xref: /openbmc/linux/fs/aio.c (revision 4cd81c3dfc4a34e4a0b6fa577860077c8e5b13af)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #define pr_fmt(fmt) "%s: " fmt, __func__
12 
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/errno.h>
16 #include <linux/time.h>
17 #include <linux/aio_abi.h>
18 #include <linux/export.h>
19 #include <linux/syscalls.h>
20 #include <linux/backing-dev.h>
21 #include <linux/uio.h>
22 
23 #include <linux/sched.h>
24 #include <linux/fs.h>
25 #include <linux/file.h>
26 #include <linux/mm.h>
27 #include <linux/mman.h>
28 #include <linux/mmu_context.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/timer.h>
32 #include <linux/aio.h>
33 #include <linux/highmem.h>
34 #include <linux/workqueue.h>
35 #include <linux/security.h>
36 #include <linux/eventfd.h>
37 #include <linux/blkdev.h>
38 #include <linux/compat.h>
39 #include <linux/anon_inodes.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 
44 #include <asm/kmap_types.h>
45 #include <asm/uaccess.h>
46 
47 #include "internal.h"
48 
49 #define AIO_RING_MAGIC			0xa10a10a1
50 #define AIO_RING_COMPAT_FEATURES	1
51 #define AIO_RING_INCOMPAT_FEATURES	0
52 struct aio_ring {
53 	unsigned	id;	/* kernel internal index number */
54 	unsigned	nr;	/* number of io_events */
55 	unsigned	head;
56 	unsigned	tail;
57 
58 	unsigned	magic;
59 	unsigned	compat_features;
60 	unsigned	incompat_features;
61 	unsigned	header_length;	/* size of aio_ring */
62 
63 
64 	struct io_event		io_events[0];
65 }; /* 128 bytes + ring size */
66 
67 #define AIO_RING_PAGES	8
68 
69 struct kioctx_cpu {
70 	unsigned		reqs_available;
71 };
72 
73 struct kioctx {
74 	struct percpu_ref	users;
75 	atomic_t		dead;
76 
77 	/* This needs improving */
78 	unsigned long		user_id;
79 	struct hlist_node	list;
80 
81 	struct __percpu kioctx_cpu *cpu;
82 
83 	/*
84 	 * For percpu reqs_available, number of slots we move to/from global
85 	 * counter at a time:
86 	 */
87 	unsigned		req_batch;
88 	/*
89 	 * This is what userspace passed to io_setup(), it's not used for
90 	 * anything but counting against the global max_reqs quota.
91 	 *
92 	 * The real limit is nr_events - 1, which will be larger (see
93 	 * aio_setup_ring())
94 	 */
95 	unsigned		max_reqs;
96 
97 	/* Size of ringbuffer, in units of struct io_event */
98 	unsigned		nr_events;
99 
100 	unsigned long		mmap_base;
101 	unsigned long		mmap_size;
102 
103 	struct page		**ring_pages;
104 	long			nr_pages;
105 
106 	struct rcu_head		rcu_head;
107 	struct work_struct	free_work;
108 
109 	struct {
110 		/*
111 		 * This counts the number of available slots in the ringbuffer,
112 		 * so we avoid overflowing it: it's decremented (if positive)
113 		 * when allocating a kiocb and incremented when the resulting
114 		 * io_event is pulled off the ringbuffer.
115 		 *
116 		 * We batch accesses to it with a percpu version.
117 		 */
118 		atomic_t	reqs_available;
119 	} ____cacheline_aligned_in_smp;
120 
121 	struct {
122 		spinlock_t	ctx_lock;
123 		struct list_head active_reqs;	/* used for cancellation */
124 	} ____cacheline_aligned_in_smp;
125 
126 	struct {
127 		struct mutex	ring_lock;
128 		wait_queue_head_t wait;
129 	} ____cacheline_aligned_in_smp;
130 
131 	struct {
132 		unsigned	tail;
133 		spinlock_t	completion_lock;
134 	} ____cacheline_aligned_in_smp;
135 
136 	struct page		*internal_pages[AIO_RING_PAGES];
137 	struct file		*aio_ring_file;
138 };
139 
140 /*------ sysctl variables----*/
141 static DEFINE_SPINLOCK(aio_nr_lock);
142 unsigned long aio_nr;		/* current system wide number of aio requests */
143 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
144 /*----end sysctl variables---*/
145 
146 static struct kmem_cache	*kiocb_cachep;
147 static struct kmem_cache	*kioctx_cachep;
148 
149 /* aio_setup
150  *	Creates the slab caches used by the aio routines, panic on
151  *	failure as this is done early during the boot sequence.
