xref: /openbmc/linux/fs/aio.c (revision 641e969114c781ff269e1bf1b1f8d3cc33bc4a1a)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[];
70 }; /* 128 bytes + ring size */
71 
72 /*
73  * Plugging is meant to work with larger batches of IOs. If we don't
74  * have more than the below, then don't bother setting up a plug.
75  */
76 #define AIO_PLUG_THRESHOLD	2
77 
78 #define AIO_RING_PAGES	8
79 
80 struct kioctx_table {
81 	struct rcu_head		rcu;
82 	unsigned		nr;
83 	struct kioctx __rcu	*table[];
84 };
85 
86 struct kioctx_cpu {
87 	unsigned		reqs_available;
88 };
89 
90 struct ctx_rq_wait {
91 	struct completion comp;
92 	atomic_t count;
93 };
94 
95 struct kioctx {
96 	struct percpu_ref	users;
97 	atomic_t		dead;
98 
99 	struct percpu_ref	reqs;
100 
101 	unsigned long		user_id;
102 
103 	struct __percpu kioctx_cpu *cpu;
104 
105 	/*
106 	 * For percpu reqs_available, number of slots we move to/from global
107 	 * counter at a time:
108 	 */
109 	unsigned		req_batch;
110 	/*
111 	 * This is what userspace passed to io_setup(), it's not used for
112 	 * anything but counting against the global max_reqs quota.
113 	 *
114 	 * The real limit is nr_events - 1, which will be larger (see
115 	 * aio_setup_ring())
116 	 */
117 	unsigned		max_reqs;
118 
119 	/* Size of ringbuffer, in units of struct io_event */
120 	unsigned		nr_events;
121 
122 	unsigned long		mmap_base;
123 	unsigned long		mmap_size;
124 
125 	struct page		**ring_pages;
126 	long			nr_pages;
127 
128 	struct rcu_work		free_rwork;	/* see free_ioctx() */
129 
130 	/*
131 	 * signals when all in-flight requests are done
132 	 */
133 	struct ctx_rq_wait	*rq_wait;
134 
135 	struct {
136 		/*
137 		 * This counts the number of available slots in the ringbuffer,
138 		 * so we avoid overflowing it: it's decremented (if positive)
139 		 * when allocating a kiocb and incremented when the resulting
140 		 * io_event is pulled off the ringbuffer.
141 		 *
142 		 * We batch accesses to it with a percpu version.
143 		 */
144 		atomic_t	reqs_available;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		spinlock_t	ctx_lock;
149 		struct list_head active_reqs;	/* used for cancellation */
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		struct mutex	ring_lock;
154 		wait_queue_head_t wait;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct {
158 		unsigned	tail;
159 		unsigned	completed_events;
160 		spinlock_t	completion_lock;
161 	} ____cacheline_aligned_in_smp;
162 
163 	struct page		*internal_pages[AIO_RING_PAGES];
164 	struct file		*aio_ring_file;
165 
166 	unsigned		id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174 	struct file		*file;
175 	struct work_struct	work;
176 	bool			datasync;
177 	struct cred		*creds;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			cancelled;
185 	bool			work_scheduled;
186 	bool			work_need_resched;
187 	struct wait_queue_entry	wait;
188 	struct work_struct	work;
189 };
190 
191 /*
192  * NOTE! Each of the iocb union members has the file pointer
193  * as the first entry in their struct definition. So you can
194  * access the file pointer through any of the sub-structs,
195  * or directly as just 'ki_filp' in this struct.
196  */
197 struct aio_kiocb {
198 	union {
199 		struct file		*ki_filp;
200 		struct kiocb		rw;
201 		struct fsync_iocb	fsync;
202 		struct poll_iocb	poll;
203 	};
204 
205 	struct kioctx		*ki_ctx;
206 	kiocb_cancel_fn		*ki_cancel;
207 
208 	struct io_event		ki_res;
209 
210 	struct list_head	ki_list;	/* the aio core uses this
211 						 * for cancellation */
212 	refcount_t		ki_refcnt;
213 
214 	/*
215 	 * If the aio_resfd field of the userspace iocb is not zero,
216 	 * this is the underlying eventfd context to deliver events to.
217 	 */
218 	struct eventfd_ctx	*ki_eventfd;
219 };
220 
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 static unsigned long aio_nr;		/* current system wide number of aio requests */
224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 #ifdef CONFIG_SYSCTL
227 static struct ctl_table aio_sysctls[] = {
228 	{
229 		.procname	= "aio-nr",
230 		.data		= &aio_nr,
231 		.maxlen		= sizeof(aio_nr),
232 		.mode		= 0444,
233 		.proc_handler	= proc_doulongvec_minmax,
234 	},
235 	{
236 		.procname	= "aio-max-nr",
237 		.data		= &aio_max_nr,
238 		.maxlen		= sizeof(aio_max_nr),
239 		.mode		= 0644,
240 		.proc_handler	= proc_doulongvec_minmax,
241 	},
242 	{}
243 };
244 
245 static void __init aio_sysctl_init(void)
246 {
247 	register_sysctl_init("fs", aio_sysctls);
248 }
249 #else
250 #define aio_sysctl_init() do { } while (0)
251 #endif
252 
253 static struct kmem_cache	*kiocb_cachep;
254 static struct kmem_cache	*kioctx_cachep;
255 
256 static struct vfsmount *aio_mnt;
257 
258 static const struct file_operations aio_ring_fops;
259 static const struct address_space_operations aio_ctx_aops;
260 
261 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
262 {
263 	struct file *file;
264 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
265 	if (IS_ERR(inode))
266 		return ERR_CAST(inode);
267 
268 	inode->i_mapping->a_ops = &aio_ctx_aops;
269 	inode->i_mapping->private_data = ctx;
270 	inode->i_size = PAGE_SIZE * nr_pages;
271 
272 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
273 				O_RDWR, &aio_ring_fops);
274 	if (IS_ERR(file))
275 		iput(inode);
276 	return file;
277 }
278 
279 static int aio_init_fs_context(struct fs_context *fc)
280 {
281 	if (!init_pseudo(fc, AIO_RING_MAGIC))
282 		return -ENOMEM;
283 	fc->s_iflags |= SB_I_NOEXEC;
284 	return 0;
285 }
286 
287 /* aio_setup
288  *	Creates the slab caches used by the aio routines, panic on
289  *	failure as this is done early during the boot sequence.
290  */
291 static int __init aio_setup(void)
292 {
293 	static struct file_system_type aio_fs = {
294 		.name		= "aio",
295 		.init_fs_context = aio_init_fs_context,
296 		.kill_sb	= kill_anon_super,
297 	};
298 	aio_mnt = kern_mount(&aio_fs);
299 	if (IS_ERR(aio_mnt))
300 		panic("Failed to create aio fs mount.");
301 
302 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
304 	aio_sysctl_init();
305 	return 0;
306 }
307 __initcall(aio_setup);
308 
309 static void put_aio_ring_file(struct kioctx *ctx)
310 {
311 	struct file *aio_ring_file = ctx->aio_ring_file;
312 	struct address_space *i_mapping;
313 
314 	if (aio_ring_file) {
315 		truncate_setsize(file_inode(aio_ring_file), 0);
316 
317 		/* Prevent further access to the kioctx from migratepages */
318 		i_mapping = aio_ring_file->f_mapping;
319 		spin_lock(&i_mapping->private_lock);
320 		i_mapping->private_data = NULL;
321 		ctx->aio_ring_file = NULL;
322 		spin_unlock(&i_mapping->private_lock);
323 
324 		fput(aio_ring_file);
325 	}
326 }
327 
328 static void aio_free_ring(struct kioctx *ctx)
329 {
330 	int i;
331 
332 	/* Disconnect the kiotx from the ring file.  This prevents future
333 	 * accesses to the kioctx from page migration.
