1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 STRATO. All rights reserved. 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/rbtree.h> 8 #include <trace/events/btrfs.h> 9 #include "ctree.h" 10 #include "disk-io.h" 11 #include "backref.h" 12 #include "ulist.h" 13 #include "transaction.h" 14 #include "delayed-ref.h" 15 #include "locking.h" 16 #include "misc.h" 17 18 /* Just an arbitrary number so we can be sure this happened */ 19 #define BACKREF_FOUND_SHARED 6 20 21 struct extent_inode_elem { 22 u64 inum; 23 u64 offset; 24 struct extent_inode_elem *next; 25 }; 26 27 static int check_extent_in_eb(const struct btrfs_key *key, 28 const struct extent_buffer *eb, 29 const struct btrfs_file_extent_item *fi, 30 u64 extent_item_pos, 31 struct extent_inode_elem **eie, 32 bool ignore_offset) 33 { 34 u64 offset = 0; 35 struct extent_inode_elem *e; 36 37 if (!ignore_offset && 38 !btrfs_file_extent_compression(eb, fi) && 39 !btrfs_file_extent_encryption(eb, fi) && 40 !btrfs_file_extent_other_encoding(eb, fi)) { 41 u64 data_offset; 42 u64 data_len; 43 44 data_offset = btrfs_file_extent_offset(eb, fi); 45 data_len = btrfs_file_extent_num_bytes(eb, fi); 46 47 if (extent_item_pos < data_offset || 48 extent_item_pos >= data_offset + data_len) 49 return 1; 50 offset = extent_item_pos - data_offset; 51 } 52 53 e = kmalloc(sizeof(*e), GFP_NOFS); 54 if (!e) 55 return -ENOMEM; 56 57 e->next = *eie; 58 e->inum = key->objectid; 59 e->offset = key->offset + offset; 60 *eie = e; 61 62 return 0; 63 } 64 65 static void free_inode_elem_list(struct extent_inode_elem *eie) 66 { 67 struct extent_inode_elem *eie_next; 68 69 for (; eie; eie = eie_next) { 70 eie_next = eie->next; 71 kfree(eie); 72 } 73 } 74 75 static int find_extent_in_eb(const struct extent_buffer *eb, 76 u64 wanted_disk_byte, u64 extent_item_pos, 77 struct extent_inode_elem **eie, 78 bool ignore_offset) 79 { 80 u64 disk_byte; 81 struct btrfs_key key; 82 struct btrfs_file_extent_item *fi; 83 int slot; 84 int nritems; 85 int extent_type; 86 int ret; 87 88 /* 89 * from the shared data ref, we only have the leaf but we need 90 * the key. thus, we must look into all items and see that we 91 * find one (some) with a reference to our extent item. 92 */ 93 nritems = btrfs_header_nritems(eb); 94 for (slot = 0; slot < nritems; ++slot) { 95 btrfs_item_key_to_cpu(eb, &key, slot); 96 if (key.type != BTRFS_EXTENT_DATA_KEY) 97 continue; 98 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 99 extent_type = btrfs_file_extent_type(eb, fi); 100 if (extent_type == BTRFS_FILE_EXTENT_INLINE) 101 continue; 102 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */ 103 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 104 if (disk_byte != wanted_disk_byte) 105 continue; 106 107 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset); 108 if (ret < 0) 109 return ret; 110 } 111 112 return 0; 113 } 114 115 struct preftree { 116 struct rb_root_cached root; 117 unsigned int count; 118 }; 119 120 #define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 } 121 122 struct preftrees { 123 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */ 124 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */ 125 struct preftree indirect_missing_keys; 126 }; 127 128 /* 129 * Checks for a shared extent during backref search. 130 * 131 * The share_count tracks prelim_refs (direct and indirect) having a 132 * ref->count >0: 133 * - incremented when a ref->count transitions to >0 134 * - decremented when a ref->count transitions to <1 135 */ 136 struct share_check { 137 u64 root_objectid; 138 u64 inum; 139 int share_count; 140 }; 141 142 static inline int extent_is_shared(struct share_check *sc) 143 { 144 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0; 145 } 146 147 static struct kmem_cache *btrfs_prelim_ref_cache; 148 149 int __init btrfs_prelim_ref_init(void) 150 { 151 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref", 152 sizeof(struct prelim_ref), 153 0, 154 SLAB_MEM_SPREAD, 155 NULL); 156 if (!btrfs_prelim_ref_cache) 157 return -ENOMEM; 158 return 0; 159 } 160 161 void __cold btrfs_prelim_ref_exit(void) 162 { 163 kmem_cache_destroy(btrfs_prelim_ref_cache); 164 } 165 166 static void free_pref(struct prelim_ref *ref) 167 { 168 kmem_cache_free(btrfs_prelim_ref_cache, ref); 169 } 170 171 /* 172 * Return 0 when both refs are for the same block (and can be merged). 173 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1 174 * indicates a 'higher' block. 175 */ 176 static int prelim_ref_compare(struct prelim_ref *ref1, 177 struct prelim_ref *ref2) 178 { 179 if (ref1->level < ref2->level) 180 return -1; 181 if (ref1->level > ref2->level) 182 return 1; 183 if (ref1->root_id < ref2->root_id) 184 return -1; 185 if (ref1->root_id > ref2->root_id) 186 return 1; 187 if (ref1->key_for_search.type < ref2->key_for_search.type) 188 return -1; 189 if (ref1->key_for_search.type > ref2->key_for_search.type) 190 return 1; 191 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid) 192 return -1; 193 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid) 194 return 1; 195 if (ref1->key_for_search.offset < ref2->key_for_search.offset) 196 return -1; 197 if (ref1->key_for_search.offset > ref2->key_for_search.offset) 198 return 1; 199 if (ref1->parent < ref2->parent) 200 return -1; 201 if (ref1->parent > ref2->parent) 202 return 1; 203 204 return 0; 205 } 206 207 static void update_share_count(struct share_check *sc, int oldcount, 208 int newcount) 209 { 210 if ((!sc) || (oldcount == 0 && newcount < 1)) 211 return; 212 213 if (oldcount > 0 && newcount < 1) 214 sc->share_count--; 215 else if (oldcount < 1 && newcount > 0) 216 sc->share_count++; 217 } 218 219 /* 220 * Add @newref to the @root rbtree, merging identical refs. 221 * 222 * Callers should assume that newref has been freed after calling. 223 */ 224 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info, 225 struct preftree *preftree, 226 struct prelim_ref *newref, 227 struct share_check *sc) 228 { 229 struct rb_root_cached *root; 230 struct rb_node **p; 231 struct rb_node *parent = NULL; 232 struct prelim_ref *ref; 233 int result; 234 bool leftmost = true; 235 236 root = &preftree->root; 237 p = &root->rb_root.rb_node; 238 239 while (*p) { 240 parent = *p; 241 ref = rb_entry(parent, struct prelim_ref, rbnode); 242 result = prelim_ref_compare(ref, newref); 243 if (result < 0) { 244 p = &(*p)->rb_left; 245 } else if (result > 0) { 246 p = &(*p)->rb_right; 247 leftmost = false; 248 } else { 249 /* Identical refs, merge them and free @newref */ 250 struct extent_inode_elem *eie = ref->inode_list; 251 252 while (eie && eie->next) 253 eie = eie->next; 254 255 if (!eie) 256 ref->inode_list = newref->inode_list; 257 else 258 eie->next = newref->inode_list; 259 trace_btrfs_prelim_ref_merge(fs_info, ref, newref, 260 preftree->count); 261 /* 262 * A delayed ref can have newref->count < 0. 263 * The ref->count is updated to follow any 264 * BTRFS_[ADD|DROP]_DELAYED_REF actions. 265 */ 266 update_share_count(sc, ref->count, 267 ref->count + newref->count); 268 ref->count += newref->count; 269 free_pref(newref); 270 return; 271 } 272 } 273 274 update_share_count(sc, 0, newref->count); 275 preftree->count++; 276 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count); 277 rb_link_node(&newref->rbnode, parent, p); 278 rb_insert_color_cached(&newref->rbnode, root, leftmost); 279 } 280 281 /* 282 * Release the entire tree. We don't care about internal consistency so 283 * just free everything and then reset the tree root. 284 */ 285 static void prelim_release(struct preftree *preftree) 286 { 287 struct prelim_ref *ref, *next_ref; 288 289 rbtree_postorder_for_each_entry_safe(ref, next_ref, 290 &preftree->root.rb_root, rbnode) 291 free_pref(ref); 292 293 preftree->root = RB_ROOT_CACHED; 294 preftree->count = 0; 295 } 296 297 /* 298 * the rules for all callers of this function are: 299 * - obtaining the parent is the goal 300 * - if you add a key, you must know that it is a correct key 301 * - if you cannot add the parent or a correct key, then we will look into the 302 * block later to set a correct key 303 * 304 * delayed refs 305 * ============ 306 * backref type | shared | indirect | shared | indirect 307 * information | tree | tree | data | data 308 * --------------------+--------+----------+--------+---------- 309 * parent logical | y | - | - | - 310 * key to resolve | - | y | y | y 311 * tree block logical | - | - | - | - 312 * root for resolving | y | y | y | y 313 * 314 * - column 1: we've the parent -> done 315 * - column 2, 3, 4: we use the key to find the parent 316 * 317 * on disk refs (inline or keyed) 318 * ============================== 319 * backref type | shared | indirect | shared | indirect 320 * information | tree | tree | data | data 321 * --------------------+--------+----------+--------+---------- 322 * parent logical | y | - | y | - 323 * key to resolve | - | - | - | y 324 * tree block logical | y | y | y | y 325 * root for resolving | - | y | y | y 326 * 327 * - column 1, 3: we've the parent -> done 328 * - column 2: we take the first key from the block to find the parent 329 * (see add_missing_keys) 330 * - column 4: we use the key to find the parent 331 * 332 * additional information that's available but not required to find the parent 333 * block might help in merging entries to gain some speed. 