1 /* 2 * Copyright (C) 2011 STRATO. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/vmalloc.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "backref.h" 23 #include "ulist.h" 24 #include "transaction.h" 25 #include "delayed-ref.h" 26 #include "locking.h" 27 28 struct extent_inode_elem { 29 u64 inum; 30 u64 offset; 31 struct extent_inode_elem *next; 32 }; 33 34 static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb, 35 struct btrfs_file_extent_item *fi, 36 u64 extent_item_pos, 37 struct extent_inode_elem **eie) 38 { 39 u64 offset = 0; 40 struct extent_inode_elem *e; 41 42 if (!btrfs_file_extent_compression(eb, fi) && 43 !btrfs_file_extent_encryption(eb, fi) && 44 !btrfs_file_extent_other_encoding(eb, fi)) { 45 u64 data_offset; 46 u64 data_len; 47 48 data_offset = btrfs_file_extent_offset(eb, fi); 49 data_len = btrfs_file_extent_num_bytes(eb, fi); 50 51 if (extent_item_pos < data_offset || 52 extent_item_pos >= data_offset + data_len) 53 return 1; 54 offset = extent_item_pos - data_offset; 55 } 56 57 e = kmalloc(sizeof(*e), GFP_NOFS); 58 if (!e) 59 return -ENOMEM; 60 61 e->next = *eie; 62 e->inum = key->objectid; 63 e->offset = key->offset + offset; 64 *eie = e; 65 66 return 0; 67 } 68 69 static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte, 70 u64 extent_item_pos, 71 struct extent_inode_elem **eie) 72 { 73 u64 disk_byte; 74 struct btrfs_key key; 75 struct btrfs_file_extent_item *fi; 76 int slot; 77 int nritems; 78 int extent_type; 79 int ret; 80 81 /* 82 * from the shared data ref, we only have the leaf but we need 83 * the key. thus, we must look into all items and see that we 84 * find one (some) with a reference to our extent item. 85 */ 86 nritems = btrfs_header_nritems(eb); 87 for (slot = 0; slot < nritems; ++slot) { 88 btrfs_item_key_to_cpu(eb, &key, slot); 89 if (key.type != BTRFS_EXTENT_DATA_KEY) 90 continue; 91 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 92 extent_type = btrfs_file_extent_type(eb, fi); 93 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 94 continue; 95 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 96 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 97 if (disk_byte != wanted_disk_byte) 98 continue; 99 100 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie); 101 if (ret < 0) 102 return ret; 103 } 104 105 return 0; 106 } 107 108 /* 109 * this structure records all encountered refs on the way up to the root 110 */ 111 struct __prelim_ref { 112 struct list_head list; 113 u64 root_id; 114 struct btrfs_key key_for_search; 115 int level; 116 int count; 117 struct extent_inode_elem *inode_list; 118 u64 parent; 119 u64 wanted_disk_byte; 120 }; 121 122 /* 123 * the rules for all callers of this function are: 124 * - obtaining the parent is the goal 125 * - if you add a key, you must know that it is a correct key 126 * - if you cannot add the parent or a correct key, then we will look into the 127 * block later to set a correct key 128 * 129 * delayed refs 130 * ============ 131 * backref type | shared | indirect | shared | indirect 132 * information | tree | tree | data | data 133 * --------------------+--------+----------+--------+---------- 134 * parent logical | y | - | - | - 135 * key to resolve | - | y | y | y 136 * tree block logical | - | - | - | - 137 * root for resolving | y | y | y | y 138 * 139 * - column 1: we've the parent -> done 140 * - column 2, 3, 4: we use the key to find the parent 141 * 142 * on disk refs (inline or keyed) 143 * ============================== 144 * backref type | shared | indirect | shared | indirect 145 * information | tree | tree | data | data 146 * --------------------+--------+----------+--------+---------- 147 * parent logical | y | - | y | - 148 * key to resolve | - | - | - | y 149 * tree block logical | y | y | y | y 150 * root for resolving | - | y | y | y 151 * 152 * - column 1, 3: we've the parent -> done 153 * - column 2: we take the first key from the block to find the parent 154 * (see __add_missing_keys) 155 * - column 4: we use the key to find the parent 156 * 157 * additional information that's available but not required to find the parent 158 * block might help in merging entries to gain some speed. 159 */ 160 161 static int __add_prelim_ref(struct list_head *head, u64 root_id, 162 struct btrfs_key *key, int level, 163 u64 parent, u64 wanted_disk_byte, int count) 164 { 165 struct __prelim_ref *ref; 166 167 /* in case we're adding delayed refs, we're holding the refs spinlock */ 168 ref = kmalloc(sizeof(*ref), GFP_ATOMIC); 169 if (!ref) 170 return -ENOMEM; 171 172 ref->root_id = root_id; 173 if (key) 174 ref->key_for_search = *key; 175 else 176 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 177 178 ref->inode_list = NULL; 179 ref->level = level; 180 ref->count = count; 181 ref->parent = parent; 182 ref->wanted_disk_byte = wanted_disk_byte; 183 list_add_tail(&ref->list, head); 184 185 return 0; 186 } 187 188 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 189 struct ulist *parents, int level, 190 struct btrfs_key *key_for_search, u64 time_seq, 191 u64 wanted_disk_byte, 192 const u64 *extent_item_pos) 193 { 194 int ret = 0; 195 int slot; 196 struct extent_buffer *eb; 197 struct btrfs_key key; 198 struct btrfs_file_extent_item *fi; 199 struct extent_inode_elem *eie = NULL, *old = NULL; 200 u64 disk_byte; 201 202 if (level != 0) { 203 eb = path->nodes[level]; 204 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 205 if (ret < 0) 206 return ret; 207 return 0; 208 } 209 210 /* 211 * We normally enter this function with the path already pointing to 212 * the first item to check. But sometimes, we may enter it with 213 * slot==nritems. In that case, go to the next leaf before we continue. 