xref: /openbmc/linux/fs/btrfs/backref.c (revision 425d17a290c0c63785ec65db154a95c6337aeefa)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	struct extent_inode_elem *next;
32 };
33 
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 				struct btrfs_file_extent_item *fi,
36 				u64 extent_item_pos,
37 				struct extent_inode_elem **eie)
38 {
39 	u64 data_offset;
40 	u64 data_len;
41 	struct extent_inode_elem *e;
42 
43 	data_offset = btrfs_file_extent_offset(eb, fi);
44 	data_len = btrfs_file_extent_num_bytes(eb, fi);
45 
46 	if (extent_item_pos < data_offset ||
47 	    extent_item_pos >= data_offset + data_len)
48 		return 1;
49 
50 	e = kmalloc(sizeof(*e), GFP_NOFS);
51 	if (!e)
52 		return -ENOMEM;
53 
54 	e->next = *eie;
55 	e->inum = key->objectid;
56 	e->offset = key->offset + (extent_item_pos - data_offset);
57 	*eie = e;
58 
59 	return 0;
60 }
61 
62 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
63 				u64 extent_item_pos,
64 				struct extent_inode_elem **eie)
65 {
66 	u64 disk_byte;
67 	struct btrfs_key key;
68 	struct btrfs_file_extent_item *fi;
69 	int slot;
70 	int nritems;
71 	int extent_type;
72 	int ret;
73 
74 	/*
75 	 * from the shared data ref, we only have the leaf but we need
76 	 * the key. thus, we must look into all items and see that we
77 	 * find one (some) with a reference to our extent item.
78 	 */
79 	nritems = btrfs_header_nritems(eb);
80 	for (slot = 0; slot < nritems; ++slot) {
81 		btrfs_item_key_to_cpu(eb, &key, slot);
82 		if (key.type != BTRFS_EXTENT_DATA_KEY)
83 			continue;
84 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
85 		extent_type = btrfs_file_extent_type(eb, fi);
86 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
87 			continue;
88 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
89 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
90 		if (disk_byte != wanted_disk_byte)
91 			continue;
92 
93 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
94 		if (ret < 0)
95 			return ret;
96 	}
97 
98 	return 0;
99 }
100 
101 /*
102  * this structure records all encountered refs on the way up to the root
103  */
104 struct __prelim_ref {
105 	struct list_head list;
106 	u64 root_id;
107 	struct btrfs_key key_for_search;
108 	int level;
109 	int count;
110 	struct extent_inode_elem *inode_list;
111 	u64 parent;
112 	u64 wanted_disk_byte;
113 };
114 
115 /*
116  * the rules for all callers of this function are:
117  * - obtaining the parent is the goal
118  * - if you add a key, you must know that it is a correct key
119  * - if you cannot add the parent or a correct key, then we will look into the
120  *   block later to set a correct key
121  *
122  * delayed refs
123  * ============
124  *        backref type | shared | indirect | shared | indirect
125  * information         |   tree |     tree |   data |     data
126  * --------------------+--------+----------+--------+----------
127  *      parent logical |    y   |     -    |    -   |     -
128  *      key to resolve |    -   |     y    |    y   |     y
129  *  tree block logical |    -   |     -    |    -   |     -
130  *  root for resolving |    y   |     y    |    y   |     y
131  *
132  * - column 1:       we've the parent -> done
133  * - column 2, 3, 4: we use the key to find the parent
134  *
135  * on disk refs (inline or keyed)
136  * ==============================
137  *        backref type | shared | indirect | shared | indirect
138  * information         |   tree |     tree |   data |     data
139  * --------------------+--------+----------+--------+----------
140  *      parent logical |    y   |     -    |    y   |     -
141  *      key to resolve |    -   |     -    |    -   |     y
142  *  tree block logical |    y   |     y    |    y   |     y
143  *  root for resolving |    -   |     y    |    y   |     y
144  *
145  * - column 1, 3: we've the parent -> done
146  * - column 2:    we take the first key from the block to find the parent
147  *                (see __add_missing_keys)
148  * - column 4:    we use the key to find the parent
149  *
150  * additional information that's available but not required to find the parent
151  * block might help in merging entries to gain some speed.
152  */
153 
154 static int __add_prelim_ref(struct list_head *head, u64 root_id,
155 			    struct btrfs_key *key, int level,
156 			    u64 parent, u64 wanted_disk_byte, int count)
157 {
158 	struct __prelim_ref *ref;
159 
160 	/* in case we're adding delayed refs, we're holding the refs spinlock */
161 	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
162 	if (!ref)
163 		return -ENOMEM;
164 
165 	ref->root_id = root_id;
166 	if (key)
167 		ref->key_for_search = *key;
168 	else
169 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
170 
171 	ref->inode_list = NULL;
172 	ref->level = level;
173 	ref->count = count;
174 	ref->parent = parent;
175 	ref->wanted_disk_byte = wanted_disk_byte;
176 	list_add_tail(&ref->list, head);
177 
178 	return 0;
179 }
180 
181 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
182 				struct ulist *parents, int level,
183 				struct btrfs_key *key_for_search, u64 time_seq,
184 				u64 wanted_disk_byte,
185 				const u64 *extent_item_pos)
186 {
187 	int ret = 0;
188 	int slot;
189 	struct extent_buffer *eb;
190 	struct btrfs_key key;
191 	struct btrfs_file_extent_item *fi;
192 	struct extent_inode_elem *eie = NULL;
193 	u64 disk_byte;
194 
195 	if (level != 0) {
196 		eb = path->nodes[level];
197 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
198 		if (ret < 0)
199 			return ret;
200 		return 0;
201 	}
202 
203 	/*
204 	 * We normally enter this function with the path already pointing to
205 	 * the first item to check. But sometimes, we may enter it with
206 	 * slot==nritems. In that case, go to the next leaf before we continue.
