xref: /openbmc/linux/fs/btrfs/backref.c (revision 4dae077a83dd8944ed351b09a0651c1283f46185)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/mm.h>
20 #include <linux/rbtree.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "backref.h"
24 #include "ulist.h"
25 #include "transaction.h"
26 #include "delayed-ref.h"
27 #include "locking.h"
28 
29 enum merge_mode {
30 	MERGE_IDENTICAL_KEYS = 1,
31 	MERGE_IDENTICAL_PARENTS,
32 };
33 
34 /* Just an arbitrary number so we can be sure this happened */
35 #define BACKREF_FOUND_SHARED 6
36 
37 struct extent_inode_elem {
38 	u64 inum;
39 	u64 offset;
40 	struct extent_inode_elem *next;
41 };
42 
43 /*
44  * ref_root is used as the root of the ref tree that hold a collection
45  * of unique references.
46  */
47 struct ref_root {
48 	struct rb_root rb_root;
49 
50 	/*
51 	 * The unique_refs represents the number of ref_nodes with a positive
52 	 * count stored in the tree. Even if a ref_node (the count is greater
53 	 * than one) is added, the unique_refs will only increase by one.
54 	 */
55 	unsigned int unique_refs;
56 };
57 
58 /* ref_node is used to store a unique reference to the ref tree. */
59 struct ref_node {
60 	struct rb_node rb_node;
61 
62 	/* For NORMAL_REF, otherwise all these fields should be set to 0 */
63 	u64 root_id;
64 	u64 object_id;
65 	u64 offset;
66 
67 	/* For SHARED_REF, otherwise parent field should be set to 0 */
68 	u64 parent;
69 
70 	/* Ref to the ref_mod of btrfs_delayed_ref_node */
71 	int ref_mod;
72 };
73 
74 /* Dynamically allocate and initialize a ref_root */
75 static struct ref_root *ref_root_alloc(void)
76 {
77 	struct ref_root *ref_tree;
78 
79 	ref_tree = kmalloc(sizeof(*ref_tree), GFP_NOFS);
80 	if (!ref_tree)
81 		return NULL;
82 
83 	ref_tree->rb_root = RB_ROOT;
84 	ref_tree->unique_refs = 0;
85 
86 	return ref_tree;
87 }
88 
89 /* Free all nodes in the ref tree, and reinit ref_root */
90 static void ref_root_fini(struct ref_root *ref_tree)
91 {
92 	struct ref_node *node;
93 	struct rb_node *next;
94 
95 	while ((next = rb_first(&ref_tree->rb_root)) != NULL) {
96 		node = rb_entry(next, struct ref_node, rb_node);
97 		rb_erase(next, &ref_tree->rb_root);
98 		kfree(node);
99 	}
100 
101 	ref_tree->rb_root = RB_ROOT;
102 	ref_tree->unique_refs = 0;
103 }
104 
105 static void ref_root_free(struct ref_root *ref_tree)
106 {
107 	if (!ref_tree)
108 		return;
109 
110 	ref_root_fini(ref_tree);
111 	kfree(ref_tree);
112 }
113 
114 /*
115  * Compare ref_node with (root_id, object_id, offset, parent)
116  *
117  * The function compares two ref_node a and b. It returns an integer less
118  * than, equal to, or greater than zero , respectively, to be less than, to
119  * equal, or be greater than b.
120  */
121 static int ref_node_cmp(struct ref_node *a, struct ref_node *b)
122 {
123 	if (a->root_id < b->root_id)
124 		return -1;
125 	else if (a->root_id > b->root_id)
126 		return 1;
127 
128 	if (a->object_id < b->object_id)
129 		return -1;
130 	else if (a->object_id > b->object_id)
131 		return 1;
132 
133 	if (a->offset < b->offset)
134 		return -1;
135 	else if (a->offset > b->offset)
136 		return 1;
137 
138 	if (a->parent < b->parent)
139 		return -1;
140 	else if (a->parent > b->parent)
141 		return 1;
142 
143 	return 0;
144 }
145 
146 /*
147  * Search ref_node with (root_id, object_id, offset, parent) in the tree
148  *
149  * if found, the pointer of the ref_node will be returned;
150  * if not found, NULL will be returned and pos will point to the rb_node for
151  * insert, pos_parent will point to pos'parent for insert;
152 */
153 static struct ref_node *__ref_tree_search(struct ref_root *ref_tree,
154 					  struct rb_node ***pos,
155 					  struct rb_node **pos_parent,
156 					  u64 root_id, u64 object_id,
157 					  u64 offset, u64 parent)
158 {
159 	struct ref_node *cur = NULL;
160 	struct ref_node entry;
161 	int ret;
162 
163 	entry.root_id = root_id;
164 	entry.object_id = object_id;
165 	entry.offset = offset;
166 	entry.parent = parent;
167 
168 	*pos = &ref_tree->rb_root.rb_node;
169 
170 	while (**pos) {
171 		*pos_parent = **pos;
172 		cur = rb_entry(*pos_parent, struct ref_node, rb_node);
173 
174 		ret = ref_node_cmp(cur, &entry);
175 		if (ret > 0)
176 			*pos = &(**pos)->rb_left;
177 		else if (ret < 0)
178 			*pos = &(**pos)->rb_right;
179 		else
180 			return cur;
181 	}
182 
183 	return NULL;
184 }
185 
186 /*
187  * Insert a ref_node to the ref tree
188  * @pos used for specifiy the position to insert
189  * @pos_parent for specifiy pos's parent
190  *
191  * success, return 0;
192  * ref_node already exists, return -EEXIST;
193 */
194 static int ref_tree_insert(struct ref_root *ref_tree, struct rb_node **pos,
195 			   struct rb_node *pos_parent, struct ref_node *ins)
196 {
197 	struct rb_node **p = NULL;
198 	struct rb_node *parent = NULL;
199 	struct ref_node *cur = NULL;
200 
201 	if (!pos) {
202 		cur = __ref_tree_search(ref_tree, &p, &parent, ins->root_id,
203 					ins->object_id, ins->offset,
204 					ins->parent);
205 		if (cur)
206 			return -EEXIST;
207 	} else {
208 		p = pos;
209 		parent = pos_parent;
210 	}
211 
212 	rb_link_node(&ins->rb_node, parent, p);
213 	rb_insert_color(&ins->rb_node, &ref_tree->rb_root);
214 
215 	return 0;
216 }
217 
218 /* Erase and free ref_node, caller should update ref_root->unique_refs */
219 static void ref_tree_remove(struct ref_root *ref_tree, struct ref_node *node)
220 {
221 	rb_erase(&node->rb_node, &ref_tree->rb_root);
222 	kfree(node);
223 }
224 
225 /*
226  * Update ref_root->unique_refs
227  *
228  * Call __ref_tree_search
229  *	1. if ref_node doesn't exist, ref_tree_insert this node, and update
230  *	ref_root->unique_refs:
231  *		if ref_node->ref_mod > 0, ref_root->unique_refs++;
232  *		if ref_node->ref_mod < 0, do noting;
233  *
234  *	2. if ref_node is found, then get origin ref_node->ref_mod, and update
235  *	ref_node->ref_mod.
236  *		if ref_node->ref_mod is equal to 0,then call ref_tree_remove
237  *
238  *		according to origin_mod and new_mod, update ref_root->items
239  *		+----------------+--------------+-------------+
240  *		|		 |new_count <= 0|new_count > 0|
241  *		+----------------+--------------+-------------+
242  *		|origin_count < 0|       0      |      1      |
243  *		+----------------+--------------+-------------+
244  *		|origin_count > 0|      -1      |      0      |
245  *		+----------------+--------------+-------------+
246  *
247  * In case of allocation failure, -ENOMEM is returned and the ref_tree stays
248  * unaltered.
249  * Success, return 0
250  */
251 static int ref_tree_add(struct ref_root *ref_tree, u64 root_id, u64 object_id,
252 			u64 offset, u64 parent, int count)
253 {
254 	struct ref_node *node = NULL;
255 	struct rb_node **pos = NULL;
256 	struct rb_node *pos_parent = NULL;
257 	int origin_count;
258 	int ret;
259 
260 	if (!count)
261 		return 0;
262 
263 	node = __ref_tree_search(ref_tree, &pos, &pos_parent, root_id,
264 				 object_id, offset, parent);
265 	if (node == NULL) {
266 		node = kmalloc(sizeof(*node), GFP_NOFS);
267 		if (!node)
268 			return -ENOMEM;
269 
270 		node->root_id = root_id;
271 		node->object_id = object_id;
272 		node->offset = offset;
273 		node->parent = parent;
274 		node->ref_mod = count;
275 
276 		ret = ref_tree_insert(ref_tree, pos, pos_parent, node);
277 		ASSERT(!ret);
278 		if (ret) {
279 			kfree(node);
280 			return ret;
281 		}
282 
283 		ref_tree->unique_refs += node->ref_mod > 0 ? 1 : 0;
284 
285 		return 0;
286 	}
287 
288 	origin_count = node->ref_mod;
289 	node->ref_mod += count;
290 
291 	if (node->ref_mod > 0)
292 		ref_tree->unique_refs += origin_count > 0 ? 0 : 1;
293 	else if (node->ref_mod <= 0)
294 		ref_tree->unique_refs += origin_count > 0 ? -1 : 0;
295 
296 	if (!node->ref_mod)
297 		ref_tree_remove(ref_tree, node);
298 
299 	return 0;
300 }
301 
302 static int check_extent_in_eb(const struct btrfs_key *key,
303 			      const struct extent_buffer *eb,
304 			      const struct btrfs_file_extent_item *fi,
305 			      u64 extent_item_pos,
306 			      struct extent_inode_elem **eie)
307 {
308 	u64 offset = 0;
309 	struct extent_inode_elem *e;
310 
311 	if (!btrfs_file_extent_compression(eb, fi) &&
312 	    !btrfs_file_extent_encryption(eb, fi) &&
313 	    !btrfs_file_extent_other_encoding(eb, fi)) {
314 		u64 data_offset;
315 		u64 data_len;
316 
317 		data_offset = btrfs_file_extent_offset(eb, fi);
318 		data_len = btrfs_file_extent_num_bytes(eb, fi);
319 
320 		if (extent_item_pos < data_offset ||
321 		    extent_item_pos >= data_offset + data_len)
322 			return 1;
323 		offset = extent_item_pos - data_offset;
324 	}
325 
326 	e = kmalloc(sizeof(*e), GFP_NOFS);
327 	if (!e)
328 		return -ENOMEM;
329 
330 	e->next = *eie;
331 	e->inum = key->objectid;
332 	e->offset = key->offset + offset;
333 	*eie = e;
334 
335 	return 0;
336 }
337 
338 static void free_inode_elem_list(struct extent_inode_elem *eie)
339 {
340 	struct extent_inode_elem *eie_next;
341 
342 	for (; eie; eie = eie_next) {
343 		eie_next = eie->next;
344 		kfree(eie);
345 	}
346 }
347 
348 static int find_extent_in_eb(const struct extent_buffer *eb,
349 			     u64 wanted_disk_byte, u64 extent_item_pos,
350 			     struct extent_inode_elem **eie)
351 {
352 	u64 disk_byte;
353 	struct btrfs_key key;
354 	struct btrfs_file_extent_item *fi;
355 	int slot;
356 	int nritems;
357 	int extent_type;
358 	int ret;
359 
360 	/*
361 	 * from the shared data ref, we only have the leaf but we need
362 	 * the key. thus, we must look into all items and see that we
363 	 * find one (some) with a reference to our extent item.
