1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #define pr_fmt(fmt) "%s: " fmt, __func__ 12 13 #include <linux/kernel.h> 14 #include <linux/init.h> 15 #include <linux/errno.h> 16 #include <linux/time.h> 17 #include <linux/aio_abi.h> 18 #include <linux/export.h> 19 #include <linux/syscalls.h> 20 #include <linux/backing-dev.h> 21 #include <linux/uio.h> 22 23 #include <linux/sched.h> 24 #include <linux/fs.h> 25 #include <linux/file.h> 26 #include <linux/mm.h> 27 #include <linux/mman.h> 28 #include <linux/mmu_context.h> 29 #include <linux/percpu.h> 30 #include <linux/slab.h> 31 #include <linux/timer.h> 32 #include <linux/aio.h> 33 #include <linux/highmem.h> 34 #include <linux/workqueue.h> 35 #include <linux/security.h> 36 #include <linux/eventfd.h> 37 #include <linux/blkdev.h> 38 #include <linux/compat.h> 39 #include <linux/anon_inodes.h> 40 #include <linux/migrate.h> 41 #include <linux/ramfs.h> 42 #include <linux/percpu-refcount.h> 43 44 #include <asm/kmap_types.h> 45 #include <asm/uaccess.h> 46 47 #include "internal.h" 48 49 #define AIO_RING_MAGIC 0xa10a10a1 50 #define AIO_RING_COMPAT_FEATURES 1 51 #define AIO_RING_INCOMPAT_FEATURES 0 52 struct aio_ring { 53 unsigned id; /* kernel internal index number */ 54 unsigned nr; /* number of io_events */ 55 unsigned head; 56 unsigned tail; 57 58 unsigned magic; 59 unsigned compat_features; 60 unsigned incompat_features; 61 unsigned header_length; /* size of aio_ring */ 62 63 64 struct io_event io_events[0]; 65 }; /* 128 bytes + ring size */ 66 67 #define AIO_RING_PAGES 8 68 69 struct kioctx_cpu { 70 unsigned reqs_available; 71 }; 72 73 struct kioctx { 74 struct percpu_ref users; 75 atomic_t dead; 76 77 /* This needs improving */ 78 unsigned long user_id; 79 struct hlist_node list; 80 81 struct __percpu kioctx_cpu *cpu; 82 83 /* 84 * For percpu reqs_available, number of slots we move to/from global 85 * counter at a time: 86 */ 87 unsigned req_batch; 88 /* 89 * This is what userspace passed to io_setup(), it's not used for 90 * anything but counting against the global max_reqs quota. 91 * 92 * The real limit is nr_events - 1, which will be larger (see 93 * aio_setup_ring()) 94 */ 95 unsigned max_reqs; 96 97 /* Size of ringbuffer, in units of struct io_event */ 98 unsigned nr_events; 99 100 unsigned long mmap_base; 101 unsigned long mmap_size; 102 103 struct page **ring_pages; 104 long nr_pages; 105 106 struct rcu_head rcu_head; 107 struct work_struct free_work; 108 109 struct { 110 /* 111 * This counts the number of available slots in the ringbuffer, 112 * so we avoid overflowing it: it's decremented (if positive) 113 * when allocating a kiocb and incremented when the resulting 114 * io_event is pulled off the ringbuffer. 115 * 116 * We batch accesses to it with a percpu version. 117 */ 118 atomic_t reqs_available; 119 } ____cacheline_aligned_in_smp; 120 121 struct { 122 spinlock_t ctx_lock; 123 struct list_head active_reqs; /* used for cancellation */ 124 } ____cacheline_aligned_in_smp; 125 126 struct { 127 struct mutex ring_lock; 128 wait_queue_head_t wait; 129 } ____cacheline_aligned_in_smp; 130 131 struct { 132 unsigned tail; 133 spinlock_t completion_lock; 134 } ____cacheline_aligned_in_smp; 135 136 struct page *internal_pages[AIO_RING_PAGES]; 137 struct file *aio_ring_file; 138 }; 139 140 /*------ sysctl variables----*/ 141 static DEFINE_SPINLOCK(aio_nr_lock); 142 unsigned long aio_nr; /* current system wide number of aio requests */ 143 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 144 /*----end sysctl variables---*/ 145 146 static struct kmem_cache *kiocb_cachep; 147 static struct kmem_cache *kioctx_cachep; 148 149 /* aio_setup 150 * Creates the slab caches used by the aio routines, panic on 151 * failure as this is done early during the boot sequence. 152 */ 153 static int __init aio_setup(void) 154 { 155 kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC); 156 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC); 157 158 pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page)); 159 160 return 0; 161 } 162 __initcall(aio_setup); 163 164 static void aio_free_ring(struct kioctx *ctx) 165 { 166 int i; 167 struct file *aio_ring_file = ctx->aio_ring_file; 168 169 for (i = 0; i < ctx->nr_pages; i++) { 170 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i, 171 page_count(ctx->ring_pages[i])); 172 put_page(ctx->ring_pages[i]); 173 } 174 175 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) 176 kfree(ctx->ring_pages); 177 178 if (aio_ring_file) { 179 truncate_setsize(aio_ring_file->f_inode, 0); 180 pr_debug("pid(%d) i_nlink=%u d_count=%d d_unhashed=%d i_count=%d\n", 181 current->pid, aio_ring_file->f_inode->i_nlink, 182 aio_ring_file->f_path.dentry->d_count, 183 d_unhashed(aio_ring_file->f_path.dentry), 184 atomic_read(&aio_ring_file->f_inode->i_count)); 185 fput(aio_ring_file); 186 