
1994 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1995 		ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1996 						seq_elem.seq, &roots,
1997 						ignore_offset);
1998 		if (ret)
1999 			break;
2000 		ULIST_ITER_INIT(&root_uiter);
2001 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2002 			btrfs_debug(fs_info,
2003 				    "root %llu references leaf %llu, data list %#llx",
2004 				    root_node->val, ref_node->val,
2005 				    ref_node->aux);
2006 			ret = iterate_leaf_refs(fs_info,
2007 						(struct extent_inode_elem *)
2008 						(uintptr_t)ref_node->aux,
2009 						root_node->val,
2010 						extent_item_objectid,
2011 						iterate, ctx);
2012 		}
2013 		ulist_free(roots);
2014 	}
2015 
2016 	free_leaf_list(refs);
2017 out:
2018 	if (trans) {
2019 		btrfs_put_tree_mod_seq(fs_info, &seq_elem);
2020 		btrfs_end_transaction(trans);
2021 	} else {
2022 		up_read(&fs_info->commit_root_sem);
2023 	}
2024 
2025 	return ret;
2026 }
2027 
2028 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2029 				struct btrfs_path *path,
2030 				iterate_extent_inodes_t *iterate, void *ctx,
2031 				bool ignore_offset)
2032 {
2033 	int ret;
2034 	u64 extent_item_pos;
2035 	u64 flags = 0;
2036 	struct btrfs_key found_key;
2037 	int search_commit_root = path->search_commit_root;
2038 
2039 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2040 	btrfs_release_path(path);
2041 	if (ret < 0)
2042 		return ret;
2043 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2044 		return -EINVAL;
2045 
2046 	extent_item_pos = logical - found_key.objectid;
2047 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2048 					extent_item_pos, search_commit_root,
2049 					iterate, ctx, ignore_offset);
2050 
2051 	return ret;
2052 }
2053 
2054 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2055 			      struct extent_buffer *eb, void *ctx);
2056 
2057 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2058 			      struct btrfs_path *path,
2059 			      iterate_irefs_t *iterate, void *ctx)
2060 {
2061 	int ret = 0;
2062 	int slot;
2063 	u32 cur;
2064 	u32 len;
2065 	u32 name_len;
2066 	u64 parent = 0;
2067 	int found = 0;
2068 	struct extent_buffer *eb;
2069 	struct btrfs_inode_ref *iref;
2070 	struct btrfs_key found_key;
2071 
2072 	while (!ret) {
2073 		ret = btrfs_find_item(fs_root, path, inum,
2074 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2075 				&found_key);
2076 
2077 		if (ret < 0)
2078 			break;
2079 		if (ret) {
2080 			ret = found ? 0 : -ENOENT;
2081 			break;
2082 		}
2083 		++found;
2084 
2085 		parent = found_key.offset;
2086 		slot = path->slots[0];
2087 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2088 		if (!eb) {
2089 			ret = -ENOMEM;
2090 			break;
2091 		}
2092 		btrfs_release_path(path);
2093 
2094 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2095 
2096 		for (cur = 0; cur < btrfs_item_size(eb, slot); cur += len) {
2097 			name_len = btrfs_inode_ref_name_len(eb, iref);
2098 			/* path must be released before calling iterate()! */
2099 			btrfs_debug(fs_root->fs_info,
2100 				"following ref at offset %u for inode %llu in tree %llu",
2101 				cur, found_key.objectid,
2102 				fs_root->root_key.objectid);
2103 			ret = iterate(parent, name_len,
2104 				      (unsigned long)(iref + 1), eb, ctx);
2105 			if (ret)
2106 				break;
2107 			len = sizeof(*iref) + name_len;
2108 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2109 		}
2110 		free_extent_buffer(eb);
2111 	}
2112 
2113 	btrfs_release_path(path);
2114 
2115 	return ret;
2116 }
2117 
2118 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2119 				 struct btrfs_path *path,
2120 				 iterate_irefs_t *iterate, void *ctx)
2121 {
2122 	int ret;
2123 	int slot;
2124 	u64 offset = 0;
2125 	u64 parent;
2126 	int found = 0;
2127 	struct extent_buffer *eb;
2128 	struct btrfs_inode_extref *extref;
2129 	u32 item_size;
2130 	u32 cur_offset;
2131 	unsigned long ptr;
2132 
2133 	while (1) {
2134 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2135 					    &offset);
2136 		if (ret < 0)
2137 			break;
2138 		if (ret) {
2139 			ret = found ? 0 : -ENOENT;
2140 			break;
2141 		}
2142 		++found;
2143 
2144 		slot = path->slots[0];
