1 /* 2 * An async IO implementation for Linux 3 * Written by Benjamin LaHaise <bcrl@kvack.org> 4 * 5 * Implements an efficient asynchronous io interface. 6 * 7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved. 8 * 9 * See ../COPYING for licensing terms. 10 */ 11 #include <linux/kernel.h> 12 #include <linux/init.h> 13 #include <linux/errno.h> 14 #include <linux/time.h> 15 #include <linux/aio_abi.h> 16 #include <linux/module.h> 17 #include <linux/syscalls.h> 18 19 #define DEBUG 0 20 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/file.h> 24 #include <linux/mm.h> 25 #include <linux/mman.h> 26 #include <linux/slab.h> 27 #include <linux/timer.h> 28 #include <linux/aio.h> 29 #include <linux/highmem.h> 30 #include <linux/workqueue.h> 31 #include <linux/security.h> 32 33 #include <asm/kmap_types.h> 34 #include <asm/uaccess.h> 35 #include <asm/mmu_context.h> 36 37 #if DEBUG > 1 38 #define dprintk printk 39 #else 40 #define dprintk(x...) do { ; } while (0) 41 #endif 42 43 long aio_run = 0; /* for testing only */ 44 long aio_wakeups = 0; /* for testing only */ 45 46 /*------ sysctl variables----*/ 47 atomic_t aio_nr = ATOMIC_INIT(0); /* current system wide number of aio requests */ 48 unsigned aio_max_nr = 0x10000; /* system wide maximum number of aio requests */ 49 /*----end sysctl variables---*/ 50 51 static kmem_cache_t *kiocb_cachep; 52 static kmem_cache_t *kioctx_cachep; 53 54 static struct workqueue_struct *aio_wq; 55 56 /* Used for rare fput completion. */ 57 static void aio_fput_routine(void *); 58 static DECLARE_WORK(fput_work, aio_fput_routine, NULL); 59 60 static DEFINE_SPINLOCK(fput_lock); 61 LIST_HEAD(fput_head); 62 63 static void aio_kick_handler(void *); 64 65 /* aio_setup 66 * Creates the slab caches used by the aio routines, panic on 67 * failure as this is done early during the boot sequence. 68 */ 69 static int __init aio_setup(void) 70 { 71 kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb), 72 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); 73 kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx), 74 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); 75 76 aio_wq = create_workqueue("aio"); 77 78 pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page)); 79 80 return 0; 81 } 82 83 static void aio_free_ring(struct kioctx *ctx) 84 { 85 struct aio_ring_info *info = &ctx->ring_info; 86 long i; 87 88 for (i=0; i<info->nr_pages; i++) 89 put_page(info->ring_pages[i]); 90 91 if (info->mmap_size) { 92 down_write(&ctx->mm->mmap_sem); 93 do_munmap(ctx->mm, info->mmap_base, info->mmap_size); 94 up_write(&ctx->mm->mmap_sem); 95 } 96 97 if (info->ring_pages && info->ring_pages != info->internal_pages) 98 kfree(info->ring_pages); 99 info->ring_pages = NULL; 100 info->nr = 0; 101 } 102 103 static int aio_setup_ring(struct kioctx *ctx) 104 { 105 struct aio_ring *ring; 106 struct aio_ring_info *info = &ctx->ring_info; 107 unsigned nr_events = ctx->max_reqs; 108 unsigned long size; 109 int nr_pages; 110 111 /* Compensate for the ring buffer's head/tail overlap entry */ 112 nr_events += 2; /* 1 is required, 2 for good luck */ 113 114 size = sizeof(struct aio_ring); 115 size += sizeof(struct io_event) * nr_events; 116 nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT; 117 118 if (nr_pages < 0) 119 return -EINVAL; 120 121 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event); 122 123 info->nr = 0; 124 info->ring_pages = info->internal_pages; 125 if (nr_pages > AIO_RING_PAGES) { 126 info->ring_pages = kmalloc(sizeof(struct page *) * nr_pages, GFP_KERNEL); 127 if (!info->ring_pages) 128 return -ENOMEM; 129 memset(info->ring_pages, 0, sizeof(struct page *) * nr_pages); 130 } 131 132 info->mmap_size = nr_pages * PAGE_SIZE; 133 dprintk("attempting mmap of %lu bytes\n", info->mmap_size); 134 down_write(&ctx->mm->mmap_sem); 135 info->mmap_base = do_mmap(NULL, 0, info->mmap_size, 136 PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, 137 0); 138 if (IS_ERR((void *)info->mmap_base)) { 139 up_write(&ctx->mm->mmap_sem); 140 printk("mmap err: %ld\n", -info->mmap_base); 141 info->mmap_size = 0; 142 aio_free_ring(ctx); 143 return -EAGAIN; 144 } 145 146 dprintk("mmap address: 0x%08lx\n", info->mmap_base); 147 info->nr_pages = get_user_pages(current, ctx->mm, 148 info->mmap_base, nr_pages, 149 1, 0, info->ring_pages, NULL); 150 up_write(&ctx->mm->mmap_sem); 151 152 if (unlikely(info->nr_pages != nr_pages)) { 153 aio_free_ring(ctx); 154 return -EAGAIN; 155 } 156 157 ctx->user_id = info->mmap_base; 158 159 info->nr = nr_events; /* trusted copy */ 160 161 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 162 ring->nr = nr_events; /* user copy */ 163 ring->id = ctx->user_id; 164 ring->head = ring->tail = 0; 165 ring->magic = AIO_RING_MAGIC; 166 ring->compat_features = AIO_RING_COMPAT_FEATURES; 167 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES; 168 ring->header_length = sizeof(struct aio_ring); 169 kunmap_atomic(ring, KM_USER0); 170 171 return 0; 172 } 173 174 175 /* aio_ring_event: returns a pointer to the event at the given index from 176 * kmap_atomic(, km). Release the pointer with put_aio_ring_event(); 177 */ 178 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event)) 179 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event)) 180 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE) 181 182 #define aio_ring_event(info, nr, km) ({ \ 183 unsigned pos = (nr) + AIO_EVENTS_OFFSET; \ 184 struct io_event *__event; \ 185 __event = kmap_atomic( \ 186 (info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \ 187 __event += pos % AIO_EVENTS_PER_PAGE; \ 188 __event; \ 189 }) 190 191 #define put_aio_ring_event(event, km) do { \ 192 struct io_event *__event = (event); \ 193 (void)__event; \ 194 kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \ 195 } while(0) 196 197 /* ioctx_alloc 198 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed. 199 */ 200 static struct kioctx *ioctx_alloc(unsigned nr_events) 201 { 202 struct mm_struct *mm; 203 struct kioctx *ctx; 204 205 /* Prevent overflows */ 206 if ((nr_events > (0x10000000U / sizeof(struct io_event))) || 207 (nr_events > (0x10000000U / sizeof(struct kiocb)))) { 208 pr_debug("ENOMEM: nr_events too high\n"); 209 return ERR_PTR(-EINVAL); 210 } 211 212 if (nr_events > aio_max_nr) 213 return ERR_PTR(-EAGAIN); 214 215 ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL); 216 if (!ctx) 217 return ERR_PTR(-ENOMEM); 218 219 memset(ctx, 0, sizeof(*ctx)); 220 ctx->max_reqs = nr_events; 221 mm = ctx->mm = current->mm; 222 atomic_inc(&mm->mm_count); 223 224 atomic_set(&ctx->users, 1); 225 spin_lock_init(&ctx->ctx_lock); 226 spin_lock_init(&ctx->ring_info.ring_lock); 227 init_waitqueue_head(&ctx->wait); 228 229 INIT_LIST_HEAD(&ctx->active_reqs); 230 INIT_LIST_HEAD(&ctx->run_list); 231 INIT_WORK(&ctx->wq, aio_kick_handler, ctx); 232 233 if (aio_setup_ring(ctx) < 0) 234 goto out_freectx; 235 236 /* limit the number of system wide aios */ 237 atomic_add(ctx->max_reqs, &aio_nr); /* undone by __put_ioctx */ 238 if (unlikely(atomic_read(&aio_nr) > aio_max_nr)) 239 goto out_cleanup; 240 241 /* now link into global list. kludge. FIXME */ 242 write_lock(&mm->ioctx_list_lock); 243 ctx->next = mm->ioctx_list; 244 mm->ioctx_list = ctx; 245 write_unlock(&mm->ioctx_list_lock); 246 247 dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n", 248 ctx, ctx->user_id, current->mm, ctx->ring_info.nr); 249 return ctx; 250 251 out_cleanup: 252 atomic_sub(ctx->max_reqs, &aio_nr); 253 ctx->max_reqs = 0; /* prevent __put_ioctx from sub'ing aio_nr */ 254 __put_ioctx(ctx); 255 return ERR_PTR(-EAGAIN); 256 257 out_freectx: 258 mmdrop(mm); 259 kmem_cache_free(kioctx_cachep, ctx); 260 ctx = ERR_PTR(-ENOMEM); 261 262 dprintk("aio: error allocating ioctx %p\n", ctx); 263 return ctx; 264 } 265 266 /* aio_cancel_all 267 * Cancels all outstanding aio requests on an aio context. Used 268 * when the processes owning a context have all exited to encourage 269 * the rapid destruction of the kioctx. 270 */ 271 static void aio_cancel_all(struct kioctx *ctx) 272 { 273 int (*cancel)(struct kiocb *, struct io_event *); 274 struct io_event res; 275 spin_lock_irq(&ctx->ctx_lock); 276 ctx->dead = 1; 277 while (!list_empty(&ctx->active_reqs)) { 278 struct list_head *pos = ctx->active_reqs.next; 279 struct kiocb *iocb = list_kiocb(pos); 280 list_del_init(&iocb->ki_list); 281 cancel = iocb->ki_cancel; 282 kiocbSetCancelled(iocb); 283 if (cancel) { 284 iocb->ki_users++; 285 spin_unlock_irq(&ctx->ctx_lock); 286 cancel(iocb, &res); 287 spin_lock_irq(&ctx->ctx_lock); 288 } 289 } 290 spin_unlock_irq(&ctx->ctx_lock); 291 } 292 293 void wait_for_all_aios(struct kioctx *ctx) 294 { 295 struct task_struct *tsk = current; 296 DECLARE_WAITQUEUE(wait, tsk); 297 298 if (!ctx->reqs_active) 299 return; 300 301 add_wait_queue(&ctx->wait, &wait); 302 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 303 while (ctx->reqs_active) { 304 schedule(); 305 set_task_state(tsk, TASK_UNINTERRUPTIBLE); 306 } 307 __set_task_state(tsk, TASK_RUNNING); 308 remove_wait_queue(&ctx->wait, &wait); 309 } 310 311 /* wait_on_sync_kiocb: 312 * Waits on the given sync kiocb to complete. 313 */ 314 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb) 315 { 316 while (iocb->ki_users) { 317 set_current_state(TASK_UNINTERRUPTIBLE); 318 if (!iocb->ki_users) 319 break; 320 schedule(); 321 } 322 __set_current_state(TASK_RUNNING); 323 return iocb->ki_user_data; 324 } 325 326 /* exit_aio: called when the last user of mm goes away. At this point, 327 * there is no way for any new requests to be submited or any of the 328 * io_* syscalls to be called on the context. However, there may be 329 * outstanding requests which hold references to the context; as they 330 * go away, they will call put_ioctx and release any pinned memory 331 * associated with the request (held via struct page * references). 332 */ 333 void fastcall exit_aio(struct mm_struct *mm) 334 { 335 struct kioctx *ctx = mm->ioctx_list; 336 mm->ioctx_list = NULL; 337 while (ctx) { 338 struct kioctx *next = ctx->next; 339 ctx->next = NULL; 340 aio_cancel_all(ctx); 341 342 wait_for_all_aios(ctx); 343 /* 344 * this is an overkill, but ensures we don't leave 345 * the ctx on the aio_wq 346 */ 347 flush_workqueue(aio_wq); 348 349 if (1 != atomic_read(&ctx->users)) 350 printk(KERN_DEBUG 351 "exit_aio:ioctx still alive: %d %d %d\n", 352 atomic_read(&ctx->users), ctx->dead, 353 ctx->reqs_active); 354 put_ioctx(ctx); 355 ctx = next; 356 } 357 } 358 359 /* __put_ioctx 360 * Called when the last user of an aio context has gone away, 361 * and the struct needs to be freed. 