334 	 */
335 	put_aio_ring_file(ctx);
336 
337 	for (i = 0; i < ctx->nr_pages; i++) {
338 		struct page *page;
339 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
340 				page_count(ctx->ring_pages[i]));
341 		page = ctx->ring_pages[i];
342 		if (!page)
343 			continue;
344 		ctx->ring_pages[i] = NULL;
345 		put_page(page);
346 	}
347 
348 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
349 		kfree(ctx->ring_pages);
350 		ctx->ring_pages = NULL;
351 	}
352 }
353 
354 static int aio_ring_mremap(struct vm_area_struct *vma)
355 {
356 	struct file *file = vma->vm_file;
357 	struct mm_struct *mm = vma->vm_mm;
358 	struct kioctx_table *table;
359 	int i, res = -EINVAL;
360 
361 	spin_lock(&mm->ioctx_lock);
362 	rcu_read_lock();
363 	table = rcu_dereference(mm->ioctx_table);
364 	if (!table)
365 		goto out_unlock;
366 
367 	for (i = 0; i < table->nr; i++) {
368 		struct kioctx *ctx;
369 
370 		ctx = rcu_dereference(table->table[i]);
371 		if (ctx && ctx->aio_ring_file == file) {
372 			if (!atomic_read(&ctx->dead)) {
373 				ctx->user_id = ctx->mmap_base = vma->vm_start;
374 				res = 0;
375 			}
376 			break;
377 		}
378 	}
379 
380 out_unlock:
381 	rcu_read_unlock();
382 	spin_unlock(&mm->ioctx_lock);
383 	return res;
384 }
385 
386 static const struct vm_operations_struct aio_ring_vm_ops = {
387 	.mremap		= aio_ring_mremap,
388 #if IS_ENABLED(CONFIG_MMU)
389 	.fault		= filemap_fault,
390 	.map_pages	= filemap_map_pages,
391 	.page_mkwrite	= filemap_page_mkwrite,
392 #endif
393 };
394 
395 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
396 {
397 	vm_flags_set(vma, VM_DONTEXPAND);
398 	vma->vm_ops = &aio_ring_vm_ops;
399 	return 0;
400 }
401 
402 static const struct file_operations aio_ring_fops = {
403 	.mmap = aio_ring_mmap,
404 };
405 
406 #if IS_ENABLED(CONFIG_MIGRATION)
407 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
408 			struct folio *src, enum migrate_mode mode)
409 {
410 	struct kioctx *ctx;
411 	unsigned long flags;
412 	pgoff_t idx;
413 	int rc;
414 
415 	/*
416 	 * We cannot support the _NO_COPY case here, because copy needs to
417 	 * happen under the ctx->completion_lock. That does not work with the
418 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
419 	 */
420 	if (mode == MIGRATE_SYNC_NO_COPY)
421 		return -EINVAL;
422 
423 	rc = 0;
424 
425 	/* mapping->private_lock here protects against the kioctx teardown.  */
426 	spin_lock(&mapping->private_lock);
427 	ctx = mapping->private_data;
428 	if (!ctx) {
429 		rc = -EINVAL;
430 		goto out;
431 	}
432 
433 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
434 	 * to the ring's head, and prevents page migration from mucking in
435 	 * a partially initialized kiotx.
436 	 */
437 	if (!mutex_trylock(&ctx->ring_lock)) {
438 		rc = -EAGAIN;
439 		goto out;
440 	}
441 
442 	idx = src->index;
443 	if (idx < (pgoff_t)ctx->nr_pages) {
444 		/* Make sure the old folio hasn't already been changed */
445 		if (ctx->ring_pages[idx] != &src->page)
446 			rc = -EAGAIN;
447 	} else
448 		rc = -EINVAL;
449 
450 	if (rc != 0)
451 		goto out_unlock;
452 
453 	/* Writeback must be complete */
454 	BUG_ON(folio_test_writeback(src));
455 	folio_get(dst);
456 
457 	rc = folio_migrate_mapping(mapping, dst, src, 1);
458 	if (rc != MIGRATEPAGE_SUCCESS) {
459 		folio_put(dst);
460 		goto out_unlock;
461 	}
462 
463 	/* Take completion_lock to prevent other writes to the ring buffer
464 	 * while the old folio is copied to the new.  This prevents new
465 	 * events from being lost.
466 	 */
467 	spin_lock_irqsave(&ctx->completion_lock, flags);
468 	folio_migrate_copy(dst, src);
469 	BUG_ON(ctx->ring_pages[idx] != &src->page);
470 	ctx->ring_pages[idx] = &dst->page;
471 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
472 
473 	/* The old folio is no longer accessible. */
474 	folio_put(src);
475 
476 out_unlock:
477 	mutex_unlock(&ctx->ring_lock);
478 out:
479 	spin_unlock(&mapping->private_lock);
480 	return rc;
481 }
482 #else
483 #define aio_migrate_folio NULL
484 #endif
485 
486 static const struct address_space_operations aio_ctx_aops = {
487 	.dirty_folio	= noop_dirty_folio,
488 	.migrate_folio	= aio_migrate_folio,
489 };
490 
491 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
492 {
493 	struct aio_ring *ring;
494 	struct mm_struct *mm = current->mm;
495 	unsigned long size, unused;
496 	int nr_pages;
497 	int i;
498 	struct file *file;
499 
500 	/* Compensate for the ring buffer's head/tail overlap entry */
501 	nr_events += 2;	/* 1 is required, 2 for good luck */
502 
503 	size = sizeof(struct aio_ring);
504 	size += sizeof(struct io_event) * nr_events;
505 
506 	nr_pages = PFN_UP(size);
507 	if (nr_pages < 0)
508 		return -EINVAL;
509 
510 	file = aio_private_file(ctx, nr_pages);
511 	if (IS_ERR(file)) {
512 		ctx->aio_ring_file = NULL;
513 		return -ENOMEM;
514 	}
515 
516 	ctx->aio_ring_file = file;
517 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
518 			/ sizeof(struct io_event);
519 
520 	ctx->ring_pages = ctx->internal_pages;
521 	if (nr_pages > AIO_RING_PAGES) {
522 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
523 					  GFP_KERNEL);
524 		if (!ctx->ring_pages) {
525 			put_aio_ring_file(ctx);
526 			return -ENOMEM;
527 		}
528 	}
529 
530 	for (i = 0; i < nr_pages; i++) {
531 		struct page *page;
532 		page = find_or_create_page(file->f_mapping,
533 					   i, GFP_USER | __GFP_ZERO);
534 		if (!page)
535 			break;
536 		pr_debug("pid(%d) page[%d]->count=%d\n",
537 			 current->pid, i, page_count(page));
538 		SetPageUptodate(page);
539 		unlock_page(page);
540 
541 		ctx->ring_pages[i] = page;
542 	}
543 	ctx->nr_pages = i;
544 
545 	if (unlikely(i != nr_pages)) {
546 		aio_free_ring(ctx);
547 		return -ENOMEM;
548 	}
549 
550 	ctx->mmap_size = nr_pages * PAGE_SIZE;
551 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
552 
553 	if (mmap_write_lock_killable(mm)) {
554 		ctx->mmap_size = 0;
555 		aio_free_ring(ctx);
556 		return -EINTR;
557 	}
558 
559 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
560 				 PROT_READ | PROT_WRITE,
561 				 MAP_SHARED, 0, 0, &unused, NULL);
562 	mmap_write_unlock(mm);
563 	if (IS_ERR((void *)ctx->mmap_base)) {
564 		ctx->mmap_size = 0;
565 		aio_free_ring(ctx);
566 		return -ENOMEM;
567 	}
568 
569 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
570 
571 	ctx->user_id = ctx->mmap_base;
572 	ctx->nr_events = nr_events; /* trusted copy */
573 
574 	ring = page_address(ctx->ring_pages[0]);
575 	ring->nr = nr_events;	/* user copy */
576 	ring->id = ~0U;
577 	ring->head = ring->tail = 0;
578 	ring->magic = AIO_RING_MAGIC;
579 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
580 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
581 	ring->header_length = sizeof(struct aio_ring);
582 	flush_dcache_page(ctx->ring_pages[0]);
583 
584 	return 0;
585 }
586 
587 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
588 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
589 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
590 
591 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
592 {
593 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
594 	struct kioctx *ctx = req->ki_ctx;
595 	unsigned long flags;
596 
597 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
598 		return;
599 
600 	spin_lock_irqsave(&ctx->ctx_lock, flags);
601 	list_add_tail(&req->ki_list, &ctx->active_reqs);
602 	req->ki_cancel = cancel;
603 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
604 }
605 EXPORT_SYMBOL(kiocb_set_cancel_fn);
606 
607 /*
608  * free_ioctx() should be RCU delayed to synchronize against the RCU
609  * protected lookup_ioctx() and also needs process context to call
610  * aio_free_ring().  Use rcu_work.
611  */
612 static void free_ioctx(struct work_struct *work)
613 {
614 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
615 					  free_rwork);
616 	pr_debug("freeing %p\n", ctx);
617 
618 	aio_free_ring(ctx);
619 	free_percpu(ctx->cpu);
620 	percpu_ref_exit(&ctx->reqs);
621 	percpu_ref_exit(&ctx->users);
622 	kmem_cache_free(kioctx_cachep, ctx);
623 }
624 
625 static void free_ioctx_reqs(struct percpu_ref *ref)
626 {
627 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
628 
629 	/* At this point we know that there are no any in-flight requests */
630 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
631 		complete(&ctx->rq_wait->comp);
632 
633 	/* Synchronize against RCU protected table->table[] dereferences */
634 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
635 	queue_rcu_work(system_wq, &ctx->free_rwork);
636 }
637 
638 /*
639  * When this function runs, the kioctx has been removed from the "hash table"
640  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
641  * now it's safe to cancel any that need to be.
642  */
643 static void free_ioctx_users(struct percpu_ref *ref)
644 {
645 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
646 	struct aio_kiocb *req;
647 
648 	spin_lock_irq(&ctx->ctx_lock);
649 
650 	while (!list_empty(&ctx->active_reqs)) {
651 		req = list_first_entry(&ctx->active_reqs,
652 				       struct aio_kiocb, ki_list);
653 		req->ki_cancel(&req->rw);
654 		list_del_init(&req->ki_list);
655 	}
656 
657 	spin_unlock_irq(&ctx->ctx_lock);
658 
659 	percpu_ref_kill(&ctx->reqs);
660 	percpu_ref_put(&ctx->reqs);
661 }
662 
663 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
664 {
665 	unsigned i, new_nr;
666 	struct kioctx_table *table, *old;
667 	struct aio_ring *ring;
668 
669 	spin_lock(&mm->ioctx_lock);
670 	table = rcu_dereference_raw(mm->ioctx_table);
671 
672 	while (1) {
673 		if (table)
674 			for (i = 0; i < table->nr; i++)
675 				if (!rcu_access_pointer(table->table[i])) {
676 					ctx->id = i;
677 					rcu_assign_pointer(table->table[i], ctx);
678 					spin_unlock(&mm->ioctx_lock);
679 
680 					/* While kioctx setup is in progress,
681 					 * we are protected from page migration
682 					 * changes ring_pages by ->ring_lock.
