1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/module.h> 17 #include <linux/syscalls.h> 18 #include <linux/uio.h> 19 20 #define DEBUG 0 21 22 #include <linux/sched.h> 23 #include <linux/fs.h> 24 #include <linux/file.h> 25 #include <linux/mm.h> 26 #include <linux/mman.h> 27 #include <linux/slab.h> 28 #include <linux/timer.h> 29 #include <linux/aio.h> 30 #include <linux/highmem.h> 31 #include <linux/workqueue.h> 32 #include <linux/security.h> 33 #include <linux/eventfd.h> 34 35 #include <asm/kmap_types.h> 36 #include <asm/uaccess.h> 37 #include <asm/mmu_context.h> 38 39 #if DEBUG > 1 40 #define dprintk printk 41 #else 42 #define dprintk(x...) do { ; } while (0) 43 #endif 44 45 /*------ sysctl variables----*/ 46 static DEFINE_SPINLOCK(aio_nr_lock); 47 unsigned long aio_nr; /* current system wide number of aio requests */ 48 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 49 /*----end sysctl variables---*/ 50 51 static struct kmem_cache *kiocb_cachep; 52 static struct kmem_cache *kioctx_cachep; 53 54 static struct workqueue_struct *aio_wq; 55 56 /* Used for rare fput completion. */ 57 static void aio_fput_routine(struct work_struct *); 58 static DECLARE_WORK(fput_work, aio_fput_routine); 59 60 static DEFINE_SPINLOCK(fput_lock); 61 static LIST_HEAD(fput_head); 62 63 static void aio_kick_handler(struct work_struct *); 64 static void aio_queue_work(struct kioctx *); 65 66 /* aio_setup 67 * Creates the slab caches used by the aio routines, panic on 68 * failure as this is done early during the boot sequence. 69 */ 70 static int __init aio_setup(void) 71 { 72 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 73 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 74 75 aio_wq = create_workqueue("aio"); 76 77 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 78 79 return 0; 80 } 81 82 static void aio_free_ring(struct kioctx *ctx) 83 { 84 struct aio_ring_info *info = &ctx->ring_info; 85 long i; 86 87 for (i=0; i<info->nr_pages; i++) 88 put_page(info->ring_pages[i]); 89 90 if (info->mmap_size) { 91 down_write(&ctx->mm->mmap_sem); 92 do_munmap(ctx->mm, info->mmap_base, info->mmap_size); 93 up_write(&ctx->mm->mmap_sem); 94 } 95 96 if (info->ring_pages && info->ring_pages != info->internal_pages) 97 kfree(info->ring_pages); 98 info->ring_pages = NULL; 99 info->nr = 0; 100 } 101 102 static int aio_setup_ring(struct kioctx *ctx) 103 { 104 struct aio_ring *ring; 105 struct aio_ring_info *info = &ctx->ring_info; 106 unsigned nr_events = ctx->max_reqs; 107 unsigned long size; 108 int nr_pages; 109 110 /* Compensate for the ring buffer's head/tail overlap entry */ 111 nr_events += 2; /* 1 is required, 2 for good luck */ 112 113 size = sizeof(struct aio_ring); 114 size += sizeof(struct io_event) * nr_events; 115 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 116 117 if (nr_pages < 0) 118 return -EINVAL; 119 120 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 121 122 info->nr = 0; 123 info->ring_pages = info->internal_pages; 124 if (nr_pages > AIO_RING_PAGES) { 125 info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); 126 if (!info->ring_pages) 127 return -ENOMEM; 128 } 129 130 info->mmap_size = nr_pages * PAGE_SIZE; 131 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 132 down_write(&ctx->mm->mmap_sem); 133 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 134 PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, 135 0); 136 if (IS_ERR((void *)info->mmap_base)) { 137 up_write(&ctx->mm->mmap_sem); 138 info->mmap_size = 0; 139 aio_free_ring(ctx); 140 return -EAGAIN; 141 } 142 143 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 144 info->nr_pages = get_user_pages(current, ctx->mm, 145 info->mmap_base, nr_pages, 146 1, 0, info->ring_pages, NULL); 147 up_write(&ctx->mm->mmap_sem); 148 149 if (unlikely(info->nr_pages != nr_pages)) { 150 aio_free_ring(ctx); 151 return -EAGAIN; 152 } 153 154 ctx->user_id = info->mmap_base; 155 156 info->nr = nr_events; /* trusted copy */ 157 158 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 159 ring->nr = nr_events; /* user copy */ 160 ring->id = ctx->user_id; 161 ring->head = ring->tail = 0; 162 ring->magic = AIO_RING_MAGIC; 163 ring->compat_features = AIO_RING_COMPAT_FEATURES; 164 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 165 ring->header_length = sizeof(struct aio_ring); 166 kunmap_atomic(ring, KM_USER0); 167 168 return 0; 169 } 170 171 172 /* aio_ring_event: returns a pointer to the event at the given index from 173 * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); 174 */ 175 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 176 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 177 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 178 179 #define aio_ring_event(info, nr, km) ({ \ 180 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 181 struct io_event *__event; \ 182 __event = kmap_atomic( \ 183 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ 184 __event += pos % AIO_EVENTS_PER_PAGE; \ 185 __event; \ 186 }) 187 188 #define put_aio_ring_event(event, km) do { \ 189 struct io_event *__event = (event); \ 190 (void)__event; \ 191 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ 192 } while(0) 193 194 static void ctx_rcu_free(struct rcu_head *head) 195 { 196 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 197 unsigned nr_events = ctx->max_reqs; 198 199 kmem_cache_free(kioctx_cachep, ctx); 200 201 if (nr_events) { 202 spin_lock(&aio_nr_lock); 203 BUG_ON(aio_nr - nr_events > aio_nr); 204 aio_nr -= nr_events; 205 spin_unlock(&aio_nr_lock); 206 } 207 } 208 209 /* __put_ioctx 210 * Called when the last user of an aio context has gone away, 211 * and the struct needs to be freed. 