xref: /openbmc/linux/fs/aio.c (revision c376222960ae91d5ffb9197ee36771aaed1d9f90)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 #include <linux/uio.h>
19 
20 #define DEBUG 0
21 
22 #include <linux/sched.h>
23 #include <linux/fs.h>
24 #include <linux/file.h>
25 #include <linux/mm.h>
26 #include <linux/mman.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/aio.h>
30 #include <linux/highmem.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 
34 #include <asm/kmap_types.h>
35 #include <asm/uaccess.h>
36 #include <asm/mmu_context.h>
37 
38 #if DEBUG > 1
39 #define dprintk		printk
40 #else
41 #define dprintk(x...)	do { ; } while (0)
42 #endif
43 
44 /*------ sysctl variables----*/
45 static DEFINE_SPINLOCK(aio_nr_lock);
46 unsigned long aio_nr;		/* current system wide number of aio requests */
47 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
48 /*----end sysctl variables---*/
49 
50 static struct kmem_cache	*kiocb_cachep;
51 static struct kmem_cache	*kioctx_cachep;
52 
53 static struct workqueue_struct *aio_wq;
54 
55 /* Used for rare fput completion. */
56 static void aio_fput_routine(struct work_struct *);
57 static DECLARE_WORK(fput_work, aio_fput_routine);
58 
59 static DEFINE_SPINLOCK(fput_lock);
60 static LIST_HEAD(fput_head);
61 
62 static void aio_kick_handler(struct work_struct *);
63 static void aio_queue_work(struct kioctx *);
64 
65 /* aio_setup
66  *	Creates the slab caches used by the aio routines, panic on
67  *	failure as this is done early during the boot sequence.
68  */
69 static int __init aio_setup(void)
70 {
71 	kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
72 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
73 	kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
74 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
75 
76 	aio_wq = create_workqueue("aio");
77 
78 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
79 
80 	return 0;
81 }
82 
83 static void aio_free_ring(struct kioctx *ctx)
84 {
85 	struct aio_ring_info *info = &ctx->ring_info;
86 	long i;
87 
88 	for (i=0; i<info->nr_pages; i++)
89 		put_page(info->ring_pages[i]);
90 
91 	if (info->mmap_size) {
92 		down_write(&ctx->mm->mmap_sem);
93 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
94 		up_write(&ctx->mm->mmap_sem);
95 	}
96 
97 	if (info->ring_pages && info->ring_pages != info->internal_pages)
98 		kfree(info->ring_pages);
99 	info->ring_pages = NULL;
100 	info->nr = 0;
101 }
102 
103 static int aio_setup_ring(struct kioctx *ctx)
104 {
105 	struct aio_ring *ring;
106 	struct aio_ring_info *info = &ctx->ring_info;
107 	unsigned nr_events = ctx->max_reqs;
108 	unsigned long size;
109 	int nr_pages;
110 
111 	/* Compensate for the ring buffer's head/tail overlap entry */
112 	nr_events += 2;	/* 1 is required, 2 for good luck */
113 
114 	size = sizeof(struct aio_ring);
115 	size += sizeof(struct io_event) * nr_events;
116 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
117 
118 	if (nr_pages < 0)
119 		return -EINVAL;
120 
121 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
122 
123 	info->nr = 0;
124 	info->ring_pages = info->internal_pages;
125 	if (nr_pages > AIO_RING_PAGES) {
126 		info->ring_pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
127 		if (!info->ring_pages)
128 			return -ENOMEM;
129 	}
130 
131 	info->mmap_size = nr_pages * PAGE_SIZE;
132 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
133 	down_write(&ctx->mm->mmap_sem);
134 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
135 				  PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE,
136 				  0);
137 	if (IS_ERR((void *)info->mmap_base)) {
138 		up_write(&ctx->mm->mmap_sem);
139 		printk("mmap err: %ld\n", -info->mmap_base);
140 		info->mmap_size = 0;
141 		aio_free_ring(ctx);
142 		return -EAGAIN;
143 	}
144 
145 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
146 	info->nr_pages = get_user_pages(current, ctx->mm,
147 					info->mmap_base, nr_pages,
148 					1, 0, info->ring_pages, NULL);
149 	up_write(&ctx->mm->mmap_sem);
150 
151 	if (unlikely(info->nr_pages != nr_pages)) {
152 		aio_free_ring(ctx);
153 		return -EAGAIN;
154 	}
155 
156 	ctx->user_id = info->mmap_base;
157 
158 	info->nr = nr_events;		/* trusted copy */
159 
160 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
161 	ring->nr = nr_events;	/* user copy */
162 	ring->id = ctx->user_id;
163 	ring->head = ring->tail = 0;
164 	ring->magic = AIO_RING_MAGIC;
165 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
166 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
167 	ring->header_length = sizeof(struct aio_ring);
168 	kunmap_atomic(ring, KM_USER0);
169 
170 	return 0;
171 }
172 
173 
174 /* aio_ring_event: returns a pointer to the event at the given index from
175  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
176  */
177 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
178 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
179 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
180 
181 #define aio_ring_event(info, nr, km) ({					\
182 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
183 	struct io_event *__event;					\
184 	__event = kmap_atomic(						\
185 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
186 	__event += pos % AIO_EVENTS_PER_PAGE;				\
187 	__event;							\
188 })
189 
190 #define put_aio_ring_event(event, km) do {	\
191 	struct io_event *__event = (event);	\
192 	(void)__event;				\
193 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
194 } while(0)
195 
196 /* ioctx_alloc
197  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
198  */
199 static struct kioctx *ioctx_alloc(unsigned nr_events)
200 {
201 	struct mm_struct *mm;
202 	struct kioctx *ctx;
203 
204 	/* Prevent overflows */
205 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
206 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
207 		pr_debug("ENOMEM: nr_events too high\n");
208 		return ERR_PTR(-EINVAL);
209 	}
210 
211 	if ((unsigned long)nr_events > aio_max_nr)
212 		return ERR_PTR(-EAGAIN);
213 
214 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
215 	if (!ctx)
216 		return ERR_PTR(-ENOMEM);
217 
218 	ctx->max_reqs = nr_events;
219 	mm = ctx->mm = current->mm;
220 	atomic_inc(&mm->mm_count);
221 
222 	atomic_set(&ctx->users, 1);
223 	spin_lock_init(&ctx->ctx_lock);
224 	spin_lock_init(&ctx->ring_info.ring_lock);
225 	init_waitqueue_head(&ctx->wait);
226 
227 	INIT_LIST_HEAD(&ctx->active_reqs);
228 	INIT_LIST_HEAD(&ctx->run_list);
229 	INIT_DELAYED_WORK(&ctx->wq, aio_kick_handler);
230 
231 	if (aio_setup_ring(ctx) < 0)
232 		goto out_freectx;
233 
234 	/* limit the number of system wide aios */
235 	spin_lock(&aio_nr_lock);
236 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
237 	    aio_nr + ctx->max_reqs < aio_nr)
238 		ctx->max_reqs = 0;
239 	else
240 		aio_nr += ctx->max_reqs;
241 	spin_unlock(&aio_nr_lock);
242 	if (ctx->max_reqs == 0)
243 		goto out_cleanup;
244 
245 	/* now link into global list.  kludge.  FIXME */
246 	write_lock(&mm->ioctx_list_lock);
247 	ctx->next = mm->ioctx_list;
248 	mm->ioctx_list = ctx;
249 	write_unlock(&mm->ioctx_list_lock);
250 
251 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
252 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
253 	return ctx;
254 
255 out_cleanup:
256 	__put_ioctx(ctx);
257 	return ERR_PTR(-EAGAIN);
258 
259 out_freectx:
260 	mmdrop(mm);
261 	kmem_cache_free(kioctx_cachep, ctx);
262 	ctx = ERR_PTR(-ENOMEM);
263 
264 	dprintk("aio: error allocating ioctx %p\n", ctx);
265 	return ctx;
266 }
267 
268 /* aio_cancel_all
269  *	Cancels all outstanding aio requests on an aio context.  Used
270  *	when the processes owning a context have all exited to encourage
271  *	the rapid destruction of the kioctx.
