xref: /openbmc/linux/fs/aio.c (revision e3ee1e123183ca9847e74b7b8e2694c9e3b817a6)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
19 
20 #define DEBUG 0
21 
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/eventfd.h>
34 
35 #include <asm/kmap_types.h>
36 #include <asm/uaccess.h>
37 #include <asm/mmu_context.h>
38 
39 #if DEBUG > 1
40 #define dprintk		printk
41 #else
42 #define dprintk(x...)	do { ; } while (0)
43 #endif
44 
45 /*------ sysctl variables----*/
46 static DEFINE_SPINLOCK(aio_nr_lock);
47 unsigned long aio_nr;		/* current system wide number of aio requests */
48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
50 
51 static struct kmem_cache	*kiocb_cachep;
52 static struct kmem_cache	*kioctx_cachep;
53 
54 static struct workqueue_struct *aio_wq;
55 
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(struct work_struct *);
58 static DECLARE_WORK(fput_work, aio_fput_routine);
59 
60 static DEFINE_SPINLOCK(fput_lock);
61 static LIST_HEAD(fput_head);
62 
63 static void aio_kick_handler(struct work_struct *);
64 static void aio_queue_work(struct kioctx *);
65 
66 /* aio_setup
67  *	Creates the slab caches used by the aio routines, panic on
68  *	failure as this is done early during the boot sequence.
69  */
70 static int __init aio_setup(void)
71 {
72 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
73 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
74 
75 	aio_wq = create_workqueue("aio");
76 
77 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
78 
79 	return 0;
80 }
81 
82 static void aio_free_ring(struct kioctx *ctx)
83 {
84 	struct aio_ring_info *info = &ctx->ring_info;
85 	long i;
86 
87 	for (i=0; i<info->nr_pages; i++)
88 		put_page(info->ring_pages[i]);
89 
90 	if (info->mmap_size) {
91 		down_write(&ctx->mm->mmap_sem);
92 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
93 		up_write(&ctx->mm->mmap_sem);
94 	}
95 
96 	if (info->ring_pages && info->ring_pages != info->internal_pages)
97 		kfree(info->ring_pages);
98 	info->ring_pages = NULL;
99 	info->nr = 0;
100 }
101 
102 static int aio_setup_ring(struct kioctx *ctx)
103 {
104 	struct aio_ring *ring;
105 	struct aio_ring_info *info = &ctx->ring_info;
106 	unsigned nr_events = ctx->max_reqs;
107 	unsigned long size;
108 	int nr_pages;
109 
110 	/* Compensate for the ring buffer's head/tail overlap entry */
111 	nr_events += 2;	/* 1 is required, 2 for good luck */
112 
113 	size = sizeof(struct aio_ring);
114 	size += sizeof(struct io_event) * nr_events;
115 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
116 
117 	if (nr_pages < 0)
118 		return -EINVAL;
119 
120 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
121 
122 	info->nr = 0;
123 	info->ring_pages = info->internal_pages;
124 	if (nr_pages > AIO_RING_PAGES) {
125 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
126 		if (!info->ring_pages)
127 			return -ENOMEM;
128 	}
129 
130 	info->mmap_size = nr_pages * PAGE_SIZE;
131 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
132 	down_write(&ctx->mm->mmap_sem);
133 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
134 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
135 				  0);
136 	if (IS_ERR((void *)info->mmap_base)) {
137 		up_write(&ctx->mm->mmap_sem);
138 		info->mmap_size = 0;
139 		aio_free_ring(ctx);
140 		return -EAGAIN;
141 	}
142 
143 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
144 	info->nr_pages = get_user_pages(current, ctx->mm,
145 					info->mmap_base, nr_pages,
146 					1, 0, info->ring_pages, NULL);
147 	up_write(&ctx->mm->mmap_sem);
148 
149 	if (unlikely(info->nr_pages != nr_pages)) {
150 		aio_free_ring(ctx);
151 		return -EAGAIN;
152 	}
153 
154 	ctx->user_id = info->mmap_base;
155 
156 	info->nr = nr_events;		/* trusted copy */
157 
158 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
159 	ring->nr = nr_events;	/* user copy */
160 	ring->id = ctx->user_id;
161 	ring->head = ring->tail = 0;
162 	ring->magic = AIO_RING_MAGIC;
163 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
164 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
165 	ring->header_length = sizeof(struct aio_ring);
166 	kunmap_atomic(ring, KM_USER0);
167 
168 	return 0;
169 }
170 
171 
172 /* aio_ring_event: returns a pointer to the event at the given index from
173  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
174  */
175 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
176 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
177 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
178 
179 #define aio_ring_event(info, nr, km) ({					\
180 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
181 	struct io_event *__event;					\
182 	__event = kmap_atomic(						\
183 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
184 	__event += pos % AIO_EVENTS_PER_PAGE;				\
185 	__event;							\
186 })
187 
188 #define put_aio_ring_event(event, km) do {	\
189 	struct io_event *__event = (event);	\
190 	(void)__event;				\
191 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
192 } while(0)
193 
194 static void ctx_rcu_free(struct rcu_head *head)
195 {
196 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
197 	unsigned nr_events = ctx->max_reqs;
198 
199 	kmem_cache_free(kioctx_cachep, ctx);
200 
201 	if (nr_events) {
202 		spin_lock(&aio_nr_lock);
203 		BUG_ON(aio_nr - nr_events > aio_nr);
204 		aio_nr -= nr_events;
205 		spin_unlock(&aio_nr_lock);
206 	}
207 }
208 
209 /* __put_ioctx
210  *	Called when the last user of an aio context has gone away,
211  *	and the struct needs to be freed.