207 	 */
208 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
209 		ret = btrfs_next_old_leaf(root, path, time_seq);
210 
211 	while (!ret) {
212 		eb = path->nodes[0];
213 		slot = path->slots[0];
214 
215 		btrfs_item_key_to_cpu(eb, &key, slot);
216 
217 		if (key.objectid != key_for_search->objectid ||
218 		    key.type != BTRFS_EXTENT_DATA_KEY)
219 			break;
220 
221 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
222 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
223 
224 		if (disk_byte == wanted_disk_byte) {
225 			eie = NULL;
226 			if (extent_item_pos) {
227 				ret = check_extent_in_eb(&key, eb, fi,
228 						*extent_item_pos,
229 						&eie);
230 				if (ret < 0)
231 					break;
232 			}
233 			if (!ret) {
234 				ret = ulist_add(parents, eb->start,
235 						(uintptr_t)eie, GFP_NOFS);
236 				if (ret < 0)
237 					break;
238 				if (!extent_item_pos) {
239 					ret = btrfs_next_old_leaf(root, path,
240 							time_seq);
241 					continue;
242 				}
243 			}
244 		}
245 		ret = btrfs_next_old_item(root, path, time_seq);
246 	}
247 
248 	if (ret > 0)
249 		ret = 0;
250 	return ret;
251 }
252 
253 /*
254  * resolve an indirect backref in the form (root_id, key, level)
255  * to a logical address
256  */
257 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
258 					int search_commit_root,
259 					u64 time_seq,
260 					struct __prelim_ref *ref,
261 					struct ulist *parents,
262 					const u64 *extent_item_pos)
263 {
264 	struct btrfs_path *path;
265 	struct btrfs_root *root;
266 	struct btrfs_key root_key;
267 	struct extent_buffer *eb;
268 	int ret = 0;
269 	int root_level;
270 	int level = ref->level;
271 
272 	path = btrfs_alloc_path();
273 	if (!path)
274 		return -ENOMEM;
275 	path->search_commit_root = !!search_commit_root;
276 
277 	root_key.objectid = ref->root_id;
278 	root_key.type = BTRFS_ROOT_ITEM_KEY;
279 	root_key.offset = (u64)-1;
280 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
281 	if (IS_ERR(root)) {
282 		ret = PTR_ERR(root);
283 		goto out;
284 	}
285 
286 	rcu_read_lock();
287 	root_level = btrfs_header_level(root->node);
288 	rcu_read_unlock();
289 
290 	if (root_level + 1 == level)
291 		goto out;
292 
293 	path->lowest_level = level;
294 	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
295 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
296 		 "%d for key (%llu %u %llu)\n",
297 		 (unsigned long long)ref->root_id, level, ref->count, ret,
298 		 (unsigned long long)ref->key_for_search.objectid,
299 		 ref->key_for_search.type,
300 		 (unsigned long long)ref->key_for_search.offset);
301 	if (ret < 0)
302 		goto out;
303 
304 	eb = path->nodes[level];
305 	while (!eb) {
306 		if (!level) {
307 			WARN_ON(1);
308 			ret = 1;
309 			goto out;
310 		}
311 		level--;
312 		eb = path->nodes[level];
313 	}
314 
315 	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
316 				time_seq, ref->wanted_disk_byte,
317 				extent_item_pos);
318 out:
319 	btrfs_free_path(path);
320 	return ret;
321 }
322 
323 /*
324  * resolve all indirect backrefs from the list
325  */
326 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
327 				   int search_commit_root, u64 time_seq,
328 				   struct list_head *head,
329 				   const u64 *extent_item_pos)
330 {
331 	int err;
332 	int ret = 0;
333 	struct __prelim_ref *ref;
334 	struct __prelim_ref *ref_safe;
335 	struct __prelim_ref *new_ref;
336 	struct ulist *parents;
337 	struct ulist_node *node;
338 	struct ulist_iterator uiter;
339 
340 	parents = ulist_alloc(GFP_NOFS);
341 	if (!parents)
342 		return -ENOMEM;
343 
344 	/*
345 	 * _safe allows us to insert directly after the current item without
346 	 * iterating over the newly inserted items.
347 	 * we're also allowed to re-assign ref during iteration.
348 	 */
349 	list_for_each_entry_safe(ref, ref_safe, head, list) {
350 		if (ref->parent)	/* already direct */
351 			continue;
352 		if (ref->count == 0)
353 			continue;
354 		err = __resolve_indirect_ref(fs_info, search_commit_root,
355 					     time_seq, ref, parents,
356 					     extent_item_pos);
357 		if (err) {
358 			if (ret == 0)
359 				ret = err;
360 			continue;
361 		}
362 
363 		/* we put the first parent into the ref at hand */
364 		ULIST_ITER_INIT(&uiter);
365 		node = ulist_next(parents, &uiter);
366 		ref->parent = node ? node->val : 0;
367 		ref->inode_list = node ?
368 			(struct extent_inode_elem *)(uintptr_t)node->aux : 0;
369 
370 		/* additional parents require new refs being added here */
371 		while ((node = ulist_next(parents, &uiter))) {
372 			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
373 			if (!new_ref) {
374 				ret = -ENOMEM;
375 				break;
376 			}
377 			memcpy(new_ref, ref, sizeof(*ref));
378 			new_ref->parent = node->val;
379 			new_ref->inode_list = (struct extent_inode_elem *)
380 							(uintptr_t)node->aux;
381 			list_add(&new_ref->list, &ref->list);
382 		}
383 		ulist_reinit(parents);
384 	}
385 
386 	ulist_free(parents);
387 	return ret;
388 }
389 
390 static inline int ref_for_same_block(struct __prelim_ref *ref1,
391 				     struct __prelim_ref *ref2)
392 {
393 	if (ref1->level != ref2->level)
394 		return 0;
395 	if (ref1->root_id != ref2->root_id)
396 		return 0;
397 	if (ref1->key_for_search.type != ref2->key_for_search.type)
398 		return 0;
399 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
400 		return 0;
401 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
402 		return 0;
403 	if (ref1->parent != ref2->parent)
404 		return 0;
405 
406 	return 1;
407 }
408 
409 /*
410  * read tree blocks and add keys where required.
411  */
412 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
413 			      struct list_head *head)
414 {
415 	struct list_head *pos;
416 	struct extent_buffer *eb;
417 
418 	list_for_each(pos, head) {
419 		struct __prelim_ref *ref;
420 		ref = list_entry(pos, struct __prelim_ref, list);
421 
422 		if (ref->parent)
423 			continue;
424 		if (ref->key_for_search.type)
425 			continue;
426 		BUG_ON(!ref->wanted_disk_byte);
427 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
428 				     fs_info->tree_root->leafsize, 0);
429 		BUG_ON(!eb);
430 		btrfs_tree_read_lock(eb);
431 		if (btrfs_header_level(eb) == 0)
432 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
433 		else
434 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
435 		btrfs_tree_read_unlock(eb);
436 		free_extent_buffer(eb);
437 	}
438 	return 0;
439 }
440 
441 /*
442  * merge two lists of backrefs and adjust counts accordingly
443  *
444  * mode = 1: merge identical keys, if key is set
445  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
446  *           additionally, we could even add a key range for the blocks we
447  *           looked into to merge even more (-> replace unresolved refs by those
448  *           having a parent).