362 */ 363 void fastcall __put_ioctx(struct kioctx *ctx) 364 { 365 unsigned nr_events = ctx->max_reqs; 366 367 if (unlikely(ctx->reqs_active)) 368 BUG(); 369 370 cancel_delayed_work(&ctx->wq); 371 flush_workqueue(aio_wq); 372 aio_free_ring(ctx); 373 mmdrop(ctx->mm); 374 ctx->mm = NULL; 375 pr_debug("__put_ioctx: freeing %p\n", ctx); 376 kmem_cache_free(kioctx_cachep, ctx); 377 378 atomic_sub(nr_events, &aio_nr); 379 } 380 381 /* aio_get_req 382 * Allocate a slot for an aio request. Increments the users count 383 * of the kioctx so that the kioctx stays around until all requests are 384 * complete. Returns NULL if no requests are free. 385 * 386 * Returns with kiocb->users set to 2. The io submit code path holds 387 * an extra reference while submitting the i/o. 388 * This prevents races between the aio code path referencing the 389 * req (after submitting it) and aio_complete() freeing the req. 390 */ 391 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx)); 392 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx) 393 { 394 struct kiocb *req = NULL; 395 struct aio_ring *ring; 396 int okay = 0; 397 398 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL); 399 if (unlikely(!req)) 400 return NULL; 401 402 req->ki_flags = 1 << KIF_LOCKED; 403 req->ki_users = 2; 404 req->ki_key = 0; 405 req->ki_ctx = ctx; 406 req->ki_cancel = NULL; 407 req->ki_retry = NULL; 408 req->ki_obj.user = NULL; 409 req->ki_dtor = NULL; 410 req->private = NULL; 411 INIT_LIST_HEAD(&req->ki_run_list); 412 413 /* Check if the completion queue has enough free space to 414 * accept an event from this io. 415 */ 416 spin_lock_irq(&ctx->ctx_lock); 417 ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0); 418 if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) { 419 list_add(&req->ki_list, &ctx->active_reqs); 420 get_ioctx(ctx); 421 ctx->reqs_active++; 422 okay = 1; 423 } 424 kunmap_atomic(ring, KM_USER0); 425 spin_unlock_irq(&ctx->ctx_lock); 426 427 if (!okay) { 428 kmem_cache_free(kiocb_cachep, req); 429 req = NULL; 430 } 431 432 return req; 433 } 434 435 static inline struct kiocb *aio_get_req(struct kioctx *ctx) 436 { 437 struct kiocb *req; 438 /* Handle a potential starvation case -- should be exceedingly rare as 439 * requests will be stuck on fput_head only if the aio_fput_routine is 440 * delayed and the requests were the last user of the struct file. 441 */ 442 req = __aio_get_req(ctx); 443 if (unlikely(NULL == req)) { 444 aio_fput_routine(NULL); 445 req = __aio_get_req(ctx); 446 } 447 return req; 448 } 449 450 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req) 451 { 452 if (req->ki_dtor) 453 req->ki_dtor(req); 454 req->ki_ctx = NULL; 455 req->ki_filp = NULL; 456 req->ki_obj.user = NULL; 457 req->ki_dtor = NULL; 458 req->private = NULL; 459 kmem_cache_free(kiocb_cachep, req); 460 ctx->reqs_active--; 461 462 if (unlikely(!ctx->reqs_active && ctx->dead)) 463 wake_up(&ctx->wait); 464 } 465 466 static void aio_fput_routine(void *data) 467 { 468 spin_lock_irq(&fput_lock); 469 while (likely(!list_empty(&fput_head))) { 470 struct kiocb *req = list_kiocb(fput_head.next); 471 struct kioctx *ctx = req->ki_ctx; 472 473 list_del(&req->ki_list); 474 spin_unlock_irq(&fput_lock); 475 476 /* Complete the fput */ 477 __fput(req->ki_filp); 478 479 /* Link the iocb into the context's free list */ 480 spin_lock_irq(&ctx->ctx_lock); 481 really_put_req(ctx, req); 482 spin_unlock_irq(&ctx->ctx_lock); 483 484 put_ioctx(ctx); 485 spin_lock_irq(&fput_lock); 486 } 487 spin_unlock_irq(&fput_lock); 488 } 489 490 /* __aio_put_req 491 * Returns true if this put was the last user of the request. 492 */ 493 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req) 494 { 495 dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n", 496 req, atomic_read(&req->ki_filp->f_count)); 497 498 req->ki_users --; 499 if (unlikely(req->ki_users < 0)) 500 BUG(); 501 if (likely(req->ki_users)) 502 return 0; 503 list_del(&req->ki_list); /* remove from active_reqs */ 504 req->ki_cancel = NULL; 505 req->ki_retry = NULL; 506 507 /* Must be done under the lock to serialise against cancellation. 508 * Call this aio_fput as it duplicates fput via the fput_work. 509 */ 510 if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) { 511 get_ioctx(ctx); 512 spin_lock(&fput_lock); 513 list_add(&req->ki_list, &fput_head); 514 spin_unlock(&fput_lock); 515 queue_work(aio_wq, &fput_work); 516 } else 517 really_put_req(ctx, req); 518 return 1; 519 } 520 521 /* aio_put_req 522 * Returns true if this put was the last user of the kiocb, 523 * false if the request is still in use. 524 */ 525 int fastcall aio_put_req(struct kiocb *req) 526 { 527 struct kioctx *ctx = req->ki_ctx; 528 int ret; 529 spin_lock_irq(&ctx->ctx_lock); 530 ret = __aio_put_req(ctx, req); 531 spin_unlock_irq(&ctx->ctx_lock); 532 if (ret) 533 put_ioctx(ctx); 534 return ret; 535 } 536 537 /* Lookup an ioctx id. ioctx_list is lockless for reads. 