334 */ 335 static int add_prelim_ref(const struct btrfs_fs_info *fs_info, 336 struct preftree *preftree, u64 root_id, 337 const struct btrfs_key *key, int level, u64 parent, 338 u64 wanted_disk_byte, int count, 339 struct share_check *sc, gfp_t gfp_mask) 340 { 341 struct prelim_ref *ref; 342 343 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID) 344 return 0; 345 346 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask); 347 if (!ref) 348 return -ENOMEM; 349 350 ref->root_id = root_id; 351 if (key) 352 ref->key_for_search = *key; 353 else 354 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search)); 355 356 ref->inode_list = NULL; 357 ref->level = level; 358 ref->count = count; 359 ref->parent = parent; 360 ref->wanted_disk_byte = wanted_disk_byte; 361 prelim_ref_insert(fs_info, preftree, ref, sc); 362 return extent_is_shared(sc); 363 } 364 365 /* direct refs use root == 0, key == NULL */ 366 static int add_direct_ref(const struct btrfs_fs_info *fs_info, 367 struct preftrees *preftrees, int level, u64 parent, 368 u64 wanted_disk_byte, int count, 369 struct share_check *sc, gfp_t gfp_mask) 370 { 371 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level, 372 parent, wanted_disk_byte, count, sc, gfp_mask); 373 } 374 375 /* indirect refs use parent == 0 */ 376 static int add_indirect_ref(const struct btrfs_fs_info *fs_info, 377 struct preftrees *preftrees, u64 root_id, 378 const struct btrfs_key *key, int level, 379 u64 wanted_disk_byte, int count, 380 struct share_check *sc, gfp_t gfp_mask) 381 { 382 struct preftree *tree = &preftrees->indirect; 383 384 if (!key) 385 tree = &preftrees->indirect_missing_keys; 386 return add_prelim_ref(fs_info, tree, root_id, key, level, 0, 387 wanted_disk_byte, count, sc, gfp_mask); 388 } 389 390 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr) 391 { 392 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node; 393 struct rb_node *parent = NULL; 394 struct prelim_ref *ref = NULL; 395 struct prelim_ref target = {}; 396 int result; 397 398 target.parent = bytenr; 399 400 while (*p) { 401 parent = *p; 402 ref = rb_entry(parent, struct prelim_ref, rbnode); 403 result = prelim_ref_compare(ref, &target); 404 405 if (result < 0) 406 p = &(*p)->rb_left; 407 else if (result > 0) 408 p = &(*p)->rb_right; 409 else 410 return 1; 411 } 412 return 0; 413 } 414 415 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path, 416 struct ulist *parents, 417 struct preftrees *preftrees, struct prelim_ref *ref, 418 int level, u64 time_seq, const u64 *extent_item_pos, 419 bool ignore_offset) 420 { 421 int ret = 0; 422 int slot; 423 struct extent_buffer *eb; 424 struct btrfs_key key; 425 struct btrfs_key *key_for_search = &ref->key_for_search; 426 struct btrfs_file_extent_item *fi; 427 struct extent_inode_elem *eie = NULL, *old = NULL; 428 u64 disk_byte; 429 u64 wanted_disk_byte = ref->wanted_disk_byte; 430 u64 count = 0; 431 u64 data_offset; 432 433 if (level != 0) { 434 eb = path->nodes[level]; 435 ret = ulist_add(parents, eb->start, 0, GFP_NOFS); 436 if (ret < 0) 437 return ret; 438 return 0; 439 } 440 441 /* 442 * 1. We normally enter this function with the path already pointing to 443 * the first item to check. But sometimes, we may enter it with 444 * slot == nritems. 445 * 2. We are searching for normal backref but bytenr of this leaf 446 * matches shared data backref 447 * 3. The leaf owner is not equal to the root we are searching 448 * 449 * For these cases, go to the next leaf before we continue. 450 */ 451 eb = path->nodes[0]; 452 if (path->slots[0] >= btrfs_header_nritems(eb) || 453 is_shared_data_backref(preftrees, eb->start) || 454 ref->root_id != btrfs_header_owner(eb)) { 455 if (time_seq == SEQ_LAST) 456 ret = btrfs_next_leaf(root, path); 457 else 458 ret = btrfs_next_old_leaf(root, path, time_seq); 459 } 460 461 while (!ret && count < ref->count) { 462 eb = path->nodes[0]; 463 slot = path->slots[0]; 464 465 btrfs_item_key_to_cpu(eb, &key, slot); 466 467 if (key.objectid != key_for_search->objectid || 468 key.type != BTRFS_EXTENT_DATA_KEY) 469 break; 470 471 /* 472 * We are searching for normal backref but bytenr of this leaf 473 * matches shared data backref, OR 474 * the leaf owner is not equal to the root we are searching for 475 */ 476 if (slot == 0 && 477 (is_shared_data_backref(preftrees, eb->start) || 478 ref->root_id != btrfs_header_owner(eb))) { 479 if (time_seq == SEQ_LAST) 480 ret = btrfs_next_leaf(root, path); 481 else 482 ret = btrfs_next_old_leaf(root, path, time_seq); 483 continue; 484 } 485 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); 486 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); 487 data_offset = btrfs_file_extent_offset(eb, fi); 488 489 if (disk_byte == wanted_disk_byte) { 490 eie = NULL; 491 old = NULL; 492 if (ref->key_for_search.offset == key.offset - data_offset) 493 count++; 494 else 495 goto next; 496 if (extent_item_pos) { 497 ret = check_extent_in_eb(&key, eb, fi, 498 *extent_item_pos, 499 &eie, ignore_offset); 500 if (ret < 0) 501 break; 502 } 503 if (ret > 0) 504 goto next; 505 ret = ulist_add_merge_ptr(parents, eb->start, 506 eie, (void **)&old, GFP_NOFS); 507 if (ret < 0) 508 break; 509 if (!ret && extent_item_pos) { 510 while (old->next) 511 old = old->next; 512 old->next = eie; 513 } 514 eie = NULL; 515 } 516 next: 517 if (time_seq == SEQ_LAST) 518 ret = btrfs_next_item(root, path); 519 else 520 ret = btrfs_next_old_item(root, path, time_seq); 521 } 522 523 if (ret > 0) 524 ret = 0; 525 else if (ret < 0) 526 free_inode_elem_list(eie); 527 return ret; 528 } 529 530 /* 531 * resolve an indirect backref in the form (root_id, key, level) 532 * to a logical address 533 */ 534 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info, 535 struct btrfs_path *path, u64 time_seq, 536 struct preftrees *preftrees, 537 struct prelim_ref *ref, struct ulist *parents, 538 const u64 *extent_item_pos, bool ignore_offset) 539 { 540 struct btrfs_root *root; 541 struct btrfs_key root_key; 542 struct extent_buffer *eb; 543 int ret = 0; 544 int root_level; 545 int level = ref->level; 546 struct btrfs_key search_key = ref->key_for_search; 547 548 root_key.objectid = ref->root_id; 549 root_key.type = BTRFS_ROOT_ITEM_KEY; 550 root_key.offset = (u64)-1; 551 552 root = btrfs_get_fs_root(fs_info, &root_key, false); 553 if (IS_ERR(root)) { 554 ret = PTR_ERR(root); 555 goto out_free; 556 } 557 558 if (!path->search_commit_root && 559 test_bit(BTRFS_ROOT_DELETING, &root->state)) { 560 ret = -ENOENT; 561 goto out; 562 } 563 564 if (btrfs_is_testing(fs_info)) { 565 ret = -ENOENT; 566 goto out; 567 } 568 569 if (path->search_commit_root) 570 root_level = btrfs_header_level(root->commit_root); 571 else if (time_seq == SEQ_LAST) 572 root_level = btrfs_header_level(root->node); 573 else 574 root_level = btrfs_old_root_level(root, time_seq); 575 576 if (root_level + 1 == level) 577 goto out; 578 579 /* 580 * We can often find data backrefs with an offset that is too large 581 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when 582 * subtracting a file's offset with the data offset of its 583 * corresponding extent data item. This can happen for example in the 584 * clone ioctl. 585 * 586 * So if we detect such case we set the search key's offset to zero to 587 * make sure we will find the matching file extent item at 588 * add_all_parents(), otherwise we will miss it because the offset 589 * taken form the backref is much larger then the offset of the file 590 * extent item. This can make us scan a very large number of file 591 * extent items, but at least it will not make us miss any. 592 * 593 * This is an ugly workaround for a behaviour that should have never 594 * existed, but it does and a fix for the clone ioctl would touch a lot 595 * of places, cause backwards incompatibility and would not fix the 596 * problem for extents cloned with older kernels. 597 */ 598 if (search_key.type == BTRFS_EXTENT_DATA_KEY && 599 search_key.offset >= LLONG_MAX) 600 search_key.offset = 0; 601 path->lowest_level = level; 602 if (time_seq == SEQ_LAST) 603 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0); 604 else 605 ret = btrfs_search_old_slot(root, &search_key, path, time_seq); 606 607 btrfs_debug(fs_info, 608 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)", 609 ref->root_id, level, ref->count, ret, 610 ref->key_for_search.objectid, ref->key_for_search.type, 611 ref->key_for_search.offset); 612 if (ret < 0) 613 goto out; 614 615 eb = path->nodes[level]; 616 while (!eb) { 617 if (WARN_ON(!level)) { 618 ret = 1; 619 goto out; 620 } 621 level--; 622 eb = path->nodes[level]; 623 } 624 625 ret = add_all_parents(root, path, parents, preftrees, ref, level, 626 time_seq, extent_item_pos, ignore_offset); 627 out: 628 btrfs_put_root(root); 629 out_free: 630 path->lowest_level = 0; 631 btrfs_release_path(path); 632 return ret; 633 } 634 635 static struct extent_inode_elem * 636 unode_aux_to_inode_list(struct ulist_node *node) 637 { 638 if (!node) 639 return NULL; 640 return (struct extent_inode_elem *)(uintptr_t)node->aux; 641 } 642 643 /* 644 * We maintain three separate rbtrees: one for direct refs, one for 645 * indirect refs which have a key, and one for indirect refs which do not 646 * have a key. Each tree does merge on insertion. 647 * 648 * Once all of the references are located, we iterate over the tree of 649 * indirect refs with missing keys. An appropriate key is located and 650 * the ref is moved onto the tree for indirect refs. After all missing 651 * keys are thus located, we iterate over the indirect ref tree, resolve 652 * each reference, and then insert the resolved reference onto the 653 * direct tree (merging there too). 654 * 655 * New backrefs (i.e., for parent nodes) are added to the appropriate 656 * rbtree as they are encountered. The new backrefs are subsequently 657 * resolved as above. 658 */ 659 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info, 660 struct btrfs_path *path, u64 time_seq, 661 struct preftrees *preftrees, 662 const u64 *extent_item_pos, 663 struct share_check *sc, bool ignore_offset) 664 { 665 int err; 666 int ret = 0; 667 struct ulist *parents; 668 struct ulist_node *node; 669 struct ulist_iterator uiter; 670 struct rb_node *rnode; 671 672 parents = ulist_alloc(GFP_NOFS); 673 if (!parents) 674 return -ENOMEM; 675 676 /* 677 * We could trade memory usage for performance here by iterating 678 * the tree, allocating new refs for each insertion, and then 679 * freeing the entire indirect tree when we're done. In some test 680 * cases, the tree can grow quite large (~200k objects). 681 */ 682 while ((rnode = rb_first_cached(&preftrees->indirect.root))) { 683 struct prelim_ref *ref; 684 685 ref = rb_entry(rnode, struct prelim_ref, rbnode); 686 if (WARN(ref->parent, 687 "BUG: direct ref found in indirect tree")) { 688 ret = -EINVAL; 689 goto out; 690 } 691 692 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root); 693 preftrees->indirect.count--; 694 695 if (ref->count == 0) { 696 free_pref(ref); 697 continue; 698 } 699 700 if (sc && sc->root_objectid && 701 ref->root_id != sc->root_objectid) { 702 free_pref(ref); 703 ret = BACKREF_FOUND_SHARED; 704 goto out; 705 } 706 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees, 707 ref, parents, extent_item_pos, 708 ignore_offset); 709 /* 710 * we can only tolerate ENOENT,otherwise,we should catch error 711 * and return directly. 712 */ 713 if (err == -ENOENT) { 714 prelim_ref_insert(fs_info, &preftrees->direct, ref, 715 NULL); 716 continue; 717 } else if (err) { 718 free_pref(ref); 719 ret = err; 720 goto out; 721 } 722 723 /* we put the first parent into the ref at hand */ 724 ULIST_ITER_INIT(&uiter); 725 node = ulist_next(parents, &uiter); 726 ref->parent = node ? node->val : 0; 727 ref->inode_list = unode_aux_to_inode_list(node); 728 729 /* Add a prelim_ref(s) for any other parent(s). */ 730 while ((node = ulist_next(parents, &uiter))) { 731 struct prelim_ref *new_ref; 732 733 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache, 734 GFP_NOFS); 735 if (!new_ref) { 736 free_pref(ref); 737 ret = -ENOMEM; 738 goto out; 739 } 740 memcpy(new_ref, ref, sizeof(*ref)); 741 new_ref->parent = node->val; 742 new_ref->inode_list = unode_aux_to_inode_list(node); 743 prelim_ref_insert(fs_info, &preftrees->direct, 744 new_ref, NULL); 745 } 746 747 /* 748 * Now it's a direct ref, put it in the direct tree. We must 749 * do this last because the ref could be merged/freed here. 750 */ 751 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL); 752 753 ulist_reinit(parents); 754 cond_resched(); 755 } 756 out: 757 ulist_free(parents); 758 return ret; 759 } 760 761 /* 762 * read tree blocks and add keys where required. 