152  */
153 static int __init aio_setup(void)
154 {
155 	kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
156 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
157 
158 	pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
159 
160 	return 0;
161 }
162 __initcall(aio_setup);
163 
164 static void aio_free_ring(struct kioctx *ctx)
165 {
166 	int i;
167 	struct file *aio_ring_file = ctx->aio_ring_file;
168 
169 	for (i = 0; i < ctx->nr_pages; i++) {
170 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
171 				page_count(ctx->ring_pages[i]));
172 		put_page(ctx->ring_pages[i]);
173 	}
174 
175 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages)
176 		kfree(ctx->ring_pages);
177 
178 	if (aio_ring_file) {
179 		truncate_setsize(aio_ring_file->f_inode, 0);
180 		pr_debug("pid(%d) i_nlink=%u d_count=%d d_unhashed=%d i_count=%d\n",
181 			current->pid, aio_ring_file->f_inode->i_nlink,
182 			aio_ring_file->f_path.dentry->d_count,
183 			d_unhashed(aio_ring_file->f_path.dentry),
184 			atomic_read(&aio_ring_file->f_inode->i_count));
185 		fput(aio_ring_file);
186 		ctx->aio_ring_file = NULL;
187 	}
188 }
189 
190 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
191 {
192 	vma->vm_ops = &generic_file_vm_ops;
193 	return 0;
194 }
195 
196 static const struct file_operations aio_ring_fops = {
197 	.mmap = aio_ring_mmap,
198 };
199 
200 static int aio_set_page_dirty(struct page *page)
201 {
202 	return 0;
203 }
204 
205 #if IS_ENABLED(CONFIG_MIGRATION)
206 static int aio_migratepage(struct address_space *mapping, struct page *new,
207 			struct page *old, enum migrate_mode mode)
208 {
209 	struct kioctx *ctx = mapping->private_data;
210 	unsigned long flags;
211 	unsigned idx = old->index;
212 	int rc;
213 
214 	/* Writeback must be complete */
215 	BUG_ON(PageWriteback(old));
216 	put_page(old);
217 
218 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode);
219 	if (rc != MIGRATEPAGE_SUCCESS) {
220 		get_page(old);
221 		return rc;
222 	}
223 
224 	get_page(new);
225 
226 	spin_lock_irqsave(&ctx->completion_lock, flags);
227 	migrate_page_copy(new, old);
228 	ctx->ring_pages[idx] = new;
229 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
230 
231 	return rc;
232 }
233 #endif
234 
235 static const struct address_space_operations aio_ctx_aops = {
236 	.set_page_dirty = aio_set_page_dirty,
237 #if IS_ENABLED(CONFIG_MIGRATION)
238 	.migratepage	= aio_migratepage,
239 #endif
240 };
241 
242 static int aio_setup_ring(struct kioctx *ctx)
243 {
244 	struct aio_ring *ring;
245 	unsigned nr_events = ctx->max_reqs;
246 	struct mm_struct *mm = current->mm;
247 	unsigned long size, populate;
248 	int nr_pages;
249 	int i;
250 	struct file *file;
251 
252 	/* Compensate for the ring buffer's head/tail overlap entry */
253 	nr_events += 2;	/* 1 is required, 2 for good luck */
254 
255 	size = sizeof(struct aio_ring);
256 	size += sizeof(struct io_event) * nr_events;
257 
258 	nr_pages = PFN_UP(size);
259 	if (nr_pages < 0)
260 		return -EINVAL;
261 
262 	file = anon_inode_getfile_private("[aio]", &aio_ring_fops, ctx, O_RDWR);
263 	if (IS_ERR(file)) {
264 		ctx->aio_ring_file = NULL;
265 		return -EAGAIN;
266 	}
267 
268 	file->f_inode->i_mapping->a_ops = &aio_ctx_aops;
269 	file->f_inode->i_mapping->private_data = ctx;
270 	file->f_inode->i_size = PAGE_SIZE * (loff_t)nr_pages;
271 
272 	for (i = 0; i < nr_pages; i++) {
273 		struct page *page;
274 		page = find_or_create_page(file->f_inode->i_mapping,
275 					   i, GFP_HIGHUSER | __GFP_ZERO);
276 		if (!page)
277 			break;
278 		pr_debug("pid(%d) page[%d]->count=%d\n",
279 			 current->pid, i, page_count(page));
280 		SetPageUptodate(page);
281 		SetPageDirty(page);
282 		unlock_page(page);
283 	}
284 	ctx->aio_ring_file = file;
285 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
286 			/ sizeof(struct io_event);
287 
288 	ctx->ring_pages = ctx->internal_pages;
289 	if (nr_pages > AIO_RING_PAGES) {
290 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
291 					  GFP_KERNEL);
292 		if (!ctx->ring_pages)
293 			return -ENOMEM;
294 	}
295 
296 	ctx->mmap_size = nr_pages * PAGE_SIZE;
297 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
298 
299 	down_write(&mm->mmap_sem);
300 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
301 				       PROT_READ | PROT_WRITE,
302 				       MAP_SHARED | MAP_POPULATE, 0, &populate);
303 	if (IS_ERR((void *)ctx->mmap_base)) {
304 		up_write(&mm->mmap_sem);
305 		ctx->mmap_size = 0;
306 		aio_free_ring(ctx);
307 		return -EAGAIN;
308 	}
309 	up_write(&mm->mmap_sem);
310 
311 	mm_populate(ctx->mmap_base, populate);
312 
313 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
314 	ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
315 				       1, 0, ctx->ring_pages, NULL);
316 	for (i = 0; i < ctx->nr_pages; i++)
317 		put_page(ctx->ring_pages[i]);
318 
319 	if (unlikely(ctx->nr_pages != nr_pages)) {
320 		aio_free_ring(ctx);
321 		return -EAGAIN;
322 	}
323 
324 	ctx->user_id = ctx->mmap_base;
325 	ctx->nr_events = nr_events; /* trusted copy */
326 
327 	ring = kmap_atomic(ctx->ring_pages[0]);
328 	ring->nr = nr_events;	/* user copy */
329 	ring->id = ctx->user_id;
330 	ring->head = ring->tail = 0;
331 	ring->magic = AIO_RING_MAGIC;
332 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
333 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
334 	ring->header_length = sizeof(struct aio_ring);
335 	kunmap_atomic(ring);
336 	flush_dcache_page(ctx->ring_pages[0]);
337 
338 	return 0;
339 }
340 
341 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
342 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
343 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
344 
345 void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
346 {
347 	struct kioctx *ctx = req->ki_ctx;
348 	unsigned long flags;
349 
350 	spin_lock_irqsave(&ctx->ctx_lock, flags);
351 
352 	if (!req->ki_list.next)
353 		list_add(&req->ki_list, &ctx->active_reqs);
354 
355 	req->ki_cancel = cancel;
356 
357 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
358 }
359 EXPORT_SYMBOL(kiocb_set_cancel_fn);
360 
361 static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb)
362 {
363 	kiocb_cancel_fn *old, *cancel;
364 
365 	/*
366 	 * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
367 	 * actually has a cancel function, hence the cmpxchg()
368 	 */
369 
370 	cancel = ACCESS_ONCE(kiocb->ki_cancel);
371 	do {
372 		if (!cancel || cancel == KIOCB_CANCELLED)
373 			return -EINVAL;
374 
375 		old = cancel;
376 		cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
377 	} while (cancel != old);
378 
379 	return cancel(kiocb);
380 }
381 
382 static void free_ioctx_rcu(struct rcu_head *head)
383 {
384 	struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
385 
386 	free_percpu(ctx->cpu);
387 	kmem_cache_free(kioctx_cachep, ctx);
388 }
389 
390 /*
391  * When this function runs, the kioctx has been removed from the "hash table"
392  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
393  * now it's safe to cancel any that need to be.