2145 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2146 		if (!eb) {
2147 			ret = -ENOMEM;
2148 			break;
2149 		}
2150 		btrfs_release_path(path);
2151 
2152 		item_size = btrfs_item_size(eb, slot);
2153 		ptr = btrfs_item_ptr_offset(eb, slot);
2154 		cur_offset = 0;
2155 
2156 		while (cur_offset < item_size) {
2157 			u32 name_len;
2158 
2159 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2160 			parent = btrfs_inode_extref_parent(eb, extref);
2161 			name_len = btrfs_inode_extref_name_len(eb, extref);
2162 			ret = iterate(parent, name_len,
2163 				      (unsigned long)&extref->name, eb, ctx);
2164 			if (ret)
2165 				break;
2166 
2167 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2168 			cur_offset += sizeof(*extref);
2169 		}
2170 		free_extent_buffer(eb);
2171 
2172 		offset++;
2173 	}
2174 
2175 	btrfs_release_path(path);
2176 
2177 	return ret;
2178 }
2179 
2180 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2181 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2182 			 void *ctx)
2183 {
2184 	int ret;
2185 	int found_refs = 0;
2186 
2187 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2188 	if (!ret)
2189 		++found_refs;
2190 	else if (ret != -ENOENT)
2191 		return ret;
2192 
2193 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2194 	if (ret == -ENOENT && found_refs)
2195 		return 0;
2196 
2197 	return ret;
2198 }
2199 
2200 /*
2201  * returns 0 if the path could be dumped (probably truncated)
2202  * returns <0 in case of an error
2203  */
2204 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2205 			 struct extent_buffer *eb, void *ctx)
2206 {
2207 	struct inode_fs_paths *ipath = ctx;
2208 	char *fspath;
2209 	char *fspath_min;
2210 	int i = ipath->fspath->elem_cnt;
2211 	const int s_ptr = sizeof(char *);
2212 	u32 bytes_left;
2213 
2214 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2215 					ipath->fspath->bytes_left - s_ptr : 0;
2216 
2217 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2218 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2219 				   name_off, eb, inum, fspath_min, bytes_left);
2220 	if (IS_ERR(fspath))
2221 		return PTR_ERR(fspath);
2222 
2223 	if (fspath > fspath_min) {
2224 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2225 		++ipath->fspath->elem_cnt;
2226 		ipath->fspath->bytes_left = fspath - fspath_min;
2227 	} else {
2228 		++ipath->fspath->elem_missed;
2229 		ipath->fspath->bytes_missing += fspath_min - fspath;
2230 		ipath->fspath->bytes_left = 0;
2231 	}
2232 
2233 	return 0;
2234 }
2235 
2236 /*
2237  * this dumps all file system paths to the inode into the ipath struct, provided
2238  * is has been created large enough. each path is zero-terminated and accessed
2239  * from ipath->fspath->val[i].
2240  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2241  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2242  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2243  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2244  * have been needed to return all paths.
2245  */
2246 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2247 {
2248 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2249 			     inode_to_path, ipath);
2250 }
2251 
2252 struct btrfs_data_container *init_data_container(u32 total_bytes)
2253 {
2254 	struct btrfs_data_container *data;
2255 	size_t alloc_bytes;
2256 
2257 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2258 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2259 	if (!data)
2260 		return ERR_PTR(-ENOMEM);
2261 
2262 	if (total_bytes >= sizeof(*data)) {
2263 		data->bytes_left = total_bytes - sizeof(*data);
2264 		data->bytes_missing = 0;
2265 	} else {
2266 		data->bytes_missing = sizeof(*data) - total_bytes;
2267 		data->bytes_left = 0;
2268 	}
2269 
2270 	data->elem_cnt = 0;
2271 	data->elem_missed = 0;
2272 
2273 	return data;
2274 }
2275 
2276 /*
2277  * allocates space to return multiple file system paths for an inode.
2278  * total_bytes to allocate are passed, note that space usable for actual path
2279  * information will be total_bytes - sizeof(struct inode_fs_paths).
2280  * the returned pointer must be freed with free_ipath() in the end.