212 */ 213 static void __put_ioctx(struct kioctx *ctx) 214 { 215 BUG_ON(ctx->reqs_active); 216 217 cancel_delayed_work(&ctx->wq); 218 cancel_work_sync(&ctx->wq.work); 219 aio_free_ring(ctx); 220 mmdrop(ctx->mm); 221 ctx->mm = NULL; 222 pr_debug("__put_ioctx: freeing %p\n", ctx); 223 call_rcu(&ctx->rcu_head, ctx_rcu_free); 224 } 225 226 #define get_ioctx(kioctx) do { \ 227 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ 228 atomic_inc(&(kioctx)->users); \ 229 } while (0) 230 #define put_ioctx(kioctx) do { \ 231 BUG_ON(atomic_read(&(kioctx)->users) <= 0); \ 232 if (unlikely(atomic_dec_and_test(&(kioctx)->users))) \ 233 __put_ioctx(kioctx); \ 234 } while (0) 235 236 /* ioctx_alloc 237 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 238 */ 239 static struct kioctx *ioctx_alloc(unsigned nr_events) 240 { 241 struct mm_struct *mm; 242 struct kioctx *ctx; 243 int did_sync = 0; 244 245 /* Prevent overflows */ 246 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 247 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 248 pr_debug("ENOMEM: nr_events too high\n"); 249 return ERR_PTR(-EINVAL); 250 } 251 252 if ((unsigned long)nr_events > aio_max_nr) 253 return ERR_PTR(-EAGAIN); 254 255 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 256 if (!ctx) 257 return ERR_PTR(-ENOMEM); 258 259 ctx->max_reqs = nr_events; 260 mm = ctx->mm = current->mm; 261 atomic_inc(&mm->mm_count); 262 263 atomic_set(&ctx->users, 1); 264 spin_lock_init(&ctx->ctx_lock); 265 spin_lock_init(&ctx->ring_info.ring_lock); 266 init_waitqueue_head(&ctx->wait); 267 268 INIT_LIST_HEAD(&ctx->active_reqs); 269 INIT_LIST_HEAD(&ctx->run_list); 270 INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler); 271 272 if (aio_setup_ring(ctx) < 0) 273 goto out_freectx; 274 275 /* limit the number of system wide aios */ 276 do { 277 spin_lock_bh(&aio_nr_lock); 278 if (aio_nr + nr_events > aio_max_nr || 279 aio_nr + nr_events < aio_nr) 280 ctx->max_reqs = 0; 281 else 282 aio_nr += ctx->max_reqs; 283 spin_unlock_bh(&aio_nr_lock); 284 if (ctx->max_reqs || did_sync) 285 break; 286 287 /* wait for rcu callbacks to have completed before giving up */ 288 synchronize_rcu(); 289 did_sync = 1; 290 ctx->max_reqs = nr_events; 291 } while (1); 292 293 if (ctx->max_reqs == 0) 294 goto out_cleanup; 295 296 /* now link into global list. */ 297 spin_lock(&mm->ioctx_lock); 298 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); 299 spin_unlock(&mm->ioctx_lock); 300 301 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 302 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 303 return ctx; 304 305 out_cleanup: 306 __put_ioctx(ctx); 307 return ERR_PTR(-EAGAIN); 308 309 out_freectx: 310 mmdrop(mm); 311 kmem_cache_free(kioctx_cachep, ctx); 312 ctx = ERR_PTR(-ENOMEM); 313 314 dprintk("aio: error allocating ioctx %p\n", ctx); 315 return ctx; 316 } 317 318 /* aio_cancel_all 319 * Cancels all outstanding aio requests on an aio context. Used 320 * when the processes owning a context have all exited to encourage 321 * the rapid destruction of the kioctx. 322 */ 323 static void aio_cancel_all(struct kioctx *ctx) 324 { 325 int (*cancel)(struct kiocb *, struct io_event *); 326 struct io_event res; 327 spin_lock_irq(&ctx->ctx_lock); 328 ctx->dead = 1; 329 while (!list_empty(&ctx->active_reqs)) { 330 struct list_head *pos = ctx->active_reqs.next; 331 struct kiocb *iocb = list_kiocb(pos); 332 list_del_init(&iocb->ki_list); 333 cancel = iocb->ki_cancel; 334 kiocbSetCancelled(iocb); 335 if (cancel) { 336 iocb->ki_users++; 337 spin_unlock_irq(&ctx->ctx_lock); 338 cancel(iocb, &res); 339 spin_lock_irq(&ctx->ctx_lock); 340 } 341 } 342 spin_unlock_irq(&ctx->ctx_lock); 343 } 344 345 static void wait_for_all_aios(struct kioctx *ctx) 346 { 347 struct task_struct *tsk = current; 348 DECLARE_WAITQUEUE(wait, tsk); 349 350 spin_lock_irq(&ctx->ctx_lock); 351 if (!ctx->reqs_active) 352 goto out; 353 354 add_wait_queue(&ctx->wait, &wait); 355 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 356 while (ctx->reqs_active) { 357 spin_unlock_irq(&ctx->ctx_lock); 358 io_schedule(); 359 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 360 spin_lock_irq(&ctx->ctx_lock); 361 } 362 __set_task_state(tsk, TASK_RUNNING); 363 remove_wait_queue(&ctx->wait, &wait); 364 365 out: 366 spin_unlock_irq(&ctx->ctx_lock); 367 } 368 369 /* wait_on_sync_kiocb: 370 * Waits on the given sync kiocb to complete. 371 */ 372 ssize_t wait_on_sync_kiocb(struct kiocb *iocb) 373 { 374 while (iocb->ki_users) { 375 set_current_state(TASK_UNINTERRUPTIBLE); 376 if (!iocb->ki_users) 377 break; 378 io_schedule(); 379 } 380 __set_current_state(TASK_RUNNING); 381 return iocb->ki_user_data; 382 } 383 384 /* exit_aio: called when the last user of mm goes away. At this point, 385 * there is no way for any new requests to be submited or any of the 386 * io_* syscalls to be called on the context. However, there may be 387 * outstanding requests which hold references to the context; as they 388 * go away, they will call put_ioctx and release any pinned memory 389 * associated with the request (held via struct page * references). 390 */ 391 void exit_aio(struct mm_struct *mm) 392 { 393 struct kioctx *ctx; 394 395 while (!hlist_empty(&mm->ioctx_list)) { 396 ctx = hlist_entry(mm->ioctx_list.first, struct kioctx, list); 397 hlist_del_rcu(&ctx->list); 398 399 aio_cancel_all(ctx); 400 401 wait_for_all_aios(ctx); 402 /* 403 * Ensure we don't leave the ctx on the aio_wq 404 */ 405 cancel_work_sync(&ctx->wq.work); 406 407 if (1 != atomic_read(&ctx->users)) 408 printk(KERN_DEBUG 409 "exit_aio:ioctx still alive: %d %d %d\n", 410 atomic_read(&ctx->users), ctx->dead, 411 ctx->reqs_active); 412 put_ioctx(ctx); 413 } 414 } 415 416 /* aio_get_req 417 * Allocate a slot for an aio request. Increments the users count 418 * of the kioctx so that the kioctx stays around until all requests are 419 * complete. Returns NULL if no requests are free. 420 * 421 * Returns with kiocb->users set to 2. The io submit code path holds 422 * an extra reference while submitting the i/o. 423 * This prevents races between the aio code path referencing the 424 * req (after submitting it) and aio_complete() freeing the req. 425 */ 426 static struct kiocb *__aio_get_req(struct kioctx *ctx) 427 { 428 struct kiocb *req = NULL; 429 struct aio_ring *ring; 430 int okay = 0; 431 432 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 433 if (unlikely(!req)) 434 return NULL; 435 436 req->ki_flags = 0; 437 req->ki_users = 2; 438 req->ki_key = 0; 439 req->ki_ctx = ctx; 440 req->ki_cancel = NULL; 441 req->ki_retry = NULL; 442 req->ki_dtor = NULL; 443 req->private = NULL; 444 req->ki_iovec = NULL; 445 INIT_LIST_HEAD(&req->ki_run_list); 446 req->ki_eventfd = ERR_PTR(-EINVAL); 447 448 /* Check if the completion queue has enough free space to 449 * accept an event from this io. 450 */ 451 spin_lock_irq(&ctx->ctx_lock); 452 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); 453 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { 454 list_add(&req->ki_list, &ctx->active_reqs); 455 ctx->reqs_active++; 456 okay = 1; 457 } 458 kunmap_atomic(ring, KM_USER0); 459 spin_unlock_irq(&ctx->ctx_lock); 460 461 if (!okay) { 462 kmem_cache_free(kiocb_cachep, req); 463 req = NULL; 464 } 465 466 return