394  */
395 static void free_ioctx(struct work_struct *work)
396 {
397 	struct kioctx *ctx = container_of(work, struct kioctx, free_work);
398 	struct aio_ring *ring;
399 	struct kiocb *req;
400 	unsigned cpu, avail;
401 	DEFINE_WAIT(wait);
402 
403 	spin_lock_irq(&ctx->ctx_lock);
404 
405 	while (!list_empty(&ctx->active_reqs)) {
406 		req = list_first_entry(&ctx->active_reqs,
407 				       struct kiocb, ki_list);
408 
409 		list_del_init(&req->ki_list);
410 		kiocb_cancel(ctx, req);
411 	}
412 
413 	spin_unlock_irq(&ctx->ctx_lock);
414 
415 	for_each_possible_cpu(cpu) {
416 		struct kioctx_cpu *kcpu = per_cpu_ptr(ctx->cpu, cpu);
417 
418 		atomic_add(kcpu->reqs_available, &ctx->reqs_available);
419 		kcpu->reqs_available = 0;
420 	}
421 
422 	while (1) {
423 		prepare_to_wait(&ctx->wait, &wait, TASK_UNINTERRUPTIBLE);
424 
425 		ring = kmap_atomic(ctx->ring_pages[0]);
426 		avail = (ring->head <= ring->tail)
427 			 ? ring->tail - ring->head
428 			 : ctx->nr_events - ring->head + ring->tail;
429 
430 		atomic_add(avail, &ctx->reqs_available);
431 		ring->head = ring->tail;
432 		kunmap_atomic(ring);
433 
434 		if (atomic_read(&ctx->reqs_available) >= ctx->nr_events - 1)
435 			break;
436 
437 		schedule();
438 	}
439 	finish_wait(&ctx->wait, &wait);
440 
441 	WARN_ON(atomic_read(&ctx->reqs_available) > ctx->nr_events - 1);
442 
443 	aio_free_ring(ctx);
444 
445 	pr_debug("freeing %p\n", ctx);
446 
447 	/*
448 	 * Here the call_rcu() is between the wait_event() for reqs_active to
449 	 * hit 0, and freeing the ioctx.
450 	 *
451 	 * aio_complete() decrements reqs_active, but it has to touch the ioctx
452 	 * after to issue a wakeup so we use rcu.
453 	 */
454 	call_rcu(&ctx->rcu_head, free_ioctx_rcu);
455 }
456 
457 static void free_ioctx_ref(struct percpu_ref *ref)
458 {
459 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
460 
461 	INIT_WORK(&ctx->free_work, free_ioctx);
462 	schedule_work(&ctx->free_work);
463 }
464 
465 /* ioctx_alloc
466  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
467  */
468 static struct kioctx *ioctx_alloc(unsigned nr_events)
469 {
470 	struct mm_struct *mm = current->mm;
471 	struct kioctx *ctx;
472 	int err = -ENOMEM;
473 
474 	/*
475 	 * We keep track of the number of available ringbuffer slots, to prevent
476 	 * overflow (reqs_available), and we also use percpu counters for this.
477 	 *
478 	 * So since up to half the slots might be on other cpu's percpu counters
479 	 * and unavailable, double nr_events so userspace sees what they
480 	 * expected: additionally, we move req_batch slots to/from percpu
481 	 * counters at a time, so make sure that isn't 0:
482 	 */
483 	nr_events = max(nr_events, num_possible_cpus() * 4);
484 	nr_events *= 2;
485 
486 	/* Prevent overflows */
487 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
488 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
489 		pr_debug("ENOMEM: nr_events too high\n");
490 		return ERR_PTR(-EINVAL);
491 	}
492 
493 	if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
494 		return ERR_PTR(-EAGAIN);
495 
496 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
497 	if (!ctx)
498 		return ERR_PTR(-ENOMEM);
499 
500 	ctx->max_reqs = nr_events;
501 
502 	if (percpu_ref_init(&ctx->users, free_ioctx_ref))
503 		goto out_freectx;
504 
505 	spin_lock_init(&ctx->ctx_lock);
506 	spin_lock_init(&ctx->completion_lock);
507 	mutex_init(&ctx->ring_lock);
508 	init_waitqueue_head(&ctx->wait);
509 
510 	INIT_LIST_HEAD(&ctx->active_reqs);
511 
512 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
513 	if (!ctx->cpu)
514 		goto out_freeref;
515 
516 	if (aio_setup_ring(ctx) < 0)
517 		goto out_freepcpu;
518 
519 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
520 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
521 	BUG_ON(!ctx->req_batch);
522 
523 	/* limit the number of system wide aios */
524 	spin_lock(&aio_nr_lock);
525 	if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
526 	    aio_nr + nr_events < aio_nr) {
527 		spin_unlock(&aio_nr_lock);
528 		goto out_cleanup;
529 	}
530 	aio_nr += ctx->max_reqs;
531 	spin_unlock(&aio_nr_lock);
532 
533 	percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
534 
535 	/* now link into global list. */
536 	spin_lock(&mm->ioctx_lock);
537 	hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
538 	spin_unlock(&mm->ioctx_lock);
539 
540 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
541 		 ctx, ctx->user_id, mm, ctx->nr_events);
542 	return ctx;
543 
544 out_cleanup:
545 	err = -EAGAIN;
546 	aio_free_ring(ctx);
547 out_freepcpu:
548 	free_percpu(ctx->cpu);
549 out_freeref:
550 	free_percpu(ctx->users.pcpu_count);
551 out_freectx:
552 	if (ctx->aio_ring_file)
553 		fput(ctx->aio_ring_file);
554 	kmem_cache_free(kioctx_cachep, ctx);
555 	pr_debug("error allocating ioctx %d\n", err);
556 	return ERR_PTR(err);
557 }
558 
559 /* kill_ioctx
560  *	Cancels all outstanding aio requests on an aio context.  Used
561  *	when the processes owning a context have all exited to encourage
562  *	the rapid destruction of the kioctx.