449  * mode = 2: merge identical parents
450  */
451 static int __merge_refs(struct list_head *head, int mode)
452 {
453 	struct list_head *pos1;
454 
455 	list_for_each(pos1, head) {
456 		struct list_head *n2;
457 		struct list_head *pos2;
458 		struct __prelim_ref *ref1;
459 
460 		ref1 = list_entry(pos1, struct __prelim_ref, list);
461 
462 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
463 		     pos2 = n2, n2 = pos2->next) {
464 			struct __prelim_ref *ref2;
465 			struct __prelim_ref *xchg;
466 
467 			ref2 = list_entry(pos2, struct __prelim_ref, list);
468 
469 			if (mode == 1) {
470 				if (!ref_for_same_block(ref1, ref2))
471 					continue;
472 				if (!ref1->parent && ref2->parent) {
473 					xchg = ref1;
474 					ref1 = ref2;
475 					ref2 = xchg;
476 				}
477 				ref1->count += ref2->count;
478 			} else {
479 				if (ref1->parent != ref2->parent)
480 					continue;
481 				ref1->count += ref2->count;
482 			}
483 			list_del(&ref2->list);
484 			kfree(ref2);
485 		}
486 
487 	}
488 	return 0;
489 }
490 
491 /*
492  * add all currently queued delayed refs from this head whose seq nr is
493  * smaller or equal that seq to the list
494  */
495 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
496 			      struct list_head *prefs)
497 {
498 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
499 	struct rb_node *n = &head->node.rb_node;
500 	struct btrfs_key key;
501 	struct btrfs_key op_key = {0};
502 	int sgn;
503 	int ret = 0;
504 
505 	if (extent_op && extent_op->update_key)
506 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
507 
508 	while ((n = rb_prev(n))) {
509 		struct btrfs_delayed_ref_node *node;
510 		node = rb_entry(n, struct btrfs_delayed_ref_node,
511 				rb_node);
512 		if (node->bytenr != head->node.bytenr)
513 			break;
514 		WARN_ON(node->is_head);
515 
516 		if (node->seq > seq)
517 			continue;
518 
519 		switch (node->action) {
520 		case BTRFS_ADD_DELAYED_EXTENT:
521 		case BTRFS_UPDATE_DELAYED_HEAD:
522 			WARN_ON(1);
523 			continue;
524 		case BTRFS_ADD_DELAYED_REF:
525 			sgn = 1;
526 			break;
527 		case BTRFS_DROP_DELAYED_REF:
528 			sgn = -1;
529 			break;
530 		default:
531 			BUG_ON(1);
532 		}
533 		switch (node->type) {
534 		case BTRFS_TREE_BLOCK_REF_KEY: {
535 			struct btrfs_delayed_tree_ref *ref;
536 
537 			ref = btrfs_delayed_node_to_tree_ref(node);
538 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
539 					       ref->level + 1, 0, node->bytenr,
540 					       node->ref_mod * sgn);
541 			break;
542 		}
543 		case BTRFS_SHARED_BLOCK_REF_KEY: {
544 			struct btrfs_delayed_tree_ref *ref;
545 
546 			ref = btrfs_delayed_node_to_tree_ref(node);
547 			ret = __add_prelim_ref(prefs, ref->root, NULL,
548 					       ref->level + 1, ref->parent,
549 					       node->bytenr,
550 					       node->ref_mod * sgn);
551 			break;
552 		}
553 		case BTRFS_EXTENT_DATA_REF_KEY: {
554 			struct btrfs_delayed_data_ref *ref;
555 			ref = btrfs_delayed_node_to_data_ref(node);
556 
557 			key.objectid = ref->objectid;
558 			key.type = BTRFS_EXTENT_DATA_KEY;
559 			key.offset = ref->offset;
560 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
561 					       node->bytenr,
562 					       node->ref_mod * sgn);
563 			break;
564 		}
565 		case BTRFS_SHARED_DATA_REF_KEY: {
566 			struct btrfs_delayed_data_ref *ref;
567 
568 			ref = btrfs_delayed_node_to_data_ref(node);
569 
570 			key.objectid = ref->objectid;
571 			key.type = BTRFS_EXTENT_DATA_KEY;
572 			key.offset = ref->offset;
573 			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
574 					       ref->parent, node->bytenr,
575 					       node->ref_mod * sgn);
576 			break;
577 		}
578 		default:
579 			WARN_ON(1);
580 		}
581 		BUG_ON(ret);
582 	}
583 
584 	return 0;
585 }
586 
587 /*
588  * add all inline backrefs for bytenr to the list
589  */
590 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
591 			     struct btrfs_path *path, u64 bytenr,
592 			     int *info_level, struct list_head *prefs)
593 {
594 	int ret = 0;
595 	int slot;
596 	struct extent_buffer *leaf;
597 	struct btrfs_key key;
598 	unsigned long ptr;
599 	unsigned long end;
600 	struct btrfs_extent_item *ei;
601 	u64 flags;
602 	u64 item_size;
603 
604 	/*
605 	 * enumerate all inline refs
606 	 */
607 	leaf = path->nodes[0];
608 	slot = path->slots[0];
609 
610 	item_size = btrfs_item_size_nr(leaf, slot);
611 	BUG_ON(item_size < sizeof(*ei));
612 
613 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
614 	flags = btrfs_extent_flags(leaf, ei);
615 
616 	ptr = (unsigned long)(ei + 1);
617 	end = (unsigned long)ei + item_size;
618 
619 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
620 		struct btrfs_tree_block_info *info;
621 
622 		info = (struct btrfs_tree_block_info *)ptr;
623 		*info_level = btrfs_tree_block_level(leaf, info);
624 		ptr += sizeof(struct btrfs_tree_block_info);
625 		BUG_ON(ptr > end);
626 	} else {
627 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
628 	}
629 
630 	while (ptr < end) {
631 		struct btrfs_extent_inline_ref *iref;
632 		u64 offset;
633 		int type;
634 
635 		iref = (struct btrfs_extent_inline_ref *)ptr;