214 */ 215 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) 216 ret = btrfs_next_old_leaf(root, path, time_seq); 217 218 while (!ret) { 219 eb = path->nodes[0]; 220 slot = path->slots[0]; 221 222 btrfs_item_key_to_cpu(eb, &key, slot); 223 224 if (key.objectid != key_for_search->objectid || 225 key.type != BTRFS_EXTENT_DATA_KEY) 226 break; 227 228 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 229 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 230 231 if (disk_byte == wanted_disk_byte) { 232 eie = NULL; 233 old = NULL; 234 if (extent_item_pos) { 235 ret = check_extent_in_eb(&key, eb, fi, 236 *extent_item_pos, 237 &eie); 238 if (ret < 0) 239 break; 240 } 241 if (ret > 0) 242 goto next; 243 ret = ulist_add_merge(parents, eb->start, 244 (uintptr_t)eie, 245 (u64 *)&old, GFP_NOFS); 246 if (ret < 0) 247 break; 248 if (!ret && extent_item_pos) { 249 while (old->next) 250 old = old->next; 251 old->next = eie; 252 } 253 } 254 next: 255 ret = btrfs_next_old_item(root, path, time_seq); 256 } 257 258 if (ret > 0) 259 ret = 0; 260 return ret; 261 } 262 263 /* 264 * resolve an indirect backref in the form (root_id, key, level) 265 * to a logical address 266 */ 267 static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info, 268 struct btrfs_path *path, u64 time_seq, 269 struct __prelim_ref *ref, 270 struct ulist *parents, 271 const u64 *extent_item_pos) 272 { 273 struct btrfs_root *root; 274 struct btrfs_key root_key; 275 struct extent_buffer *eb; 276 int ret = 0; 277 int root_level; 278 int level = ref->level; 279 280 root_key.objectid = ref->root_id; 281 root_key.type = BTRFS_ROOT_ITEM_KEY; 282 root_key.offset = (u64)-1; 283 root = btrfs_read_fs_root_no_name(fs_info, &root_key); 284 if (IS_ERR(root)) { 285 ret = PTR_ERR(root); 286 goto out; 287 } 288 289 root_level = btrfs_old_root_level(root, time_seq); 290 291 if (root_level + 1 == level) 292 goto out; 293 294 path->lowest_level = level; 295 ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq); 296 pr_debug("search slot in root %llu (level %d, ref count %d) returned " 297 "%d for key (%llu %u %llu)\n", 298 (unsigned long long)ref->root_id, level, ref->count, ret, 299 (unsigned long long)ref->key_for_search.objectid, 300 ref->key_for_search.type, 301 (unsigned long long)ref->key_for_search.offset); 302 if (ret < 0) 303 goto out; 304 305 eb = path->nodes[level]; 306 while (!eb) { 307 if (!level) { 308 WARN_ON(1); 309 ret = 1; 310 goto out; 311 } 312 level--; 313 eb = path->nodes[level]; 314 } 315 316 ret = add_all_parents(root, path, parents, level, &ref->key_for_search, 317 time_seq, ref->wanted_disk_byte, 318 extent_item_pos); 319 out: 320 path->lowest_level = 0; 321 btrfs_release_path(path); 322 return ret; 323 } 324 325 /* 326 * resolve all indirect backrefs from the list 327 */ 328 static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info, 329 struct btrfs_path *path, u64 time_seq, 330 struct list_head *head, 331 const u64 *extent_item_pos) 332 { 333 int err; 334 int ret = 0; 335 struct __prelim_ref *ref; 336 struct __prelim_ref *ref_safe; 337 struct __prelim_ref *new_ref; 338 struct ulist *parents; 339 struct ulist_node *node; 340 struct ulist_iterator uiter; 341 342 parents = ulist_alloc(GFP_NOFS); 343 if (!parents) 344 return -ENOMEM; 345 346 /* 347 * _safe allows us to insert directly after the current item without 348 * iterating over the newly inserted items. 349 * we're also allowed to re-assign ref during iteration. 350 */ 351 list_for_each_entry_safe(ref, ref_safe, head, list) { 352 if (ref->parent) /* already direct */ 353 continue; 354 if (ref->count == 0) 355 continue; 356 err = __resolve_indirect_ref(fs_info, path, time_seq, ref, 357 parents, extent_item_pos); 358 if (err == -ENOMEM) 359 goto out; 360 if (err) 361 continue; 362 363 /* we put the first parent into the ref at hand */ 364 ULIST_ITER_INIT(&uiter); 365 node = ulist_next(parents, &uiter); 366 ref->parent = node ? node->val : 0; 367 ref->inode_list = node ? 368 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL; 369 370 /* additional parents require new refs being added here */ 371 while ((node = ulist_next(parents, &uiter))) { 372 new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS); 373 if (!new_ref) { 374 ret = -ENOMEM; 375 goto out; 376 } 377 memcpy(new_ref, ref, sizeof(*ref)); 378 new_ref->parent = node->val; 379 new_ref->inode_list = (struct extent_inode_elem *) 380 (uintptr_t)node->aux; 381 list_add(&new_ref->list, &ref->list); 382 } 383 ulist_reinit(parents); 384 } 385 out: 386 ulist_free(parents); 387 return ret; 388 } 389 390 static inline int ref_for_same_block(struct __prelim_ref *ref1, 391 struct __prelim_ref *ref2) 392 { 393 if (ref1->level != ref2->level) 394 return 0; 395 if (ref1->root_id != ref2->root_id) 396 return 0; 397 if (ref1->key_for_search.type != ref2->key_for_search.type) 398 return 0; 399 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid) 400 return 0; 401 if (ref1->key_for_search.offset != ref2->key_for_search.offset) 402 return 0; 403 if (ref1->parent != ref2->parent) 404 return 0; 405 406 return 1; 407 } 408 409 /* 410 * read tree blocks and add keys where required. 411 */ 412 static int __add_missing_keys(struct btrfs_fs_info *fs_info, 413 struct list_head *head) 414 { 415 struct list_head *pos; 416 struct extent_buffer *eb; 417 418 list_for_each(pos, head) { 419 struct __prelim_ref *ref; 420 ref = list_entry(pos, struct __prelim_ref, list); 421 422 if (ref->parent) 423 continue; 424 if (ref->key_for_search.type) 425 continue; 426 BUG_ON(!ref->wanted_disk_byte); 427 eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte, 428 fs_info->tree_root->leafsize, 0); 429 if (!eb || !extent_buffer_uptodate(eb)) { 430 free_extent_buffer(eb); 431 return -EIO; 432 } 433 btrfs_tree_read_lock(eb); 434 if (btrfs_header_level(eb) == 0) 435 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 436 else 437 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 438 btrfs_tree_read_unlock(eb); 439 free_extent_buffer(eb); 440 } 441 return 0; 442 } 443 444 /* 445 * merge two lists of backrefs and adjust counts accordingly 446 * 447 * mode = 1: merge identical keys, if key is set 448 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here. 449 * additionally, we could even add a key range for the blocks we 450 * looked into to merge even more (-> replace unresolved refs by those 451 * having a parent). 