364 	 */
365 	nritems = btrfs_header_nritems(eb);
366 	for (slot = 0; slot < nritems; ++slot) {
367 		btrfs_item_key_to_cpu(eb, &key, slot);
368 		if (key.type != BTRFS_EXTENT_DATA_KEY)
369 			continue;
370 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
371 		extent_type = btrfs_file_extent_type(eb, fi);
372 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
373 			continue;
374 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
375 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
376 		if (disk_byte != wanted_disk_byte)
377 			continue;
378 
379 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
380 		if (ret < 0)
381 			return ret;
382 	}
383 
384 	return 0;
385 }
386 
387 /*
388  * this structure records all encountered refs on the way up to the root
389  */
390 struct __prelim_ref {
391 	struct list_head list;
392 	u64 root_id;
393 	struct btrfs_key key_for_search;
394 	int level;
395 	int count;
396 	struct extent_inode_elem *inode_list;
397 	u64 parent;
398 	u64 wanted_disk_byte;
399 };
400 
401 static struct kmem_cache *btrfs_prelim_ref_cache;
402 
403 int __init btrfs_prelim_ref_init(void)
404 {
405 	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
406 					sizeof(struct __prelim_ref),
407 					0,
408 					SLAB_MEM_SPREAD,
409 					NULL);
410 	if (!btrfs_prelim_ref_cache)
411 		return -ENOMEM;
412 	return 0;
413 }
414 
415 void btrfs_prelim_ref_exit(void)
416 {
417 	kmem_cache_destroy(btrfs_prelim_ref_cache);
418 }
419 
420 /*
421  * the rules for all callers of this function are:
422  * - obtaining the parent is the goal
423  * - if you add a key, you must know that it is a correct key
424  * - if you cannot add the parent or a correct key, then we will look into the
425  *   block later to set a correct key
426  *
427  * delayed refs
428  * ============
429  *        backref type | shared | indirect | shared | indirect
430  * information         |   tree |     tree |   data |     data
431  * --------------------+--------+----------+--------+----------
432  *      parent logical |    y   |     -    |    -   |     -
433  *      key to resolve |    -   |     y    |    y   |     y
434  *  tree block logical |    -   |     -    |    -   |     -
435  *  root for resolving |    y   |     y    |    y   |     y
436  *
437  * - column 1:       we've the parent -> done
438  * - column 2, 3, 4: we use the key to find the parent
439  *
440  * on disk refs (inline or keyed)
441  * ==============================
442  *        backref type | shared | indirect | shared | indirect
443  * information         |   tree |     tree |   data |     data
444  * --------------------+--------+----------+--------+----------
445  *      parent logical |    y   |     -    |    y   |     -
446  *      key to resolve |    -   |     -    |    -   |     y
447  *  tree block logical |    y   |     y    |    y   |     y
448  *  root for resolving |    -   |     y    |    y   |     y
449  *
450  * - column 1, 3: we've the parent -> done
451  * - column 2:    we take the first key from the block to find the parent
452  *                (see __add_missing_keys)
453  * - column 4:    we use the key to find the parent
454  *
455  * additional information that's available but not required to find the parent
456  * block might help in merging entries to gain some speed.
457  */
458 
459 static int __add_prelim_ref(struct list_head *head, u64 root_id,
460 			    const struct btrfs_key *key, int level,
461 			    u64 parent, u64 wanted_disk_byte, int count,
462 			    gfp_t gfp_mask)
463 {
464 	struct __prelim_ref *ref;
465 
466 	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
467 		return 0;
468 
469 	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
470 	if (!ref)
471 		return -ENOMEM;
472 
473 	ref->root_id = root_id;
474 	if (key) {
475 		ref->key_for_search = *key;
476 		/*
477 		 * We can often find data backrefs with an offset that is too
478 		 * large (>= LLONG_MAX, maximum allowed file offset) due to
479 		 * underflows when subtracting a file's offset with the data
480 		 * offset of its corresponding extent data item. This can
481 		 * happen for example in the clone ioctl.
482 		 * So if we detect such case we set the search key's offset to
483 		 * zero to make sure we will find the matching file extent item
484 		 * at add_all_parents(), otherwise we will miss it because the
485 		 * offset taken form the backref is much larger then the offset
486 		 * of the file extent item. This can make us scan a very large
487 		 * number of file extent items, but at least it will not make
488 		 * us miss any.
489 		 * This is an ugly workaround for a behaviour that should have
490 		 * never existed, but it does and a fix for the clone ioctl
491 		 * would touch a lot of places, cause backwards incompatibility
492 		 * and would not fix the problem for extents cloned with older
493 		 * kernels.
494 		 */
495 		if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
496 		    ref->key_for_search.offset >= LLONG_MAX)
497 			ref->key_for_search.offset = 0;
498 	} else {
499 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
500 	}
501 
502 	ref->inode_list = NULL;
503 	ref->level = level;
504 	ref->count = count;
505 	ref->parent = parent;
506 	ref->wanted_disk_byte = wanted_disk_byte;
507 	list_add_tail(&ref->list, head);
508 
509 	return 0;
510 }
511 
512 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
513 			   struct ulist *parents, struct __prelim_ref *ref,
514 			   int level, u64 time_seq, const u64 *extent_item_pos,
515 			   u64 total_refs)
516 {
517 	int ret = 0;
518 	int slot;
519 	struct extent_buffer *eb;
520 	struct btrfs_key key;
521 	struct btrfs_key *key_for_search = &ref->key_for_search;
522 	struct btrfs_file_extent_item *fi;
523 	struct extent_inode_elem *eie = NULL, *old = NULL;
524 	u64 disk_byte;
525 	u64 wanted_disk_byte = ref->wanted_disk_byte;
526 	u64 count = 0;
527 
528 	if (level != 0) {
529 		eb = path->nodes[level];
530 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
531 		if (ret < 0)
532 			return ret;
533 		return 0;
534 	}
535 
536 	/*
537 	 * We normally enter this function with the path already pointing to
538 	 * the first item to check. But sometimes, we may enter it with
539 	 * slot==nritems. In that case, go to the next leaf before we continue.
