xref: /openbmc/linux/fs/btrfs/backref.c (revision 35a3621beb3e2face3e7954eaee20a8fa0043fac)
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/vmalloc.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "backref.h"
23 #include "ulist.h"
24 #include "transaction.h"
25 #include "delayed-ref.h"
26 #include "locking.h"
27 
28 struct extent_inode_elem {
29 	u64 inum;
30 	u64 offset;
31 	struct extent_inode_elem *next;
32 };
33 
34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
35 				struct btrfs_file_extent_item *fi,
36 				u64 extent_item_pos,
37 				struct extent_inode_elem **eie)
38 {
39 	u64 offset = 0;
40 	struct extent_inode_elem *e;
41 
42 	if (!btrfs_file_extent_compression(eb, fi) &&
43 	    !btrfs_file_extent_encryption(eb, fi) &&
44 	    !btrfs_file_extent_other_encoding(eb, fi)) {
45 		u64 data_offset;
46 		u64 data_len;
47 
48 		data_offset = btrfs_file_extent_offset(eb, fi);
49 		data_len = btrfs_file_extent_num_bytes(eb, fi);
50 
51 		if (extent_item_pos < data_offset ||
52 		    extent_item_pos >= data_offset + data_len)
53 			return 1;
54 		offset = extent_item_pos - data_offset;
55 	}
56 
57 	e = kmalloc(sizeof(*e), GFP_NOFS);
58 	if (!e)
59 		return -ENOMEM;
60 
61 	e->next = *eie;
62 	e->inum = key->objectid;
63 	e->offset = key->offset + offset;
64 	*eie = e;
65 
66 	return 0;
67 }
68 
69 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
70 				u64 extent_item_pos,
71 				struct extent_inode_elem **eie)
72 {
73 	u64 disk_byte;
74 	struct btrfs_key key;
75 	struct btrfs_file_extent_item *fi;
76 	int slot;
77 	int nritems;
78 	int extent_type;
79 	int ret;
80 
81 	/*
82 	 * from the shared data ref, we only have the leaf but we need
83 	 * the key. thus, we must look into all items and see that we
84 	 * find one (some) with a reference to our extent item.
85 	 */
86 	nritems = btrfs_header_nritems(eb);
87 	for (slot = 0; slot < nritems; ++slot) {
88 		btrfs_item_key_to_cpu(eb, &key, slot);
89 		if (key.type != BTRFS_EXTENT_DATA_KEY)
90 			continue;
91 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
92 		extent_type = btrfs_file_extent_type(eb, fi);
93 		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
94 			continue;
95 		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
96 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
97 		if (disk_byte != wanted_disk_byte)
98 			continue;
99 
100 		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
101 		if (ret < 0)
102 			return ret;
103 	}
104 
105 	return 0;
106 }
107 
108 /*
109  * this structure records all encountered refs on the way up to the root
110  */
111 struct __prelim_ref {
112 	struct list_head list;
113 	u64 root_id;
114 	struct btrfs_key key_for_search;
115 	int level;
116 	int count;
117 	struct extent_inode_elem *inode_list;
118 	u64 parent;
119 	u64 wanted_disk_byte;
120 };
121 
122 /*
123  * the rules for all callers of this function are:
124  * - obtaining the parent is the goal
125  * - if you add a key, you must know that it is a correct key
126  * - if you cannot add the parent or a correct key, then we will look into the
127  *   block later to set a correct key
128  *
129  * delayed refs
130  * ============
131  *        backref type | shared | indirect | shared | indirect
132  * information         |   tree |     tree |   data |     data
133  * --------------------+--------+----------+--------+----------
134  *      parent logical |    y   |     -    |    -   |     -
135  *      key to resolve |    -   |     y    |    y   |     y
136  *  tree block logical |    -   |     -    |    -   |     -
137  *  root for resolving |    y   |     y    |    y   |     y
138  *
139  * - column 1:       we've the parent -> done
140  * - column 2, 3, 4: we use the key to find the parent
141  *
142  * on disk refs (inline or keyed)
143  * ==============================
144  *        backref type | shared | indirect | shared | indirect
145  * information         |   tree |     tree |   data |     data
146  * --------------------+--------+----------+--------+----------
147  *      parent logical |    y   |     -    |    y   |     -
148  *      key to resolve |    -   |     -    |    -   |     y
149  *  tree block logical |    y   |     y    |    y   |     y
150  *  root for resolving |    -   |     y    |    y   |     y
151  *
152  * - column 1, 3: we've the parent -> done
153  * - column 2:    we take the first key from the block to find the parent
154  *                (see __add_missing_keys)
155  * - column 4:    we use the key to find the parent
156  *
157  * additional information that's available but not required to find the parent
158  * block might help in merging entries to gain some speed.
159  */
160 
161 static int __add_prelim_ref(struct list_head *head, u64 root_id,
162 			    struct btrfs_key *key, int level,
163 			    u64 parent, u64 wanted_disk_byte, int count)
164 {
165 	struct __prelim_ref *ref;
166 
167 	/* in case we're adding delayed refs, we're holding the refs spinlock */
168 	ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
169 	if (!ref)
170 		return -ENOMEM;
171 
172 	ref->root_id = root_id;
173 	if (key)
174 		ref->key_for_search = *key;
175 	else
176 		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
177 
178 	ref->inode_list = NULL;
179 	ref->level = level;
180 	ref->count = count;
181 	ref->parent = parent;
182 	ref->wanted_disk_byte = wanted_disk_byte;
183 	list_add_tail(&ref->list, head);
184 
185 	return 0;
186 }
187 
188 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
189 				struct ulist *parents, int level,
190 				struct btrfs_key *key_for_search, u64 time_seq,
191 				u64 wanted_disk_byte,
192 				const u64 *extent_item_pos)
193 {
194 	int ret = 0;
195 	int slot;
196 	struct extent_buffer *eb;
197 	struct btrfs_key key;
198 	struct btrfs_file_extent_item *fi;
199 	struct extent_inode_elem *eie = NULL, *old = NULL;
200 	u64 disk_byte;
201 
202 	if (level != 0) {
203 		eb = path->nodes[level];
204 		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
205 		if (ret < 0)
206 			return ret;
207 		return 0;
208 	}
209 
210 	/*
211 	 * We normally enter this function with the path already pointing to
212 	 * the first item to check. But sometimes, we may enter it with
213 	 * slot==nritems. In that case, go to the next leaf before we continue.