683 					 */
684 					ring = page_address(ctx->ring_pages[0]);
685 					ring->id = ctx->id;
686 					return 0;
687 				}
688 
689 		new_nr = (table ? table->nr : 1) * 4;
690 		spin_unlock(&mm->ioctx_lock);
691 
692 		table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
693 		if (!table)
694 			return -ENOMEM;
695 
696 		table->nr = new_nr;
697 
698 		spin_lock(&mm->ioctx_lock);
699 		old = rcu_dereference_raw(mm->ioctx_table);
700 
701 		if (!old) {
702 			rcu_assign_pointer(mm->ioctx_table, table);
703 		} else if (table->nr > old->nr) {
704 			memcpy(table->table, old->table,
705 			       old->nr * sizeof(struct kioctx *));
706 
707 			rcu_assign_pointer(mm->ioctx_table, table);
708 			kfree_rcu(old, rcu);
709 		} else {
710 			kfree(table);
711 			table = old;
712 		}
713 	}
714 }
715 
716 static void aio_nr_sub(unsigned nr)
717 {
718 	spin_lock(&aio_nr_lock);
719 	if (WARN_ON(aio_nr - nr > aio_nr))
720 		aio_nr = 0;
721 	else
722 		aio_nr -= nr;
723 	spin_unlock(&aio_nr_lock);
724 }
725 
726 /* ioctx_alloc
727  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
728  */
729 static struct kioctx *ioctx_alloc(unsigned nr_events)
730 {
731 	struct mm_struct *mm = current->mm;
732 	struct kioctx *ctx;
733 	int err = -ENOMEM;
734 
735 	/*
736 	 * Store the original nr_events -- what userspace passed to io_setup(),
737 	 * for counting against the global limit -- before it changes.
738 	 */
739 	unsigned int max_reqs = nr_events;
740 
741 	/*
742 	 * We keep track of the number of available ringbuffer slots, to prevent
743 	 * overflow (reqs_available), and we also use percpu counters for this.
744 	 *
745 	 * So since up to half the slots might be on other cpu's percpu counters
746 	 * and unavailable, double nr_events so userspace sees what they
747 	 * expected: additionally, we move req_batch slots to/from percpu
748 	 * counters at a time, so make sure that isn't 0:
749 	 */
750 	nr_events = max(nr_events, num_possible_cpus() * 4);
751 	nr_events *= 2;
752 
753 	/* Prevent overflows */
754 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
755 		pr_debug("ENOMEM: nr_events too high\n");
756 		return ERR_PTR(-EINVAL);
757 	}
758 
759 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
760 		return ERR_PTR(-EAGAIN);
761 
762 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
763 	if (!ctx)
764 		return ERR_PTR(-ENOMEM);
765 
766 	ctx->max_reqs = max_reqs;
767 
768 	spin_lock_init(&ctx->ctx_lock);
769 	spin_lock_init(&ctx->completion_lock);
770 	mutex_init(&ctx->ring_lock);
771 	/* Protect against page migration throughout kiotx setup by keeping
772 	 * the ring_lock mutex held until setup is complete. */
773 	mutex_lock(&ctx->ring_lock);
774 	init_waitqueue_head(&ctx->wait);
775 
776 	INIT_LIST_HEAD(&ctx->active_reqs);
777 
778 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
779 		goto err;
780 
781 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
782 		goto err;
783 
784 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
785 	if (!ctx->cpu)
786 		goto err;
787 
788 	err = aio_setup_ring(ctx, nr_events);
789 	if (err < 0)
790 		goto err;
791 
792 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
793 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
794 	if (ctx->req_batch < 1)
795 		ctx->req_batch = 1;
796 
797 	/* limit the number of system wide aios */
798 	spin_lock(&aio_nr_lock);
799 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
800 	    aio_nr + ctx->max_reqs < aio_nr) {
801 		spin_unlock(&aio_nr_lock);
802 		err = -EAGAIN;
803 		goto err_ctx;
804 	}
805 	aio_nr += ctx->max_reqs;
806 	spin_unlock(&aio_nr_lock);
807 
808 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
809 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
810 
811 	err = ioctx_add_table(ctx, mm);
812 	if (err)
813 		goto err_cleanup;
814 
815 	/* Release the ring_lock mutex now that all setup is complete. */
816 	mutex_unlock(&ctx->ring_lock);
817 
818 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
819 		 ctx, ctx->user_id, mm, ctx->nr_events);
820 	return ctx;
821 
822 err_cleanup:
823 	aio_nr_sub(ctx->max_reqs);
824 err_ctx:
825 	atomic_set(&ctx->dead, 1);
826 	if (ctx->mmap_size)
827 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
828 	aio_free_ring(ctx);
829 err:
830 	mutex_unlock(&ctx->ring_lock);
831 	free_percpu(ctx->cpu);
832 	percpu_ref_exit(&ctx->reqs);
833 	percpu_ref_exit(&ctx->users);
834 	kmem_cache_free(kioctx_cachep, ctx);
835 	pr_debug("error allocating ioctx %d\n", err);
836 	return ERR_PTR(err);
837 }
838 
839 /* kill_ioctx
840  *	Cancels all outstanding aio requests on an aio context.  Used
841  *	when the processes owning a context have all exited to encourage
842  *	the rapid destruction of the kioctx.
843  */
844 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
845 		      struct ctx_rq_wait *wait)
846 {
847 	struct kioctx_table *table;
848 
849 	spin_lock(&mm->ioctx_lock);
850 	if (atomic_xchg(&ctx->dead, 1)) {
851 		spin_unlock(&mm->ioctx_lock);
852 		return -EINVAL;
853 	}
854 
855 	table = rcu_dereference_raw(mm->ioctx_table);
856 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
857 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
858 	spin_unlock(&mm->ioctx_lock);
859 
860 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
861 	wake_up_all(&ctx->wait);
862 
863 	/*
864 	 * It'd be more correct to do this in free_ioctx(), after all
865 	 * the outstanding kiocbs have finished - but by then io_destroy
866 	 * has already returned, so io_setup() could potentially return
867 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
868 	 *  could tell).
869 	 */
870 	aio_nr_sub(ctx->max_reqs);
871 
872 	if (ctx->mmap_size)
873 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
874 
875 	ctx->rq_wait = wait;
876 	percpu_ref_kill(&ctx->users);
877 	return 0;
878 }
879 
880 /*
881  * exit_aio: called when the last user of mm goes away.  At this point, there is
882  * no way for any new requests to be submited or any of the io_* syscalls to be
883  * called on the context.
884  *
885  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
886  * them.
887  */
888 void exit_aio(struct mm_struct *mm)
889 {
890 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
891 	struct ctx_rq_wait wait;
892 	int i, skipped;
893 
894 	if (!table)
895 		return;
896 
897 	atomic_set(&wait.count, table->nr);
898 	init_completion(&wait.comp);
899 
900 	skipped = 0;
901 	for (i = 0; i < table->nr; ++i) {
902 		struct kioctx *ctx =
903 			rcu_dereference_protected(table->table[i], true);
904 
905 		if (!ctx) {
906 			skipped++;
907 			continue;
908 		}
909 
910 		/*
911 		 * We don't need to bother with munmap() here - exit_mmap(mm)
912 		 * is coming and it'll unmap everything. And we simply can't,
913 		 * this is not necessarily our ->mm.
914 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
915 		 * that it needs to unmap the area, just set it to 0.
916 		 */
917 		ctx->mmap_size = 0;
918 		kill_ioctx(mm, ctx, &wait);
919 	}
920 
921 	if (!atomic_sub_and_test(skipped, &wait.count)) {
922 		/* Wait until all IO for the context are done. */
923 		wait_for_completion(&wait.comp);
924 	}
925 
926 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
927 	kfree(table);
928 }
929 
930 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
931 {
932 	struct kioctx_cpu *kcpu;
933 	unsigned long flags;
934 
935 	local_irq_save(flags);
936 	kcpu = this_cpu_ptr(ctx->cpu);
937 	kcpu->reqs_available += nr;
938 
939 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
940 		kcpu->reqs_available -= ctx->req_batch;
941 		atomic_add(ctx->req_batch, &ctx->reqs_available);
942 	}
943 
944 	local_irq_restore(flags);
945 }
946 
947 static bool __get_reqs_available(struct kioctx *ctx)
948 {
949 	struct kioctx_cpu *kcpu;
950 	bool ret = false;
951 	unsigned long flags;
952 
953 	local_irq_save(flags);
954 	kcpu = this_cpu_ptr(ctx->cpu);
955 	if (!kcpu->reqs_available) {
956 		int avail = atomic_read(&ctx->reqs_available);
957 
958 		do {
959 			if (avail < ctx->req_batch)
960 				goto out;
961 		} while (!atomic_try_cmpxchg(&ctx->reqs_available,
962 					     &avail, avail - ctx->req_batch));
963 
964 		kcpu->reqs_available += ctx->req_batch;
965 	}
966 
967 	ret = true;
968 	kcpu->reqs_available--;
969 out:
970 	local_irq_restore(flags);
971 	return ret;
972 }
973 
974 /* refill_reqs_available
975  *	Updates the reqs_available reference counts used for tracking the
976  *	number of free slots in the completion ring.  This can be called
977  *	from aio_complete() (to optimistically update reqs_available) or
978  *	from aio_get_req() (the we're out of events case).  It must be
979  *	called holding ctx->completion_lock.