212  */
213 static void __put_ioctx(struct kioctx *ctx)
214 {
215 	BUG_ON(ctx->reqs_active);
216 
217 	cancel_delayed_work(&ctx->wq);
218 	cancel_work_sync(&ctx->wq.work);
219 	aio_free_ring(ctx);
220 	mmdrop(ctx->mm);
221 	ctx->mm = NULL;
222 	pr_debug("__put_ioctx: freeing %p\n", ctx);
223 	call_rcu(&ctx->rcu_head, ctx_rcu_free);
224 }
225 
226 #define get_ioctx(kioctx) do {						\
227 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
228 	atomic_inc(&(kioctx)->users);					\
229 } while (0)
230 #define put_ioctx(kioctx) do {						\
231 	BUG_ON(atomic_read(&(kioctx)->users) <= 0);			\
232 	if (unlikely(atomic_dec_and_test(&(kioctx)->users))) 		\
233 		__put_ioctx(kioctx);					\
234 } while (0)
235 
236 /* ioctx_alloc
237  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
238  */
239 static struct kioctx *ioctx_alloc(unsigned nr_events)
240 {
241 	struct mm_struct *mm;
242 	struct kioctx *ctx;
243 	int did_sync = 0;
244 
245 	/* Prevent overflows */
246 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
247 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
248 		pr_debug("ENOMEM: nr_events too high\n");
249 		return ERR_PTR(-EINVAL);
250 	}
251 
252 	if ((unsigned long)nr_events > aio_max_nr)
253 		return ERR_PTR(-EAGAIN);
254 
255 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
256 	if (!ctx)
257 		return ERR_PTR(-ENOMEM);
258 
259 	ctx->max_reqs = nr_events;
260 	mm = ctx->mm = current->mm;
261 	atomic_inc(&mm->mm_count);
262 
263 	atomic_set(&ctx->users, 1);
264 	spin_lock_init(&ctx->ctx_lock);
265 	spin_lock_init(&ctx->ring_info.ring_lock);
266 	init_waitqueue_head(&ctx->wait);
267 
268 	INIT_LIST_HEAD(&ctx->active_reqs);
269 	INIT_LIST_HEAD(&ctx->run_list);
270 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
271 
272 	if (aio_setup_ring(ctx) < 0)
273 		goto out_freectx;
274 
275 	/* limit the number of system wide aios */
276 	do {
277 		spin_lock_bh(&aio_nr_lock);
278 		if (aio_nr + nr_events > aio_max_nr ||
279 		    aio_nr + nr_events < aio_nr)
280 			ctx->max_reqs = 0;
281 		else
282 			aio_nr += ctx->max_reqs;
283 		spin_unlock_bh(&aio_nr_lock);
284 		if (ctx->max_reqs || did_sync)
285 			break;
286 
287 		/* wait for rcu callbacks to have completed before giving up */
288 		synchronize_rcu();
289 		did_sync = 1;
290 		ctx->max_reqs = nr_events;
291 	} while (1);
292 
293 	if (ctx->max_reqs == 0)
294 		goto out_cleanup;
295 
296 	/* now link into global list. */
297 	spin_lock(&mm->ioctx_lock);
298 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
299 	spin_unlock(&mm->ioctx_lock);
300 
301 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
302 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
303 	return ctx;
304 
305 out_cleanup:
306 	__put_ioctx(ctx);
307 	return ERR_PTR(-EAGAIN);
308 
309 out_freectx:
310 	mmdrop(mm);
311 	kmem_cache_free(kioctx_cachep, ctx);
312 	ctx = ERR_PTR(-ENOMEM);
313 
314 	dprintk("aio: error allocating ioctx %p\n", ctx);
315 	return ctx;
316 }
317 
318 /* aio_cancel_all
319  *	Cancels all outstanding aio requests on an aio context.  Used
320  *	when the processes owning a context have all exited to encourage
321  *	the rapid destruction of the kioctx.
322  */
323 static void aio_cancel_all(struct kioctx *ctx)
324 {
325 	int (*cancel)(struct kiocb *, struct io_event *);
326 	struct io_event res;
327 	spin_lock_irq(&ctx->ctx_lock);
328 	ctx->dead = 1;
329 	while (!list_empty(&ctx->active_reqs)) {
330 		struct list_head *pos = ctx->active_reqs.next;
331 		struct kiocb *iocb = list_kiocb(pos);
332 		list_del_init(&iocb->ki_list);
333 		cancel = iocb->ki_cancel;
334 		kiocbSetCancelled(iocb);
335 		if (cancel) {
336 			iocb->ki_users++;
337 			spin_unlock_irq(&ctx->ctx_lock);
338 			cancel(iocb, &res);
339 			spin_lock_irq(&ctx->ctx_lock);
340 		}
341 	}
342 	spin_unlock_irq(&ctx->ctx_lock);
343 }
344 
345 static void wait_for_all_aios(struct kioctx *ctx)
346 {
347 	struct task_struct *tsk = current;
348 	DECLARE_WAITQUEUE(wait, tsk);
349 
350 	spin_lock_irq(&ctx->ctx_lock);
351 	if (!ctx->reqs_active)
352 		goto out;
353 
354 	add_wait_queue(&ctx->wait, &wait);
355 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
356 	while (ctx->reqs_active) {
357 		spin_unlock_irq(&ctx->ctx_lock);
358 		io_schedule();
359 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
360 		spin_lock_irq(&ctx->ctx_lock);
361 	}
362 	__set_task_state(tsk, TASK_RUNNING);
363 	remove_wait_queue(&ctx->wait, &wait);
364 
365 out:
366 	spin_unlock_irq(&ctx->ctx_lock);
367 }
368 
369 /* wait_on_sync_kiocb:
370  *	Waits on the given sync kiocb to complete.
371  */
372 ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
373 {
374 	while (iocb->ki_users) {
375 		set_current_state(TASK_UNINTERRUPTIBLE);
376 		if (!iocb->ki_users)
377 			break;
378 		io_schedule();
379 	}
380 	__set_current_state(TASK_RUNNING);
381 	return iocb->ki_user_data;
382 }
383 
384 /* exit_aio: called when the last user of mm goes away.  At this point,
385  * there is no way for any new requests to be submited or any of the
386  * io_* syscalls to be called on the context.  However, there may be
387  * outstanding requests which hold references to the context; as they
388  * go away, they will call put_ioctx and release any pinned memory
389  * associated with the request (held via struct page * references).
390  */
391 void exit_aio(struct mm_struct *mm)
392 {
393 	struct kioctx *ctx;
394 
395 	while (!hlist_empty(&mm->ioctx_list)) {
396 		ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list);
397 		hlist_del_rcu(&ctx->list);
398 
399 		aio_cancel_all(ctx);
400 
401 		wait_for_all_aios(ctx);
402 		/*
403 		 * Ensure we don't leave the ctx on the aio_wq
404 		 */
405 		cancel_work_sync(&ctx->wq.work);
406 
407 		if (1 != atomic_read(&ctx->users))
408 			printk(KERN_DEBUG
409 				"exit_aio:ioctx still alive: %d %d %d\n",
410 				atomic_read(&ctx->users), ctx->dead,
411 				ctx->reqs_active);
412 		put_ioctx(ctx);
413 	}
414 }
415 
416 /* aio_get_req
417  *	Allocate a slot for an aio request.  Increments the users count
418  * of the kioctx so that the kioctx stays around until all requests are
419  * complete.  Returns NULL if no requests are free.
420  *
421  * Returns with kiocb->users set to 2.  The io submit code path holds
422  * an extra reference while submitting the i/o.
423  * This prevents races between the aio code path referencing the
424  * req (after submitting it) and aio_complete() freeing the req.
425  */
426 static struct kiocb *__aio_get_req(struct kioctx *ctx)
427 {
428 	struct kiocb *req = NULL;
429 	struct aio_ring *ring;
430 	int okay = 0;
431 
432 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
433 	if (unlikely(!req))
434 		return NULL;
435 
436 	req->ki_flags = 0;
437 	req->ki_users = 2;
438 	req->ki_key = 0;
439 	req->ki_ctx = ctx;
440 	req->ki_cancel = NULL;
441 	req->ki_retry = NULL;
442 	req->ki_dtor = NULL;
443 	req->private = NULL;
444 	req->ki_iovec = NULL;
445 	INIT_LIST_HEAD(&req->ki_run_list);
446 	req->ki_eventfd = ERR_PTR(-EINVAL);
447 
448 	/* Check if the completion queue has enough free space to
449 	 * accept an event from this io.
450 	 */
451 	spin_lock_irq(&ctx->ctx_lock);
452 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
453 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
454 		list_add(&req->ki_list, &ctx->active_reqs);
455 		ctx->reqs_active++;
456 		okay = 1;
457 	}
458 	kunmap_atomic(ring, KM_USER0);
459 	spin_unlock_irq(&ctx->ctx_lock);
460 
461 	if (!okay) {
462 		kmem_cache_free(kiocb_cachep, req);
463 		req = NULL;
464 	}
465 
466 	return req;
467 }
468 
469 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
470 {
471 	struct kiocb *req;
472 	/* Handle a potential starvation case -- should be exceedingly rare as
473 	 * requests will be stuck on fput_head only if the aio_fput_routine is
474 	 * delayed and the requests were the last user of the struct file.