540 	 */
541 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
542 		if (time_seq == SEQ_LAST)
543 			ret = btrfs_next_leaf(root, path);
544 		else
545 			ret = btrfs_next_old_leaf(root, path, time_seq);
546 	}
547 
548 	while (!ret && count < total_refs) {
549 		eb = path->nodes[0];
550 		slot = path->slots[0];
551 
552 		btrfs_item_key_to_cpu(eb, &key, slot);
553 
554 		if (key.objectid != key_for_search->objectid ||
555 		    key.type != BTRFS_EXTENT_DATA_KEY)
556 			break;
557 
558 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
559 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
560 
561 		if (disk_byte == wanted_disk_byte) {
562 			eie = NULL;
563 			old = NULL;
564 			count++;
565 			if (extent_item_pos) {
566 				ret = check_extent_in_eb(&key, eb, fi,
567 						*extent_item_pos,
568 						&eie);
569 				if (ret < 0)
570 					break;
571 			}
572 			if (ret > 0)
573 				goto next;
574 			ret = ulist_add_merge_ptr(parents, eb->start,
575 						  eie, (void **)&old, GFP_NOFS);
576 			if (ret < 0)
577 				break;
578 			if (!ret && extent_item_pos) {
579 				while (old->next)
580 					old = old->next;
581 				old->next = eie;
582 			}
583 			eie = NULL;
584 		}
585 next:
586 		if (time_seq == SEQ_LAST)
587 			ret = btrfs_next_item(root, path);
588 		else
589 			ret = btrfs_next_old_item(root, path, time_seq);
590 	}
591 
592 	if (ret > 0)
593 		ret = 0;
594 	else if (ret < 0)
595 		free_inode_elem_list(eie);
596 	return ret;
597 }
598 
599 /*
600  * resolve an indirect backref in the form (root_id, key, level)
601  * to a logical address
602  */
603 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
604 				  struct btrfs_path *path, u64 time_seq,
605 				  struct __prelim_ref *ref,
606 				  struct ulist *parents,
607 				  const u64 *extent_item_pos, u64 total_refs)
608 {
609 	struct btrfs_root *root;
610 	struct btrfs_key root_key;
611 	struct extent_buffer *eb;
612 	int ret = 0;
613 	int root_level;
614 	int level = ref->level;
615 	int index;
616 
617 	root_key.objectid = ref->root_id;
618 	root_key.type = BTRFS_ROOT_ITEM_KEY;
619 	root_key.offset = (u64)-1;
620 
621 	index = srcu_read_lock(&fs_info->subvol_srcu);
622 
623 	root = btrfs_get_fs_root(fs_info, &root_key, false);
624 	if (IS_ERR(root)) {
625 		srcu_read_unlock(&fs_info->subvol_srcu, index);
626 		ret = PTR_ERR(root);
627 		goto out;
628 	}
629 
630 	if (btrfs_is_testing(fs_info)) {
631 		srcu_read_unlock(&fs_info->subvol_srcu, index);
632 		ret = -ENOENT;
633 		goto out;
634 	}
635 
636 	if (path->search_commit_root)
637 		root_level = btrfs_header_level(root->commit_root);
638 	else if (time_seq == SEQ_LAST)
639 		root_level = btrfs_header_level(root->node);
640 	else
641 		root_level = btrfs_old_root_level(root, time_seq);
642 
643 	if (root_level + 1 == level) {
644 		srcu_read_unlock(&fs_info->subvol_srcu, index);
645 		goto out;
646 	}
647 
648 	path->lowest_level = level;
649 	if (time_seq == SEQ_LAST)
650 		ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
651 					0, 0);
652 	else
653 		ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
654 					    time_seq);
655 
656 	/* root node has been locked, we can release @subvol_srcu safely here */
657 	srcu_read_unlock(&fs_info->subvol_srcu, index);
658 
659 	btrfs_debug(fs_info,
660 		"search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
661 		 ref->root_id, level, ref->count, ret,
662 		 ref->key_for_search.objectid, ref->key_for_search.type,
663 		 ref->key_for_search.offset);
664 	if (ret < 0)
665 		goto out;
666 
667 	eb = path->nodes[level];
668 	while (!eb) {
669 		if (WARN_ON(!level)) {
670 			ret = 1;
671 			goto out;
672 		}
673 		level--;
674 		eb = path->nodes[level];
675 	}
676 
677 	ret = add_all_parents(root, path, parents, ref, level, time_seq,
678 			      extent_item_pos, total_refs);
679 out:
680 	path->lowest_level = 0;
681 	btrfs_release_path(path);
682 	return ret;
683 }
684 
685 static struct extent_inode_elem *
686 unode_aux_to_inode_list(struct ulist_node *node)
687 {
688 	if (!node)
689 		return NULL;
690 	return (struct extent_inode_elem *)(uintptr_t)node->aux;
691 }
692 
693 /*
694  * resolve all indirect backrefs from the list
695  */
696 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
697 				   struct btrfs_path *path, u64 time_seq,
698 				   struct list_head *head,
699 				   const u64 *extent_item_pos, u64 total_refs,
700 				   u64 root_objectid)
701 {
702 	int err;
703 	int ret = 0;
704 	struct __prelim_ref *ref;
705 	struct __prelim_ref *ref_safe;
706 	struct __prelim_ref *new_ref;
707 	struct ulist *parents;
708 	struct ulist_node *node;
709 	struct ulist_iterator uiter;
710 
711 	parents = ulist_alloc(GFP_NOFS);
712 	if (!parents)
713 		return -ENOMEM;
714 
715 	/*
716 	 * _safe allows us to insert directly after the current item without
717 	 * iterating over the newly inserted items.
718 	 * we're also allowed to re-assign ref during iteration.
719 	 */
720 	list_for_each_entry_safe(ref, ref_safe, head, list) {
721 		if (ref->parent)	/* already direct */
722 			continue;
723 		if (ref->count == 0)
724 			continue;
725 		if (root_objectid && ref->root_id != root_objectid) {
726 			ret = BACKREF_FOUND_SHARED;
727 			goto out;
728 		}
729 		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
730 					     parents, extent_item_pos,
731 					     total_refs);
732 		/*
733 		 * we can only tolerate ENOENT,otherwise,we should catch error
734 		 * and return directly.
735 		 */
736 		if (err == -ENOENT) {
737 			continue;
738 		} else if (err) {
739 			ret = err;
740 			goto out;
741 		}
742 
743 		/* we put the first parent into the ref at hand */
744 		ULIST_ITER_INIT(&uiter);
745 		node = ulist_next(parents, &uiter);
746 		ref->parent = node ? node->val : 0;
747 		ref->inode_list = unode_aux_to_inode_list(node);
748 
749 		/* additional parents require new refs being added here */
750 		while ((node = ulist_next(parents, &uiter))) {
751 			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
752 						   GFP_NOFS);
753 			if (!new_ref) {
754 				ret = -ENOMEM;
755 				goto out;
756 			}
757 			memcpy(new_ref, ref, sizeof(*ref));
758 			new_ref->parent = node->val;
759 			new_ref->inode_list = unode_aux_to_inode_list(node);
760 			list_add(&new_ref->list, &ref->list);
761 		}
762 		ulist_reinit(parents);
763 	}
764 out:
765 	ulist_free(parents);
766 	return ret;
767 }
768 
769 static inline int ref_for_same_block(struct __prelim_ref *ref1,
770 				     struct __prelim_ref *ref2)
771 {
772 	if (ref1->level != ref2->level)
773 		return 0;
774 	if (ref1->root_id != ref2->root_id)
775 		return 0;
776 	if (ref1->key_for_search.type != ref2->key_for_search.type)
777 		return 0;
778 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
779 		return 0;
780 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
781 		return 0;
782 	if (ref1->parent != ref2->parent)
783 		return 0;
784 
785 	return 1;
786 }
787 
788 /*
789  * read tree blocks and add keys where required.
790  */
791 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
792 			      struct list_head *head)
793 {
794 	struct __prelim_ref *ref;
795 	struct extent_buffer *eb;
796 
797 	list_for_each_entry(ref, head, list) {
798 		if (ref->parent)
799 			continue;
800 		if (ref->key_for_search.type)
801 			continue;
802 		BUG_ON(!ref->wanted_disk_byte);
803 		eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
804 		if (IS_ERR(eb)) {
805 			return PTR_ERR(eb);
806 		} else if (!extent_buffer_uptodate(eb)) {
807 			free_extent_buffer(eb);
808 			return -EIO;
809 		}
810 		btrfs_tree_read_lock(eb);
811 		if (btrfs_header_level(eb) == 0)
812 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
813 		else
814 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
815 		btrfs_tree_read_unlock(eb);
816 		free_extent_buffer(eb);
817 	}
818 	return 0;
819 }
820 
821 /*
822  * merge backrefs and adjust counts accordingly
823  *
824  *    FIXME: For MERGE_IDENTICAL_KEYS, if we add more keys in __add_prelim_ref
825  *           then we can merge more here. Additionally, we could even add a key
826  *           range for the blocks we looked into to merge even more (-> replace
827  *           unresolved refs by those having a parent).
828  */
829 static void __merge_refs(struct list_head *head, enum merge_mode mode)
830 {
831 	struct __prelim_ref *pos1;
832 
833 	list_for_each_entry(pos1, head, list) {
834 		struct __prelim_ref *pos2 = pos1, *tmp;
835 
836 		list_for_each_entry_safe_continue(pos2, tmp, head, list) {
837 			struct __prelim_ref *ref1 = pos1, *ref2 = pos2;
838 			struct extent_inode_elem *eie;
839 
840 			if (!ref_for_same_block(ref1, ref2))
841 				continue;
842 			if (mode == MERGE_IDENTICAL_KEYS) {
843 				if (!ref1->parent && ref2->parent)
844 					swap(ref1, ref2);
845 			} else {
846 				if (ref1->parent != ref2->parent)
847 					continue;
848 			}
849 
850 			eie = ref1->inode_list;
851 			while (eie && eie->next)
852 				eie = eie->next;
853 			if (eie)
854 				eie->next = ref2->inode_list;
855 			else
856 				ref1->inode_list = ref2->inode_list;
857 			ref1->count += ref2->count;
858 
859 			list_del(&ref2->list);
860 			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
861 			cond_resched();
862 		}
863 
864 	}
865 }
866 
867 /*
868  * add all currently queued delayed refs from this head whose seq nr is
869  * smaller or equal that seq to the list
870  */
871 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
872 			      struct list_head *prefs, u64 *total_refs,
873 			      u64 inum)
874 {
875 	struct btrfs_delayed_ref_node *node;
876 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
877 	struct btrfs_key key;
878 	struct btrfs_key op_key = {0};
879 	int sgn;
880 	int ret = 0;
881 
882 	if (extent_op && extent_op->update_key)
883 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
884 
885 	spin_lock(&head->lock);
886 	list_for_each_entry(node, &head->ref_list, list) {
887 		if (node->seq > seq)
888 			continue;
889 
890 		switch (node->action) {
891 		case BTRFS_ADD_DELAYED_EXTENT:
892 		case BTRFS_UPDATE_DELAYED_HEAD:
893 			WARN_ON(1);
894 			continue;
895 		case BTRFS_ADD_DELAYED_REF:
896 			sgn = 1;
897 			break;
898 		case BTRFS_DROP_DELAYED_REF:
899 			sgn = -1;
900 			break;
901 		default:
902 			BUG_ON(1);
903 		}
904 		*total_refs += (node->ref_mod * sgn);
905 		switch (node->type) {
906 		case BTRFS_TREE_BLOCK_REF_KEY: {
907 			struct btrfs_delayed_tree_ref *ref;
908 
909 			ref = btrfs_delayed_node_to_tree_ref(node);
910 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
911 					       ref->level + 1, 0, node->bytenr,
912 					       node->ref_mod * sgn, GFP_ATOMIC);
913 			break;
914 		}
915 		case BTRFS_SHARED_BLOCK_REF_KEY: {
916 			struct btrfs_delayed_tree_ref *ref;
917 
918 			ref = btrfs_delayed_node_to_tree_ref(node);
919 			ret = __add_prelim_ref(prefs, 0, NULL,
920 					       ref->level + 1, ref->parent,
921 					       node->bytenr,
922 					       node->ref_mod * sgn, GFP_ATOMIC);
923 			break;
924 		}
925 		case BTRFS_EXTENT_DATA_REF_KEY: {
926 			struct btrfs_delayed_data_ref *ref;
927 			ref = btrfs_delayed_node_to_data_ref(node);
928 
929 			key.objectid = ref->objectid;
930 			key.type = BTRFS_EXTENT_DATA_KEY;
931 			key.offset = ref->offset;
932 
933 			/*
934 			 * Found a inum that doesn't match our known inum, we
935 			 * know it's shared.