452 * mode = 2: merge identical parents 453 */ 454 static void __merge_refs(struct list_head *head, int mode) 455 { 456 struct list_head *pos1; 457 458 list_for_each(pos1, head) { 459 struct list_head *n2; 460 struct list_head *pos2; 461 struct __prelim_ref *ref1; 462 463 ref1 = list_entry(pos1, struct __prelim_ref, list); 464 465 for (pos2 = pos1->next, n2 = pos2->next; pos2 != head; 466 pos2 = n2, n2 = pos2->next) { 467 struct __prelim_ref *ref2; 468 struct __prelim_ref *xchg; 469 struct extent_inode_elem *eie; 470 471 ref2 = list_entry(pos2, struct __prelim_ref, list); 472 473 if (mode == 1) { 474 if (!ref_for_same_block(ref1, ref2)) 475 continue; 476 if (!ref1->parent && ref2->parent) { 477 xchg = ref1; 478 ref1 = ref2; 479 ref2 = xchg; 480 } 481 } else { 482 if (ref1->parent != ref2->parent) 483 continue; 484 } 485 486 eie = ref1->inode_list; 487 while (eie && eie->next) 488 eie = eie->next; 489 if (eie) 490 eie->next = ref2->inode_list; 491 else 492 ref1->inode_list = ref2->inode_list; 493 ref1->count += ref2->count; 494 495 list_del(&ref2->list); 496 kfree(ref2); 497 } 498 499 } 500 } 501 502 /* 503 * add all currently queued delayed refs from this head whose seq nr is 504 * smaller or equal that seq to the list 505 */ 506 static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq, 507 struct list_head *prefs) 508 { 509 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 510 struct rb_node *n = &head->node.rb_node; 511 struct btrfs_key key; 512 struct btrfs_key op_key = {0}; 513 int sgn; 514 int ret = 0; 515 516 if (extent_op && extent_op->update_key) 517 btrfs_disk_key_to_cpu(&op_key, &extent_op->key); 518 519 while ((n = rb_prev(n))) { 520 struct btrfs_delayed_ref_node *node; 521 node = rb_entry(n, struct btrfs_delayed_ref_node, 522 rb_node); 523 if (node->bytenr != head->node.bytenr) 524 break; 525 WARN_ON(node->is_head); 526 527 if (node->seq > seq) 528 continue; 529 530 switch (node->action) { 531 case BTRFS_ADD_DELAYED_EXTENT: 532 case BTRFS_UPDATE_DELAYED_HEAD: 533 WARN_ON(1); 534 continue; 535 case BTRFS_ADD_DELAYED_REF: 536 sgn = 1; 537 break; 538 case BTRFS_DROP_DELAYED_REF: 539 sgn = -1; 540 break; 541 default: 542 BUG_ON(1); 543 } 544 switch (node->type) { 545 case BTRFS_TREE_BLOCK_REF_KEY: { 546 struct btrfs_delayed_tree_ref *ref; 547 548 ref = btrfs_delayed_node_to_tree_ref(node); 549 ret = __add_prelim_ref(prefs, ref->root, &op_key, 550 ref->level + 1, 0, node->bytenr, 551 node->ref_mod * sgn); 552 break; 553 } 554 case BTRFS_SHARED_BLOCK_REF_KEY: { 555 struct btrfs_delayed_tree_ref *ref; 556 557 ref = btrfs_delayed_node_to_tree_ref(node); 558 ret = __add_prelim_ref(prefs, ref->root, NULL, 559 ref->level + 1, ref->parent, 560 node->bytenr, 561 node->ref_mod * sgn); 562 break; 563 } 564 case BTRFS_EXTENT_DATA_REF_KEY: { 565 struct btrfs_delayed_data_ref *ref; 566 ref = btrfs_delayed_node_to_data_ref(node); 567 568 key.objectid = ref->objectid; 569 key.type = BTRFS_EXTENT_DATA_KEY; 570 key.offset = ref->offset; 571 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0, 572 node->bytenr, 573 node->ref_mod * sgn); 574 break; 575 } 576 case BTRFS_SHARED_DATA_REF_KEY: { 577 struct btrfs_delayed_data_ref *ref; 578 579 ref = btrfs_delayed_node_to_data_ref(node); 580 581 key.objectid = ref->objectid; 582 key.type = BTRFS_EXTENT_DATA_KEY; 583 key.offset = ref->offset; 584 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 585 ref->parent, node->bytenr, 586 node->ref_mod * sgn); 587 break; 588 } 589 default: 590 WARN_ON(1); 591 } 592 if (ret) 593 return ret; 594 } 595 596 return 0; 597 } 598 599 /* 600 * add all inline backrefs for bytenr to the list 601 */ 602 static int __add_inline_refs(struct btrfs_fs_info *fs_info, 603 struct btrfs_path *path, u64 bytenr, 604 int *info_level, struct list_head *prefs) 605 { 606 int ret = 0; 607 int slot; 608 struct extent_buffer *leaf; 609 struct btrfs_key key; 610 struct btrfs_key found_key; 611 unsigned long ptr; 612 unsigned long end; 613 struct btrfs_extent_item *ei; 614 u64 flags; 615 u64 item_size; 616 617 /* 618 * enumerate all inline refs 619 */ 620 leaf = path->nodes[0]; 621 slot = path->slots[0]; 622 623 item_size = btrfs_item_size_nr(leaf, slot); 624 BUG_ON(item_size < sizeof(*ei)); 625 626 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 627 flags = btrfs_extent_flags(leaf, ei); 628 btrfs_item_key_to_cpu(leaf, &found_key, slot); 629 630 ptr = (unsigned long)(ei + 1); 631 end = (unsigned long)ei + item_size; 632 633 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 634 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 635 struct btrfs_tree_block_info *info; 636 637 info = (struct btrfs_tree_block_info *)ptr; 638 *info_level = btrfs_tree_block_level(leaf, info); 639 ptr += sizeof(struct btrfs_tree_block_info); 640 BUG_ON(ptr > end); 641 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 642 *info_level = found_key.offset; 643 } else { 644 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 645 } 646 647 while (ptr < end) { 648 struct btrfs_extent_inline_ref *iref; 649 u64 offset; 650 int type; 651 652 iref = (struct btrfs_extent_inline_ref *)ptr; 653 type = btrfs_extent_inline_ref_type(leaf, iref); 654 offset = btrfs_extent_inline_ref_offset(leaf, iref); 655 656 switch (type) { 657 case BTRFS_SHARED_BLOCK_REF_KEY: 658 ret = __add_prelim_ref(prefs, 0, NULL, 659 *info_level + 1, offset, 660 bytenr, 1); 661 break; 662 case BTRFS_SHARED_DATA_REF_KEY: { 663 struct btrfs_shared_data_ref *sdref; 664 int count; 665 666 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 667 count = btrfs_shared_data_ref_count(leaf, sdref); 668 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset, 669 bytenr, count); 670 break; 671 } 672 case BTRFS_TREE_BLOCK_REF_KEY: 673 ret = __add_prelim_ref(prefs, offset, NULL, 674 *info_level + 1, 0, 675 bytenr, 1); 676 break; 677 case BTRFS_EXTENT_DATA_REF_KEY: { 678 struct btrfs_extent_data_ref *dref; 679 int count; 680 u64 root; 681 682 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 683 count = btrfs_extent_data_ref_count(leaf, dref); 684 key.objectid = btrfs_extent_data_ref_objectid(leaf, 685 dref); 686 key.type = BTRFS_EXTENT_DATA_KEY; 687 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 688 root = btrfs_extent_data_ref_root(leaf, dref); 689 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 690 bytenr, count); 691 break; 692 } 693 default: 694 WARN_ON(1); 695 } 696 if (ret) 697 return ret; 698 ptr += btrfs_extent_inline_ref_size(type); 699 } 700 701 return 0; 702 } 703 704 /* 705 * add all non-inline backrefs for bytenr to the list 706 */ 707 static int __add_keyed_refs(struct btrfs_fs_info *fs_info, 708 struct btrfs_path *path, u64 bytenr, 709 int info_level, struct list_head *prefs) 710 { 711 struct btrfs_root *extent_root = fs_info->extent_root; 712 int ret; 713 int slot; 714 struct extent_buffer *leaf; 715 struct btrfs_key