475 	 */
476 	req = __aio_get_req(ctx);
477 	if (unlikely(NULL == req)) {
478 		aio_fput_routine(NULL);
479 		req = __aio_get_req(ctx);
480 	}
481 	return req;
482 }
483 
484 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
485 {
486 	assert_spin_locked(&ctx->ctx_lock);
487 
488 	if (!IS_ERR(req->ki_eventfd))
489 		fput(req->ki_eventfd);
490 	if (req->ki_dtor)
491 		req->ki_dtor(req);
492 	if (req->ki_iovec != &req->ki_inline_vec)
493 		kfree(req->ki_iovec);
494 	kmem_cache_free(kiocb_cachep, req);
495 	ctx->reqs_active--;
496 
497 	if (unlikely(!ctx->reqs_active && ctx->dead))
498 		wake_up(&ctx->wait);
499 }
500 
501 static void aio_fput_routine(struct work_struct *data)
502 {
503 	spin_lock_irq(&fput_lock);
504 	while (likely(!list_empty(&fput_head))) {
505 		struct kiocb *req = list_kiocb(fput_head.next);
506 		struct kioctx *ctx = req->ki_ctx;
507 
508 		list_del(&req->ki_list);
509 		spin_unlock_irq(&fput_lock);
510 
511 		/* Complete the fput */
512 		__fput(req->ki_filp);
513 
514 		/* Link the iocb into the context's free list */
515 		spin_lock_irq(&ctx->ctx_lock);
516 		really_put_req(ctx, req);
517 		spin_unlock_irq(&ctx->ctx_lock);
518 
519 		put_ioctx(ctx);
520 		spin_lock_irq(&fput_lock);
521 	}
522 	spin_unlock_irq(&fput_lock);
523 }
524 
525 /* __aio_put_req
526  *	Returns true if this put was the last user of the request.
527  */
528 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
529 {
530 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n",
531 		req, atomic_long_read(&req->ki_filp->f_count));
532 
533 	assert_spin_locked(&ctx->ctx_lock);
534 
535 	req->ki_users --;
536 	BUG_ON(req->ki_users < 0);
537 	if (likely(req->ki_users))
538 		return 0;
539 	list_del(&req->ki_list);		/* remove from active_reqs */
540 	req->ki_cancel = NULL;
541 	req->ki_retry = NULL;
542 
543 	/* Must be done under the lock to serialise against cancellation.
544 	 * Call this aio_fput as it duplicates fput via the fput_work.
545 	 */
546 	if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) {
547 		get_ioctx(ctx);
548 		spin_lock(&fput_lock);
549 		list_add(&req->ki_list, &fput_head);
550 		spin_unlock(&fput_lock);
551 		queue_work(aio_wq, &fput_work);
552 	} else
553 		really_put_req(ctx, req);
554 	return 1;
555 }
556 
557 /* aio_put_req
558  *	Returns true if this put was the last user of the kiocb,
559  *	false if the request is still in use.
560  */
561 int aio_put_req(struct kiocb *req)
562 {
563 	struct kioctx *ctx = req->ki_ctx;
564 	int ret;
565 	spin_lock_irq(&ctx->ctx_lock);
566 	ret = __aio_put_req(ctx, req);
567 	spin_unlock_irq(&ctx->ctx_lock);
568 	return ret;
569 }
570 
571 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
572 {
573 	struct mm_struct *mm = current->mm;
574 	struct kioctx *ctx = NULL;
575 	struct hlist_node *n;
576 
577 	rcu_read_lock();
578 
579 	hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) {
580 		if (ctx->user_id == ctx_id && !ctx->dead) {
581 			get_ioctx(ctx);
582 			break;
583 		}
584 	}
585 
586 	rcu_read_unlock();
587 	return ctx;
588 }
589 
590 /*
591  * use_mm
592  *	Makes the calling kernel thread take on the specified
593  *	mm context.
594  *	Called by the retry thread execute retries within the
595  *	iocb issuer's mm context, so that copy_from/to_user
596  *	operations work seamlessly for aio.
597  *	(Note: this routine is intended to be called only
598  *	from a kernel thread context)
599  */
600 static void use_mm(struct mm_struct *mm)
601 {
602 	struct mm_struct *active_mm;
603 	struct task_struct *tsk = current;
604 
605 	task_lock(tsk);
606 	active_mm = tsk->active_mm;
607 	atomic_inc(&mm->mm_count);
608 	tsk->mm = mm;
609 	tsk->active_mm = mm;
610 	switch_mm(active_mm, mm, tsk);
611 	task_unlock(tsk);
612 
613 	mmdrop(active_mm);
614 }
615 
616 /*
617  * unuse_mm
618  *	Reverses the effect of use_mm, i.e. releases the
619  *	specified mm context which was earlier taken on
620  *	by the calling kernel thread
621  *	(Note: this routine is intended to be called only
622  *	from a kernel thread context)
623  */
624 static void unuse_mm(struct mm_struct *mm)
625 {
626 	struct task_struct *tsk = current;
627 
628 	task_lock(tsk);
629 	tsk->mm = NULL;
630 	/* active_mm is still 'mm' */
631 	enter_lazy_tlb(mm, tsk);
632 	task_unlock(tsk);
633 }
634 
635 /*
636  * Queue up a kiocb to be retried. Assumes that the kiocb
637  * has already been marked as kicked, and places it on
638  * the retry run list for the corresponding ioctx, if it
639  * isn't already queued. Returns 1 if it actually queued
640  * the kiocb (to tell the caller to activate the work
641  * queue to process it), or 0, if it found that it was
642  * already queued.
643  */
644 static inline int __queue_kicked_iocb(struct kiocb *iocb)
645 {
646 	struct kioctx *ctx = iocb->ki_ctx;
647 
648 	assert_spin_locked(&ctx->ctx_lock);
649 
650 	if (list_empty(&iocb->ki_run_list)) {
651 		list_add_tail(&iocb->ki_run_list,
652 			&ctx->run_list);
653 		return 1;
654 	}
655 	return 0;
656 }
657 
658 /* aio_run_iocb
659  *	This is the core aio execution routine. It is
660  *	invoked both for initial i/o submission and
661  *	subsequent retries via the aio_kick_handler.
662  *	Expects to be invoked with iocb->ki_ctx->lock
663  *	already held. The lock is released and reacquired
664  *	as needed during processing.
665  *
666  * Calls the iocb retry method (already setup for the
667  * iocb on initial submission) for operation specific
668  * handling, but takes care of most of common retry
669  * execution details for a given iocb. The retry method
670  * needs to be non-blocking as far as possible, to avoid
671  * holding up other iocbs waiting to be serviced by the
672  * retry kernel thread.
673  *
674  * The trickier parts in this code have to do with
675  * ensuring that only one retry instance is in progress
676  * for a given iocb at any time. Providing that guarantee
677  * simplifies the coding of individual aio operations as
678  * it avoids various potential races.