763 */ 764 static int add_missing_keys(struct btrfs_fs_info *fs_info, 765 struct preftrees *preftrees, bool lock) 766 { 767 struct prelim_ref *ref; 768 struct extent_buffer *eb; 769 struct preftree *tree = &preftrees->indirect_missing_keys; 770 struct rb_node *node; 771 772 while ((node = rb_first_cached(&tree->root))) { 773 ref = rb_entry(node, struct prelim_ref, rbnode); 774 rb_erase_cached(node, &tree->root); 775 776 BUG_ON(ref->parent); /* should not be a direct ref */ 777 BUG_ON(ref->key_for_search.type); 778 BUG_ON(!ref->wanted_disk_byte); 779 780 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0, 781 ref->level - 1, NULL); 782 if (IS_ERR(eb)) { 783 free_pref(ref); 784 return PTR_ERR(eb); 785 } else if (!extent_buffer_uptodate(eb)) { 786 free_pref(ref); 787 free_extent_buffer(eb); 788 return -EIO; 789 } 790 if (lock) 791 btrfs_tree_read_lock(eb); 792 if (btrfs_header_level(eb) == 0) 793 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0); 794 else 795 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0); 796 if (lock) 797 btrfs_tree_read_unlock(eb); 798 free_extent_buffer(eb); 799 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL); 800 cond_resched(); 801 } 802 return 0; 803 } 804 805 /* 806 * add all currently queued delayed refs from this head whose seq nr is 807 * smaller or equal that seq to the list 808 */ 809 static int add_delayed_refs(const struct btrfs_fs_info *fs_info, 810 struct btrfs_delayed_ref_head *head, u64 seq, 811 struct preftrees *preftrees, struct share_check *sc) 812 { 813 struct btrfs_delayed_ref_node *node; 814 struct btrfs_delayed_extent_op *extent_op = head->extent_op; 815 struct btrfs_key key; 816 struct btrfs_key tmp_op_key; 817 struct rb_node *n; 818 int count; 819 int ret = 0; 820 821 if (extent_op && extent_op->update_key) 822 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key); 823 824 spin_lock(&head->lock); 825 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) { 826 node = rb_entry(n, struct btrfs_delayed_ref_node, 827 ref_node); 828 if (node->seq > seq) 829 continue; 830 831 switch (node->action) { 832 case BTRFS_ADD_DELAYED_EXTENT: 833 case BTRFS_UPDATE_DELAYED_HEAD: 834 WARN_ON(1); 835 continue; 836 case BTRFS_ADD_DELAYED_REF: 837 count = node->ref_mod; 838 break; 839 case BTRFS_DROP_DELAYED_REF: 840 count = node->ref_mod * -1; 841 break; 842 default: 843 BUG(); 844 } 845 switch (node->type) { 846 case BTRFS_TREE_BLOCK_REF_KEY: { 847 /* NORMAL INDIRECT METADATA backref */ 848 struct btrfs_delayed_tree_ref *ref; 849 850 ref = btrfs_delayed_node_to_tree_ref(node); 851 ret = add_indirect_ref(fs_info, preftrees, ref->root, 852 &tmp_op_key, ref->level + 1, 853 node->bytenr, count, sc, 854 GFP_ATOMIC); 855 break; 856 } 857 case BTRFS_SHARED_BLOCK_REF_KEY: { 858 /* SHARED DIRECT METADATA backref */ 859 struct btrfs_delayed_tree_ref *ref; 860 861 ref = btrfs_delayed_node_to_tree_ref(node); 862 863 ret = add_direct_ref(fs_info, preftrees, ref->level + 1, 864 ref->parent, node->bytenr, count, 865 sc, GFP_ATOMIC); 866 break; 867 } 868 case BTRFS_EXTENT_DATA_REF_KEY: { 869 /* NORMAL INDIRECT DATA backref */ 870 struct btrfs_delayed_data_ref *ref; 871 ref = btrfs_delayed_node_to_data_ref(node); 872 873 key.objectid = ref->objectid; 874 key.type = BTRFS_EXTENT_DATA_KEY; 875 key.offset = ref->offset; 876 877 /* 878 * Found a inum that doesn't match our known inum, we 879 * know it's shared. 880 */ 881 if (sc && sc->inum && ref->objectid != sc->inum) { 882 ret = BACKREF_FOUND_SHARED; 883 goto out; 884 } 885 886 ret = add_indirect_ref(fs_info, preftrees, ref->root, 887 &key, 0, node->bytenr, count, sc, 888 GFP_ATOMIC); 889 break; 890 } 891 case BTRFS_SHARED_DATA_REF_KEY: { 892 /* SHARED DIRECT FULL backref */ 893 struct btrfs_delayed_data_ref *ref; 894 895 ref = btrfs_delayed_node_to_data_ref(node); 896 897 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent, 898 node->bytenr, count, sc, 899 GFP_ATOMIC); 900 break; 901 } 902 default: 903 WARN_ON(1); 904 } 905 /* 906 * We must ignore BACKREF_FOUND_SHARED until all delayed 907 * refs have been checked. 908 */ 909 if (ret && (ret != BACKREF_FOUND_SHARED)) 910 break; 911 } 912 if (!ret) 913 ret = extent_is_shared(sc); 914 out: 915 spin_unlock(&head->lock); 916 return ret; 917 } 918 919 /* 920 * add all inline backrefs for bytenr to the list 921 * 922 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 923 */ 924 static int add_inline_refs(const struct btrfs_fs_info *fs_info, 925 struct btrfs_path *path, u64 bytenr, 926 int *info_level, struct preftrees *preftrees, 927 struct share_check *sc) 928 { 929 int ret = 0; 930 int slot; 931 struct extent_buffer *leaf; 932 struct btrfs_key key; 933 struct btrfs_key found_key; 934 unsigned long ptr; 935 unsigned long end; 936 struct btrfs_extent_item *ei; 937 u64 flags; 938 u64 item_size; 939 940 /* 941 * enumerate all inline refs 942 */ 943 leaf = path->nodes[0]; 944 slot = path->slots[0]; 945 946 item_size = btrfs_item_size_nr(leaf, slot); 947 BUG_ON(item_size < sizeof(*ei)); 948 949 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 950 flags = btrfs_extent_flags(leaf, ei); 951 btrfs_item_key_to_cpu(leaf, &found_key, slot); 952 953 ptr = (unsigned long)(ei + 1); 954 end = (unsigned long)ei + item_size; 955 956 if (found_key.type == BTRFS_EXTENT_ITEM_KEY && 957 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 958 struct btrfs_tree_block_info *info; 959 960 info = (struct btrfs_tree_block_info *)ptr; 961 *info_level = btrfs_tree_block_level(leaf, info); 962 ptr += sizeof(struct btrfs_tree_block_info); 963 BUG_ON(ptr > end); 964 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) { 965 *info_level = found_key.offset; 966 } else { 967 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA)); 968 } 969 970 while (ptr < end) { 971 struct btrfs_extent_inline_ref *iref; 972 u64 offset; 973 int type; 974 975 iref = (struct btrfs_extent_inline_ref *)ptr; 976 type = btrfs_get_extent_inline_ref_type(leaf, iref, 977 BTRFS_REF_TYPE_ANY); 978 if (type == BTRFS_REF_TYPE_INVALID) 979 return -EUCLEAN; 980 981 offset = btrfs_extent_inline_ref_offset(leaf, iref); 982 983 switch (type) { 984 case BTRFS_SHARED_BLOCK_REF_KEY: 985 ret = add_direct_ref(fs_info, preftrees, 986 *info_level + 1, offset, 987 bytenr, 1, NULL, GFP_NOFS); 988 break; 989 case BTRFS_SHARED_DATA_REF_KEY: { 990 struct btrfs_shared_data_ref *sdref; 991 int count; 992 993 sdref = (struct btrfs_shared_data_ref *)(iref + 1); 994 count = btrfs_shared_data_ref_count(leaf, sdref); 995 996 ret = add_direct_ref(fs_info, preftrees, 0, offset, 997 bytenr, count, sc, GFP_NOFS); 998 break; 999 } 1000 case BTRFS_TREE_BLOCK_REF_KEY: 1001 ret = add_indirect_ref(fs_info, preftrees, offset, 1002 NULL, *info_level + 1, 1003 bytenr, 1, NULL, GFP_NOFS); 1004 break; 1005 case BTRFS_EXTENT_DATA_REF_KEY: { 1006 struct btrfs_extent_data_ref *dref; 1007 int count; 1008 u64 root; 1009 1010 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 1011 count = btrfs_extent_data_ref_count(leaf, dref); 1012 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1013 dref); 1014 key.type = BTRFS_EXTENT_DATA_KEY; 1015 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1016 1017 if (sc && sc->inum && key.objectid != sc->inum) { 1018 ret = BACKREF_FOUND_SHARED; 1019 break; 1020 } 1021 1022 root = btrfs_extent_data_ref_root(leaf, dref); 1023 1024 ret = add_indirect_ref(fs_info, preftrees, root, 1025 &key, 0, bytenr, count, 1026 sc, GFP_NOFS); 1027 break; 1028 } 1029 default: 1030 WARN_ON(1); 1031 } 1032 if (ret) 1033 return ret; 1034 ptr += btrfs_extent_inline_ref_size(type); 1035 } 1036 1037 return 0; 1038 } 1039 1040 /* 1041 * add all non-inline backrefs for bytenr to the list 1042 * 1043 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED. 1044 */ 1045 static int add_keyed_refs(struct btrfs_fs_info *fs_info, 1046 struct btrfs_path *path, u64 bytenr, 1047 int info_level, struct preftrees *preftrees, 1048 struct share_check *sc) 1049 { 1050 struct btrfs_root *extent_root = fs_info->extent_root; 1051 int ret; 1052 int slot; 1053 struct extent_buffer *leaf; 1054 struct btrfs_key key; 1055 1056 while (1) { 1057 ret = btrfs_next_item(extent_root, path); 1058 if (ret < 0) 1059 break; 1060 if (ret) { 1061 ret = 0; 1062 break; 1063 } 1064 1065 slot = path->slots[0]; 1066 leaf = path->nodes[0]; 1067 btrfs_item_key_to_cpu(leaf, &key, slot); 1068 1069 if (key.objectid != bytenr) 1070 break; 1071 if (key.type < BTRFS_TREE_BLOCK_REF_KEY) 1072 continue; 1073 if (key.type > BTRFS_SHARED_DATA_REF_KEY) 1074 break; 1075 1076 switch (key.type) { 1077 case BTRFS_SHARED_BLOCK_REF_KEY: 1078 /* SHARED DIRECT METADATA backref */ 1079 ret = add_direct_ref(fs_info, preftrees, 1080 info_level + 1, key.offset, 1081 bytenr, 1, NULL, GFP_NOFS); 1082 break; 1083 case BTRFS_SHARED_DATA_REF_KEY: { 1084 /* SHARED DIRECT FULL backref */ 1085 struct btrfs_shared_data_ref *sdref; 1086 int count; 1087 1088 sdref = btrfs_item_ptr(leaf, slot, 1089 struct btrfs_shared_data_ref); 1090 count = btrfs_shared_data_ref_count(leaf, sdref); 1091 ret = add_direct_ref(fs_info, preftrees, 0, 1092 key.offset, bytenr, count, 1093 sc, GFP_NOFS); 1094 break; 1095 } 1096 case BTRFS_TREE_BLOCK_REF_KEY: 1097 /* NORMAL INDIRECT METADATA backref */ 1098 ret = add_indirect_ref(fs_info, preftrees, key.offset, 1099 NULL, info_level + 1, bytenr, 1100 1, NULL, GFP_NOFS); 1101 break; 1102 case BTRFS_EXTENT_DATA_REF_KEY: { 1103 /* NORMAL INDIRECT DATA backref */ 1104 struct btrfs_extent_data_ref *dref; 1105 int count; 1106 u64 root; 1107 1108 dref = btrfs_item_ptr(leaf, slot, 1109 struct btrfs_extent_data_ref); 1110 count = btrfs_extent_data_ref_count(leaf, dref); 1111 key.objectid = btrfs_extent_data_ref_objectid(leaf, 1112 dref); 1113 key.type = BTRFS_EXTENT_DATA_KEY; 1114 key.offset = btrfs_extent_data_ref_offset(leaf, dref); 1115 1116 if (sc && sc->inum && key.objectid != sc->inum) { 1117 ret = BACKREF_FOUND_SHARED; 1118 break; 1119 } 1120 1121 root = btrfs_extent_data_ref_root(leaf, dref); 1122 ret = add_indirect_ref(fs_info, preftrees, root, 1123 &key, 0, bytenr, count, 1124 sc, GFP_NOFS); 1125 break; 1126 } 1127 default: 1128 WARN_ON(1); 1129 } 1130 if (ret) 1131 return ret; 1132 1133 } 1134 1135 return ret; 1136 } 1137 1138 /* 1139 * this adds all existing backrefs (inline backrefs, backrefs and delayed 1140 * refs) for the given bytenr to the refs list, merges duplicates and resolves 1141 * indirect refs to their parent bytenr. 