ctx->aio_ring_file = NULL; 187 } 188 } 189 190 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma) 191 { 192 vma->vm_ops = &generic_file_vm_ops; 193 return 0; 194 } 195 196 static const struct file_operations aio_ring_fops = { 197 .mmap = aio_ring_mmap, 198 }; 199 200 static int aio_set_page_dirty(struct page *page) 201 { 202 return 0; 203 } 204 205 #if IS_ENABLED(CONFIG_MIGRATION) 206 static int aio_migratepage(struct address_space *mapping, struct page *new, 207 struct page *old, enum migrate_mode mode) 208 { 209 struct kioctx *ctx = mapping->private_data; 210 unsigned long flags; 211 unsigned idx = old->index; 212 int rc; 213 214 /* Writeback must be complete */ 215 BUG_ON(PageWriteback(old)); 216 put_page(old); 217 218 rc = migrate_page_move_mapping(mapping, new, old, NULL, mode); 219 if (rc != MIGRATEPAGE_SUCCESS) { 220 get_page(old); 221 return rc; 222 } 223 224 get_page(new); 225 226 spin_lock_irqsave(&ctx->completion_lock, flags); 227 migrate_page_copy(new, old); 228 ctx->ring_pages[idx] = new; 229 spin_unlock_irqrestore(&ctx->completion_lock, flags); 230 231 return rc; 232 } 233 #endif 234 235 static const struct address_space_operations aio_ctx_aops = { 236 .set_page_dirty = aio_set_page_dirty, 237 #if IS_ENABLED(CONFIG_MIGRATION) 238 .migratepage = aio_migratepage, 239 #endif 240 }; 241 242 static int aio_setup_ring(struct kioctx *ctx) 243 { 244 struct aio_ring *ring; 245 unsigned nr_events = ctx->max_reqs; 246 struct mm_struct *mm = current->mm; 247 unsigned long size, populate; 248 int nr_pages; 249 int i; 250 struct file *file; 251 252 /* Compensate for the ring buffer's head/tail overlap entry */ 253 nr_events += 2; /* 1 is required, 2 for good luck */ 254 255 size = sizeof(struct aio_ring); 256 size += sizeof(struct io_event) * nr_events; 257 258 nr_pages = PFN_UP(size); 259 if (nr_pages < 0) 260 return -EINVAL; 261 262 file = anon_inode_getfile_private("[aio]", &aio_ring_fops, ctx, O_RDWR); 263 if (IS_ERR(file)) { 264 ctx->aio_ring_file = NULL; 265 return -EAGAIN; 266 } 267 268 file->f_inode->i_mapping->a_ops = &aio_ctx_aops; 269 file->f_inode->i_mapping->private_data = ctx; 270 file->f_inode->i_size = PAGE_SIZE * (loff_t)nr_pages; 271 272 for (i = 0; i < nr_pages; i++) { 273 struct page *page; 274 page = find_or_create_page(file->f_inode->i_mapping, 275 i, GFP_HIGHUSER | __GFP_ZERO); 276 if (!page) 277 break; 278 pr_debug("pid(%d) page[%d]->count=%d\n", 279 current->pid, i, page_count(page)); 280 SetPageUptodate(page); 281 SetPageDirty(page); 282 unlock_page(page); 283 } 284 ctx->aio_ring_file = file; 285 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) 286 / sizeof(struct io_event); 287 288 ctx->ring_pages = ctx->internal_pages; 289 if (nr_pages > AIO_RING_PAGES) { 290 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *), 291 GFP_KERNEL); 292 if (!ctx->ring_pages) 293 return -ENOMEM; 294 } 295 296 ctx->mmap_size = nr_pages * PAGE_SIZE; 297 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size); 298 299 down_write(&mm->mmap_sem); 300 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size, 301 PROT_READ | PROT_WRITE, 302 MAP_SHARED | MAP_POPULATE, 0, &populate); 303 if (IS_ERR((void *)ctx->mmap_base)) { 304 up_write(&mm->mmap_sem); 305 ctx->mmap_size = 0; 306 aio_free_ring(ctx); 307 return -EAGAIN; 308 } 309 up_write(&mm->mmap_sem); 310 311 mm_populate(ctx->mmap_base, populate); 312 313 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base); 314 ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages, 315 1, 0, ctx->ring_pages, NULL); 316 for (i = 0; i < ctx->nr_pages; i++) 317 put_page(ctx->ring_pages[i]); 318 319 if (unlikely(ctx->nr_pages != nr_pages)) { 320 aio_free_ring(ctx); 321 return -EAGAIN; 322 } 323 324 ctx->user_id = ctx->mmap_base; 325 ctx->nr_events = nr_events; /* trusted copy */ 326 327 ring = kmap_atomic(ctx->ring_pages[0]); 328 ring->nr = nr_events; /* user copy */ 329 ring->id = ctx->user_id; 330 ring->head = ring->tail = 0; 331 ring->magic = AIO_RING_MAGIC; 332 ring->compat_features = AIO_RING_COMPAT_FEATURES; 333 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 334 ring->header_length = sizeof(struct aio_ring); 335 kunmap_atomic(ring); 336 flush_dcache_page(ctx->ring_pages[0]); 337 338 return 0; 339 } 340 341 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 342 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 343 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 344 345 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel) 346 { 347 struct kioctx *ctx = req->ki_ctx; 348 unsigned long flags; 349 350 spin_lock_irqsave(&ctx->ctx_lock, flags); 351 352 if (!req->ki_list.next) 353 list_add(&req->ki_list, &ctx->active_reqs); 354 355 req->ki_cancel = cancel; 356 357 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 358 } 359 EXPORT_SYMBOL(kiocb_set_cancel_fn); 360 361 