679  */
680 static ssize_t aio_run_iocb(struct kiocb *iocb)
681 {
682 	struct kioctx	*ctx = iocb->ki_ctx;
683 	ssize_t (*retry)(struct kiocb *);
684 	ssize_t ret;
685 
686 	if (!(retry = iocb->ki_retry)) {
687 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
688 		return 0;
689 	}
690 
691 	/*
692 	 * We don't want the next retry iteration for this
693 	 * operation to start until this one has returned and
694 	 * updated the iocb state. However, wait_queue functions
695 	 * can trigger a kick_iocb from interrupt context in the
696 	 * meantime, indicating that data is available for the next
697 	 * iteration. We want to remember that and enable the
698 	 * next retry iteration _after_ we are through with
699 	 * this one.
700 	 *
701 	 * So, in order to be able to register a "kick", but
702 	 * prevent it from being queued now, we clear the kick
703 	 * flag, but make the kick code *think* that the iocb is
704 	 * still on the run list until we are actually done.
705 	 * When we are done with this iteration, we check if
706 	 * the iocb was kicked in the meantime and if so, queue
707 	 * it up afresh.
708 	 */
709 
710 	kiocbClearKicked(iocb);
711 
712 	/*
713 	 * This is so that aio_complete knows it doesn't need to
714 	 * pull the iocb off the run list (We can't just call
715 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
716 	 * queue this on the run list yet)
717 	 */
718 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
719 	spin_unlock_irq(&ctx->ctx_lock);
720 
721 	/* Quit retrying if the i/o has been cancelled */
722 	if (kiocbIsCancelled(iocb)) {
723 		ret = -EINTR;
724 		aio_complete(iocb, ret, 0);
725 		/* must not access the iocb after this */
726 		goto out;
727 	}
728 
729 	/*
730 	 * Now we are all set to call the retry method in async
731 	 * context.
732 	 */
733 	ret = retry(iocb);
734 
735 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
736 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
737 		aio_complete(iocb, ret, 0);
738 	}
739 out:
740 	spin_lock_irq(&ctx->ctx_lock);
741 
742 	if (-EIOCBRETRY == ret) {
743 		/*
744 		 * OK, now that we are done with this iteration
745 		 * and know that there is more left to go,
746 		 * this is where we let go so that a subsequent
747 		 * "kick" can start the next iteration
748 		 */
749 
750 		/* will make __queue_kicked_iocb succeed from here on */
751 		INIT_LIST_HEAD(&iocb->ki_run_list);
752 		/* we must queue the next iteration ourselves, if it
753 		 * has already been kicked */
754 		if (kiocbIsKicked(iocb)) {
755 			__queue_kicked_iocb(iocb);
756 
757 			/*
758 			 * __queue_kicked_iocb will always return 1 here, because
759 			 * iocb->ki_run_list is empty at this point so it should
760 			 * be safe to unconditionally queue the context into the
761 			 * work queue.
762 			 */
763 			aio_queue_work(ctx);
764 		}
765 	}
766 	return ret;
767 }
768 
769 /*
770  * __aio_run_iocbs:
771  * 	Process all pending retries queued on the ioctx
772  * 	run list.
773  * Assumes it is operating within the aio issuer's mm
774  * context.
775  */
776 static int __aio_run_iocbs(struct kioctx *ctx)
777 {
778 	struct kiocb *iocb;
779 	struct list_head run_list;
780 
781 	assert_spin_locked(&ctx->ctx_lock);
782 
783 	list_replace_init(&ctx->run_list, &run_list);
784 	while (!list_empty(&run_list)) {
785 		iocb = list_entry(run_list.next, struct kiocb,
786 			ki_run_list);
787 		list_del(&iocb->ki_run_list);
788 		/*
789 		 * Hold an extra reference while retrying i/o.
790 		 */
791 		iocb->ki_users++;       /* grab extra reference */
792 		aio_run_iocb(iocb);
793 		__aio_put_req(ctx, iocb);
794  	}
795 	if (!list_empty(&ctx->run_list))
796 		return 1;
797 	return 0;
798 }
799 
800 static void aio_queue_work(struct kioctx * ctx)
801 {
802 	unsigned long timeout;
803 	/*
804 	 * if someone is waiting, get the work started right
805 	 * away, otherwise, use a longer delay
806 	 */
807 	smp_mb();
808 	if (waitqueue_active(&ctx->wait))
809 		timeout = 1;
810 	else
811 		timeout = HZ/10;
812 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
813 }
814 
815 
816 /*
817  * aio_run_iocbs:
818  * 	Process all pending retries queued on the ioctx
819  * 	run list.
820  * Assumes it is operating within the aio issuer's mm
821  * context.
822  */
823 static inline void aio_run_iocbs(struct kioctx *ctx)
824 {
825 	int requeue;
826 
827 	spin_lock_irq(&ctx->ctx_lock);
828 
829 	requeue = __aio_run_iocbs(ctx);
830 	spin_unlock_irq(&ctx->ctx_lock);
831 	if (requeue)
832 		aio_queue_work(ctx);
833 }
834 
835 /*
836  * just like aio_run_iocbs, but keeps running them until
837  * the list stays empty
838  */
839 static inline void aio_run_all_iocbs(struct kioctx *ctx)
840 {
841 	spin_lock_irq(&ctx->ctx_lock);
842 	while (__aio_run_iocbs(ctx))
843 		;
844 	spin_unlock_irq(&ctx->ctx_lock);
845 }
846 
847 /*
848  * aio_kick_handler:
849  * 	Work queue handler triggered to process pending
850  * 	retries on an ioctx. Takes on the aio issuer's
851  *	mm context before running the iocbs, so that
852  *	copy_xxx_user operates on the issuer's address
853  *      space.
854  * Run on aiod's context.
855  */
856 static void aio_kick_handler(struct work_struct *work)
857 {
858 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
859 	mm_segment_t oldfs = get_fs();
860 	struct mm_struct *mm;
861 	int requeue;
862 
863 	set_fs(USER_DS);
864 	use_mm(ctx->mm);
865 	spin_lock_irq(&ctx->ctx_lock);
866 	requeue =__aio_run_iocbs(ctx);
867 	mm = ctx->mm;
868 	spin_unlock_irq(&ctx->ctx_lock);
869  	unuse_mm(mm);
870 	set_fs(oldfs);
871 	/*
872 	 * we're in a worker thread already, don't use queue_delayed_work,
873 	 */
874 	if (requeue)
875 		queue_delayed_work(aio_wq, &ctx->wq, 0);
876 }
877 
878 
879 /*
880  * Called by kick_iocb to queue the kiocb for retry
881  * and if required activate the aio work queue to process
882  * it
883  */
884 static void try_queue_kicked_iocb(struct kiocb *iocb)
885 {
886  	struct kioctx	*ctx = iocb->ki_ctx;
887 	unsigned long flags;
888 	int run = 0;
889 
890 	/* We're supposed to be the only path putting the iocb back on the run
891 	 * list.  If we find that the iocb is *back* on a wait queue already
892 	 * than retry has happened before we could queue the iocb.  This also
893 	 * means that the retry could have completed and freed our iocb, no
894 	 * good. */
895 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
896 
897 	spin_lock_irqsave(&ctx->ctx_lock, flags);
898 	/* set this inside the lock so that we can't race with aio_run_iocb()
899 	 * testing it and putting the iocb on the run list under the lock */
900 	if (!kiocbTryKick(iocb))
901 		run = __queue_kicked_iocb(iocb);
902 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
903 	if (run)
904 		aio_queue_work(ctx);
905 }
906 
907 /*
908  * kick_iocb:
909  *      Called typically from a wait queue callback context
910  *      (aio_wake_function) to trigger a retry of the iocb.