key; 716 717 while (1) { 718 ret = btrfs_next_item(extent_root, path); 719 if (ret < 0) 720 break; 721 if (ret) { 722 ret = 0; 723 break; 724 } 725 726 slot = path->slots[0]; 727 leaf = path->nodes[0]; 728 btrfs_item_key_to_cpu(leaf, &key, slot); 729 730 if (key.objectid != bytenr) 731 break; 732 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 733 continue; 734 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 735 break; 736 737 switch (key.type) { 738 case BTRFS_SHARED_BLOCK_REF_KEY: 739 ret = __add_prelim_ref(prefs, 0, NULL, 740 info_level + 1, key.offset, 741 bytenr, 1); 742 break; 743 case BTRFS_SHARED_DATA_REF_KEY: { 744 struct btrfs_shared_data_ref *sdref; 745 int count; 746 747 sdref = btrfs_item_ptr(leaf, slot, 748 struct btrfs_shared_data_ref); 749 count = btrfs_shared_data_ref_count(leaf, sdref); 750 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset, 751 bytenr, count); 752 break; 753 } 754 case BTRFS_TREE_BLOCK_REF_KEY: 755 ret = __add_prelim_ref(prefs, key.offset, NULL, 756 info_level + 1, 0, 757 bytenr, 1); 758 break; 759 case BTRFS_EXTENT_DATA_REF_KEY: { 760 struct btrfs_extent_data_ref *dref; 761 int count; 762 u64 root; 763 764 dref = btrfs_item_ptr(leaf, slot, 765 struct btrfs_extent_data_ref); 766 count = btrfs_extent_data_ref_count(leaf, dref); 767 key.objectid = btrfs_extent_data_ref_objectid(leaf, 768 dref); 769 key.type = BTRFS_EXTENT_DATA_KEY; 770 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 771 root = btrfs_extent_data_ref_root(leaf, dref); 772 ret = __add_prelim_ref(prefs, root, &key, 0, 0, 773 bytenr, count); 774 break; 775 } 776 default: 777 WARN_ON(1); 778 } 779 if (ret) 780 return ret; 781 782 } 783 784 return ret; 785 } 786 787 /* 788 * this adds all existing backrefs (inline backrefs, backrefs and delayed 789 * refs) for the given bytenr to the refs list, merges duplicates and resolves 790 * indirect refs to their parent bytenr. 791 * When roots are found, they're added to the roots list 792 * 793 * FIXME some caching might speed things up 794 */ 795 static int find_parent_nodes(struct btrfs_trans_handle *trans, 796 struct btrfs_fs_info *fs_info, u64 bytenr, 797 u64 time_seq, struct ulist *refs, 798 struct ulist *roots, const u64 *extent_item_pos) 799 { 800 struct btrfs_key key; 801 struct btrfs_path *path; 802 struct btrfs_delayed_ref_root *delayed_refs = NULL; 803 struct btrfs_delayed_ref_head *head; 804 int info_level = 0; 805 int ret; 806 struct list_head prefs_delayed; 807 struct list_head prefs; 808 struct __prelim_ref *ref; 809 810 INIT_LIST_HEAD(&prefs); 811 INIT_LIST_HEAD(&prefs_delayed); 812 813 key.objectid = bytenr; 814 key.offset = (u64)-1; 815 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 816 key.type = BTRFS_METADATA_ITEM_KEY; 817 else 818 key.type = BTRFS_EXTENT_ITEM_KEY; 819 820 path = btrfs_alloc_path(); 821 if (!path) 822 return -ENOMEM; 823 if (!trans) 824 path->search_commit_root = 1; 825 826 /* 827 * grab both a lock on the path and a lock on the delayed ref head. 828 * We need both to get a consistent picture of how the refs look 829 * at a specified point in time 830 */ 831 again: 832 head = NULL; 833 834 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 835 if (ret < 0) 836 goto out; 837 BUG_ON(ret == 0); 838 839 if (trans) { 840 /* 841 * look if there are updates for this ref queued and lock the 842 * head 843 */ 844 delayed_refs = &trans->transaction->delayed_refs; 845 spin_lock(&delayed_refs->lock); 846 head = btrfs_find_delayed_ref_head(trans, bytenr); 847 if (head) { 848 if (!mutex_trylock(&head->mutex)) { 849 atomic_inc(&head->node.refs); 850 spin_unlock(&delayed_refs->lock); 851 852 btrfs_release_path(path); 853 854 /* 855 * Mutex was contended, block until it's 856 * released and try again 857 */ 858 mutex_lock(&head->mutex); 859 mutex_unlock(&head->mutex); 860 btrfs_put_delayed_ref(&head->node); 861 goto again; 862 } 863 ret = __add_delayed_refs(head, time_seq, 864 &prefs_delayed); 865 mutex_unlock(&head->mutex); 866 if (ret) { 867 spin_unlock(&delayed_refs->lock); 868 goto out; 869 } 870 } 871 spin_unlock(&delayed_refs->lock); 872 } 873 874 if (path->slots[0]) { 875 struct extent_buffer *leaf; 876 int slot; 877 878 path->slots[0]--; 879 leaf = path->nodes[0]; 880 slot = path->slots[0]; 881 btrfs_item_key_to_cpu(leaf, &key, slot); 882 if (key.objectid == bytenr && 883 (key.type == BTRFS_EXTENT_ITEM_KEY || 884 key.type == BTRFS_METADATA_ITEM_KEY)) { 885 ret = __add_inline_refs(fs_info, path, bytenr, 886 &info_level, &prefs); 887 if (ret) 888 goto out; 889 ret = __add_keyed_refs(fs_info, path, bytenr, 890 info_level, &prefs); 891 if (ret) 892 goto out; 893 } 894 } 895 btrfs_release_path(path); 896 897 list_splice_init(&prefs_delayed, &prefs); 898 899 ret = __add_missing_keys(fs_info, &prefs); 900 if (ret) 901 goto out; 902 903 __merge_refs(&prefs, 1); 904 905 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs, 906 extent_item_pos); 907 if (ret) 908 goto out; 909 910 __merge_refs(&prefs, 2); 911 912 while (!list_empty(&prefs)) { 913 ref = list_first_entry(&prefs, struct __prelim_ref, list); 914 WARN_ON(ref->count < 0); 915 if (ref->count && ref->root_id && ref->parent == 0) { 916 /* no parent == root of tree */ 917 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 918 if (ret < 0) 919 goto out; 920 } 921 if (ref->count && ref->parent) { 922 struct extent_inode_elem *eie = NULL; 923 if (extent_item_pos && !ref->inode_list) { 924 u32 bsz; 925 struct extent_buffer *eb; 926 bsz = btrfs_level_size(fs_info->extent_root, 927 info_level); 928 eb = read_tree_block(fs_info->extent_root, 929 ref->parent, bsz, 0); 930 if (!eb || !extent_buffer_uptodate(eb)) { 931 free_extent_buffer(eb); 932 ret = -EIO; 933 goto out; 934 } 935 ret = find_extent_in_eb(eb, bytenr, 936 *extent_item_pos, &eie); 937 free_extent_buffer(eb); 938 if (ret < 0) 939 goto out; 940 ref->inode_list = eie; 941 } 942 ret = ulist_add_merge(refs, ref->parent, 943 (uintptr_t)ref->inode_list, 944 (u64 *)&eie, GFP_NOFS); 945 if (ret < 0) 946 goto out; 947 if (!ret && extent_item_pos) { 948 /* 949 * we've recorded that parent, so we must extend 950 * its inode list here 951 */ 952 BUG_ON(!eie); 953 while (eie->next) 954 eie = eie->next; 955 eie->next = ref->inode_list; 956 } 957 } 958 list_del(&ref->list); 959 kfree(ref); 960 } 961 962 out: 963 btrfs_free_path(path); 