214 	 */
215 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
216 		ret = btrfs_next_old_leaf(root, path, time_seq);
217 
218 	while (!ret) {
219 		eb = path->nodes[0];
220 		slot = path->slots[0];
221 
222 		btrfs_item_key_to_cpu(eb, &key, slot);
223 
224 		if (key.objectid != key_for_search->objectid ||
225 		    key.type != BTRFS_EXTENT_DATA_KEY)
226 			break;
227 
228 		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
229 		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
230 
231 		if (disk_byte == wanted_disk_byte) {
232 			eie = NULL;
233 			old = NULL;
234 			if (extent_item_pos) {
235 				ret = check_extent_in_eb(&key, eb, fi,
236 						*extent_item_pos,
237 						&eie);
238 				if (ret < 0)
239 					break;
240 			}
241 			if (ret > 0)
242 				goto next;
243 			ret = ulist_add_merge(parents, eb->start,
244 					      (uintptr_t)eie,
245 					      (u64 *)&old, GFP_NOFS);
246 			if (ret < 0)
247 				break;
248 			if (!ret && extent_item_pos) {
249 				while (old->next)
250 					old = old->next;
251 				old->next = eie;
252 			}
253 		}
254 next:
255 		ret = btrfs_next_old_item(root, path, time_seq);
256 	}
257 
258 	if (ret > 0)
259 		ret = 0;
260 	return ret;
261 }
262 
263 /*
264  * resolve an indirect backref in the form (root_id, key, level)
265  * to a logical address
266  */
267 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
268 				  struct btrfs_path *path, u64 time_seq,
269 				  struct __prelim_ref *ref,
270 				  struct ulist *parents,
271 				  const u64 *extent_item_pos)
272 {
273 	struct btrfs_root *root;
274 	struct btrfs_key root_key;
275 	struct extent_buffer *eb;
276 	int ret = 0;
277 	int root_level;
278 	int level = ref->level;
279 
280 	root_key.objectid = ref->root_id;
281 	root_key.type = BTRFS_ROOT_ITEM_KEY;
282 	root_key.offset = (u64)-1;
283 	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
284 	if (IS_ERR(root)) {
285 		ret = PTR_ERR(root);
286 		goto out;
287 	}
288 
289 	root_level = btrfs_old_root_level(root, time_seq);
290 
291 	if (root_level + 1 == level)
292 		goto out;
293 
294 	path->lowest_level = level;
295 	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
296 	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
297 		 "%d for key (%llu %u %llu)\n",
298 		 (unsigned long long)ref->root_id, level, ref->count, ret,
299 		 (unsigned long long)ref->key_for_search.objectid,
300 		 ref->key_for_search.type,
301 		 (unsigned long long)ref->key_for_search.offset);
302 	if (ret < 0)
303 		goto out;
304 
305 	eb = path->nodes[level];
306 	while (!eb) {
307 		if (!level) {
308 			WARN_ON(1);
309 			ret = 1;
310 			goto out;
311 		}
312 		level--;
313 		eb = path->nodes[level];
314 	}
315 
316 	ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
317 				time_seq, ref->wanted_disk_byte,
318 				extent_item_pos);
319 out:
320 	path->lowest_level = 0;
321 	btrfs_release_path(path);
322 	return ret;
323 }
324 
325 /*
326  * resolve all indirect backrefs from the list
327  */
328 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
329 				   struct btrfs_path *path, u64 time_seq,
330 				   struct list_head *head,
331 				   const u64 *extent_item_pos)
332 {
333 	int err;
334 	int ret = 0;
335 	struct __prelim_ref *ref;
336 	struct __prelim_ref *ref_safe;
337 	struct __prelim_ref *new_ref;
338 	struct ulist *parents;
339 	struct ulist_node *node;
340 	struct ulist_iterator uiter;
341 
342 	parents = ulist_alloc(GFP_NOFS);
343 	if (!parents)
344 		return -ENOMEM;
345 
346 	/*
347 	 * _safe allows us to insert directly after the current item without
348 	 * iterating over the newly inserted items.
349 	 * we're also allowed to re-assign ref during iteration.
350 	 */
351 	list_for_each_entry_safe(ref, ref_safe, head, list) {
352 		if (ref->parent)	/* already direct */
353 			continue;
354 		if (ref->count == 0)
355 			continue;
356 		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
357 					     parents, extent_item_pos);
358 		if (err == -ENOMEM)
359 			goto out;
360 		if (err)
361 			continue;
362 
363 		/* we put the first parent into the ref at hand */
364 		ULIST_ITER_INIT(&uiter);
365 		node = ulist_next(parents, &uiter);
366 		ref->parent = node ? node->val : 0;
367 		ref->inode_list = node ?
368 			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
369 
370 		/* additional parents require new refs being added here */
371 		while ((node = ulist_next(parents, &uiter))) {
372 			new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
373 			if (!new_ref) {
374 				ret = -ENOMEM;
375 				goto out;
376 			}
377 			memcpy(new_ref, ref, sizeof(*ref));
378 			new_ref->parent = node->val;
379 			new_ref->inode_list = (struct extent_inode_elem *)
380 							(uintptr_t)node->aux;
381 			list_add(&new_ref->list, &ref->list);
382 		}
383 		ulist_reinit(parents);
384 	}
385 out:
386 	ulist_free(parents);
387 	return ret;
388 }
389 
390 static inline int ref_for_same_block(struct __prelim_ref *ref1,
391 				     struct __prelim_ref *ref2)
392 {
393 	if (ref1->level != ref2->level)
394 		return 0;
395 	if (ref1->root_id != ref2->root_id)
396 		return 0;
397 	if (ref1->key_for_search.type != ref2->key_for_search.type)
398 		return 0;
399 	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
400 		return 0;
401 	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
402 		return 0;
403 	if (ref1->parent != ref2->parent)
404 		return 0;
405 
406 	return 1;
407 }
408 
409 /*
410  * read tree blocks and add keys where required.
411  */
412 static int __add_missing_keys(struct btrfs_fs_info *fs_info,
413 			      struct list_head *head)
414 {
415 	struct list_head *pos;
416 	struct extent_buffer *eb;
417 
418 	list_for_each(pos, head) {
419 		struct __prelim_ref *ref;
420 		ref = list_entry(pos, struct __prelim_ref, list);
421 
422 		if (ref->parent)
423 			continue;
424 		if (ref->key_for_search.type)
425 			continue;
426 		BUG_ON(!ref->wanted_disk_byte);
427 		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
428 				     fs_info->tree_root->leafsize, 0);
429 		if (!eb || !extent_buffer_uptodate(eb)) {
430 			free_extent_buffer(eb);
431 			return -EIO;
432 		}
433 		btrfs_tree_read_lock(eb);
434 		if (btrfs_header_level(eb) == 0)
435 			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
436 		else
437 			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
438 		btrfs_tree_read_unlock(eb);
439 		free_extent_buffer(eb);
440 	}
441 	return 0;
442 }
443 
444 /*
445  * merge two lists of backrefs and adjust counts accordingly
446  *
447  * mode = 1: merge identical keys, if key is set
448  *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
449  *           additionally, we could even add a key range for the blocks we
450  *           looked into to merge even more (-> replace unresolved refs by those
451  *           having a parent).