2281  */
2282 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2283 					struct btrfs_path *path)
2284 {
2285 	struct inode_fs_paths *ifp;
2286 	struct btrfs_data_container *fspath;
2287 
2288 	fspath = init_data_container(total_bytes);
2289 	if (IS_ERR(fspath))
2290 		return ERR_CAST(fspath);
2291 
2292 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2293 	if (!ifp) {
2294 		kvfree(fspath);
2295 		return ERR_PTR(-ENOMEM);
2296 	}
2297 
2298 	ifp->btrfs_path = path;
2299 	ifp->fspath = fspath;
2300 	ifp->fs_root = fs_root;
2301 
2302 	return ifp;
2303 }
2304 
2305 void free_ipath(struct inode_fs_paths *ipath)
2306 {
2307 	if (!ipath)
2308 		return;
2309 	kvfree(ipath->fspath);
2310 	kfree(ipath);
2311 }
2312 
2313 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2314 		struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2315 {
2316 	struct btrfs_backref_iter *ret;
2317 
2318 	ret = kzalloc(sizeof(*ret), gfp_flag);
2319 	if (!ret)
2320 		return NULL;
2321 
2322 	ret->path = btrfs_alloc_path();
2323 	if (!ret->path) {
2324 		kfree(ret);
2325 		return NULL;
2326 	}
2327 
2328 	/* Current backref iterator only supports iteration in commit root */
2329 	ret->path->search_commit_root = 1;
2330 	ret->path->skip_locking = 1;
2331 	ret->fs_info = fs_info;
2332 
2333 	return ret;
2334 }
2335 
2336 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2337 {
2338 	struct btrfs_fs_info *fs_info = iter->fs_info;
2339 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
2340 	struct btrfs_path *path = iter->path;
2341 	struct btrfs_extent_item *ei;
2342 	struct btrfs_key key;
2343 	int ret;
2344 
2345 	key.objectid = bytenr;
2346 	key.type = BTRFS_METADATA_ITEM_KEY;
2347 	key.offset = (u64)-1;
2348 	iter->bytenr = bytenr;
2349 
2350 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2351 	if (ret < 0)
2352 		return ret;
2353 	if (ret == 0) {
2354 		ret = -EUCLEAN;
2355 		goto release;
2356 	}
2357 	if (path->slots[0] == 0) {
2358 		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2359 		ret = -EUCLEAN;
2360 		goto release;
2361 	}
2362 	path->slots[0]--;
2363 
2364 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2365 	if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2366 	     key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2367 		ret = -ENOENT;
2368 		goto release;
2369 	}
2370 	memcpy(&iter->cur_key, &key, sizeof(key));
2371 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2372 						    path->slots[0]);
2373 	iter->end_ptr = (u32)(iter->item_ptr +
2374 			btrfs_item_size(path->nodes[0], path->slots[0]));
2375 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2376 			    struct btrfs_extent_item);
2377 
2378 	/*
2379 	 * Only support iteration on tree backref yet.
2380 	 *
2381 	 * This is an extra precaution for non skinny-metadata, where
2382 	 * EXTENT_ITEM is also used for tree blocks, that we can only use
2383 	 * extent flags to determine if it's a tree block.
2384 	 */
2385 	if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2386 		ret = -ENOTSUPP;
2387 		goto release;
2388 	}
2389 	iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2390 
2391 	/* If there is no inline backref, go search for keyed backref */
2392 	if (iter->cur_ptr >= iter->end_ptr) {
2393 		ret = btrfs_next_item(extent_root, path);
2394 
2395 		/* No inline nor keyed ref */
2396 		if (ret > 0) {
2397 			ret = -ENOENT;
2398 			goto release;
2399 		}
2400 		if (ret < 0)
2401 			goto release;
2402 
2403 		btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2404 				path->slots[0]);
2405 		if (iter->cur_key.objectid != bytenr ||
2406 		    (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2407 		     iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2408 			ret = -ENOENT;
2409 			goto release;
2410 		}
2411 		iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2412 							   path->slots[0]);
2413 		iter->item_ptr = iter->cur_ptr;
2414 		iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size(
2415 				      path->nodes[0], path->slots[0]));
2416 	}
2417 
2418 	return 0;
2419 release:
2420 	btrfs_backref_iter_release(iter);
2421 	return ret;
2422 }
2423 
2424 /*
2425  * Go to the next backref item of current bytenr, can be either inlined or
2426  * keyed.
2427  *
2428  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2429  *
2430  * Return 0 if we get next backref without problem.
2431  * Return >0 if there is no extra backref for this bytenr.
2432  * Return <0 if there is something wrong happened.