538 * FIXME: this is O(n) and is only suitable for development. 539 */ 540 struct kioctx *lookup_ioctx(unsigned long ctx_id) 541 { 542 struct kioctx *ioctx; 543 struct mm_struct *mm; 544 545 mm = current->mm; 546 read_lock(&mm->ioctx_list_lock); 547 for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next) 548 if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) { 549 get_ioctx(ioctx); 550 break; 551 } 552 read_unlock(&mm->ioctx_list_lock); 553 554 return ioctx; 555 } 556 557 /* 558 * use_mm 559 * Makes the calling kernel thread take on the specified 560 * mm context. 561 * Called by the retry thread execute retries within the 562 * iocb issuer's mm context, so that copy_from/to_user 563 * operations work seamlessly for aio. 564 * (Note: this routine is intended to be called only 565 * from a kernel thread context) 566 */ 567 static void use_mm(struct mm_struct *mm) 568 { 569 struct mm_struct *active_mm; 570 struct task_struct *tsk = current; 571 572 task_lock(tsk); 573 tsk->flags |= PF_BORROWED_MM; 574 active_mm = tsk->active_mm; 575 atomic_inc(&mm->mm_count); 576 tsk->mm = mm; 577 tsk->active_mm = mm; 578 activate_mm(active_mm, mm); 579 task_unlock(tsk); 580 581 mmdrop(active_mm); 582 } 583 584 /* 585 * unuse_mm 586 * Reverses the effect of use_mm, i.e. releases the 587 * specified mm context which was earlier taken on 588 * by the calling kernel thread 589 * (Note: this routine is intended to be called only 590 * from a kernel thread context) 591 * 592 * Comments: Called with ctx->ctx_lock held. This nests 593 * task_lock instead ctx_lock. 594 */ 595 void unuse_mm(struct mm_struct *mm) 596 { 597 struct task_struct *tsk = current; 598 599 task_lock(tsk); 600 tsk->flags &= ~PF_BORROWED_MM; 601 tsk->mm = NULL; 602 /* active_mm is still 'mm' */ 603 enter_lazy_tlb(mm, tsk); 604 task_unlock(tsk); 605 } 606 607 /* 608 * Queue up a kiocb to be retried. Assumes that the kiocb 609 * has already been marked as kicked, and places it on 610 * the retry run list for the corresponding ioctx, if it 611 * isn't already queued. Returns 1 if it actually queued 612 * the kiocb (to tell the caller to activate the work 613 * queue to process it), or 0, if it found that it was 614 * already queued. 615 * 616 * Should be called with the spin lock iocb->ki_ctx->ctx_lock 617 * held 618 */ 619 static inline int __queue_kicked_iocb(struct kiocb *iocb) 620 { 621 struct kioctx *ctx = iocb->ki_ctx; 622 623 if (list_empty(&iocb->ki_run_list)) { 624 list_add_tail(&iocb->ki_run_list, 625 &ctx->run_list); 626 iocb->ki_queued++; 627 return 1; 628 } 629 return 0; 630 } 631 632 /* aio_run_iocb 633 * This is the core aio execution routine. It is 634 * invoked both for initial i/o submission and 635 * subsequent retries via the aio_kick_handler. 636 * Expects to be invoked with iocb->ki_ctx->lock 637 * already held. The lock is released and reaquired 638 * as needed during processing. 639 * 640 * Calls the iocb retry method (already setup for the 641 * iocb on initial submission) for operation specific 642 * handling, but takes care of most of common retry 643 * execution details for a given iocb. The retry method 644 * needs to be non-blocking as far as possible, to avoid 645 * holding up other iocbs waiting to be serviced by the 646 * retry kernel thread. 647 * 648 * The trickier parts in this code have to do with 649 * ensuring that only one retry instance is in progress 650 * for a given iocb at any time. Providing that guarantee 651 * simplifies the coding of individual aio operations as 652 * it avoids various potential races. 653 */ 654 static ssize_t aio_run_iocb(struct kiocb *iocb) 655 { 656 struct kioctx *ctx = iocb->ki_ctx; 657 ssize_t (*retry)(struct kiocb *); 658 ssize_t ret; 659 660 if (iocb->ki_retried++ > 1024*1024) { 661 printk("Maximal retry count. Bytes done %Zd\n", 662 iocb->ki_nbytes - iocb->ki_left); 663 return -EAGAIN; 664 } 665 666 if (!(iocb->ki_retried & 0xff)) { 667 pr_debug("%ld retry: %d of %d (kick %ld, Q %ld run %ld, wake %ld)\n", 668 iocb->ki_retried, 669 iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes, 670 iocb->ki_kicked, iocb->ki_queued, aio_run, aio_wakeups); 671 } 672 673 if (!(retry = iocb->ki_retry)) { 674 printk("aio_run_iocb: iocb->ki_retry = NULL\n"); 675 return 0; 676 } 677 678 /* 679 * We don't want the next retry iteration for this 680 * operation to start until this one has returned and 681 * updated the iocb state. However, wait_queue functions 682 * can trigger a kick_iocb from interrupt context in the 683 * meantime, indicating that data is available for the next 684 * iteration. We want to remember that and enable the 685 * next retry iteration _after_ we are through with 686 * this one. 687 * 688 * So, in order to be able to register a "kick", but 689 * prevent it from being queued now, we clear the kick 690 * flag, but make the kick code *think* that the iocb is 691 * still on the run list until we are actually done. 692 * When we are done with this iteration, we check if 693 * the iocb was kicked in the meantime and if so, queue 694 * it up afresh. 