636 		type = btrfs_extent_inline_ref_type(leaf, iref);
637 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
638 
639 		switch (type) {
640 		case BTRFS_SHARED_BLOCK_REF_KEY:
641 			ret = __add_prelim_ref(prefs, 0, NULL,
642 						*info_level + 1, offset,
643 						bytenr, 1);
644 			break;
645 		case BTRFS_SHARED_DATA_REF_KEY: {
646 			struct btrfs_shared_data_ref *sdref;
647 			int count;
648 
649 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
650 			count = btrfs_shared_data_ref_count(leaf, sdref);
651 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
652 					       bytenr, count);
653 			break;
654 		}
655 		case BTRFS_TREE_BLOCK_REF_KEY:
656 			ret = __add_prelim_ref(prefs, offset, NULL,
657 					       *info_level + 1, 0,
658 					       bytenr, 1);
659 			break;
660 		case BTRFS_EXTENT_DATA_REF_KEY: {
661 			struct btrfs_extent_data_ref *dref;
662 			int count;
663 			u64 root;
664 
665 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
666 			count = btrfs_extent_data_ref_count(leaf, dref);
667 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
668 								      dref);
669 			key.type = BTRFS_EXTENT_DATA_KEY;
670 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
671 			root = btrfs_extent_data_ref_root(leaf, dref);
672 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
673 					       bytenr, count);
674 			break;
675 		}
676 		default:
677 			WARN_ON(1);
678 		}
679 		BUG_ON(ret);
680 		ptr += btrfs_extent_inline_ref_size(type);
681 	}
682 
683 	return 0;
684 }
685 
686 /*
687  * add all non-inline backrefs for bytenr to the list
688  */
689 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
690 			    struct btrfs_path *path, u64 bytenr,
691 			    int info_level, struct list_head *prefs)
692 {
693 	struct btrfs_root *extent_root = fs_info->extent_root;
694 	int ret;
695 	int slot;
696 	struct extent_buffer *leaf;
697 	struct btrfs_key key;
698 
699 	while (1) {
700 		ret = btrfs_next_item(extent_root, path);
701 		if (ret < 0)
702 			break;
703 		if (ret) {
704 			ret = 0;
705 			break;
706 		}
707 
708 		slot = path->slots[0];
709 		leaf = path->nodes[0];
710 		btrfs_item_key_to_cpu(leaf, &key, slot);
711 
712 		if (key.objectid != bytenr)
713 			break;
714 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
715 			continue;
716 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
717 			break;
718 
719 		switch (key.type) {
720 		case BTRFS_SHARED_BLOCK_REF_KEY:
721 			ret = __add_prelim_ref(prefs, 0, NULL,
722 						info_level + 1, key.offset,
723 						bytenr, 1);
724 			break;
725 		case BTRFS_SHARED_DATA_REF_KEY: {
726 			struct btrfs_shared_data_ref *sdref;
727 			int count;
728 
729 			sdref = btrfs_item_ptr(leaf, slot,
730 					      struct btrfs_shared_data_ref);
731 			count = btrfs_shared_data_ref_count(leaf, sdref);
732 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
733 						bytenr, count);
734 			break;
735 		}
736 		case BTRFS_TREE_BLOCK_REF_KEY:
737 			ret = __add_prelim_ref(prefs, key.offset, NULL,
738 					       info_level + 1, 0,
739 					       bytenr, 1);
740 			break;
741 		case BTRFS_EXTENT_DATA_REF_KEY: {
742 			struct btrfs_extent_data_ref *dref;
743 			int count;
744 			u64 root;
745 
746 			dref = btrfs_item_ptr(leaf, slot,
747 					      struct btrfs_extent_data_ref);
748 			count = btrfs_extent_data_ref_count(leaf, dref);
749 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
750 								      dref);
751 			key.type = BTRFS_EXTENT_DATA_KEY;
752 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
753 			root = btrfs_extent_data_ref_root(leaf, dref);
754 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
755 					       bytenr, count);
756 			break;
757 		}
758 		default:
759 			WARN_ON(1);
760 		}
761 		BUG_ON(ret);
762 	}
763 
764 	return ret;
765 }
766 
767 /*
768  * this adds all existing backrefs (inline backrefs, backrefs and delayed
769  * refs) for the given bytenr to the refs list, merges duplicates and resolves
770  * indirect refs to their parent bytenr.
771  * When roots are found, they're added to the roots list
772  *
773  * FIXME some caching might speed things up
774  */
775 static int find_parent_nodes(struct btrfs_trans_handle *trans,
776 			     struct btrfs_fs_info *fs_info, u64 bytenr,
777 			     u64 time_seq, struct ulist *refs,
778 			     struct ulist *roots, const u64 *extent_item_pos)
779 {
780 	struct btrfs_key key;
781 	struct btrfs_path *path;
782 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
783 	struct btrfs_delayed_ref_head *head;
784 	int info_level = 0;
785 	int ret;
786 	int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
787 	struct list_head prefs_delayed;
788 	struct list_head prefs;
789 	struct __prelim_ref *ref;
790 
791 	INIT_LIST_HEAD(&prefs);
792 	INIT_LIST_HEAD(&prefs_delayed);
793 
794 	key.objectid = bytenr;
795 	key.type = BTRFS_EXTENT_ITEM_KEY;
796 	key.offset = (u64)-1;
797 
798 	path = btrfs_alloc_path();
799 	if (!path)
800 		return -ENOMEM;
801 	path->search_commit_root = !!search_commit_root;
802 
803 	/*
804 	 * grab both a lock on the path and a lock on the delayed ref head.