2433  */
2434 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2435 {
2436 	struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2437 	struct btrfs_root *extent_root;
2438 	struct btrfs_path *path = iter->path;
2439 	struct btrfs_extent_inline_ref *iref;
2440 	int ret;
2441 	u32 size;
2442 
2443 	if (btrfs_backref_iter_is_inline_ref(iter)) {
2444 		/* We're still inside the inline refs */
2445 		ASSERT(iter->cur_ptr < iter->end_ptr);
2446 
2447 		if (btrfs_backref_has_tree_block_info(iter)) {
2448 			/* First tree block info */
2449 			size = sizeof(struct btrfs_tree_block_info);
2450 		} else {
2451 			/* Use inline ref type to determine the size */
2452 			int type;
2453 
2454 			iref = (struct btrfs_extent_inline_ref *)
2455 				((unsigned long)iter->cur_ptr);
2456 			type = btrfs_extent_inline_ref_type(eb, iref);
2457 
2458 			size = btrfs_extent_inline_ref_size(type);
2459 		}
2460 		iter->cur_ptr += size;
2461 		if (iter->cur_ptr < iter->end_ptr)
2462 			return 0;
2463 
2464 		/* All inline items iterated, fall through */
2465 	}
2466 
2467 	/* We're at keyed items, there is no inline item, go to the next one */
2468 	extent_root = btrfs_extent_root(iter->fs_info, iter->bytenr);
2469 	ret = btrfs_next_item(extent_root, iter->path);
2470 	if (ret)
2471 		return ret;
2472 
2473 	btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2474 	if (iter->cur_key.objectid != iter->bytenr ||
2475 	    (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2476 	     iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2477 		return 1;
2478 	iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2479 					path->slots[0]);
2480 	iter->cur_ptr = iter->item_ptr;
2481 	iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size(path->nodes[0],
2482 						path->slots[0]);
2483 	return 0;
2484 }
2485 
2486 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2487 			      struct btrfs_backref_cache *cache, int is_reloc)
2488 {
2489 	int i;
2490 
2491 	cache->rb_root = RB_ROOT;
2492 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2493 		INIT_LIST_HEAD(&cache->pending[i]);
2494 	INIT_LIST_HEAD(&cache->changed);
2495 	INIT_LIST_HEAD(&cache->detached);
2496 	INIT_LIST_HEAD(&cache->leaves);
2497 	INIT_LIST_HEAD(&cache->pending_edge);
2498 	INIT_LIST_HEAD(&cache->useless_node);
2499 	cache->fs_info = fs_info;
2500 	cache->is_reloc = is_reloc;
2501 }
2502 
2503 struct btrfs_backref_node *btrfs_backref_alloc_node(
2504 		struct btrfs_backref_cache *cache, u64 bytenr, int level)
2505 {
2506 	struct btrfs_backref_node *node;
2507 
2508 	ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2509 	node = kzalloc(sizeof(*node), GFP_NOFS);
2510 	if (!node)
2511 		return node;
2512 
2513 	INIT_LIST_HEAD(&node->list);
2514 	INIT_LIST_HEAD(&node->upper);
2515 	INIT_LIST_HEAD(&node->lower);
2516 	RB_CLEAR_NODE(&node->rb_node);
2517 	cache->nr_nodes++;
2518 	node->level = level;
2519 	node->bytenr = bytenr;
2520 
2521 	return node;
2522 }
2523 
2524 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2525 		struct btrfs_backref_cache *cache)
2526 {
2527 	struct btrfs_backref_edge *edge;
2528 
2529 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
2530 	if (edge)
2531 		cache->nr_edges++;
2532 	return edge;
2533 }
2534 
2535 /*
2536  * Drop the backref node from cache, also cleaning up all its
2537  * upper edges and any uncached nodes in the path.
2538  *
2539  * This cleanup happens bottom up, thus the node should either
2540  * be the lowest node in the cache or a detached node.
2541  */
2542 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2543 				struct btrfs_backref_node *node)
2544 {
2545 	struct btrfs_backref_node *upper;
2546 	struct btrfs_backref_edge *edge;
2547 
2548 	if (!node)
2549 		return;
2550 
2551 	BUG_ON(!node->lowest && !node->detached);
2552 	while (!list_empty(&node->upper)) {
2553 		edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2554 				  list[LOWER]);
2555 		upper = edge->node[UPPER];
2556 		list_del(&edge->list[LOWER]);
2557 		list_del(&edge->list[UPPER]);
2558 		btrfs_backref_free_edge(cache, edge);
2559 
2560 		/*
2561 		 * Add the node to leaf node list if no other child block
2562 		 * cached.
2563 		 */
2564 		if (list_empty(&upper->lower)) {
2565 			list_add_tail(&upper->lower, &cache->leaves);
2566 			upper->lowest = 1;
2567 		}
2568 	}
2569 
2570 	btrfs_backref_drop_node(cache, node);
2571 }
2572 
2573 /*
2574  * Release all nodes/edges from current cache
2575  */
2576 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2577 {
2578 	struct btrfs_backref_node *node;
2579 	int i;
2580 
2581 	while (!list_empty(&cache->detached)) {
2582 		node = list_entry(cache->detached.next,
2583 				  struct btrfs_backref_node, list);
2584 		btrfs_backref_cleanup_node(cache, node);
2585 	}
2586 
2587 	while (!list_empty(&cache->leaves)) {
2588 		node = list_entry(cache->leaves.next,
2589 				  struct btrfs_backref_node, lower);
2590 		btrfs_backref_cleanup_node(cache, node);
2591 	}
2592 
2593 	cache->last_trans = 0;
2594 
2595 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2596 		ASSERT(list_empty(&cache->pending[i]));
2597 	ASSERT(list_empty(&cache->pending_edge));
2598 	ASSERT(list_empty(&cache->useless_node));
2599 	ASSERT(list_empty(&cache->changed));
2600 	ASSERT(list_empty(&cache->detached));
2601 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2602 	ASSERT(!cache->nr_nodes);
2603 	ASSERT(!cache->nr_edges);
2604 }
2605 
2606 /*
2607  * Handle direct tree backref
2608  *
2609  * Direct tree backref means, the backref item shows its parent bytenr
2610  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2611  *
2612  * @ref_key:	The converted backref key.