req; 467 } 468 469 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 470 { 471 struct kiocb *req; 472 /* Handle a potential starvation case -- should be exceedingly rare as 473 * requests will be stuck on fput_head only if the aio_fput_routine is 474 * delayed and the requests were the last user of the struct file. 475 */ 476 req = __aio_get_req(ctx); 477 if (unlikely(NULL == req)) { 478 aio_fput_routine(NULL); 479 req = __aio_get_req(ctx); 480 } 481 return req; 482 } 483 484 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 485 { 486 assert_spin_locked(&ctx->ctx_lock); 487 488 if (!IS_ERR(req->ki_eventfd)) 489 fput(req->ki_eventfd); 490 if (req->ki_dtor) 491 req->ki_dtor(req); 492 if (req->ki_iovec != &req->ki_inline_vec) 493 kfree(req->ki_iovec); 494 kmem_cache_free(kiocb_cachep, req); 495 ctx->reqs_active--; 496 497 if (unlikely(!ctx->reqs_active && ctx->dead)) 498 wake_up(&ctx->wait); 499 } 500 501 static void aio_fput_routine(struct work_struct *data) 502 { 503 spin_lock_irq(&fput_lock); 504 while (likely(!list_empty(&fput_head))) { 505 struct kiocb *req = list_kiocb(fput_head.next); 506 struct kioctx *ctx = req->ki_ctx; 507 508 list_del(&req->ki_list); 509 spin_unlock_irq(&fput_lock); 510 511 /* Complete the fput */ 512 __fput(req->ki_filp); 513 514 /* Link the iocb into the context's free list */ 515 spin_lock_irq(&ctx->ctx_lock); 516 really_put_req(ctx, req); 517 spin_unlock_irq(&ctx->ctx_lock); 518 519 put_ioctx(ctx); 520 spin_lock_irq(&fput_lock); 521 } 522 spin_unlock_irq(&fput_lock); 523 } 524 525 /* __aio_put_req 526 * Returns true if this put was the last user of the request. 527 */ 528 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 529 { 530 dprintk(KERN_DEBUG "aio_put(%p): f_count=%ld\n", 531 req, atomic_long_read(&req->ki_filp->f_count)); 532 533 assert_spin_locked(&ctx->ctx_lock); 534 535 req->ki_users --; 536 BUG_ON(req->ki_users < 0); 537 if (likely(req->ki_users)) 538 return 0; 539 list_del(&req->ki_list); /* remove from active_reqs */ 540 req->ki_cancel = NULL; 541 req->ki_retry = NULL; 542 543 /* Must be done under the lock to serialise against cancellation. 544 * Call this aio_fput as it duplicates fput via the fput_work. 545 */ 546 if (unlikely(atomic_long_dec_and_test(&req->ki_filp->f_count))) { 547 get_ioctx(ctx); 548 spin_lock(&fput_lock); 549 list_add(&req->ki_list, &fput_head); 550 spin_unlock(&fput_lock); 551 queue_work(aio_wq, &fput_work); 552 } else 553 really_put_req(ctx, req); 554 return 1; 555 } 556 557 /* aio_put_req 558 * Returns true if this put was the last user of the kiocb, 559 * false if the request is still in use. 560 */ 561 int aio_put_req(struct kiocb *req) 562 { 563 struct kioctx *ctx = req->ki_ctx; 564 int ret; 565 spin_lock_irq(&ctx->ctx_lock); 566 ret = __aio_put_req(ctx, req); 567 spin_unlock_irq(&ctx->ctx_lock); 568 return ret; 569 } 570 571 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 572 { 573 struct mm_struct *mm = current->mm; 574 struct kioctx *ctx = NULL; 575 struct hlist_node *n; 576 577 rcu_read_lock(); 578 579 hlist_for_each_entry_rcu(ctx, n, &mm->ioctx_list, list) { 580 if (ctx->user_id == ctx_id && !ctx->dead) { 581 get_ioctx(ctx); 582 break; 583 } 584 } 585 586 rcu_read_unlock(); 587 return ctx; 588 } 589 590 /* 591 * use_mm 592 * Makes the calling kernel thread take on the specified 593 * mm context. 594 * Called by the retry thread execute retries within the 595 * iocb issuer's mm context, so that copy_from/to_user 596 * operations work seamlessly for aio. 597 * (Note: this routine is intended to be called only 598 * from a kernel thread context) 599 */ 600 static void use_mm(struct mm_struct *mm) 601 { 602 struct mm_struct *active_mm; 603 struct task_struct *tsk = current; 604 605 task_lock(tsk); 606 active_mm = tsk->active_mm; 607 atomic_inc(&mm->mm_count); 608 tsk->mm = mm; 609 tsk->active_mm = mm; 610 switch_mm(active_mm, mm, tsk); 611 task_unlock(tsk); 612 613 mmdrop(active_mm); 614 } 615 616 /* 617 * unuse_mm 618 * Reverses the effect of use_mm, i.e. releases the 619 * specified mm context which was earlier taken on 620 * by the calling kernel thread 621 * (Note: this routine is intended to be called only 622 * from a kernel thread context) 623 */ 624 static void unuse_mm(struct mm_struct *mm) 625 { 626 struct task_struct *tsk = current; 627 628 task_lock(tsk); 629 tsk->mm = NULL; 630 /* active_mm is still 'mm' */ 631 enter_lazy_tlb(mm, tsk); 632 task_unlock(tsk); 633 } 634 635 /* 636 * Queue up a kiocb to be retried. Assumes that the kiocb 637 * has already been marked as kicked, and places it on 638 * the retry run list for the corresponding ioctx, if it 639 * isn't already queued. Returns 1 if it actually queued 640 * the kiocb (to tell the caller to activate the work 641 * queue to process it), or 0, if it found that it was 642 * already queued. 643 */ 644 static inline int __queue_kicked_iocb(struct kiocb *iocb) 645 { 646 struct kioctx *ctx = iocb->ki_ctx; 647 648 assert_spin_locked(&ctx->ctx_lock); 649 650 if (list_empty(&iocb->ki_run_list)) { 651 list_add_tail(&iocb->ki_run_list, 652 &ctx->run_list); 653 return 1; 654 } 655 return 0; 656 } 657 658 /* aio_run_iocb 659 * This is the core aio execution routine. It is 660 * invoked both for initial i/o submission and 661 * subsequent retries via the aio_kick_handler. 662 * Expects to be invoked with iocb->ki_ctx->lock 663 * already held. The lock is released and reacquired 664 * as needed during processing. 665 * 666 * Calls the iocb retry method (already setup for the 667 * iocb on initial submission) for operation specific 668 * handling, but takes care of most of common retry 669 * execution details for a given iocb. The retry method 670 * needs to be non-blocking as far as possible, to avoid 671 * holding up other iocbs waiting to be serviced by the 672 * retry kernel thread. 673 * 674 * The trickier parts in this code have to do with 675 * ensuring that only one retry instance is in progress 676 * for a given iocb at any time. Providing that guarantee 677 * simplifies the coding of individual aio operations as 678 * it avoids various potential races. 679 */ 680 static ssize_t aio_run_iocb(struct kiocb *iocb) 681 { 682 struct kioctx *ctx = iocb->ki_ctx; 683 ssize_t (*retry)(struct kiocb *); 684 ssize_t ret; 685 686 if (!