452  * mode = 2: merge identical parents
453  */
454 static void __merge_refs(struct list_head *head, int mode)
455 {
456 	struct list_head *pos1;
457 
458 	list_for_each(pos1, head) {
459 		struct list_head *n2;
460 		struct list_head *pos2;
461 		struct __prelim_ref *ref1;
462 
463 		ref1 = list_entry(pos1, struct __prelim_ref, list);
464 
465 		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
466 		     pos2 = n2, n2 = pos2->next) {
467 			struct __prelim_ref *ref2;
468 			struct __prelim_ref *xchg;
469 			struct extent_inode_elem *eie;
470 
471 			ref2 = list_entry(pos2, struct __prelim_ref, list);
472 
473 			if (mode == 1) {
474 				if (!ref_for_same_block(ref1, ref2))
475 					continue;
476 				if (!ref1->parent && ref2->parent) {
477 					xchg = ref1;
478 					ref1 = ref2;
479 					ref2 = xchg;
480 				}
481 			} else {
482 				if (ref1->parent != ref2->parent)
483 					continue;
484 			}
485 
486 			eie = ref1->inode_list;
487 			while (eie && eie->next)
488 				eie = eie->next;
489 			if (eie)
490 				eie->next = ref2->inode_list;
491 			else
492 				ref1->inode_list = ref2->inode_list;
493 			ref1->count += ref2->count;
494 
495 			list_del(&ref2->list);
496 			kfree(ref2);
497 		}
498 
499 	}
500 }
501 
502 /*
503  * add all currently queued delayed refs from this head whose seq nr is
504  * smaller or equal that seq to the list
505  */
506 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
507 			      struct list_head *prefs)
508 {
509 	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
510 	struct rb_node *n = &head->node.rb_node;
511 	struct btrfs_key key;
512 	struct btrfs_key op_key = {0};
513 	int sgn;
514 	int ret = 0;
515 
516 	if (extent_op && extent_op->update_key)
517 		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
518 
519 	while ((n = rb_prev(n))) {
520 		struct btrfs_delayed_ref_node *node;
521 		node = rb_entry(n, struct btrfs_delayed_ref_node,
522 				rb_node);
523 		if (node->bytenr != head->node.bytenr)
524 			break;
525 		WARN_ON(node->is_head);
526 
527 		if (node->seq > seq)
528 			continue;
529 
530 		switch (node->action) {
531 		case BTRFS_ADD_DELAYED_EXTENT:
532 		case BTRFS_UPDATE_DELAYED_HEAD:
533 			WARN_ON(1);
534 			continue;
535 		case BTRFS_ADD_DELAYED_REF:
536 			sgn = 1;
537 			break;
538 		case BTRFS_DROP_DELAYED_REF:
539 			sgn = -1;
540 			break;
541 		default:
542 			BUG_ON(1);
543 		}
544 		switch (node->type) {
545 		case BTRFS_TREE_BLOCK_REF_KEY: {
546 			struct btrfs_delayed_tree_ref *ref;
547 
548 			ref = btrfs_delayed_node_to_tree_ref(node);
549 			ret = __add_prelim_ref(prefs, ref->root, &op_key,
550 					       ref->level + 1, 0, node->bytenr,
551 					       node->ref_mod * sgn);
552 			break;
553 		}
554 		case BTRFS_SHARED_BLOCK_REF_KEY: {
555 			struct btrfs_delayed_tree_ref *ref;
556 
557 			ref = btrfs_delayed_node_to_tree_ref(node);
558 			ret = __add_prelim_ref(prefs, ref->root, NULL,
559 					       ref->level + 1, ref->parent,
560 					       node->bytenr,
561 					       node->ref_mod * sgn);
562 			break;
563 		}
564 		case BTRFS_EXTENT_DATA_REF_KEY: {
565 			struct btrfs_delayed_data_ref *ref;
566 			ref = btrfs_delayed_node_to_data_ref(node);
567 
568 			key.objectid = ref->objectid;
569 			key.type = BTRFS_EXTENT_DATA_KEY;
570 			key.offset = ref->offset;
571 			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
572 					       node->bytenr,
573 					       node->ref_mod * sgn);
574 			break;
575 		}
576 		case BTRFS_SHARED_DATA_REF_KEY: {
577 			struct btrfs_delayed_data_ref *ref;
578 
579 			ref = btrfs_delayed_node_to_data_ref(node);
580 
581 			key.objectid = ref->objectid;
582 			key.type = BTRFS_EXTENT_DATA_KEY;
583 			key.offset = ref->offset;
584 			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
585 					       ref->parent, node->bytenr,
586 					       node->ref_mod * sgn);
587 			break;
588 		}
589 		default:
590 			WARN_ON(1);
591 		}
592 		if (ret)
593 			return ret;
594 	}
595 
596 	return 0;
597 }
598 
599 /*
600  * add all inline backrefs for bytenr to the list
601  */
602 static int __add_inline_refs(struct btrfs_fs_info *fs_info,
603 			     struct btrfs_path *path, u64 bytenr,
604 			     int *info_level, struct list_head *prefs)
605 {
606 	int ret = 0;
607 	int slot;
608 	struct extent_buffer *leaf;
609 	struct btrfs_key key;
610 	struct btrfs_key found_key;
611 	unsigned long ptr;
612 	unsigned long end;
613 	struct btrfs_extent_item *ei;
614 	u64 flags;
615 	u64 item_size;
616 
617 	/*
618 	 * enumerate all inline refs
619 	 */
620 	leaf = path->nodes[0];
621 	slot = path->slots[0];
622 
623 	item_size = btrfs_item_size_nr(leaf, slot);
624 	BUG_ON(item_size < sizeof(*ei));
625 
626 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
627 	flags = btrfs_extent_flags(leaf, ei);
628 	btrfs_item_key_to_cpu(leaf, &found_key, slot);
629 
630 	ptr = (unsigned long)(ei + 1);
631 	end = (unsigned long)ei + item_size;
632 
633 	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
634 	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
635 		struct btrfs_tree_block_info *info;
636 
637 		info = (struct btrfs_tree_block_info *)ptr;
638 		*info_level = btrfs_tree_block_level(leaf, info);
639 		ptr += sizeof(struct btrfs_tree_block_info);
640 		BUG_ON(ptr > end);
641 	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
642 		*info_level = found_key.offset;
643 	} else {
644 		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
645 	}
646 
647 	while (ptr < end) {
648 		struct btrfs_extent_inline_ref *iref;
649 		u64 offset;
650 		int type;
651 
652 		iref = (struct btrfs_extent_inline_ref *)ptr;
653 		type = btrfs_extent_inline_ref_type(leaf, iref);
654 		offset = btrfs_extent_inline_ref_offset(leaf, iref);
655 
656 		switch (type) {
657 		case BTRFS_SHARED_BLOCK_REF_KEY:
658 			ret = __add_prelim_ref(prefs, 0, NULL,
659 						*info_level + 1, offset,
660 						bytenr, 1);
661 			break;
662 		case BTRFS_SHARED_DATA_REF_KEY: {
663 			struct btrfs_shared_data_ref *sdref;
664 			int count;
665 
666 			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
667 			count = btrfs_shared_data_ref_count(leaf, sdref);
668 			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
669 					       bytenr, count);
670 			break;
671 		}
672 		case BTRFS_TREE_BLOCK_REF_KEY:
673 			ret = __add_prelim_ref(prefs, offset, NULL,
674 					       *info_level + 1, 0,
675 					       bytenr, 1);
676 			break;
677 		case BTRFS_EXTENT_DATA_REF_KEY: {
678 			struct btrfs_extent_data_ref *dref;
679 			int count;
680 			u64 root;
681 
682 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
683 			count = btrfs_extent_data_ref_count(leaf, dref);
684 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
685 								      dref);
686 			key.type = BTRFS_EXTENT_DATA_KEY;
687 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
688 			root = btrfs_extent_data_ref_root(leaf, dref);