2613  *		For keyed backref, it's the item key.
2614  *		For inlined backref, objectid is the bytenr,
2615  *		type is btrfs_inline_ref_type, offset is
2616  *		btrfs_inline_ref_offset.
2617  */
2618 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2619 				      struct btrfs_key *ref_key,
2620 				      struct btrfs_backref_node *cur)
2621 {
2622 	struct btrfs_backref_edge *edge;
2623 	struct btrfs_backref_node *upper;
2624 	struct rb_node *rb_node;
2625 
2626 	ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2627 
2628 	/* Only reloc root uses backref pointing to itself */
2629 	if (ref_key->objectid == ref_key->offset) {
2630 		struct btrfs_root *root;
2631 
2632 		cur->is_reloc_root = 1;
2633 		/* Only reloc backref cache cares about a specific root */
2634 		if (cache->is_reloc) {
2635 			root = find_reloc_root(cache->fs_info, cur->bytenr);
2636 			if (!root)
2637 				return -ENOENT;
2638 			cur->root = root;
2639 		} else {
2640 			/*
2641 			 * For generic purpose backref cache, reloc root node
2642 			 * is useless.
2643 			 */
2644 			list_add(&cur->list, &cache->useless_node);
2645 		}
2646 		return 0;
2647 	}
2648 
2649 	edge = btrfs_backref_alloc_edge(cache);
2650 	if (!edge)
2651 		return -ENOMEM;
2652 
2653 	rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2654 	if (!rb_node) {
2655 		/* Parent node not yet cached */
2656 		upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2657 					   cur->level + 1);
2658 		if (!upper) {
2659 			btrfs_backref_free_edge(cache, edge);
2660 			return -ENOMEM;
2661 		}
2662 
2663 		/*
2664 		 *  Backrefs for the upper level block isn't cached, add the
2665 		 *  block to pending list
2666 		 */
2667 		list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2668 	} else {
2669 		/* Parent node already cached */
2670 		upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2671 		ASSERT(upper->checked);
2672 		INIT_LIST_HEAD(&edge->list[UPPER]);
2673 	}
2674 	btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2675 	return 0;
2676 }
2677 
2678 /*
2679  * Handle indirect tree backref
2680  *
2681  * Indirect tree backref means, we only know which tree the node belongs to.
2682  * We still need to do a tree search to find out the parents. This is for
2683  * TREE_BLOCK_REF backref (keyed or inlined).
2684  *
2685  * @ref_key:	The same as @ref_key in  handle_direct_tree_backref()
2686  * @tree_key:	The first key of this tree block.
2687  * @path:	A clean (released) path, to avoid allocating path every time
2688  *		the function get called.
2689  */
2690 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2691 					struct btrfs_path *path,
2692 					struct btrfs_key *ref_key,
2693 					struct btrfs_key *tree_key,
2694 					struct btrfs_backref_node *cur)
2695 {
2696 	struct btrfs_fs_info *fs_info = cache->fs_info;
2697 	struct btrfs_backref_node *upper;
2698 	struct btrfs_backref_node *lower;
2699 	struct btrfs_backref_edge *edge;
2700 	struct extent_buffer *eb;
2701 	struct btrfs_root *root;
2702 	struct rb_node *rb_node;
2703 	int level;
2704 	bool need_check = true;
2705 	int ret;
2706 
2707 	root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2708 	if (IS_ERR(root))
2709 		return PTR_ERR(root);
2710 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2711 		cur->cowonly = 1;
2712 
2713 	if (btrfs_root_level(&root->root_item) == cur->level) {
2714 		/* Tree root */
2715 		ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2716 		/*
2717 		 * For reloc backref cache, we may ignore reloc root.  But for
2718 		 * general purpose backref cache, we can't rely on
2719 		 * btrfs_should_ignore_reloc_root() as it may conflict with
2720 		 * current running relocation and lead to missing root.
2721 		 *
2722 		 * For general purpose backref cache, reloc root detection is
2723 		 * completely relying on direct backref (key->offset is parent
2724 		 * bytenr), thus only do such check for reloc cache.