911  *      The retry is usually executed by aio workqueue
912  *      threads (See aio_kick_handler).
913  */
914 void kick_iocb(struct kiocb *iocb)
915 {
916 	/* sync iocbs are easy: they can only ever be executing from a
917 	 * single context. */
918 	if (is_sync_kiocb(iocb)) {
919 		kiocbSetKicked(iocb);
920 	        wake_up_process(iocb->ki_obj.tsk);
921 		return;
922 	}
923 
924 	try_queue_kicked_iocb(iocb);
925 }
926 EXPORT_SYMBOL(kick_iocb);
927 
928 /* aio_complete
929  *	Called when the io request on the given iocb is complete.
930  *	Returns true if this is the last user of the request.  The
931  *	only other user of the request can be the cancellation code.
932  */
933 int aio_complete(struct kiocb *iocb, long res, long res2)
934 {
935 	struct kioctx	*ctx = iocb->ki_ctx;
936 	struct aio_ring_info	*info;
937 	struct aio_ring	*ring;
938 	struct io_event	*event;
939 	unsigned long	flags;
940 	unsigned long	tail;
941 	int		ret;
942 
943 	/*
944 	 * Special case handling for sync iocbs:
945 	 *  - events go directly into the iocb for fast handling
946 	 *  - the sync task with the iocb in its stack holds the single iocb
947 	 *    ref, no other paths have a way to get another ref
948 	 *  - the sync task helpfully left a reference to itself in the iocb
949 	 */
950 	if (is_sync_kiocb(iocb)) {
951 		BUG_ON(iocb->ki_users != 1);
952 		iocb->ki_user_data = res;
953 		iocb->ki_users = 0;
954 		wake_up_process(iocb->ki_obj.tsk);
955 		return 1;
956 	}
957 
958 	info = &ctx->ring_info;
959 
960 	/* add a completion event to the ring buffer.
961 	 * must be done holding ctx->ctx_lock to prevent
962 	 * other code from messing with the tail
963 	 * pointer since we might be called from irq
964 	 * context.
965 	 */
966 	spin_lock_irqsave(&ctx->ctx_lock, flags);
967 
968 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
969 		list_del_init(&iocb->ki_run_list);
970 
971 	/*
972 	 * cancelled requests don't get events, userland was given one
973 	 * when the event got cancelled.
974 	 */
975 	if (kiocbIsCancelled(iocb))
976 		goto put_rq;
977 
978 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
979 
980 	tail = info->tail;
981 	event = aio_ring_event(info, tail, KM_IRQ0);
982 	if (++tail >= info->nr)
983 		tail = 0;
984 
985 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
986 	event->data = iocb->ki_user_data;
987 	event->res = res;
988 	event->res2 = res2;
989 
990 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
991 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
992 		res, res2);
993 
994 	/* after flagging the request as done, we
995 	 * must never even look at it again
996 	 */
997 	smp_wmb();	/* make event visible before updating tail */
998 
999 	info->tail = tail;
1000 	ring->tail = tail;
1001 
1002 	put_aio_ring_event(event, KM_IRQ0);
1003 	kunmap_atomic(ring, KM_IRQ1);
1004 
1005 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1006 
1007 	/*
1008 	 * Check if the user asked us to deliver the result through an
1009 	 * eventfd. The eventfd_signal() function is safe to be called
1010 	 * from IRQ context.
1011 	 */
1012 	if (!IS_ERR(iocb->ki_eventfd))
1013 		eventfd_signal(iocb->ki_eventfd, 1);
1014 
1015 put_rq:
1016 	/* everything turned out well, dispose of the aiocb. */
1017 	ret = __aio_put_req(ctx, iocb);
1018 
1019 	/*
1020 	 * We have to order our ring_info tail store above and test
1021 	 * of the wait list below outside the wait lock.  This is
1022 	 * like in wake_up_bit() where clearing a bit has to be
1023 	 * ordered with the unlocked test.
1024 	 */
1025 	smp_mb();
1026 
1027 	if (waitqueue_active(&ctx->wait))
1028 		wake_up(&ctx->wait);
1029 
1030 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1031 	return ret;
1032 }
1033 
1034 /* aio_read_evt
1035  *	Pull an event off of the ioctx's event ring.  Returns the number of
1036  *	events fetched (0 or 1 ;-)
1037  *	FIXME: make this use cmpxchg.
1038  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1039  */
1040 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1041 {
1042 	struct aio_ring_info *info = &ioctx->ring_info;
1043 	struct aio_ring *ring;
1044 	unsigned long head;
1045 	int ret = 0;
1046 
1047 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1048 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1049 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1050 		 (unsigned long)ring->nr);
1051 
1052 	if (ring->head == ring->tail)
1053 		goto out;
1054 
1055 	spin_lock(&info->ring_lock);
1056 
1057 	head = ring->head % info->nr;
1058 	if (head != ring->tail) {
1059 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1060 		*ent = *evp;
1061 		head = (head + 1) % info->nr;
1062 		smp_mb(); /* finish reading the event before updatng the head */
1063 		ring->head = head;
1064 		ret = 1;
1065 		put_aio_ring_event(evp, KM_USER1);
1066 	}
1067 	spin_unlock(&info->ring_lock);
1068 
1069 out:
1070 	kunmap_atomic(ring, KM_USER0);
1071 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1072 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1073 	return ret;
1074 }
1075 
1076 struct aio_timeout {
1077 	struct timer_list	timer;
1078 	int			timed_out;
1079 	struct task_struct	*p;
1080 };
1081 
1082 static void timeout_func(unsigned long data)
1083 {
1084 	struct aio_timeout *to = (struct aio_timeout *)data;
1085 
1086 	to->timed_out = 1;
1087 	wake_up_process(to->p);
1088 }
1089 
1090 static inline void init_timeout(struct aio_timeout *to)
1091 {
1092 	setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to);
1093 	to->timed_out = 0;
1094 	to->p = current;
1095 }
1096 
1097 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1098 			       const struct timespec *ts)
1099 {
1100 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1101 	if (time_after(to->timer.expires, jiffies))
1102 		add_timer(&to->timer);
1103 	else
1104 		to->timed_out = 1;
1105 }
1106 
1107 static inline void clear_timeout(struct aio_timeout *to)
1108 {
1109 	del_singleshot_timer_sync(&to->timer);
1110 }
1111 
1112 static int read_events(struct kioctx *ctx,
1113 			long min_nr, long nr,
1114 			struct io_event __user *event,
1115 			struct timespec __user *timeout)
1116 {
1117 	long			start_jiffies = jiffies;
1118 	struct task_struct	*tsk = current;
1119 	DECLARE_WAITQUEUE(wait, tsk);
1120 	int			ret;
1121 	int			i = 0;
1122 	struct io_event		ent;
1123 	struct aio_timeout	to;
1124 	int			retry = 0;
1125 
1126 	/* needed to zero any padding within an entry (there shouldn't be
1127 	 * any, but C is fun!