695 */ 696 697 kiocbClearKicked(iocb); 698 699 /* 700 * This is so that aio_complete knows it doesn't need to 701 * pull the iocb off the run list (We can't just call 702 * INIT_LIST_HEAD because we don't want a kick_iocb to 703 * queue this on the run list yet) 704 */ 705 iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL; 706 spin_unlock_irq(&ctx->ctx_lock); 707 708 /* Quit retrying if the i/o has been cancelled */ 709 if (kiocbIsCancelled(iocb)) { 710 ret = -EINTR; 711 aio_complete(iocb, ret, 0); 712 /* must not access the iocb after this */ 713 goto out; 714 } 715 716 /* 717 * Now we are all set to call the retry method in async 718 * context. By setting this thread's io_wait context 719 * to point to the wait queue entry inside the currently 720 * running iocb for the duration of the retry, we ensure 721 * that async notification wakeups are queued by the 722 * operation instead of blocking waits, and when notified, 723 * cause the iocb to be kicked for continuation (through 724 * the aio_wake_function callback). 725 */ 726 BUG_ON(current->io_wait != NULL); 727 current->io_wait = &iocb->ki_wait; 728 ret = retry(iocb); 729 current->io_wait = NULL; 730 731 if (-EIOCBRETRY != ret) { 732 if (-EIOCBQUEUED != ret) { 733 BUG_ON(!list_empty(&iocb->ki_wait.task_list)); 734 aio_complete(iocb, ret, 0); 735 /* must not access the iocb after this */ 736 } 737 } else { 738 /* 739 * Issue an additional retry to avoid waiting forever if 740 * no waits were queued (e.g. in case of a short read). 741 */ 742 if (list_empty(&iocb->ki_wait.task_list)) 743 kiocbSetKicked(iocb); 744 } 745 out: 746 spin_lock_irq(&ctx->ctx_lock); 747 748 if (-EIOCBRETRY == ret) { 749 /* 750 * OK, now that we are done with this iteration 751 * and know that there is more left to go, 752 * this is where we let go so that a subsequent 753 * "kick" can start the next iteration 754 */ 755 756 /* will make __queue_kicked_iocb succeed from here on */ 757 INIT_LIST_HEAD(&iocb->ki_run_list); 758 /* we must queue the next iteration ourselves, if it 759 * has already been kicked */ 760 if (kiocbIsKicked(iocb)) { 761 __queue_kicked_iocb(iocb); 762 } 763 } 764 return ret; 765 } 766 767 /* 768 * __aio_run_iocbs: 769 * Process all pending retries queued on the ioctx 770 * run list. 771 * Assumes it is operating within the aio issuer's mm 772 * context. Expects to be called with ctx->ctx_lock held 773 */ 774 static int __aio_run_iocbs(struct kioctx *ctx) 775 { 776 struct kiocb *iocb; 777 int count = 0; 778 LIST_HEAD(run_list); 779 780 list_splice_init(&ctx->run_list, &run_list); 781 while (!list_empty(&run_list)) { 782 iocb = list_entry(run_list.next, struct kiocb, 783 ki_run_list); 784 list_del(&iocb->ki_run_list); 785 /* 786 * Hold an extra reference while retrying i/o. 787 */ 788 iocb->ki_users++; /* grab extra reference */ 789 aio_run_iocb(iocb); 790 if (__aio_put_req(ctx, iocb)) /* drop extra ref */ 791 put_ioctx(ctx); 792 count++; 793 } 794 aio_run++; 795 if (!list_empty(&ctx->run_list)) 796 return 1; 797 return 0; 798 } 799 800 static void aio_queue_work(struct kioctx * ctx) 801 { 802 unsigned long timeout; 803 /* 804 * if someone is waiting, get the work started right 805 * away, otherwise, use a longer delay 806 */ 807 smp_mb(); 808 if (waitqueue_active(&ctx->wait)) 809 timeout = 1; 810 else 811 timeout = HZ/10; 812 queue_delayed_work(aio_wq, &ctx->wq, timeout); 813 } 814 815 816 /* 817 * aio_run_iocbs: 818 * Process all pending retries queued on the ioctx 819 * run list. 820 * Assumes it is operating within the aio issuer's mm 821 * context. 822 */ 823 static inline void aio_run_iocbs(struct kioctx *ctx) 824 { 825 int requeue; 826 827 spin_lock_irq(&ctx->ctx_lock); 828 829 requeue = __aio_run_iocbs(ctx); 830 spin_unlock_irq(&ctx->ctx_lock); 831 if (requeue) 832 aio_queue_work(ctx); 833 } 834 835 /* 836 * just like aio_run_iocbs, but keeps running them until 837 * the list stays empty 838 */ 839 static inline void aio_run_all_iocbs(struct kioctx *ctx) 840 { 841 spin_lock_irq(&ctx->ctx_lock); 842 while (__aio_run_iocbs(ctx)) 843 ; 844 spin_unlock_irq(&ctx->ctx_lock); 845 } 846 847 /* 848 * aio_kick_handler: 849 * Work queue handler triggered to process pending 850 * retries on an ioctx. Takes on the aio issuer's 851 * mm context before running the iocbs, so that 852 * copy_xxx_user operates on the issuer's address 853 * space. 854 * Run on aiod's context. 855 */ 856 static void aio_kick_handler(void *data) 857 { 858 struct kioctx *ctx = data; 859 mm_segment_t oldfs = get_fs(); 860 int requeue; 861 862 set_fs(USER_DS); 863 use_mm(ctx->mm); 864 spin_lock_irq(&ctx->ctx_lock); 865 requeue =__aio_run_iocbs(ctx); 866 unuse_mm(ctx->mm); 867 spin_unlock_irq(&ctx->ctx_lock); 868 set_fs(oldfs); 869 /* 870 * we're in a worker thread already, don't use queue_delayed_work, 871 */ 872 if (requeue) 873 queue_work(aio_wq, &ctx->wq); 874 } 875 876 877 /* 878 * Called by kick_iocb to queue the kiocb for retry 879 * and if required activate the aio work queue to process 880 * it 881 */ 882 void queue_kicked_iocb(struct kiocb *iocb) 883 { 884 struct kioctx *ctx = iocb->ki_ctx; 885 unsigned long flags; 886 int run = 0; 887 888 WARN_ON((!list_empty(&iocb->ki_wait.task_list))); 889 890 spin_lock_irqsave(&ctx->ctx_lock, flags); 891 run = __queue_kicked_iocb(iocb); 892 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 893 if (run) { 894 aio_queue_work(ctx); 895 aio_wakeups++; 896 } 897 } 898 899 /* 900 * kick_iocb: 901 * Called typically from a wait queue callback context 902 * (aio_wake_function) to trigger a retry of the iocb. 903 * The retry is usually executed by aio workqueue 904 * threads (See aio_kick_handler). 