2725 		 */
2726 		if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2727 			btrfs_put_root(root);
2728 			list_add(&cur->list, &cache->useless_node);
2729 		} else {
2730 			cur->root = root;
2731 		}
2732 		return 0;
2733 	}
2734 
2735 	level = cur->level + 1;
2736 
2737 	/* Search the tree to find parent blocks referring to the block */
2738 	path->search_commit_root = 1;
2739 	path->skip_locking = 1;
2740 	path->lowest_level = level;
2741 	ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2742 	path->lowest_level = 0;
2743 	if (ret < 0) {
2744 		btrfs_put_root(root);
2745 		return ret;
2746 	}
2747 	if (ret > 0 && path->slots[level] > 0)
2748 		path->slots[level]--;
2749 
2750 	eb = path->nodes[level];
2751 	if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2752 		btrfs_err(fs_info,
2753 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2754 			  cur->bytenr, level - 1, root->root_key.objectid,
2755 			  tree_key->objectid, tree_key->type, tree_key->offset);
2756 		btrfs_put_root(root);
2757 		ret = -ENOENT;
2758 		goto out;
2759 	}
2760 	lower = cur;
2761 
2762 	/* Add all nodes and edges in the path */
2763 	for (; level < BTRFS_MAX_LEVEL; level++) {
2764 		if (!path->nodes[level]) {
2765 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
2766 			       lower->bytenr);
2767 			/* Same as previous should_ignore_reloc_root() call */
2768 			if (btrfs_should_ignore_reloc_root(root) &&
2769 			    cache->is_reloc) {
2770 				btrfs_put_root(root);
2771 				list_add(&lower->list, &cache->useless_node);
2772 			} else {
2773 				lower->root = root;
2774 			}
2775 			break;
2776 		}
2777 
2778 		edge = btrfs_backref_alloc_edge(cache);
2779 		if (!edge) {
2780 			btrfs_put_root(root);
2781 			ret = -ENOMEM;
2782 			goto out;
2783 		}
2784 
2785 		eb = path->nodes[level];
2786 		rb_node = rb_simple_search(&cache->rb_root, eb->start);
2787 		if (!rb_node) {
2788 			upper = btrfs_backref_alloc_node(cache, eb->start,
2789 							 lower->level + 1);
2790 			if (!upper) {
2791 				btrfs_put_root(root);
2792 				btrfs_backref_free_edge(cache, edge);
2793 				ret = -ENOMEM;
2794 				goto out;
2795 			}
2796 			upper->owner = btrfs_header_owner(eb);
2797 			if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2798 				upper->cowonly = 1;
2799 
2800 			/*
2801 			 * If we know the block isn't shared we can avoid
2802 			 * checking its backrefs.
2803 			 */
2804 			if (btrfs_block_can_be_shared(root, eb))
2805 				upper->checked = 0;
2806 			else
2807 				upper->checked = 1;
2808 
2809 			/*
2810 			 * Add the block to pending list if we need to check its
2811 			 * backrefs, we only do this once while walking up a
2812 			 * tree as we will catch anything else later on.
2813 			 */
2814 			if (!upper->checked && need_check) {
2815 				need_check = false;
2816 				list_add_tail(&edge->list[UPPER],
2817 					      &cache->pending_edge);
2818 			} else {
2819 				if (upper->checked)
2820 					need_check = true;
2821 				INIT_LIST_HEAD(&edge->list[UPPER]);
2822 			}
2823 		} else {
2824 			upper = rb_entry(rb_node, struct btrfs_backref_node,
2825 					 rb_node);
2826 			ASSERT(upper->checked);
2827 			INIT_LIST_HEAD(&edge->list[UPPER]);
2828 			if (!upper->owner)
2829 				upper->owner = btrfs_header_owner(eb);
2830 		}
2831 		btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2832 
2833 		if (rb_node) {
2834 			btrfs_put_root(root);
2835 			break;
2836 		}
2837 		lower = upper;
2838 		upper = NULL;
2839 	}
2840 out:
2841 	btrfs_release_path(path);
2842 	return ret;
2843 }
2844 
2845 /*
2846  * Add backref node @cur into @cache.
2847  *
2848  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2849  *	 links aren't yet bi-directional. Needs to finish such links.
2850  *	 Use btrfs_backref_finish_upper_links() to finish such linkage.