563  */
564 static void kill_ioctx(struct kioctx *ctx)
565 {
566 	if (!atomic_xchg(&ctx->dead, 1)) {
567 		hlist_del_rcu(&ctx->list);
568 		/* percpu_ref_kill() will do the necessary call_rcu() */
569 		wake_up_all(&ctx->wait);
570 
571 		/*
572 		 * It'd be more correct to do this in free_ioctx(), after all
573 		 * the outstanding kiocbs have finished - but by then io_destroy
574 		 * has already returned, so io_setup() could potentially return
575 		 * -EAGAIN with no ioctxs actually in use (as far as userspace
576 		 *  could tell).
577 		 */
578 		spin_lock(&aio_nr_lock);
579 		BUG_ON(aio_nr - ctx->max_reqs > aio_nr);
580 		aio_nr -= ctx->max_reqs;
581 		spin_unlock(&aio_nr_lock);
582 
583 		if (ctx->mmap_size)
584 			vm_munmap(ctx->mmap_base, ctx->mmap_size);
585 
586 		percpu_ref_kill(&ctx->users);
587 	}
588 }
589 
590 /* wait_on_sync_kiocb:
591  *	Waits on the given sync kiocb to complete.
592  */
593 ssize_t wait_on_sync_kiocb(struct kiocb *req)
594 {
595 	while (!req->ki_ctx) {
596 		set_current_state(TASK_UNINTERRUPTIBLE);
597 		if (req->ki_ctx)
598 			break;
599 		io_schedule();
600 	}
601 	__set_current_state(TASK_RUNNING);
602 	return req->ki_user_data;
603 }
604 EXPORT_SYMBOL(wait_on_sync_kiocb);
605 
606 /*
607  * exit_aio: called when the last user of mm goes away.  At this point, there is
608  * no way for any new requests to be submited or any of the io_* syscalls to be
609  * called on the context.
610  *
611  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
612  * them.
613  */
614 void exit_aio(struct mm_struct *mm)
615 {
616 	struct kioctx *ctx;
617 	struct hlist_node *n;
618 
619 	hlist_for_each_entry_safe(ctx, n, &mm->ioctx_list, list) {
620 		/*
621 		 * We don't need to bother with munmap() here -
622 		 * exit_mmap(mm) is coming and it'll unmap everything.
623 		 * Since aio_free_ring() uses non-zero ->mmap_size
624 		 * as indicator that it needs to unmap the area,
625 		 * just set it to 0; aio_free_ring() is the only
626 		 * place that uses ->mmap_size, so it's safe.
627 		 */
628 		ctx->mmap_size = 0;
629 
630 		kill_ioctx(ctx);
631 	}
632 }
633 
634 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
635 {
636 	struct kioctx_cpu *kcpu;
637 
638 	preempt_disable();
639 	kcpu = this_cpu_ptr(ctx->cpu);
640 
641 	kcpu->reqs_available += nr;
642 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
643 		kcpu->reqs_available -= ctx->req_batch;
644 		atomic_add(ctx->req_batch, &ctx->reqs_available);
645 	}
646 
647 	preempt_enable();
648 }
649 
650 static bool get_reqs_available(struct kioctx *ctx)
651 {
652 	struct kioctx_cpu *kcpu;
653 	bool ret = false;
654 
655 	preempt_disable();
656 	kcpu = this_cpu_ptr(ctx->cpu);
657 
658 	if (!kcpu->reqs_available) {
659 		int old, avail = atomic_read(&ctx->reqs_available);
660 
661 		do {
662 			if (avail < ctx->req_batch)
663 				goto out;
664 
665 			old = avail;
666 			avail = atomic_cmpxchg(&ctx->reqs_available,
667 					       avail, avail - ctx->req_batch);
668 		} while (avail != old);
669 
670 		kcpu->reqs_available += ctx->req_batch;
671 	}
672 
673 	ret = true;
674 	kcpu->reqs_available--;
675 out:
676 	preempt_enable();
677 	return ret;
678 }
679 
680 /* aio_get_req
681  *	Allocate a slot for an aio request.
682  * Returns NULL if no requests are free.
683  */
684 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
685 {
686 	struct kiocb *req;
687 
688 	if (!get_reqs_available(ctx))
689 		return NULL;
690 
691 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
692 	if (unlikely(!req))
693 		goto out_put;
694 
695 	req->ki_ctx = ctx;
696 	return req;
697 out_put:
698 	put_reqs_available(ctx, 1);
699 	return NULL;
700 }
701 
702 static void kiocb_free(struct kiocb *req)
703 {
704 	if (req->ki_filp)
705 		fput(req->ki_filp);
706 	if (req->ki_eventfd != NULL)
707 		eventfd_ctx_put(req->ki_eventfd);
708 	kmem_cache_free(kiocb_cachep, req);
709 }
710 
711 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
712 {
713 	struct mm_struct *mm = current->mm;
714 	struct kioctx *ctx, *ret = NULL;
715 
716 	rcu_read_lock();
717 
718 	hlist_for_each_entry_rcu(ctx, &mm->ioctx_list, list) {
719 		if (ctx->user_id == ctx_id) {
720 			percpu_ref_get(&ctx->users);
721 			ret = ctx;
722 			break;
723 		}
724 	}
725 
726 	rcu_read_unlock();
727 	return ret;
728 }
729 
730 /* aio_complete
731  *	Called when the io request on the given iocb is complete.