980  */
981 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
982                                   unsigned tail)
983 {
984 	unsigned events_in_ring, completed;
985 
986 	/* Clamp head since userland can write to it. */
987 	head %= ctx->nr_events;
988 	if (head <= tail)
989 		events_in_ring = tail - head;
990 	else
991 		events_in_ring = ctx->nr_events - (head - tail);
992 
993 	completed = ctx->completed_events;
994 	if (events_in_ring < completed)
995 		completed -= events_in_ring;
996 	else
997 		completed = 0;
998 
999 	if (!completed)
1000 		return;
1001 
1002 	ctx->completed_events -= completed;
1003 	put_reqs_available(ctx, completed);
1004 }
1005 
1006 /* user_refill_reqs_available
1007  *	Called to refill reqs_available when aio_get_req() encounters an
1008  *	out of space in the completion ring.
1009  */
1010 static void user_refill_reqs_available(struct kioctx *ctx)
1011 {
1012 	spin_lock_irq(&ctx->completion_lock);
1013 	if (ctx->completed_events) {
1014 		struct aio_ring *ring;
1015 		unsigned head;
1016 
1017 		/* Access of ring->head may race with aio_read_events_ring()
1018 		 * here, but that's okay since whether we read the old version
1019 		 * or the new version, and either will be valid.  The important
1020 		 * part is that head cannot pass tail since we prevent
1021 		 * aio_complete() from updating tail by holding
1022 		 * ctx->completion_lock.  Even if head is invalid, the check
1023 		 * against ctx->completed_events below will make sure we do the
1024 		 * safe/right thing.
1025 		 */
1026 		ring = page_address(ctx->ring_pages[0]);
1027 		head = ring->head;
1028 
1029 		refill_reqs_available(ctx, head, ctx->tail);
1030 	}
1031 
1032 	spin_unlock_irq(&ctx->completion_lock);
1033 }
1034 
1035 static bool get_reqs_available(struct kioctx *ctx)
1036 {
1037 	if (__get_reqs_available(ctx))
1038 		return true;
1039 	user_refill_reqs_available(ctx);
1040 	return __get_reqs_available(ctx);
1041 }
1042 
1043 /* aio_get_req
1044  *	Allocate a slot for an aio request.
1045  * Returns NULL if no requests are free.
1046  *
1047  * The refcount is initialized to 2 - one for the async op completion,
1048  * one for the synchronous code that does this.
1049  */
1050 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1051 {
1052 	struct aio_kiocb *req;
1053 
1054 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1055 	if (unlikely(!req))
1056 		return NULL;
1057 
1058 	if (unlikely(!get_reqs_available(ctx))) {
1059 		kmem_cache_free(kiocb_cachep, req);
1060 		return NULL;
1061 	}
1062 
1063 	percpu_ref_get(&ctx->reqs);
1064 	req->ki_ctx = ctx;
1065 	INIT_LIST_HEAD(&req->ki_list);
1066 	refcount_set(&req->ki_refcnt, 2);
1067 	req->ki_eventfd = NULL;
1068 	return req;
1069 }
1070 
1071 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1072 {
1073 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1074 	struct mm_struct *mm = current->mm;
1075 	struct kioctx *ctx, *ret = NULL;
1076 	struct kioctx_table *table;
1077 	unsigned id;
1078 
1079 	if (get_user(id, &ring->id))
1080 		return NULL;
1081 
1082 	rcu_read_lock();
1083 	table = rcu_dereference(mm->ioctx_table);
1084 
1085 	if (!table || id >= table->nr)
1086 		goto out;
1087 
1088 	id = array_index_nospec(id, table->nr);
1089 	ctx = rcu_dereference(table->table[id]);
1090 	if (ctx && ctx->user_id == ctx_id) {
1091 		if (percpu_ref_tryget_live(&ctx->users))
1092 			ret = ctx;
1093 	}
1094 out:
1095 	rcu_read_unlock();
1096 	return ret;
1097 }
1098 
1099 static inline void iocb_destroy(struct aio_kiocb *iocb)
1100 {
1101 	if (iocb->ki_eventfd)
1102 		eventfd_ctx_put(iocb->ki_eventfd);
1103 	if (iocb->ki_filp)
1104 		fput(iocb->ki_filp);
1105 	percpu_ref_put(&iocb->ki_ctx->reqs);
1106 	kmem_cache_free(kiocb_cachep, iocb);
1107 }
1108 
1109 /* aio_complete
1110  *	Called when the io request on the given iocb is complete.
1111  */
1112 static void aio_complete(struct aio_kiocb *iocb)
1113 {
1114 	struct kioctx	*ctx = iocb->ki_ctx;
1115 	struct aio_ring	*ring;
1116 	struct io_event	*ev_page, *event;
1117 	unsigned tail, pos, head;
1118 	unsigned long	flags;
1119 
1120 	/*
1121 	 * Add a completion event to the ring buffer. Must be done holding
1122 	 * ctx->completion_lock to prevent other code from messing with the tail
1123 	 * pointer since we might be called from irq context.
1124 	 */
1125 	spin_lock_irqsave(&ctx->completion_lock, flags);
1126 
1127 	tail = ctx->tail;
1128 	pos = tail + AIO_EVENTS_OFFSET;
1129 
1130 	if (++tail >= ctx->nr_events)
1131 		tail = 0;
1132 
1133 	ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1134 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1135 
1136 	*event = iocb->ki_res;
1137 
1138 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1139 
1140 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1141 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1142 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1143 
1144 	/* after flagging the request as done, we
1145 	 * must never even look at it again
1146 	 */
1147 	smp_wmb();	/* make event visible before updating tail */
1148 
1149 	ctx->tail = tail;
1150 
1151 	ring = page_address(ctx->ring_pages[0]);
1152 	head = ring->head;
1153 	ring->tail = tail;
1154 	flush_dcache_page(ctx->ring_pages[0]);
1155 
1156 	ctx->completed_events++;
1157 	if (ctx->completed_events > 1)
1158 		refill_reqs_available(ctx, head, tail);
1159 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1160 
1161 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1162 
1163 	/*
1164 	 * Check if the user asked us to deliver the result through an
1165 	 * eventfd. The eventfd_signal() function is safe to be called
1166 	 * from IRQ context.
1167 	 */
1168 	if (iocb->ki_eventfd)
1169 		eventfd_signal(iocb->ki_eventfd, 1);
1170 
1171 	/*
1172 	 * We have to order our ring_info tail store above and test
1173 	 * of the wait list below outside the wait lock.  This is
1174 	 * like in wake_up_bit() where clearing a bit has to be
1175 	 * ordered with the unlocked test.
1176 	 */
1177 	smp_mb();
1178 
1179 	if (waitqueue_active(&ctx->wait))
1180 		wake_up(&ctx->wait);
1181 }
1182 
1183 static inline void iocb_put(struct aio_kiocb *iocb)
1184 {
1185 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1186 		aio_complete(iocb);
1187 		iocb_destroy(iocb);
1188 	}
1189 }
1190 
1191 /* aio_read_events_ring
1192  *	Pull an event off of the ioctx's event ring.  Returns the number of
1193  *	events fetched
1194  */
1195 static long aio_read_events_ring(struct kioctx *ctx,
1196 				 struct io_event __user *event, long nr)
1197 {
1198 	struct aio_ring *ring;
1199 	unsigned head, tail, pos;
1200 	long ret = 0;
1201 	int copy_ret;
1202 
1203 	/*
1204 	 * The mutex can block and wake us up and that will cause
1205 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1206 	 * and repeat. This should be rare enough that it doesn't cause
1207 	 * peformance issues. See the comment in read_events() for more detail.
1208 	 */
1209 	sched_annotate_sleep();
1210 	mutex_lock(&ctx->ring_lock);
1211 
1212 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1213 	ring = page_address(ctx->ring_pages[0]);
1214 	head = ring->head;
1215 	tail = ring->tail;
1216 
1217 	/*
1218 	 * Ensure that once we've read the current tail pointer, that
1219 	 * we also see the events that were stored up to the tail.