964 while (!list_empty(&prefs)) { 965 ref = list_first_entry(&prefs, struct __prelim_ref, list); 966 list_del(&ref->list); 967 kfree(ref); 968 } 969 while (!list_empty(&prefs_delayed)) { 970 ref = list_first_entry(&prefs_delayed, struct __prelim_ref, 971 list); 972 list_del(&ref->list); 973 kfree(ref); 974 } 975 976 return ret; 977 } 978 979 static void free_leaf_list(struct ulist *blocks) 980 { 981 struct ulist_node *node = NULL; 982 struct extent_inode_elem *eie; 983 struct extent_inode_elem *eie_next; 984 struct ulist_iterator uiter; 985 986 ULIST_ITER_INIT(&uiter); 987 while ((node = ulist_next(blocks, &uiter))) { 988 if (!node->aux) 989 continue; 990 eie = (struct extent_inode_elem *)(uintptr_t)node->aux; 991 for (; eie; eie = eie_next) { 992 eie_next = eie->next; 993 kfree(eie); 994 } 995 node->aux = 0; 996 } 997 998 ulist_free(blocks); 999 } 1000 1001 /* 1002 * Finds all leafs with a reference to the specified combination of bytenr and 1003 * offset. key_list_head will point to a list of corresponding keys (caller must 1004 * free each list element). The leafs will be stored in the leafs ulist, which 1005 * must be freed with ulist_free. 1006 * 1007 * returns 0 on success, <0 on error 1008 */ 1009 static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1010 struct btrfs_fs_info *fs_info, u64 bytenr, 1011 u64 time_seq, struct ulist **leafs, 1012 const u64 *extent_item_pos) 1013 { 1014 struct ulist *tmp; 1015 int ret; 1016 1017 tmp = ulist_alloc(GFP_NOFS); 1018 if (!tmp) 1019 return -ENOMEM; 1020 *leafs = ulist_alloc(GFP_NOFS); 1021 if (!*leafs) { 1022 ulist_free(tmp); 1023 return -ENOMEM; 1024 } 1025 1026 ret = find_parent_nodes(trans, fs_info, bytenr, 1027 time_seq, *leafs, tmp, extent_item_pos); 1028 ulist_free(tmp); 1029 1030 if (ret < 0 && ret != -ENOENT) { 1031 free_leaf_list(*leafs); 1032 return ret; 1033 } 1034 1035 return 0; 1036 } 1037 1038 /* 1039 * walk all backrefs for a given extent to find all roots that reference this 1040 * extent. Walking a backref means finding all extents that reference this 1041 * extent and in turn walk the backrefs of those, too. Naturally this is a 1042 * recursive process, but here it is implemented in an iterative fashion: We 1043 * find all referencing extents for the extent in question and put them on a 1044 * list. In turn, we find all referencing extents for those, further appending 1045 * to the list. The way we iterate the list allows adding more elements after 1046 * the current while iterating. The process stops when we reach the end of the 1047 * list. Found roots are added to the roots list. 1048 * 1049 * returns 0 on success, < 0 on error. 1050 */ 1051 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1052 struct btrfs_fs_info *fs_info, u64 bytenr, 1053 u64 time_seq, struct ulist **roots) 1054 { 1055 struct ulist *tmp; 1056 struct ulist_node *node = NULL; 1057 struct ulist_iterator uiter; 1058 int ret; 1059 1060 tmp = ulist_alloc(GFP_NOFS); 1061 if (!tmp) 1062 return -ENOMEM; 1063 *roots = ulist_alloc(GFP_NOFS); 1064 if (!*roots) { 1065 ulist_free(tmp); 1066 return -ENOMEM; 1067 } 1068 1069 ULIST_ITER_INIT(&uiter); 1070 while (1) { 1071 ret = find_parent_nodes(trans, fs_info, bytenr, 1072 time_seq, tmp, *roots, NULL); 1073 if (ret < 0 && ret != -ENOENT) { 1074 ulist_free(tmp); 1075 ulist_free(*roots); 1076 return ret; 1077 } 1078 node = ulist_next(tmp, &uiter); 1079 if (!node) 1080 break; 1081 bytenr = node->val; 1082 } 1083 1084 ulist_free(tmp); 1085 return 0; 1086 } 1087 1088 1089 static int __inode_info(u64 inum, u64 ioff, u8 key_type, 1090 struct btrfs_root *fs_root, struct btrfs_path *path, 1091 struct btrfs_key *found_key) 1092 { 1093 int ret; 1094 struct btrfs_key key; 1095 struct extent_buffer *eb; 1096 1097 key.type = key_type; 1098 key.objectid = inum; 1099 key.offset = ioff; 1100 1101 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1102 if (ret < 0) 1103 return ret; 1104 1105 eb = path->nodes[0]; 1106 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1107 ret = btrfs_next_leaf(fs_root, path); 1108 if (ret) 1109 return ret; 1110 eb = path->nodes[0]; 1111 } 1112 1113 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1114 if (found_key->type != key.type || found_key->objectid != key.objectid) 1115 return 1; 1116 1117 return 0; 1118 } 1119 1120 /* 1121 * this makes the path point to (inum INODE_ITEM ioff) 1122 */ 1123 int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1124 struct btrfs_path *path) 1125 { 1126 struct btrfs_key key; 1127 return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path, 1128 &key); 1129 } 1130 1131 static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, 1132 struct btrfs_path *path, 1133 struct btrfs_key *found_key) 1134 { 1135 return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path, 1136 found_key); 1137 } 1138 1139 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1140 u64 start_off, struct btrfs_path *path, 1141 struct btrfs_inode_extref **ret_extref, 1142 u64 *found_off) 1143 { 1144 int ret, slot; 1145 struct btrfs_key key; 1146 struct btrfs_key found_key; 1147 struct btrfs_inode_extref *extref; 1148 struct extent_buffer *leaf; 1149 unsigned long ptr; 1150 1151 key.objectid = inode_objectid; 1152 btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY); 1153 key.offset = start_off; 1154 1155 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1156 if (ret < 0) 1157 return ret; 1158 1159 while (1) { 1160 leaf = path->nodes[0]; 1161 slot = path->slots[0]; 1162 if (slot >= btrfs_header_nritems(leaf)) { 1163 /* 1164 * If the item at offset is not found, 1165 * btrfs_search_slot will point us to the slot 1166 * where it should be inserted. In our case 1167 * that will be the slot directly before the 1168 * next INODE_REF_KEY_V2 item. In the case 1169 * that we're pointing to the last slot in a 1170 * leaf, we must move one leaf over. 1171 */ 1172 ret = btrfs_next_leaf(root, path); 1173 if (ret) { 1174 if (ret >= 1) 1175 ret = -ENOENT; 1176 break; 1177 } 1178 continue; 1179 } 1180 1181 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1182 1183 /* 1184 * Check that we're still looking at an extended ref key for 1185 * this particular objectid. If we have different 1186 * objectid or type then there are no more to be found 1187 * in the tree and we can exit. 1188 */ 1189 ret = -ENOENT; 1190 if (found_key.objectid != inode_objectid) 1191 break; 1192 if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY) 1193 break; 1194 1195 ret = 0; 1196 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1197 extref = (struct btrfs_inode_extref *)ptr; 1198 *ret_extref = extref; 1199 if (found_off) 1200 *found_off = found_key.offset; 1201 break; 1202 } 1203 1204 return ret; 1205 } 1206 1207 /* 1208 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1209 * Elements of the path are separated by '/' and the path is guaranteed to be 1210 * 0-terminated. the path is only given within the current file system. 