272  */
273 static void aio_cancel_all(struct kioctx *ctx)
274 {
275 	int (*cancel)(struct kiocb *, struct io_event *);
276 	struct io_event res;
277 	spin_lock_irq(&ctx->ctx_lock);
278 	ctx->dead = 1;
279 	while (!list_empty(&ctx->active_reqs)) {
280 		struct list_head *pos = ctx->active_reqs.next;
281 		struct kiocb *iocb = list_kiocb(pos);
282 		list_del_init(&iocb->ki_list);
283 		cancel = iocb->ki_cancel;
284 		kiocbSetCancelled(iocb);
285 		if (cancel) {
286 			iocb->ki_users++;
287 			spin_unlock_irq(&ctx->ctx_lock);
288 			cancel(iocb, &res);
289 			spin_lock_irq(&ctx->ctx_lock);
290 		}
291 	}
292 	spin_unlock_irq(&ctx->ctx_lock);
293 }
294 
295 static void wait_for_all_aios(struct kioctx *ctx)
296 {
297 	struct task_struct *tsk = current;
298 	DECLARE_WAITQUEUE(wait, tsk);
299 
300 	spin_lock_irq(&ctx->ctx_lock);
301 	if (!ctx->reqs_active)
302 		goto out;
303 
304 	add_wait_queue(&ctx->wait, &wait);
305 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
306 	while (ctx->reqs_active) {
307 		spin_unlock_irq(&ctx->ctx_lock);
308 		schedule();
309 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
310 		spin_lock_irq(&ctx->ctx_lock);
311 	}
312 	__set_task_state(tsk, TASK_RUNNING);
313 	remove_wait_queue(&ctx->wait, &wait);
314 
315 out:
316 	spin_unlock_irq(&ctx->ctx_lock);
317 }
318 
319 /* wait_on_sync_kiocb:
320  *	Waits on the given sync kiocb to complete.
321  */
322 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
323 {
324 	while (iocb->ki_users) {
325 		set_current_state(TASK_UNINTERRUPTIBLE);
326 		if (!iocb->ki_users)
327 			break;
328 		schedule();
329 	}
330 	__set_current_state(TASK_RUNNING);
331 	return iocb->ki_user_data;
332 }
333 
334 /* exit_aio: called when the last user of mm goes away.  At this point,
335  * there is no way for any new requests to be submited or any of the
336  * io_* syscalls to be called on the context.  However, there may be
337  * outstanding requests which hold references to the context; as they
338  * go away, they will call put_ioctx and release any pinned memory
339  * associated with the request (held via struct page * references).
340  */
341 void fastcall exit_aio(struct mm_struct *mm)
342 {
343 	struct kioctx *ctx = mm->ioctx_list;
344 	mm->ioctx_list = NULL;
345 	while (ctx) {
346 		struct kioctx *next = ctx->next;
347 		ctx->next = NULL;
348 		aio_cancel_all(ctx);
349 
350 		wait_for_all_aios(ctx);
351 		/*
352 		 * this is an overkill, but ensures we don't leave
353 		 * the ctx on the aio_wq
354 		 */
355 		flush_workqueue(aio_wq);
356 
357 		if (1 != atomic_read(&ctx->users))
358 			printk(KERN_DEBUG
359 				"exit_aio:ioctx still alive: %d %d %d\n",
360 				atomic_read(&ctx->users), ctx->dead,
361 				ctx->reqs_active);
362 		put_ioctx(ctx);
363 		ctx = next;
364 	}
365 }
366 
367 /* __put_ioctx
368  *	Called when the last user of an aio context has gone away,
369  *	and the struct needs to be freed.
370  */
371 void fastcall __put_ioctx(struct kioctx *ctx)
372 {
373 	unsigned nr_events = ctx->max_reqs;
374 
375 	BUG_ON(ctx->reqs_active);
376 
377 	cancel_delayed_work(&ctx->wq);
378 	flush_workqueue(aio_wq);
379 	aio_free_ring(ctx);
380 	mmdrop(ctx->mm);
381 	ctx->mm = NULL;
382 	pr_debug("__put_ioctx: freeing %p\n", ctx);
383 	kmem_cache_free(kioctx_cachep, ctx);
384 
385 	if (nr_events) {
386 		spin_lock(&aio_nr_lock);
387 		BUG_ON(aio_nr - nr_events > aio_nr);
388 		aio_nr -= nr_events;
389 		spin_unlock(&aio_nr_lock);
390 	}
391 }
392 
393 /* aio_get_req
394  *	Allocate a slot for an aio request.  Increments the users count
395  * of the kioctx so that the kioctx stays around until all requests are
396  * complete.  Returns NULL if no requests are free.
397  *
398  * Returns with kiocb->users set to 2.  The io submit code path holds
399  * an extra reference while submitting the i/o.
400  * This prevents races between the aio code path referencing the
401  * req (after submitting it) and aio_complete() freeing the req.
402  */
403 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
404 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
405 {
406 	struct kiocb *req = NULL;
407 	struct aio_ring *ring;
408 	int okay = 0;
409 
410 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
411 	if (unlikely(!req))
412 		return NULL;
413 
414 	req->ki_flags = 0;
415 	req->ki_users = 2;
416 	req->ki_key = 0;
417 	req->ki_ctx = ctx;
418 	req->ki_cancel = NULL;
419 	req->ki_retry = NULL;
420 	req->ki_dtor = NULL;
421 	req->private = NULL;
422 	req->ki_iovec = NULL;
423 	INIT_LIST_HEAD(&req->ki_run_list);
424 
425 	/* Check if the completion queue has enough free space to
426 	 * accept an event from this io.
427 	 */
428 	spin_lock_irq(&ctx->ctx_lock);
429 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
430 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
431 		list_add(&req->ki_list, &ctx->active_reqs);
432 		ctx->reqs_active++;
433 		okay = 1;
434 	}
435 	kunmap_atomic(ring, KM_USER0);
436 	spin_unlock_irq(&ctx->ctx_lock);
437 
438 	if (!okay) {
439 		kmem_cache_free(kiocb_cachep, req);
440 		req = NULL;
441 	}
442 
443 	return req;
444 }
445 
446 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
447 {
448 	struct kiocb *req;
449 	/* Handle a potential starvation case -- should be exceedingly rare as
450 	 * requests will be stuck on fput_head only if the aio_fput_routine is
451 	 * delayed and the requests were the last user of the struct file.