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb) 362 { 363 kiocb_cancel_fn *old, *cancel; 364 365 /* 366 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it 367 * actually has a cancel function, hence the cmpxchg() 368 */ 369 370 cancel = ACCESS_ONCE(kiocb->ki_cancel); 371 do { 372 if (!cancel || cancel == KIOCB_CANCELLED) 373 return -EINVAL; 374 375 old = cancel; 376 cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED); 377 } while (cancel != old); 378 379 return cancel(kiocb); 380 } 381 382 static void free_ioctx_rcu(struct rcu_head *head) 383 { 384 struct kioctx *ctx = container_of(head, struct kioctx, rcu_head); 385 386 free_percpu(ctx->cpu); 387 kmem_cache_free(kioctx_cachep, ctx); 388 } 389 390 /* 391 * When this function runs, the kioctx has been removed from the "hash table" 392 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted - 393 * now it's safe to cancel any that need to be. 394 */ 395 static void free_ioctx(struct work_struct *work) 396 { 397 struct kioctx *ctx = container_of(work, struct kioctx, free_work); 398 struct aio_ring *ring; 399 struct kiocb *req; 400 unsigned cpu, avail; 401 DEFINE_WAIT(wait); 402 403 spin_lock_irq(&ctx->ctx_lock); 404 405 while (!list_empty(&ctx->active_reqs)) { 406 req = list_first_entry(&ctx->active_reqs, 407 struct kiocb, ki_list); 408 409 list_del_init(&req->ki_list); 410 kiocb_cancel(ctx, req); 411 } 412 413 spin_unlock_irq(&ctx->ctx_lock); 414 415 for_each_possible_cpu(cpu) { 416 struct kioctx_cpu *kcpu = per_cpu_ptr(ctx->cpu, cpu); 417 418 atomic_add(kcpu->reqs_available, &ctx->reqs_available); 419 kcpu->reqs_available = 0; 420 } 421 422 while (1) { 423 prepare_to_wait(&ctx->wait, &wait, TASK_UNINTERRUPTIBLE); 424 425 ring = kmap_atomic(ctx->ring_pages[0]); 426 avail = (ring->head <= ring->tail) 427 ? ring->tail - ring->head 428 : ctx->nr_events - ring->head + ring->tail; 429 430 atomic_add(avail, &ctx->reqs_available); 431 ring->head = ring->tail; 432 kunmap_atomic(ring); 433 434 if (atomic_read(&ctx->reqs_available) >= ctx->nr_events - 1) 435 break; 436 437 schedule(); 438 } 439 finish_wait(&ctx->wait, &wait); 440 441 WARN_ON(atomic_read(&ctx->reqs_available) > ctx->nr_events - 1); 442 443 aio_free_ring(ctx); 444 445 pr_debug("freeing %p\n", ctx); 446 447 /* 448 * Here the call_rcu() is between the wait_event() for reqs_active to 449 * hit 0, and freeing the ioctx. 450 * 451 * aio_complete() decrements reqs_active, but it has to touch the ioctx 452 * after to issue a wakeup so we use rcu. 453 */ 454 call_rcu(&ctx->rcu_head, free_ioctx_rcu); 455 } 456 457 static void free_ioctx_ref(struct percpu_ref *ref) 458 { 459 struct kioctx *ctx = container_of(ref, struct kioctx, users); 460 461 INIT_WORK(&ctx->free_work, free_ioctx); 462 schedule_work(&ctx->free_work); 463 } 464 465 /* ioctx_alloc 466 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 467 */ 468 static struct kioctx *ioctx_alloc(unsigned nr_events) 469 { 470 struct mm_struct *mm = current->mm; 471 struct kioctx *ctx; 472 int err = -ENOMEM; 473 474 /* 475 * We keep track of the number of available ringbuffer slots, to prevent 476 * overflow (reqs_available), and we also use percpu counters for this. 477 * 478 * So since up to half the slots might be on other cpu's percpu counters 479 * and unavailable, double nr_events so userspace sees what they 480 * expected: additionally, we move req_batch slots to/from percpu 481 * counters at a time, so make sure that isn't 0: 482 */ 483 nr_events = max(nr_events, num_possible_cpus() * 4); 484 nr_events *= 2; 485 486 /* Prevent overflows */ 487 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 488 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 489 pr_debug("ENOMEM: nr_events too high\n"); 490 return ERR_PTR(-EINVAL); 491 } 492 493 if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL)) 494 return ERR_PTR(-EAGAIN); 495 496 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL); 497 if (!ctx) 498 return ERR_PTR(-ENOMEM); 499 500 ctx->max_reqs = nr_events; 501 502 if (percpu_ref_init(&ctx->users, free_ioctx_ref)) 503 goto out_freectx; 504 505 spin_lock_init(&ctx->ctx_lock); 506 spin_lock_init(&ctx->completion_lock); 507 mutex_init(&ctx->ring_lock); 508 init_waitqueue_head(&ctx->wait); 509 510 INIT_LIST_HEAD(&ctx->active_reqs); 511 512 ctx->cpu = alloc_percpu(struct kioctx_cpu); 513 if (!ctx->cpu) 514 goto out_freeref; 515 516 if (aio_setup_ring(ctx) < 0) 517 goto out_freepcpu; 518 519 atomic_set(&ctx->reqs_available, ctx->nr_events - 1); 520 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4); 521 BUG_ON(!ctx->req_batch); 522 523 /* limit the number of system wide aios */ 524 spin_lock(&aio_nr_lock); 525 if (aio_nr + nr_events > (aio_max_nr * 2UL) || 526 aio_nr + nr_events < aio_nr) { 527 spin_unlock(&aio_nr_lock); 528 goto out_cleanup; 529 } 530 aio_nr += ctx->max_reqs; 531 spin_unlock(&aio_nr_lock); 