1211 * Therefore, it never starts with a '/'. the caller is responsible to provide 1212 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1213 * the start point of the resulting string is returned. this pointer is within 1214 * dest, normally. 1215 * in case the path buffer would overflow, the pointer is decremented further 1216 * as if output was written to the buffer, though no more output is actually 1217 * generated. that way, the caller can determine how much space would be 1218 * required for the path to fit into the buffer. in that case, the returned 1219 * value will be smaller than dest. callers must check this! 1220 */ 1221 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1222 u32 name_len, unsigned long name_off, 1223 struct extent_buffer *eb_in, u64 parent, 1224 char *dest, u32 size) 1225 { 1226 int slot; 1227 u64 next_inum; 1228 int ret; 1229 s64 bytes_left = ((s64)size) - 1; 1230 struct extent_buffer *eb = eb_in; 1231 struct btrfs_key found_key; 1232 int leave_spinning = path->leave_spinning; 1233 struct btrfs_inode_ref *iref; 1234 1235 if (bytes_left >= 0) 1236 dest[bytes_left] = '\0'; 1237 1238 path->leave_spinning = 1; 1239 while (1) { 1240 bytes_left -= name_len; 1241 if (bytes_left >= 0) 1242 read_extent_buffer(eb, dest + bytes_left, 1243 name_off, name_len); 1244 if (eb != eb_in) { 1245 btrfs_tree_read_unlock_blocking(eb); 1246 free_extent_buffer(eb); 1247 } 1248 ret = inode_ref_info(parent, 0, fs_root, path, &found_key); 1249 if (ret > 0) 1250 ret = -ENOENT; 1251 if (ret) 1252 break; 1253 1254 next_inum = found_key.offset; 1255 1256 /* regular exit ahead */ 1257 if (parent == next_inum) 1258 break; 1259 1260 slot = path->slots[0]; 1261 eb = path->nodes[0]; 1262 /* make sure we can use eb after releasing the path */ 1263 if (eb != eb_in) { 1264 atomic_inc(&eb->refs); 1265 btrfs_tree_read_lock(eb); 1266 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1267 } 1268 btrfs_release_path(path); 1269 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1270 1271 name_len = btrfs_inode_ref_name_len(eb, iref); 1272 name_off = (unsigned long)(iref + 1); 1273 1274 parent = next_inum; 1275 --bytes_left; 1276 if (bytes_left >= 0) 1277 dest[bytes_left] = '/'; 1278 } 1279 1280 btrfs_release_path(path); 1281 path->leave_spinning = leave_spinning; 1282 1283 if (ret) 1284 return ERR_PTR(ret); 1285 1286 return dest + bytes_left; 1287 } 1288 1289 /* 1290 * this makes the path point to (logical EXTENT_ITEM *) 1291 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1292 * tree blocks and <0 on error. 1293 */ 1294 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1295 struct btrfs_path *path, struct btrfs_key *found_key, 1296 u64 *flags_ret) 1297 { 1298 int ret; 1299 u64 flags; 1300 u64 size = 0; 1301 u32 item_size; 1302 struct extent_buffer *eb; 1303 struct btrfs_extent_item *ei; 1304 struct btrfs_key key; 1305 1306 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1307 key.type = BTRFS_METADATA_ITEM_KEY; 1308 else 1309 key.type = BTRFS_EXTENT_ITEM_KEY; 1310 key.objectid = logical; 1311 key.offset = (u64)-1; 1312 1313 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1314 if (ret < 0) 1315 return ret; 1316 ret = btrfs_previous_item(fs_info->extent_root, path, 1317 0, BTRFS_EXTENT_ITEM_KEY); 1318 if (ret < 0) 1319 return ret; 1320 1321 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1322 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1323 size = fs_info->extent_root->leafsize; 1324 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1325 size = found_key->offset; 1326 1327 if ((found_key->type != BTRFS_EXTENT_ITEM_KEY && 1328 found_key->type != BTRFS_METADATA_ITEM_KEY) || 1329 found_key->objectid > logical || 1330 found_key->objectid + size <= logical) { 1331 pr_debug("logical %llu is not within any extent\n", 1332 (unsigned long long)logical); 1333 return -ENOENT; 1334 } 1335 1336 eb = path->nodes[0]; 1337 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1338 BUG_ON(item_size < sizeof(*ei)); 1339 1340 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1341 flags = btrfs_extent_flags(eb, ei); 1342 1343 pr_debug("logical %llu is at position %llu within the extent (%llu " 1344 "EXTENT_ITEM %llu) flags %#llx size %u\n", 1345 (unsigned long long)logical, 1346 (unsigned long long)(logical - found_key->objectid), 1347 (unsigned long long)found_key->objectid, 1348 (unsigned long long)found_key->offset, 1349 (unsigned long long)flags, item_size); 1350 1351 WARN_ON(!flags_ret); 1352 if (flags_ret) { 1353 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1354 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1355 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1356 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1357 else 1358 BUG_ON(1); 1359 return 0; 1360 } 1361 1362 return -EIO; 1363 } 1364 1365 /* 1366 * helper function to iterate extent inline refs. ptr must point to a 0 value 1367 * for the first call and may be modified. it is used to track state. 1368 * if more refs exist, 0 is returned and the next call to 1369 * __get_extent_inline_ref must pass the modified ptr parameter to get the 1370 * next ref. after the last ref was processed, 1 is returned. 1371 * returns <0 on error 1372 */ 1373 static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, 1374 struct btrfs_extent_item *ei, u32 item_size, 1375 struct btrfs_extent_inline_ref **out_eiref, 1376 int *out_type) 1377 { 1378 unsigned long end; 1379 u64 flags; 1380 struct btrfs_tree_block_info *info; 1381 1382 if (!