689 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
690 					       bytenr, count);
691 			break;
692 		}
693 		default:
694 			WARN_ON(1);
695 		}
696 		if (ret)
697 			return ret;
698 		ptr += btrfs_extent_inline_ref_size(type);
699 	}
700 
701 	return 0;
702 }
703 
704 /*
705  * add all non-inline backrefs for bytenr to the list
706  */
707 static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
708 			    struct btrfs_path *path, u64 bytenr,
709 			    int info_level, struct list_head *prefs)
710 {
711 	struct btrfs_root *extent_root = fs_info->extent_root;
712 	int ret;
713 	int slot;
714 	struct extent_buffer *leaf;
715 	struct btrfs_key key;
716 
717 	while (1) {
718 		ret = btrfs_next_item(extent_root, path);
719 		if (ret < 0)
720 			break;
721 		if (ret) {
722 			ret = 0;
723 			break;
724 		}
725 
726 		slot = path->slots[0];
727 		leaf = path->nodes[0];
728 		btrfs_item_key_to_cpu(leaf, &key, slot);
729 
730 		if (key.objectid != bytenr)
731 			break;
732 		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
733 			continue;
734 		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
735 			break;
736 
737 		switch (key.type) {
738 		case BTRFS_SHARED_BLOCK_REF_KEY:
739 			ret = __add_prelim_ref(prefs, 0, NULL,
740 						info_level + 1, key.offset,
741 						bytenr, 1);
742 			break;
743 		case BTRFS_SHARED_DATA_REF_KEY: {
744 			struct btrfs_shared_data_ref *sdref;
745 			int count;
746 
747 			sdref = btrfs_item_ptr(leaf, slot,
748 					      struct btrfs_shared_data_ref);
749 			count = btrfs_shared_data_ref_count(leaf, sdref);
750 			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
751 						bytenr, count);
752 			break;
753 		}
754 		case BTRFS_TREE_BLOCK_REF_KEY:
755 			ret = __add_prelim_ref(prefs, key.offset, NULL,
756 					       info_level + 1, 0,
757 					       bytenr, 1);
758 			break;
759 		case BTRFS_EXTENT_DATA_REF_KEY: {
760 			struct btrfs_extent_data_ref *dref;
761 			int count;
762 			u64 root;
763 
764 			dref = btrfs_item_ptr(leaf, slot,
765 					      struct btrfs_extent_data_ref);
766 			count = btrfs_extent_data_ref_count(leaf, dref);
767 			key.objectid = btrfs_extent_data_ref_objectid(leaf,
768 								      dref);
769 			key.type = BTRFS_EXTENT_DATA_KEY;
770 			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
771 			root = btrfs_extent_data_ref_root(leaf, dref);
772 			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
773 					       bytenr, count);
774 			break;
775 		}
776 		default:
777 			WARN_ON(1);
778 		}
779 		if (ret)
780 			return ret;
781 
782 	}
783 
784 	return ret;
785 }
786 
787 /*
788  * this adds all existing backrefs (inline backrefs, backrefs and delayed
789  * refs) for the given bytenr to the refs list, merges duplicates and resolves
790  * indirect refs to their parent bytenr.
791  * When roots are found, they're added to the roots list
792  *
793  * FIXME some caching might speed things up
794  */
795 static int find_parent_nodes(struct btrfs_trans_handle *trans,
796 			     struct btrfs_fs_info *fs_info, u64 bytenr,
797 			     u64 time_seq, struct ulist *refs,
798 			     struct ulist *roots, const u64 *extent_item_pos)
799 {
800 	struct btrfs_key key;
801 	struct btrfs_path *path;
802 	struct btrfs_delayed_ref_root *delayed_refs = NULL;
803 	struct btrfs_delayed_ref_head *head;
804 	int info_level = 0;
805 	int ret;
806 	struct list_head prefs_delayed;
807 	struct list_head prefs;
808 	struct __prelim_ref *ref;
809 
810 	INIT_LIST_HEAD(&prefs);
811 	INIT_LIST_HEAD(&prefs_delayed);
812 
813 	key.objectid = bytenr;
814 	key.offset = (u64)-1;
815 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
816 		key.type = BTRFS_METADATA_ITEM_KEY;
817 	else
818 		key.type = BTRFS_EXTENT_ITEM_KEY;
819 
820 	path = btrfs_alloc_path();
821 	if (!path)
822 		return -ENOMEM;
823 	if (!trans)
824 		path->search_commit_root = 1;
825 
826 	/*
827 	 * grab both a lock on the path and a lock on the delayed ref head.
828 	 * We need both to get a consistent picture of how the refs look
829 	 * at a specified point in time
830 	 */
831 again:
832 	head = NULL;
833 
834 	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
835 	if (ret < 0)
836 		goto out;
837 	BUG_ON(ret == 0);
838 
839 	if (trans) {
840 		/*
841 		 * look if there are updates for this ref queued and lock the
842 		 * head
843 		 */
844 		delayed_refs = &trans->transaction->delayed_refs;
845 		spin_lock(&delayed_refs->lock);
846 		head = btrfs_find_delayed_ref_head(trans, bytenr);
847 		if (head) {
848 			if (!mutex_trylock(&head->mutex)) {
849 				atomic_inc(&head->node.refs);
850 				spin_unlock(&delayed_refs->lock);
851 
852 				btrfs_release_path(path);
853 
854 				/*
855 				 * Mutex was contended, block until it's
856 				 * released and try again
857 				 */
858 				mutex_lock(&head->mutex);
859 				mutex_unlock(&head->mutex);
860 				btrfs_put_delayed_ref(&head->node);
861 				goto again;
862 			}
863 			ret = __add_delayed_refs(head, time_seq,
864 						 &prefs_delayed);
865 			mutex_unlock(&head->mutex);
866 			if (ret) {
867 				spin_unlock(&delayed_refs->lock);
868 				goto out;
869 			}
870 		}
871 		spin_unlock(&delayed_refs->lock);
872 	}
873 
874 	if (path->slots[0]) {
875 		struct extent_buffer *leaf;
876 		int slot;
877 
878 		path->slots[0]--;
879 		leaf = path->nodes[0];
880 		slot = path->slots[0];
881 		btrfs_item_key_to_cpu(leaf, &key, slot);
882 		if (key.objectid == bytenr &&
883 		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
884 		     key.type == BTRFS_METADATA_ITEM_KEY)) {
885 			ret = __add_inline_refs(fs_info, path, bytenr,
886 						&info_level, &prefs);
887 			if (ret)
888 				goto out;
889 			ret = __add_keyed_refs(fs_info, path, bytenr,
890 					       info_level, &prefs);
891 			if (ret)
892 				goto out;
893 		}
894 	}
895 	btrfs_release_path(path);
896 
897 	list_splice_init(&prefs_delayed, &prefs);
898 
899 	ret = __add_missing_keys(fs_info, &prefs);
900 	if (ret)
901 		goto out;
902 
903 	__merge_refs(&prefs, 1);
904 
905 	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
906 				      extent_item_pos);
907 	if (ret)
908 		goto out;
909 
910 	__merge_refs(&prefs, 2);
911 
912 	while (!list_empty(&prefs)) {
913 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
914 		WARN_ON(ref->count < 0);
915 		if (ref->count && ref->root_id && ref->parent == 0) {
916 			/* no parent == root of tree */
917 			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
918 			if (ret < 0)
919 				goto out;
920 		}
921 		if (ref->count && ref->parent) {
922 			struct extent_inode_elem *eie = NULL;
923 			if (extent_item_pos && !ref->inode_list) {
924 				u32 bsz;
925 				struct extent_buffer *eb;
926 				bsz = btrfs_level_size(fs_info->extent_root,
927 							info_level);
928 				eb = read_tree_block(fs_info->extent_root,
929 							   ref->parent, bsz, 0);
930 				if (!eb || !extent_buffer_uptodate(eb)) {
931 					free_extent_buffer(eb);