(retry = iocb->ki_retry)) { 687 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 688 return 0; 689 } 690 691 /* 692 * We don't want the next retry iteration for this 693 * operation to start until this one has returned and 694 * updated the iocb state. However, wait_queue functions 695 * can trigger a kick_iocb from interrupt context in the 696 * meantime, indicating that data is available for the next 697 * iteration. We want to remember that and enable the 698 * next retry iteration _after_ we are through with 699 * this one. 700 * 701 * So, in order to be able to register a "kick", but 702 * prevent it from being queued now, we clear the kick 703 * flag, but make the kick code *think* that the iocb is 704 * still on the run list until we are actually done. 705 * When we are done with this iteration, we check if 706 * the iocb was kicked in the meantime and if so, queue 707 * it up afresh. 708 */ 709 710 kiocbClearKicked(iocb); 711 712 /* 713 * This is so that aio_complete knows it doesn't need to 714 * pull the iocb off the run list (We can't just call 715 * INIT_LIST_HEAD because we don't want a kick_iocb to 716 * queue this on the run list yet) 717 */ 718 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 719 spin_unlock_irq(&ctx->ctx_lock); 720 721 /* Quit retrying if the i/o has been cancelled */ 722 if (kiocbIsCancelled(iocb)) { 723 ret = -EINTR; 724 aio_complete(iocb, ret, 0); 725 /* must not access the iocb after this */ 726 goto out; 727 } 728 729 /* 730 * Now we are all set to call the retry method in async 731 * context. 732 */ 733 ret = retry(iocb); 734 735 if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) { 736 BUG_ON(!list_empty(&iocb->ki_wait.task_list)); 737 aio_complete(iocb, ret, 0); 738 } 739 out: 740 spin_lock_irq(&ctx->ctx_lock); 741 742 if (-EIOCBRETRY == ret) { 743 /* 744 * OK, now that we are done with this iteration 745 * and know that there is more left to go, 746 * this is where we let go so that a subsequent 747 * "kick" can start the next iteration 748 */ 749 750 /* will make __queue_kicked_iocb succeed from here on */ 751 INIT_LIST_HEAD(&iocb->ki_run_list); 752 /* we must queue the next iteration ourselves, if it 753 * has already been kicked */ 754 if (kiocbIsKicked(iocb)) { 755 __queue_kicked_iocb(iocb); 756 757 /* 758 * __queue_kicked_iocb will always return 1 here, because 759 * iocb->ki_run_list is empty at this point so it should 760 * be safe to unconditionally queue the context into the 761 * work queue. 762 */ 763 aio_queue_work(ctx); 764 } 765 } 766 return ret; 767 } 768 769 /* 770 * __aio_run_iocbs: 771 * Process all pending retries queued on the ioctx 772 * run list. 773 * Assumes it is operating within the aio issuer's mm 774 * context. 775 */ 776 static int __aio_run_iocbs(struct kioctx *ctx) 777 { 778 struct kiocb *iocb; 779 struct list_head run_list; 780 781 assert_spin_locked(&ctx->ctx_lock); 782 783 list_replace_init(&ctx->run_list, &run_list); 784 while (!list_empty(&run_list)) { 785 iocb = list_entry(run_list.next, struct kiocb, 786 ki_run_list); 787 list_del(&iocb->ki_run_list); 788 /* 789 * Hold an extra reference while retrying i/o. 790 */ 791 iocb->ki_users++; /* grab extra reference */ 792 aio_run_iocb(iocb); 793 __aio_put_req(ctx, iocb); 794 } 795 if (!list_empty(&ctx->run_list)) 796 return 1; 797 return 0; 798 } 799 800 static void aio_queue_work(struct kioctx * ctx) 801 { 802 unsigned long timeout; 803 /* 804 * if someone is waiting, get the work started right 805 * away, otherwise, use a longer delay 806 */ 807 smp_mb(); 808 if (waitqueue_active(&ctx->wait)) 809 timeout = 1; 810 else 811 timeout = HZ/10; 812 queue_delayed_work(aio_wq, &ctx->wq, timeout); 813 } 814 815 816 /* 817 * aio_run_iocbs: 818 * Process all pending retries queued on the ioctx 819 * run list. 820 * Assumes it is operating within the aio issuer's mm 821 * context. 822 */ 823 static inline void aio_run_iocbs(struct kioctx *ctx) 824 { 825 int requeue; 826 827 spin_lock_irq(&ctx->ctx_lock); 828 829 requeue = __aio_run_iocbs(ctx); 830 spin_unlock_irq(&ctx->ctx_lock); 831 if (requeue) 832 aio_queue_work(ctx); 833 } 834 835 /* 836 * just like aio_run_iocbs, but keeps running them until 837 * the list stays empty 838 */ 839 static inline void aio_run_all_iocbs(struct kioctx *ctx) 840 { 841 spin_lock_irq(&ctx->ctx_lock); 842 while (__aio_run_iocbs(ctx)) 843 ; 844 spin_unlock_irq(&ctx->ctx_lock); 845 } 846 847 /* 848 * aio_kick_handler: 849 * Work queue handler triggered to process pending 850 * retries on an ioctx. Takes on the aio issuer's 851 * mm context before running the iocbs, so that 852 * copy_xxx_user operates on the issuer's address 853 * space. 854 * Run on aiod's context. 855 */ 856 static void aio_kick_handler(struct work_struct *work) 857 { 858 struct kioctx *ctx = container_of(work, struct kioctx, wq.work); 859 mm_segment_t oldfs = get_fs(); 860 struct mm_struct *mm; 861 int requeue; 862 863 set_fs(USER_DS); 864 use_mm(ctx->mm); 865 spin_lock_irq(&ctx->ctx_lock); 866 requeue =__aio_run_iocbs(ctx); 867 mm = ctx->mm; 868 spin_unlock_irq(&ctx->ctx_lock); 869 unuse_mm(mm); 870 set_fs(oldfs); 871 /* 872 * we're in a worker thread already, don't use queue_delayed_work, 873 */ 874 if (requeue) 875 queue_delayed_work(aio_wq, &ctx->wq, 0); 876 } 877 878 879 /* 880 * Called by kick_iocb to queue the kiocb for retry 881 * and if required activate the aio work queue to process 882 * it 883 */ 884 static void try_queue_kicked_iocb(struct kiocb *iocb) 885 { 886 struct kioctx *ctx = iocb->ki_ctx; 887 unsigned long flags; 888 int run = 0; 889 890 /* We're supposed to be the only path putting the iocb back on the run 891 * list. If we find that the iocb is *back* on a wait queue already 892 * than retry has happened before we could queue the iocb. This also 893 * means that the retry could have completed and freed our iocb, no 894 * good. */ 895 BUG_ON((!list_empty(&iocb->ki_wait.task_list))); 896 897 spin_lock_irqsave(&ctx->ctx_lock, flags); 898 /* set this inside the lock so that we can't race with aio_run_iocb() 899 * testing it and putting the iocb on the run list under the lock */ 900 if (!kiocbTryKick(iocb)) 901 run = __queue_kicked_iocb(iocb); 902 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 903 if (run) 904 aio_queue_work(ctx); 905 } 906 907 /* 908 * kick_iocb: 909 * Called typically from a wait queue callback context 910 * (aio_wake_function) to trigger a retry of the iocb. 911 * The retry is usually executed by aio workqueue 912 * threads (See aio_kick_handler). 