1220 	 */
1221 	smp_rmb();
1222 
1223 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1224 
1225 	if (head == tail)
1226 		goto out;
1227 
1228 	head %= ctx->nr_events;
1229 	tail %= ctx->nr_events;
1230 
1231 	while (ret < nr) {
1232 		long avail;
1233 		struct io_event *ev;
1234 		struct page *page;
1235 
1236 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1237 		if (head == tail)
1238 			break;
1239 
1240 		pos = head + AIO_EVENTS_OFFSET;
1241 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1242 		pos %= AIO_EVENTS_PER_PAGE;
1243 
1244 		avail = min(avail, nr - ret);
1245 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1246 
1247 		ev = page_address(page);
1248 		copy_ret = copy_to_user(event + ret, ev + pos,
1249 					sizeof(*ev) * avail);
1250 
1251 		if (unlikely(copy_ret)) {
1252 			ret = -EFAULT;
1253 			goto out;
1254 		}
1255 
1256 		ret += avail;
1257 		head += avail;
1258 		head %= ctx->nr_events;
1259 	}
1260 
1261 	ring = page_address(ctx->ring_pages[0]);
1262 	ring->head = head;
1263 	flush_dcache_page(ctx->ring_pages[0]);
1264 
1265 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1266 out:
1267 	mutex_unlock(&ctx->ring_lock);
1268 
1269 	return ret;
1270 }
1271 
1272 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1273 			    struct io_event __user *event, long *i)
1274 {
1275 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1276 
1277 	if (ret > 0)
1278 		*i += ret;
1279 
1280 	if (unlikely(atomic_read(&ctx->dead)))
1281 		ret = -EINVAL;
1282 
1283 	if (!*i)
1284 		*i = ret;
1285 
1286 	return ret < 0 || *i >= min_nr;
1287 }
1288 
1289 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1290 			struct io_event __user *event,
1291 			ktime_t until)
1292 {
1293 	long ret = 0;
1294 
1295 	/*
1296 	 * Note that aio_read_events() is being called as the conditional - i.e.
1297 	 * we're calling it after prepare_to_wait() has set task state to
1298 	 * TASK_INTERRUPTIBLE.
1299 	 *
1300 	 * But aio_read_events() can block, and if it blocks it's going to flip
1301 	 * the task state back to TASK_RUNNING.
1302 	 *
1303 	 * This should be ok, provided it doesn't flip the state back to
1304 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1305 	 * will only happen if the mutex_lock() call blocks, and we then find
1306 	 * the ringbuffer empty. So in practice we should be ok, but it's
1307 	 * something to be aware of when touching this code.
1308 	 */
1309 	if (until == 0)
1310 		aio_read_events(ctx, min_nr, nr, event, &ret);
1311 	else
1312 		wait_event_interruptible_hrtimeout(ctx->wait,
1313 				aio_read_events(ctx, min_nr, nr, event, &ret),
1314 				until);
1315 	return ret;
1316 }
1317 
1318 /* sys_io_setup:
1319  *	Create an aio_context capable of receiving at least nr_events.
1320  *	ctxp must not point to an aio_context that already exists, and
1321  *	must be initialized to 0 prior to the call.  On successful
1322  *	creation of the aio_context, *ctxp is filled in with the resulting
1323  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1324  *	if the specified nr_events exceeds internal limits.  May fail
1325  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1326  *	of available events.  May fail with -ENOMEM if insufficient kernel
1327  *	resources are available.  May fail with -EFAULT if an invalid
1328  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1329  *	implemented.
1330  */
1331 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1332 {
1333 	struct kioctx *ioctx = NULL;
1334 	unsigned long ctx;
1335 	long ret;
1336 
1337 	ret = get_user(ctx, ctxp);
1338 	if (unlikely(ret))
1339 		goto out;
1340 
1341 	ret = -EINVAL;
1342 	if (unlikely(ctx || nr_events == 0)) {
1343 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1344 		         ctx, nr_events);
1345 		goto out;
1346 	}
1347 
1348 	ioctx = ioctx_alloc(nr_events);
1349 	ret = PTR_ERR(ioctx);
1350 	if (!IS_ERR(ioctx)) {
1351 		ret = put_user(ioctx->user_id, ctxp);
1352 		if (ret)
1353 			kill_ioctx(current->mm, ioctx, NULL);
1354 		percpu_ref_put(&ioctx->users);
1355 	}
1356 
1357 out:
1358 	return ret;
1359 }
1360 
1361 #ifdef CONFIG_COMPAT
1362 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1363 {
1364 	struct kioctx *ioctx = NULL;
1365 	unsigned long ctx;
1366 	long ret;
1367 
1368 	ret = get_user(ctx, ctx32p);
1369 	if (unlikely(ret))
1370 		goto out;
1371 
1372 	ret = -EINVAL;
1373 	if (unlikely(ctx || nr_events == 0)) {
1374 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1375 		         ctx, nr_events);
1376 		goto out;
1377 	}
1378 
1379 	ioctx = ioctx_alloc(nr_events);
1380 	ret = PTR_ERR(ioctx);
1381 	if (!IS_ERR(ioctx)) {
1382 		/* truncating is ok because it's a user address */
1383 		ret = put_user((u32)ioctx->user_id, ctx32p);
1384 		if (ret)
1385 			kill_ioctx(current->mm, ioctx, NULL);
1386 		percpu_ref_put(&ioctx->users);
1387 	}
1388 
1389 out:
1390 	return ret;
1391 }
1392 #endif
1393 
1394 /* sys_io_destroy:
1395  *	Destroy the aio_context specified.  May cancel any outstanding
1396  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1397  *	implemented.  May fail with -EINVAL if the context pointed to
1398  *	is invalid.
1399  */
1400 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1401 {
1402 	struct kioctx *ioctx = lookup_ioctx(ctx);
1403 	if (likely(NULL != ioctx)) {
1404 		struct ctx_rq_wait wait;
1405 		int ret;
1406 
1407 		init_completion(&wait.comp);
1408 		atomic_set(&wait.count, 1);
1409 
1410 		/* Pass requests_done to kill_ioctx() where it can be set
1411 		 * in a thread-safe way. If we try to set it here then we have
1412 		 * a race condition if two io_destroy() called simultaneously.
1413 		 */
1414 		ret = kill_ioctx(current->mm, ioctx, &wait);
1415 		percpu_ref_put(&ioctx->users);
1416 
1417 		/* Wait until all IO for the context are done. Otherwise kernel
1418 		 * keep using user-space buffers even if user thinks the context
1419 		 * is destroyed.
1420 		 */
1421 		if (!ret)
1422 			wait_for_completion(&wait.comp);
1423 
1424 		return ret;
1425 	}
1426 	pr_debug("EINVAL: invalid context id\n");
1427 	return -EINVAL;
1428 }
1429 
1430 static void aio_remove_iocb(struct aio_kiocb *iocb)
1431 {
1432 	struct kioctx *ctx = iocb->ki_ctx;
1433 	unsigned long flags;
1434 
1435 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1436 	list_del(&iocb->ki_list);
1437 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1438 }
1439 
1440 static void aio_complete_rw(struct kiocb *kiocb, long res)
1441 {
1442 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1443 
1444 	if (!list_empty_careful(&iocb->ki_list))
1445 		aio_remove_iocb(iocb);
1446 
1447 	if (kiocb->ki_flags & IOCB_WRITE) {
1448 		struct inode *inode = file_inode(kiocb->ki_filp);
1449 
1450 		if (S_ISREG(inode->i_mode))
1451 			kiocb_end_write(kiocb);
1452 	}
1453 
1454 	iocb->ki_res.res = res;
1455 	iocb->ki_res.res2 = 0;
1456 	iocb_put(iocb);
1457 }
1458 
1459 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1460 {
1461 	int ret;
1462 
1463 	req->ki_complete = aio_complete_rw;
1464 	req->private = NULL;
1465 	req->ki_pos = iocb->aio_offset;
1466 	req->ki_flags = req->ki_filp->f_iocb_flags;
1467 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1468 		req->ki_flags |= IOCB_EVENTFD;
1469 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1470 		/*
1471 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1472 		 * aio_reqprio is interpreted as an I/O scheduling
1473 		 * class and priority.
1474 		 */
1475 		ret = ioprio_check_cap(iocb->aio_reqprio);
1476 		if (ret) {
1477 			pr_debug("aio ioprio check cap error: %d\n", ret);
1478 			return ret;
1479 		}
1480 
1481 		req->ki_ioprio = iocb->aio_reqprio;
1482 	} else
1483 		req->ki_ioprio = get_current_ioprio();
1484 
1485 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1486 	if (unlikely(ret))
1487 		return ret;
1488 
1489 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1490 	return 0;
1491 }
1492 
1493 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1494 		struct iovec **iovec, bool vectored, bool compat,
1495 		struct iov_iter *iter)
1496 {
1497 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1498 	size_t len = iocb->aio_nbytes;
1499 
1500 	if (!vectored) {
1501 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1502 		*iovec = NULL;
1503 		return ret;
1504 	}
1505 
1506 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1507 }
1508 
1509 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1510 {
1511 	switch (ret) {
1512 	case -EIOCBQUEUED:
1513 		break;
1514 	case -ERESTARTSYS:
1515 	case -ERESTARTNOINTR:
1516 	case -ERESTARTNOHAND:
1517 	case -ERESTART_RESTARTBLOCK:
1518 		/*
1519 		 * There's no easy way to restart the syscall since other AIO's
1520 		 * may be already running. Just fail this IO with EINTR.