936 			 */
937 			if (inum && ref->objectid != inum) {
938 				ret = BACKREF_FOUND_SHARED;
939 				break;
940 			}
941 
942 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
943 					       node->bytenr,
944 					       node->ref_mod * sgn, GFP_ATOMIC);
945 			break;
946 		}
947 		case BTRFS_SHARED_DATA_REF_KEY: {
948 			struct btrfs_delayed_data_ref *ref;
949 
950 			ref = btrfs_delayed_node_to_data_ref(node);
951 			ret = __add_prelim_ref(prefs, 0, NULL, 0,
952 					       ref->parent, node->bytenr,
953 					       node->ref_mod * sgn, GFP_ATOMIC);
954 			break;
955 		}
956 		default:
957 			WARN_ON(1);
958 		}
959 		if (ret)
960 			break;
961 	}
962 	spin_unlock(&head->lock);
963 	return ret;
964 }
965 
966 /*
967  * add all inline backrefs for bytenr to the list
968  */
969 static int __add_inline_refs(struct btrfs_path *path, u64 bytenr,
970 			     int *info_level, struct list_head *prefs,
971 			     struct ref_root *ref_tree,
972 			     u64 *total_refs, u64 inum)
973 {
974 	int ret = 0;
975 	int slot;
976 	struct extent_buffer *leaf;
977 	struct btrfs_key key;
978 	struct btrfs_key found_key;
979 	unsigned long ptr;
980 	unsigned long end;
981 	struct btrfs_extent_item *ei;
982 	u64 flags;
983 	u64 item_size;
984 
985 	/*
986 	 * enumerate all inline refs
987 	 */
988 	leaf = path->nodes[0];
989 	slot = path->slots[0];
990 
991 	item_size = btrfs_item_size_nr(leaf, slot);
992 	BUG_ON(item_size < sizeof(*ei));
993 
994 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
995 	flags = btrfs_extent_flags(leaf, ei);
996 	*total_refs += btrfs_extent_refs(leaf, ei);
997 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
998 
999 	ptr = (unsigned long)(ei + 1);
1000 	end = (unsigned long)ei + item_size;
1001 
1002 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
1003 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1004 		struct btrfs_tree_block_info *info;
1005 
1006 		info = (struct btrfs_tree_block_info *)ptr;
1007 		*info_level = btrfs_tree_block_level(leaf, info);
1008 		ptr += sizeof(struct btrfs_tree_block_info);
1009 		BUG_ON(ptr > end);
1010 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1011 		*info_level = found_key.offset;
1012 	} else {
1013 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1014 	}
1015 
1016 	while (ptr < end) {
1017 		struct btrfs_extent_inline_ref *iref;
1018 		u64 offset;
1019 		int type;
1020 
1021 		iref = (struct btrfs_extent_inline_ref *)ptr;
1022 		type = btrfs_extent_inline_ref_type(leaf, iref);
1023 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
1024 
1025 		switch (type) {
1026 		case BTRFS_SHARED_BLOCK_REF_KEY:
1027 			ret = __add_prelim_ref(prefs, 0, NULL,
1028 						*info_level + 1, offset,
1029 						bytenr, 1, GFP_NOFS);
1030 			break;
1031 		case BTRFS_SHARED_DATA_REF_KEY: {
1032 			struct btrfs_shared_data_ref *sdref;
1033 			int count;
1034 
1035 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1036 			count = btrfs_shared_data_ref_count(leaf, sdref);
1037 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
1038 					       bytenr, count, GFP_NOFS);
1039 			if (ref_tree) {
1040 				if (!ret)
1041 					ret = ref_tree_add(ref_tree, 0, 0, 0,
1042 							   bytenr, count);
1043 				if (!ret && ref_tree->unique_refs > 1)
1044 					ret = BACKREF_FOUND_SHARED;
1045 			}
1046 			break;
1047 		}
1048 		case BTRFS_TREE_BLOCK_REF_KEY:
1049 			ret = __add_prelim_ref(prefs, offset, NULL,
1050 					       *info_level + 1, 0,
1051 					       bytenr, 1, GFP_NOFS);
1052 			break;
1053 		case BTRFS_EXTENT_DATA_REF_KEY: {
1054 			struct btrfs_extent_data_ref *dref;
1055 			int count;
1056 			u64 root;
1057 
1058 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1059 			count = btrfs_extent_data_ref_count(leaf, dref);
1060 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1061 								      dref);
1062 			key.type = BTRFS_EXTENT_DATA_KEY;
1063 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1064 
1065 			if (inum && key.objectid != inum) {
1066 				ret = BACKREF_FOUND_SHARED;
1067 				break;
1068 			}
1069 
1070 			root = btrfs_extent_data_ref_root(leaf, dref);
1071 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
1072 					       bytenr, count, GFP_NOFS);
1073 			if (ref_tree) {
1074 				if (!ret)
1075 					ret = ref_tree_add(ref_tree, root,
1076 							   key.objectid,
1077 							   key.offset, 0,
1078 							   count);
1079 				if (!ret && ref_tree->unique_refs > 1)
1080 					ret = BACKREF_FOUND_SHARED;
1081 			}
1082 			break;
1083 		}
1084 		default:
1085 			WARN_ON(1);
1086 		}
1087 		if (ret)
1088 			return ret;
1089 		ptr += btrfs_extent_inline_ref_size(type);
1090 	}
1091 
1092 	return 0;
1093 }
1094 
1095 /*
1096  * add all non-inline backrefs for bytenr to the list
1097  */
1098 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
1099 			    struct btrfs_path *path, u64 bytenr,
1100 			    int info_level, struct list_head *prefs,
1101 			    struct ref_root *ref_tree, u64 inum)
1102 {
1103 	struct btrfs_root *extent_root = fs_info->extent_root;
1104 	int ret;
1105 	int slot;
1106 	struct extent_buffer *leaf;
1107 	struct btrfs_key key;
1108 
1109 	while (1) {
1110 		ret = btrfs_next_item(extent_root, path);
1111 		if (ret < 0)
1112 			break;
1113 		if (ret) {
1114 			ret = 0;
1115 			break;
1116 		}
1117 
1118 		slot = path->slots[0];
1119 		leaf = path->nodes[0];
1120 		btrfs_item_key_to_cpu(leaf, &key, slot);
1121 
1122 		if (key.objectid != bytenr)
1123 			break;
1124 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1125 			continue;
1126 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1127 			break;
1128 
1129 		switch (key.type) {
1130 		case BTRFS_SHARED_BLOCK_REF_KEY:
1131 			ret = __add_prelim_ref(prefs, 0, NULL,
1132 						info_level + 1, key.offset,
1133 						bytenr, 1, GFP_NOFS);
1134 			break;
1135 		case BTRFS_SHARED_DATA_REF_KEY: {
1136 			struct btrfs_shared_data_ref *sdref;
1137 			int count;
1138 
1139 			sdref = btrfs_item_ptr(leaf, slot,
1140 					      struct btrfs_shared_data_ref);
1141 			count = btrfs_shared_data_ref_count(leaf, sdref);
1142 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
1143 						bytenr, count, GFP_NOFS);
1144 			if (ref_tree) {
1145 				if (!ret)
1146 					ret = ref_tree_add(ref_tree, 0, 0, 0,
1147 							   bytenr, count);
1148 				if (!ret && ref_tree->unique_refs > 1)
1149 					ret = BACKREF_FOUND_SHARED;
1150 			}
1151 			break;
1152 		}
1153 		case BTRFS_TREE_BLOCK_REF_KEY:
1154 			ret = __add_prelim_ref(prefs, key.offset, NULL,
1155 					       info_level + 1, 0,
1156 					       bytenr, 1, GFP_NOFS);
1157 			break;
1158 		case BTRFS_EXTENT_DATA_REF_KEY: {
1159 			struct btrfs_extent_data_ref *dref;
1160 			int count;
1161 			u64 root;
1162 
1163 			dref = btrfs_item_ptr(leaf, slot,
1164 					      struct btrfs_extent_data_ref);
1165 			count = btrfs_extent_data_ref_count(leaf, dref);
1166 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
1167 								      dref);
1168 			key.type = BTRFS_EXTENT_DATA_KEY;
1169 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1170 
1171 			if (inum && key.objectid != inum) {
1172 				ret = BACKREF_FOUND_SHARED;
1173 				break;
1174 			}
1175 
1176 			root = btrfs_extent_data_ref_root(leaf, dref);
1177 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
1178 					       bytenr, count, GFP_NOFS);
1179 			if (ref_tree) {
1180 				if (!ret)
1181 					ret = ref_tree_add(ref_tree, root,
1182 							   key.objectid,
1183 							   key.offset, 0,
1184 							   count);
1185 				if (!ret && ref_tree->unique_refs > 1)
1186 					ret = BACKREF_FOUND_SHARED;
1187 			}
1188 			break;
1189 		}
1190 		default:
1191 			WARN_ON(1);
1192 		}
1193 		if (ret)
1194 			return ret;
1195 
1196 	}
1197 
1198 	return ret;
1199 }
1200 
1201 /*
1202  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1203  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1204  * indirect refs to their parent bytenr.