532 533 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */ 534 535 /* now link into global list. */ 536 spin_lock(&mm->ioctx_lock); 537 hlist_add_head_rcu(&ctx->list, &mm->ioctx_list); 538 spin_unlock(&mm->ioctx_lock); 539 540 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 541 ctx, ctx->user_id, mm, ctx->nr_events); 542 return ctx; 543 544 out_cleanup: 545 err = -EAGAIN; 546 aio_free_ring(ctx); 547 out_freepcpu: 548 free_percpu(ctx->cpu); 549 out_freeref: 550 free_percpu(ctx->users.pcpu_count); 551 out_freectx: 552 if (ctx->aio_ring_file) 553 fput(ctx->aio_ring_file); 554 kmem_cache_free(kioctx_cachep, ctx); 555 pr_debug("error allocating ioctx %d\n", err); 556 return ERR_PTR(err); 557 } 558 559 /* kill_ioctx 560 * Cancels all outstanding aio requests on an aio context. Used 561 * when the processes owning a context have all exited to encourage 562 * the rapid destruction of the kioctx. 563 */ 564 static void kill_ioctx(struct kioctx *ctx) 565 { 566 if (!atomic_xchg(&ctx->dead, 1)) { 567 hlist_del_rcu(&ctx->list); 568 /* percpu_ref_kill() will do the necessary call_rcu() */ 569 wake_up_all(&ctx->wait); 570 571 /* 572 * It'd be more correct to do this in free_ioctx(), after all 573 * the outstanding kiocbs have finished - but by then io_destroy 574 * has already returned, so io_setup() could potentially return 575 * -EAGAIN with no ioctxs actually in use (as far as userspace 576 * could tell). 577 */ 578 spin_lock(&aio_nr_lock); 579 BUG_ON(aio_nr - ctx->max_reqs > aio_nr); 580 aio_nr -= ctx->max_reqs; 581 spin_unlock(&aio_nr_lock); 582 583 if (ctx->mmap_size) 584 vm_munmap(ctx->mmap_base, ctx->mmap_size); 585 586 percpu_ref_kill(&ctx->users); 587 } 588 } 589 590 /* wait_on_sync_kiocb: 591 * Waits on the given sync kiocb to complete. 592 */ 593 ssize_t wait_on_sync_kiocb(struct kiocb *req) 594 { 595 while (!req->ki_ctx) { 596 set_current_state(TASK_UNINTERRUPTIBLE); 597 if (req->ki_ctx) 598 break; 599 io_schedule(); 600 } 601 __set_current_state(TASK_RUNNING); 602 return req->ki_user_data; 603 } 604 EXPORT_SYMBOL(wait_on_sync_kiocb); 605 606 /* 607 * exit_aio: called when the last user of mm goes away. At this point, there is 608 * no way for any new requests to be submited or any of the io_* syscalls to be 609 * called on the context. 610 * 611 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on 612 * them. 613 */ 614 void exit_aio(struct mm_struct *mm) 615 { 616 struct kioctx *ctx; 617 struct hlist_node *n; 618 619 hlist_for_each_entry_safe(ctx, n, &mm->ioctx_list, list) { 620 /* 621 * We don't need to bother with munmap() here - 622 * exit_mmap(mm) is coming and it'll unmap everything. 623 * Since aio_free_ring() uses non-zero ->mmap_size 624 * as indicator that it needs to unmap the area, 625 * just set it to 0; aio_free_ring() is the only 626 * place that uses ->mmap_size, so it's safe. 627 */ 628 ctx->mmap_size = 0; 629 630 kill_ioctx(ctx); 631 } 632 } 633 634 static void put_reqs_available(struct kioctx *ctx, unsigned nr) 635 { 636 struct kioctx_cpu *kcpu; 637 638 preempt_disable(); 639 kcpu = this_cpu_ptr(ctx->cpu); 640 641 kcpu->reqs_available += nr; 642 while (kcpu->reqs_available >= ctx->req_batch * 2) { 643 kcpu->reqs_available -= ctx->req_batch; 644 atomic_add(ctx->req_batch, &ctx->reqs_available); 645 } 646 647 preempt_enable(); 648 } 649 650 static bool get_reqs_available(struct kioctx *ctx) 651 { 652 struct kioctx_cpu *kcpu; 653 bool ret = false; 654 655 preempt_disable(); 656 kcpu = this_cpu_ptr(ctx->cpu); 657 658 if (!kcpu->reqs_available) { 659 int old, avail = atomic_read(&ctx->reqs_available); 660 661 do { 662 if (avail < ctx->req_batch) 663 goto out; 664 665 old = avail; 666 avail = atomic_cmpxchg(&ctx->reqs_available, 667 avail, avail - ctx->req_batch); 668 } while (avail != old); 669 670 kcpu->reqs_available += ctx->req_batch; 671 } 672 673 ret = true; 674 kcpu->reqs_available--; 675 out: 676 preempt_enable(); 677 return ret; 678 } 679 680 /* aio_get_req 681 * Allocate a slot for an aio request. 682 * Returns NULL if no requests are free. 683 */ 684 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 685 { 686 struct kiocb *req; 687 688 if (!get_reqs_available(ctx)) 689 return NULL; 690 691 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO); 692 if (unlikely(!req)) 693 goto out_put; 694 695 req->ki_ctx = ctx; 696 return req; 697 out_put: 698 put_reqs_available(ctx, 1); 699 return NULL; 700 } 701 702 static void kiocb_free(struct kiocb *req) 703 { 704 if (req->ki_filp) 705 fput(req->ki_filp); 706 if (req->ki_eventfd != NULL) 707 eventfd_ctx_put(req->ki_eventfd); 708 kmem_cache_free(kiocb_cachep, req); 709 } 710 711 static struct kioctx *lookup_ioctx(unsigned long ctx_id) 712 { 713 struct mm_struct *mm = current->mm; 714 struct kioctx *ctx, *ret = NULL; 715 716 rcu_read_lock(); 717 718 hlist_for_each_entry_rcu(ctx, &mm->ioctx_list, list) { 719 if (ctx->user_id == ctx_id) { 720 percpu_ref_get(&ctx->users); 721 ret = ctx; 722 break; 723 } 724 } 725 726 rcu_read_unlock(); 727 return ret; 728 } 729 730 /* aio_complete 731 * Called when the io request on the given iocb is complete. 