452 	 */
453 	req = __aio_get_req(ctx);
454 	if (unlikely(NULL == req)) {
455 		aio_fput_routine(NULL);
456 		req = __aio_get_req(ctx);
457 	}
458 	return req;
459 }
460 
461 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
462 {
463 	assert_spin_locked(&ctx->ctx_lock);
464 
465 	if (req->ki_dtor)
466 		req->ki_dtor(req);
467 	if (req->ki_iovec != &req->ki_inline_vec)
468 		kfree(req->ki_iovec);
469 	kmem_cache_free(kiocb_cachep, req);
470 	ctx->reqs_active--;
471 
472 	if (unlikely(!ctx->reqs_active && ctx->dead))
473 		wake_up(&ctx->wait);
474 }
475 
476 static void aio_fput_routine(struct work_struct *data)
477 {
478 	spin_lock_irq(&fput_lock);
479 	while (likely(!list_empty(&fput_head))) {
480 		struct kiocb *req = list_kiocb(fput_head.next);
481 		struct kioctx *ctx = req->ki_ctx;
482 
483 		list_del(&req->ki_list);
484 		spin_unlock_irq(&fput_lock);
485 
486 		/* Complete the fput */
487 		__fput(req->ki_filp);
488 
489 		/* Link the iocb into the context's free list */
490 		spin_lock_irq(&ctx->ctx_lock);
491 		really_put_req(ctx, req);
492 		spin_unlock_irq(&ctx->ctx_lock);
493 
494 		put_ioctx(ctx);
495 		spin_lock_irq(&fput_lock);
496 	}
497 	spin_unlock_irq(&fput_lock);
498 }
499 
500 /* __aio_put_req
501  *	Returns true if this put was the last user of the request.
502  */
503 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
504 {
505 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
506 		req, atomic_read(&req->ki_filp->f_count));
507 
508 	assert_spin_locked(&ctx->ctx_lock);
509 
510 	req->ki_users --;
511 	BUG_ON(req->ki_users < 0);
512 	if (likely(req->ki_users))
513 		return 0;
514 	list_del(&req->ki_list);		/* remove from active_reqs */
515 	req->ki_cancel = NULL;
516 	req->ki_retry = NULL;
517 
518 	/* Must be done under the lock to serialise against cancellation.
519 	 * Call this aio_fput as it duplicates fput via the fput_work.
520 	 */
521 	if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
522 		get_ioctx(ctx);
523 		spin_lock(&fput_lock);
524 		list_add(&req->ki_list, &fput_head);
525 		spin_unlock(&fput_lock);
526 		queue_work(aio_wq, &fput_work);
527 	} else
528 		really_put_req(ctx, req);
529 	return 1;
530 }
531 
532 /* aio_put_req
533  *	Returns true if this put was the last user of the kiocb,
534  *	false if the request is still in use.
535  */
536 int fastcall aio_put_req(struct kiocb *req)
537 {
538 	struct kioctx *ctx = req->ki_ctx;
539 	int ret;
540 	spin_lock_irq(&ctx->ctx_lock);
541 	ret = __aio_put_req(ctx, req);
542 	spin_unlock_irq(&ctx->ctx_lock);
543 	return ret;
544 }
545 
546 /*	Lookup an ioctx id.  ioctx_list is lockless for reads.
547  *	FIXME: this is O(n) and is only suitable for development.
548  */
549 struct kioctx *lookup_ioctx(unsigned long ctx_id)
550 {
551 	struct kioctx *ioctx;
552 	struct mm_struct *mm;
553 
554 	mm = current->mm;
555 	read_lock(&mm->ioctx_list_lock);
556 	for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
557 		if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
558 			get_ioctx(ioctx);
559 			break;
560 		}
561 	read_unlock(&mm->ioctx_list_lock);
562 
563 	return ioctx;
564 }
565 
566 /*
567  * use_mm
568  *	Makes the calling kernel thread take on the specified
569  *	mm context.
570  *	Called by the retry thread execute retries within the
571  *	iocb issuer's mm context, so that copy_from/to_user
572  *	operations work seamlessly for aio.
573  *	(Note: this routine is intended to be called only
574  *	from a kernel thread context)
575  */
576 static void use_mm(struct mm_struct *mm)
577 {
578 	struct mm_struct *active_mm;
579 	struct task_struct *tsk = current;
580 
581 	task_lock(tsk);
582 	tsk->flags |= PF_BORROWED_MM;
583 	active_mm = tsk->active_mm;
584 	atomic_inc(&mm->mm_count);
585 	tsk->mm = mm;
586 	tsk->active_mm = mm;
587 	/*
588 	 * Note that on UML this *requires* PF_BORROWED_MM to be set, otherwise
589 	 * it won't work. Update it accordingly if you change it here
590 	 */
591 	switch_mm(active_mm, mm, tsk);
592 	task_unlock(tsk);
593 
594 	mmdrop(active_mm);
595 }
596 
597 /*
598  * unuse_mm
599  *	Reverses the effect of use_mm, i.e. releases the
600  *	specified mm context which was earlier taken on
601  *	by the calling kernel thread
602  *	(Note: this routine is intended to be called only
603  *	from a kernel thread context)
604  */
605 static void unuse_mm(struct mm_struct *mm)
606 {
607 	struct task_struct *tsk = current;
608 
609 	task_lock(tsk);
610 	tsk->flags &= ~PF_BORROWED_MM;
611 	tsk->mm = NULL;
612 	/* active_mm is still 'mm' */
613 	enter_lazy_tlb(mm, tsk);
614 	task_unlock(tsk);
615 }
616 
617 /*
618  * Queue up a kiocb to be retried. Assumes that the kiocb
619  * has already been marked as kicked, and places it on
620  * the retry run list for the corresponding ioctx, if it
621  * isn't already queued. Returns 1 if it actually queued
622  * the kiocb (to tell the caller to activate the work
623  * queue to process it), or 0, if it found that it was
624  * already queued.
625  */
626 static inline int __queue_kicked_iocb(struct kiocb *iocb)
627 {
628 	struct kioctx *ctx = iocb->ki_ctx;
629 
630 	assert_spin_locked(&ctx->ctx_lock);
631 
632 	if (list_empty(&iocb->ki_run_list)) {
633 		list_add_tail(&iocb->ki_run_list,
634 			&ctx->run_list);
635 		return 1;
636 	}
637 	return 0;
638 }
639 
640 /* aio_run_iocb
641  *	This is the core aio execution routine. It is
642  *	invoked both for initial i/o submission and
643  *	subsequent retries via the aio_kick_handler.
644  *	Expects to be invoked with iocb->ki_ctx->lock
645  *	already held. The lock is released and reacquired
646  *	as needed during processing.
647  *
648  * Calls the iocb retry method (already setup for the
649  * iocb on initial submission) for operation specific
650  * handling, but takes care of most of common retry
651  * execution details for a given iocb. The retry method
652  * needs to be non-blocking as far as possible, to avoid
653  * holding up other iocbs waiting to be serviced by the
654  * retry kernel thread.
655  *
656  * The trickier parts in this code have to do with
657  * ensuring that only one retry instance is in progress
658  * for a given iocb at any time. Providing that guarantee
659  * simplifies the coding of individual aio operations as
660  * it avoids various potential races.
661  */
662 static ssize_t aio_run_iocb(struct kiocb *iocb)
663 {
664 	struct kioctx	*ctx = iocb->ki_ctx;
665 	ssize_t (*retry)(struct kiocb *);
666 	ssize_t ret;
667 
668 	if (!(retry = iocb->ki_retry)) {
669 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
670 		return 0;
671 	}
672 
673 	/*
674 	 * We don't want the next retry iteration for this
675 	 * operation to start until this one has returned and
676 	 * updated the iocb state. However, wait_queue functions
677 	 * can trigger a kick_iocb from interrupt context in the
678 	 * meantime, indicating that data is available for the next
679 	 * iteration. We want to remember that and enable the
680 	 * next retry iteration _after_ we are through with
681 	 * this one.