1521 		 */
1522 		ret = -EINTR;
1523 		fallthrough;
1524 	default:
1525 		req->ki_complete(req, ret);
1526 	}
1527 }
1528 
1529 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1530 			bool vectored, bool compat)
1531 {
1532 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1533 	struct iov_iter iter;
1534 	struct file *file;
1535 	int ret;
1536 
1537 	ret = aio_prep_rw(req, iocb);
1538 	if (ret)
1539 		return ret;
1540 	file = req->ki_filp;
1541 	if (unlikely(!(file->f_mode & FMODE_READ)))
1542 		return -EBADF;
1543 	if (unlikely(!file->f_op->read_iter))
1544 		return -EINVAL;
1545 
1546 	ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1547 	if (ret < 0)
1548 		return ret;
1549 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1550 	if (!ret)
1551 		aio_rw_done(req, call_read_iter(file, req, &iter));
1552 	kfree(iovec);
1553 	return ret;
1554 }
1555 
1556 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1557 			 bool vectored, bool compat)
1558 {
1559 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1560 	struct iov_iter iter;
1561 	struct file *file;
1562 	int ret;
1563 
1564 	ret = aio_prep_rw(req, iocb);
1565 	if (ret)
1566 		return ret;
1567 	file = req->ki_filp;
1568 
1569 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1570 		return -EBADF;
1571 	if (unlikely(!file->f_op->write_iter))
1572 		return -EINVAL;
1573 
1574 	ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1575 	if (ret < 0)
1576 		return ret;
1577 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1578 	if (!ret) {
1579 		if (S_ISREG(file_inode(file)->i_mode))
1580 			kiocb_start_write(req);
1581 		req->ki_flags |= IOCB_WRITE;
1582 		aio_rw_done(req, call_write_iter(file, req, &iter));
1583 	}
1584 	kfree(iovec);
1585 	return ret;
1586 }
1587 
1588 static void aio_fsync_work(struct work_struct *work)
1589 {
1590 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1591 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1592 
1593 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1594 	revert_creds(old_cred);
1595 	put_cred(iocb->fsync.creds);
1596 	iocb_put(iocb);
1597 }
1598 
1599 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1600 		     bool datasync)
1601 {
1602 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1603 			iocb->aio_rw_flags))
1604 		return -EINVAL;
1605 
1606 	if (unlikely(!req->file->f_op->fsync))
1607 		return -EINVAL;
1608 
1609 	req->creds = prepare_creds();
1610 	if (!req->creds)
1611 		return -ENOMEM;
1612 
1613 	req->datasync = datasync;
1614 	INIT_WORK(&req->work, aio_fsync_work);
1615 	schedule_work(&req->work);
1616 	return 0;
1617 }
1618 
1619 static void aio_poll_put_work(struct work_struct *work)
1620 {
1621 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1622 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1623 
1624 	iocb_put(iocb);
1625 }
1626 
1627 /*
1628  * Safely lock the waitqueue which the request is on, synchronizing with the
1629  * case where the ->poll() provider decides to free its waitqueue early.
1630  *
1631  * Returns true on success, meaning that req->head->lock was locked, req->wait
1632  * is on req->head, and an RCU read lock was taken.  Returns false if the
1633  * request was already removed from its waitqueue (which might no longer exist).
1634  */
1635 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1636 {
1637 	wait_queue_head_t *head;
1638 
1639 	/*
1640 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1641 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1642 	 * lock in the first place can race with the waitqueue being freed.
1643 	 *
1644 	 * We solve this as eventpoll does: by taking advantage of the fact that
1645 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1646 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1647 	 * non-NULL, we can then lock it without the memory being freed out from
1648 	 * under us, then check whether the request is still on the queue.
1649 	 *
1650 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1651 	 * case the caller deletes the entry from the queue, leaving it empty.
1652 	 * In that case, only RCU prevents the queue memory from being freed.
1653 	 */
1654 	rcu_read_lock();
1655 	head = smp_load_acquire(&req->head);
1656 	if (head) {
1657 		spin_lock(&head->lock);
1658 		if (!list_empty(&req->wait.entry))
1659 			return true;
1660 		spin_unlock(&head->lock);
1661 	}
1662 	rcu_read_unlock();
1663 	return false;
1664 }
1665 
1666 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1667 {
1668 	spin_unlock(&req->head->lock);
1669 	rcu_read_unlock();
1670 }
1671 
1672 static void aio_poll_complete_work(struct work_struct *work)
1673 {
1674 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1675 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1676 	struct poll_table_struct pt = { ._key = req->events };
1677 	struct kioctx *ctx = iocb->ki_ctx;
1678 	__poll_t mask = 0;
1679 
1680 	if (!READ_ONCE(req->cancelled))
1681 		mask = vfs_poll(req->file, &pt) & req->events;
1682 
1683 	/*
1684 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1685 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1686 	 * synchronize with them.  In the cancellation case the list_del_init
1687 	 * itself is not actually needed, but harmless so we keep it in to
1688 	 * avoid further branches in the fast path.
1689 	 */
1690 	spin_lock_irq(&ctx->ctx_lock);
1691 	if (poll_iocb_lock_wq(req)) {
1692 		if (!mask && !READ_ONCE(req->cancelled)) {
1693 			/*
1694 			 * The request isn't actually ready to be completed yet.
1695 			 * Reschedule completion if another wakeup came in.
1696 			 */
1697 			if (req->work_need_resched) {
1698 				schedule_work(&req->work);
1699 				req->work_need_resched = false;
1700 			} else {
1701 				req->work_scheduled = false;
1702 			}
1703 			poll_iocb_unlock_wq(req);
1704 			spin_unlock_irq(&ctx->ctx_lock);
1705 			return;
1706 		}
1707 		list_del_init(&req->wait.entry);
1708 		poll_iocb_unlock_wq(req);
1709 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1710 	list_del_init(&iocb->ki_list);
1711 	iocb->ki_res.res = mangle_poll(mask);
1712 	spin_unlock_irq(&ctx->ctx_lock);
1713 
1714 	iocb_put(iocb);
1715 }
1716 
1717 /* assumes we are called with irqs disabled */
1718 static int aio_poll_cancel(struct kiocb *iocb)
1719 {
1720 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1721 	struct poll_iocb *req = &aiocb->poll;
1722 
1723 	if (poll_iocb_lock_wq(req)) {
1724 		WRITE_ONCE(req->cancelled, true);
1725 		if (!req->work_scheduled) {
1726 			schedule_work(&aiocb->poll.work);
1727 			req->work_scheduled = true;
1728 		}
1729 		poll_iocb_unlock_wq(req);
1730 	} /* else, the request was force-cancelled by POLLFREE already */
1731 
1732 	return 0;
1733 }
1734 
1735 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1736 		void *key)
1737 {
1738 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1739 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1740 	__poll_t mask = key_to_poll(key);
1741 	unsigned long flags;
1742 
1743 	/* for instances that support it check for an event match first: */
1744 	if (mask && !(mask & req->events))
1745 		return 0;
1746 
1747 	/*
1748 	 * Complete the request inline if possible.  This requires that three
1749 	 * conditions be met:
1750 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1751 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1752 	 *	the events, so inline completion isn't possible.
1753 	 *   2. The completion work must not have already been scheduled.
1754 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1755 	 *	already hold the waitqueue lock, so this inverts the normal
1756 	 *	locking order.  Use irqsave/irqrestore because not all
1757 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1758 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1759 	 */
1760 	if (mask && !req->work_scheduled &&
1761 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1762 		struct kioctx *ctx = iocb->ki_ctx;
1763 
1764 		list_del_init(&req->wait.entry);
1765 		list_del(&iocb->ki_list);
1766 		iocb->ki_res.res = mangle_poll(mask);
1767 		if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1768 			iocb = NULL;
1769 			INIT_WORK(&req->work, aio_poll_put_work);
1770 			schedule_work(&req->work);
1771 		}
1772 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1773 		if (iocb)
1774 			iocb_put(iocb);
1775 	} else {
1776 		/*
1777 		 * Schedule the completion work if needed.  If it was already
1778 		 * scheduled, record that another wakeup came in.
1779 		 *
1780 		 * Don't remove the request from the waitqueue here, as it might
1781 		 * not actually be complete yet (we won't know until vfs_poll()
1782 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1783 		 * exception to this; see below.
1784 		 */
1785 		if (req->work_scheduled) {
1786 			req->work_need_resched = true;
1787 		} else {
1788 			schedule_work(&req->work);
1789 			req->work_scheduled = true;
1790 		}
1791 
1792 		/*
1793 		 * If the waitqueue is being freed early but we can't complete
1794 		 * the request inline, we have to tear down the request as best
1795 		 * we can.  That means immediately removing the request from its
1796 		 * waitqueue and preventing all further accesses to the
1797 		 * waitqueue via the request.  We also need to schedule the
1798 		 * completion work (done above).  Also mark the request as
1799 		 * cancelled, to potentially skip an unneeded call to ->poll().
1800 		 */
1801 		if (mask & POLLFREE) {
1802 			WRITE_ONCE(req->cancelled, true);
1803 			list_del_init(&req->wait.entry);
1804 
1805 			/*
1806 			 * Careful: this *must* be the last step, since as soon
1807 			 * as req->head is NULL'ed out, the request can be
1808 			 * completed and freed, since aio_poll_complete_work()
1809 			 * will no longer need to take the waitqueue lock.