732 */ 733 void aio_complete(struct kiocb *iocb, long res, long res2) 734 { 735 struct kioctx *ctx = iocb->ki_ctx; 736 struct aio_ring *ring; 737 struct io_event *ev_page, *event; 738 unsigned long flags; 739 unsigned tail, pos; 740 741 /* 742 * Special case handling for sync iocbs: 743 * - events go directly into the iocb for fast handling 744 * - the sync task with the iocb in its stack holds the single iocb 745 * ref, no other paths have a way to get another ref 746 * - the sync task helpfully left a reference to itself in the iocb 747 */ 748 if (is_sync_kiocb(iocb)) { 749 iocb->ki_user_data = res; 750 smp_wmb(); 751 iocb->ki_ctx = ERR_PTR(-EXDEV); 752 wake_up_process(iocb->ki_obj.tsk); 753 return; 754 } 755 756 /* 757 * Take rcu_read_lock() in case the kioctx is being destroyed, as we 758 * need to issue a wakeup after incrementing reqs_available. 759 */ 760 rcu_read_lock(); 761 762 if (iocb->ki_list.next) { 763 unsigned long flags; 764 765 spin_lock_irqsave(&ctx->ctx_lock, flags); 766 list_del(&iocb->ki_list); 767 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 768 } 769 770 /* 771 * Add a completion event to the ring buffer. Must be done holding 772 * ctx->completion_lock to prevent other code from messing with the tail 773 * pointer since we might be called from irq context. 774 */ 775 spin_lock_irqsave(&ctx->completion_lock, flags); 776 777 tail = ctx->tail; 778 pos = tail + AIO_EVENTS_OFFSET; 779 780 if (++tail >= ctx->nr_events) 781 tail = 0; 782 783 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 784 event = ev_page + pos % AIO_EVENTS_PER_PAGE; 785 786 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 787 event->data = iocb->ki_user_data; 788 event->res = res; 789 event->res2 = res2; 790 791 kunmap_atomic(ev_page); 792 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]); 793 794 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n", 795 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 796 res, res2); 797 798 /* after flagging the request as done, we 799 * must never even look at it again 800 */ 801 smp_wmb(); /* make event visible before updating tail */ 802 803 ctx->tail = tail; 804 805 ring = kmap_atomic(ctx->ring_pages[0]); 806 ring->tail = tail; 807 kunmap_atomic(ring); 808 flush_dcache_page(ctx->ring_pages[0]); 809 810 spin_unlock_irqrestore(&ctx->completion_lock, flags); 811 812 pr_debug("added to ring %p at [%u]\n", iocb, tail); 813 814 /* 815 * Check if the user asked us to deliver the result through an 816 * eventfd. The eventfd_signal() function is safe to be called 817 * from IRQ context. 818 */ 819 if (iocb->ki_eventfd != NULL) 820 eventfd_signal(iocb->ki_eventfd, 1); 821 822 /* everything turned out well, dispose of the aiocb. */ 823 kiocb_free(iocb); 824 825 /* 826 * We have to order our ring_info tail store above and test 827 * of the wait list below outside the wait lock. This is 828 * like in wake_up_bit() where clearing a bit has to be 829 * ordered with the unlocked test. 830 */ 831 smp_mb(); 832 833 if (waitqueue_active(&ctx->wait)) 834 wake_up(&ctx->wait); 835 836 rcu_read_unlock(); 837 } 838 EXPORT_SYMBOL(aio_complete); 839 840 /* aio_read_events 841 * Pull an event off of the ioctx's event ring. Returns the number of 842 * events fetched 843 */ 844 static long aio_read_events_ring(struct kioctx *ctx, 845 struct io_event __user *event, long nr) 846 { 847 struct aio_ring *ring; 848 unsigned head, tail, pos; 849 long ret = 0; 850 int copy_ret; 851 852 mutex_lock(&ctx->ring_lock); 853 854 ring = kmap_atomic(ctx->ring_pages[0]); 855 head = ring->head; 856 tail = ring->tail; 857 kunmap_atomic(ring); 858 859 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events); 860 861 if (head == tail) 862 goto out; 863 864 while (ret < nr) { 865 long avail; 866 struct io_event *ev; 867 struct page *page; 868 869 avail = (head <= tail ? tail : ctx->nr_events) - head; 870 if (head == tail) 871 break; 872 873 avail = min(avail, nr - ret); 874 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - 875 ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE)); 876 877 pos = head + AIO_EVENTS_OFFSET; 878 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]; 879 pos %= AIO_EVENTS_PER_PAGE; 880 881 ev = kmap(page); 882 copy_ret = copy_to_user(event + ret, ev + pos, 883 sizeof(*ev) * avail); 884 kunmap(page); 885 886 if (unlikely(copy_ret)) { 887 ret = -EFAULT; 888 goto out; 889 } 890 891 ret += avail; 892 head += avail; 893 head %= ctx->nr_events; 894 } 895 896 ring = kmap_atomic(ctx->ring_pages[0]); 897 ring->head = head; 898 kunmap_atomic(ring); 899 flush_dcache_page(ctx->ring_pages[0]); 900 901 pr_debug("%li h%u t%u\n", ret, head, tail); 902 903 put_reqs_available(ctx, ret); 904 out: 905 mutex_unlock(&ctx->ring_lock); 906 907 return ret; 908 } 909 910 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr, 911 struct io_event __user *event, long *i) 912 { 913 long ret = aio_read_events_ring(ctx, event + *i, nr - *i); 914 915 if (ret > 0) 916 *i += ret; 917 918 if (unlikely(atomic_read(&ctx->dead))) 919 ret = -EINVAL; 920 921 if (!