905 */ 906 void fastcall kick_iocb(struct kiocb *iocb) 907 { 908 /* sync iocbs are easy: they can only ever be executing from a 909 * single context. */ 910 if (is_sync_kiocb(iocb)) { 911 kiocbSetKicked(iocb); 912 wake_up_process(iocb->ki_obj.tsk); 913 return; 914 } 915 916 iocb->ki_kicked++; 917 /* If its already kicked we shouldn't queue it again */ 918 if (!kiocbTryKick(iocb)) { 919 queue_kicked_iocb(iocb); 920 } 921 } 922 EXPORT_SYMBOL(kick_iocb); 923 924 /* aio_complete 925 * Called when the io request on the given iocb is complete. 926 * Returns true if this is the last user of the request. The 927 * only other user of the request can be the cancellation code. 928 */ 929 int fastcall aio_complete(struct kiocb *iocb, long res, long res2) 930 { 931 struct kioctx *ctx = iocb->ki_ctx; 932 struct aio_ring_info *info; 933 struct aio_ring *ring; 934 struct io_event *event; 935 unsigned long flags; 936 unsigned long tail; 937 int ret; 938 939 /* Special case handling for sync iocbs: events go directly 940 * into the iocb for fast handling. Note that this will not 941 * work if we allow sync kiocbs to be cancelled. in which 942 * case the usage count checks will have to move under ctx_lock 943 * for all cases. 944 */ 945 if (is_sync_kiocb(iocb)) { 946 int ret; 947 948 iocb->ki_user_data = res; 949 if (iocb->ki_users == 1) { 950 iocb->ki_users = 0; 951 ret = 1; 952 } else { 953 spin_lock_irq(&ctx->ctx_lock); 954 iocb->ki_users--; 955 ret = (0 == iocb->ki_users); 956 spin_unlock_irq(&ctx->ctx_lock); 957 } 958 /* sync iocbs put the task here for us */ 959 wake_up_process(iocb->ki_obj.tsk); 960 return ret; 961 } 962 963 info = &ctx->ring_info; 964 965 /* add a completion event to the ring buffer. 966 * must be done holding ctx->ctx_lock to prevent 967 * other code from messing with the tail 968 * pointer since we might be called from irq 969 * context. 970 */ 971 spin_lock_irqsave(&ctx->ctx_lock, flags); 972 973 if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list)) 974 list_del_init(&iocb->ki_run_list); 975 976 /* 977 * cancelled requests don't get events, userland was given one 978 * when the event got cancelled. 979 */ 980 if (kiocbIsCancelled(iocb)) 981 goto put_rq; 982 983 ring = kmap_atomic(info->ring_pages[0], KM_IRQ1); 984 985 tail = info->tail; 986 event = aio_ring_event(info, tail, KM_IRQ0); 987 tail = (tail + 1) % info->nr; 988 989 event->obj = (u64)(unsigned long)iocb->ki_obj.user; 990 event->data = iocb->ki_user_data; 991 event->res = res; 992 event->res2 = res2; 993 994 dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n", 995 ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data, 996 res, res2); 997 998 /* after flagging the request as done, we 999 * must never even look at it again 1000 */ 1001 smp_wmb(); /* make event visible before updating tail */ 1002 1003 info->tail = tail; 1004 ring->tail = tail; 1005 1006 put_aio_ring_event(event, KM_IRQ0); 1007 kunmap_atomic(ring, KM_IRQ1); 1008 1009 pr_debug("added to ring %p at [%lu]\n", iocb, tail); 1010 1011 pr_debug("%ld retries: %d of %d (kicked %ld, Q %ld run %ld wake %ld)\n", 1012 iocb->ki_retried, 1013 iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes, 1014 iocb->ki_kicked, iocb->ki_queued, aio_run, aio_wakeups); 1015 put_rq: 1016 /* everything turned out well, dispose of the aiocb. */ 1017 ret = __aio_put_req(ctx, iocb); 1018 1019 spin_unlock_irqrestore(&ctx->ctx_lock, flags); 1020 1021 if (waitqueue_active(&ctx->wait)) 1022 wake_up(&ctx->wait); 1023 1024 if (ret) 1025 put_ioctx(ctx); 1026 1027 return ret; 1028 } 1029 1030 /* aio_read_evt 1031 * Pull an event off of the ioctx's event ring. Returns the number of 1032 * events fetched (0 or 1 ;-) 1033 * FIXME: make this use cmpxchg. 1034 * TODO: make the ringbuffer user mmap()able (requires FIXME). 