732  */
733 void aio_complete(struct kiocb *iocb, long res, long res2)
734 {
735 	struct kioctx	*ctx = iocb->ki_ctx;
736 	struct aio_ring	*ring;
737 	struct io_event	*ev_page, *event;
738 	unsigned long	flags;
739 	unsigned tail, pos;
740 
741 	/*
742 	 * Special case handling for sync iocbs:
743 	 *  - events go directly into the iocb for fast handling
744 	 *  - the sync task with the iocb in its stack holds the single iocb
745 	 *    ref, no other paths have a way to get another ref
746 	 *  - the sync task helpfully left a reference to itself in the iocb
747 	 */
748 	if (is_sync_kiocb(iocb)) {
749 		iocb->ki_user_data = res;
750 		smp_wmb();
751 		iocb->ki_ctx = ERR_PTR(-EXDEV);
752 		wake_up_process(iocb->ki_obj.tsk);
753 		return;
754 	}
755 
756 	/*
757 	 * Take rcu_read_lock() in case the kioctx is being destroyed, as we
758 	 * need to issue a wakeup after incrementing reqs_available.
759 	 */
760 	rcu_read_lock();
761 
762 	if (iocb->ki_list.next) {
763 		unsigned long flags;
764 
765 		spin_lock_irqsave(&ctx->ctx_lock, flags);
766 		list_del(&iocb->ki_list);
767 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
768 	}
769 
770 	/*
771 	 * Add a completion event to the ring buffer. Must be done holding
772 	 * ctx->completion_lock to prevent other code from messing with the tail
773 	 * pointer since we might be called from irq context.
774 	 */
775 	spin_lock_irqsave(&ctx->completion_lock, flags);
776 
777 	tail = ctx->tail;
778 	pos = tail + AIO_EVENTS_OFFSET;
779 
780 	if (++tail >= ctx->nr_events)
781 		tail = 0;
782 
783 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
784 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
785 
786 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
787 	event->data = iocb->ki_user_data;
788 	event->res = res;
789 	event->res2 = res2;
790 
791 	kunmap_atomic(ev_page);
792 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
793 
794 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
795 		 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
796 		 res, res2);
797 
798 	/* after flagging the request as done, we
799 	 * must never even look at it again
800 	 */
801 	smp_wmb();	/* make event visible before updating tail */
802 
803 	ctx->tail = tail;
804 
805 	ring = kmap_atomic(ctx->ring_pages[0]);
806 	ring->tail = tail;
807 	kunmap_atomic(ring);
808 	flush_dcache_page(ctx->ring_pages[0]);
809 
810 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
811 
812 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
813 
814 	/*
815 	 * Check if the user asked us to deliver the result through an
816 	 * eventfd. The eventfd_signal() function is safe to be called
817 	 * from IRQ context.
818 	 */
819 	if (iocb->ki_eventfd != NULL)
820 		eventfd_signal(iocb->ki_eventfd, 1);
821 
822 	/* everything turned out well, dispose of the aiocb. */
823 	kiocb_free(iocb);
824 
825 	/*
826 	 * We have to order our ring_info tail store above and test
827 	 * of the wait list below outside the wait lock.  This is
828 	 * like in wake_up_bit() where clearing a bit has to be
829 	 * ordered with the unlocked test.
830 	 */
831 	smp_mb();
832 
833 	if (waitqueue_active(&ctx->wait))
834 		wake_up(&ctx->wait);
835 
836 	rcu_read_unlock();
837 }
838 EXPORT_SYMBOL(aio_complete);
839 
840 /* aio_read_events
841  *	Pull an event off of the ioctx's event ring.  Returns the number of
842  *	events fetched
843  */
844 static long aio_read_events_ring(struct kioctx *ctx,
845 				 struct io_event __user *event, long nr)
846 {
847 	struct aio_ring *ring;
848 	unsigned head, tail, pos;
849 	long ret = 0;
850 	int copy_ret;
851 
852 	mutex_lock(&ctx->ring_lock);
853 
854 	ring = kmap_atomic(ctx->ring_pages[0]);
855 	head = ring->head;
856 	tail = ring->tail;
857 	kunmap_atomic(ring);
858 
859 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
860 
861 	if (head == tail)
862 		goto out;
863 
864 	while (ret < nr) {
865 		long avail;
866 		struct io_event *ev;
867 		struct page *page;
868 
869 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
870 		if (head == tail)
871 			break;
872 
873 		avail = min(avail, nr - ret);
874 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
875 			    ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
876 
877 		pos = head + AIO_EVENTS_OFFSET;
878 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
879 		pos %= AIO_EVENTS_PER_PAGE;
880 
881 		ev = kmap(page);
882 		copy_ret = copy_to_user(event + ret, ev + pos,
883 					sizeof(*ev) * avail);
884 		kunmap(page);
885 
886 		if (unlikely(copy_ret)) {
887 			ret = -EFAULT;
888 			goto out;
889 		}
890 
891 		ret += avail;
892 		head += avail;
893 		head %= ctx->nr_events;
894 	}
895 
896 	ring = kmap_atomic(ctx->ring_pages[0]);
897 	ring->head = head;
898 	kunmap_atomic(ring);
899 	flush_dcache_page(ctx->ring_pages[0]);
900 
901 	pr_debug("%li  h%u t%u\n", ret, head, tail);
902 
903 	put_reqs_available(ctx, ret);
904 out:
905 	mutex_unlock(&ctx->ring_lock);
906 
907 	return ret;
908 }
909 
910 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
911 			    struct io_event __user *event, long *i)
912 {
913 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
914 
915 	if (ret > 0)
916 		*i += ret;
917 
918 	if (unlikely(atomic_read(&ctx->dead)))
919 		ret = -EINVAL;
920 
921 	if (!*i)
922 		*i = ret;
923 
924 	return ret < 0 || *i >= min_nr;
925 }
926 
927 static long read_events(struct kioctx *ctx, long min_nr, long nr,
928 			struct io_event __user *event,
929 			struct timespec __user *timeout)
930 {
931 	ktime_t until = { .tv64 = KTIME_MAX };
932 	long ret = 0;
933 
934 	if (timeout) {
935 		struct timespec	ts;
936 
937 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
938 			return -EFAULT;
939 
940 		until = timespec_to_ktime(ts);
941 	}
942 
943 	/*
944 	 * Note that aio_read_events() is being called as the conditional - i.e.