1205  * When roots are found, they're added to the roots list
1206  *
1207  * NOTE: This can return values > 0
1208  *
1209  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1210  * much like trans == NULL case, the difference only lies in it will not
1211  * commit root.
1212  * The special case is for qgroup to search roots in commit_transaction().
1213  *
1214  * If check_shared is set to 1, any extent has more than one ref item, will
1215  * be returned BACKREF_FOUND_SHARED immediately.
1216  *
1217  * FIXME some caching might speed things up
1218  */
1219 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1220 			     struct btrfs_fs_info *fs_info, u64 bytenr,
1221 			     u64 time_seq, struct ulist *refs,
1222 			     struct ulist *roots, const u64 *extent_item_pos,
1223 			     u64 root_objectid, u64 inum, int check_shared)
1224 {
1225 	struct btrfs_key key;
1226 	struct btrfs_path *path;
1227 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
1228 	struct btrfs_delayed_ref_head *head;
1229 	int info_level = 0;
1230 	int ret;
1231 	struct list_head prefs_delayed;
1232 	struct list_head prefs;
1233 	struct __prelim_ref *ref;
1234 	struct extent_inode_elem *eie = NULL;
1235 	struct ref_root *ref_tree = NULL;
1236 	u64 total_refs = 0;
1237 
1238 	INIT_LIST_HEAD(&prefs);
1239 	INIT_LIST_HEAD(&prefs_delayed);
1240 
1241 	key.objectid = bytenr;
1242 	key.offset = (u64)-1;
1243 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1244 		key.type = BTRFS_METADATA_ITEM_KEY;
1245 	else
1246 		key.type = BTRFS_EXTENT_ITEM_KEY;
1247 
1248 	path = btrfs_alloc_path();
1249 	if (!path)
1250 		return -ENOMEM;
1251 	if (!trans) {
1252 		path->search_commit_root = 1;
1253 		path->skip_locking = 1;
1254 	}
1255 
1256 	if (time_seq == SEQ_LAST)
1257 		path->skip_locking = 1;
1258 
1259 	/*
1260 	 * grab both a lock on the path and a lock on the delayed ref head.
1261 	 * We need both to get a consistent picture of how the refs look
1262 	 * at a specified point in time
1263 	 */
1264 again:
1265 	head = NULL;
1266 
1267 	if (check_shared) {
1268 		if (!ref_tree) {
1269 			ref_tree = ref_root_alloc();
1270 			if (!ref_tree) {
1271 				ret = -ENOMEM;
1272 				goto out;
1273 			}
1274 		} else {
1275 			ref_root_fini(ref_tree);
1276 		}
1277 	}
1278 
1279 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1280 	if (ret < 0)
1281 		goto out;
1282 	BUG_ON(ret == 0);
1283 
1284 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1285 	if (trans && likely(trans->type != __TRANS_DUMMY) &&
1286 	    time_seq != SEQ_LAST) {
1287 #else
1288 	if (trans && time_seq != SEQ_LAST) {
1289 #endif
1290 		/*
1291 		 * look if there are updates for this ref queued and lock the
1292 		 * head
1293 		 */
1294 		delayed_refs = &trans->transaction->delayed_refs;
1295 		spin_lock(&delayed_refs->lock);
1296 		head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1297 		if (head) {
1298 			if (!mutex_trylock(&head->mutex)) {
1299 				refcount_inc(&head->node.refs);
1300 				spin_unlock(&delayed_refs->lock);
1301 
1302 				btrfs_release_path(path);
1303 
1304 				/*
1305 				 * Mutex was contended, block until it's
1306 				 * released and try again
1307 				 */
1308 				mutex_lock(&head->mutex);
1309 				mutex_unlock(&head->mutex);
1310 				btrfs_put_delayed_ref(&head->node);
1311 				goto again;
1312 			}
1313 			spin_unlock(&delayed_refs->lock);
1314 			ret = __add_delayed_refs(head, time_seq,
1315 						 &prefs_delayed, &total_refs,
1316 						 inum);
1317 			mutex_unlock(&head->mutex);
1318 			if (ret)
1319 				goto out;
1320 		} else {
1321 			spin_unlock(&delayed_refs->lock);
1322 		}
1323 
1324 		if (check_shared && !list_empty(&prefs_delayed)) {
1325 			/*
1326 			 * Add all delay_ref to the ref_tree and check if there
1327 			 * are multiple ref items added.
1328 			 */
1329 			list_for_each_entry(ref, &prefs_delayed, list) {
1330 				if (ref->key_for_search.type) {
1331 					ret = ref_tree_add(ref_tree,
1332 						ref->root_id,
1333 						ref->key_for_search.objectid,
1334 						ref->key_for_search.offset,
1335 						0, ref->count);
1336 					if (ret)
1337 						goto out;
1338 				} else {
1339 					ret = ref_tree_add(ref_tree, 0, 0, 0,
1340 						     ref->parent, ref->count);
1341 					if (ret)
1342 						goto out;
1343 				}
1344 
1345 			}
1346 
1347 			if (ref_tree->unique_refs > 1) {
1348 				ret = BACKREF_FOUND_SHARED;
1349 				goto out;
1350 			}
1351 
1352 		}
1353 	}
1354 
1355 	if (path->slots[0]) {
1356 		struct extent_buffer *leaf;
1357 		int slot;
1358 
1359 		path->slots[0]--;
1360 		leaf = path->nodes[0];
1361 		slot = path->slots[0];
1362 		btrfs_item_key_to_cpu(leaf, &key, slot);
1363 		if (key.objectid == bytenr &&
1364 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
1365 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
1366 			ret = __add_inline_refs(path, bytenr,
1367 						&info_level, &prefs,
1368 						ref_tree, &total_refs,
1369 						inum);
1370 			if (ret)
1371 				goto out;
1372 			ret = __add_keyed_refs(fs_info, path, bytenr,
1373 					       info_level, &prefs,
1374 					       ref_tree, inum);
1375 			if (ret)
1376 				goto out;
1377 		}
1378 	}
1379 	btrfs_release_path(path);
1380 
1381 	list_splice_init(&prefs_delayed, &prefs);
1382 
1383 	ret = __add_missing_keys(fs_info, &prefs);
1384 	if (ret)
1385 		goto out;
1386 
1387 	__merge_refs(&prefs, MERGE_IDENTICAL_KEYS);
1388 
1389 	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1390 				      extent_item_pos, total_refs,
1391 				      root_objectid);
1392 	if (ret)
1393 		goto out;
1394 
1395 	__merge_refs(&prefs, MERGE_IDENTICAL_PARENTS);
1396 
1397 	while (!list_empty(&prefs)) {
1398 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1399 		WARN_ON(ref->count < 0);
1400 		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1401 			if (root_objectid && ref->root_id != root_objectid) {
1402 				ret = BACKREF_FOUND_SHARED;
1403 				goto out;
1404 			}
1405 
1406 			/* no parent == root of tree */
1407 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1408 			if (ret < 0)
1409 				goto out;
1410 		}
1411 		if (ref->count && ref->parent) {
1412 			if (extent_item_pos && !ref->inode_list &&
1413 			    ref->level == 0) {
1414 				struct extent_buffer *eb;
1415 
1416 				eb = read_tree_block(fs_info, ref->parent, 0);
1417 				if (IS_ERR(eb)) {
1418 					ret = PTR_ERR(eb);
1419 					goto out;
1420 				} else if (!extent_buffer_uptodate(eb)) {
1421 					free_extent_buffer(eb);
1422 					ret = -EIO;
1423 					goto out;
1424 				}
1425 				btrfs_tree_read_lock(eb);
1426 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1427 				ret = find_extent_in_eb(eb, bytenr,
1428 							*extent_item_pos, &eie);
1429 				btrfs_tree_read_unlock_blocking(eb);
1430 				free_extent_buffer(eb);
1431 				if (ret < 0)
1432 					goto out;
1433 				ref->inode_list = eie;
1434 			}
1435 			ret = ulist_add_merge_ptr(refs, ref->parent,
1436 						  ref->inode_list,
1437 						  (void **)&eie, GFP_NOFS);
1438 			if (ret < 0)
1439 				goto out;
1440 			if (!ret && extent_item_pos) {
1441 				/*
1442 				 * we've recorded that parent, so we must extend
1443 				 * its inode list here
1444 				 */
1445 				BUG_ON(!eie);
1446 				while (eie->next)
1447 					eie = eie->next;
1448 				eie->next = ref->inode_list;
1449 			}
1450 			eie = NULL;
1451 		}
1452 		list_del(&ref->list);
1453 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1454 	}
1455 
1456 out:
1457 	btrfs_free_path(path);
1458 	ref_root_free(ref_tree);
1459 	while (!list_empty(&prefs)) {
1460 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1461 		list_del(&ref->list);
1462 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1463 	}
1464 	while (!list_empty(&prefs_delayed)) {
1465 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1466 				       list);
1467 		list_del(&ref->list);
1468 		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1469 	}
1470 	if (ret < 0)
1471 		free_inode_elem_list(eie);
1472 	return ret;
1473 }
1474 
1475 static void free_leaf_list(struct ulist *blocks)
1476 {
1477 	struct ulist_node *node = NULL;
1478 	struct extent_inode_elem *eie;
1479 	struct ulist_iterator uiter;
1480 
1481 	ULIST_ITER_INIT(&uiter);
1482 	while ((node = ulist_next(blocks, &uiter))) {
1483 		if (!node->aux)
1484 			continue;
1485 		eie = unode_aux_to_inode_list(node);
1486 		free_inode_elem_list(eie);
1487 		node->aux = 0;
1488 	}
1489 
1490 	ulist_free(blocks);
1491 }
1492 
1493 /*
1494  * Finds all leafs with a reference to the specified combination of bytenr and
1495  * offset. key_list_head will point to a list of corresponding keys (caller must
1496  * free each list element). The leafs will be stored in the leafs ulist, which
1497  * must be freed with ulist_free.