913 */ 914 void kick_iocb(struct kiocb *iocb) 915 { 916 /* sync iocbs are easy: they can only ever be executing from a 917 * single context. */ 918 if (is_sync_kiocb(iocb)) { 919 kiocbSetKicked(iocb); 920 wake_up_process(iocb->ki_obj.tsk); 921 return; 922 } 923 924 try_queue_kicked_iocb(iocb); 925 } 926 EXPORT_SYMBOL(kick_iocb); 927 928 /* aio_complete 929 * Called when the io request on the given iocb is complete. 930 * Returns true if this is the last user of the request. The 931 * only other user of the request can be the cancellation code. 932 */ 933 int aio_complete(struct kiocb *iocb, long res, long res2) 934 { 935 struct kioctx *ctx = iocb->ki_ctx; 936 struct aio_ring_info *info; 937 struct aio_ring *ring; 938 struct io_event *event; 939 unsigned long flags; 940 unsigned long tail; 941 int ret; 942 943 /* 944 * Special case handling for sync iocbs: 945 * - events go directly into the iocb for fast handling 946 * - the sync task with the iocb in its stack holds the single iocb 947 * ref, no other paths have a way to get another ref 948 * - the sync task helpfully left a reference to itself in the iocb 949 */ 950 if (is_sync_kiocb(iocb)) { 951 BUG_ON(iocb->ki_users != 1); 952 iocb->ki_user_data = res; 953 iocb->ki_users = 0; 954 wake_up_process(iocb->ki_obj.tsk); 955 return 1; 956 } 957 958 info = &ctx->ring_info; 959 960 /* add a completion event to the ring buffer. 961 * must be done holding ctx->ctx_lock to prevent 962 * other code from messing with the tail 963 * pointer since we might be called from irq 964 * context. 965 */ 966 spin_lock_irqsave(&ctx->ctx_lock, flags); 967 968 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 969 list_del_init(&iocb->ki_run_list); 970 971 /* 972 * cancelled requests don't get events, userland was given one 973 * when the event got cancelled. 974 */ 975 if (kiocbIsCancelled(iocb)) 976 goto put_rq; 977 978 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); 979 980 tail = info->tail; 981 event = aio_ring_event(info, tail, KM_IRQ0); 982 if (++tail >= info->nr) 983 tail = 0; 984 985 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 986 event->data = iocb->ki_user_data; 987 event->res = res; 988 event->res2 = res2; 989 990 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 991 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 992 res, res2); 993 994 /* after flagging the request as done, we 995 * must never even look at it again 996 */ 997 smp_wmb(); /* make event visible before updating tail */ 998 999 info->tail = tail; 1000 ring->tail = tail; 1001 1002 put_aio_ring_event(event, KM_IRQ0); 1003 kunmap_atomic(ring, KM_IRQ1); 1004 1005 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 1006 1007 /* 1008 * Check if the user asked us to deliver the result through an 1009 * eventfd. The eventfd_signal() function is safe to be called 1010 * from IRQ context. 1011 */ 1012 if (!IS_ERR(iocb->ki_eventfd)) 1013 eventfd_signal(iocb->ki_eventfd, 1); 1014 1015 put_rq: 1016 /* everything turned out well, dispose of the aiocb. */ 1017 ret = __aio_put_req(ctx, iocb); 1018 1019 /* 1020 * We have to order our ring_info tail store above and test 1021 * of the wait list below outside the wait lock. This is 1022 * like in wake_up_bit() where clearing a bit has to be 1023 * ordered with the unlocked test. 1024 */ 1025 smp_mb(); 1026 1027 if (waitqueue_active(&ctx->wait)) 1028 wake_up(&ctx->wait); 1029 1030 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1031 return ret; 1032 } 1033 1034 /* aio_read_evt 1035 * Pull an event off of the ioctx's event ring. Returns the number of 1036 * events fetched (0 or 1 ;-) 1037 * FIXME: make this use cmpxchg. 1038 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1039 */ 1040 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1041 { 1042 struct aio_ring_info *info = &ioctx->ring_info; 1043 struct aio_ring *ring; 1044 unsigned long head; 1045 int ret = 0; 1046 1047 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 1048 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1049 (unsigned long)ring->head, (unsigned long)ring->tail, 1050 (unsigned long)ring->nr); 1051 1052 if (ring->head == ring->tail) 1053 goto out; 1054 1055 spin_lock(&info->ring_lock); 1056 1057 head = ring->head % info->nr; 1058 if (head != ring->tail) { 1059 struct io_event *evp = aio_ring_event(info, head, KM_USER1); 1060 *ent = *evp; 1061 head = (head + 1) % info->nr; 1062 smp_mb(); /* finish reading the event before updatng the head */ 1063 ring->head = head; 1064 ret = 1; 1065 put_aio_ring_event(evp, KM_USER1); 1066 } 1067 spin_unlock(&info->ring_lock); 1068 1069 out: 1070 kunmap_atomic(ring, KM_USER0); 1071 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1072 (unsigned long)ring->head, (unsigned long)ring->tail); 1073 return ret; 1074 } 1075 1076 struct aio_timeout { 1077 struct timer_list timer; 1078 int timed_out; 1079 struct task_struct *p; 1080 }; 1081 1082 static void timeout_func(unsigned long data) 1083 { 1084 struct aio_timeout *to = (struct aio_timeout *)data; 1085 1086 to->timed_out = 1; 1087 wake_up_process(to->p); 1088 } 1089 1090 static inline void init_timeout(struct aio_timeout *to) 1091 { 1092 setup_timer_on_stack(&to->timer, timeout_func, (unsigned long) to); 1093 to->timed_out = 0; 1094 to->p = current; 1095 } 1096 1097 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1098 const struct timespec *ts) 1099 { 1100 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1101 if (time_after(to->timer.expires, jiffies)) 1102 add_timer(&to->timer); 1103 else 1104 to->timed_out = 1; 1105 } 1106 1107 static inline void clear_timeout(struct aio_timeout *to) 1108 { 1109 del_singleshot_timer_sync(&to->timer); 1110 } 1111 1112 static int read_events(struct kioctx *ctx, 1113 long min_nr, long nr, 1114 struct io_event __user *event, 1115 struct timespec __user *timeout) 1116 { 1117 long start_jiffies = jiffies; 1118 struct task_struct *tsk = current; 1119 DECLARE_WAITQUEUE(wait, tsk); 1120 int ret; 1121 int i = 0; 1122 struct io_event ent; 1123 struct aio_timeout to; 1124 int retry = 0; 1125 1126 /* needed to zero any padding within an entry (there shouldn't be 1127 * any, but C is fun! 1128 */ 1129 memset(&ent, 0, sizeof(ent)); 1130 retry: 1131 ret = 0; 1132 while (likely(i < nr)) { 1133 ret = aio_read_evt(ctx, &ent); 1134 if (unlikely(ret <= 0)) 1135 break; 1136 1137 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1138 ent.data, ent.obj, ent.res, ent.res2); 1139 1140 /* Could we split the check in two? */ 1141 ret = -EFAULT; 1142 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1143 dprintk("aio: lost an event due to EFAULT.