932 					ret = -EIO;
933 					goto out;
934 				}
935 				ret = find_extent_in_eb(eb, bytenr,
936 							*extent_item_pos, &eie);
937 				free_extent_buffer(eb);
938 				if (ret < 0)
939 					goto out;
940 				ref->inode_list = eie;
941 			}
942 			ret = ulist_add_merge(refs, ref->parent,
943 					      (uintptr_t)ref->inode_list,
944 					      (u64 *)&eie, GFP_NOFS);
945 			if (ret < 0)
946 				goto out;
947 			if (!ret && extent_item_pos) {
948 				/*
949 				 * we've recorded that parent, so we must extend
950 				 * its inode list here
951 				 */
952 				BUG_ON(!eie);
953 				while (eie->next)
954 					eie = eie->next;
955 				eie->next = ref->inode_list;
956 			}
957 		}
958 		list_del(&ref->list);
959 		kfree(ref);
960 	}
961 
962 out:
963 	btrfs_free_path(path);
964 	while (!list_empty(&prefs)) {
965 		ref = list_first_entry(&prefs, struct __prelim_ref, list);
966 		list_del(&ref->list);
967 		kfree(ref);
968 	}
969 	while (!list_empty(&prefs_delayed)) {
970 		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
971 				       list);
972 		list_del(&ref->list);
973 		kfree(ref);
974 	}
975 
976 	return ret;
977 }
978 
979 static void free_leaf_list(struct ulist *blocks)
980 {
981 	struct ulist_node *node = NULL;
982 	struct extent_inode_elem *eie;
983 	struct extent_inode_elem *eie_next;
984 	struct ulist_iterator uiter;
985 
986 	ULIST_ITER_INIT(&uiter);
987 	while ((node = ulist_next(blocks, &uiter))) {
988 		if (!node->aux)
989 			continue;
990 		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
991 		for (; eie; eie = eie_next) {
992 			eie_next = eie->next;
993 			kfree(eie);
994 		}
995 		node->aux = 0;
996 	}
997 
998 	ulist_free(blocks);
999 }
1000 
1001 /*
1002  * Finds all leafs with a reference to the specified combination of bytenr and
1003  * offset. key_list_head will point to a list of corresponding keys (caller must
1004  * free each list element). The leafs will be stored in the leafs ulist, which
1005  * must be freed with ulist_free.
1006  *
1007  * returns 0 on success, <0 on error
1008  */
1009 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1010 				struct btrfs_fs_info *fs_info, u64 bytenr,
1011 				u64 time_seq, struct ulist **leafs,
1012 				const u64 *extent_item_pos)
1013 {
1014 	struct ulist *tmp;
1015 	int ret;
1016 
1017 	tmp = ulist_alloc(GFP_NOFS);
1018 	if (!tmp)
1019 		return -ENOMEM;
1020 	*leafs = ulist_alloc(GFP_NOFS);
1021 	if (!*leafs) {
1022 		ulist_free(tmp);
1023 		return -ENOMEM;
1024 	}
1025 
1026 	ret = find_parent_nodes(trans, fs_info, bytenr,
1027 				time_seq, *leafs, tmp, extent_item_pos);
1028 	ulist_free(tmp);
1029 
1030 	if (ret < 0 && ret != -ENOENT) {
1031 		free_leaf_list(*leafs);
1032 		return ret;
1033 	}
1034 
1035 	return 0;
1036 }
1037 
1038 /*
1039  * walk all backrefs for a given extent to find all roots that reference this
1040  * extent. Walking a backref means finding all extents that reference this
1041  * extent and in turn walk the backrefs of those, too. Naturally this is a
1042  * recursive process, but here it is implemented in an iterative fashion: We
1043  * find all referencing extents for the extent in question and put them on a
1044  * list. In turn, we find all referencing extents for those, further appending
1045  * to the list. The way we iterate the list allows adding more elements after
1046  * the current while iterating. The process stops when we reach the end of the
1047  * list. Found roots are added to the roots list.
1048  *
1049  * returns 0 on success, < 0 on error.
1050  */
1051 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1052 				struct btrfs_fs_info *fs_info, u64 bytenr,
1053 				u64 time_seq, struct ulist **roots)
1054 {
1055 	struct ulist *tmp;
1056 	struct ulist_node *node = NULL;
1057 	struct ulist_iterator uiter;
1058 	int ret;
1059 
1060 	tmp = ulist_alloc(GFP_NOFS);
1061 	if (!tmp)
1062 		return -ENOMEM;
1063 	*roots = ulist_alloc(GFP_NOFS);
1064 	if (!*roots) {
1065 		ulist_free(tmp);
1066 		return -ENOMEM;
1067 	}
1068 
1069 	ULIST_ITER_INIT(&uiter);
1070 	while (1) {
1071 		ret = find_parent_nodes(trans, fs_info, bytenr,
1072 					time_seq, tmp, *roots, NULL);
1073 		if (ret < 0 && ret != -ENOENT) {
1074 			ulist_free(tmp);
1075 			ulist_free(*roots);
1076 			return ret;
1077 		}
1078 		node = ulist_next(tmp, &uiter);
1079 		if (!node)
1080 			break;
1081 		bytenr = node->val;
1082 	}
1083 
1084 	ulist_free(tmp);
1085 	return 0;
1086 }
1087 
1088 
1089 static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1090 			struct btrfs_root *fs_root, struct btrfs_path *path,
1091 			struct btrfs_key *found_key)
1092 {
1093 	int ret;
1094 	struct btrfs_key key;
1095 	struct extent_buffer *eb;
1096 
1097 	key.type = key_type;
1098 	key.objectid = inum;
1099 	key.offset = ioff;
1100 
1101 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1102 	if (ret < 0)
1103 		return ret;
1104 
1105 	eb = path->nodes[0];
1106 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1107 		ret = btrfs_next_leaf(fs_root, path);
1108 		if (ret)
1109 			return ret;
1110 		eb = path->nodes[0];
1111 	}
1112 
1113 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1114 	if (found_key->type != key.type || found_key->objectid != key.objectid)
1115 		return 1;
1116 
1117 	return 0;
1118 }
1119 
1120 /*
1121  * this makes the path point to (inum INODE_ITEM ioff)
1122  */
1123 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1124 			struct btrfs_path *path)
1125 {
1126 	struct btrfs_key key;
1127 	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1128 				&key);
1129 }
1130 
1131 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1132 				struct btrfs_path *path,
1133 				struct btrfs_key *found_key)
1134 {
1135 	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1136 				found_key);
1137 }
1138 
1139 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1140 			  u64 start_off, struct btrfs_path *path,
1141 			  struct btrfs_inode_extref **ret_extref,
1142 			  u64 *found_off)
1143 {
1144 	int ret, slot;
1145 	struct btrfs_key key;
1146 	struct btrfs_key found_key;
1147 	struct btrfs_inode_extref *extref;
1148 	struct extent_buffer *leaf;
1149 	unsigned long ptr;
1150 
1151 	key.objectid = inode_objectid;
1152 	btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1153 	key.offset = start_off;
1154 
1155 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1156 	if (ret < 0)
1157 		return ret;
1158 
1159 	while (1) {
1160 		leaf = path->nodes[0];
1161 		slot = path->slots[0];
1162 		if (slot >= btrfs_header_nritems(leaf)) {
1163 			/*
1164 			 * If the item at offset is not found,
1165 			 * btrfs_search_slot will point us to the slot
1166 			 * where it should be inserted. In our case
1167 			 * that will be the slot directly before the
1168 			 * next INODE_REF_KEY_V2 item. In the case
1169 			 * that we're pointing to the last slot in a
1170 			 * leaf, we must move one leaf over.