2851  *
2852  * @path:	Released path for indirect tree backref lookup
2853  * @iter:	Released backref iter for extent tree search
2854  * @node_key:	The first key of the tree block
2855  */
2856 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2857 				struct btrfs_path *path,
2858 				struct btrfs_backref_iter *iter,
2859 				struct btrfs_key *node_key,
2860 				struct btrfs_backref_node *cur)
2861 {
2862 	struct btrfs_fs_info *fs_info = cache->fs_info;
2863 	struct btrfs_backref_edge *edge;
2864 	struct btrfs_backref_node *exist;
2865 	int ret;
2866 
2867 	ret = btrfs_backref_iter_start(iter, cur->bytenr);
2868 	if (ret < 0)
2869 		return ret;
2870 	/*
2871 	 * We skip the first btrfs_tree_block_info, as we don't use the key
2872 	 * stored in it, but fetch it from the tree block
2873 	 */
2874 	if (btrfs_backref_has_tree_block_info(iter)) {
2875 		ret = btrfs_backref_iter_next(iter);
2876 		if (ret < 0)
2877 			goto out;
2878 		/* No extra backref? This means the tree block is corrupted */
2879 		if (ret > 0) {
2880 			ret = -EUCLEAN;
2881 			goto out;
2882 		}
2883 	}
2884 	WARN_ON(cur->checked);
2885 	if (!list_empty(&cur->upper)) {
2886 		/*
2887 		 * The backref was added previously when processing backref of
2888 		 * type BTRFS_TREE_BLOCK_REF_KEY
2889 		 */
2890 		ASSERT(list_is_singular(&cur->upper));
2891 		edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2892 				  list[LOWER]);
2893 		ASSERT(list_empty(&edge->list[UPPER]));
2894 		exist = edge->node[UPPER];
2895 		/*
2896 		 * Add the upper level block to pending list if we need check
2897 		 * its backrefs
2898 		 */
2899 		if (!exist->checked)
2900 			list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2901 	} else {
2902 		exist = NULL;
2903 	}
2904 
2905 	for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2906 		struct extent_buffer *eb;
2907 		struct btrfs_key key;
2908 		int type;
2909 
2910 		cond_resched();
2911 		eb = btrfs_backref_get_eb(iter);
2912 
2913 		key.objectid = iter->bytenr;
2914 		if (btrfs_backref_iter_is_inline_ref(iter)) {
2915 			struct btrfs_extent_inline_ref *iref;
2916 
2917 			/* Update key for inline backref */
2918 			iref = (struct btrfs_extent_inline_ref *)
2919 				((unsigned long)iter->cur_ptr);
2920 			type = btrfs_get_extent_inline_ref_type(eb, iref,
2921 							BTRFS_REF_TYPE_BLOCK);
2922 			if (type == BTRFS_REF_TYPE_INVALID) {
2923 				ret = -EUCLEAN;
2924 				goto out;
2925 			}
2926 			key.type = type;
2927 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2928 		} else {
2929 			key.type = iter->cur_key.type;
2930 			key.offset = iter->cur_key.offset;
2931 		}
2932 
2933 		/*
2934 		 * Parent node found and matches current inline ref, no need to
2935 		 * rebuild this node for this inline ref
2936 		 */
2937 		if (exist &&
2938 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2939 		      exist->owner == key.offset) ||
2940 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2941 		      exist->bytenr == key.offset))) {
2942 			exist = NULL;
2943 			continue;
2944 		}
2945 
2946 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2947 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2948 			ret = handle_direct_tree_backref(cache, &key, cur);
2949 			if (ret < 0)
2950 				goto out;
2951 			continue;
2952 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2953 			ret = -EINVAL;
2954 			btrfs_print_v0_err(fs_info);
2955 			btrfs_handle_fs_error(fs_info, ret, NULL);
2956 			goto out;
2957 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2958 			continue;
2959 		}
2960 
2961 		/*
2962 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2963 		 * means the root objectid. We need to search the tree to get
2964 		 * its parent bytenr.
2965 		 */
2966 		ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2967 						   cur);
2968 		if (ret < 0)
2969 			goto out;
2970 	}
2971 	ret = 0;
2972 	cur->checked = 1;
2973 	WARN_ON(exist);
2974 out:
2975 	btrfs_backref_iter_release(iter);
2976 	return ret;
2977 }
2978 
2979 /*
2980  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2981  */
2982 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2983 				     struct btrfs_backref_node *start)
2984 {
2985 	struct list_head *useless_node = &cache->useless_node;
2986 	struct btrfs_backref_edge *edge;
2987 	struct rb_node *rb_node;
2988 	LIST_HEAD(pending_edge);
2989 
2990 	ASSERT(start->checked);
2991 
2992 	/* Insert this node to cache if it's not COW-only */
2993 	if (!start->cowonly) {
2994 		rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2995 					   &start->rb_node);
2996 		if (rb_node)
2997 			btrfs_backref_panic(cache->fs_info, start->bytenr,
2998 					    -EEXIST);
2999 		list_add_tail(&start->lower, &cache->leaves);
3000 	}
3001 
3002 	/*
3003 	 * Use breadth first search to iterate all related edges.