*ptr) { 1383 /* first call */ 1384 flags = btrfs_extent_flags(eb, ei); 1385 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1386 info = (struct btrfs_tree_block_info *)(ei + 1); 1387 *out_eiref = 1388 (struct btrfs_extent_inline_ref *)(info + 1); 1389 } else { 1390 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1391 } 1392 *ptr = (unsigned long)*out_eiref; 1393 if ((void *)*ptr >= (void *)ei + item_size) 1394 return -ENOENT; 1395 } 1396 1397 end = (unsigned long)ei + item_size; 1398 *out_eiref = (struct btrfs_extent_inline_ref *)*ptr; 1399 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); 1400 1401 *ptr += btrfs_extent_inline_ref_size(*out_type); 1402 WARN_ON(*ptr > end); 1403 if (*ptr == end) 1404 return 1; /* last */ 1405 1406 return 0; 1407 } 1408 1409 /* 1410 * reads the tree block backref for an extent. tree level and root are returned 1411 * through out_level and out_root. ptr must point to a 0 value for the first 1412 * call and may be modified (see __get_extent_inline_ref comment). 1413 * returns 0 if data was provided, 1 if there was no more data to provide or 1414 * <0 on error. 1415 */ 1416 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1417 struct btrfs_extent_item *ei, u32 item_size, 1418 u64 *out_root, u8 *out_level) 1419 { 1420 int ret; 1421 int type; 1422 struct btrfs_tree_block_info *info; 1423 struct btrfs_extent_inline_ref *eiref; 1424 1425 if (*ptr == (unsigned long)-1) 1426 return 1; 1427 1428 while (1) { 1429 ret = __get_extent_inline_ref(ptr, eb, ei, item_size, 1430 &eiref, &type); 1431 if (ret < 0) 1432 return ret; 1433 1434 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1435 type == BTRFS_SHARED_BLOCK_REF_KEY) 1436 break; 1437 1438 if (ret == 1) 1439 return 1; 1440 } 1441 1442 /* we can treat both ref types equally here */ 1443 info = (struct btrfs_tree_block_info *)(ei + 1); 1444 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1445 *out_level = btrfs_tree_block_level(eb, info); 1446 1447 if (ret == 1) 1448 *ptr = (unsigned long)-1; 1449 1450 return 0; 1451 } 1452 1453 static int iterate_leaf_refs(struct extent_inode_elem *inode_list, 1454 u64 root, u64 extent_item_objectid, 1455 iterate_extent_inodes_t *iterate, void *ctx) 1456 { 1457 struct extent_inode_elem *eie; 1458 int ret = 0; 1459 1460 for (eie = inode_list; eie; eie = eie->next) { 1461 pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), " 1462 "root %llu\n", extent_item_objectid, 1463 eie->inum, eie->offset, root); 1464 ret = iterate(eie->inum, eie->offset, root, ctx); 1465 if (ret) { 1466 pr_debug("stopping iteration for %llu due to ret=%d\n", 1467 extent_item_objectid, ret); 1468 break; 1469 } 1470 } 1471 1472 return ret; 1473 } 1474 1475 /* 1476 * calls iterate() for every inode that references the extent identified by 1477 * the given parameters. 1478 * when the iterator function returns a non-zero value, iteration stops. 1479 */ 1480 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1481 u64 extent_item_objectid, u64 extent_item_pos, 1482 int search_commit_root, 1483 iterate_extent_inodes_t *iterate, void *ctx) 1484 { 1485 int ret; 1486 struct btrfs_trans_handle *trans = NULL; 1487 struct ulist *refs = NULL; 1488 struct ulist *roots = NULL; 1489 struct ulist_node *ref_node = NULL; 1490 struct ulist_node *root_node = NULL; 1491 struct seq_list tree_mod_seq_elem = {}; 1492 struct ulist_iterator ref_uiter; 1493 struct ulist_iterator root_uiter; 1494 1495 pr_debug("resolving all inodes for extent %llu\n", 1496 extent_item_objectid); 1497 1498 if (!search_commit_root) { 1499 trans = btrfs_join_transaction(fs_info->extent_root); 1500 if (IS_ERR(trans)) 1501 return PTR_ERR(trans); 1502 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1503 } 1504 1505 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1506 tree_mod_seq_elem.seq, &refs, 1507 &extent_item_pos); 1508 if (ret) 1509 goto out; 1510 1511 ULIST_ITER_INIT(&ref_uiter); 1512 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1513 ret = btrfs_find_all_roots(trans, fs_info, ref_node->val, 1514 tree_mod_seq_elem.seq, &roots); 1515 if (ret) 1516 break; 1517 ULIST_ITER_INIT(&root_uiter); 1518 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1519 pr_debug("root %llu references leaf %llu, data list " 1520 "%#llx\n", root_node->val, ref_node->val, 1521 (long long)ref_node->aux); 1522 ret = iterate_leaf_refs((struct extent_inode_elem *) 1523 (uintptr_t)ref_node->aux, 1524 root_node->val, 1525 extent_item_objectid, 1526 iterate, ctx); 1527 } 1528 ulist_free(roots); 1529 } 1530 1531 free_leaf_list(refs); 1532 out: 1533 if (!search_commit_root) { 1534 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1535 btrfs_end_transaction(trans, fs_info->extent_root); 1536 } 1537 1538 return ret; 1539 } 1540 1541 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 1542 struct btrfs_path *path, 1543 iterate_extent_inodes_t *iterate, void *ctx) 1544 { 1545 int ret; 1546 u64 extent_item_pos; 1547 u64 flags = 0; 1548 struct btrfs_key found_key; 1549 int search_commit_root = path->search_commit_root; 1550 1551 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 1552 btrfs_release_path(path); 1553 if (ret < 0) 1554 return ret; 1555 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1556 return -EINVAL; 1557 1558 extent_item_pos = logical - found_key.objectid; 1559 ret = iterate_extent_inodes(fs_info, found_key.objectid, 1560 extent_item_pos, search_commit_root, 1561 iterate, ctx); 1562 1563 return ret; 1564 } 1565 1566 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 1567 struct extent_buffer *eb, void *ctx); 1568 1569 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 1570 struct btrfs_path *path, 1571 iterate_irefs_t *iterate, void *ctx) 1572 { 1573 int ret = 0; 1574 int slot; 1575 u32 cur; 1576 u32 len; 1577 u32 name_len; 1578 u64 parent = 0; 1579 int found = 0; 1580 struct extent_buffer *eb; 1581 struct btrfs_item *item; 1582 struct btrfs_inode_ref *iref; 1583 struct btrfs_key found_key; 1584 1585 while (!ret) { 1586 path->leave_spinning = 1; 1587 ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, 1588 &found_key); 1589 if (ret < 0) 1590 break; 1591 if (ret) { 1592 ret = found ? 