1498  *
1499  * returns 0 on success, <0 on error
1500  */
1501 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1502 				struct btrfs_fs_info *fs_info, u64 bytenr,
1503 				u64 time_seq, struct ulist **leafs,
1504 				const u64 *extent_item_pos)
1505 {
1506 	int ret;
1507 
1508 	*leafs = ulist_alloc(GFP_NOFS);
1509 	if (!*leafs)
1510 		return -ENOMEM;
1511 
1512 	ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1513 				*leafs, NULL, extent_item_pos, 0, 0, 0);
1514 	if (ret < 0 && ret != -ENOENT) {
1515 		free_leaf_list(*leafs);
1516 		return ret;
1517 	}
1518 
1519 	return 0;
1520 }
1521 
1522 /*
1523  * walk all backrefs for a given extent to find all roots that reference this
1524  * extent. Walking a backref means finding all extents that reference this
1525  * extent and in turn walk the backrefs of those, too. Naturally this is a
1526  * recursive process, but here it is implemented in an iterative fashion: We
1527  * find all referencing extents for the extent in question and put them on a
1528  * list. In turn, we find all referencing extents for those, further appending
1529  * to the list. The way we iterate the list allows adding more elements after
1530  * the current while iterating. The process stops when we reach the end of the
1531  * list. Found roots are added to the roots list.
1532  *
1533  * returns 0 on success, < 0 on error.
1534  */
1535 static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1536 				  struct btrfs_fs_info *fs_info, u64 bytenr,
1537 				  u64 time_seq, struct ulist **roots)
1538 {
1539 	struct ulist *tmp;
1540 	struct ulist_node *node = NULL;
1541 	struct ulist_iterator uiter;
1542 	int ret;
1543 
1544 	tmp = ulist_alloc(GFP_NOFS);
1545 	if (!tmp)
1546 		return -ENOMEM;
1547 	*roots = ulist_alloc(GFP_NOFS);
1548 	if (!*roots) {
1549 		ulist_free(tmp);
1550 		return -ENOMEM;
1551 	}
1552 
1553 	ULIST_ITER_INIT(&uiter);
1554 	while (1) {
1555 		ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1556 					tmp, *roots, NULL, 0, 0, 0);
1557 		if (ret < 0 && ret != -ENOENT) {
1558 			ulist_free(tmp);
1559 			ulist_free(*roots);
1560 			return ret;
1561 		}
1562 		node = ulist_next(tmp, &uiter);
1563 		if (!node)
1564 			break;
1565 		bytenr = node->val;
1566 		cond_resched();
1567 	}
1568 
1569 	ulist_free(tmp);
1570 	return 0;
1571 }
1572 
1573 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1574 			 struct btrfs_fs_info *fs_info, u64 bytenr,
1575 			 u64 time_seq, struct ulist **roots)
1576 {
1577 	int ret;
1578 
1579 	if (!trans)
1580 		down_read(&fs_info->commit_root_sem);
1581 	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1582 	if (!trans)
1583 		up_read(&fs_info->commit_root_sem);
1584 	return ret;
1585 }
1586 
1587 /**
1588  * btrfs_check_shared - tell us whether an extent is shared
1589  *
1590  * @trans: optional trans handle
1591  *
1592  * btrfs_check_shared uses the backref walking code but will short
1593  * circuit as soon as it finds a root or inode that doesn't match the
1594  * one passed in. This provides a significant performance benefit for
1595  * callers (such as fiemap) which want to know whether the extent is
1596  * shared but do not need a ref count.
1597  *
1598  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1599  */
1600 int btrfs_check_shared(struct btrfs_trans_handle *trans,
1601 		       struct btrfs_fs_info *fs_info, u64 root_objectid,
1602 		       u64 inum, u64 bytenr)
1603 {
1604 	struct ulist *tmp = NULL;
1605 	struct ulist *roots = NULL;
1606 	struct ulist_iterator uiter;
1607 	struct ulist_node *node;
1608 	struct seq_list elem = SEQ_LIST_INIT(elem);
1609 	int ret = 0;
1610 
1611 	tmp = ulist_alloc(GFP_NOFS);
1612 	roots = ulist_alloc(GFP_NOFS);
1613 	if (!tmp || !roots) {
1614 		ulist_free(tmp);
1615 		ulist_free(roots);
1616 		return -ENOMEM;
1617 	}
1618 
1619 	if (trans)
1620 		btrfs_get_tree_mod_seq(fs_info, &elem);
1621 	else
1622 		down_read(&fs_info->commit_root_sem);
1623 	ULIST_ITER_INIT(&uiter);
1624 	while (1) {
1625 		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1626 					roots, NULL, root_objectid, inum, 1);
1627 		if (ret == BACKREF_FOUND_SHARED) {
1628 			/* this is the only condition under which we return 1 */
1629 			ret = 1;
1630 			break;
1631 		}
1632 		if (ret < 0 && ret != -ENOENT)
1633 			break;
1634 		ret = 0;
1635 		node = ulist_next(tmp, &uiter);
1636 		if (!node)
1637 			break;
1638 		bytenr = node->val;
1639 		cond_resched();
1640 	}
1641 	if (trans)
1642 		btrfs_put_tree_mod_seq(fs_info, &elem);
1643 	else
1644 		up_read(&fs_info->commit_root_sem);
1645 	ulist_free(tmp);
1646 	ulist_free(roots);
1647 	return ret;
1648 }
1649 
1650 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1651 			  u64 start_off, struct btrfs_path *path,
1652 			  struct btrfs_inode_extref **ret_extref,
1653 			  u64 *found_off)
1654 {
1655 	int ret, slot;
1656 	struct btrfs_key key;
1657 	struct btrfs_key found_key;
1658 	struct btrfs_inode_extref *extref;
1659 	const struct extent_buffer *leaf;
1660 	unsigned long ptr;
1661 
1662 	key.objectid = inode_objectid;
1663 	key.type = BTRFS_INODE_EXTREF_KEY;
1664 	key.offset = start_off;
1665 
1666 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1667 	if (ret < 0)
1668 		return ret;
1669 
1670 	while (1) {
1671 		leaf = path->nodes[0];
1672 		slot = path->slots[0];
1673 		if (slot >= btrfs_header_nritems(leaf)) {
1674 			/*
1675 			 * If the item at offset is not found,
1676 			 * btrfs_search_slot will point us to the slot
1677 			 * where it should be inserted. In our case
1678 			 * that will be the slot directly before the
1679 			 * next INODE_REF_KEY_V2 item. In the case
1680 			 * that we're pointing to the last slot in a
1681 			 * leaf, we must move one leaf over.
1682 			 */
1683 			ret = btrfs_next_leaf(root, path);
1684 			if (ret) {
1685 				if (ret >= 1)
1686 					ret = -ENOENT;
1687 				break;
1688 			}
1689 			continue;
1690 		}
1691 
1692 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1693 
1694 		/*
1695 		 * Check that we're still looking at an extended ref key for
1696 		 * this particular objectid. If we have different
1697 		 * objectid or type then there are no more to be found
1698 		 * in the tree and we can exit.
1699 		 */
1700 		ret = -ENOENT;
1701 		if (found_key.objectid != inode_objectid)
1702 			break;
1703 		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1704 			break;
1705 
1706 		ret = 0;
1707 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1708 		extref = (struct btrfs_inode_extref *)ptr;
1709 		*ret_extref = extref;
1710 		if (found_off)
1711 			*found_off = found_key.offset;
1712 		break;
1713 	}
1714 
1715 	return ret;
1716 }
1717 
1718 /*
1719  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1720  * Elements of the path are separated by '/' and the path is guaranteed to be
1721  * 0-terminated. the path is only given within the current file system.
1722  * Therefore, it never starts with a '/'. the caller is responsible to provide
1723  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1724  * the start point of the resulting string is returned. this pointer is within
1725  * dest, normally.
1726  * in case the path buffer would overflow, the pointer is decremented further
1727  * as if output was written to the buffer, though no more output is actually
1728  * generated. that way, the caller can determine how much space would be
1729  * required for the path to fit into the buffer. in that case, the returned
1730  * value will be smaller than dest. callers must check this!