945 	 * we're calling it after prepare_to_wait() has set task state to
946 	 * TASK_INTERRUPTIBLE.
947 	 *
948 	 * But aio_read_events() can block, and if it blocks it's going to flip
949 	 * the task state back to TASK_RUNNING.
950 	 *
951 	 * This should be ok, provided it doesn't flip the state back to
952 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
953 	 * will only happen if the mutex_lock() call blocks, and we then find
954 	 * the ringbuffer empty. So in practice we should be ok, but it's
955 	 * something to be aware of when touching this code.
956 	 */
957 	wait_event_interruptible_hrtimeout(ctx->wait,
958 			aio_read_events(ctx, min_nr, nr, event, &ret), until);
959 
960 	if (!ret && signal_pending(current))
961 		ret = -EINTR;
962 
963 	return ret;
964 }
965 
966 /* sys_io_setup:
967  *	Create an aio_context capable of receiving at least nr_events.
968  *	ctxp must not point to an aio_context that already exists, and
969  *	must be initialized to 0 prior to the call.  On successful
970  *	creation of the aio_context, *ctxp is filled in with the resulting
971  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
972  *	if the specified nr_events exceeds internal limits.  May fail
973  *	with -EAGAIN if the specified nr_events exceeds the user's limit
974  *	of available events.  May fail with -ENOMEM if insufficient kernel
975  *	resources are available.  May fail with -EFAULT if an invalid
976  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
977  *	implemented.
978  */
979 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
980 {
981 	struct kioctx *ioctx = NULL;
982 	unsigned long ctx;
983 	long ret;
984 
985 	ret = get_user(ctx, ctxp);
986 	if (unlikely(ret))
987 		goto out;
988 
989 	ret = -EINVAL;
990 	if (unlikely(ctx || nr_events == 0)) {
991 		pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
992 		         ctx, nr_events);
993 		goto out;
994 	}
995 
996 	ioctx = ioctx_alloc(nr_events);
997 	ret = PTR_ERR(ioctx);
998 	if (!IS_ERR(ioctx)) {
999 		ret = put_user(ioctx->user_id, ctxp);
1000 		if (ret)
1001 			kill_ioctx(ioctx);
1002 		percpu_ref_put(&ioctx->users);
1003 	}
1004 
1005 out:
1006 	return ret;
1007 }
1008 
1009 /* sys_io_destroy:
1010  *	Destroy the aio_context specified.  May cancel any outstanding
1011  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1012  *	implemented.  May fail with -EINVAL if the context pointed to
1013  *	is invalid.
1014  */
1015 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1016 {
1017 	struct kioctx *ioctx = lookup_ioctx(ctx);
1018 	if (likely(NULL != ioctx)) {
1019 		kill_ioctx(ioctx);
1020 		percpu_ref_put(&ioctx->users);
1021 		return 0;
1022 	}
1023 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1024 	return -EINVAL;
1025 }
1026 
1027 typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
1028 			    unsigned long, loff_t);
1029 
1030 static ssize_t aio_setup_vectored_rw(struct kiocb *kiocb,
1031 				     int rw, char __user *buf,
1032 				     unsigned long *nr_segs,
1033 				     struct iovec **iovec,
1034 				     bool compat)
1035 {
1036 	ssize_t ret;
1037 
1038 	*nr_segs = kiocb->ki_nbytes;
1039 
1040 #ifdef CONFIG_COMPAT
1041 	if (compat)
1042 		ret = compat_rw_copy_check_uvector(rw,
1043 				(struct compat_iovec __user *)buf,
1044 				*nr_segs, 1, *iovec, iovec);
1045 	else
1046 #endif
1047 		ret = rw_copy_check_uvector(rw,
1048 				(struct iovec __user *)buf,
1049 				*nr_segs, 1, *iovec, iovec);
1050 	if (ret < 0)
1051 		return ret;
1052 
1053 	/* ki_nbytes now reflect bytes instead of segs */
1054 	kiocb->ki_nbytes = ret;
1055 	return 0;
1056 }
1057 
1058 static ssize_t aio_setup_single_vector(struct kiocb *kiocb,
1059 				       int rw, char __user *buf,
1060 				       unsigned long *nr_segs,
1061 				       struct iovec *iovec)
1062 {
1063 	if (unlikely(!access_ok(!rw, buf, kiocb->ki_nbytes)))
1064 		return -EFAULT;
1065 
1066 	iovec->iov_base = buf;
1067 	iovec->iov_len = kiocb->ki_nbytes;
1068 	*nr_segs = 1;
1069 	return 0;
1070 }
1071 
1072 /*
1073  * aio_setup_iocb:
1074  *	Performs the initial checks and aio retry method
1075  *	setup for the kiocb at the time of io submission.