0 : -ENOENT; 1593 break; 1594 } 1595 ++found; 1596 1597 parent = found_key.offset; 1598 slot = path->slots[0]; 1599 eb = path->nodes[0]; 1600 /* make sure we can use eb after releasing the path */ 1601 atomic_inc(&eb->refs); 1602 btrfs_tree_read_lock(eb); 1603 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1604 btrfs_release_path(path); 1605 1606 item = btrfs_item_nr(eb, slot); 1607 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1608 1609 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 1610 name_len = btrfs_inode_ref_name_len(eb, iref); 1611 /* path must be released before calling iterate()! */ 1612 pr_debug("following ref at offset %u for inode %llu in " 1613 "tree %llu\n", cur, 1614 (unsigned long long)found_key.objectid, 1615 (unsigned long long)fs_root->objectid); 1616 ret = iterate(parent, name_len, 1617 (unsigned long)(iref + 1), eb, ctx); 1618 if (ret) 1619 break; 1620 len = sizeof(*iref) + name_len; 1621 iref = (struct btrfs_inode_ref *)((char *)iref + len); 1622 } 1623 btrfs_tree_read_unlock_blocking(eb); 1624 free_extent_buffer(eb); 1625 } 1626 1627 btrfs_release_path(path); 1628 1629 return ret; 1630 } 1631 1632 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 1633 struct btrfs_path *path, 1634 iterate_irefs_t *iterate, void *ctx) 1635 { 1636 int ret; 1637 int slot; 1638 u64 offset = 0; 1639 u64 parent; 1640 int found = 0; 1641 struct extent_buffer *eb; 1642 struct btrfs_inode_extref *extref; 1643 struct extent_buffer *leaf; 1644 u32 item_size; 1645 u32 cur_offset; 1646 unsigned long ptr; 1647 1648 while (1) { 1649 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 1650 &offset); 1651 if (ret < 0) 1652 break; 1653 if (ret) { 1654 ret = found ? 0 : -ENOENT; 1655 break; 1656 } 1657 ++found; 1658 1659 slot = path->slots[0]; 1660 eb = path->nodes[0]; 1661 /* make sure we can use eb after releasing the path */ 1662 atomic_inc(&eb->refs); 1663 1664 btrfs_tree_read_lock(eb); 1665 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1666 btrfs_release_path(path); 1667 1668 leaf = path->nodes[0]; 1669 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 1670 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1671 cur_offset = 0; 1672 1673 while (cur_offset < item_size) { 1674 u32 name_len; 1675 1676 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 1677 parent = btrfs_inode_extref_parent(eb, extref); 1678 name_len = btrfs_inode_extref_name_len(eb, extref); 1679 ret = iterate(parent, name_len, 1680 (unsigned long)&extref->name, eb, ctx); 1681 if (ret) 1682 break; 1683 1684 cur_offset += btrfs_inode_extref_name_len(leaf, extref); 1685 cur_offset += sizeof(*extref); 1686 } 1687 btrfs_tree_read_unlock_blocking(eb); 1688 free_extent_buffer(eb); 1689 1690 offset++; 1691 } 1692 1693 btrfs_release_path(path); 1694 1695 return ret; 1696 } 1697 1698 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 1699 struct btrfs_path *path, iterate_irefs_t *iterate, 1700 void *ctx) 1701 { 1702 int ret; 1703 int found_refs = 0; 1704 1705 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 1706 if (!ret) 1707 ++found_refs; 1708 else if (ret != -ENOENT) 1709 return ret; 1710 1711 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 1712 if (ret == -ENOENT && found_refs) 1713 return 0; 1714 1715 return ret; 1716 } 1717 1718 /* 1719 * returns 0 if the path could be dumped (probably truncated) 1720 * returns <0 in case of an error 1721 */ 1722 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 1723 struct extent_buffer *eb, void *ctx) 1724 { 1725 struct inode_fs_paths *ipath = ctx; 1726 char *fspath; 1727 char *fspath_min; 1728 int i = ipath->fspath->elem_cnt; 1729 const int s_ptr = sizeof(char *); 1730 u32 bytes_left; 1731 1732 bytes_left = ipath->fspath->bytes_left > s_ptr ? 1733 ipath->fspath->bytes_left - s_ptr : 0; 1734 1735 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 1736 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 1737 name_off, eb, inum, fspath_min, bytes_left); 1738 if (IS_ERR(fspath)) 1739 return PTR_ERR(fspath); 1740 1741 if (fspath > fspath_min) { 1742 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 1743 ++ipath->fspath->elem_cnt; 1744 ipath->fspath->bytes_left = fspath - fspath_min; 1745 } else { 1746 ++ipath->fspath->elem_missed; 1747 ipath->fspath->bytes_missing += fspath_min - fspath; 1748 ipath->fspath->bytes_left = 0; 1749 } 1750 1751 return 0; 1752 } 1753 1754 /* 1755 * this dumps all file system paths to the inode into the ipath struct, provided 1756 * is has been created large enough. each path is zero-terminated and accessed 1757 * from ipath->fspath->val[i]. 1758 * when it returns, there are ipath->fspath->elem_cnt number of paths available 1759 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 1760 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, 1761 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 1762 * have been needed to return all paths. 1763 */ 1764 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 1765 { 1766 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 1767 inode_to_path, ipath); 1768 } 1769 1770 struct btrfs_data_container *init_data_container(u32 total_bytes) 1771 { 1772 struct btrfs_data_container *data; 1773 size_t alloc_bytes; 1774 1775 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 1776 data = vmalloc(alloc_bytes); 1777 if (!data) 1778 return ERR_PTR(-ENOMEM); 1779 1780 if (total_bytes >= sizeof(*data)) { 1781 data->bytes_left = total_bytes - sizeof(*data); 1782 data->bytes_missing = 0; 1783 } else { 1784 data->bytes_missing = sizeof(*data) - total_bytes; 1785 data->bytes_left = 0; 1786 } 1787 1788 data->elem_cnt = 0; 1789 data->elem_missed = 0; 1790 1791 return data; 1792 } 1793 1794 /* 1795 * allocates space to return multiple file system paths for an inode. 1796 * total_bytes to allocate are passed, note that space usable for actual path 1797 * information will be total_bytes - sizeof(struct inode_fs_paths). 1798 * the returned pointer must be freed with free_ipath() in the end. 1799 */ 1800 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 1801 struct btrfs_path *path) 1802 { 1803 struct inode_fs_paths *ifp; 1804 struct btrfs_data_container *fspath; 1805 1806 fspath = init_data_container(total_bytes); 1807 if (IS_ERR(fspath)) 1808 return (void *)fspath; 1809 1810 ifp = kmalloc(sizeof(*ifp), GFP_NOFS); 1811 if (!ifp) { 1812 kfree(fspath); 1813 return ERR_PTR(-ENOMEM); 1814 } 1815 1816 ifp->btrfs_path = path; 1817 ifp->fspath = fspath; 1818 ifp->fs_root = fs_root; 1819 1820 return ifp; 1821 } 1822 1823 void free_ipath(struct inode_fs_paths *ipath) 1824 { 1825 if (!ipath) 1826 return; 1827 vfree(ipath->fspath); 1828 kfree(ipath); 1829 } 1830