682 	 *
683 	 * So, in order to be able to register a "kick", but
684 	 * prevent it from being queued now, we clear the kick
685 	 * flag, but make the kick code *think* that the iocb is
686 	 * still on the run list until we are actually done.
687 	 * When we are done with this iteration, we check if
688 	 * the iocb was kicked in the meantime and if so, queue
689 	 * it up afresh.
690 	 */
691 
692 	kiocbClearKicked(iocb);
693 
694 	/*
695 	 * This is so that aio_complete knows it doesn't need to
696 	 * pull the iocb off the run list (We can't just call
697 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
698 	 * queue this on the run list yet)
699 	 */
700 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
701 	spin_unlock_irq(&ctx->ctx_lock);
702 
703 	/* Quit retrying if the i/o has been cancelled */
704 	if (kiocbIsCancelled(iocb)) {
705 		ret = -EINTR;
706 		aio_complete(iocb, ret, 0);
707 		/* must not access the iocb after this */
708 		goto out;
709 	}
710 
711 	/*
712 	 * Now we are all set to call the retry method in async
713 	 * context. By setting this thread's io_wait context
714 	 * to point to the wait queue entry inside the currently
715 	 * running iocb for the duration of the retry, we ensure
716 	 * that async notification wakeups are queued by the
717 	 * operation instead of blocking waits, and when notified,
718 	 * cause the iocb to be kicked for continuation (through
719 	 * the aio_wake_function callback).
720 	 */
721 	BUG_ON(current->io_wait != NULL);
722 	current->io_wait = &iocb->ki_wait;
723 	ret = retry(iocb);
724 	current->io_wait = NULL;
725 
726 	if (ret != -EIOCBRETRY && ret != -EIOCBQUEUED) {
727 		BUG_ON(!list_empty(&iocb->ki_wait.task_list));
728 		aio_complete(iocb, ret, 0);
729 	}
730 out:
731 	spin_lock_irq(&ctx->ctx_lock);
732 
733 	if (-EIOCBRETRY == ret) {
734 		/*
735 		 * OK, now that we are done with this iteration
736 		 * and know that there is more left to go,
737 		 * this is where we let go so that a subsequent
738 		 * "kick" can start the next iteration
739 		 */
740 
741 		/* will make __queue_kicked_iocb succeed from here on */
742 		INIT_LIST_HEAD(&iocb->ki_run_list);
743 		/* we must queue the next iteration ourselves, if it
744 		 * has already been kicked */
745 		if (kiocbIsKicked(iocb)) {
746 			__queue_kicked_iocb(iocb);
747 
748 			/*
749 			 * __queue_kicked_iocb will always return 1 here, because
750 			 * iocb->ki_run_list is empty at this point so it should
751 			 * be safe to unconditionally queue the context into the
752 			 * work queue.
753 			 */
754 			aio_queue_work(ctx);
755 		}
756 	}
757 	return ret;
758 }
759 
760 /*
761  * __aio_run_iocbs:
762  * 	Process all pending retries queued on the ioctx
763  * 	run list.
764  * Assumes it is operating within the aio issuer's mm
765  * context.
766  */
767 static int __aio_run_iocbs(struct kioctx *ctx)
768 {
769 	struct kiocb *iocb;
770 	struct list_head run_list;
771 
772 	assert_spin_locked(&ctx->ctx_lock);
773 
774 	list_replace_init(&ctx->run_list, &run_list);
775 	while (!list_empty(&run_list)) {
776 		iocb = list_entry(run_list.next, struct kiocb,
777 			ki_run_list);
778 		list_del(&iocb->ki_run_list);
779 		/*
780 		 * Hold an extra reference while retrying i/o.
781 		 */
782 		iocb->ki_users++;       /* grab extra reference */
783 		aio_run_iocb(iocb);
784 		__aio_put_req(ctx, iocb);
785  	}
786 	if (!list_empty(&ctx->run_list))
787 		return 1;
788 	return 0;
789 }
790 
791 static void aio_queue_work(struct kioctx * ctx)
792 {
793 	unsigned long timeout;
794 	/*
795 	 * if someone is waiting, get the work started right
796 	 * away, otherwise, use a longer delay
797 	 */
798 	smp_mb();
799 	if (waitqueue_active(&ctx->wait))
800 		timeout = 1;
801 	else
802 		timeout = HZ/10;
803 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
804 }
805 
806 
807 /*
808  * aio_run_iocbs:
809  * 	Process all pending retries queued on the ioctx
810  * 	run list.
811  * Assumes it is operating within the aio issuer's mm
812  * context.
813  */
814 static inline void aio_run_iocbs(struct kioctx *ctx)
815 {
816 	int requeue;
817 
818 	spin_lock_irq(&ctx->ctx_lock);
819 
820 	requeue = __aio_run_iocbs(ctx);
821 	spin_unlock_irq(&ctx->ctx_lock);
822 	if (requeue)
823 		aio_queue_work(ctx);
824 }
825 
826 /*
827  * just like aio_run_iocbs, but keeps running them until
828  * the list stays empty
829  */
830 static inline void aio_run_all_iocbs(struct kioctx *ctx)
831 {
832 	spin_lock_irq(&ctx->ctx_lock);
833 	while (__aio_run_iocbs(ctx))
834 		;
835 	spin_unlock_irq(&ctx->ctx_lock);
836 }
837 
838 /*
839  * aio_kick_handler:
840  * 	Work queue handler triggered to process pending
841  * 	retries on an ioctx. Takes on the aio issuer's
842  *	mm context before running the iocbs, so that
843  *	copy_xxx_user operates on the issuer's address
844  *      space.
845  * Run on aiod's context.
846  */
847 static void aio_kick_handler(struct work_struct *work)
848 {
849 	struct kioctx *ctx = container_of(work, struct kioctx, wq.work);
850 	mm_segment_t oldfs = get_fs();
851 	struct mm_struct *mm;
852 	int requeue;
853 
854 	set_fs(USER_DS);
855 	use_mm(ctx->mm);
856 	spin_lock_irq(&ctx->ctx_lock);
857 	requeue =__aio_run_iocbs(ctx);
858 	mm = ctx->mm;
859 	spin_unlock_irq(&ctx->ctx_lock);
860  	unuse_mm(mm);
861 	set_fs(oldfs);
862 	/*
863 	 * we're in a worker thread already, don't use queue_delayed_work,
864 	 */
865 	if (requeue)
866 		queue_delayed_work(aio_wq, &ctx->wq, 0);
867 }
868 
869 
870 /*
871  * Called by kick_iocb to queue the kiocb for retry
872  * and if required activate the aio work queue to process
873  * it
874  */
875 static void try_queue_kicked_iocb(struct kiocb *iocb)
876 {
877  	struct kioctx	*ctx = iocb->ki_ctx;
878 	unsigned long flags;
879 	int run = 0;
880 
881 	/* We're supposed to be the only path putting the iocb back on the run
882 	 * list.  If we find that the iocb is *back* on a wait queue already
883 	 * than retry has happened before we could queue the iocb.  This also
884 	 * means that the retry could have completed and freed our iocb, no
885 	 * good. */
886 	BUG_ON((!list_empty(&iocb->ki_wait.task_list)));
887 
888 	spin_lock_irqsave(&ctx->ctx_lock, flags);
889 	/* set this inside the lock so that we can't race with aio_run_iocb()
890 	 * testing it and putting the iocb on the run list under the lock */
891 	if (!kiocbTryKick(iocb))
892 		run = __queue_kicked_iocb(iocb);
893 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
894 	if (run)
895 		aio_queue_work(ctx);
896 }
897 
898 /*
899  * kick_iocb:
900  *      Called typically from a wait queue callback context
901  *      (aio_wake_function) to trigger a retry of the iocb.