1076  */
1077 static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1078 			    char __user *buf, bool compat)
1079 {
1080 	struct file *file = req->ki_filp;
1081 	ssize_t ret;
1082 	unsigned long nr_segs;
1083 	int rw;
1084 	fmode_t mode;
1085 	aio_rw_op *rw_op;
1086 	struct iovec inline_vec, *iovec = &inline_vec;
1087 
1088 	switch (opcode) {
1089 	case IOCB_CMD_PREAD:
1090 	case IOCB_CMD_PREADV:
1091 		mode	= FMODE_READ;
1092 		rw	= READ;
1093 		rw_op	= file->f_op->aio_read;
1094 		goto rw_common;
1095 
1096 	case IOCB_CMD_PWRITE:
1097 	case IOCB_CMD_PWRITEV:
1098 		mode	= FMODE_WRITE;
1099 		rw	= WRITE;
1100 		rw_op	= file->f_op->aio_write;
1101 		goto rw_common;
1102 rw_common:
1103 		if (unlikely(!(file->f_mode & mode)))
1104 			return -EBADF;
1105 
1106 		if (!rw_op)
1107 			return -EINVAL;
1108 
1109 		ret = (opcode == IOCB_CMD_PREADV ||
1110 		       opcode == IOCB_CMD_PWRITEV)
1111 			? aio_setup_vectored_rw(req, rw, buf, &nr_segs,
1112 						&iovec, compat)
1113 			: aio_setup_single_vector(req, rw, buf, &nr_segs,
1114 						  iovec);
1115 		if (ret)
1116 			return ret;
1117 
1118 		ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
1119 		if (ret < 0) {
1120 			if (iovec != &inline_vec)
1121 				kfree(iovec);
1122 			return ret;
1123 		}
1124 
1125 		req->ki_nbytes = ret;
1126 
1127 		/* XXX: move/kill - rw_verify_area()? */
1128 		/* This matches the pread()/pwrite() logic */
1129 		if (req->ki_pos < 0) {
1130 			ret = -EINVAL;
1131 			break;
1132 		}
1133 
1134 		if (rw == WRITE)
1135 			file_start_write(file);
1136 
1137 		ret = rw_op(req, iovec, nr_segs, req->ki_pos);
1138 
1139 		if (rw == WRITE)
1140 			file_end_write(file);
1141 		break;
1142 
1143 	case IOCB_CMD_FDSYNC:
1144 		if (!file->f_op->aio_fsync)
1145 			return -EINVAL;
1146 
1147 		ret = file->f_op->aio_fsync(req, 1);
1148 		break;
1149 
1150 	case IOCB_CMD_FSYNC:
1151 		if (!file->f_op->aio_fsync)
1152 			return -EINVAL;
1153 
1154 		ret = file->f_op->aio_fsync(req, 0);
1155 		break;
1156 
1157 	default:
1158 		pr_debug("EINVAL: no operation provided\n");
1159 		return -EINVAL;
1160 	}
1161 
1162 	if (iovec != &inline_vec)
1163 		kfree(iovec);
1164 
1165 	if (ret != -EIOCBQUEUED) {
1166 		/*
1167 		 * There's no easy way to restart the syscall since other AIO's
1168 		 * may be already running. Just fail this IO with EINTR.
1169 		 */
1170 		if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1171 			     ret == -ERESTARTNOHAND ||
1172 			     ret == -ERESTART_RESTARTBLOCK))
1173 			ret = -EINTR;
1174 		aio_complete(req, ret, 0);
1175 	}
1176 
1177 	return 0;
1178 }
1179 
1180 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1181 			 struct iocb *iocb, bool compat)
1182 {
1183 	struct kiocb *req;
1184 	ssize_t ret;
1185 
1186 	/* enforce forwards compatibility on users */
1187 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1188 		pr_debug("EINVAL: reserve field set\n");
1189 		return -EINVAL;
1190 	}
1191 
1192 	/* prevent overflows */
1193 	if (unlikely(
1194 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1195 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1196 	    ((ssize_t)iocb->aio_nbytes < 0)
1197 	   )) {
1198 		pr_debug("EINVAL: io_submit: overflow check\n");
1199 		return -EINVAL;
1200 	}
1201 
1202 	req = aio_get_req(ctx);
1203 	if (unlikely(!req))
1204 		return -EAGAIN;
1205 
1206 	req->ki_filp = fget(iocb->aio_fildes);
1207 	if (unlikely(!req->ki_filp)) {
1208 		ret = -EBADF;
1209 		goto out_put_req;
1210 	}
1211 
1212 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1213 		/*
1214 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1215 		 * instance of the file* now. The file descriptor must be
1216 		 * an eventfd() fd, and will be signaled for each completed
1217 		 * event using the eventfd_signal() function.