1142 * When roots are found, they're added to the roots list 1143 * 1144 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave 1145 * much like trans == NULL case, the difference only lies in it will not 1146 * commit root. 1147 * The special case is for qgroup to search roots in commit_transaction(). 1148 * 1149 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a 1150 * shared extent is detected. 1151 * 1152 * Otherwise this returns 0 for success and <0 for an error. 1153 * 1154 * If ignore_offset is set to false, only extent refs whose offsets match 1155 * extent_item_pos are returned. If true, every extent ref is returned 1156 * and extent_item_pos is ignored. 1157 * 1158 * FIXME some caching might speed things up 1159 */ 1160 static int find_parent_nodes(struct btrfs_trans_handle *trans, 1161 struct btrfs_fs_info *fs_info, u64 bytenr, 1162 u64 time_seq, struct ulist *refs, 1163 struct ulist *roots, const u64 *extent_item_pos, 1164 struct share_check *sc, bool ignore_offset) 1165 { 1166 struct btrfs_key key; 1167 struct btrfs_path *path; 1168 struct btrfs_delayed_ref_root *delayed_refs = NULL; 1169 struct btrfs_delayed_ref_head *head; 1170 int info_level = 0; 1171 int ret; 1172 struct prelim_ref *ref; 1173 struct rb_node *node; 1174 struct extent_inode_elem *eie = NULL; 1175 struct preftrees preftrees = { 1176 .direct = PREFTREE_INIT, 1177 .indirect = PREFTREE_INIT, 1178 .indirect_missing_keys = PREFTREE_INIT 1179 }; 1180 1181 key.objectid = bytenr; 1182 key.offset = (u64)-1; 1183 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1184 key.type = BTRFS_METADATA_ITEM_KEY; 1185 else 1186 key.type = BTRFS_EXTENT_ITEM_KEY; 1187 1188 path = btrfs_alloc_path(); 1189 if (!path) 1190 return -ENOMEM; 1191 if (!trans) { 1192 path->search_commit_root = 1; 1193 path->skip_locking = 1; 1194 } 1195 1196 if (time_seq == SEQ_LAST) 1197 path->skip_locking = 1; 1198 1199 /* 1200 * grab both a lock on the path and a lock on the delayed ref head. 1201 * We need both to get a consistent picture of how the refs look 1202 * at a specified point in time 1203 */ 1204 again: 1205 head = NULL; 1206 1207 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); 1208 if (ret < 0) 1209 goto out; 1210 BUG_ON(ret == 0); 1211 1212 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1213 if (trans && likely(trans->type != __TRANS_DUMMY) && 1214 time_seq != SEQ_LAST) { 1215 #else 1216 if (trans && time_seq != SEQ_LAST) { 1217 #endif 1218 /* 1219 * look if there are updates for this ref queued and lock the 1220 * head 1221 */ 1222 delayed_refs = &trans->transaction->delayed_refs; 1223 spin_lock(&delayed_refs->lock); 1224 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); 1225 if (head) { 1226 if (!mutex_trylock(&head->mutex)) { 1227 refcount_inc(&head->refs); 1228 spin_unlock(&delayed_refs->lock); 1229 1230 btrfs_release_path(path); 1231 1232 /* 1233 * Mutex was contended, block until it's 1234 * released and try again 1235 */ 1236 mutex_lock(&head->mutex); 1237 mutex_unlock(&head->mutex); 1238 btrfs_put_delayed_ref_head(head); 1239 goto again; 1240 } 1241 spin_unlock(&delayed_refs->lock); 1242 ret = add_delayed_refs(fs_info, head, time_seq, 1243 &preftrees, sc); 1244 mutex_unlock(&head->mutex); 1245 if (ret) 1246 goto out; 1247 } else { 1248 spin_unlock(&delayed_refs->lock); 1249 } 1250 } 1251 1252 if (path->slots[0]) { 1253 struct extent_buffer *leaf; 1254 int slot; 1255 1256 path->slots[0]--; 1257 leaf = path->nodes[0]; 1258 slot = path->slots[0]; 1259 btrfs_item_key_to_cpu(leaf, &key, slot); 1260 if (key.objectid == bytenr && 1261 (key.type == BTRFS_EXTENT_ITEM_KEY || 1262 key.type == BTRFS_METADATA_ITEM_KEY)) { 1263 ret = add_inline_refs(fs_info, path, bytenr, 1264 &info_level, &preftrees, sc); 1265 if (ret) 1266 goto out; 1267 ret = add_keyed_refs(fs_info, path, bytenr, info_level, 1268 &preftrees, sc); 1269 if (ret) 1270 goto out; 1271 } 1272 } 1273 1274 btrfs_release_path(path); 1275 1276 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0); 1277 if (ret) 1278 goto out; 1279 1280 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root)); 1281 1282 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees, 1283 extent_item_pos, sc, ignore_offset); 1284 if (ret) 1285 goto out; 1286 1287 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root)); 1288 1289 /* 1290 * This walks the tree of merged and resolved refs. Tree blocks are 1291 * read in as needed. Unique entries are added to the ulist, and 1292 * the list of found roots is updated. 1293 * 1294 * We release the entire tree in one go before returning. 1295 */ 1296 node = rb_first_cached(&preftrees.direct.root); 1297 while (node) { 1298 ref = rb_entry(node, struct prelim_ref, rbnode); 1299 node = rb_next(&ref->rbnode); 1300 /* 1301 * ref->count < 0 can happen here if there are delayed 1302 * refs with a node->action of BTRFS_DROP_DELAYED_REF. 1303 * prelim_ref_insert() relies on this when merging 1304 * identical refs to keep the overall count correct. 1305 * prelim_ref_insert() will merge only those refs 1306 * which compare identically. Any refs having 1307 * e.g. different offsets would not be merged, 1308 * and would retain their original ref->count < 0. 1309 */ 1310 if (roots && ref->count && ref->root_id && ref->parent == 0) { 1311 if (sc && sc->root_objectid && 1312 ref->root_id != sc->root_objectid) { 1313 ret = BACKREF_FOUND_SHARED; 1314 goto out; 1315 } 1316 1317 /* no parent == root of tree */ 1318 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS); 1319 if (ret < 0) 1320 goto out; 1321 } 1322 if (ref->count && ref->parent) { 1323 if (extent_item_pos && !ref->inode_list && 1324 ref->level == 0) { 1325 struct extent_buffer *eb; 1326 1327 eb = read_tree_block(fs_info, ref->parent, 0, 1328 ref->level, NULL); 1329 if (IS_ERR(eb)) { 1330 ret = PTR_ERR(eb); 1331 goto out; 1332 } else if (!extent_buffer_uptodate(eb)) { 1333 free_extent_buffer(eb); 1334 ret = -EIO; 1335 goto out; 1336 } 1337 1338 if (!path->skip_locking) { 1339 btrfs_tree_read_lock(eb); 1340 btrfs_set_lock_blocking_read(eb); 1341 } 1342 ret = find_extent_in_eb(eb, bytenr, 1343 *extent_item_pos, &eie, ignore_offset); 1344 if (!path->skip_locking) 1345 btrfs_tree_read_unlock_blocking(eb); 1346 free_extent_buffer(eb); 1347 if (ret < 0) 1348 goto out; 1349 ref->inode_list = eie; 1350 } 1351 ret = ulist_add_merge_ptr(refs, ref->parent, 1352 ref->inode_list, 1353 (void **)&eie, GFP_NOFS); 1354 if (ret < 0) 1355 goto out; 1356 if (!ret && extent_item_pos) { 1357 /* 1358 * we've recorded that parent, so we must extend 1359 * its inode list here 1360 */ 1361 BUG_ON(!eie); 1362 while (eie->next) 1363 eie = eie->next; 1364 eie->next = ref->inode_list; 1365 } 1366 eie = NULL; 1367 } 1368 cond_resched(); 1369 } 1370 1371 out: 1372 btrfs_free_path(path); 1373 1374 prelim_release(&preftrees.direct); 1375 prelim_release(&preftrees.indirect); 1376 prelim_release(&preftrees.indirect_missing_keys); 1377 1378 if (ret < 0) 1379 free_inode_elem_list(eie); 1380 return ret; 1381 } 1382 1383 static void free_leaf_list(struct ulist *blocks) 1384 { 1385 struct ulist_node *node = NULL; 1386 struct extent_inode_elem *eie; 1387 struct ulist_iterator uiter; 1388 1389 ULIST_ITER_INIT(&uiter); 1390 while ((node = ulist_next(blocks, &uiter))) { 1391 if (!node->aux) 1392 continue; 1393 eie = unode_aux_to_inode_list(node); 1394 free_inode_elem_list(eie); 1395 node->aux = 0; 1396 } 1397 1398 ulist_free(blocks); 1399 } 1400 1401 /* 1402 * Finds all leafs with a reference to the specified combination of bytenr and 1403 * offset. key_list_head will point to a list of corresponding keys (caller must 1404 * free each list element). The leafs will be stored in the leafs ulist, which 1405 * must be freed with ulist_free. 1406 * 1407 * returns 0 on success, <0 on error 1408 */ 1409 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans, 1410 struct btrfs_fs_info *fs_info, u64 bytenr, 1411 u64 time_seq, struct ulist **leafs, 1412 const u64 *extent_item_pos, bool ignore_offset) 1413 { 1414 int ret; 1415 1416 *leafs = ulist_alloc(GFP_NOFS); 1417 if (!*leafs) 1418 return -ENOMEM; 1419 1420 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1421 *leafs, NULL, extent_item_pos, NULL, ignore_offset); 1422 if (ret < 0 && ret != -ENOENT) { 1423 free_leaf_list(*leafs); 1424 return ret; 1425 } 1426 1427 return 0; 1428 } 1429 1430 /* 1431 * walk all backrefs for a given extent to find all roots that reference this 1432 * extent. Walking a backref means finding all extents that reference this 1433 * extent and in turn walk the backrefs of those, too. Naturally this is a 1434 * recursive process, but here it is implemented in an iterative fashion: We 1435 * find all referencing extents for the extent in question and put them on a 1436 * list. In turn, we find all referencing extents for those, further appending 1437 * to the list. The way we iterate the list allows adding more elements after 1438 * the current while iterating. The process stops when we reach the end of the 1439 * list. Found roots are added to the roots list. 1440 * 1441 * returns 0 on success, < 0 on error. 1442 */ 1443 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans, 1444 struct btrfs_fs_info *fs_info, u64 bytenr, 1445 u64 time_seq, struct ulist **roots, 1446 bool ignore_offset) 1447 { 1448 struct ulist *tmp; 1449 struct ulist_node *node = NULL; 1450 struct ulist_iterator uiter; 1451 int ret; 1452 1453 tmp = ulist_alloc(GFP_NOFS); 1454 if (!tmp) 1455 return -ENOMEM; 1456 *roots = ulist_alloc(GFP_NOFS); 1457 if (!*roots) { 1458 ulist_free(tmp); 1459 return -ENOMEM; 1460 } 1461 1462 ULIST_ITER_INIT(&uiter); 1463 while (1) { 1464 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq, 1465 tmp, *roots, NULL, NULL, ignore_offset); 1466 if (ret < 0 && ret != -ENOENT) { 1467 ulist_free(tmp); 1468 ulist_free(*roots); 1469 return ret; 1470 } 1471 node = ulist_next(tmp, &uiter); 1472 if (!node) 1473 break; 1474 bytenr = node->val; 1475 cond_resched(); 1476 } 1477 1478 ulist_free(tmp); 1479 return 0; 1480 } 1481 1482 int btrfs_find_all_roots(struct btrfs_trans_handle *trans, 1483 struct btrfs_fs_info *fs_info, u64 bytenr, 1484 u64 time_seq, struct ulist **roots, 1485 bool ignore_offset) 1486 { 1487 int ret; 1488 1489 if (!trans) 1490 down_read(&fs_info->commit_root_sem); 1491 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr, 1492 time_seq, roots, ignore_offset); 1493 if (!trans) 1494 up_read(&fs_info->commit_root_sem); 1495 return ret; 1496 } 1497 1498 /** 1499 * btrfs_check_shared - tell us whether an extent is shared 1500 * 1501 * btrfs_check_shared uses the backref walking code but will short 1502 * circuit as soon as it finds a root or inode that doesn't match the 1503 * one passed in. This provides a significant performance benefit for 1504 * callers (such as fiemap) which want to know whether the extent is 1505 * shared but do not need a ref count. 