1035 */ 1036 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent) 1037 { 1038 struct aio_ring_info *info = &ioctx->ring_info; 1039 struct aio_ring *ring; 1040 unsigned long head; 1041 int ret = 0; 1042 1043 ring = kmap_atomic(info->ring_pages[0], KM_USER0); 1044 dprintk("in aio_read_evt h%lu t%lu m%lu\n", 1045 (unsigned long)ring->head, (unsigned long)ring->tail, 1046 (unsigned long)ring->nr); 1047 1048 if (ring->head == ring->tail) 1049 goto out; 1050 1051 spin_lock(&info->ring_lock); 1052 1053 head = ring->head % info->nr; 1054 if (head != ring->tail) { 1055 struct io_event *evp = aio_ring_event(info, head, KM_USER1); 1056 *ent = *evp; 1057 head = (head + 1) % info->nr; 1058 smp_mb(); /* finish reading the event before updatng the head */ 1059 ring->head = head; 1060 ret = 1; 1061 put_aio_ring_event(evp, KM_USER1); 1062 } 1063 spin_unlock(&info->ring_lock); 1064 1065 out: 1066 kunmap_atomic(ring, KM_USER0); 1067 dprintk("leaving aio_read_evt: %d h%lu t%lu\n", ret, 1068 (unsigned long)ring->head, (unsigned long)ring->tail); 1069 return ret; 1070 } 1071 1072 struct aio_timeout { 1073 struct timer_list timer; 1074 int timed_out; 1075 struct task_struct *p; 1076 }; 1077 1078 static void timeout_func(unsigned long data) 1079 { 1080 struct aio_timeout *to = (struct aio_timeout *)data; 1081 1082 to->timed_out = 1; 1083 wake_up_process(to->p); 1084 } 1085 1086 static inline void init_timeout(struct aio_timeout *to) 1087 { 1088 init_timer(&to->timer); 1089 to->timer.data = (unsigned long)to; 1090 to->timer.function = timeout_func; 1091 to->timed_out = 0; 1092 to->p = current; 1093 } 1094 1095 static inline void set_timeout(long start_jiffies, struct aio_timeout *to, 1096 const struct timespec *ts) 1097 { 1098 to->timer.expires = start_jiffies + timespec_to_jiffies(ts); 1099 if (time_after(to->timer.expires, jiffies)) 1100 add_timer(&to->timer); 1101 else 1102 to->timed_out = 1; 1103 } 1104 1105 static inline void clear_timeout(struct aio_timeout *to) 1106 { 1107 del_singleshot_timer_sync(&to->timer); 1108 } 1109 1110 static int read_events(struct kioctx *ctx, 1111 long min_nr, long nr, 1112 struct io_event __user *event, 1113 struct timespec __user *timeout) 1114 { 1115 long start_jiffies = jiffies; 1116 struct task_struct *tsk = current; 1117 DECLARE_WAITQUEUE(wait, tsk); 1118 int ret; 1119 int i = 0; 1120 struct io_event ent; 1121 struct aio_timeout to; 1122 int event_loop = 0; /* testing only */ 1123 int retry = 0; 1124 1125 /* needed to zero any padding within an entry (there shouldn't be 1126 * any, but C is fun! 1127 */ 1128 memset(&ent, 0, sizeof(ent)); 1129 retry: 1130 ret = 0; 1131 while (likely(i < nr)) { 1132 ret = aio_read_evt(ctx, &ent); 1133 if (unlikely(ret <= 0)) 1134 break; 1135 1136 dprintk("read event: %Lx %Lx %Lx %Lx\n", 1137 ent.data, ent.obj, ent.res, ent.res2); 1138 1139 /* Could we split the check in two? */ 1140 ret = -EFAULT; 1141 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1142 dprintk("aio: lost an event due to EFAULT.\n"); 1143 break; 1144 } 1145 ret = 0; 1146 1147 /* Good, event copied to userland, update counts. */ 1148 event ++; 1149 i ++; 1150 } 1151 1152 if (min_nr <= i) 1153 return i; 1154 if (ret) 1155 return ret; 1156 1157 /* End fast path */ 1158 1159 /* racey check, but it gets redone */ 1160 if (!retry && unlikely(!list_empty(&ctx->run_list))) { 1161 retry = 1; 1162 aio_run_all_iocbs(ctx); 1163 goto retry; 1164 } 1165 1166 init_timeout(&to); 1167 if (timeout) { 1168 struct timespec ts; 1169 ret = -EFAULT; 1170 if (unlikely(copy_from_user(&ts, timeout, sizeof(ts)))) 1171 goto out; 1172 1173 set_timeout(start_jiffies, &to, &ts); 1174 } 1175 1176 while (likely(i < nr)) { 1177 add_wait_queue_exclusive(&ctx->wait, &wait); 1178 do { 1179 set_task_state(tsk, TASK_INTERRUPTIBLE); 1180 ret = aio_read_evt(ctx, &ent); 1181 if (ret) 1182 break; 1183 if (min_nr <= i) 1184 break; 1185 ret = 0; 1186 if (to.timed_out) /* Only check after read evt */ 1187 break; 1188 schedule(); 1189 event_loop++; 1190 if (signal_pending(tsk)) { 1191 ret = -EINTR; 1192 break; 1193 } 1194 /*ret = aio_read_evt(ctx, &ent);*/ 1195 } while (1) ; 1196 1197 set_task_state(tsk, TASK_RUNNING); 1198 remove_wait_queue(&ctx->wait, &wait); 1199 1200 if (unlikely(ret <= 0)) 1201 break; 1202 1203 ret = -EFAULT; 1204 if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) { 1205 dprintk("aio: lost an event due to EFAULT.\n"); 1206 break; 1207 } 1208 1209 /* Good, event copied to userland, update counts. */ 1210 event ++; 1211 i ++; 1212 } 1213 1214 if (timeout) 1215 clear_timeout(&to); 1216 out: 1217 pr_debug("event loop executed %d times\n", event_loop); 1218 pr_debug("aio_run %ld\n", aio_run); 1219 pr_debug("aio_wakeups %ld\n", aio_wakeups); 1220 return i ? i : ret; 1221 } 1222 1223 /* Take an ioctx and remove it from the list of ioctx's. Protects 1224 * against races with itself via ->dead. 1225 */ 1226 static void io_destroy(struct kioctx *ioctx) 1227 { 1228 struct mm_struct *mm = current->mm; 1229 struct kioctx **tmp; 1230 int was_dead; 1231 1232 /* delete the entry from the list is someone else hasn't already */ 1233 write_lock(&mm->ioctx_list_lock); 1234 was_dead = ioctx->dead; 1235 ioctx->dead = 1; 1236 for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx; 1237 tmp = &(*tmp)->next) 1238 ; 1239 if (*tmp) 1240 *tmp = ioctx->next; 1241 write_unlock(&mm->ioctx_list_lock); 1242 1243 dprintk("aio_release(%p)\n", ioctx); 1244 if (likely(!was_dead)) 1245 put_ioctx(ioctx); /* twice for the list */ 1246 1247 aio_cancel_all(ioctx); 1248 wait_for_all_aios(ioctx); 1249 put_ioctx(ioctx); /* once for the lookup */ 1250 } 1251 1252 /* sys_io_setup: 1253 * Create an aio_context capable of receiving at least nr_events. 