1128 	 */
1129 	memset(&ent, 0, sizeof(ent));
1130 retry:
1131 	ret = 0;
1132 	while (likely(i < nr)) {
1133 		ret = aio_read_evt(ctx, &ent);
1134 		if (unlikely(ret <= 0))
1135 			break;
1136 
1137 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1138 			ent.data, ent.obj, ent.res, ent.res2);
1139 
1140 		/* Could we split the check in two? */
1141 		ret = -EFAULT;
1142 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1143 			dprintk("aio: lost an event due to EFAULT.\n");
1144 			break;
1145 		}
1146 		ret = 0;
1147 
1148 		/* Good, event copied to userland, update counts. */
1149 		event ++;
1150 		i ++;
1151 	}
1152 
1153 	if (min_nr <= i)
1154 		return i;
1155 	if (ret)
1156 		return ret;
1157 
1158 	/* End fast path */
1159 
1160 	/* racey check, but it gets redone */
1161 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1162 		retry = 1;
1163 		aio_run_all_iocbs(ctx);
1164 		goto retry;
1165 	}
1166 
1167 	init_timeout(&to);
1168 	if (timeout) {
1169 		struct timespec	ts;
1170 		ret = -EFAULT;
1171 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1172 			goto out;
1173 
1174 		set_timeout(start_jiffies, &to, &ts);
1175 	}
1176 
1177 	while (likely(i < nr)) {
1178 		add_wait_queue_exclusive(&ctx->wait, &wait);
1179 		do {
1180 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1181 			ret = aio_read_evt(ctx, &ent);
1182 			if (ret)
1183 				break;
1184 			if (min_nr <= i)
1185 				break;
1186 			if (unlikely(ctx->dead)) {
1187 				ret = -EINVAL;
1188 				break;
1189 			}
1190 			if (to.timed_out)	/* Only check after read evt */
1191 				break;
1192 			/* Try to only show up in io wait if there are ops
1193 			 *  in flight */
1194 			if (ctx->reqs_active)
1195 				io_schedule();
1196 			else
1197 				schedule();
1198 			if (signal_pending(tsk)) {
1199 				ret = -EINTR;
1200 				break;
1201 			}
1202 			/*ret = aio_read_evt(ctx, &ent);*/
1203 		} while (1) ;
1204 
1205 		set_task_state(tsk, TASK_RUNNING);
1206 		remove_wait_queue(&ctx->wait, &wait);
1207 
1208 		if (unlikely(ret <= 0))
1209 			break;
1210 
1211 		ret = -EFAULT;
1212 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1213 			dprintk("aio: lost an event due to EFAULT.\n");
1214 			break;
1215 		}
1216 
1217 		/* Good, event copied to userland, update counts. */
1218 		event ++;
1219 		i ++;
1220 	}
1221 
1222 	if (timeout)
1223 		clear_timeout(&to);
1224 out:
1225 	destroy_timer_on_stack(&to.timer);
1226 	return i ? i : ret;
1227 }
1228 
1229 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1230  * against races with itself via ->dead.
1231  */
1232 static void io_destroy(struct kioctx *ioctx)
1233 {
1234 	struct mm_struct *mm = current->mm;
1235 	int was_dead;
1236 
1237 	/* delete the entry from the list is someone else hasn't already */
1238 	spin_lock(&mm->ioctx_lock);
1239 	was_dead = ioctx->dead;
1240 	ioctx->dead = 1;
1241 	hlist_del_rcu(&ioctx->list);
1242 	spin_unlock(&mm->ioctx_lock);
1243 
1244 	dprintk("aio_release(%p)\n", ioctx);
1245 	if (likely(!was_dead))
1246 		put_ioctx(ioctx);	/* twice for the list */
1247 
1248 	aio_cancel_all(ioctx);
1249 	wait_for_all_aios(ioctx);
1250 
1251 	/*
1252 	 * Wake up any waiters.  The setting of ctx->dead must be seen
1253 	 * by other CPUs at this point.  Right now, we rely on the
1254 	 * locking done by the above calls to ensure this consistency.
1255 	 */
1256 	wake_up(&ioctx->wait);
1257 	put_ioctx(ioctx);	/* once for the lookup */
1258 }
1259 
1260 /* sys_io_setup:
1261  *	Create an aio_context capable of receiving at least nr_events.
1262  *	ctxp must not point to an aio_context that already exists, and
1263  *	must be initialized to 0 prior to the call.  On successful
1264  *	creation of the aio_context, *ctxp is filled in with the resulting
1265  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1266  *	if the specified nr_events exceeds internal limits.  May fail
1267  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1268  *	of available events.  May fail with -ENOMEM if insufficient kernel
1269  *	resources are available.  May fail with -EFAULT if an invalid
1270  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1271  *	implemented.
1272  */
1273 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1274 {
1275 	struct kioctx *ioctx = NULL;
1276 	unsigned long ctx;
1277 	long ret;
1278 
1279 	ret = get_user(ctx, ctxp);
1280 	if (unlikely(ret))
1281 		goto out;
1282 
1283 	ret = -EINVAL;
1284 	if (unlikely(ctx || nr_events == 0)) {
1285 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1286 		         ctx, nr_events);
1287 		goto out;
1288 	}
1289 
1290 	ioctx = ioctx_alloc(nr_events);
1291 	ret = PTR_ERR(ioctx);
1292 	if (!IS_ERR(ioctx)) {
1293 		ret = put_user(ioctx->user_id, ctxp);
1294 		if (!ret)
1295 			return 0;
1296 
1297 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1298 		io_destroy(ioctx);
1299 	}
1300 
1301 out:
1302 	return ret;
1303 }
1304 
1305 /* sys_io_destroy:
1306  *	Destroy the aio_context specified.  May cancel any outstanding
1307  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1308  *	implemented.  May fail with -EFAULT if the context pointed to
1309  *	is invalid.