902  *      The retry is usually executed by aio workqueue
903  *      threads (See aio_kick_handler).
904  */
905 void fastcall kick_iocb(struct kiocb *iocb)
906 {
907 	/* sync iocbs are easy: they can only ever be executing from a
908 	 * single context. */
909 	if (is_sync_kiocb(iocb)) {
910 		kiocbSetKicked(iocb);
911 	        wake_up_process(iocb->ki_obj.tsk);
912 		return;
913 	}
914 
915 	try_queue_kicked_iocb(iocb);
916 }
917 EXPORT_SYMBOL(kick_iocb);
918 
919 /* aio_complete
920  *	Called when the io request on the given iocb is complete.
921  *	Returns true if this is the last user of the request.  The
922  *	only other user of the request can be the cancellation code.
923  */
924 int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
925 {
926 	struct kioctx	*ctx = iocb->ki_ctx;
927 	struct aio_ring_info	*info;
928 	struct aio_ring	*ring;
929 	struct io_event	*event;
930 	unsigned long	flags;
931 	unsigned long	tail;
932 	int		ret;
933 
934 	/*
935 	 * Special case handling for sync iocbs:
936 	 *  - events go directly into the iocb for fast handling
937 	 *  - the sync task with the iocb in its stack holds the single iocb
938 	 *    ref, no other paths have a way to get another ref
939 	 *  - the sync task helpfully left a reference to itself in the iocb
940 	 */
941 	if (is_sync_kiocb(iocb)) {
942 		BUG_ON(iocb->ki_users != 1);
943 		iocb->ki_user_data = res;
944 		iocb->ki_users = 0;
945 		wake_up_process(iocb->ki_obj.tsk);
946 		return 1;
947 	}
948 
949 	info = &ctx->ring_info;
950 
951 	/* add a completion event to the ring buffer.
952 	 * must be done holding ctx->ctx_lock to prevent
953 	 * other code from messing with the tail
954 	 * pointer since we might be called from irq
955 	 * context.
956 	 */
957 	spin_lock_irqsave(&ctx->ctx_lock, flags);
958 
959 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
960 		list_del_init(&iocb->ki_run_list);
961 
962 	/*
963 	 * cancelled requests don't get events, userland was given one
964 	 * when the event got cancelled.
965 	 */
966 	if (kiocbIsCancelled(iocb))
967 		goto put_rq;
968 
969 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
970 
971 	tail = info->tail;
972 	event = aio_ring_event(info, tail, KM_IRQ0);
973 	if (++tail >= info->nr)
974 		tail = 0;
975 
976 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
977 	event->data = iocb->ki_user_data;
978 	event->res = res;
979 	event->res2 = res2;
980 
981 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
982 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
983 		res, res2);
984 
985 	/* after flagging the request as done, we
986 	 * must never even look at it again
987 	 */
988 	smp_wmb();	/* make event visible before updating tail */
989 
990 	info->tail = tail;
991 	ring->tail = tail;
992 
993 	put_aio_ring_event(event, KM_IRQ0);
994 	kunmap_atomic(ring, KM_IRQ1);
995 
996 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
997 put_rq:
998 	/* everything turned out well, dispose of the aiocb. */
999 	ret = __aio_put_req(ctx, iocb);
1000 
1001 	if (waitqueue_active(&ctx->wait))
1002 		wake_up(&ctx->wait);
1003 
1004 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1005 	return ret;
1006 }
1007 
1008 /* aio_read_evt
1009  *	Pull an event off of the ioctx's event ring.  Returns the number of
1010  *	events fetched (0 or 1 ;-)
1011  *	FIXME: make this use cmpxchg.
1012  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1013  */
1014 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1015 {
1016 	struct aio_ring_info *info = &ioctx->ring_info;
1017 	struct aio_ring *ring;
1018 	unsigned long head;
1019 	int ret = 0;
1020 
1021 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1022 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1023 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1024 		 (unsigned long)ring->nr);
1025 
1026 	if (ring->head == ring->tail)
1027 		goto out;
1028 
1029 	spin_lock(&info->ring_lock);
1030 
1031 	head = ring->head % info->nr;
1032 	if (head != ring->tail) {
1033 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1034 		*ent = *evp;
1035 		head = (head + 1) % info->nr;
1036 		smp_mb(); /* finish reading the event before updatng the head */
1037 		ring->head = head;
1038 		ret = 1;
1039 		put_aio_ring_event(evp, KM_USER1);
1040 	}
1041 	spin_unlock(&info->ring_lock);
1042 
1043 out:
1044 	kunmap_atomic(ring, KM_USER0);
1045 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1046 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1047 	return ret;
1048 }
1049 
1050 struct aio_timeout {
1051 	struct timer_list	timer;
1052 	int			timed_out;
1053 	struct task_struct	*p;
1054 };
1055 
1056 static void timeout_func(unsigned long data)
1057 {
1058 	struct aio_timeout *to = (struct aio_timeout *)data;
1059 
1060 	to->timed_out = 1;
1061 	wake_up_process(to->p);
1062 }
1063 
1064 static inline void init_timeout(struct aio_timeout *to)
1065 {
1066 	init_timer(&to->timer);
1067 	to->timer.data = (unsigned long)to;
1068 	to->timer.function = timeout_func;
1069 	to->timed_out = 0;
1070 	to->p = current;
1071 }
1072 
1073 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1074 			       const struct timespec *ts)
1075 {
1076 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1077 	if (time_after(to->timer.expires, jiffies))
1078 		add_timer(&to->timer);
1079 	else
1080 		to->timed_out = 1;
1081 }
1082 
1083 static inline void clear_timeout(struct aio_timeout *to)
1084 {
1085 	del_singleshot_timer_sync(&to->timer);
1086 }
1087 
1088 static int read_events(struct kioctx *ctx,
1089 			long min_nr, long nr,
1090 			struct io_event __user *event,
1091 			struct timespec __user *timeout)
1092 {
1093 	long			start_jiffies = jiffies;
1094 	struct task_struct	*tsk = current;
1095 	DECLARE_WAITQUEUE(wait, tsk);
1096 	int			ret;
1097 	int			i = 0;
1098 	struct io_event		ent;
1099 	struct aio_timeout	to;
1100 	int			retry = 0;
1101 
1102 	/* needed to zero any padding within an entry (there shouldn't be
1103 	 * any, but C is fun!