1731  */
1732 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1733 			u32 name_len, unsigned long name_off,
1734 			struct extent_buffer *eb_in, u64 parent,
1735 			char *dest, u32 size)
1736 {
1737 	int slot;
1738 	u64 next_inum;
1739 	int ret;
1740 	s64 bytes_left = ((s64)size) - 1;
1741 	struct extent_buffer *eb = eb_in;
1742 	struct btrfs_key found_key;
1743 	int leave_spinning = path->leave_spinning;
1744 	struct btrfs_inode_ref *iref;
1745 
1746 	if (bytes_left >= 0)
1747 		dest[bytes_left] = '\0';
1748 
1749 	path->leave_spinning = 1;
1750 	while (1) {
1751 		bytes_left -= name_len;
1752 		if (bytes_left >= 0)
1753 			read_extent_buffer(eb, dest + bytes_left,
1754 					   name_off, name_len);
1755 		if (eb != eb_in) {
1756 			if (!path->skip_locking)
1757 				btrfs_tree_read_unlock_blocking(eb);
1758 			free_extent_buffer(eb);
1759 		}
1760 		ret = btrfs_find_item(fs_root, path, parent, 0,
1761 				BTRFS_INODE_REF_KEY, &found_key);
1762 		if (ret > 0)
1763 			ret = -ENOENT;
1764 		if (ret)
1765 			break;
1766 
1767 		next_inum = found_key.offset;
1768 
1769 		/* regular exit ahead */
1770 		if (parent == next_inum)
1771 			break;
1772 
1773 		slot = path->slots[0];
1774 		eb = path->nodes[0];
1775 		/* make sure we can use eb after releasing the path */
1776 		if (eb != eb_in) {
1777 			if (!path->skip_locking)
1778 				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1779 			path->nodes[0] = NULL;
1780 			path->locks[0] = 0;
1781 		}
1782 		btrfs_release_path(path);
1783 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1784 
1785 		name_len = btrfs_inode_ref_name_len(eb, iref);
1786 		name_off = (unsigned long)(iref + 1);
1787 
1788 		parent = next_inum;
1789 		--bytes_left;
1790 		if (bytes_left >= 0)
1791 			dest[bytes_left] = '/';
1792 	}
1793 
1794 	btrfs_release_path(path);
1795 	path->leave_spinning = leave_spinning;
1796 
1797 	if (ret)
1798 		return ERR_PTR(ret);
1799 
1800 	return dest + bytes_left;
1801 }
1802 
1803 /*
1804  * this makes the path point to (logical EXTENT_ITEM *)
1805  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1806  * tree blocks and <0 on error.
1807  */
1808 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1809 			struct btrfs_path *path, struct btrfs_key *found_key,
1810 			u64 *flags_ret)
1811 {
1812 	int ret;
1813 	u64 flags;
1814 	u64 size = 0;
1815 	u32 item_size;
1816 	const struct extent_buffer *eb;
1817 	struct btrfs_extent_item *ei;
1818 	struct btrfs_key key;
1819 
1820 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1821 		key.type = BTRFS_METADATA_ITEM_KEY;
1822 	else
1823 		key.type = BTRFS_EXTENT_ITEM_KEY;
1824 	key.objectid = logical;
1825 	key.offset = (u64)-1;
1826 
1827 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1828 	if (ret < 0)
1829 		return ret;
1830 
1831 	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1832 	if (ret) {
1833 		if (ret > 0)
1834 			ret = -ENOENT;
1835 		return ret;
1836 	}
1837 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1838 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1839 		size = fs_info->nodesize;
1840 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1841 		size = found_key->offset;
1842 
1843 	if (found_key->objectid > logical ||
1844 	    found_key->objectid + size <= logical) {
1845 		btrfs_debug(fs_info,
1846 			"logical %llu is not within any extent", logical);
1847 		return -ENOENT;
1848 	}
1849 
1850 	eb = path->nodes[0];
1851 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1852 	BUG_ON(item_size < sizeof(*ei));
1853 
1854 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1855 	flags = btrfs_extent_flags(eb, ei);
1856 
1857 	btrfs_debug(fs_info,
1858 		"logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1859 		 logical, logical - found_key->objectid, found_key->objectid,
1860 		 found_key->offset, flags, item_size);
1861 
1862 	WARN_ON(!flags_ret);
1863 	if (flags_ret) {
1864 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1865 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1866 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1867 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1868 		else
1869 			BUG_ON(1);
1870 		return 0;
1871 	}
1872 
1873 	return -EIO;
1874 }
1875 
1876 /*
1877  * helper function to iterate extent inline refs. ptr must point to a 0 value
1878  * for the first call and may be modified. it is used to track state.
1879  * if more refs exist, 0 is returned and the next call to
1880  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1881  * next ref. after the last ref was processed, 1 is returned.
1882  * returns <0 on error
1883  */
1884 static int __get_extent_inline_ref(unsigned long *ptr,
1885 				   const struct extent_buffer *eb,
1886 				   const struct btrfs_key *key,
1887 				   const struct btrfs_extent_item *ei,
1888 				   u32 item_size,
1889 				   struct btrfs_extent_inline_ref **out_eiref,
1890 				   int *out_type)
1891 {
1892 	unsigned long end;
1893 	u64 flags;
1894 	struct btrfs_tree_block_info *info;
1895 
1896 	if (!*ptr) {
1897 		/* first call */
1898 		flags = btrfs_extent_flags(eb, ei);
1899 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1900 			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1901 				/* a skinny metadata extent */
1902 				*out_eiref =
1903 				     (struct btrfs_extent_inline_ref *)(ei + 1);
1904 			} else {
1905 				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1906 				info = (struct btrfs_tree_block_info *)(ei + 1);
1907 				*out_eiref =
1908 				   (struct btrfs_extent_inline_ref *)(info + 1);
1909 			}
1910 		} else {
1911 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1912 		}
1913 		*ptr = (unsigned long)*out_eiref;
1914 		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1915 			return -ENOENT;
1916 	}
1917 
1918 	end = (unsigned long)ei + item_size;
1919 	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1920 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1921 
1922 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1923 	WARN_ON(*ptr > end);
1924 	if (*ptr == end)
1925 		return 1; /* last */
1926 
1927 	return 0;
1928 }
1929 
1930 /*
1931  * reads the tree block backref for an extent. tree level and root are returned
1932  * through out_level and out_root. ptr must point to a 0 value for the first
1933  * call and may be modified (see __get_extent_inline_ref comment).
1934  * returns 0 if data was provided, 1 if there was no more data to provide or
1935  * <0 on error.
1936  */
1937 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1938 			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1939 			    u32 item_size, u64 *out_root, u8 *out_level)
1940 {
1941 	int ret;
1942 	int type;
1943 	struct btrfs_extent_inline_ref *eiref;
1944 
1945 	if (*ptr == (unsigned long)-1)
1946 		return 1;
1947 
1948 	while (1) {
1949 		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1950 					      &eiref, &type);
1951 		if (ret < 0)
1952 			return ret;
1953 
1954 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1955 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1956 			break;
1957 
1958 		if (ret == 1)
1959 			return 1;
1960 	}
1961 
1962 	/* we can treat both ref types equally here */
1963 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1964 
1965 	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1966 		struct btrfs_tree_block_info *info;
1967 
1968 		info = (struct btrfs_tree_block_info *)(ei + 1);
1969 		*out_level = btrfs_tree_block_level(eb, info);
1970 	} else {
1971 		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1972 		*out_level = (u8)key->offset;
1973 	}
1974 
1975 	if (ret == 1)
1976 		*ptr = (unsigned long)-1;
1977 
1978 	return 0;
1979 }
1980 
1981 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1982 			     struct extent_inode_elem *inode_list,
1983 			     u64 root, u64 extent_item_objectid,
1984 			     iterate_extent_inodes_t *iterate, void *ctx)
1985 {
1986 	struct extent_inode_elem *eie;
1987 	int ret = 0;
1988 
1989 	for (eie = inode_list; eie; eie = eie->next) {
1990 		btrfs_debug(fs_info,
1991 			    "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1992 			    extent_item_objectid, eie->inum,
1993 			    eie->offset, root);
1994 		ret = iterate(eie->inum, eie->offset, root, ctx);
1995 		if (ret) {
1996 			btrfs_debug(fs_info,
1997 				    "stopping iteration for %llu due to ret=%d",
1998 				    extent_item_objectid, ret);
1999 			break;
2000 		}
2001 	}
2002 
2003 	return ret;
2004 }
2005 
2006 /*
2007  * calls iterate() for every inode that references the extent identified by
2008  * the given parameters.
2009  * when the iterator function returns a non-zero value, iteration stops.