805 	 * We need both to get a consistent picture of how the refs look
806 	 * at a specified point in time
807 	 */
808 again:
809 	head = NULL;
810 
811 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
812 	if (ret < 0)
813 		goto out;
814 	BUG_ON(ret == 0);
815 
816 	if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
817 		/*
818 		 * look if there are updates for this ref queued and lock the
819 		 * head
820 		 */
821 		delayed_refs = &trans->transaction->delayed_refs;
822 		spin_lock(&delayed_refs->lock);
823 		head = btrfs_find_delayed_ref_head(trans, bytenr);
824 		if (head) {
825 			if (!mutex_trylock(&head->mutex)) {
826 				atomic_inc(&head->node.refs);
827 				spin_unlock(&delayed_refs->lock);
828 
829 				btrfs_release_path(path);
830 
831 				/*
832 				 * Mutex was contended, block until it's
833 				 * released and try again
834 				 */
835 				mutex_lock(&head->mutex);
836 				mutex_unlock(&head->mutex);
837 				btrfs_put_delayed_ref(&head->node);
838 				goto again;
839 			}
840 			ret = __add_delayed_refs(head, time_seq,
841 						 &prefs_delayed);
842 			mutex_unlock(&head->mutex);
843 			if (ret) {
844 				spin_unlock(&delayed_refs->lock);
845 				goto out;
846 			}
847 		}
848 		spin_unlock(&delayed_refs->lock);
849 	}
850 
851 	if (path->slots[0]) {
852 		struct extent_buffer *leaf;
853 		int slot;
854 
855 		path->slots[0]--;
856 		leaf = path->nodes[0];
857 		slot = path->slots[0];
858 		btrfs_item_key_to_cpu(leaf, &key, slot);
859 		if (key.objectid == bytenr &&
860 		    key.type == BTRFS_EXTENT_ITEM_KEY) {
861 			ret = __add_inline_refs(fs_info, path, bytenr,
862 						&info_level, &prefs);
863 			if (ret)
864 				goto out;
865 			ret = __add_keyed_refs(fs_info, path, bytenr,
866 					       info_level, &prefs);
867 			if (ret)
868 				goto out;
869 		}
870 	}
871 	btrfs_release_path(path);
872 
873 	list_splice_init(&prefs_delayed, &prefs);
874 
875 	ret = __add_missing_keys(fs_info, &prefs);
876 	if (ret)
877 		goto out;
878 
879 	ret = __merge_refs(&prefs, 1);
880 	if (ret)
881 		goto out;
882 
883 	ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
884 				      &prefs, extent_item_pos);
885 	if (ret)
886 		goto out;
887 
888 	ret = __merge_refs(&prefs, 2);
889 	if (ret)
890 		goto out;
891 
892 	while (!list_empty(&prefs)) {
893 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
894 		list_del(&ref->list);
895 		if (ref->count < 0)
896 			WARN_ON(1);
897 		if (ref->count && ref->root_id && ref->parent == 0) {
898 			/* no parent == root of tree */
899 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
900 			BUG_ON(ret < 0);
901 		}
902 		if (ref->count && ref->parent) {
903 			struct extent_inode_elem *eie = NULL;
904 			if (extent_item_pos && !ref->inode_list) {
905 				u32 bsz;
906 				struct extent_buffer *eb;
907 				bsz = btrfs_level_size(fs_info->extent_root,
908 							info_level);
909 				eb = read_tree_block(fs_info->extent_root,
910 							   ref->parent, bsz, 0);
911 				BUG_ON(!eb);
912 				ret = find_extent_in_eb(eb, bytenr,
913 							*extent_item_pos, &eie);
914 				ref->inode_list = eie;
915 				free_extent_buffer(eb);
916 			}
917 			ret = ulist_add_merge(refs, ref->parent,
918 					      (uintptr_t)ref->inode_list,
919 					      (u64 *)&eie, GFP_NOFS);
920 			if (!ret && extent_item_pos) {
921 				/*
922 				 * we've recorded that parent, so we must extend
923 				 * its inode list here
924 				 */
925 				BUG_ON(!eie);
926 				while (eie->next)
927 					eie = eie->next;
928 				eie->next = ref->inode_list;
929 			}
930 			BUG_ON(ret < 0);
931 		}
932 		kfree(ref);
933 	}
934 
935 out:
936 	btrfs_free_path(path);
937 	while (!list_empty(&prefs)) {
938 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
939 		list_del(&ref->list);
940 		kfree(ref);
941 	}
942 	while (!list_empty(&prefs_delayed)) {
943 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
944 				       list);
945 		list_del(&ref->list);
946 		kfree(ref);
947 	}
948 
949 	return ret;
950 }
951 
952 static void free_leaf_list(struct ulist *blocks)
953 {
954 	struct ulist_node *node = NULL;
955 	struct extent_inode_elem *eie;
956 	struct extent_inode_elem *eie_next;
957 	struct ulist_iterator uiter;
958 
959 	ULIST_ITER_INIT(&uiter);
960 	while ((node = ulist_next(blocks, &uiter))) {
961 		if (!node->aux)
962 			continue;
963 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
964 		for (; eie; eie = eie_next) {
965 			eie_next = eie->next;
966 			kfree(eie);
967 		}
968 		node->aux = 0;
969 	}
970 
971 	ulist_free(blocks);
972 }
973 
974 /*
975  * Finds all leafs with a reference to the specified combination of bytenr and
976  * offset. key_list_head will point to a list of corresponding keys (caller must
977  * free each list element). The leafs will be stored in the leafs ulist, which
978  * must be freed with ulist_free.
979  *
980  * returns 0 on success, <0 on error
981  */
982 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
983 				struct btrfs_fs_info *fs_info, u64 bytenr,
984 				u64 time_seq, struct ulist **leafs,
985 				const u64 *extent_item_pos)
986 {
987 	struct ulist *tmp;
988 	int ret;
989 
990 	tmp = ulist_alloc(GFP_NOFS);
991 	if (!tmp)
992 		return -ENOMEM;
993 	*leafs = ulist_alloc(GFP_NOFS);
994 	if (!*leafs) {
995 		ulist_free(tmp);
996 		return -ENOMEM;
997 	}
998 
999 	ret = find_parent_nodes(trans, fs_info, bytenr,
1000 				time_seq, *leafs, tmp, extent_item_pos);
1001 	ulist_free(tmp);
1002 
1003 	if (ret < 0 && ret != -ENOENT) {
1004 		free_leaf_list(*leafs);
1005 		return ret;
1006 	}
1007 
1008 	return 0;
1009 }
1010 
1011 /*
1012  * walk all backrefs for a given extent to find all roots that reference this
1013  * extent. Walking a backref means finding all extents that reference this
1014  * extent and in turn walk the backrefs of those, too. Naturally this is a
1015  * recursive process, but here it is implemented in an iterative fashion: We
1016  * find all referencing extents for the extent in question and put them on a
1017  * list. In turn, we find all referencing extents for those, further appending
1018  * to the list. The way we iterate the list allows adding more elements after
1019  * the current while iterating. The process stops when we reach the end of the
1020  * list. Found roots are added to the roots list.
1021  *
1022  * returns 0 on success, < 0 on error.