1104 	 */
1105 	memset(&ent, 0, sizeof(ent));
1106 retry:
1107 	ret = 0;
1108 	while (likely(i < nr)) {
1109 		ret = aio_read_evt(ctx, &ent);
1110 		if (unlikely(ret <= 0))
1111 			break;
1112 
1113 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1114 			ent.data, ent.obj, ent.res, ent.res2);
1115 
1116 		/* Could we split the check in two? */
1117 		ret = -EFAULT;
1118 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1119 			dprintk("aio: lost an event due to EFAULT.\n");
1120 			break;
1121 		}
1122 		ret = 0;
1123 
1124 		/* Good, event copied to userland, update counts. */
1125 		event ++;
1126 		i ++;
1127 	}
1128 
1129 	if (min_nr <= i)
1130 		return i;
1131 	if (ret)
1132 		return ret;
1133 
1134 	/* End fast path */
1135 
1136 	/* racey check, but it gets redone */
1137 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1138 		retry = 1;
1139 		aio_run_all_iocbs(ctx);
1140 		goto retry;
1141 	}
1142 
1143 	init_timeout(&to);
1144 	if (timeout) {
1145 		struct timespec	ts;
1146 		ret = -EFAULT;
1147 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1148 			goto out;
1149 
1150 		set_timeout(start_jiffies, &to, &ts);
1151 	}
1152 
1153 	while (likely(i < nr)) {
1154 		add_wait_queue_exclusive(&ctx->wait, &wait);
1155 		do {
1156 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1157 			ret = aio_read_evt(ctx, &ent);
1158 			if (ret)
1159 				break;
1160 			if (min_nr <= i)
1161 				break;
1162 			ret = 0;
1163 			if (to.timed_out)	/* Only check after read evt */
1164 				break;
1165 			schedule();
1166 			if (signal_pending(tsk)) {
1167 				ret = -EINTR;
1168 				break;
1169 			}
1170 			/*ret = aio_read_evt(ctx, &ent);*/
1171 		} while (1) ;
1172 
1173 		set_task_state(tsk, TASK_RUNNING);
1174 		remove_wait_queue(&ctx->wait, &wait);
1175 
1176 		if (unlikely(ret <= 0))
1177 			break;
1178 
1179 		ret = -EFAULT;
1180 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1181 			dprintk("aio: lost an event due to EFAULT.\n");
1182 			break;
1183 		}
1184 
1185 		/* Good, event copied to userland, update counts. */
1186 		event ++;
1187 		i ++;
1188 	}
1189 
1190 	if (timeout)
1191 		clear_timeout(&to);
1192 out:
1193 	return i ? i : ret;
1194 }
1195 
1196 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1197  * against races with itself via ->dead.
1198  */
1199 static void io_destroy(struct kioctx *ioctx)
1200 {
1201 	struct mm_struct *mm = current->mm;
1202 	struct kioctx **tmp;
1203 	int was_dead;
1204 
1205 	/* delete the entry from the list is someone else hasn't already */
1206 	write_lock(&mm->ioctx_list_lock);
1207 	was_dead = ioctx->dead;
1208 	ioctx->dead = 1;
1209 	for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1210 	     tmp = &(*tmp)->next)
1211 		;
1212 	if (*tmp)
1213 		*tmp = ioctx->next;
1214 	write_unlock(&mm->ioctx_list_lock);
1215 
1216 	dprintk("aio_release(%p)\n", ioctx);
1217 	if (likely(!was_dead))
1218 		put_ioctx(ioctx);	/* twice for the list */
1219 
1220 	aio_cancel_all(ioctx);
1221 	wait_for_all_aios(ioctx);
1222 	put_ioctx(ioctx);	/* once for the lookup */
1223 }
1224 
1225 /* sys_io_setup:
1226  *	Create an aio_context capable of receiving at least nr_events.
1227  *	ctxp must not point to an aio_context that already exists, and
1228  *	must be initialized to 0 prior to the call.  On successful
1229  *	creation of the aio_context, *ctxp is filled in with the resulting
1230  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1231  *	if the specified nr_events exceeds internal limits.  May fail
1232  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1233  *	of available events.  May fail with -ENOMEM if insufficient kernel
1234  *	resources are available.  May fail with -EFAULT if an invalid
1235  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1236  *	implemented.
1237  */
1238 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1239 {
1240 	struct kioctx *ioctx = NULL;
1241 	unsigned long ctx;
1242 	long ret;
1243 
1244 	ret = get_user(ctx, ctxp);
1245 	if (unlikely(ret))
1246 		goto out;
1247 
1248 	ret = -EINVAL;
1249 	if (unlikely(ctx || nr_events == 0)) {
1250 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
1251 		         ctx, nr_events);
1252 		goto out;
1253 	}
1254 
1255 	ioctx = ioctx_alloc(nr_events);
1256 	ret = PTR_ERR(ioctx);
1257 	if (!IS_ERR(ioctx)) {
1258 		ret = put_user(ioctx->user_id, ctxp);
1259 		if (!ret)
1260 			return 0;
1261 
1262 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1263 		io_destroy(ioctx);
1264 	}
1265 
1266 out:
1267 	return ret;
1268 }
1269 
1270 /* sys_io_destroy:
1271  *	Destroy the aio_context specified.  May cancel any outstanding
1272  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1273  *	implemented.  May fail with -EFAULT if the context pointed to
1274  *	is invalid.
1275  */
1276 asmlinkage long sys_io_destroy(aio_context_t ctx)
1277 {
1278 	struct kioctx *ioctx = lookup_ioctx(ctx);
1279 	if (likely(NULL != ioctx)) {
1280 		io_destroy(ioctx);
1281 		return 0;
1282 	}
1283 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1284 	return -EINVAL;
1285 }
1286 
1287 static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
1288 {
1289 	struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
1290 
1291 	BUG_ON(ret <= 0);
1292 
1293 	while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
1294 		ssize_t this = min((ssize_t)iov->iov_len, ret);
1295 		iov->iov_base += this;
1296 		iov->iov_len -= this;
1297 		iocb->ki_left -= this;
1298 		ret -= this;
1299 		if (iov->iov_len == 0) {
1300 			iocb->ki_cur_seg++;
1301 			iov++;
1302 		}
1303 	}
1304 
1305 	/* the caller should not have done more io than what fit in
1306 	 * the remaining iovecs */
1307 	BUG_ON(ret > 0 && iocb->ki_left == 0);
1308 }
1309 
1310 static ssize_t aio_rw_vect_retry(struct kiocb *iocb)
1311 {