1171 			 */
1172 			ret = btrfs_next_leaf(root, path);
1173 			if (ret) {
1174 				if (ret >= 1)
1175 					ret = -ENOENT;
1176 				break;
1177 			}
1178 			continue;
1179 		}
1180 
1181 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1182 
1183 		/*
1184 		 * Check that we're still looking at an extended ref key for
1185 		 * this particular objectid. If we have different
1186 		 * objectid or type then there are no more to be found
1187 		 * in the tree and we can exit.
1188 		 */
1189 		ret = -ENOENT;
1190 		if (found_key.objectid != inode_objectid)
1191 			break;
1192 		if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1193 			break;
1194 
1195 		ret = 0;
1196 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1197 		extref = (struct btrfs_inode_extref *)ptr;
1198 		*ret_extref = extref;
1199 		if (found_off)
1200 			*found_off = found_key.offset;
1201 		break;
1202 	}
1203 
1204 	return ret;
1205 }
1206 
1207 /*
1208  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1209  * Elements of the path are separated by '/' and the path is guaranteed to be
1210  * 0-terminated. the path is only given within the current file system.
1211  * Therefore, it never starts with a '/'. the caller is responsible to provide
1212  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1213  * the start point of the resulting string is returned. this pointer is within
1214  * dest, normally.
1215  * in case the path buffer would overflow, the pointer is decremented further
1216  * as if output was written to the buffer, though no more output is actually
1217  * generated. that way, the caller can determine how much space would be
1218  * required for the path to fit into the buffer. in that case, the returned
1219  * value will be smaller than dest. callers must check this!
1220  */
1221 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1222 			u32 name_len, unsigned long name_off,
1223 			struct extent_buffer *eb_in, u64 parent,
1224 			char *dest, u32 size)
1225 {
1226 	int slot;
1227 	u64 next_inum;
1228 	int ret;
1229 	s64 bytes_left = ((s64)size) - 1;
1230 	struct extent_buffer *eb = eb_in;
1231 	struct btrfs_key found_key;
1232 	int leave_spinning = path->leave_spinning;
1233 	struct btrfs_inode_ref *iref;
1234 
1235 	if (bytes_left >= 0)
1236 		dest[bytes_left] = '\0';
1237 
1238 	path->leave_spinning = 1;
1239 	while (1) {
1240 		bytes_left -= name_len;
1241 		if (bytes_left >= 0)
1242 			read_extent_buffer(eb, dest + bytes_left,
1243 					   name_off, name_len);
1244 		if (eb != eb_in) {
1245 			btrfs_tree_read_unlock_blocking(eb);
1246 			free_extent_buffer(eb);
1247 		}
1248 		ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1249 		if (ret > 0)
1250 			ret = -ENOENT;
1251 		if (ret)
1252 			break;
1253 
1254 		next_inum = found_key.offset;
1255 
1256 		/* regular exit ahead */
1257 		if (parent == next_inum)
1258 			break;
1259 
1260 		slot = path->slots[0];
1261 		eb = path->nodes[0];
1262 		/* make sure we can use eb after releasing the path */
1263 		if (eb != eb_in) {
1264 			atomic_inc(&eb->refs);
1265 			btrfs_tree_read_lock(eb);
1266 			btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1267 		}
1268 		btrfs_release_path(path);
1269 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1270 
1271 		name_len = btrfs_inode_ref_name_len(eb, iref);
1272 		name_off = (unsigned long)(iref + 1);
1273 
1274 		parent = next_inum;
1275 		--bytes_left;
1276 		if (bytes_left >= 0)
1277 			dest[bytes_left] = '/';
1278 	}
1279 
1280 	btrfs_release_path(path);
1281 	path->leave_spinning = leave_spinning;
1282 
1283 	if (ret)
1284 		return ERR_PTR(ret);
1285 
1286 	return dest + bytes_left;
1287 }
1288 
1289 /*
1290  * this makes the path point to (logical EXTENT_ITEM *)
1291  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1292  * tree blocks and <0 on error.
1293  */
1294 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1295 			struct btrfs_path *path, struct btrfs_key *found_key,
1296 			u64 *flags_ret)
1297 {
1298 	int ret;
1299 	u64 flags;
1300 	u64 size = 0;
1301 	u32 item_size;
1302 	struct extent_buffer *eb;
1303 	struct btrfs_extent_item *ei;
1304 	struct btrfs_key key;
1305 
1306 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1307 		key.type = BTRFS_METADATA_ITEM_KEY;
1308 	else
1309 		key.type = BTRFS_EXTENT_ITEM_KEY;
1310 	key.objectid = logical;
1311 	key.offset = (u64)-1;
1312 
1313 	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1314 	if (ret < 0)
1315 		return ret;
1316 	ret = btrfs_previous_item(fs_info->extent_root, path,
1317 					0, BTRFS_EXTENT_ITEM_KEY);
1318 	if (ret < 0)
1319 		return ret;
1320 
1321 	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1322 	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1323 		size = fs_info->extent_root->leafsize;
1324 	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1325 		size = found_key->offset;
1326 
1327 	if ((found_key->type != BTRFS_EXTENT_ITEM_KEY &&
1328 	     found_key->type != BTRFS_METADATA_ITEM_KEY) ||
1329 	    found_key->objectid > logical ||
1330 	    found_key->objectid + size <= logical) {
1331 		pr_debug("logical %llu is not within any extent\n",
1332 			 (unsigned long long)logical);
1333 		return -ENOENT;
1334 	}
1335 
1336 	eb = path->nodes[0];
1337 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1338 	BUG_ON(item_size < sizeof(*ei));
1339 
1340 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1341 	flags = btrfs_extent_flags(eb, ei);
1342 
1343 	pr_debug("logical %llu is at position %llu within the extent (%llu "
1344 		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1345 		 (unsigned long long)logical,
1346 		 (unsigned long long)(logical - found_key->objectid),
1347 		 (unsigned long long)found_key->objectid,
1348 		 (unsigned long long)found_key->offset,
1349 		 (unsigned long long)flags, item_size);
1350 
1351 	WARN_ON(!flags_ret);
1352 	if (flags_ret) {
1353 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1354 			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1355 		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1356 			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1357 		else
1358 			BUG_ON(1);
1359 		return 0;
1360 	}
1361 
1362 	return -EIO;
1363 }
1364 
1365 /*
1366  * helper function to iterate extent inline refs. ptr must point to a 0 value
1367  * for the first call and may be modified. it is used to track state.
1368  * if more refs exist, 0 is returned and the next call to
1369  * __get_extent_inline_ref must pass the modified ptr parameter to get the
1370  * next ref. after the last ref was processed, 1 is returned.