1810 			 */
1811 			smp_store_release(&req->head, NULL);
1812 		}
1813 	}
1814 	return 1;
1815 }
1816 
1817 struct aio_poll_table {
1818 	struct poll_table_struct	pt;
1819 	struct aio_kiocb		*iocb;
1820 	bool				queued;
1821 	int				error;
1822 };
1823 
1824 static void
1825 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1826 		struct poll_table_struct *p)
1827 {
1828 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1829 
1830 	/* multiple wait queues per file are not supported */
1831 	if (unlikely(pt->queued)) {
1832 		pt->error = -EINVAL;
1833 		return;
1834 	}
1835 
1836 	pt->queued = true;
1837 	pt->error = 0;
1838 	pt->iocb->poll.head = head;
1839 	add_wait_queue(head, &pt->iocb->poll.wait);
1840 }
1841 
1842 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1843 {
1844 	struct kioctx *ctx = aiocb->ki_ctx;
1845 	struct poll_iocb *req = &aiocb->poll;
1846 	struct aio_poll_table apt;
1847 	bool cancel = false;
1848 	__poll_t mask;
1849 
1850 	/* reject any unknown events outside the normal event mask. */
1851 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1852 		return -EINVAL;
1853 	/* reject fields that are not defined for poll */
1854 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1855 		return -EINVAL;
1856 
1857 	INIT_WORK(&req->work, aio_poll_complete_work);
1858 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1859 
1860 	req->head = NULL;
1861 	req->cancelled = false;
1862 	req->work_scheduled = false;
1863 	req->work_need_resched = false;
1864 
1865 	apt.pt._qproc = aio_poll_queue_proc;
1866 	apt.pt._key = req->events;
1867 	apt.iocb = aiocb;
1868 	apt.queued = false;
1869 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1870 
1871 	/* initialized the list so that we can do list_empty checks */
1872 	INIT_LIST_HEAD(&req->wait.entry);
1873 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1874 
1875 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1876 	spin_lock_irq(&ctx->ctx_lock);
1877 	if (likely(apt.queued)) {
1878 		bool on_queue = poll_iocb_lock_wq(req);
1879 
1880 		if (!on_queue || req->work_scheduled) {
1881 			/*
1882 			 * aio_poll_wake() already either scheduled the async
1883 			 * completion work, or completed the request inline.
1884 			 */
1885 			if (apt.error) /* unsupported case: multiple queues */
1886 				cancel = true;
1887 			apt.error = 0;
1888 			mask = 0;
1889 		}
1890 		if (mask || apt.error) {
1891 			/* Steal to complete synchronously. */
1892 			list_del_init(&req->wait.entry);
1893 		} else if (cancel) {
1894 			/* Cancel if possible (may be too late though). */
1895 			WRITE_ONCE(req->cancelled, true);
1896 		} else if (on_queue) {
1897 			/*
1898 			 * Actually waiting for an event, so add the request to
1899 			 * active_reqs so that it can be cancelled if needed.
1900 			 */
1901 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1902 			aiocb->ki_cancel = aio_poll_cancel;
1903 		}
1904 		if (on_queue)
1905 			poll_iocb_unlock_wq(req);
1906 	}
1907 	if (mask) { /* no async, we'd stolen it */
1908 		aiocb->ki_res.res = mangle_poll(mask);
1909 		apt.error = 0;
1910 	}
1911 	spin_unlock_irq(&ctx->ctx_lock);
1912 	if (mask)
1913 		iocb_put(aiocb);
1914 	return apt.error;
1915 }
1916 
1917 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1918 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1919 			   bool compat)
1920 {
1921 	req->ki_filp = fget(iocb->aio_fildes);
1922 	if (unlikely(!req->ki_filp))
1923 		return -EBADF;
1924 
1925 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1926 		struct eventfd_ctx *eventfd;
1927 		/*
1928 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1929 		 * instance of the file* now. The file descriptor must be
1930 		 * an eventfd() fd, and will be signaled for each completed
1931 		 * event using the eventfd_signal() function.
1932 		 */
1933 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1934 		if (IS_ERR(eventfd))
1935 			return PTR_ERR(eventfd);
1936 
1937 		req->ki_eventfd = eventfd;
1938 	}
1939 
1940 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1941 		pr_debug("EFAULT: aio_key\n");
1942 		return -EFAULT;
1943 	}
1944 
1945 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1946 	req->ki_res.data = iocb->aio_data;
1947 	req->ki_res.res = 0;
1948 	req->ki_res.res2 = 0;
1949 
1950 	switch (iocb->aio_lio_opcode) {
1951 	case IOCB_CMD_PREAD:
1952 		return aio_read(&req->rw, iocb, false, compat);
1953 	case IOCB_CMD_PWRITE:
1954 		return aio_write(&req->rw, iocb, false, compat);
1955 	case IOCB_CMD_PREADV:
1956 		return aio_read(&req->rw, iocb, true, compat);
1957 	case IOCB_CMD_PWRITEV:
1958 		return aio_write(&req->rw, iocb, true, compat);
1959 	case IOCB_CMD_FSYNC:
1960 		return aio_fsync(&req->fsync, iocb, false);
1961 	case IOCB_CMD_FDSYNC:
1962 		return aio_fsync(&req->fsync, iocb, true);
1963 	case IOCB_CMD_POLL:
1964 		return aio_poll(req, iocb);
1965 	default:
1966 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
1967 		return -EINVAL;
1968 	}
1969 }
1970 
1971 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1972 			 bool compat)
1973 {
1974 	struct aio_kiocb *req;
1975 	struct iocb iocb;
1976 	int err;
1977 
1978 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1979 		return -EFAULT;
1980 
1981 	/* enforce forwards compatibility on users */
1982 	if (unlikely(iocb.aio_reserved2)) {
1983 		pr_debug("EINVAL: reserve field set\n");
1984 		return -EINVAL;
1985 	}
1986 
1987 	/* prevent overflows */
1988 	if (unlikely(
1989 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1990 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1991 	    ((ssize_t)iocb.aio_nbytes < 0)
1992 	   )) {
1993 		pr_debug("EINVAL: overflow check\n");
1994 		return -EINVAL;
1995 	}
1996 
1997 	req = aio_get_req(ctx);
1998 	if (unlikely(!req))
1999 		return -EAGAIN;
2000 
2001 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2002 
2003 	/* Done with the synchronous reference */
2004 	iocb_put(req);
2005 
2006 	/*
2007 	 * If err is 0, we'd either done aio_complete() ourselves or have
2008 	 * arranged for that to be done asynchronously.  Anything non-zero
2009 	 * means that we need to destroy req ourselves.
2010 	 */
2011 	if (unlikely(err)) {
2012 		iocb_destroy(req);
2013 		put_reqs_available(ctx, 1);
2014 	}
2015 	return err;
2016 }
2017 
2018 /* sys_io_submit:
2019  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2020  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2021  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2022  *	*iocbpp[0] is not properly initialized, if the operation specified
2023  *	is invalid for the file descriptor in the iocb.  May fail with
2024  *	-EFAULT if any of the data structures point to invalid data.  May
2025  *	fail with -EBADF if the file descriptor specified in the first
2026  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2027  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2028  *	fail with -ENOSYS if not implemented.
2029  */
2030 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2031 		struct iocb __user * __user *, iocbpp)
2032 {
2033 	struct kioctx *ctx;
2034 	long ret = 0;
2035 	int i = 0;
2036 	struct blk_plug plug;
2037 
2038 	if (unlikely(nr < 0))
2039 		return -EINVAL;
2040 
2041 	ctx = lookup_ioctx(ctx_id);
2042 	if (unlikely(!ctx)) {
2043 		pr_debug("EINVAL: invalid context id\n");
2044 		return -EINVAL;
2045 	}
2046 
2047 	if (nr > ctx->nr_events)
2048 		nr = ctx->nr_events;
2049 
2050 	if (nr > AIO_PLUG_THRESHOLD)
2051 		blk_start_plug(&plug);
2052 	for (i = 0; i < nr; i++) {
2053 		struct iocb __user *user_iocb;
2054 
2055 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2056 			ret = -EFAULT;
2057 			break;
2058 		}
2059 
2060 		ret = io_submit_one(ctx, user_iocb, false);
2061 		if (ret)
2062 			break;
2063 	}
2064 	if (nr > AIO_PLUG_THRESHOLD)
2065 		blk_finish_plug(&plug);
2066 
2067 	percpu_ref_put(&ctx->users);
2068 	return i ? i : ret;
2069 }
2070 
2071 #ifdef CONFIG_COMPAT
2072 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2073 		       int, nr, compat_uptr_t __user *, iocbpp)
2074 {
2075 	struct kioctx *ctx;
2076 	long ret = 0;
2077 	int i = 0;
2078 	struct blk_plug plug;
2079 
2080 	if (unlikely(nr < 0))
2081 		return -EINVAL;
2082 
2083 	ctx = lookup_ioctx(ctx_id);
2084 	if (unlikely(!ctx)) {
2085 		pr_debug("EINVAL: invalid context id\n");
2086 		return -EINVAL;
2087 	}
2088 
2089 	if (nr > ctx->nr_events)
2090 		nr = ctx->nr_events;
2091 
2092 	if (nr > AIO_PLUG_THRESHOLD)
2093 		blk_start_plug(&plug);
2094 	for (i = 0; i < nr; i++) {
2095 		compat_uptr_t user_iocb;
2096 
2097 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2098 			ret = -EFAULT;
2099 			break;
2100 		}
2101 
2102 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2103 		if (ret)
2104 			break;
2105 	}
2106 	if (nr > AIO_PLUG_THRESHOLD)
2107 		blk_finish_plug(&plug);
2108 
2109 	percpu_ref_put(&ctx->users);
2110 	return i ? i : ret;
2111 }
2112 #endif
2113 
2114 /* sys_io_cancel:
2115  *	Attempts to cancel an iocb previously passed to io_submit.  If
2116  *	the operation is successfully cancelled, the resulting event is
2117  *	copied into the memory pointed to by result without being placed
2118  *	into the completion queue and 0 is returned.  May fail with
2119  *	-EFAULT if any of the data structures pointed to are invalid.