1218 		 */
1219 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1220 		if (IS_ERR(req->ki_eventfd)) {
1221 			ret = PTR_ERR(req->ki_eventfd);
1222 			req->ki_eventfd = NULL;
1223 			goto out_put_req;
1224 		}
1225 	}
1226 
1227 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1228 	if (unlikely(ret)) {
1229 		pr_debug("EFAULT: aio_key\n");
1230 		goto out_put_req;
1231 	}
1232 
1233 	req->ki_obj.user = user_iocb;
1234 	req->ki_user_data = iocb->aio_data;
1235 	req->ki_pos = iocb->aio_offset;
1236 	req->ki_nbytes = iocb->aio_nbytes;
1237 
1238 	ret = aio_run_iocb(req, iocb->aio_lio_opcode,
1239 			   (char __user *)(unsigned long)iocb->aio_buf,
1240 			   compat);
1241 	if (ret)
1242 		goto out_put_req;
1243 
1244 	return 0;
1245 out_put_req:
1246 	put_reqs_available(ctx, 1);
1247 	kiocb_free(req);
1248 	return ret;
1249 }
1250 
1251 long do_io_submit(aio_context_t ctx_id, long nr,
1252 		  struct iocb __user *__user *iocbpp, bool compat)
1253 {
1254 	struct kioctx *ctx;
1255 	long ret = 0;
1256 	int i = 0;
1257 	struct blk_plug plug;
1258 
1259 	if (unlikely(nr < 0))
1260 		return -EINVAL;
1261 
1262 	if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1263 		nr = LONG_MAX/sizeof(*iocbpp);
1264 
1265 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1266 		return -EFAULT;
1267 
1268 	ctx = lookup_ioctx(ctx_id);
1269 	if (unlikely(!ctx)) {
1270 		pr_debug("EINVAL: invalid context id\n");
1271 		return -EINVAL;
1272 	}
1273 
1274 	blk_start_plug(&plug);
1275 
1276 	/*
1277 	 * AKPM: should this return a partial result if some of the IOs were
1278 	 * successfully submitted?
1279 	 */
1280 	for (i=0; i<nr; i++) {
1281 		struct iocb __user *user_iocb;
1282 		struct iocb tmp;
1283 
1284 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1285 			ret = -EFAULT;
1286 			break;
1287 		}
1288 
1289 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1290 			ret = -EFAULT;
1291 			break;
1292 		}
1293 
1294 		ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1295 		if (ret)
1296 			break;
1297 	}
1298 	blk_finish_plug(&plug);
1299 
1300 	percpu_ref_put(&ctx->users);
1301 	return i ? i : ret;
1302 }
1303 
1304 /* sys_io_submit:
1305  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1306  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1307  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1308  *	*iocbpp[0] is not properly initialized, if the operation specified
1309  *	is invalid for the file descriptor in the iocb.  May fail with
1310  *	-EFAULT if any of the data structures point to invalid data.  May
1311  *	fail with -EBADF if the file descriptor specified in the first
1312  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1313  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1314  *	fail with -ENOSYS if not implemented.
1315  */
1316 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1317 		struct iocb __user * __user *, iocbpp)
1318 {
1319 	return do_io_submit(ctx_id, nr, iocbpp, 0);
1320 }
1321 
1322 /* lookup_kiocb
1323  *	Finds a given iocb for cancellation.
1324  */
1325 static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
1326 				  u32 key)
1327 {
1328 	struct list_head *pos;
1329 
1330 	assert_spin_locked(&ctx->ctx_lock);
1331 
1332 	if (key != KIOCB_KEY)
1333 		return NULL;
1334 
1335 	/* TODO: use a hash or array, this sucks. */
1336 	list_for_each(pos, &ctx->active_reqs) {
1337 		struct kiocb *kiocb = list_kiocb(pos);
1338 		if (kiocb->ki_obj.user == iocb)
1339 			return kiocb;
1340 	}
1341 	return NULL;
1342 }
1343 
1344 /* sys_io_cancel:
1345  *	Attempts to cancel an iocb previously passed to io_submit.  If
1346  *	the operation is successfully cancelled, the resulting event is
1347  *	copied into the memory pointed to by result without being placed
1348  *	into the completion queue and 0 is returned.  May fail with
1349  *	-EFAULT if any of the data structures pointed to are invalid.
1350  *	May fail with -EINVAL if aio_context specified by ctx_id is
1351  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1352  *	cancelled.  Will fail with -ENOSYS if not implemented.
1353  */
1354 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1355 		struct io_event __user *, result)
1356 {
1357 	struct kioctx *ctx;
1358 	struct kiocb *kiocb;
1359 	u32 key;
1360 	int ret;
1361 
1362 	ret = get_user(key, &iocb->aio_key);
1363 	if (unlikely(ret))
1364 		return -EFAULT;
1365 
1366 	ctx = lookup_ioctx(ctx_id);
1367 	if (unlikely(!ctx))
1368 		return -EINVAL;
1369 
1370 	spin_lock_irq(&ctx->ctx_lock);
1371 
1372 	kiocb = lookup_kiocb(ctx, iocb, key);
1373 	if (kiocb)
1374 		ret = kiocb_cancel(ctx, kiocb);
1375 	else
1376 		ret = -EINVAL;
1377 
1378 	spin_unlock_irq(&ctx->ctx_lock);
1379 
1380 	if (!ret) {
1381 		/*
1382 		 * The result argument is no longer used - the io_event is
1383 		 * always delivered via the ring buffer. -EINPROGRESS indicates
1384 		 * cancellation is progress:
1385 		 */
1386 		ret = -EINPROGRESS;
1387 	}
1388 
1389 	percpu_ref_put(&ctx->users);
1390 
1391 	return ret;
1392 }
1393 
1394 /* io_getevents:
1395  *	Attempts to read at least min_nr events and up to nr events from
1396  *	the completion queue for the aio_context specified by ctx_id. If
1397  *	it succeeds, the number of read events is returned. May fail with
1398  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1399  *	out of range, if timeout is out of range.  May fail with -EFAULT
1400  *	if any of the memory specified is invalid.  May return 0 or
1401  *	< min_nr if the timeout specified by timeout has elapsed
1402  *	before sufficient events are available, where timeout == NULL
1403  *	specifies an infinite timeout. Note that the timeout pointed to by
1404  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
1405  */
1406 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1407 		long, min_nr,
1408 		long, nr,
1409 		struct io_event __user *, events,
1410 		struct timespec __user *, timeout)
1411 {
1412 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1413 	long ret = -EINVAL;
1414 
1415 	if (likely(ioctx)) {
1416 		if (likely(min_nr <= nr && min_nr >= 0))
1417 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1418 		percpu_ref_put(&ioctx->users);
1419 	}
1420 	return ret;
1421 }
1422