1371  * returns <0 on error
1372  */
1373 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1374 				struct btrfs_extent_item *ei, u32 item_size,
1375 				struct btrfs_extent_inline_ref **out_eiref,
1376 				int *out_type)
1377 {
1378 	unsigned long end;
1379 	u64 flags;
1380 	struct btrfs_tree_block_info *info;
1381 
1382 	if (!*ptr) {
1383 		/* first call */
1384 		flags = btrfs_extent_flags(eb, ei);
1385 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1386 			info = (struct btrfs_tree_block_info *)(ei + 1);
1387 			*out_eiref =
1388 				(struct btrfs_extent_inline_ref *)(info + 1);
1389 		} else {
1390 			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1391 		}
1392 		*ptr = (unsigned long)*out_eiref;
1393 		if ((void *)*ptr >= (void *)ei + item_size)
1394 			return -ENOENT;
1395 	}
1396 
1397 	end = (unsigned long)ei + item_size;
1398 	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1399 	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1400 
1401 	*ptr += btrfs_extent_inline_ref_size(*out_type);
1402 	WARN_ON(*ptr > end);
1403 	if (*ptr == end)
1404 		return 1; /* last */
1405 
1406 	return 0;
1407 }
1408 
1409 /*
1410  * reads the tree block backref for an extent. tree level and root are returned
1411  * through out_level and out_root. ptr must point to a 0 value for the first
1412  * call and may be modified (see __get_extent_inline_ref comment).
1413  * returns 0 if data was provided, 1 if there was no more data to provide or
1414  * <0 on error.
1415  */
1416 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1417 				struct btrfs_extent_item *ei, u32 item_size,
1418 				u64 *out_root, u8 *out_level)
1419 {
1420 	int ret;
1421 	int type;
1422 	struct btrfs_tree_block_info *info;
1423 	struct btrfs_extent_inline_ref *eiref;
1424 
1425 	if (*ptr == (unsigned long)-1)
1426 		return 1;
1427 
1428 	while (1) {
1429 		ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1430 						&eiref, &type);
1431 		if (ret < 0)
1432 			return ret;
1433 
1434 		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1435 		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1436 			break;
1437 
1438 		if (ret == 1)
1439 			return 1;
1440 	}
1441 
1442 	/* we can treat both ref types equally here */
1443 	info = (struct btrfs_tree_block_info *)(ei + 1);
1444 	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1445 	*out_level = btrfs_tree_block_level(eb, info);
1446 
1447 	if (ret == 1)
1448 		*ptr = (unsigned long)-1;
1449 
1450 	return 0;
1451 }
1452 
1453 static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1454 				u64 root, u64 extent_item_objectid,
1455 				iterate_extent_inodes_t *iterate, void *ctx)
1456 {
1457 	struct extent_inode_elem *eie;
1458 	int ret = 0;
1459 
1460 	for (eie = inode_list; eie; eie = eie->next) {
1461 		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1462 			 "root %llu\n", extent_item_objectid,
1463 			 eie->inum, eie->offset, root);
1464 		ret = iterate(eie->inum, eie->offset, root, ctx);
1465 		if (ret) {
1466 			pr_debug("stopping iteration for %llu due to ret=%d\n",
1467 				 extent_item_objectid, ret);
1468 			break;
1469 		}
1470 	}
1471 
1472 	return ret;
1473 }
1474 
1475 /*
1476  * calls iterate() for every inode that references the extent identified by
1477  * the given parameters.
1478  * when the iterator function returns a non-zero value, iteration stops.
1479  */
1480 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1481 				u64 extent_item_objectid, u64 extent_item_pos,
1482 				int search_commit_root,
1483 				iterate_extent_inodes_t *iterate, void *ctx)
1484 {
1485 	int ret;
1486 	struct btrfs_trans_handle *trans = NULL;
1487 	struct ulist *refs = NULL;
1488 	struct ulist *roots = NULL;
1489 	struct ulist_node *ref_node = NULL;
1490 	struct ulist_node *root_node = NULL;
1491 	struct seq_list tree_mod_seq_elem = {};
1492 	struct ulist_iterator ref_uiter;
1493 	struct ulist_iterator root_uiter;
1494 
1495 	pr_debug("resolving all inodes for extent %llu\n",
1496 			extent_item_objectid);
1497 
1498 	if (!search_commit_root) {
1499 		trans = btrfs_join_transaction(fs_info->extent_root);
1500 		if (IS_ERR(trans))
1501 			return PTR_ERR(trans);
1502 		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1503 	}
1504 
1505 	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1506 				   tree_mod_seq_elem.seq, &refs,
1507 				   &extent_item_pos);
1508 	if (ret)
1509 		goto out;
1510 
1511 	ULIST_ITER_INIT(&ref_uiter);
1512 	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1513 		ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1514 					   tree_mod_seq_elem.seq, &roots);
1515 		if (ret)
1516 			break;
1517 		ULIST_ITER_INIT(&root_uiter);
1518 		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1519 			pr_debug("root %llu references leaf %llu, data list "
1520 				 "%#llx\n", root_node->val, ref_node->val,
1521 				 (long long)ref_node->aux);
1522 			ret = iterate_leaf_refs((struct extent_inode_elem *)
1523 						(uintptr_t)ref_node->aux,
1524 						root_node->val,
1525 						extent_item_objectid,
1526 						iterate, ctx);
1527 		}
1528 		ulist_free(roots);
1529 	}
1530 
1531 	free_leaf_list(refs);
1532 out:
1533 	if (!search_commit_root) {
1534 		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1535 		btrfs_end_transaction(trans, fs_info->extent_root);
1536 	}
1537 
1538 	return ret;
1539 }
1540 
1541 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1542 				struct btrfs_path *path,
1543 				iterate_extent_inodes_t *iterate, void *ctx)
1544 {
1545 	int ret;
1546 	u64 extent_item_pos;
1547 	u64 flags = 0;
1548 	struct btrfs_key found_key;
1549 	int search_commit_root = path->search_commit_root;
1550 
1551 	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1552 	btrfs_release_path(path);
1553 	if (ret < 0)
1554 		return ret;
1555 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1556 		return -EINVAL;
1557 
1558 	extent_item_pos = logical - found_key.objectid;
1559 	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1560 					extent_item_pos, search_commit_root,
1561 					iterate, ctx);
1562 
1563 	return ret;
1564 }
1565 
1566 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1567 			      struct extent_buffer *eb, void *ctx);
1568 
1569 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1570 			      struct btrfs_path *path,
1571 			      iterate_irefs_t *iterate, void *ctx)
1572 {
1573 	int ret = 0;
1574 	int slot;
1575 	u32 cur;
1576 	u32 len;
1577 	u32 name_len;
1578 	u64 parent = 0;
1579 	int found = 0;
1580 	struct extent_buffer *eb;
1581 	struct btrfs_item *item;
1582 	struct btrfs_inode_ref *iref;
1583 	struct btrfs_key found_key;
1584 
1585 	while (!ret) {
1586 		path->leave_spinning = 1;
1587 		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1588 				     &found_key);
1589 		if (ret < 0)
1590 			break;
1591 		if (ret) {
1592 			ret = found ? 0 : -ENOENT;
1593 			break;
1594 		}
1595 		++found;
1596 
1597 		parent = found_key.offset;