1506 * 1507 * This attempts to attach to the running transaction in order to account for 1508 * delayed refs, but continues on even when no running transaction exists. 1509 * 1510 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error. 1511 */ 1512 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr, 1513 struct ulist *roots, struct ulist *tmp) 1514 { 1515 struct btrfs_fs_info *fs_info = root->fs_info; 1516 struct btrfs_trans_handle *trans; 1517 struct ulist_iterator uiter; 1518 struct ulist_node *node; 1519 struct seq_list elem = SEQ_LIST_INIT(elem); 1520 int ret = 0; 1521 struct share_check shared = { 1522 .root_objectid = root->root_key.objectid, 1523 .inum = inum, 1524 .share_count = 0, 1525 }; 1526 1527 ulist_init(roots); 1528 ulist_init(tmp); 1529 1530 trans = btrfs_join_transaction_nostart(root); 1531 if (IS_ERR(trans)) { 1532 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) { 1533 ret = PTR_ERR(trans); 1534 goto out; 1535 } 1536 trans = NULL; 1537 down_read(&fs_info->commit_root_sem); 1538 } else { 1539 btrfs_get_tree_mod_seq(fs_info, &elem); 1540 } 1541 1542 ULIST_ITER_INIT(&uiter); 1543 while (1) { 1544 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp, 1545 roots, NULL, &shared, false); 1546 if (ret == BACKREF_FOUND_SHARED) { 1547 /* this is the only condition under which we return 1 */ 1548 ret = 1; 1549 break; 1550 } 1551 if (ret < 0 && ret != -ENOENT) 1552 break; 1553 ret = 0; 1554 node = ulist_next(tmp, &uiter); 1555 if (!node) 1556 break; 1557 bytenr = node->val; 1558 shared.share_count = 0; 1559 cond_resched(); 1560 } 1561 1562 if (trans) { 1563 btrfs_put_tree_mod_seq(fs_info, &elem); 1564 btrfs_end_transaction(trans); 1565 } else { 1566 up_read(&fs_info->commit_root_sem); 1567 } 1568 out: 1569 ulist_release(roots); 1570 ulist_release(tmp); 1571 return ret; 1572 } 1573 1574 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid, 1575 u64 start_off, struct btrfs_path *path, 1576 struct btrfs_inode_extref **ret_extref, 1577 u64 *found_off) 1578 { 1579 int ret, slot; 1580 struct btrfs_key key; 1581 struct btrfs_key found_key; 1582 struct btrfs_inode_extref *extref; 1583 const struct extent_buffer *leaf; 1584 unsigned long ptr; 1585 1586 key.objectid = inode_objectid; 1587 key.type = BTRFS_INODE_EXTREF_KEY; 1588 key.offset = start_off; 1589 1590 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1591 if (ret < 0) 1592 return ret; 1593 1594 while (1) { 1595 leaf = path->nodes[0]; 1596 slot = path->slots[0]; 1597 if (slot >= btrfs_header_nritems(leaf)) { 1598 /* 1599 * If the item at offset is not found, 1600 * btrfs_search_slot will point us to the slot 1601 * where it should be inserted. In our case 1602 * that will be the slot directly before the 1603 * next INODE_REF_KEY_V2 item. In the case 1604 * that we're pointing to the last slot in a 1605 * leaf, we must move one leaf over. 1606 */ 1607 ret = btrfs_next_leaf(root, path); 1608 if (ret) { 1609 if (ret >= 1) 1610 ret = -ENOENT; 1611 break; 1612 } 1613 continue; 1614 } 1615 1616 btrfs_item_key_to_cpu(leaf, &found_key, slot); 1617 1618 /* 1619 * Check that we're still looking at an extended ref key for 1620 * this particular objectid. If we have different 1621 * objectid or type then there are no more to be found 1622 * in the tree and we can exit. 1623 */ 1624 ret = -ENOENT; 1625 if (found_key.objectid != inode_objectid) 1626 break; 1627 if (found_key.type != BTRFS_INODE_EXTREF_KEY) 1628 break; 1629 1630 ret = 0; 1631 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 1632 extref = (struct btrfs_inode_extref *)ptr; 1633 *ret_extref = extref; 1634 if (found_off) 1635 *found_off = found_key.offset; 1636 break; 1637 } 1638 1639 return ret; 1640 } 1641 1642 /* 1643 * this iterates to turn a name (from iref/extref) into a full filesystem path. 1644 * Elements of the path are separated by '/' and the path is guaranteed to be 1645 * 0-terminated. the path is only given within the current file system. 1646 * Therefore, it never starts with a '/'. the caller is responsible to provide 1647 * "size" bytes in "dest". the dest buffer will be filled backwards. finally, 1648 * the start point of the resulting string is returned. this pointer is within 1649 * dest, normally. 1650 * in case the path buffer would overflow, the pointer is decremented further 1651 * as if output was written to the buffer, though no more output is actually 1652 * generated. that way, the caller can determine how much space would be 1653 * required for the path to fit into the buffer. in that case, the returned 1654 * value will be smaller than dest. callers must check this! 1655 */ 1656 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, 1657 u32 name_len, unsigned long name_off, 1658 struct extent_buffer *eb_in, u64 parent, 1659 char *dest, u32 size) 1660 { 1661 int slot; 1662 u64 next_inum; 1663 int ret; 1664 s64 bytes_left = ((s64)size) - 1; 1665 struct extent_buffer *eb = eb_in; 1666 struct btrfs_key found_key; 1667 int leave_spinning = path->leave_spinning; 1668 struct btrfs_inode_ref *iref; 1669 1670 if (bytes_left >= 0) 1671 dest[bytes_left] = '\0'; 1672 1673 path->leave_spinning = 1; 1674 while (1) { 1675 bytes_left -= name_len; 1676 if (bytes_left >= 0) 1677 read_extent_buffer(eb, dest + bytes_left, 1678 name_off, name_len); 1679 if (eb != eb_in) { 1680 if (!path->skip_locking) 1681 btrfs_tree_read_unlock_blocking(eb); 1682 free_extent_buffer(eb); 1683 } 1684 ret = btrfs_find_item(fs_root, path, parent, 0, 1685 BTRFS_INODE_REF_KEY, &found_key); 1686 if (ret > 0) 1687 ret = -ENOENT; 1688 if (ret) 1689 break; 1690 1691 next_inum = found_key.offset; 1692 1693 /* regular exit ahead */ 1694 if (parent == next_inum) 1695 break; 1696 1697 slot = path->slots[0]; 1698 eb = path->nodes[0]; 1699 /* make sure we can use eb after releasing the path */ 1700 if (eb != eb_in) { 1701 if (!path->skip_locking) 1702 btrfs_set_lock_blocking_read(eb); 1703 path->nodes[0] = NULL; 1704 path->locks[0] = 0; 1705 } 1706 btrfs_release_path(path); 1707 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 1708 1709 name_len = btrfs_inode_ref_name_len(eb, iref); 1710 name_off = (unsigned long)(iref + 1); 1711 1712 parent = next_inum; 1713 --bytes_left; 1714 if (bytes_left >= 0) 1715 dest[bytes_left] = '/'; 1716 } 1717 1718 btrfs_release_path(path); 1719 path->leave_spinning = leave_spinning; 1720 1721 if (ret) 1722 return ERR_PTR(ret); 1723 1724 return dest + bytes_left; 1725 } 1726 1727 /* 1728 * this makes the path point to (logical EXTENT_ITEM *) 1729 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for 1730 * tree blocks and <0 on error. 1731 */ 1732 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, 1733 struct btrfs_path *path, struct btrfs_key *found_key, 1734 u64 *flags_ret) 1735 { 1736 int ret; 1737 u64 flags; 1738 u64 size = 0; 1739 u32 item_size; 1740 const struct extent_buffer *eb; 1741 struct btrfs_extent_item *ei; 1742 struct btrfs_key key; 1743 1744 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 1745 key.type = BTRFS_METADATA_ITEM_KEY; 1746 else 1747 key.type = BTRFS_EXTENT_ITEM_KEY; 1748 key.objectid = logical; 1749 key.offset = (u64)-1; 1750 1751 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 1752 if (ret < 0) 1753 return ret; 1754 1755 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0); 1756 if (ret) { 1757 if (ret > 0) 1758 ret = -ENOENT; 1759 return ret; 1760 } 1761 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); 1762 if (found_key->type == BTRFS_METADATA_ITEM_KEY) 1763 size = fs_info->nodesize; 1764 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY) 1765 size = found_key->offset; 1766 1767 if (found_key->objectid > logical || 1768 found_key->objectid + size <= logical) { 1769 btrfs_debug(fs_info, 1770 "logical %llu is not within any extent", logical); 1771 return -ENOENT; 1772 } 1773 1774 eb = path->nodes[0]; 1775 item_size = btrfs_item_size_nr(eb, path->slots[0]); 1776 BUG_ON(item_size < sizeof(*ei)); 1777 1778 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 1779 flags = btrfs_extent_flags(eb, ei); 1780 1781 btrfs_debug(fs_info, 1782 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u", 1783 logical, logical - found_key->objectid, found_key->objectid, 1784 found_key->offset, flags, item_size); 1785 1786 WARN_ON(!flags_ret); 1787 if (flags_ret) { 1788 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1789 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK; 1790 else if (flags & BTRFS_EXTENT_FLAG_DATA) 1791 *flags_ret = BTRFS_EXTENT_FLAG_DATA; 1792 else 1793 BUG(); 1794 return 0; 1795 } 1796 1797 return -EIO; 1798 } 1799 1800 /* 1801 * helper function to iterate extent inline refs. ptr must point to a 0 value 1802 * for the first call and may be modified. it is used to track state. 1803 * if more refs exist, 0 is returned and the next call to 1804 * get_extent_inline_ref must pass the modified ptr parameter to get the 1805 * next ref. after the last ref was processed, 1 is returned. 1806 * returns <0 on error 1807 */ 1808 static int get_extent_inline_ref(unsigned long *ptr, 1809 const struct extent_buffer *eb, 1810 const struct btrfs_key *key, 1811 const struct btrfs_extent_item *ei, 1812 u32 item_size, 1813 struct btrfs_extent_inline_ref **out_eiref, 1814 int *out_type) 1815 { 1816 unsigned long end; 1817 u64 flags; 1818 struct btrfs_tree_block_info *info; 1819 1820 if (!*ptr) { 1821 /* first call */ 1822 flags = btrfs_extent_flags(eb, ei); 1823 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 1824 if (key->type == BTRFS_METADATA_ITEM_KEY) { 1825 /* a skinny metadata extent */ 1826 *out_eiref = 1827 (struct btrfs_extent_inline_ref *)(ei + 1); 1828 } else { 1829 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY); 1830 info = (struct btrfs_tree_block_info *)(ei + 1); 1831 *out_eiref = 1832 (struct btrfs_extent_inline_ref *)(info + 1); 1833 } 1834 } else { 1835 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); 1836 } 1837 *ptr = (unsigned long)*out_eiref; 1838 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size) 1839 return -ENOENT; 1840 } 1841 1842 end = (unsigned long)ei + item_size; 1843 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr); 1844 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref, 1845 BTRFS_REF_TYPE_ANY); 1846 if (*out_type == BTRFS_REF_TYPE_INVALID) 1847 return -EUCLEAN; 1848 1849 *ptr += btrfs_extent_inline_ref_size(*out_type); 1850 WARN_ON(*ptr > end); 1851 if (*ptr == end) 1852 return 1; /* last */ 1853 1854 return 0; 1855 } 1856 1857 /* 1858 * reads the tree block backref for an extent. tree level and root are returned 1859 * through out_level and out_root. ptr must point to a 0 value for the first 1860 * call and may be modified (see get_extent_inline_ref comment). 