*i) 922 *i = ret; 923 924 return ret < 0 || *i >= min_nr; 925 } 926 927 static long read_events(struct kioctx *ctx, long min_nr, long nr, 928 struct io_event __user *event, 929 struct timespec __user *timeout) 930 { 931 ktime_t until = { .tv64 = KTIME_MAX }; 932 long ret = 0; 933 934 if (timeout) { 935 struct timespec ts; 936 937 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 938 return -EFAULT; 939 940 until = timespec_to_ktime(ts); 941 } 942 943 /* 944 * Note that aio_read_events() is being called as the conditional - i.e. 945 * we're calling it after prepare_to_wait() has set task state to 946 * TASK_INTERRUPTIBLE. 947 * 948 * But aio_read_events() can block, and if it blocks it's going to flip 949 * the task state back to TASK_RUNNING. 950 * 951 * This should be ok, provided it doesn't flip the state back to 952 * TASK_RUNNING and return 0 too much - that causes us to spin. That 953 * will only happen if the mutex_lock() call blocks, and we then find 954 * the ringbuffer empty. So in practice we should be ok, but it's 955 * something to be aware of when touching this code. 956 */ 957 wait_event_interruptible_hrtimeout(ctx->wait, 958 aio_read_events(ctx, min_nr, nr, event, &ret), until); 959 960 if (!ret && signal_pending(current)) 961 ret = -EINTR; 962 963 return ret; 964 } 965 966 /* sys_io_setup: 967 * Create an aio_context capable of receiving at least nr_events. 968 * ctxp must not point to an aio_context that already exists, and 969 * must be initialized to 0 prior to the call. On successful 970 * creation of the aio_context, *ctxp is filled in with the resulting 971 * handle. May fail with -EINVAL if *ctxp is not initialized, 972 * if the specified nr_events exceeds internal limits. May fail 973 * with -EAGAIN if the specified nr_events exceeds the user's limit 974 * of available events. May fail with -ENOMEM if insufficient kernel 975 * resources are available. May fail with -EFAULT if an invalid 976 * pointer is passed for ctxp. Will fail with -ENOSYS if not 977 * implemented. 978 */ 979 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp) 980 { 981 struct kioctx *ioctx = NULL; 982 unsigned long ctx; 983 long ret; 984 985 ret = get_user(ctx, ctxp); 986 if (unlikely(ret)) 987 goto out; 988 989 ret = -EINVAL; 990 if (unlikely(ctx || nr_events == 0)) { 991 pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n", 992 ctx, nr_events); 993 goto out; 994 } 995 996 ioctx = ioctx_alloc(nr_events); 997 ret = PTR_ERR(ioctx); 998 if (!IS_ERR(ioctx)) { 999 ret = put_user(ioctx->user_id, ctxp); 1000 if (ret) 1001 kill_ioctx(ioctx); 1002 percpu_ref_put(&ioctx->users); 1003 } 1004 1005 out: 1006 return ret; 1007 } 1008 1009 /* sys_io_destroy: 1010 * Destroy the aio_context specified. May cancel any outstanding 1011 * AIOs and block on completion. Will fail with -ENOSYS if not 1012 * implemented. May fail with -EINVAL if the context pointed to 1013 * is invalid. 1014 */ 1015 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx) 1016 { 1017 struct kioctx *ioctx = lookup_ioctx(ctx); 1018 if (likely(NULL != ioctx)) { 1019 kill_ioctx(ioctx); 1020 percpu_ref_put(&ioctx->users); 1021 return 0; 1022 } 1023 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1024 return -EINVAL; 1025 } 1026 1027 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *, 1028 unsigned long, loff_t); 1029 1030 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb, 1031 int rw, char __user *buf, 1032 unsigned long *nr_segs, 1033 struct iovec **iovec, 1034 bool compat) 1035 { 1036 ssize_t ret; 1037 1038 *nr_segs = kiocb->ki_nbytes; 1039 1040 #ifdef CONFIG_COMPAT 1041 if (compat) 1042 ret = compat_rw_copy_check_uvector(rw, 1043 (struct compat_iovec __user *)buf, 1044 *nr_segs, 1, *iovec, iovec); 1045 else 1046 #endif 1047 ret = rw_copy_check_uvector(rw, 1048 (struct iovec __user *)buf, 1049 *nr_segs, 1, *iovec, iovec); 1050 if (ret < 0) 1051 return ret; 1052 1053 /* ki_nbytes now reflect bytes instead of segs */ 1054 kiocb->ki_nbytes = ret; 1055 return 0; 1056 } 1057 1058 static ssize_t aio_setup_single_vector(struct kiocb *kiocb, 1059 int rw, char __user *buf, 1060 unsigned long *nr_segs, 1061 struct iovec *iovec) 1062 { 1063 if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes))) 1064 return -EFAULT; 1065 1066 iovec->iov_base = buf; 1067 iovec->iov_len = kiocb->ki_nbytes; 1068 *nr_segs = 1; 1069 return 0; 1070 } 1071 1072 /* 1073 * aio_setup_iocb: 1074 * Performs the initial checks and aio retry method 1075 * setup for the kiocb at the time of io submission. 