\n"); 1144 break; 1145 } 1146 ret = 0; 1147 1148 /* Good, event copied to userland, update counts. */ 1149 event ++; 1150 i ++; 1151 } 1152 1153 if (min_nr <= i) 1154 return i; 1155 if (ret) 1156 return ret; 1157 1158 /* End fast path */ 1159 1160 /* racey check, but it gets redone */ 1161 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1162 retry = 1; 1163 aio_run_all_iocbs(ctx); 1164 goto retry; 1165 } 1166 1167 init_timeout(&to); 1168 if (timeout) { 1169 struct timespec ts; 1170 ret = -EFAULT; 1171 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1172 goto out; 1173 1174 set_timeout(start_jiffies, &to, &ts); 1175 } 1176 1177 while (likely(i < nr)) { 1178 add_wait_queue_exclusive(&ctx->wait, &wait); 1179 do { 1180 set_task_state(tsk, TASK_INTERRUPTIBLE); 1181 ret = aio_read_evt(ctx, &ent); 1182 if (ret) 1183 break; 1184 if (min_nr <= i) 1185 break; 1186 if (unlikely(ctx->dead)) { 1187 ret = -EINVAL; 1188 break; 1189 } 1190 if (to.timed_out) /* Only check after read evt */ 1191 break; 1192 /* Try to only show up in io wait if there are ops 1193 * in flight */ 1194 if (ctx->reqs_active) 1195 io_schedule(); 1196 else 1197 schedule(); 1198 if (signal_pending(tsk)) { 1199 ret = -EINTR; 1200 break; 1201 } 1202 /*ret = aio_read_evt(ctx, &ent);*/ 1203 } while (1) ; 1204 1205 set_task_state(tsk, TASK_RUNNING); 1206 remove_wait_queue(&ctx->wait, &wait); 1207 1208 if (unlikely(ret <= 0)) 1209 break; 1210 1211 ret = -EFAULT; 1212 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1213 dprintk("aio: lost an event due to EFAULT.\n"); 1214 break; 1215 } 1216 1217 /* Good, event copied to userland, update counts. */ 1218 event ++; 1219 i ++; 1220 } 1221 1222 if (timeout) 1223 clear_timeout(&to); 1224 out: 1225 destroy_timer_on_stack(&to.timer); 1226 return i ? i : ret; 1227 } 1228 1229 /* Take an ioctx and remove it from the list of ioctx's. Protects 1230 * against races with itself via ->dead. 1231 */ 1232 static void io_destroy(struct kioctx *ioctx) 1233 { 1234 struct mm_struct *mm = current->mm; 1235 int was_dead; 1236 1237 /* delete the entry from the list is someone else hasn't already */ 1238 spin_lock(&mm->ioctx_lock); 1239 was_dead = ioctx->dead; 1240 ioctx->dead = 1; 1241 hlist_del_rcu(&ioctx->list); 1242 spin_unlock(&mm->ioctx_lock); 1243 1244 dprintk("aio_release(%p)\n", ioctx); 1245 if (likely(!was_dead)) 1246 put_ioctx(ioctx); /* twice for the list */ 1247 1248 aio_cancel_all(ioctx); 1249 wait_for_all_aios(ioctx); 1250 1251 /* 1252 * Wake up any waiters. The setting of ctx->dead must be seen 1253 * by other CPUs at this point. Right now, we rely on the 1254 * locking done by the above calls to ensure this consistency. 1255 */ 1256 wake_up(&ioctx->wait); 1257 put_ioctx(ioctx); /* once for the lookup */ 1258 } 1259 1260 /* sys_io_setup: 1261 * Create an aio_context capable of receiving at least nr_events. 1262 * ctxp must not point to an aio_context that already exists, and 1263 * must be initialized to 0 prior to the call. On successful 1264 * creation of the aio_context, *ctxp is filled in with the resulting 1265 * handle. May fail with -EINVAL if *ctxp is not initialized, 1266 * if the specified nr_events exceeds internal limits. May fail 1267 * with -EAGAIN if the specified nr_events exceeds the user's limit 1268 * of available events. May fail with -ENOMEM if insufficient kernel 1269 * resources are available. May fail with -EFAULT if an invalid 1270 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1271 * implemented. 1272 */ 1273 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp) 1274 { 1275 struct kioctx *ioctx = NULL; 1276 unsigned long ctx; 1277 long ret; 1278 1279 ret = get_user(ctx, ctxp); 1280 if (unlikely(ret)) 1281 goto out; 1282 1283 ret = -EINVAL; 1284 if (unlikely(ctx || nr_events == 0)) { 1285 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 1286 ctx, nr_events); 1287 goto out; 1288 } 1289 1290 ioctx = ioctx_alloc(nr_events); 1291 ret = PTR_ERR(ioctx); 1292 if (!IS_ERR(ioctx)) { 1293 ret = put_user(ioctx->user_id, ctxp); 1294 if (!ret) 1295 return 0; 1296 1297 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ 1298 io_destroy(ioctx); 1299 } 1300 1301 out: 1302 return ret; 1303 } 1304 1305 /* sys_io_destroy: 1306 * Destroy the aio_context specified. May cancel any outstanding 1307 * AIOs and block on completion. Will fail with -ENOSYS if not 1308 * implemented. May fail with -EFAULT if the context pointed to 1309 * is invalid. 1310 */ 1311 asmlinkage long sys_io_destroy(aio_context_t ctx) 1312 { 1313 struct kioctx *ioctx = lookup_ioctx(ctx); 1314 if (likely(NULL != ioctx)) { 1315 io_destroy(ioctx); 1316 return 0; 1317 } 1318 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1319 return -EINVAL; 1320 } 1321 1322 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret) 1323 { 1324 struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg]; 1325 1326 BUG_ON(ret <= 0); 1327 1328 while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) { 1329 ssize_t this = min((ssize_t)iov->iov_len, ret); 1330 iov->iov_base += this; 1331 iov->iov_len -= this; 1332 iocb->ki_left -= this; 1333 ret -= this; 1334 if (iov->iov_len == 0) { 1335 iocb->ki_cur_seg++; 1336 iov++; 1337 } 1338 } 1339 1340 /* the caller should not have done more io than what fit in 1341 * the remaining iovecs */ 1342 BUG_ON(ret > 0 && iocb->ki_left == 0); 1343 } 1344 1345 static ssize_t aio_rw_vect_retry(struct kiocb *iocb) 1346 { 1347 struct file *file = iocb->ki_filp; 1348 struct address_space *mapping = file->f_mapping; 1349 struct inode *inode = mapping->host; 1350 ssize_t (*rw_op)(struct kiocb *, const struct iovec *, 1351 unsigned long, loff_t); 1352 ssize_t ret = 0; 1353 unsigned short opcode; 1354 1355 if ((iocb->ki_opcode == IOCB_CMD_PREADV) || 1356 (iocb->ki_opcode == IOCB_CMD_PREAD)) { 1357 rw_op = file->f_op->aio_read; 1358 opcode = IOCB_CMD_PREADV; 1359 } else { 1360 rw_op = file->f_op->aio_write; 1361 opcode = IOCB_CMD_PWRITEV; 1362 } 1363 1364 /* This matches the pread()/pwrite() logic */ 1365 if (iocb->ki_pos < 0) 1366 return -EINVAL; 1367 1368 do { 1369 ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg], 1370 iocb->ki_nr_segs - iocb->ki_cur_seg, 1371 iocb->ki_pos); 1372 if (ret > 0) 1373 aio_advance_iovec(iocb, ret); 1374 1375 /* retry all partial writes. retry partial reads as long as its a 1376 * regular file. */ 1377 } while (ret > 0 && iocb->ki_left > 0 && 1378 (opcode == IOCB_CMD_PWRITEV || 1379 (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)))); 