1861 * returns 0 if data was provided, 1 if there was no more data to provide or 1862 * <0 on error. 1863 */ 1864 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, 1865 struct btrfs_key *key, struct btrfs_extent_item *ei, 1866 u32 item_size, u64 *out_root, u8 *out_level) 1867 { 1868 int ret; 1869 int type; 1870 struct btrfs_extent_inline_ref *eiref; 1871 1872 if (*ptr == (unsigned long)-1) 1873 return 1; 1874 1875 while (1) { 1876 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size, 1877 &eiref, &type); 1878 if (ret < 0) 1879 return ret; 1880 1881 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1882 type == BTRFS_SHARED_BLOCK_REF_KEY) 1883 break; 1884 1885 if (ret == 1) 1886 return 1; 1887 } 1888 1889 /* we can treat both ref types equally here */ 1890 *out_root = btrfs_extent_inline_ref_offset(eb, eiref); 1891 1892 if (key->type == BTRFS_EXTENT_ITEM_KEY) { 1893 struct btrfs_tree_block_info *info; 1894 1895 info = (struct btrfs_tree_block_info *)(ei + 1); 1896 *out_level = btrfs_tree_block_level(eb, info); 1897 } else { 1898 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY); 1899 *out_level = (u8)key->offset; 1900 } 1901 1902 if (ret == 1) 1903 *ptr = (unsigned long)-1; 1904 1905 return 0; 1906 } 1907 1908 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info, 1909 struct extent_inode_elem *inode_list, 1910 u64 root, u64 extent_item_objectid, 1911 iterate_extent_inodes_t *iterate, void *ctx) 1912 { 1913 struct extent_inode_elem *eie; 1914 int ret = 0; 1915 1916 for (eie = inode_list; eie; eie = eie->next) { 1917 btrfs_debug(fs_info, 1918 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu", 1919 extent_item_objectid, eie->inum, 1920 eie->offset, root); 1921 ret = iterate(eie->inum, eie->offset, root, ctx); 1922 if (ret) { 1923 btrfs_debug(fs_info, 1924 "stopping iteration for %llu due to ret=%d", 1925 extent_item_objectid, ret); 1926 break; 1927 } 1928 } 1929 1930 return ret; 1931 } 1932 1933 /* 1934 * calls iterate() for every inode that references the extent identified by 1935 * the given parameters. 1936 * when the iterator function returns a non-zero value, iteration stops. 1937 */ 1938 int iterate_extent_inodes(struct btrfs_fs_info *fs_info, 1939 u64 extent_item_objectid, u64 extent_item_pos, 1940 int search_commit_root, 1941 iterate_extent_inodes_t *iterate, void *ctx, 1942 bool ignore_offset) 1943 { 1944 int ret; 1945 struct btrfs_trans_handle *trans = NULL; 1946 struct ulist *refs = NULL; 1947 struct ulist *roots = NULL; 1948 struct ulist_node *ref_node = NULL; 1949 struct ulist_node *root_node = NULL; 1950 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem); 1951 struct ulist_iterator ref_uiter; 1952 struct ulist_iterator root_uiter; 1953 1954 btrfs_debug(fs_info, "resolving all inodes for extent %llu", 1955 extent_item_objectid); 1956 1957 if (!search_commit_root) { 1958 trans = btrfs_attach_transaction(fs_info->extent_root); 1959 if (IS_ERR(trans)) { 1960 if (PTR_ERR(trans) != -ENOENT && 1961 PTR_ERR(trans) != -EROFS) 1962 return PTR_ERR(trans); 1963 trans = NULL; 1964 } 1965 } 1966 1967 if (trans) 1968 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem); 1969 else 1970 down_read(&fs_info->commit_root_sem); 1971 1972 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid, 1973 tree_mod_seq_elem.seq, &refs, 1974 &extent_item_pos, ignore_offset); 1975 if (ret) 1976 goto out; 1977 1978 ULIST_ITER_INIT(&ref_uiter); 1979 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) { 1980 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val, 1981 tree_mod_seq_elem.seq, &roots, 1982 ignore_offset); 1983 if (ret) 1984 break; 1985 ULIST_ITER_INIT(&root_uiter); 1986 while (!ret && (root_node = ulist_next(roots, &root_uiter))) { 1987 btrfs_debug(fs_info, 1988 "root %llu references leaf %llu, data list %#llx", 1989 root_node->val, ref_node->val, 1990 ref_node->aux); 1991 ret = iterate_leaf_refs(fs_info, 1992 (struct extent_inode_elem *) 1993 (uintptr_t)ref_node->aux, 1994 root_node->val, 1995 extent_item_objectid, 1996 iterate, ctx); 1997 } 1998 ulist_free(roots); 1999 } 2000 2001 free_leaf_list(refs); 2002 out: 2003 if (trans) { 2004 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem); 2005 btrfs_end_transaction(trans); 2006 } else { 2007 up_read(&fs_info->commit_root_sem); 2008 } 2009 2010 return ret; 2011 } 2012 2013 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, 2014 struct btrfs_path *path, 2015 iterate_extent_inodes_t *iterate, void *ctx, 2016 bool ignore_offset) 2017 { 2018 int ret; 2019 u64 extent_item_pos; 2020 u64 flags = 0; 2021 struct btrfs_key found_key; 2022 int search_commit_root = path->search_commit_root; 2023 2024 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags); 2025 btrfs_release_path(path); 2026 if (ret < 0) 2027 return ret; 2028 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 2029 return -EINVAL; 2030 2031 extent_item_pos = logical - found_key.objectid; 2032 ret = iterate_extent_inodes(fs_info, found_key.objectid, 2033 extent_item_pos, search_commit_root, 2034 iterate, ctx, ignore_offset); 2035 2036 return ret; 2037 } 2038 2039 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off, 2040 struct extent_buffer *eb, void *ctx); 2041 2042 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root, 2043 struct btrfs_path *path, 2044 iterate_irefs_t *iterate, void *ctx) 2045 { 2046 int ret = 0; 2047 int slot; 2048 u32 cur; 2049 u32 len; 2050 u32 name_len; 2051 u64 parent = 0; 2052 int found = 0; 2053 struct extent_buffer *eb; 2054 struct btrfs_item *item; 2055 struct btrfs_inode_ref *iref; 2056 struct btrfs_key found_key; 2057 2058 while (!ret) { 2059 ret = btrfs_find_item(fs_root, path, inum, 2060 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY, 2061 &found_key); 2062 2063 if (ret < 0) 2064 break; 2065 if (ret) { 2066 ret = found ? 0 : -ENOENT; 2067 break; 2068 } 2069 ++found; 2070 2071 parent = found_key.offset; 2072 slot = path->slots[0]; 2073 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2074 if (!eb) { 2075 ret = -ENOMEM; 2076 break; 2077 } 2078 btrfs_release_path(path); 2079 2080 item = btrfs_item_nr(slot); 2081 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); 2082 2083 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { 2084 name_len = btrfs_inode_ref_name_len(eb, iref); 2085 /* path must be released before calling iterate()! */ 2086 btrfs_debug(fs_root->fs_info, 2087 "following ref at offset %u for inode %llu in tree %llu", 2088 cur, found_key.objectid, 2089 fs_root->root_key.objectid); 2090 ret = iterate(parent, name_len, 2091 (unsigned long)(iref + 1), eb, ctx); 2092 if (ret) 2093 break; 2094 len = sizeof(*iref) + name_len; 2095 iref = (struct btrfs_inode_ref *)((char *)iref + len); 2096 } 2097 free_extent_buffer(eb); 2098 } 2099 2100 btrfs_release_path(path); 2101 2102 return ret; 2103 } 2104 2105 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root, 2106 struct btrfs_path *path, 2107 iterate_irefs_t *iterate, void *ctx) 2108 { 2109 int ret; 2110 int slot; 2111 u64 offset = 0; 2112 u64 parent; 2113 int found = 0; 2114 struct extent_buffer *eb; 2115 struct btrfs_inode_extref *extref; 2116 u32 item_size; 2117 u32 cur_offset; 2118 unsigned long ptr; 2119 2120 while (1) { 2121 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref, 2122 &offset); 2123 if (ret < 0) 2124 break; 2125 if (ret) { 2126 ret = found ? 0 : -ENOENT; 2127 break; 2128 } 2129 ++found; 2130 2131 slot = path->slots[0]; 2132 eb = btrfs_clone_extent_buffer(path->nodes[0]); 2133 if (!eb) { 2134 ret = -ENOMEM; 2135 break; 2136 } 2137 btrfs_release_path(path); 2138 2139 item_size = btrfs_item_size_nr(eb, slot); 2140 ptr = btrfs_item_ptr_offset(eb, slot); 2141 cur_offset = 0; 2142 2143 while (cur_offset < item_size) { 2144 u32 name_len; 2145 2146 extref = (struct btrfs_inode_extref *)(ptr + cur_offset); 2147 parent = btrfs_inode_extref_parent(eb, extref); 2148 name_len = btrfs_inode_extref_name_len(eb, extref); 2149 ret = iterate(parent, name_len, 2150 (unsigned long)&extref->name, eb, ctx); 2151 if (ret) 2152 break; 2153 2154 cur_offset += btrfs_inode_extref_name_len(eb, extref); 2155 cur_offset += sizeof(*extref); 2156 } 2157 free_extent_buffer(eb); 2158 2159 offset++; 2160 } 2161 2162 btrfs_release_path(path); 2163 2164 return ret; 2165 } 2166 2167 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, 2168 struct btrfs_path *path, iterate_irefs_t *iterate, 2169 void *ctx) 2170 { 2171 int ret; 2172 int found_refs = 0; 2173 2174 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx); 2175 if (!ret) 2176 ++found_refs; 2177 else if (ret != -ENOENT) 2178 return ret; 2179 2180 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx); 2181 if (ret == -ENOENT && found_refs) 2182 return 0; 2183 2184 return ret; 2185 } 2186 2187 /* 2188 * returns 0 if the path could be dumped (probably truncated) 2189 * returns <0 in case of an error 2190 */ 2191 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off, 2192 struct extent_buffer *eb, void *ctx) 2193 { 2194 struct inode_fs_paths *ipath = ctx; 2195 char *fspath; 2196 char *fspath_min; 2197 int i = ipath->fspath->elem_cnt; 2198 const int s_ptr = sizeof(char *); 2199 u32 bytes_left; 2200 2201 bytes_left = ipath->fspath->bytes_left > s_ptr ? 2202 ipath->fspath->bytes_left - s_ptr : 0; 2203 2204 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; 2205 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len, 2206 name_off, eb, inum, fspath_min, bytes_left); 2207 if (IS_ERR(fspath)) 2208 return PTR_ERR(fspath); 2209 2210 if (fspath > fspath_min) { 2211 ipath->fspath->val[i] = (u64)(unsigned long)fspath; 2212 ++ipath->fspath->elem_cnt; 2213 ipath->fspath->bytes_left = fspath - fspath_min; 2214 } else { 2215 ++ipath->fspath->elem_missed; 2216 ipath->fspath->bytes_missing += fspath_min - fspath; 2217 ipath->fspath->bytes_left = 0; 2218 } 2219 2220 return 0; 2221 } 2222 2223 /* 2224 * this dumps all file system paths to the inode into the ipath struct, provided 2225 * is has been created large enough. each path is zero-terminated and accessed 2226 * from ipath->fspath->val[i]. 2227 * when it returns, there are ipath->fspath->elem_cnt number of paths available 2228 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the 2229 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise, 2230 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would 2231 * have been needed to return all paths. 