1076 */ 1077 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode, 1078 char __user *buf, bool compat) 1079 { 1080 struct file *file = req->ki_filp; 1081 ssize_t ret; 1082 unsigned long nr_segs; 1083 int rw; 1084 fmode_t mode; 1085 aio_rw_op *rw_op; 1086 struct iovec inline_vec, *iovec = &inline_vec; 1087 1088 switch (opcode) { 1089 case IOCB_CMD_PREAD: 1090 case IOCB_CMD_PREADV: 1091 mode = FMODE_READ; 1092 rw = READ; 1093 rw_op = file->f_op->aio_read; 1094 goto rw_common; 1095 1096 case IOCB_CMD_PWRITE: 1097 case IOCB_CMD_PWRITEV: 1098 mode = FMODE_WRITE; 1099 rw = WRITE; 1100 rw_op = file->f_op->aio_write; 1101 goto rw_common; 1102 rw_common: 1103 if (unlikely(!(file->f_mode & mode))) 1104 return -EBADF; 1105 1106 if (!rw_op) 1107 return -EINVAL; 1108 1109 ret = (opcode == IOCB_CMD_PREADV || 1110 opcode == IOCB_CMD_PWRITEV) 1111 ? aio_setup_vectored_rw(req, rw, buf, &nr_segs, 1112 &iovec, compat) 1113 : aio_setup_single_vector(req, rw, buf, &nr_segs, 1114 iovec); 1115 if (ret) 1116 return ret; 1117 1118 ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes); 1119 if (ret < 0) { 1120 if (iovec != &inline_vec) 1121 kfree(iovec); 1122 return ret; 1123 } 1124 1125 req->ki_nbytes = ret; 1126 1127 /* XXX: move/kill - rw_verify_area()? */ 1128 /* This matches the pread()/pwrite() logic */ 1129 if (req->ki_pos < 0) { 1130 ret = -EINVAL; 1131 break; 1132 } 1133 1134 if (rw == WRITE) 1135 file_start_write(file); 1136 1137 ret = rw_op(req, iovec, nr_segs, req->ki_pos); 1138 1139 if (rw == WRITE) 1140 file_end_write(file); 1141 break; 1142 1143 case IOCB_CMD_FDSYNC: 1144 if (!file->f_op->aio_fsync) 1145 return -EINVAL; 1146 1147 ret = file->f_op->aio_fsync(req, 1); 1148 break; 1149 1150 case IOCB_CMD_FSYNC: 1151 if (!file->f_op->aio_fsync) 1152 return -EINVAL; 1153 1154 ret = file->f_op->aio_fsync(req, 0); 1155 break; 1156 1157 default: 1158 pr_debug("EINVAL: no operation provided\n"); 1159 return -EINVAL; 1160 } 1161 1162 if (iovec != &inline_vec) 1163 kfree(iovec); 1164 1165 if (ret != -EIOCBQUEUED) { 1166 /* 1167 * There's no easy way to restart the syscall since other AIO's 1168 * may be already running. Just fail this IO with EINTR. 1169 */ 1170 if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR || 1171 ret == -ERESTARTNOHAND || 1172 ret == -ERESTART_RESTARTBLOCK)) 1173 ret = -EINTR; 1174 aio_complete(req, ret, 0); 1175 } 1176 1177 return 0; 1178 } 1179 1180 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1181 struct iocb *iocb, bool compat) 1182 { 1183 struct kiocb *req; 1184 ssize_t ret; 1185 1186 /* enforce forwards compatibility on users */ 1187 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) { 1188 pr_debug("EINVAL: reserve field set\n"); 1189 return -EINVAL; 1190 } 1191 1192 /* prevent overflows */ 1193 if (unlikely( 1194 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1195 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1196 ((ssize_t)iocb->aio_nbytes < 0) 1197 )) { 1198 pr_debug("EINVAL: io_submit: overflow check\n"); 1199 return -EINVAL; 1200 } 1201 1202 req = aio_get_req(ctx); 1203 if (unlikely(!req)) 1204 return -EAGAIN; 1205 1206 req->ki_filp = fget(iocb->aio_fildes); 1207 if (unlikely(!req->ki_filp)) { 1208 ret = -EBADF; 1209 goto out_put_req; 1210 } 1211 1212 if (iocb->aio_flags & IOCB_FLAG_RESFD) { 1213 /* 1214 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an 1215 * instance of the file* now. The file descriptor must be 1216 * an eventfd() fd, and will be signaled for each completed 1217 * event using the eventfd_signal() function. 1218 */ 1219 req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd); 1220 if (IS_ERR(req->ki_eventfd)) { 1221 ret = PTR_ERR(req->ki_eventfd); 1222 req->ki_eventfd = NULL; 1223 goto out_put_req; 1224 } 1225 } 1226 1227 ret = put_user(KIOCB_KEY, &user_iocb->aio_key); 1228 if (unlikely(ret)) { 1229 pr_debug("EFAULT: aio_key\n"); 1230 goto out_put_req; 1231 } 1232 1233 req->ki_obj.user = user_iocb; 1234 req->ki_user_data = iocb->aio_data; 1235 req->ki_pos = iocb->aio_offset; 1236 req->ki_nbytes = iocb->aio_nbytes; 1237 1238 ret = aio_run_iocb(req, iocb->aio_lio_opcode, 1239 (char __user *)(unsigned long)iocb->aio_buf, 1240 compat); 1241 if (ret) 1242 goto out_put_req; 1243 1244 return 0; 1245 out_put_req: 1246 put_reqs_available(ctx, 1); 1247 kiocb_free(req); 1248 return ret; 1249 } 1250 1251 long do_io_submit(aio_context_t ctx_id, long nr, 1252 struct iocb __user *__user *iocbpp, bool compat) 1253 { 1254 struct kioctx *ctx; 1255 long ret = 0; 1256 int i = 0; 1257 struct blk_plug plug; 1258 1259 if (unlikely(nr < 0)) 1260 return -EINVAL; 1261 1262 if (unlikely(nr > LONG_MAX/sizeof(*iocbpp))) 1263 nr = LONG_MAX/sizeof(*iocbpp); 1264 1265 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1266 return -EFAULT; 1267 1268 ctx = lookup_ioctx(ctx_id); 1269 if (unlikely(!ctx)) { 1270 pr_debug("EINVAL: invalid context id\n"); 1271 return -EINVAL; 1272 } 1273 1274 blk_start_plug(&plug); 1275 1276 /* 1277 * AKPM: should this return a partial result if some of the IOs were 1278 * successfully submitted? 