1380 1381 /* This means we must have transferred all that we could */ 1382 /* No need to retry anymore */ 1383 if ((ret == 0) || (iocb->ki_left == 0)) 1384 ret = iocb->ki_nbytes - iocb->ki_left; 1385 1386 /* If we managed to write some out we return that, rather than 1387 * the eventual error. */ 1388 if (opcode == IOCB_CMD_PWRITEV 1389 && ret < 0 && ret != -EIOCBQUEUED && ret != -EIOCBRETRY 1390 && iocb->ki_nbytes - iocb->ki_left) 1391 ret = iocb->ki_nbytes - iocb->ki_left; 1392 1393 return ret; 1394 } 1395 1396 static ssize_t aio_fdsync(struct kiocb *iocb) 1397 { 1398 struct file *file = iocb->ki_filp; 1399 ssize_t ret = -EINVAL; 1400 1401 if (file->f_op->aio_fsync) 1402 ret = file->f_op->aio_fsync(iocb, 1); 1403 return ret; 1404 } 1405 1406 static ssize_t aio_fsync(struct kiocb *iocb) 1407 { 1408 struct file *file = iocb->ki_filp; 1409 ssize_t ret = -EINVAL; 1410 1411 if (file->f_op->aio_fsync) 1412 ret = file->f_op->aio_fsync(iocb, 0); 1413 return ret; 1414 } 1415 1416 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb) 1417 { 1418 ssize_t ret; 1419 1420 ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf, 1421 kiocb->ki_nbytes, 1, 1422 &kiocb->ki_inline_vec, &kiocb->ki_iovec); 1423 if (ret < 0) 1424 goto out; 1425 1426 kiocb->ki_nr_segs = kiocb->ki_nbytes; 1427 kiocb->ki_cur_seg = 0; 1428 /* ki_nbytes/left now reflect bytes instead of segs */ 1429 kiocb->ki_nbytes = ret; 1430 kiocb->ki_left = ret; 1431 1432 ret = 0; 1433 out: 1434 return ret; 1435 } 1436 1437 static ssize_t aio_setup_single_vector(struct kiocb *kiocb) 1438 { 1439 kiocb->ki_iovec = &kiocb->ki_inline_vec; 1440 kiocb->ki_iovec->iov_base = kiocb->ki_buf; 1441 kiocb->ki_iovec->iov_len = kiocb->ki_left; 1442 kiocb->ki_nr_segs = 1; 1443 kiocb->ki_cur_seg = 0; 1444 return 0; 1445 } 1446 1447 /* 1448 * aio_setup_iocb: 1449 * Performs the initial checks and aio retry method 1450 * setup for the kiocb at the time of io submission. 1451 */ 1452 static ssize_t aio_setup_iocb(struct kiocb *kiocb) 1453 { 1454 struct file *file = kiocb->ki_filp; 1455 ssize_t ret = 0; 1456 1457 switch (kiocb->ki_opcode) { 1458 case IOCB_CMD_PREAD: 1459 ret = -EBADF; 1460 if (unlikely(!(file->f_mode & FMODE_READ))) 1461 break; 1462 ret = -EFAULT; 1463 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1464 kiocb->ki_left))) 1465 break; 1466 ret = security_file_permission(file, MAY_READ); 1467 if (unlikely(ret)) 1468 break; 1469 ret = aio_setup_single_vector(kiocb); 1470 if (ret) 1471 break; 1472 ret = -EINVAL; 1473 if (file->f_op->aio_read) 1474 kiocb->ki_retry = aio_rw_vect_retry; 1475 break; 1476 case IOCB_CMD_PWRITE: 1477 ret = -EBADF; 1478 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1479 break; 1480 ret = -EFAULT; 1481 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1482 kiocb->ki_left))) 1483 break; 1484 ret = security_file_permission(file, MAY_WRITE); 1485 if (unlikely(ret)) 1486 break; 1487 ret = aio_setup_single_vector(kiocb); 1488 if (ret) 1489 break; 1490 ret = -EINVAL; 1491 if (file->f_op->aio_write) 1492 kiocb->ki_retry = aio_rw_vect_retry; 1493 break; 1494 case IOCB_CMD_PREADV: 1495 ret = -EBADF; 1496 if (unlikely(!(file->f_mode & FMODE_READ))) 1497 break; 1498 ret = security_file_permission(file, MAY_READ); 1499 if (unlikely(ret)) 1500 break; 1501 ret = aio_setup_vectored_rw(READ, kiocb); 1502 if (ret) 1503 break; 1504 ret = -EINVAL; 1505 if (file->f_op->aio_read) 1506 kiocb->ki_retry = aio_rw_vect_retry; 1507 break; 1508 case IOCB_CMD_PWRITEV: 1509 ret = -EBADF; 1510 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1511 break; 1512 ret = security_file_permission(file, MAY_WRITE); 1513 if (unlikely(ret)) 1514 break; 1515 ret = aio_setup_vectored_rw(WRITE, kiocb); 1516 if (ret) 1517 break; 1518 ret = -EINVAL; 1519 if (file->f_op->aio_write) 1520 kiocb->ki_retry = aio_rw_vect_retry; 1521 break; 1522 case IOCB_CMD_FDSYNC: 1523 ret = -EINVAL; 1524 if (file->f_op->aio_fsync) 1525 kiocb->ki_retry = aio_fdsync; 1526 break; 1527 case IOCB_CMD_FSYNC: 1528 ret = -EINVAL; 1529 if (file->f_op->aio_fsync) 1530 kiocb->ki_retry = aio_fsync; 1531 break; 1532 default: 1533 dprintk("EINVAL: io_submit: no operation provided\n"); 1534 ret = -EINVAL; 1535 } 1536 1537 if (!kiocb->ki_retry) 1538 return ret; 1539 1540 return 0; 1541 } 1542 1543 /* 1544 * aio_wake_function: 1545 * wait queue callback function for aio notification, 1546 * Simply triggers a retry of the operation via kick_iocb. 1547 * 1548 * This callback is specified in the wait queue entry in 1549 * a kiocb. 1550 * 1551 * Note: 1552 * This routine is executed with the wait queue lock held. 1553 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests 1554 * the ioctx lock inside the wait queue lock. This is safe 1555 * because this callback isn't used for wait queues which 1556 * are nested inside ioctx lock (i.e. ctx->wait) 1557 */ 1558 static int aio_wake_function(wait_queue_t *wait, unsigned mode, 1559 int sync, void *key) 1560 { 1561 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait); 1562 1563 list_del_init(&wait->task_list); 1564 kick_iocb(iocb); 1565 return 1; 1566 } 1567 1568 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1569 struct iocb *iocb) 1570 { 1571 struct kiocb *req; 1572 struct file *file; 1573 ssize_t ret; 1574 1575 /* enforce forwards compatibility on users */ 1576 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1577 pr_debug("EINVAL: io_submit: reserve field set\n"); 1578 return -EINVAL; 1579 } 1580 1581 /* prevent overflows */ 1582 if (unlikely( 1583 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1584 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1585 ((ssize_t)iocb->aio_nbytes < 0) 1586 )) { 1587 pr_debug("EINVAL: io_submit: overflow check\n"); 1588 return -EINVAL; 1589 } 1590 1591 file = fget(iocb->aio_fildes); 1592 if (unlikely(!file)) 1593 return -EBADF; 1594 1595 req = aio_get_req(ctx); /* returns with 2 references to req */ 1596 if (unlikely(!req)) { 1597 fput(file); 1598 return -EAGAIN; 1599 } 1600 req->ki_filp = file; 1601 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1602 /* 1603 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1604 * instance of the file* now. The file descriptor must be 1605 * an eventfd() fd, and will be signaled for each completed 1606 * event using the eventfd_signal() function. 