1310  */
1311 asmlinkage long sys_io_destroy(aio_context_t ctx)
1312 {
1313 	struct kioctx *ioctx = lookup_ioctx(ctx);
1314 	if (likely(NULL != ioctx)) {
1315 		io_destroy(ioctx);
1316 		return 0;
1317 	}
1318 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1319 	return -EINVAL;
1320 }
1321 
1322 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1323 {
1324 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1325 
1326 	BUG_ON(ret <= 0);
1327 
1328 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1329 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1330 		iov->iov_base += this;
1331 		iov->iov_len -= this;
1332 		iocb->ki_left -= this;
1333 		ret -= this;
1334 		if (iov->iov_len == 0) {
1335 			iocb->ki_cur_seg++;
1336 			iov++;
1337 		}
1338 	}
1339 
1340 	/* the caller should not have done more io than what fit in
1341 	 * the remaining iovecs */
1342 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1343 }
1344 
1345 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1346 {
1347 	struct file *file = iocb->ki_filp;
1348 	struct address_space *mapping = file->f_mapping;
1349 	struct inode *inode = mapping->host;
1350 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1351 			 unsigned long, loff_t);
1352 	ssize_t ret = 0;
1353 	unsigned short opcode;
1354 
1355 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1356 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1357 		rw_op = file->f_op->aio_read;
1358 		opcode = IOCB_CMD_PREADV;
1359 	} else {
1360 		rw_op = file->f_op->aio_write;
1361 		opcode = IOCB_CMD_PWRITEV;
1362 	}
1363 
1364 	/* This matches the pread()/pwrite() logic */
1365 	if (iocb->ki_pos < 0)
1366 		return -EINVAL;
1367 
1368 	do {
1369 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1370 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1371 			    iocb->ki_pos);
1372 		if (ret > 0)
1373 			aio_advance_iovec(iocb, ret);
1374 
1375 	/* retry all partial writes.  retry partial reads as long as its a
1376 	 * regular file. */
1377 	} while (ret > 0 && iocb->ki_left > 0 &&
1378 		 (opcode == IOCB_CMD_PWRITEV ||
1379 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1380 
1381 	/* This means we must have transferred all that we could */
1382 	/* No need to retry anymore */
1383 	if ((ret == 0) || (iocb->ki_left == 0))
1384 		ret = iocb->ki_nbytes - iocb->ki_left;
1385 
1386 	/* If we managed to write some out we return that, rather than
1387 	 * the eventual error. */
1388 	if (opcode == IOCB_CMD_PWRITEV
1389 	    && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY
1390 	    && iocb->ki_nbytes - iocb->ki_left)
1391 		ret = iocb->ki_nbytes - iocb->ki_left;
1392 
1393 	return ret;
1394 }
1395 
1396 static ssize_t aio_fdsync(struct kiocb *iocb)
1397 {
1398 	struct file *file = iocb->ki_filp;
1399 	ssize_t ret = -EINVAL;
1400 
1401 	if (file->f_op->aio_fsync)
1402 		ret = file->f_op->aio_fsync(iocb, 1);
1403 	return ret;
1404 }
1405 
1406 static ssize_t aio_fsync(struct kiocb *iocb)
1407 {
1408 	struct file *file = iocb->ki_filp;
1409 	ssize_t ret = -EINVAL;
1410 
1411 	if (file->f_op->aio_fsync)
1412 		ret = file->f_op->aio_fsync(iocb, 0);
1413 	return ret;
1414 }
1415 
1416 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1417 {
1418 	ssize_t ret;
1419 
1420 	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1421 				    kiocb->ki_nbytes, 1,
1422 				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1423 	if (ret < 0)
1424 		goto out;
1425 
1426 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1427 	kiocb->ki_cur_seg = 0;
1428 	/* ki_nbytes/left now reflect bytes instead of segs */
1429 	kiocb->ki_nbytes = ret;
1430 	kiocb->ki_left = ret;
1431 
1432 	ret = 0;
1433 out:
1434 	return ret;
1435 }
1436 
1437 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1438 {
1439 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1440 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1441 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1442 	kiocb->ki_nr_segs = 1;
1443 	kiocb->ki_cur_seg = 0;
1444 	return 0;
1445 }
1446 
1447 /*
1448  * aio_setup_iocb:
1449  *	Performs the initial checks and aio retry method
1450  *	setup for the kiocb at the time of io submission.
1451  */
1452 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1453 {
1454 	struct file *file = kiocb->ki_filp;
1455 	ssize_t ret = 0;
1456 
1457 	switch (kiocb->ki_opcode) {
1458 	case IOCB_CMD_PREAD:
1459 		ret = -EBADF;
1460 		if (unlikely(!(file->f_mode & FMODE_READ)))
1461 			break;
1462 		ret = -EFAULT;
1463 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1464 			kiocb->ki_left)))
1465 			break;
1466 		ret = security_file_permission(file, MAY_READ);
1467 		if (unlikely(ret))
1468 			break;
1469 		ret = aio_setup_single_vector(kiocb);
1470 		if (ret)
1471 			break;
1472 		ret = -EINVAL;
1473 		if (file->f_op->aio_read)
1474 			kiocb->ki_retry = aio_rw_vect_retry;
1475 		break;
1476 	case IOCB_CMD_PWRITE:
1477 		ret = -EBADF;
1478 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1479 			break;
1480 		ret = -EFAULT;
1481 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1482 			kiocb->ki_left)))
1483 			break;
1484 		ret = security_file_permission(file, MAY_WRITE);
1485 		if (unlikely(ret))
1486 			break;
1487 		ret = aio_setup_single_vector(kiocb);
1488 		if (ret)
1489 			break;
1490 		ret = -EINVAL;
1491 		if (file->f_op->aio_write)
1492 			kiocb->ki_retry = aio_rw_vect_retry;
1493 		break;
1494 	case IOCB_CMD_PREADV:
1495 		ret = -EBADF;
1496 		if (unlikely(!(file->f_mode & FMODE_READ)))
1497 			break;
1498 		ret = security_file_permission(file, MAY_READ);
1499 		if (unlikely(ret))
1500 			break;
1501 		ret = aio_setup_vectored_rw(READ, kiocb);
1502 		if (ret)
1503 			break;
1504 		ret = -EINVAL;
1505 		if (file->f_op->aio_read)
1506 			kiocb->ki_retry = aio_rw_vect_retry;
1507 		break;
1508 	case IOCB_CMD_PWRITEV:
1509 		ret = -EBADF;
1510 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1511 			break;
1512 		ret = security_file_permission(file, MAY_WRITE);
1513 		if (unlikely(ret))
1514 			break;
1515 		ret = aio_setup_vectored_rw(WRITE, kiocb);
1516 		if (ret)
1517 			break;
1518 		ret = -EINVAL;
1519 		if (file->f_op->aio_write)
1520 			kiocb->ki_retry = aio_rw_vect_retry;
1521 		break;
1522 	case IOCB_CMD_FDSYNC:
1523 		ret = -EINVAL;
1524 		if (file->f_op->aio_fsync)
1525 			kiocb->ki_retry = aio_fdsync;
1526 		break;
1527 	case IOCB_CMD_FSYNC:
1528 		ret = -EINVAL;
1529 		if (file->f_op->aio_fsync)
1530 			kiocb->ki_retry = aio_fsync;
1531 		break;
1532 	default:
1533 		dprintk("EINVAL: io_submit: no operation provided\n");
1534 		ret = -EINVAL;
1535 	}
1536 
1537 	if (!kiocb->ki_retry)
1538 		return ret;
1539 
1540 	return 0;
1541 }
1542 
1543 /*
1544  * aio_wake_function:
1545  * 	wait queue callback function for aio notification,
1546  * 	Simply triggers a retry of the operation via kick_iocb.
1547  *
1548  * 	This callback is specified in the wait queue entry in
1549  *	a kiocb.
1550  *
1551  * Note:
1552  * This routine is executed with the wait queue lock held.
1553  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1554  * the ioctx lock inside the wait queue lock. This is safe
1555  * because this callback isn't used for wait queues which
1556  * are nested inside ioctx lock (i.e. ctx->wait)
1557  */
1558 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1559 			     int sync, void *key)
1560 {
1561 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1562 
1563 	list_del_init(&wait->task_list);
1564 	kick_iocb(iocb);
1565 	return 1;
1566 }
1567 
1568 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1569 			 struct iocb *iocb)
1570 {
1571 	struct kiocb *req;
1572 	struct file *file;
1573 	ssize_t ret;
1574 
1575 	/* enforce forwards compatibility on users */
1576 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1577 		pr_debug("EINVAL: io_submit: reserve field set\n");
1578 		return -EINVAL;
1579 	}
1580 
1581 	/* prevent overflows */
1582 	if (unlikely(
1583 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1584 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1585 	    ((ssize_t)iocb->aio_nbytes < 0)
1586 	   )) {
1587 		pr_debug("EINVAL: io_submit: overflow check\n");
1588 		return -EINVAL;
1589 	}
1590 
1591 	file = fget(iocb->aio_fildes);
1592 	if (unlikely(!file))
1593 		return -EBADF;
1594 
1595 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1596 	if (unlikely(!req)) {
1597 		fput(file);
1598 		return -EAGAIN;
1599 	}
1600 	req->ki_filp = file;
1601 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1602 		/*
1603 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1604 		 * instance of the file* now. The file descriptor must be
1605 		 * an eventfd() fd, and will be signaled for each completed
1606 		 * event using the eventfd_signal() function.