1312 	struct file *file = iocb->ki_filp;
1313 	struct address_space *mapping = file->f_mapping;
1314 	struct inode *inode = mapping->host;
1315 	ssize_t (*rw_op)(struct kiocb *, const struct iovec *,
1316 			 unsigned long, loff_t);
1317 	ssize_t ret = 0;
1318 	unsigned short opcode;
1319 
1320 	if ((iocb->ki_opcode == IOCB_CMD_PREADV) ||
1321 		(iocb->ki_opcode == IOCB_CMD_PREAD)) {
1322 		rw_op = file->f_op->aio_read;
1323 		opcode = IOCB_CMD_PREADV;
1324 	} else {
1325 		rw_op = file->f_op->aio_write;
1326 		opcode = IOCB_CMD_PWRITEV;
1327 	}
1328 
1329 	do {
1330 		ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
1331 			    iocb->ki_nr_segs - iocb->ki_cur_seg,
1332 			    iocb->ki_pos);
1333 		if (ret > 0)
1334 			aio_advance_iovec(iocb, ret);
1335 
1336 	/* retry all partial writes.  retry partial reads as long as its a
1337 	 * regular file. */
1338 	} while (ret > 0 && iocb->ki_left > 0 &&
1339 		 (opcode == IOCB_CMD_PWRITEV ||
1340 		  (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
1341 
1342 	/* This means we must have transferred all that we could */
1343 	/* No need to retry anymore */
1344 	if ((ret == 0) || (iocb->ki_left == 0))
1345 		ret = iocb->ki_nbytes - iocb->ki_left;
1346 
1347 	return ret;
1348 }
1349 
1350 static ssize_t aio_fdsync(struct kiocb *iocb)
1351 {
1352 	struct file *file = iocb->ki_filp;
1353 	ssize_t ret = -EINVAL;
1354 
1355 	if (file->f_op->aio_fsync)
1356 		ret = file->f_op->aio_fsync(iocb, 1);
1357 	return ret;
1358 }
1359 
1360 static ssize_t aio_fsync(struct kiocb *iocb)
1361 {
1362 	struct file *file = iocb->ki_filp;
1363 	ssize_t ret = -EINVAL;
1364 
1365 	if (file->f_op->aio_fsync)
1366 		ret = file->f_op->aio_fsync(iocb, 0);
1367 	return ret;
1368 }
1369 
1370 static ssize_t aio_setup_vectored_rw(int type, struct kiocb *kiocb)
1371 {
1372 	ssize_t ret;
1373 
1374 	ret = rw_copy_check_uvector(type, (struct iovec __user *)kiocb->ki_buf,
1375 				    kiocb->ki_nbytes, 1,
1376 				    &kiocb->ki_inline_vec, &kiocb->ki_iovec);
1377 	if (ret < 0)
1378 		goto out;
1379 
1380 	kiocb->ki_nr_segs = kiocb->ki_nbytes;
1381 	kiocb->ki_cur_seg = 0;
1382 	/* ki_nbytes/left now reflect bytes instead of segs */
1383 	kiocb->ki_nbytes = ret;
1384 	kiocb->ki_left = ret;
1385 
1386 	ret = 0;
1387 out:
1388 	return ret;
1389 }
1390 
1391 static ssize_t aio_setup_single_vector(struct kiocb *kiocb)
1392 {
1393 	kiocb->ki_iovec = &kiocb->ki_inline_vec;
1394 	kiocb->ki_iovec->iov_base = kiocb->ki_buf;
1395 	kiocb->ki_iovec->iov_len = kiocb->ki_left;
1396 	kiocb->ki_nr_segs = 1;
1397 	kiocb->ki_cur_seg = 0;
1398 	return 0;
1399 }
1400 
1401 /*
1402  * aio_setup_iocb:
1403  *	Performs the initial checks and aio retry method
1404  *	setup for the kiocb at the time of io submission.
1405  */
1406 static ssize_t aio_setup_iocb(struct kiocb *kiocb)
1407 {
1408 	struct file *file = kiocb->ki_filp;
1409 	ssize_t ret = 0;
1410 
1411 	switch (kiocb->ki_opcode) {
1412 	case IOCB_CMD_PREAD:
1413 		ret = -EBADF;
1414 		if (unlikely(!(file->f_mode & FMODE_READ)))
1415 			break;
1416 		ret = -EFAULT;
1417 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1418 			kiocb->ki_left)))
1419 			break;
1420 		ret = security_file_permission(file, MAY_READ);
1421 		if (unlikely(ret))
1422 			break;
1423 		ret = aio_setup_single_vector(kiocb);
1424 		if (ret)
1425 			break;
1426 		ret = -EINVAL;
1427 		if (file->f_op->aio_read)
1428 			kiocb->ki_retry = aio_rw_vect_retry;
1429 		break;
1430 	case IOCB_CMD_PWRITE:
1431 		ret = -EBADF;
1432 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1433 			break;
1434 		ret = -EFAULT;
1435 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1436 			kiocb->ki_left)))
1437 			break;
1438 		ret = security_file_permission(file, MAY_WRITE);
1439 		if (unlikely(ret))
1440 			break;
1441 		ret = aio_setup_single_vector(kiocb);
1442 		if (ret)
1443 			break;
1444 		ret = -EINVAL;
1445 		if (file->f_op->aio_write)
1446 			kiocb->ki_retry = aio_rw_vect_retry;
1447 		break;
1448 	case IOCB_CMD_PREADV:
1449 		ret = -EBADF;
1450 		if (unlikely(!(file->f_mode & FMODE_READ)))
1451 			break;
1452 		ret = security_file_permission(file, MAY_READ);
1453 		if (unlikely(ret))
1454 			break;
1455 		ret = aio_setup_vectored_rw(READ, kiocb);
1456 		if (ret)
1457 			break;
1458 		ret = -EINVAL;
1459 		if (file->f_op->aio_read)
1460 			kiocb->ki_retry = aio_rw_vect_retry;
1461 		break;
1462 	case IOCB_CMD_PWRITEV:
1463 		ret = -EBADF;
1464 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1465 			break;
1466 		ret = security_file_permission(file, MAY_WRITE);
1467 		if (unlikely(ret))
1468 			break;
1469 		ret = aio_setup_vectored_rw(WRITE, kiocb);
1470 		if (ret)
1471 			break;
1472 		ret = -EINVAL;
1473 		if (file->f_op->aio_write)
1474 			kiocb->ki_retry = aio_rw_vect_retry;
1475 		break;
1476 	case IOCB_CMD_FDSYNC:
1477 		ret = -EINVAL;
1478 		if (file->f_op->aio_fsync)
1479 			kiocb->ki_retry = aio_fdsync;
1480 		break;
1481 	case IOCB_CMD_FSYNC:
1482 		ret = -EINVAL;
1483 		if (file->f_op->aio_fsync)
1484 			kiocb->ki_retry = aio_fsync;
1485 		break;
1486 	default:
1487 		dprintk("EINVAL: io_submit: no operation provided\n");
1488 		ret = -EINVAL;
1489 	}
1490 
1491 	if (!kiocb->ki_retry)
1492 		return ret;
1493 
1494 	return 0;
1495 }
1496 
1497 /*
1498  * aio_wake_function:
1499  * 	wait queue callback function for aio notification,
1500  * 	Simply triggers a retry of the operation via kick_iocb.
1501  *
1502  * 	This callback is specified in the wait queue entry in
1503  *	a kiocb	(current->io_wait points to this wait queue
1504  *	entry when an aio operation executes; it is used
1505  * 	instead of a synchronous wait when an i/o blocking
1506  *	condition is encountered during aio).
1507  *
1508  * Note:
1509  * This routine is executed with the wait queue lock held.