2120  *	May fail with -EINVAL if aio_context specified by ctx_id is
2121  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2122  *	cancelled.  Will fail with -ENOSYS if not implemented.
2123  */
2124 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2125 		struct io_event __user *, result)
2126 {
2127 	struct kioctx *ctx;
2128 	struct aio_kiocb *kiocb;
2129 	int ret = -EINVAL;
2130 	u32 key;
2131 	u64 obj = (u64)(unsigned long)iocb;
2132 
2133 	if (unlikely(get_user(key, &iocb->aio_key)))
2134 		return -EFAULT;
2135 	if (unlikely(key != KIOCB_KEY))
2136 		return -EINVAL;
2137 
2138 	ctx = lookup_ioctx(ctx_id);
2139 	if (unlikely(!ctx))
2140 		return -EINVAL;
2141 
2142 	spin_lock_irq(&ctx->ctx_lock);
2143 	/* TODO: use a hash or array, this sucks. */
2144 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2145 		if (kiocb->ki_res.obj == obj) {
2146 			ret = kiocb->ki_cancel(&kiocb->rw);
2147 			list_del_init(&kiocb->ki_list);
2148 			break;
2149 		}
2150 	}
2151 	spin_unlock_irq(&ctx->ctx_lock);
2152 
2153 	if (!ret) {
2154 		/*
2155 		 * The result argument is no longer used - the io_event is
2156 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2157 		 * cancellation is progress:
2158 		 */
2159 		ret = -EINPROGRESS;
2160 	}
2161 
2162 	percpu_ref_put(&ctx->users);
2163 
2164 	return ret;
2165 }
2166 
2167 static long do_io_getevents(aio_context_t ctx_id,
2168 		long min_nr,
2169 		long nr,
2170 		struct io_event __user *events,
2171 		struct timespec64 *ts)
2172 {
2173 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2174 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2175 	long ret = -EINVAL;
2176 
2177 	if (likely(ioctx)) {
2178 		if (likely(min_nr <= nr && min_nr >= 0))
2179 			ret = read_events(ioctx, min_nr, nr, events, until);
2180 		percpu_ref_put(&ioctx->users);
2181 	}
2182 
2183 	return ret;
2184 }
2185 
2186 /* io_getevents:
2187  *	Attempts to read at least min_nr events and up to nr events from
2188  *	the completion queue for the aio_context specified by ctx_id. If
2189  *	it succeeds, the number of read events is returned. May fail with
2190  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2191  *	out of range, if timeout is out of range.  May fail with -EFAULT
2192  *	if any of the memory specified is invalid.  May return 0 or
2193  *	< min_nr if the timeout specified by timeout has elapsed
2194  *	before sufficient events are available, where timeout == NULL
2195  *	specifies an infinite timeout. Note that the timeout pointed to by
2196  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2197  */
2198 #ifdef CONFIG_64BIT
2199 
2200 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2201 		long, min_nr,
2202 		long, nr,
2203 		struct io_event __user *, events,
2204 		struct __kernel_timespec __user *, timeout)
2205 {
2206 	struct timespec64	ts;
2207 	int			ret;
2208 
2209 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2210 		return -EFAULT;
2211 
2212 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2213 	if (!ret && signal_pending(current))
2214 		ret = -EINTR;
2215 	return ret;
2216 }
2217 
2218 #endif
2219 
2220 struct __aio_sigset {
2221 	const sigset_t __user	*sigmask;
2222 	size_t		sigsetsize;
2223 };
2224 
2225 SYSCALL_DEFINE6(io_pgetevents,
2226 		aio_context_t, ctx_id,
2227 		long, min_nr,
2228 		long, nr,
2229 		struct io_event __user *, events,
2230 		struct __kernel_timespec __user *, timeout,
2231 		const struct __aio_sigset __user *, usig)
2232 {
2233 	struct __aio_sigset	ksig = { NULL, };
2234 	struct timespec64	ts;
2235 	bool interrupted;
2236 	int ret;
2237 
2238 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2239 		return -EFAULT;
2240 
2241 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2242 		return -EFAULT;
2243 
2244 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2245 	if (ret)
2246 		return ret;
2247 
2248 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2249 
2250 	interrupted = signal_pending(current);
2251 	restore_saved_sigmask_unless(interrupted);
2252 	if (interrupted && !ret)
2253 		ret = -ERESTARTNOHAND;
2254 
2255 	return ret;
2256 }
2257 
2258 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2259 
2260 SYSCALL_DEFINE6(io_pgetevents_time32,
2261 		aio_context_t, ctx_id,
2262 		long, min_nr,
2263 		long, nr,
2264 		struct io_event __user *, events,
2265 		struct old_timespec32 __user *, timeout,
2266 		const struct __aio_sigset __user *, usig)
2267 {
2268 	struct __aio_sigset	ksig = { NULL, };
2269 	struct timespec64	ts;
2270 	bool interrupted;
2271 	int ret;
2272 
2273 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2274 		return -EFAULT;
2275 
2276 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2277 		return -EFAULT;
2278 
2279 
2280 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2281 	if (ret)
2282 		return ret;
2283 
2284 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2285 
2286 	interrupted = signal_pending(current);
2287 	restore_saved_sigmask_unless(interrupted);
2288 	if (interrupted && !ret)
2289 		ret = -ERESTARTNOHAND;
2290 
2291 	return ret;
2292 }
2293 
2294 #endif
2295 
2296 #if defined(CONFIG_COMPAT_32BIT_TIME)
2297 
2298 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2299 		__s32, min_nr,
2300 		__s32, nr,
2301 		struct io_event __user *, events,
2302 		struct old_timespec32 __user *, timeout)
2303 {
2304 	struct timespec64 t;
2305 	int ret;
2306 
2307 	if (timeout && get_old_timespec32(&t, timeout))
2308 		return -EFAULT;
2309 
2310 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2311 	if (!ret && signal_pending(current))
2312 		ret = -EINTR;
2313 	return ret;
2314 }
2315 
2316 #endif
2317 
2318 #ifdef CONFIG_COMPAT
2319 
2320 struct __compat_aio_sigset {
2321 	compat_uptr_t		sigmask;
2322 	compat_size_t		sigsetsize;
2323 };
2324 
2325 #if defined(CONFIG_COMPAT_32BIT_TIME)
2326 
2327 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2328 		compat_aio_context_t, ctx_id,
2329 		compat_long_t, min_nr,
2330 		compat_long_t, nr,
2331 		struct io_event __user *, events,
2332 		struct old_timespec32 __user *, timeout,
2333 		const struct __compat_aio_sigset __user *, usig)
2334 {
2335 	struct __compat_aio_sigset ksig = { 0, };
2336 	struct timespec64 t;
2337 	bool interrupted;
2338 	int ret;
2339 
2340 	if (timeout && get_old_timespec32(&t, timeout))
2341 		return -EFAULT;
2342 
2343 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2344 		return -EFAULT;
2345 
2346 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2347 	if (ret)
2348 		return ret;
2349 
2350 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2351 
2352 	interrupted = signal_pending(current);
2353 	restore_saved_sigmask_unless(interrupted);
2354 	if (interrupted && !ret)
2355 		ret = -ERESTARTNOHAND;
2356 
2357 	return ret;
2358 }
2359 
2360 #endif
2361 
2362 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2363 		compat_aio_context_t, ctx_id,
2364 		compat_long_t, min_nr,
2365 		compat_long_t, nr,
2366 		struct io_event __user *, events,
2367 		struct __kernel_timespec __user *, timeout,
2368 		const struct __compat_aio_sigset __user *, usig)
2369 {
2370 	struct __compat_aio_sigset ksig = { 0, };
2371 	struct timespec64 t;
2372 	bool interrupted;
2373 	int ret;
2374 
2375 	if (timeout && get_timespec64(&t, timeout))
2376 		return -EFAULT;
2377 
2378 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2379 		return -EFAULT;
2380 
2381 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2382 	if (ret)
2383 		return ret;
2384 
2385 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2386 
2387 	interrupted = signal_pending(current);
2388 	restore_saved_sigmask_unless(interrupted);
2389 	if (interrupted && !ret)
2390 		ret = -ERESTARTNOHAND;
2391 
2392 	return ret;
2393 }
2394 #endif
2395