1607 		 */
1608 		req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd);
1609 		if (IS_ERR(req->ki_eventfd)) {
1610 			ret = PTR_ERR(req->ki_eventfd);
1611 			goto out_put_req;
1612 		}
1613 	}
1614 
1615 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1616 	if (unlikely(ret)) {
1617 		dprintk("EFAULT: aio_key\n");
1618 		goto out_put_req;
1619 	}
1620 
1621 	req->ki_obj.user = user_iocb;
1622 	req->ki_user_data = iocb->aio_data;
1623 	req->ki_pos = iocb->aio_offset;
1624 
1625 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1626 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1627 	req->ki_opcode = iocb->aio_lio_opcode;
1628 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1629 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1630 
1631 	ret = aio_setup_iocb(req);
1632 
1633 	if (ret)
1634 		goto out_put_req;
1635 
1636 	spin_lock_irq(&ctx->ctx_lock);
1637 	aio_run_iocb(req);
1638 	if (!list_empty(&ctx->run_list)) {
1639 		/* drain the run list */
1640 		while (__aio_run_iocbs(ctx))
1641 			;
1642 	}
1643 	spin_unlock_irq(&ctx->ctx_lock);
1644 	aio_put_req(req);	/* drop extra ref to req */
1645 	return 0;
1646 
1647 out_put_req:
1648 	aio_put_req(req);	/* drop extra ref to req */
1649 	aio_put_req(req);	/* drop i/o ref to req */
1650 	return ret;
1651 }
1652 
1653 /* sys_io_submit:
1654  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1655  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1656  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1657  *	*iocbpp[0] is not properly initialized, if the operation specified
1658  *	is invalid for the file descriptor in the iocb.  May fail with
1659  *	-EFAULT if any of the data structures point to invalid data.  May
1660  *	fail with -EBADF if the file descriptor specified in the first
1661  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1662  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1663  *	fail with -ENOSYS if not implemented.
1664  */
1665 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1666 			      struct iocb __user * __user *iocbpp)
1667 {
1668 	struct kioctx *ctx;
1669 	long ret = 0;
1670 	int i;
1671 
1672 	if (unlikely(nr < 0))
1673 		return -EINVAL;
1674 
1675 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1676 		return -EFAULT;
1677 
1678 	ctx = lookup_ioctx(ctx_id);
1679 	if (unlikely(!ctx)) {
1680 		pr_debug("EINVAL: io_submit: invalid context id\n");
1681 		return -EINVAL;
1682 	}
1683 
1684 	/*
1685 	 * AKPM: should this return a partial result if some of the IOs were
1686 	 * successfully submitted?
1687 	 */
1688 	for (i=0; i<nr; i++) {
1689 		struct iocb __user *user_iocb;
1690 		struct iocb tmp;
1691 
1692 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1693 			ret = -EFAULT;
1694 			break;
1695 		}
1696 
1697 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1698 			ret = -EFAULT;
1699 			break;
1700 		}
1701 
1702 		ret = io_submit_one(ctx, user_iocb, &tmp);
1703 		if (ret)
1704 			break;
1705 	}
1706 
1707 	put_ioctx(ctx);
1708 	return i ? i : ret;
1709 }
1710 
1711 /* lookup_kiocb
1712  *	Finds a given iocb for cancellation.
1713  */
1714 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1715 				  u32 key)
1716 {
1717 	struct list_head *pos;
1718 
1719 	assert_spin_locked(&ctx->ctx_lock);
1720 
1721 	/* TODO: use a hash or array, this sucks. */
1722 	list_for_each(pos, &ctx->active_reqs) {
1723 		struct kiocb *kiocb = list_kiocb(pos);
1724 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1725 			return kiocb;
1726 	}
1727 	return NULL;
1728 }
1729 
1730 /* sys_io_cancel:
1731  *	Attempts to cancel an iocb previously passed to io_submit.  If
1732  *	the operation is successfully cancelled, the resulting event is
1733  *	copied into the memory pointed to by result without being placed
1734  *	into the completion queue and 0 is returned.  May fail with
1735  *	-EFAULT if any of the data structures pointed to are invalid.
1736  *	May fail with -EINVAL if aio_context specified by ctx_id is
1737  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1738  *	cancelled.  Will fail with -ENOSYS if not implemented.
1739  */
1740 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1741 			      struct io_event __user *result)
1742 {
1743 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1744 	struct kioctx *ctx;
1745 	struct kiocb *kiocb;
1746 	u32 key;
1747 	int ret;
1748 
1749 	ret = get_user(key, &iocb->aio_key);
1750 	if (unlikely(ret))
1751 		return -EFAULT;
1752 
1753 	ctx = lookup_ioctx(ctx_id);
1754 	if (unlikely(!ctx))
1755 		return -EINVAL;
1756 
1757 	spin_lock_irq(&ctx->ctx_lock);
1758 	ret = -EAGAIN;
1759 	kiocb = lookup_kiocb(ctx, iocb, key);
1760 	if (kiocb && kiocb->ki_cancel) {
1761 		cancel = kiocb->ki_cancel;
1762 		kiocb->ki_users ++;
1763 		kiocbSetCancelled(kiocb);
1764 	} else
1765 		cancel = NULL;
1766 	spin_unlock_irq(&ctx->ctx_lock);
1767 
1768 	if (NULL != cancel) {
1769 		struct io_event tmp;
1770 		pr_debug("calling cancel\n");
1771 		memset(&tmp, 0, sizeof(tmp));
1772 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1773 		tmp.data = kiocb->ki_user_data;
1774 		ret = cancel(kiocb, &tmp);
1775 		if (!ret) {
1776 			/* Cancellation succeeded -- copy the result
1777 			 * into the user's buffer.
1778 			 */
1779 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1780 				ret = -EFAULT;
1781 		}
1782 	} else
1783 		ret = -EINVAL;
1784 
1785 	put_ioctx(ctx);
1786 
1787 	return ret;
1788 }
1789 
1790 /* io_getevents:
1791  *	Attempts to read at least min_nr events and up to nr events from
1792  *	the completion queue for the aio_context specified by ctx_id.  May
1793  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1794  *	if nr is out of range, if when is out of range.  May fail with
1795  *	-EFAULT if any of the memory specified to is invalid.  May return
1796  *	0 or < min_nr if no events are available and the timeout specified
1797  *	by when	has elapsed, where when == NULL specifies an infinite
1798  *	timeout.  Note that the timeout pointed to by when is relative and
1799  *	will be updated if not NULL and the operation blocks.  Will fail
1800  *	with -ENOSYS if not implemented.
1801  */
1802 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1803 				 long min_nr,
1804 				 long nr,
1805 				 struct io_event __user *events,
1806 				 struct timespec __user *timeout)
1807 {
1808 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1809 	long ret = -EINVAL;
1810 
1811 	if (likely(ioctx)) {
1812 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1813 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1814 		put_ioctx(ioctx);
1815 	}
1816 
1817 	asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout);
1818 	return ret;
1819 }
1820 
1821 __initcall(aio_setup);
1822 
1823 EXPORT_SYMBOL(aio_complete);
1824 EXPORT_SYMBOL(aio_put_req);
1825 EXPORT_SYMBOL(wait_on_sync_kiocb);
1826