1607 */ 1608 req->ki_eventfd = eventfd_fget((int) iocb->aio_resfd); 1609 if (IS_ERR(req->ki_eventfd)) { 1610 ret = PTR_ERR(req->ki_eventfd); 1611 goto out_put_req; 1612 } 1613 } 1614 1615 ret = put_user(req->ki_key, &user_iocb->aio_key); 1616 if (unlikely(ret)) { 1617 dprintk("EFAULT: aio_key\n"); 1618 goto out_put_req; 1619 } 1620 1621 req->ki_obj.user = user_iocb; 1622 req->ki_user_data = iocb->aio_data; 1623 req->ki_pos = iocb->aio_offset; 1624 1625 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1626 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1627 req->ki_opcode = iocb->aio_lio_opcode; 1628 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function); 1629 INIT_LIST_HEAD(&req->ki_wait.task_list); 1630 1631 ret = aio_setup_iocb(req); 1632 1633 if (ret) 1634 goto out_put_req; 1635 1636 spin_lock_irq(&ctx->ctx_lock); 1637 aio_run_iocb(req); 1638 if (!list_empty(&ctx->run_list)) { 1639 /* drain the run list */ 1640 while (__aio_run_iocbs(ctx)) 1641 ; 1642 } 1643 spin_unlock_irq(&ctx->ctx_lock); 1644 aio_put_req(req); /* drop extra ref to req */ 1645 return 0; 1646 1647 out_put_req: 1648 aio_put_req(req); /* drop extra ref to req */ 1649 aio_put_req(req); /* drop i/o ref to req */ 1650 return ret; 1651 } 1652 1653 /* sys_io_submit: 1654 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1655 * the number of iocbs queued. May return -EINVAL if the aio_context 1656 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1657 * *iocbpp[0] is not properly initialized, if the operation specified 1658 * is invalid for the file descriptor in the iocb. May fail with 1659 * -EFAULT if any of the data structures point to invalid data. May 1660 * fail with -EBADF if the file descriptor specified in the first 1661 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1662 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1663 * fail with -ENOSYS if not implemented. 1664 */ 1665 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr, 1666 struct iocb __user * __user *iocbpp) 1667 { 1668 struct kioctx *ctx; 1669 long ret = 0; 1670 int i; 1671 1672 if (unlikely(nr < 0)) 1673 return -EINVAL; 1674 1675 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1676 return -EFAULT; 1677 1678 ctx = lookup_ioctx(ctx_id); 1679 if (unlikely(!ctx)) { 1680 pr_debug("EINVAL: io_submit: invalid context id\n"); 1681 return -EINVAL; 1682 } 1683 1684 /* 1685 * AKPM: should this return a partial result if some of the IOs were 1686 * successfully submitted? 1687 */ 1688 for (i=0; i<nr; i++) { 1689 struct iocb __user *user_iocb; 1690 struct iocb tmp; 1691 1692 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1693 ret = -EFAULT; 1694 break; 1695 } 1696 1697 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1698 ret = -EFAULT; 1699 break; 1700 } 1701 1702 ret = io_submit_one(ctx, user_iocb, &tmp); 1703 if (ret) 1704 break; 1705 } 1706 1707 put_ioctx(ctx); 1708 return i ? i : ret; 1709 } 1710 1711 /* lookup_kiocb 1712 * Finds a given iocb for cancellation. 1713 */ 1714 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1715 u32 key) 1716 { 1717 struct list_head *pos; 1718 1719 assert_spin_locked(&ctx->ctx_lock); 1720 1721 /* TODO: use a hash or array, this sucks. */ 1722 list_for_each(pos, &ctx->active_reqs) { 1723 struct kiocb *kiocb = list_kiocb(pos); 1724 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1725 return kiocb; 1726 } 1727 return NULL; 1728 } 1729 1730 /* sys_io_cancel: 1731 * Attempts to cancel an iocb previously passed to io_submit. If 1732 * the operation is successfully cancelled, the resulting event is 1733 * copied into the memory pointed to by result without being placed 1734 * into the completion queue and 0 is returned. May fail with 1735 * -EFAULT if any of the data structures pointed to are invalid. 1736 * May fail with -EINVAL if aio_context specified by ctx_id is 1737 * invalid. May fail with -EAGAIN if the iocb specified was not 1738 * cancelled. Will fail with -ENOSYS if not implemented. 1739 */ 1740 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb, 1741 struct io_event __user *result) 1742 { 1743 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1744 struct kioctx *ctx; 1745 struct kiocb *kiocb; 1746 u32 key; 1747 int ret; 1748 1749 ret = get_user(key, &iocb->aio_key); 1750 if (unlikely(ret)) 1751 return -EFAULT; 1752 1753 ctx = lookup_ioctx(ctx_id); 1754 if (unlikely(!ctx)) 1755 return -EINVAL; 1756 1757 spin_lock_irq(&ctx->ctx_lock); 1758 ret = -EAGAIN; 1759 kiocb = lookup_kiocb(ctx, iocb, key); 1760 if (kiocb && kiocb->ki_cancel) { 1761 cancel = kiocb->ki_cancel; 1762 kiocb->ki_users ++; 1763 kiocbSetCancelled(kiocb); 1764 } else 1765 cancel = NULL; 1766 spin_unlock_irq(&ctx->ctx_lock); 1767 1768 if (NULL != cancel) { 1769 struct io_event tmp; 1770 pr_debug("calling cancel\n"); 1771 memset(&tmp, 0, sizeof(tmp)); 1772 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1773 tmp.data = kiocb->ki_user_data; 1774 ret = cancel(kiocb, &tmp); 1775 if (!ret) { 1776 /* Cancellation succeeded -- copy the result 1777 * into the user's buffer. 1778 */ 1779 if (copy_to_user(result, &tmp, sizeof(tmp))) 1780 ret = -EFAULT; 1781 } 1782 } else 1783 ret = -EINVAL; 1784 1785 put_ioctx(ctx); 1786 1787 return ret; 1788 } 1789 1790 /* io_getevents: 1791 * Attempts to read at least min_nr events and up to nr events from 1792 * the completion queue for the aio_context specified by ctx_id. May 1793 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range, 1794 * if nr is out of range, if when is out of range. May fail with 1795 * -EFAULT if any of the memory specified to is invalid. May return 1796 * 0 or < min_nr if no events are available and the timeout specified 1797 * by when has elapsed, where when == NULL specifies an infinite 1798 * timeout. Note that the timeout pointed to by when is relative and 1799 * will be updated if not NULL and the operation blocks. Will fail 1800 * with -ENOSYS if not implemented. 1801 */ 1802 asmlinkage long sys_io_getevents(aio_context_t ctx_id, 1803 long min_nr, 1804 long nr, 1805 struct io_event __user *events, 1806 struct timespec __user *timeout) 1807 { 1808 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1809 long ret = -EINVAL; 1810 1811 if (likely(ioctx)) { 1812 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0)) 1813 ret = read_events(ioctx, min_nr, nr, events, timeout); 1814 put_ioctx(ioctx); 1815 } 1816 1817 asmlinkage_protect(5, ret, ctx_id, min_nr, nr, events, timeout); 1818 return ret; 1819 } 1820 1821 __initcall(aio_setup); 1822 1823 EXPORT_SYMBOL(aio_complete); 1824 EXPORT_SYMBOL(aio_put_req); 1825 EXPORT_SYMBOL(wait_on_sync_kiocb); 1826