1023  */
1024 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1025 				struct btrfs_fs_info *fs_info, u64 bytenr,
1026 				u64 time_seq, struct ulist **roots)
1027 {
1028 	struct ulist *tmp;
1029 	struct ulist_node *node = NULL;
1030 	struct ulist_iterator uiter;
1031 	int ret;
1032 
1033 	tmp = ulist_alloc(GFP_NOFS);
1034 	if (!tmp)
1035 		return -ENOMEM;
1036 	*roots = ulist_alloc(GFP_NOFS);
1037 	if (!*roots) {
1038 		ulist_free(tmp);
1039 		return -ENOMEM;
1040 	}
1041 
1042 	ULIST_ITER_INIT(&uiter);
1043 	while (1) {
1044 		ret = find_parent_nodes(trans, fs_info, bytenr,
1045 					time_seq, tmp, *roots, NULL);
1046 		if (ret < 0 && ret != -ENOENT) {
1047 			ulist_free(tmp);
1048 			ulist_free(*roots);
1049 			return ret;
1050 		}
1051 		node = ulist_next(tmp, &uiter);
1052 		if (!node)
1053 			break;
1054 		bytenr = node->val;
1055 	}
1056 
1057 	ulist_free(tmp);
1058 	return 0;
1059 }
1060 
1061 
1062 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1063 			struct btrfs_root *fs_root, struct btrfs_path *path,
1064 			struct btrfs_key *found_key)
1065 {
1066 	int ret;
1067 	struct btrfs_key key;
1068 	struct extent_buffer *eb;
1069 
1070 	key.type = key_type;
1071 	key.objectid = inum;
1072 	key.offset = ioff;
1073 
1074 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1075 	if (ret < 0)
1076 		return ret;
1077 
1078 	eb = path->nodes[0];
1079 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1080 		ret = btrfs_next_leaf(fs_root, path);
1081 		if (ret)
1082 			return ret;
1083 		eb = path->nodes[0];
1084 	}
1085 
1086 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1087 	if (found_key->type != key.type || found_key->objectid != key.objectid)
1088 		return 1;
1089 
1090 	return 0;
1091 }
1092 
1093 /*
1094  * this makes the path point to (inum INODE_ITEM ioff)
1095  */
1096 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1097 			struct btrfs_path *path)
1098 {
1099 	struct btrfs_key key;
1100 	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1101 				&key);
1102 }
1103 
1104 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1105 				struct btrfs_path *path,
1106 				struct btrfs_key *found_key)
1107 {
1108 	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1109 				found_key);
1110 }
1111 
1112 /*
1113  * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements
1114  * of the path are separated by '/' and the path is guaranteed to be
1115  * 0-terminated. the path is only given within the current file system.
1116  * Therefore, it never starts with a '/'. the caller is responsible to provide
1117  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1118  * the start point of the resulting string is returned. this pointer is within
1119  * dest, normally.
1120  * in case the path buffer would overflow, the pointer is decremented further
1121  * as if output was written to the buffer, though no more output is actually
1122  * generated. that way, the caller can determine how much space would be
1123  * required for the path to fit into the buffer. in that case, the returned
1124  * value will be smaller than dest. callers must check this!
1125  */
1126 char *btrfs_iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1127 			 struct btrfs_inode_ref *iref,
1128 			 struct extent_buffer *eb_in, u64 parent,
1129 			 char *dest, u32 size)
1130 {
1131 	u32 len;
1132 	int slot;
1133 	u64 next_inum;
1134 	int ret;
1135 	s64 bytes_left = size - 1;
1136 	struct extent_buffer *eb = eb_in;
1137 	struct btrfs_key found_key;
1138 	int leave_spinning = path->leave_spinning;
1139 
1140 	if (bytes_left >= 0)
1141 		dest[bytes_left] = '\0';
1142 
1143 	path->leave_spinning = 1;
1144 	while (1) {
1145 		len = btrfs_inode_ref_name_len(eb, iref);
1146 		bytes_left -= len;
1147 		if (bytes_left >= 0)
1148 			read_extent_buffer(eb, dest + bytes_left,
1149 						(unsigned long)(iref + 1), len);
1150 		if (eb != eb_in) {
1151 			btrfs_tree_read_unlock_blocking(eb);
1152 			free_extent_buffer(eb);
1153 		}
1154 		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1155 		if (ret > 0)
1156 			ret = -ENOENT;
1157 		if (ret)
1158 			break;
1159 		next_inum = found_key.offset;
1160 
1161 		/* regular exit ahead */
1162 		if (parent == next_inum)
1163 			break;
1164 
1165 		slot = path->slots[0];
1166 		eb = path->nodes[0];
1167 		/* make sure we can use eb after releasing the path */
1168 		if (eb != eb_in) {
1169 			atomic_inc(&eb->refs);
1170 			btrfs_tree_read_lock(eb);
1171 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1172 		}
1173 		btrfs_release_path(path);
1174 
1175 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1176 		parent = next_inum;
1177 		--bytes_left;
1178 		if (bytes_left >= 0)
1179 			dest[bytes_left] = '/';
1180 	}
1181 
1182 	btrfs_release_path(path);
1183 	path->leave_spinning = leave_spinning;
1184 
1185 	if (ret)
1186 		return ERR_PTR(ret);
1187 
1188 	return dest + bytes_left;
1189 }
1190 
1191 /*
1192  * this makes the path point to (logical EXTENT_ITEM *)
1193  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1194  * tree blocks and <0 on error.
1195  */
1196 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1197 			struct btrfs_path *path, struct btrfs_key *found_key,
1198 			u64 *flags_ret)
1199 {
1200 	int ret;
1201 	u64 flags;
1202 	u32 item_size;
1203 	struct extent_buffer *eb;
1204 	struct btrfs_extent_item *ei;
1205 	struct btrfs_key key;
1206 
1207 	key.type = BTRFS_EXTENT_ITEM_KEY;
1208 	key.objectid = logical;
1209 	key.offset = (u64)-1;
1210 
1211 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1212 	if (ret < 0)
1213 		return ret;
1214 	ret = btrfs_previous_item(fs_info->extent_root, path,
1215 					0, BTRFS_EXTENT_ITEM_KEY);
1216 	if (ret < 0)
1217 		return ret;
1218 
1219 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1220 	if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1221 	    found_key->objectid > logical ||
1222 	    found_key->objectid + found_key->offset <= logical) {
1223 		pr_debug("logical %llu is not within any extent\n",
1224 			 (unsigned long long)logical);
1225 		return -ENOENT;
1226 	}
1227 
1228 	eb = path->nodes[0];
1229 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1230 	BUG_ON(item_size < sizeof(*ei));
1231 
1232 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1233 	flags = btrfs_extent_flags(eb, ei);
1234 
1235 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1236 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1237 		 (unsigned long long)logical,
1238 		 (unsigned long long)(logical - found_key->objectid),
1239 		 (unsigned long long)found_key->objectid,
1240 		 (unsigned long long)found_key->offset,
1241 		 (unsigned long long)flags, item_size);
1242 
1243 	WARN_ON(!flags_ret);
1244 	if (flags_ret) {
1245 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1246 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1247 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1248 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1249 		else
1250 			BUG_ON(1);
1251 		return 0;
1252 	}
1253 
1254 	return -EIO;
1255 }
1256 
1257 /*
1258  * helper function to iterate extent inline refs. ptr must point to a 0 value
1259  * for the first call and may be modified. it is used to track state.