2232 */ 2233 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) 2234 { 2235 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, 2236 inode_to_path, ipath); 2237 } 2238 2239 struct btrfs_data_container *init_data_container(u32 total_bytes) 2240 { 2241 struct btrfs_data_container *data; 2242 size_t alloc_bytes; 2243 2244 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); 2245 data = kvmalloc(alloc_bytes, GFP_KERNEL); 2246 if (!data) 2247 return ERR_PTR(-ENOMEM); 2248 2249 if (total_bytes >= sizeof(*data)) { 2250 data->bytes_left = total_bytes - sizeof(*data); 2251 data->bytes_missing = 0; 2252 } else { 2253 data->bytes_missing = sizeof(*data) - total_bytes; 2254 data->bytes_left = 0; 2255 } 2256 2257 data->elem_cnt = 0; 2258 data->elem_missed = 0; 2259 2260 return data; 2261 } 2262 2263 /* 2264 * allocates space to return multiple file system paths for an inode. 2265 * total_bytes to allocate are passed, note that space usable for actual path 2266 * information will be total_bytes - sizeof(struct inode_fs_paths). 2267 * the returned pointer must be freed with free_ipath() in the end. 2268 */ 2269 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, 2270 struct btrfs_path *path) 2271 { 2272 struct inode_fs_paths *ifp; 2273 struct btrfs_data_container *fspath; 2274 2275 fspath = init_data_container(total_bytes); 2276 if (IS_ERR(fspath)) 2277 return ERR_CAST(fspath); 2278 2279 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL); 2280 if (!ifp) { 2281 kvfree(fspath); 2282 return ERR_PTR(-ENOMEM); 2283 } 2284 2285 ifp->btrfs_path = path; 2286 ifp->fspath = fspath; 2287 ifp->fs_root = fs_root; 2288 2289 return ifp; 2290 } 2291 2292 void free_ipath(struct inode_fs_paths *ipath) 2293 { 2294 if (!ipath) 2295 return; 2296 kvfree(ipath->fspath); 2297 kfree(ipath); 2298 } 2299 2300 struct btrfs_backref_iter *btrfs_backref_iter_alloc( 2301 struct btrfs_fs_info *fs_info, gfp_t gfp_flag) 2302 { 2303 struct btrfs_backref_iter *ret; 2304 2305 ret = kzalloc(sizeof(*ret), gfp_flag); 2306 if (!ret) 2307 return NULL; 2308 2309 ret->path = btrfs_alloc_path(); 2310 if (!ret) { 2311 kfree(ret); 2312 return NULL; 2313 } 2314 2315 /* Current backref iterator only supports iteration in commit root */ 2316 ret->path->search_commit_root = 1; 2317 ret->path->skip_locking = 1; 2318 ret->fs_info = fs_info; 2319 2320 return ret; 2321 } 2322 2323 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr) 2324 { 2325 struct btrfs_fs_info *fs_info = iter->fs_info; 2326 struct btrfs_path *path = iter->path; 2327 struct btrfs_extent_item *ei; 2328 struct btrfs_key key; 2329 int ret; 2330 2331 key.objectid = bytenr; 2332 key.type = BTRFS_METADATA_ITEM_KEY; 2333 key.offset = (u64)-1; 2334 iter->bytenr = bytenr; 2335 2336 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); 2337 if (ret < 0) 2338 return ret; 2339 if (ret == 0) { 2340 ret = -EUCLEAN; 2341 goto release; 2342 } 2343 if (path->slots[0] == 0) { 2344 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG)); 2345 ret = -EUCLEAN; 2346 goto release; 2347 } 2348 path->slots[0]--; 2349 2350 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 2351 if ((key.type != BTRFS_EXTENT_ITEM_KEY && 2352 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) { 2353 ret = -ENOENT; 2354 goto release; 2355 } 2356 memcpy(&iter->cur_key, &key, sizeof(key)); 2357 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2358 path->slots[0]); 2359 iter->end_ptr = (u32)(iter->item_ptr + 2360 btrfs_item_size_nr(path->nodes[0], path->slots[0])); 2361 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 2362 struct btrfs_extent_item); 2363 2364 /* 2365 * Only support iteration on tree backref yet. 2366 * 2367 * This is an extra precaution for non skinny-metadata, where 2368 * EXTENT_ITEM is also used for tree blocks, that we can only use 2369 * extent flags to determine if it's a tree block. 2370 */ 2371 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) { 2372 ret = -ENOTSUPP; 2373 goto release; 2374 } 2375 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei)); 2376 2377 /* If there is no inline backref, go search for keyed backref */ 2378 if (iter->cur_ptr >= iter->end_ptr) { 2379 ret = btrfs_next_item(fs_info->extent_root, path); 2380 2381 /* No inline nor keyed ref */ 2382 if (ret > 0) { 2383 ret = -ENOENT; 2384 goto release; 2385 } 2386 if (ret < 0) 2387 goto release; 2388 2389 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, 2390 path->slots[0]); 2391 if (iter->cur_key.objectid != bytenr || 2392 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY && 2393 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) { 2394 ret = -ENOENT; 2395 goto release; 2396 } 2397 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2398 path->slots[0]); 2399 iter->item_ptr = iter->cur_ptr; 2400 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr( 2401 path->nodes[0], path->slots[0])); 2402 } 2403 2404 return 0; 2405 release: 2406 btrfs_backref_iter_release(iter); 2407 return ret; 2408 } 2409 2410 /* 2411 * Go to the next backref item of current bytenr, can be either inlined or 2412 * keyed. 2413 * 2414 * Caller needs to check whether it's inline ref or not by iter->cur_key. 2415 * 2416 * Return 0 if we get next backref without problem. 2417 * Return >0 if there is no extra backref for this bytenr. 2418 * Return <0 if there is something wrong happened. 2419 */ 2420 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter) 2421 { 2422 struct extent_buffer *eb = btrfs_backref_get_eb(iter); 2423 struct btrfs_path *path = iter->path; 2424 struct btrfs_extent_inline_ref *iref; 2425 int ret; 2426 u32 size; 2427 2428 if (btrfs_backref_iter_is_inline_ref(iter)) { 2429 /* We're still inside the inline refs */ 2430 ASSERT(iter->cur_ptr < iter->end_ptr); 2431 2432 if (btrfs_backref_has_tree_block_info(iter)) { 2433 /* First tree block info */ 2434 size = sizeof(struct btrfs_tree_block_info); 2435 } else { 2436 /* Use inline ref type to determine the size */ 2437 int type; 2438 2439 iref = (struct btrfs_extent_inline_ref *) 2440 ((unsigned long)iter->cur_ptr); 2441 type = btrfs_extent_inline_ref_type(eb, iref); 2442 2443 size = btrfs_extent_inline_ref_size(type); 2444 } 2445 iter->cur_ptr += size; 2446 if (iter->cur_ptr < iter->end_ptr) 2447 return 0; 2448 2449 /* All inline items iterated, fall through */ 2450 } 2451 2452 /* We're at keyed items, there is no inline item, go to the next one */ 2453 ret = btrfs_next_item(iter->fs_info->extent_root, iter->path); 2454 if (ret) 2455 return ret; 2456 2457 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]); 2458 if (iter->cur_key.objectid != iter->bytenr || 2459 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY && 2460 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY)) 2461 return 1; 2462 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0], 2463 path->slots[0]); 2464 iter->cur_ptr = iter->item_ptr; 2465 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0], 2466 path->slots[0]); 2467 return 0; 2468 } 2469 2470 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info, 2471 struct btrfs_backref_cache *cache, int is_reloc) 2472 { 2473 int i; 2474 2475 cache->rb_root = RB_ROOT; 2476 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2477 INIT_LIST_HEAD(&cache->pending[i]); 2478 INIT_LIST_HEAD(&cache->changed); 2479 INIT_LIST_HEAD(&cache->detached); 2480 INIT_LIST_HEAD(&cache->leaves); 2481 INIT_LIST_HEAD(&cache->pending_edge); 2482 INIT_LIST_HEAD(&cache->useless_node); 2483 cache->fs_info = fs_info; 2484 cache->is_reloc = is_reloc; 2485 } 2486 2487 struct btrfs_backref_node *btrfs_backref_alloc_node( 2488 struct btrfs_backref_cache *cache, u64 bytenr, int level) 2489 { 2490 struct btrfs_backref_node *node; 2491 2492 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL); 2493 node = kzalloc(sizeof(*node), GFP_NOFS); 2494 if (!node) 2495 return node; 2496 2497 INIT_LIST_HEAD(&node->list); 2498 INIT_LIST_HEAD(&node->upper); 2499 INIT_LIST_HEAD(&node->lower); 2500 RB_CLEAR_NODE(&node->rb_node); 2501 cache->nr_nodes++; 2502 node->level = level; 2503 node->bytenr = bytenr; 2504 2505 return node; 2506 } 2507 2508 struct btrfs_backref_edge *btrfs_backref_alloc_edge( 2509 struct btrfs_backref_cache *cache) 2510 { 2511 struct btrfs_backref_edge *edge; 2512 2513 edge = kzalloc(sizeof(*edge), GFP_NOFS); 2514 if (edge) 2515 cache->nr_edges++; 2516 return edge; 2517 } 2518 2519 /* 2520 * Drop the backref node from cache, also cleaning up all its 2521 * upper edges and any uncached nodes in the path. 2522 * 2523 * This cleanup happens bottom up, thus the node should either 2524 * be the lowest node in the cache or a detached node. 2525 */ 2526 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache, 2527 struct btrfs_backref_node *node) 2528 { 2529 struct btrfs_backref_node *upper; 2530 struct btrfs_backref_edge *edge; 2531 2532 if (!node) 2533 return; 2534 2535 BUG_ON(!node->lowest && !node->detached); 2536 while (!list_empty(&node->upper)) { 2537 edge = list_entry(node->upper.next, struct btrfs_backref_edge, 2538 list[LOWER]); 2539 upper = edge->node[UPPER]; 2540 list_del(&edge->list[LOWER]); 2541 list_del(&edge->list[UPPER]); 2542 btrfs_backref_free_edge(cache, edge); 2543 2544 if (RB_EMPTY_NODE(&upper->rb_node)) { 2545 BUG_ON(!list_empty(&node->upper)); 2546 btrfs_backref_drop_node(cache, node); 2547 node = upper; 2548 node->lowest = 1; 2549 continue; 2550 } 2551 /* 2552 * Add the node to leaf node list if no other child block 2553 * cached. 2554 */ 2555 if (list_empty(&upper->lower)) { 2556 list_add_tail(&upper->lower, &cache->leaves); 2557 upper->lowest = 1; 2558 } 2559 } 2560 2561 btrfs_backref_drop_node(cache, node); 2562 } 2563 2564 /* 2565 * Release all nodes/edges from current cache 2566 */ 2567 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache) 2568 { 2569 struct btrfs_backref_node *node; 2570 int i; 2571 2572 while (!list_empty(&cache->detached)) { 2573 node = list_entry(cache->detached.next, 2574 struct btrfs_backref_node, list); 2575 btrfs_backref_cleanup_node(cache, node); 2576 } 2577 2578 while (!list_empty(&cache->leaves)) { 2579 node = list_entry(cache->leaves.next, 2580 struct btrfs_backref_node, lower); 2581 btrfs_backref_cleanup_node(cache, node); 2582 } 2583 2584 cache->last_trans = 0; 2585 2586 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 2587 ASSERT(list_empty(&cache->pending[i])); 2588 ASSERT(list_empty(&cache->pending_edge)); 2589 ASSERT(list_empty(&cache->useless_node)); 2590 ASSERT(list_empty(&cache->changed)); 2591 ASSERT(list_empty(&cache->detached)); 2592 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 2593 ASSERT(!cache->nr_nodes); 2594 ASSERT(!cache->nr_edges); 2595 } 2596 2597 /* 2598 * Handle direct tree backref 2599 * 2600 * Direct tree backref means, the backref item shows its parent bytenr 2601 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined). 