2010  */
2011 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
2012 				u64 extent_item_objectid, u64 extent_item_pos,
2013 				int search_commit_root,
2014 				iterate_extent_inodes_t *iterate, void *ctx)
2015 {
2016 	int ret;
2017 	struct btrfs_trans_handle *trans = NULL;
2018 	struct ulist *refs = NULL;
2019 	struct ulist *roots = NULL;
2020 	struct ulist_node *ref_node = NULL;
2021 	struct ulist_node *root_node = NULL;
2022 	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
2023 	struct ulist_iterator ref_uiter;
2024 	struct ulist_iterator root_uiter;
2025 
2026 	btrfs_debug(fs_info, "resolving all inodes for extent %llu",
2027 			extent_item_objectid);
2028 
2029 	if (!search_commit_root) {
2030 		trans = btrfs_join_transaction(fs_info->extent_root);
2031 		if (IS_ERR(trans))
2032 			return PTR_ERR(trans);
2033 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2034 	} else {
2035 		down_read(&fs_info->commit_root_sem);
2036 	}
2037 
2038 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2039 				   tree_mod_seq_elem.seq, &refs,
2040 				   &extent_item_pos);
2041 	if (ret)
2042 		goto out;
2043 
2044 	ULIST_ITER_INIT(&ref_uiter);
2045 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2046 		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
2047 					     tree_mod_seq_elem.seq, &roots);
2048 		if (ret)
2049 			break;
2050 		ULIST_ITER_INIT(&root_uiter);
2051 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2052 			btrfs_debug(fs_info,
2053 				    "root %llu references leaf %llu, data list %#llx",
2054 				    root_node->val, ref_node->val,
2055 				    ref_node->aux);
2056 			ret = iterate_leaf_refs(fs_info,
2057 						(struct extent_inode_elem *)
2058 						(uintptr_t)ref_node->aux,
2059 						root_node->val,
2060 						extent_item_objectid,
2061 						iterate, ctx);
2062 		}
2063 		ulist_free(roots);
2064 	}
2065 
2066 	free_leaf_list(refs);
2067 out:
2068 	if (!search_commit_root) {
2069 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2070 		btrfs_end_transaction(trans);
2071 	} else {
2072 		up_read(&fs_info->commit_root_sem);
2073 	}
2074 
2075 	return ret;
2076 }
2077 
2078 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2079 				struct btrfs_path *path,
2080 				iterate_extent_inodes_t *iterate, void *ctx)
2081 {
2082 	int ret;
2083 	u64 extent_item_pos;
2084 	u64 flags = 0;
2085 	struct btrfs_key found_key;
2086 	int search_commit_root = path->search_commit_root;
2087 
2088 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2089 	btrfs_release_path(path);
2090 	if (ret < 0)
2091 		return ret;
2092 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2093 		return -EINVAL;
2094 
2095 	extent_item_pos = logical - found_key.objectid;
2096 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
2097 					extent_item_pos, search_commit_root,
2098 					iterate, ctx);
2099 
2100 	return ret;
2101 }
2102 
2103 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2104 			      struct extent_buffer *eb, void *ctx);
2105 
2106 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2107 			      struct btrfs_path *path,
2108 			      iterate_irefs_t *iterate, void *ctx)
2109 {
2110 	int ret = 0;
2111 	int slot;
2112 	u32 cur;
2113 	u32 len;
2114 	u32 name_len;
2115 	u64 parent = 0;
2116 	int found = 0;
2117 	struct extent_buffer *eb;
2118 	struct btrfs_item *item;
2119 	struct btrfs_inode_ref *iref;
2120 	struct btrfs_key found_key;
2121 
2122 	while (!ret) {
2123 		ret = btrfs_find_item(fs_root, path, inum,
2124 				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2125 				&found_key);
2126 
2127 		if (ret < 0)
2128 			break;
2129 		if (ret) {
2130 			ret = found ? 0 : -ENOENT;
2131 			break;
2132 		}
2133 		++found;
2134 
2135 		parent = found_key.offset;
2136 		slot = path->slots[0];
2137 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2138 		if (!eb) {
2139 			ret = -ENOMEM;
2140 			break;
2141 		}
2142 		extent_buffer_get(eb);
2143 		btrfs_tree_read_lock(eb);
2144 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2145 		btrfs_release_path(path);
2146 
2147 		item = btrfs_item_nr(slot);
2148 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2149 
2150 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2151 			name_len = btrfs_inode_ref_name_len(eb, iref);
2152 			/* path must be released before calling iterate()! */
2153 			btrfs_debug(fs_root->fs_info,
2154 				"following ref at offset %u for inode %llu in tree %llu",
2155 				cur, found_key.objectid, fs_root->objectid);
2156 			ret = iterate(parent, name_len,
2157 				      (unsigned long)(iref + 1), eb, ctx);
2158 			if (ret)
2159 				break;
2160 			len = sizeof(*iref) + name_len;
2161 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
2162 		}
2163 		btrfs_tree_read_unlock_blocking(eb);
2164 		free_extent_buffer(eb);
2165 	}
2166 
2167 	btrfs_release_path(path);
2168 
2169 	return ret;
2170 }
2171 
2172 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2173 				 struct btrfs_path *path,
2174 				 iterate_irefs_t *iterate, void *ctx)
2175 {
2176 	int ret;
2177 	int slot;
2178 	u64 offset = 0;
2179 	u64 parent;
2180 	int found = 0;
2181 	struct extent_buffer *eb;
2182 	struct btrfs_inode_extref *extref;
2183 	u32 item_size;
2184 	u32 cur_offset;
2185 	unsigned long ptr;
2186 
2187 	while (1) {
2188 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2189 					    &offset);
2190 		if (ret < 0)
2191 			break;
2192 		if (ret) {
2193 			ret = found ? 0 : -ENOENT;
2194 			break;
2195 		}
2196 		++found;
2197 
2198 		slot = path->slots[0];
2199 		eb = btrfs_clone_extent_buffer(path->nodes[0]);
2200 		if (!eb) {
2201 			ret = -ENOMEM;
2202 			break;
2203 		}
2204 		extent_buffer_get(eb);
2205 
2206 		btrfs_tree_read_lock(eb);
2207 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2208 		btrfs_release_path(path);
2209 
2210 		item_size = btrfs_item_size_nr(eb, slot);
2211 		ptr = btrfs_item_ptr_offset(eb, slot);
2212 		cur_offset = 0;
2213 
2214 		while (cur_offset < item_size) {
2215 			u32 name_len;
2216 
2217 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2218 			parent = btrfs_inode_extref_parent(eb, extref);
2219 			name_len = btrfs_inode_extref_name_len(eb, extref);
2220 			ret = iterate(parent, name_len,
2221 				      (unsigned long)&extref->name, eb, ctx);
2222 			if (ret)
2223 				break;
2224 
2225 			cur_offset += btrfs_inode_extref_name_len(eb, extref);
2226 			cur_offset += sizeof(*extref);
2227 		}
2228 		btrfs_tree_read_unlock_blocking(eb);
2229 		free_extent_buffer(eb);
2230 
2231 		offset++;
2232 	}
2233 
2234 	btrfs_release_path(path);
2235 
2236 	return ret;
2237 }
2238 
2239 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2240 			 struct btrfs_path *path, iterate_irefs_t *iterate,
2241 			 void *ctx)
2242 {
2243 	int ret;
2244 	int found_refs = 0;
2245 
2246 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2247 	if (!ret)
2248 		++found_refs;
2249 	else if (ret != -ENOENT)
2250 		return ret;
2251 
2252 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2253 	if (ret == -ENOENT && found_refs)
2254 		return 0;
2255 
2256 	return ret;
2257 }
2258 
2259 /*
2260  * returns 0 if the path could be dumped (probably truncated)
2261  * returns <0 in case of an error
2262  */
2263 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2264 			 struct extent_buffer *eb, void *ctx)
2265 {
2266 	struct inode_fs_paths *ipath = ctx;
2267 	char *fspath;
2268 	char *fspath_min;
2269 	int i = ipath->fspath->elem_cnt;
2270 	const int s_ptr = sizeof(char *);
2271 	u32 bytes_left;
2272 
2273 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
2274 					ipath->fspath->bytes_left - s_ptr : 0;
2275 
2276 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2277 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2278 				   name_off, eb, inum, fspath_min, bytes_left);
2279 	if (IS_ERR(fspath))
2280 		return PTR_ERR(fspath);
2281 
2282 	if (fspath > fspath_min) {
2283 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2284 		++ipath->fspath->elem_cnt;
2285 		ipath->fspath->bytes_left = fspath - fspath_min;
2286 	} else {
2287 		++ipath->fspath->elem_missed;
2288 		ipath->fspath->bytes_missing += fspath_min - fspath;
2289 		ipath->fspath->bytes_left = 0;
2290 	}
2291 
2292 	return 0;
2293 }
2294 
2295 /*
2296  * this dumps all file system paths to the inode into the ipath struct, provided
2297  * is has been created large enough. each path is zero-terminated and accessed
2298  * from ipath->fspath->val[i].
2299  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2300  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2301  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2302  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2303  * have been needed to return all paths.
2304  */
2305 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2306 {
2307 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2308 			     inode_to_path, ipath);
2309 }
2310 
2311 struct btrfs_data_container *init_data_container(u32 total_bytes)
2312 {
2313 	struct btrfs_data_container *data;
2314 	size_t alloc_bytes;
2315 
2316 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2317 	data = kvmalloc(alloc_bytes, GFP_KERNEL);
2318 	if (!data)
2319 		return ERR_PTR(-ENOMEM);
2320 
2321 	if (total_bytes >= sizeof(*data)) {
2322 		data->bytes_left = total_bytes - sizeof(*data);
2323 		data->bytes_missing = 0;
2324 	} else {
2325 		data->bytes_missing = sizeof(*data) - total_bytes;
2326 		data->bytes_left = 0;
2327 	}
2328 
2329 	data->elem_cnt = 0;
2330 	data->elem_missed = 0;
2331 
2332 	return data;
2333 }
2334 
2335 /*
2336  * allocates space to return multiple file system paths for an inode.
2337  * total_bytes to allocate are passed, note that space usable for actual path
2338  * information will be total_bytes - sizeof(struct inode_fs_paths).
2339  * the returned pointer must be freed with free_ipath() in the end.
2340  */
2341 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2342 					struct btrfs_path *path)
2343 {
2344 	struct inode_fs_paths *ifp;
2345 	struct btrfs_data_container *fspath;
2346 
2347 	fspath = init_data_container(total_bytes);
2348 	if (IS_ERR(fspath))
2349 		return (void *)fspath;
2350 
2351 	ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2352 	if (!ifp) {
2353 		kvfree(fspath);
2354 		return ERR_PTR(-ENOMEM);
2355 	}
2356 
2357 	ifp->btrfs_path = path;
2358 	ifp->fspath = fspath;
2359 	ifp->fs_root = fs_root;
2360 
2361 	return ifp;
2362 }
2363 
2364 void free_ipath(struct inode_fs_paths *ipath)
2365 {
2366 	if (!ipath)
2367 		return;
2368 	kvfree(ipath->fspath);
2369 	kfree(ipath);
2370 }
2371