1510  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1511  * the ioctx lock inside the wait queue lock. This is safe
1512  * because this callback isn't used for wait queues which
1513  * are nested inside ioctx lock (i.e. ctx->wait)
1514  */
1515 static int aio_wake_function(wait_queue_t *wait, unsigned mode,
1516 			     int sync, void *key)
1517 {
1518 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1519 
1520 	list_del_init(&wait->task_list);
1521 	kick_iocb(iocb);
1522 	return 1;
1523 }
1524 
1525 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1526 			 struct iocb *iocb)
1527 {
1528 	struct kiocb *req;
1529 	struct file *file;
1530 	ssize_t ret;
1531 
1532 	/* enforce forwards compatibility on users */
1533 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
1534 		     iocb->aio_reserved3)) {
1535 		pr_debug("EINVAL: io_submit: reserve field set\n");
1536 		return -EINVAL;
1537 	}
1538 
1539 	/* prevent overflows */
1540 	if (unlikely(
1541 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1542 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1543 	    ((ssize_t)iocb->aio_nbytes < 0)
1544 	   )) {
1545 		pr_debug("EINVAL: io_submit: overflow check\n");
1546 		return -EINVAL;
1547 	}
1548 
1549 	file = fget(iocb->aio_fildes);
1550 	if (unlikely(!file))
1551 		return -EBADF;
1552 
1553 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1554 	if (unlikely(!req)) {
1555 		fput(file);
1556 		return -EAGAIN;
1557 	}
1558 
1559 	req->ki_filp = file;
1560 	ret = put_user(req->ki_key, &user_iocb->aio_key);
1561 	if (unlikely(ret)) {
1562 		dprintk("EFAULT: aio_key\n");
1563 		goto out_put_req;
1564 	}
1565 
1566 	req->ki_obj.user = user_iocb;
1567 	req->ki_user_data = iocb->aio_data;
1568 	req->ki_pos = iocb->aio_offset;
1569 
1570 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1571 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1572 	req->ki_opcode = iocb->aio_lio_opcode;
1573 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1574 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1575 
1576 	ret = aio_setup_iocb(req);
1577 
1578 	if (ret)
1579 		goto out_put_req;
1580 
1581 	spin_lock_irq(&ctx->ctx_lock);
1582 	aio_run_iocb(req);
1583 	if (!list_empty(&ctx->run_list)) {
1584 		/* drain the run list */
1585 		while (__aio_run_iocbs(ctx))
1586 			;
1587 	}
1588 	spin_unlock_irq(&ctx->ctx_lock);
1589 	aio_put_req(req);	/* drop extra ref to req */
1590 	return 0;
1591 
1592 out_put_req:
1593 	aio_put_req(req);	/* drop extra ref to req */
1594 	aio_put_req(req);	/* drop i/o ref to req */
1595 	return ret;
1596 }
1597 
1598 /* sys_io_submit:
1599  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1600  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1601  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1602  *	*iocbpp[0] is not properly initialized, if the operation specified
1603  *	is invalid for the file descriptor in the iocb.  May fail with
1604  *	-EFAULT if any of the data structures point to invalid data.  May
1605  *	fail with -EBADF if the file descriptor specified in the first
1606  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1607  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1608  *	fail with -ENOSYS if not implemented.
1609  */
1610 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1611 			      struct iocb __user * __user *iocbpp)
1612 {
1613 	struct kioctx *ctx;
1614 	long ret = 0;
1615 	int i;
1616 
1617 	if (unlikely(nr < 0))
1618 		return -EINVAL;
1619 
1620 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1621 		return -EFAULT;
1622 
1623 	ctx = lookup_ioctx(ctx_id);
1624 	if (unlikely(!ctx)) {
1625 		pr_debug("EINVAL: io_submit: invalid context id\n");
1626 		return -EINVAL;
1627 	}
1628 
1629 	/*
1630 	 * AKPM: should this return a partial result if some of the IOs were
1631 	 * successfully submitted?
1632 	 */
1633 	for (i=0; i<nr; i++) {
1634 		struct iocb __user *user_iocb;
1635 		struct iocb tmp;
1636 
1637 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1638 			ret = -EFAULT;
1639 			break;
1640 		}
1641 
1642 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1643 			ret = -EFAULT;
1644 			break;
1645 		}
1646 
1647 		ret = io_submit_one(ctx, user_iocb, &tmp);
1648 		if (ret)
1649 			break;
1650 	}
1651 
1652 	put_ioctx(ctx);
1653 	return i ? i : ret;
1654 }
1655 
1656 /* lookup_kiocb
1657  *	Finds a given iocb for cancellation.
1658  */
1659 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1660 				  u32 key)
1661 {
1662 	struct list_head *pos;
1663 
1664 	assert_spin_locked(&ctx->ctx_lock);
1665 
1666 	/* TODO: use a hash or array, this sucks. */
1667 	list_for_each(pos, &ctx->active_reqs) {
1668 		struct kiocb *kiocb = list_kiocb(pos);
1669 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1670 			return kiocb;
1671 	}
1672 	return NULL;
1673 }
1674 
1675 /* sys_io_cancel:
1676  *	Attempts to cancel an iocb previously passed to io_submit.  If
1677  *	the operation is successfully cancelled, the resulting event is
1678  *	copied into the memory pointed to by result without being placed
1679  *	into the completion queue and 0 is returned.  May fail with
1680  *	-EFAULT if any of the data structures pointed to are invalid.
1681  *	May fail with -EINVAL if aio_context specified by ctx_id is
1682  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1683  *	cancelled.  Will fail with -ENOSYS if not implemented.
1684  */
1685 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1686 			      struct io_event __user *result)
1687 {
1688 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1689 	struct kioctx *ctx;
1690 	struct kiocb *kiocb;
1691 	u32 key;
1692 	int ret;
1693 
1694 	ret = get_user(key, &iocb->aio_key);
1695 	if (unlikely(ret))
1696 		return -EFAULT;
1697 
1698 	ctx = lookup_ioctx(ctx_id);
1699 	if (unlikely(!ctx))
1700 		return -EINVAL;
1701 
1702 	spin_lock_irq(&ctx->ctx_lock);
1703 	ret = -EAGAIN;
1704 	kiocb = lookup_kiocb(ctx, iocb, key);
1705 	if (kiocb && kiocb->ki_cancel) {
1706 		cancel = kiocb->ki_cancel;
1707 		kiocb->ki_users ++;
1708 		kiocbSetCancelled(kiocb);
1709 	} else
1710 		cancel = NULL;
1711 	spin_unlock_irq(&ctx->ctx_lock);
1712 
1713 	if (NULL != cancel) {
1714 		struct io_event tmp;
1715 		pr_debug("calling cancel\n");
1716 		memset(&tmp, 0, sizeof(tmp));
1717 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1718 		tmp.data = kiocb->ki_user_data;
1719 		ret = cancel(kiocb, &tmp);
1720 		if (!ret) {
1721 			/* Cancellation succeeded -- copy the result
1722 			 * into the user's buffer.
1723 			 */
1724 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1725 				ret = -EFAULT;
1726 		}
1727 	} else
1728 		ret = -EINVAL;
1729 
1730 	put_ioctx(ctx);
1731 
1732 	return ret;
1733 }
1734 
1735 /* io_getevents:
1736  *	Attempts to read at least min_nr events and up to nr events from
1737  *	the completion queue for the aio_context specified by ctx_id.  May
1738  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1739  *	if nr is out of range, if when is out of range.  May fail with
1740  *	-EFAULT if any of the memory specified to is invalid.  May return
1741  *	0 or < min_nr if no events are available and the timeout specified
1742  *	by when	has elapsed, where when == NULL specifies an infinite
1743  *	timeout.  Note that the timeout pointed to by when is relative and
1744  *	will be updated if not NULL and the operation blocks.  Will fail
1745  *	with -ENOSYS if not implemented.
1746  */
1747 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1748 				 long min_nr,
1749 				 long nr,
1750 				 struct io_event __user *events,
1751 				 struct timespec __user *timeout)
1752 {
1753 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1754 	long ret = -EINVAL;
1755 
1756 	if (likely(ioctx)) {
1757 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1758 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1759 		put_ioctx(ioctx);
1760 	}
1761 
1762 	return ret;
1763 }
1764 
1765 __initcall(aio_setup);
1766 
1767 EXPORT_SYMBOL(aio_complete);
1768 EXPORT_SYMBOL(aio_put_req);
1769 EXPORT_SYMBOL(wait_on_sync_kiocb);
1770