1598 		slot = path->slots[0];
1599 		eb = path->nodes[0];
1600 		/* make sure we can use eb after releasing the path */
1601 		atomic_inc(&eb->refs);
1602 		btrfs_tree_read_lock(eb);
1603 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1604 		btrfs_release_path(path);
1605 
1606 		item = btrfs_item_nr(eb, slot);
1607 		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1608 
1609 		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1610 			name_len = btrfs_inode_ref_name_len(eb, iref);
1611 			/* path must be released before calling iterate()! */
1612 			pr_debug("following ref at offset %u for inode %llu in "
1613 				 "tree %llu\n", cur,
1614 				 (unsigned long long)found_key.objectid,
1615 				 (unsigned long long)fs_root->objectid);
1616 			ret = iterate(parent, name_len,
1617 				      (unsigned long)(iref + 1), eb, ctx);
1618 			if (ret)
1619 				break;
1620 			len = sizeof(*iref) + name_len;
1621 			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1622 		}
1623 		btrfs_tree_read_unlock_blocking(eb);
1624 		free_extent_buffer(eb);
1625 	}
1626 
1627 	btrfs_release_path(path);
1628 
1629 	return ret;
1630 }
1631 
1632 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1633 				 struct btrfs_path *path,
1634 				 iterate_irefs_t *iterate, void *ctx)
1635 {
1636 	int ret;
1637 	int slot;
1638 	u64 offset = 0;
1639 	u64 parent;
1640 	int found = 0;
1641 	struct extent_buffer *eb;
1642 	struct btrfs_inode_extref *extref;
1643 	struct extent_buffer *leaf;
1644 	u32 item_size;
1645 	u32 cur_offset;
1646 	unsigned long ptr;
1647 
1648 	while (1) {
1649 		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1650 					    &offset);
1651 		if (ret < 0)
1652 			break;
1653 		if (ret) {
1654 			ret = found ? 0 : -ENOENT;
1655 			break;
1656 		}
1657 		++found;
1658 
1659 		slot = path->slots[0];
1660 		eb = path->nodes[0];
1661 		/* make sure we can use eb after releasing the path */
1662 		atomic_inc(&eb->refs);
1663 
1664 		btrfs_tree_read_lock(eb);
1665 		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1666 		btrfs_release_path(path);
1667 
1668 		leaf = path->nodes[0];
1669 		item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1670 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1671 		cur_offset = 0;
1672 
1673 		while (cur_offset < item_size) {
1674 			u32 name_len;
1675 
1676 			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1677 			parent = btrfs_inode_extref_parent(eb, extref);
1678 			name_len = btrfs_inode_extref_name_len(eb, extref);
1679 			ret = iterate(parent, name_len,
1680 				      (unsigned long)&extref->name, eb, ctx);
1681 			if (ret)
1682 				break;
1683 
1684 			cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1685 			cur_offset += sizeof(*extref);
1686 		}
1687 		btrfs_tree_read_unlock_blocking(eb);
1688 		free_extent_buffer(eb);
1689 
1690 		offset++;
1691 	}
1692 
1693 	btrfs_release_path(path);
1694 
1695 	return ret;
1696 }
1697 
1698 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1699 			 struct btrfs_path *path, iterate_irefs_t *iterate,
1700 			 void *ctx)
1701 {
1702 	int ret;
1703 	int found_refs = 0;
1704 
1705 	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1706 	if (!ret)
1707 		++found_refs;
1708 	else if (ret != -ENOENT)
1709 		return ret;
1710 
1711 	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1712 	if (ret == -ENOENT && found_refs)
1713 		return 0;
1714 
1715 	return ret;
1716 }
1717 
1718 /*
1719  * returns 0 if the path could be dumped (probably truncated)
1720  * returns <0 in case of an error
1721  */
1722 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1723 			 struct extent_buffer *eb, void *ctx)
1724 {
1725 	struct inode_fs_paths *ipath = ctx;
1726 	char *fspath;
1727 	char *fspath_min;
1728 	int i = ipath->fspath->elem_cnt;
1729 	const int s_ptr = sizeof(char *);
1730 	u32 bytes_left;
1731 
1732 	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1733 					ipath->fspath->bytes_left - s_ptr : 0;
1734 
1735 	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1736 	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1737 				   name_off, eb, inum, fspath_min, bytes_left);
1738 	if (IS_ERR(fspath))
1739 		return PTR_ERR(fspath);
1740 
1741 	if (fspath > fspath_min) {
1742 		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1743 		++ipath->fspath->elem_cnt;
1744 		ipath->fspath->bytes_left = fspath - fspath_min;
1745 	} else {
1746 		++ipath->fspath->elem_missed;
1747 		ipath->fspath->bytes_missing += fspath_min - fspath;
1748 		ipath->fspath->bytes_left = 0;
1749 	}
1750 
1751 	return 0;
1752 }
1753 
1754 /*
1755  * this dumps all file system paths to the inode into the ipath struct, provided
1756  * is has been created large enough. each path is zero-terminated and accessed
1757  * from ipath->fspath->val[i].
1758  * when it returns, there are ipath->fspath->elem_cnt number of paths available
1759  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1760  * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1761  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1762  * have been needed to return all paths.
1763  */
1764 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1765 {
1766 	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1767 			     inode_to_path, ipath);
1768 }
1769 
1770 struct btrfs_data_container *init_data_container(u32 total_bytes)
1771 {
1772 	struct btrfs_data_container *data;
1773 	size_t alloc_bytes;
1774 
1775 	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1776 	data = vmalloc(alloc_bytes);
1777 	if (!data)
1778 		return ERR_PTR(-ENOMEM);
1779 
1780 	if (total_bytes >= sizeof(*data)) {
1781 		data->bytes_left = total_bytes - sizeof(*data);
1782 		data->bytes_missing = 0;
1783 	} else {
1784 		data->bytes_missing = sizeof(*data) - total_bytes;
1785 		data->bytes_left = 0;
1786 	}
1787 
1788 	data->elem_cnt = 0;
1789 	data->elem_missed = 0;
1790 
1791 	return data;
1792 }
1793 
1794 /*
1795  * allocates space to return multiple file system paths for an inode.
1796  * total_bytes to allocate are passed, note that space usable for actual path
1797  * information will be total_bytes - sizeof(struct inode_fs_paths).
1798  * the returned pointer must be freed with free_ipath() in the end.
1799  */
1800 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1801 					struct btrfs_path *path)
1802 {
1803 	struct inode_fs_paths *ifp;
1804 	struct btrfs_data_container *fspath;
1805 
1806 	fspath = init_data_container(total_bytes);
1807 	if (IS_ERR(fspath))
1808 		return (void *)fspath;
1809 
1810 	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1811 	if (!ifp) {
1812 		kfree(fspath);
1813 		return ERR_PTR(-ENOMEM);
1814 	}
1815 
1816 	ifp->btrfs_path = path;
1817 	ifp->fspath = fspath;
1818 	ifp->fs_root = fs_root;
1819 
1820 	return ifp;
1821 }
1822 
1823 void free_ipath(struct inode_fs_paths *ipath)
1824 {
1825 	if (!ipath)
1826 		return;
1827 	vfree(ipath->fspath);
1828 	kfree(ipath);
1829 }
1830