1260  * if more refs exist, 0 is returned and the next call to
1261  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1262  * next ref. after the last ref was processed, 1 is returned.
1263  * returns <0 on error
1264  */
1265 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1266 				struct btrfs_extent_item *ei, u32 item_size,
1267 				struct btrfs_extent_inline_ref **out_eiref,
1268 				int *out_type)
1269 {
1270 	unsigned long end;
1271 	u64 flags;
1272 	struct btrfs_tree_block_info *info;
1273 
1274 	if (!*ptr) {
1275 		/* first call */
1276 		flags = btrfs_extent_flags(eb, ei);
1277 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1278 			info = (struct btrfs_tree_block_info *)(ei + 1);
1279 			*out_eiref =
1280 				(struct btrfs_extent_inline_ref *)(info + 1);
1281 		} else {
1282 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1283 		}
1284 		*ptr = (unsigned long)*out_eiref;
1285 		if ((void *)*ptr >= (void *)ei + item_size)
1286 			return -ENOENT;
1287 	}
1288 
1289 	end = (unsigned long)ei + item_size;
1290 	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1291 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1292 
1293 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1294 	WARN_ON(*ptr > end);
1295 	if (*ptr == end)
1296 		return 1; /* last */
1297 
1298 	return 0;
1299 }
1300 
1301 /*
1302  * reads the tree block backref for an extent. tree level and root are returned
1303  * through out_level and out_root. ptr must point to a 0 value for the first
1304  * call and may be modified (see __get_extent_inline_ref comment).
1305  * returns 0 if data was provided, 1 if there was no more data to provide or
1306  * <0 on error.
1307  */
1308 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1309 				struct btrfs_extent_item *ei, u32 item_size,
1310 				u64 *out_root, u8 *out_level)
1311 {
1312 	int ret;
1313 	int type;
1314 	struct btrfs_tree_block_info *info;
1315 	struct btrfs_extent_inline_ref *eiref;
1316 
1317 	if (*ptr == (unsigned long)-1)
1318 		return 1;
1319 
1320 	while (1) {
1321 		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1322 						&eiref, &type);
1323 		if (ret < 0)
1324 			return ret;
1325 
1326 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1327 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1328 			break;
1329 
1330 		if (ret == 1)
1331 			return 1;
1332 	}
1333 
1334 	/* we can treat both ref types equally here */
1335 	info = (struct btrfs_tree_block_info *)(ei + 1);
1336 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1337 	*out_level = btrfs_tree_block_level(eb, info);
1338 
1339 	if (ret == 1)
1340 		*ptr = (unsigned long)-1;
1341 
1342 	return 0;
1343 }
1344 
1345 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1346 				u64 root, u64 extent_item_objectid,
1347 				iterate_extent_inodes_t *iterate, void *ctx)
1348 {
1349 	struct extent_inode_elem *eie;
1350 	int ret = 0;
1351 
1352 	for (eie = inode_list; eie; eie = eie->next) {
1353 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1354 			 "root %llu\n", extent_item_objectid,
1355 			 eie->inum, eie->offset, root);
1356 		ret = iterate(eie->inum, eie->offset, root, ctx);
1357 		if (ret) {
1358 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1359 				 extent_item_objectid, ret);
1360 			break;
1361 		}
1362 	}
1363 
1364 	return ret;
1365 }
1366 
1367 /*
1368  * calls iterate() for every inode that references the extent identified by
1369  * the given parameters.
1370  * when the iterator function returns a non-zero value, iteration stops.
1371  */
1372 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1373 				u64 extent_item_objectid, u64 extent_item_pos,
1374 				int search_commit_root,
1375 				iterate_extent_inodes_t *iterate, void *ctx)
1376 {
1377 	int ret;
1378 	struct list_head data_refs = LIST_HEAD_INIT(data_refs);
1379 	struct list_head shared_refs = LIST_HEAD_INIT(shared_refs);
1380 	struct btrfs_trans_handle *trans;
1381 	struct ulist *refs = NULL;
1382 	struct ulist *roots = NULL;
1383 	struct ulist_node *ref_node = NULL;
1384 	struct ulist_node *root_node = NULL;
1385 	struct seq_list tree_mod_seq_elem = {};
1386 	struct ulist_iterator ref_uiter;
1387 	struct ulist_iterator root_uiter;
1388 
1389 	pr_debug("resolving all inodes for extent %llu\n",
1390 			extent_item_objectid);
1391 
1392 	if (search_commit_root) {
1393 		trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1394 	} else {
1395 		trans = btrfs_join_transaction(fs_info->extent_root);
1396 		if (IS_ERR(trans))
1397 			return PTR_ERR(trans);
1398 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1399 	}
1400 
1401 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1402 				   tree_mod_seq_elem.seq, &refs,
1403 				   &extent_item_pos);
1404 	if (ret)
1405 		goto out;
1406 
1407 	ULIST_ITER_INIT(&ref_uiter);
1408 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1409 		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1410 					   tree_mod_seq_elem.seq, &roots);
1411 		if (ret)
1412 			break;
1413 		ULIST_ITER_INIT(&root_uiter);
1414 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1415 			pr_debug("root %llu references leaf %llu, data list "
1416 				 "%#llx\n", root_node->val, ref_node->val,
1417 				 (long long)ref_node->aux);
1418 			ret = iterate_leaf_refs((struct extent_inode_elem *)
1419 						(uintptr_t)ref_node->aux,
1420 						root_node->val,
1421 						extent_item_objectid,
1422 						iterate, ctx);
1423 		}
1424 		ulist_free(roots);
1425 		roots = NULL;
1426 	}
1427 
1428 	free_leaf_list(refs);
1429 	ulist_free(roots);
1430 out:
1431 	if (!search_commit_root) {
1432 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1433 		btrfs_end_transaction(trans, fs_info->extent_root);
1434 	}
1435 
1436 	return ret;
1437 }
1438 
1439 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1440 				struct btrfs_path *path,
1441 				iterate_extent_inodes_t *iterate, void *ctx)
1442 {
1443 	int ret;
1444 	u64 extent_item_pos;
1445 	u64 flags = 0;
1446 	struct btrfs_key found_key;