2602 * 2603 * @ref_key: The converted backref key. 2604 * For keyed backref, it's the item key. 2605 * For inlined backref, objectid is the bytenr, 2606 * type is btrfs_inline_ref_type, offset is 2607 * btrfs_inline_ref_offset. 2608 */ 2609 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache, 2610 struct btrfs_key *ref_key, 2611 struct btrfs_backref_node *cur) 2612 { 2613 struct btrfs_backref_edge *edge; 2614 struct btrfs_backref_node *upper; 2615 struct rb_node *rb_node; 2616 2617 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY); 2618 2619 /* Only reloc root uses backref pointing to itself */ 2620 if (ref_key->objectid == ref_key->offset) { 2621 struct btrfs_root *root; 2622 2623 cur->is_reloc_root = 1; 2624 /* Only reloc backref cache cares about a specific root */ 2625 if (cache->is_reloc) { 2626 root = find_reloc_root(cache->fs_info, cur->bytenr); 2627 if (WARN_ON(!root)) 2628 return -ENOENT; 2629 cur->root = root; 2630 } else { 2631 /* 2632 * For generic purpose backref cache, reloc root node 2633 * is useless. 2634 */ 2635 list_add(&cur->list, &cache->useless_node); 2636 } 2637 return 0; 2638 } 2639 2640 edge = btrfs_backref_alloc_edge(cache); 2641 if (!edge) 2642 return -ENOMEM; 2643 2644 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset); 2645 if (!rb_node) { 2646 /* Parent node not yet cached */ 2647 upper = btrfs_backref_alloc_node(cache, ref_key->offset, 2648 cur->level + 1); 2649 if (!upper) { 2650 btrfs_backref_free_edge(cache, edge); 2651 return -ENOMEM; 2652 } 2653 2654 /* 2655 * Backrefs for the upper level block isn't cached, add the 2656 * block to pending list 2657 */ 2658 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2659 } else { 2660 /* Parent node already cached */ 2661 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 2662 ASSERT(upper->checked); 2663 INIT_LIST_HEAD(&edge->list[UPPER]); 2664 } 2665 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER); 2666 return 0; 2667 } 2668 2669 /* 2670 * Handle indirect tree backref 2671 * 2672 * Indirect tree backref means, we only know which tree the node belongs to. 2673 * We still need to do a tree search to find out the parents. This is for 2674 * TREE_BLOCK_REF backref (keyed or inlined). 2675 * 2676 * @ref_key: The same as @ref_key in handle_direct_tree_backref() 2677 * @tree_key: The first key of this tree block. 2678 * @path: A clean (released) path, to avoid allocating path everytime 2679 * the function get called. 2680 */ 2681 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache, 2682 struct btrfs_path *path, 2683 struct btrfs_key *ref_key, 2684 struct btrfs_key *tree_key, 2685 struct btrfs_backref_node *cur) 2686 { 2687 struct btrfs_fs_info *fs_info = cache->fs_info; 2688 struct btrfs_backref_node *upper; 2689 struct btrfs_backref_node *lower; 2690 struct btrfs_backref_edge *edge; 2691 struct extent_buffer *eb; 2692 struct btrfs_root *root; 2693 struct btrfs_key root_key; 2694 struct rb_node *rb_node; 2695 int level; 2696 bool need_check = true; 2697 int ret; 2698 2699 root_key.objectid = ref_key->offset; 2700 root_key.type = BTRFS_ROOT_ITEM_KEY; 2701 root_key.offset = (u64)-1; 2702 root = btrfs_get_fs_root(fs_info, &root_key, false); 2703 if (IS_ERR(root)) 2704 return PTR_ERR(root); 2705 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2706 cur->cowonly = 1; 2707 2708 if (btrfs_root_level(&root->root_item) == cur->level) { 2709 /* Tree root */ 2710 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr); 2711 if (btrfs_should_ignore_reloc_root(root)) { 2712 btrfs_put_root(root); 2713 list_add(&cur->list, &cache->useless_node); 2714 } else { 2715 cur->root = root; 2716 } 2717 return 0; 2718 } 2719 2720 level = cur->level + 1; 2721 2722 /* Search the tree to find parent blocks referring to the block */ 2723 path->search_commit_root = 1; 2724 path->skip_locking = 1; 2725 path->lowest_level = level; 2726 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0); 2727 path->lowest_level = 0; 2728 if (ret < 0) { 2729 btrfs_put_root(root); 2730 return ret; 2731 } 2732 if (ret > 0 && path->slots[level] > 0) 2733 path->slots[level]--; 2734 2735 eb = path->nodes[level]; 2736 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) { 2737 btrfs_err(fs_info, 2738 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 2739 cur->bytenr, level - 1, root->root_key.objectid, 2740 tree_key->objectid, tree_key->type, tree_key->offset); 2741 btrfs_put_root(root); 2742 ret = -ENOENT; 2743 goto out; 2744 } 2745 lower = cur; 2746 2747 /* Add all nodes and edges in the path */ 2748 for (; level < BTRFS_MAX_LEVEL; level++) { 2749 if (!path->nodes[level]) { 2750 ASSERT(btrfs_root_bytenr(&root->root_item) == 2751 lower->bytenr); 2752 if (btrfs_should_ignore_reloc_root(root)) { 2753 btrfs_put_root(root); 2754 list_add(&lower->list, &cache->useless_node); 2755 } else { 2756 lower->root = root; 2757 } 2758 break; 2759 } 2760 2761 edge = btrfs_backref_alloc_edge(cache); 2762 if (!edge) { 2763 btrfs_put_root(root); 2764 ret = -ENOMEM; 2765 goto out; 2766 } 2767 2768 eb = path->nodes[level]; 2769 rb_node = rb_simple_search(&cache->rb_root, eb->start); 2770 if (!rb_node) { 2771 upper = btrfs_backref_alloc_node(cache, eb->start, 2772 lower->level + 1); 2773 if (!upper) { 2774 btrfs_put_root(root); 2775 btrfs_backref_free_edge(cache, edge); 2776 ret = -ENOMEM; 2777 goto out; 2778 } 2779 upper->owner = btrfs_header_owner(eb); 2780 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2781 upper->cowonly = 1; 2782 2783 /* 2784 * If we know the block isn't shared we can avoid 2785 * checking its backrefs. 2786 */ 2787 if (btrfs_block_can_be_shared(root, eb)) 2788 upper->checked = 0; 2789 else 2790 upper->checked = 1; 2791 2792 /* 2793 * Add the block to pending list if we need to check its 2794 * backrefs, we only do this once while walking up a 2795 * tree as we will catch anything else later on. 2796 */ 2797 if (!upper->checked && need_check) { 2798 need_check = false; 2799 list_add_tail(&edge->list[UPPER], 2800 &cache->pending_edge); 2801 } else { 2802 if (upper->checked) 2803 need_check = true; 2804 INIT_LIST_HEAD(&edge->list[UPPER]); 2805 } 2806 } else { 2807 upper = rb_entry(rb_node, struct btrfs_backref_node, 2808 rb_node); 2809 ASSERT(upper->checked); 2810 INIT_LIST_HEAD(&edge->list[UPPER]); 2811 if (!upper->owner) 2812 upper->owner = btrfs_header_owner(eb); 2813 } 2814 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER); 2815 2816 if (rb_node) { 2817 btrfs_put_root(root); 2818 break; 2819 } 2820 lower = upper; 2821 upper = NULL; 2822 } 2823 out: 2824 btrfs_release_path(path); 2825 return ret; 2826 } 2827 2828 /* 2829 * Add backref node @cur into @cache. 2830 * 2831 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper 2832 * links aren't yet bi-directional. Needs to finish such links. 2833 * 2834 * @path: Released path for indirect tree backref lookup 2835 * @iter: Released backref iter for extent tree search 2836 * @node_key: The first key of the tree block 2837 */ 2838 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache, 2839 struct btrfs_path *path, 2840 struct btrfs_backref_iter *iter, 2841 struct btrfs_key *node_key, 2842 struct btrfs_backref_node *cur) 2843 { 2844 struct btrfs_fs_info *fs_info = cache->fs_info; 2845 struct btrfs_backref_edge *edge; 2846 struct btrfs_backref_node *exist; 2847 int ret; 2848 2849 ret = btrfs_backref_iter_start(iter, cur->bytenr); 2850 if (ret < 0) 2851 return ret; 2852 /* 2853 * We skip the first btrfs_tree_block_info, as we don't use the key 2854 * stored in it, but fetch it from the tree block 2855 */ 2856 if (btrfs_backref_has_tree_block_info(iter)) { 2857 ret = btrfs_backref_iter_next(iter); 2858 if (ret < 0) 2859 goto out; 2860 /* No extra backref? This means the tree block is corrupted */ 2861 if (ret > 0) { 2862 ret = -EUCLEAN; 2863 goto out; 2864 } 2865 } 2866 WARN_ON(cur->checked); 2867 if (!list_empty(&cur->upper)) { 2868 /* 2869 * The backref was added previously when processing backref of 2870 * type BTRFS_TREE_BLOCK_REF_KEY 2871 */ 2872 ASSERT(list_is_singular(&cur->upper)); 2873 edge = list_entry(cur->upper.next, struct btrfs_backref_edge, 2874 list[LOWER]); 2875 ASSERT(list_empty(&edge->list[UPPER])); 2876 exist = edge->node[UPPER]; 2877 /* 2878 * Add the upper level block to pending list if we need check 2879 * its backrefs 2880 */ 2881 if (!exist->checked) 2882 list_add_tail(&edge->list[UPPER], &cache->pending_edge); 2883 } else { 2884 exist = NULL; 2885 } 2886 2887 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) { 2888 struct extent_buffer *eb; 2889 struct btrfs_key key; 2890 int type; 2891 2892 cond_resched(); 2893 eb = btrfs_backref_get_eb(iter); 2894 2895 key.objectid = iter->bytenr; 2896 if (btrfs_backref_iter_is_inline_ref(iter)) { 2897 struct btrfs_extent_inline_ref *iref; 2898 2899 /* Update key for inline backref */ 2900 iref = (struct btrfs_extent_inline_ref *) 2901 ((unsigned long)iter->cur_ptr); 2902 type = btrfs_get_extent_inline_ref_type(eb, iref, 2903 BTRFS_REF_TYPE_BLOCK); 2904 if (type == BTRFS_REF_TYPE_INVALID) { 2905 ret = -EUCLEAN; 2906 goto out; 2907 } 2908 key.type = type; 2909 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 2910 } else { 2911 key.type = iter->cur_key.type; 2912 key.offset = iter->cur_key.offset; 2913 } 2914 2915 /* 2916 * Parent node found and matches current inline ref, no need to 2917 * rebuild this node for this inline ref 2918 */ 2919 if (exist && 2920 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 2921 exist->owner == key.offset) || 2922 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 2923 exist->bytenr == key.offset))) { 2924 exist = NULL; 2925 continue; 2926 } 2927 2928 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 2929 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 2930 ret = handle_direct_tree_backref(cache, &key, cur); 2931 if (ret < 0) 2932 goto out; 2933 continue; 2934 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 2935 ret = -EINVAL; 2936 btrfs_print_v0_err(fs_info); 2937 btrfs_handle_fs_error(fs_info, ret, NULL); 2938 goto out; 2939 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 2940 continue; 2941 } 2942 2943 /* 2944 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 2945 * means the root objectid. We need to search the tree to get 2946 * its parent bytenr. 2947 */ 2948 ret = handle_indirect_tree_backref(cache, path, &key, node_key, 2949 cur); 2950 if (ret < 0) 2951 goto out; 2952 } 2953 ret = 0; 2954 cur->checked = 1; 2955 WARN_ON(exist); 2956 out: 2957 btrfs_backref_iter_release(iter); 2958 return ret; 2959 } 2960