1279 */ 1280 for (i=0; i<nr; i++) { 1281 struct iocb __user *user_iocb; 1282 struct iocb tmp; 1283 1284 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1285 ret = -EFAULT; 1286 break; 1287 } 1288 1289 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1290 ret = -EFAULT; 1291 break; 1292 } 1293 1294 ret = io_submit_one(ctx, user_iocb, &tmp, compat); 1295 if (ret) 1296 break; 1297 } 1298 blk_finish_plug(&plug); 1299 1300 percpu_ref_put(&ctx->users); 1301 return i ? i : ret; 1302 } 1303 1304 /* sys_io_submit: 1305 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1306 * the number of iocbs queued. May return -EINVAL if the aio_context 1307 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1308 * *iocbpp[0] is not properly initialized, if the operation specified 1309 * is invalid for the file descriptor in the iocb. May fail with 1310 * -EFAULT if any of the data structures point to invalid data. May 1311 * fail with -EBADF if the file descriptor specified in the first 1312 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1313 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1314 * fail with -ENOSYS if not implemented. 1315 */ 1316 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr, 1317 struct iocb __user * __user *, iocbpp) 1318 { 1319 return do_io_submit(ctx_id, nr, iocbpp, 0); 1320 } 1321 1322 /* lookup_kiocb 1323 * Finds a given iocb for cancellation. 1324 */ 1325 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, 1326 u32 key) 1327 { 1328 struct list_head *pos; 1329 1330 assert_spin_locked(&ctx->ctx_lock); 1331 1332 if (key != KIOCB_KEY) 1333 return NULL; 1334 1335 /* TODO: use a hash or array, this sucks. */ 1336 list_for_each(pos, &ctx->active_reqs) { 1337 struct kiocb *kiocb = list_kiocb(pos); 1338 if (kiocb->ki_obj.user == iocb) 1339 return kiocb; 1340 } 1341 return NULL; 1342 } 1343 1344 /* sys_io_cancel: 1345 * Attempts to cancel an iocb previously passed to io_submit. If 1346 * the operation is successfully cancelled, the resulting event is 1347 * copied into the memory pointed to by result without being placed 1348 * into the completion queue and 0 is returned. May fail with 1349 * -EFAULT if any of the data structures pointed to are invalid. 1350 * May fail with -EINVAL if aio_context specified by ctx_id is 1351 * invalid. May fail with -EAGAIN if the iocb specified was not 1352 * cancelled. Will fail with -ENOSYS if not implemented. 1353 */ 1354 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb, 1355 struct io_event __user *, result) 1356 { 1357 struct kioctx *ctx; 1358 struct kiocb *kiocb; 1359 u32 key; 1360 int ret; 1361 1362 ret = get_user(key, &iocb->aio_key); 1363 if (unlikely(ret)) 1364 return -EFAULT; 1365 1366 ctx = lookup_ioctx(ctx_id); 1367 if (unlikely(!ctx)) 1368 return -EINVAL; 1369 1370 spin_lock_irq(&ctx->ctx_lock); 1371 1372 kiocb = lookup_kiocb(ctx, iocb, key); 1373 if (kiocb) 1374 ret = kiocb_cancel(ctx, kiocb); 1375 else 1376 ret = -EINVAL; 1377 1378 spin_unlock_irq(&ctx->ctx_lock); 1379 1380 if (!ret) { 1381 /* 1382 * The result argument is no longer used - the io_event is 1383 * always delivered via the ring buffer. -EINPROGRESS indicates 1384 * cancellation is progress: 1385 */ 1386 ret = -EINPROGRESS; 1387 } 1388 1389 percpu_ref_put(&ctx->users); 1390 1391 return ret; 1392 } 1393 1394 /* io_getevents: 1395 * Attempts to read at least min_nr events and up to nr events from 1396 * the completion queue for the aio_context specified by ctx_id. If 1397 * it succeeds, the number of read events is returned. May fail with 1398 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is 1399 * out of range, if timeout is out of range. May fail with -EFAULT 1400 * if any of the memory specified is invalid. May return 0 or 1401 * < min_nr if the timeout specified by timeout has elapsed 1402 * before sufficient events are available, where timeout == NULL 1403 * specifies an infinite timeout. Note that the timeout pointed to by 1404 * timeout is relative. Will fail with -ENOSYS if not implemented. 1405 */ 1406 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id, 1407 long, min_nr, 1408 long, nr, 1409 struct io_event __user *, events, 1410 struct timespec __user *, timeout) 1411 { 1412 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1413 long ret = -EINVAL; 1414 1415 if (likely(ioctx)) { 1416 if (likely(min_nr <= nr && min_nr >= 0)) 1417 ret = read_events(ioctx, min_nr, nr, events, timeout); 1418 percpu_ref_put(&ioctx->users); 1419 } 1420 return ret; 1421 } 1422