1447 	int search_commit_root = path->search_commit_root;
1448 
1449 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1450 	btrfs_release_path(path);
1451 	if (ret < 0)
1452 		return ret;
1453 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1454 		return -EINVAL;
1455 
1456 	extent_item_pos = logical - found_key.objectid;
1457 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1458 					extent_item_pos, search_commit_root,
1459 					iterate, ctx);
1460 
1461 	return ret;
1462 }
1463 
1464 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1465 				struct btrfs_path *path,
1466 				iterate_irefs_t *iterate, void *ctx)
1467 {
1468 	int ret = 0;
1469 	int slot;
1470 	u32 cur;
1471 	u32 len;
1472 	u32 name_len;
1473 	u64 parent = 0;
1474 	int found = 0;
1475 	struct extent_buffer *eb;
1476 	struct btrfs_item *item;
1477 	struct btrfs_inode_ref *iref;
1478 	struct btrfs_key found_key;
1479 
1480 	while (!ret) {
1481 		path->leave_spinning = 1;
1482 		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1483 					&found_key);
1484 		if (ret < 0)
1485 			break;
1486 		if (ret) {
1487 			ret = found ? 0 : -ENOENT;
1488 			break;
1489 		}
1490 		++found;
1491 
1492 		parent = found_key.offset;
1493 		slot = path->slots[0];
1494 		eb = path->nodes[0];
1495 		/* make sure we can use eb after releasing the path */
1496 		atomic_inc(&eb->refs);
1497 		btrfs_tree_read_lock(eb);
1498 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1499 		btrfs_release_path(path);
1500 
1501 		item = btrfs_item_nr(eb, slot);
1502 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1503 
1504 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1505 			name_len = btrfs_inode_ref_name_len(eb, iref);
1506 			/* path must be released before calling iterate()! */
1507 			pr_debug("following ref at offset %u for inode %llu in "
1508 				 "tree %llu\n", cur,
1509 				 (unsigned long long)found_key.objectid,
1510 				 (unsigned long long)fs_root->objectid);
1511 			ret = iterate(parent, iref, eb, ctx);
1512 			if (ret)
1513 				break;
1514 			len = sizeof(*iref) + name_len;
1515 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1516 		}
1517 		btrfs_tree_read_unlock_blocking(eb);
1518 		free_extent_buffer(eb);
1519 	}
1520 
1521 	btrfs_release_path(path);
1522 
1523 	return ret;
1524 }
1525 
1526 /*
1527  * returns 0 if the path could be dumped (probably truncated)
1528  * returns <0 in case of an error
1529  */
1530 static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref,
1531 				struct extent_buffer *eb, void *ctx)
1532 {
1533 	struct inode_fs_paths *ipath = ctx;
1534 	char *fspath;
1535 	char *fspath_min;
1536 	int i = ipath->fspath->elem_cnt;
1537 	const int s_ptr = sizeof(char *);
1538 	u32 bytes_left;
1539 
1540 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1541 					ipath->fspath->bytes_left - s_ptr : 0;
1542 
1543 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1544 	fspath = btrfs_iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb,
1545 				inum, fspath_min, bytes_left);
1546 	if (IS_ERR(fspath))
1547 		return PTR_ERR(fspath);
1548 
1549 	if (fspath > fspath_min) {
1550 		pr_debug("path resolved: %s\n", fspath);
1551 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1552 		++ipath->fspath->elem_cnt;
1553 		ipath->fspath->bytes_left = fspath - fspath_min;
1554 	} else {
1555 		pr_debug("missed path, not enough space. missing bytes: %lu, "
1556 			 "constructed so far: %s\n",
1557 			 (unsigned long)(fspath_min - fspath), fspath_min);
1558 		++ipath->fspath->elem_missed;
1559 		ipath->fspath->bytes_missing += fspath_min - fspath;
1560 		ipath->fspath->bytes_left = 0;
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 /*
1567  * this dumps all file system paths to the inode into the ipath struct, provided
1568  * is has been created large enough. each path is zero-terminated and accessed
1569  * from ipath->fspath->val[i].
1570  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1571  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1572  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1573  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1574  * have been needed to return all paths.
1575  */
1576 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1577 {
1578 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1579 				inode_to_path, ipath);
1580 }
1581 
1582 struct btrfs_data_container *init_data_container(u32 total_bytes)
1583 {
1584 	struct btrfs_data_container *data;
1585 	size_t alloc_bytes;
1586 
1587 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1588 	data = vmalloc(alloc_bytes);
1589 	if (!data)
1590 		return ERR_PTR(-ENOMEM);
1591 
1592 	if (total_bytes >= sizeof(*data)) {
1593 		data->bytes_left = total_bytes - sizeof(*data);
1594 		data->bytes_missing = 0;
1595 	} else {
1596 		data->bytes_missing = sizeof(*data) - total_bytes;
1597 		data->bytes_left = 0;
1598 	}
1599 
1600 	data->elem_cnt = 0;
1601 	data->elem_missed = 0;
1602 
1603 	return data;
1604 }
1605 
1606 /*
1607  * allocates space to return multiple file system paths for an inode.
1608  * total_bytes to allocate are passed, note that space usable for actual path
1609  * information will be total_bytes - sizeof(struct inode_fs_paths).
1610  * the returned pointer must be freed with free_ipath() in the end.
1611  */
1612 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1613 					struct btrfs_path *path)
1614 {
1615 	struct inode_fs_paths *ifp;
1616 	struct btrfs_data_container *fspath;
1617 
1618 	fspath = init_data_container(total_bytes);
1619 	if (IS_ERR(fspath))
1620 		return (void *)fspath;
1621 
1622 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1623 	if (!ifp) {
1624 		kfree(fspath);
1625 		return ERR_PTR(-ENOMEM);
1626 	}
1627 
1628 	ifp->btrfs_path = path;
1629 	ifp->fspath = fspath;
1630 	ifp->fs_root = fs_root;
1631 
1632 	return ifp;
1633 }
1634 
1635 void free_ipath(struct inode_fs_paths *ipath)
1636 {
1637 	if (!ipath)
1638 		return;
1639 	vfree(ipath->fspath);
1640 	kfree(ipath);
1641 }
1642