3004 	 *
3005 	 * The starting points are all the edges of this node
3006 	 */
3007 	list_for_each_entry(edge, &start->upper, list[LOWER])
3008 		list_add_tail(&edge->list[UPPER], &pending_edge);
3009 
3010 	while (!list_empty(&pending_edge)) {
3011 		struct btrfs_backref_node *upper;
3012 		struct btrfs_backref_node *lower;
3013 
3014 		edge = list_first_entry(&pending_edge,
3015 				struct btrfs_backref_edge, list[UPPER]);
3016 		list_del_init(&edge->list[UPPER]);
3017 		upper = edge->node[UPPER];
3018 		lower = edge->node[LOWER];
3019 
3020 		/* Parent is detached, no need to keep any edges */
3021 		if (upper->detached) {
3022 			list_del(&edge->list[LOWER]);
3023 			btrfs_backref_free_edge(cache, edge);
3024 
3025 			/* Lower node is orphan, queue for cleanup */
3026 			if (list_empty(&lower->upper))
3027 				list_add(&lower->list, useless_node);
3028 			continue;
3029 		}
3030 
3031 		/*
3032 		 * All new nodes added in current build_backref_tree() haven't
3033 		 * been linked to the cache rb tree.
3034 		 * So if we have upper->rb_node populated, this means a cache
3035 		 * hit. We only need to link the edge, as @upper and all its
3036 		 * parents have already been linked.
3037 		 */
3038 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
3039 			if (upper->lowest) {
3040 				list_del_init(&upper->lower);
3041 				upper->lowest = 0;
3042 			}
3043 
3044 			list_add_tail(&edge->list[UPPER], &upper->lower);
3045 			continue;
3046 		}
3047 
3048 		/* Sanity check, we shouldn't have any unchecked nodes */
3049 		if (!upper->checked) {
3050 			ASSERT(0);
3051 			return -EUCLEAN;
3052 		}
3053 
3054 		/* Sanity check, COW-only node has non-COW-only parent */
3055 		if (start->cowonly != upper->cowonly) {
3056 			ASSERT(0);
3057 			return -EUCLEAN;
3058 		}
3059 
3060 		/* Only cache non-COW-only (subvolume trees) tree blocks */
3061 		if (!upper->cowonly) {
3062 			rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3063 						   &upper->rb_node);
3064 			if (rb_node) {
3065 				btrfs_backref_panic(cache->fs_info,
3066 						upper->bytenr, -EEXIST);
3067 				return -EUCLEAN;
3068 			}
3069 		}
3070 
3071 		list_add_tail(&edge->list[UPPER], &upper->lower);
3072 
3073 		/*
3074 		 * Also queue all the parent edges of this uncached node
3075 		 * to finish the upper linkage
3076 		 */
3077 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3078 			list_add_tail(&edge->list[UPPER], &pending_edge);
3079 	}
3080 	return 0;
3081 }
3082 
3083 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3084 				 struct btrfs_backref_node *node)
3085 {
3086 	struct btrfs_backref_node *lower;
3087 	struct btrfs_backref_node *upper;
3088 	struct btrfs_backref_edge *edge;
3089 
3090 	while (!list_empty(&cache->useless_node)) {
3091 		lower = list_first_entry(&cache->useless_node,
3092 				   struct btrfs_backref_node, list);
3093 		list_del_init(&lower->list);
3094 	}
3095 	while (!list_empty(&cache->pending_edge)) {
3096 		edge = list_first_entry(&cache->pending_edge,
3097 				struct btrfs_backref_edge, list[UPPER]);
3098 		list_del(&edge->list[UPPER]);
3099 		list_del(&edge->list[LOWER]);
3100 		lower = edge->node[LOWER];
3101 		upper = edge->node[UPPER];
3102 		btrfs_backref_free_edge(cache, edge);
3103 
3104 		/*
3105 		 * Lower is no longer linked to any upper backref nodes and
3106 		 * isn't in the cache, we can free it ourselves.
3107 		 */
3108 		if (list_empty(&lower->upper) &&
3109 		    RB_EMPTY_NODE(&lower->rb_node))
3110 			list_add(&lower->list, &cache->useless_node);
3111 
3112 		if (!RB_EMPTY_NODE(&upper->rb_node))
3113 			continue;
3114 
3115 		/* Add this guy's upper edges to the list to process */
3116 		list_for_each_entry(edge, &upper->upper, list[LOWER])
3117 			list_add_tail(&edge->list[UPPER],
3118 				      &cache->pending_edge);
3119 		if (list_empty(&upper->upper))
3120 			list_add(&upper->list, &cache->useless_node);
3121 	}
3122 
3123 	while (!list_empty(&cache->useless_node)) {
3124 		lower = list_first_entry(&cache->useless_node,
3125 				   struct btrfs_backref_node, list);
3126 		list_del_init(&lower->list);
3127 		if (lower == node)
3128 			node = NULL;
3129 		btrfs_backref_drop_node(cache, lower);
3130 	}
3131 
3132 	btrfs_backref_cleanup_node(cache, node);
3133 	ASSERT(list_empty(&cache->useless_node) &&
3134 	       list_empty(&cache->pending_edge));
3135 }
3136