1254 * ctxp must not point to an aio_context that already exists, and 1255 * must be initialized to 0 prior to the call. On successful 1256 * creation of the aio_context, *ctxp is filled in with the resulting 1257 * handle. May fail with -EINVAL if *ctxp is not initialized, 1258 * if the specified nr_events exceeds internal limits. May fail 1259 * with -EAGAIN if the specified nr_events exceeds the user's limit 1260 * of available events. May fail with -ENOMEM if insufficient kernel 1261 * resources are available. May fail with -EFAULT if an invalid 1262 * pointer is passed for ctxp. Will fail with -ENOSYS if not 1263 * implemented. 1264 */ 1265 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp) 1266 { 1267 struct kioctx *ioctx = NULL; 1268 unsigned long ctx; 1269 long ret; 1270 1271 ret = get_user(ctx, ctxp); 1272 if (unlikely(ret)) 1273 goto out; 1274 1275 ret = -EINVAL; 1276 if (unlikely(ctx || (int)nr_events <= 0)) { 1277 pr_debug("EINVAL: io_setup: ctx or nr_events > max\n"); 1278 goto out; 1279 } 1280 1281 ioctx = ioctx_alloc(nr_events); 1282 ret = PTR_ERR(ioctx); 1283 if (!IS_ERR(ioctx)) { 1284 ret = put_user(ioctx->user_id, ctxp); 1285 if (!ret) 1286 return 0; 1287 1288 get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */ 1289 io_destroy(ioctx); 1290 } 1291 1292 out: 1293 return ret; 1294 } 1295 1296 /* sys_io_destroy: 1297 * Destroy the aio_context specified. May cancel any outstanding 1298 * AIOs and block on completion. Will fail with -ENOSYS if not 1299 * implemented. May fail with -EFAULT if the context pointed to 1300 * is invalid. 1301 */ 1302 asmlinkage long sys_io_destroy(aio_context_t ctx) 1303 { 1304 struct kioctx *ioctx = lookup_ioctx(ctx); 1305 if (likely(NULL != ioctx)) { 1306 io_destroy(ioctx); 1307 return 0; 1308 } 1309 pr_debug("EINVAL: io_destroy: invalid context id\n"); 1310 return -EINVAL; 1311 } 1312 1313 /* 1314 * Default retry method for aio_read (also used for first time submit) 1315 * Responsible for updating iocb state as retries progress 1316 */ 1317 static ssize_t aio_pread(struct kiocb *iocb) 1318 { 1319 struct file *file = iocb->ki_filp; 1320 struct address_space *mapping = file->f_mapping; 1321 struct inode *inode = mapping->host; 1322 ssize_t ret = 0; 1323 1324 ret = file->f_op->aio_read(iocb, iocb->ki_buf, 1325 iocb->ki_left, iocb->ki_pos); 1326 1327 /* 1328 * Can't just depend on iocb->ki_left to determine 1329 * whether we are done. This may have been a short read. 1330 */ 1331 if (ret > 0) { 1332 iocb->ki_buf += ret; 1333 iocb->ki_left -= ret; 1334 /* 1335 * For pipes and sockets we return once we have 1336 * some data; for regular files we retry till we 1337 * complete the entire read or find that we can't 1338 * read any more data (e.g short reads). 1339 */ 1340 if (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode)) 1341 ret = -EIOCBRETRY; 1342 } 1343 1344 /* This means we must have transferred all that we could */ 1345 /* No need to retry anymore */ 1346 if ((ret == 0) || (iocb->ki_left == 0)) 1347 ret = iocb->ki_nbytes - iocb->ki_left; 1348 1349 return ret; 1350 } 1351 1352 /* 1353 * Default retry method for aio_write (also used for first time submit) 1354 * Responsible for updating iocb state as retries progress 1355 */ 1356 static ssize_t aio_pwrite(struct kiocb *iocb) 1357 { 1358 struct file *file = iocb->ki_filp; 1359 ssize_t ret = 0; 1360 1361 ret = file->f_op->aio_write(iocb, iocb->ki_buf, 1362 iocb->ki_left, iocb->ki_pos); 1363 1364 if (ret > 0) { 1365 iocb->ki_buf += ret; 1366 iocb->ki_left -= ret; 1367 1368 ret = -EIOCBRETRY; 1369 } 1370 1371 /* This means we must have transferred all that we could */ 1372 /* No need to retry anymore */ 1373 if ((ret == 0) || (iocb->ki_left == 0)) 1374 ret = iocb->ki_nbytes - iocb->ki_left; 1375 1376 return ret; 1377 } 1378 1379 static ssize_t aio_fdsync(struct kiocb *iocb) 1380 { 1381 struct file *file = iocb->ki_filp; 1382 ssize_t ret = -EINVAL; 1383 1384 if (file->f_op->aio_fsync) 1385 ret = file->f_op->aio_fsync(iocb, 1); 1386 return ret; 1387 } 1388 1389 static ssize_t aio_fsync(struct kiocb *iocb) 1390 { 1391 struct file *file = iocb->ki_filp; 1392 ssize_t ret = -EINVAL; 1393 1394 if (file->f_op->aio_fsync) 1395 ret = file->f_op->aio_fsync(iocb, 0); 1396 return ret; 1397 } 1398 1399 /* 1400 * aio_setup_iocb: 1401 * Performs the initial checks and aio retry method 1402 * setup for the kiocb at the time of io submission. 1403 */ 1404 ssize_t aio_setup_iocb(struct kiocb *kiocb) 1405 { 1406 struct file *file = kiocb->ki_filp; 1407 ssize_t ret = 0; 1408 1409 switch (kiocb->ki_opcode) { 1410 case IOCB_CMD_PREAD: 1411 ret = -EBADF; 1412 if (unlikely(!(file->f_mode & FMODE_READ))) 1413 break; 1414 ret = -EFAULT; 1415 if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf, 1416 kiocb->ki_left))) 1417 break; 1418 ret = -EINVAL; 1419 if (file->f_op->aio_read) 1420 kiocb->ki_retry = aio_pread; 1421 break; 1422 case IOCB_CMD_PWRITE: 1423 ret = -EBADF; 1424 if (unlikely(!(file->f_mode & FMODE_WRITE))) 1425 break; 1426 ret = -EFAULT; 1427 if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf, 1428 kiocb->ki_left))) 1429 break; 1430 ret = -EINVAL; 1431 if (file->f_op->aio_write) 1432 kiocb->ki_retry = aio_pwrite; 1433 break; 1434 case IOCB_CMD_FDSYNC: 1435 ret = -EINVAL; 1436 if (file->f_op->aio_fsync) 1437 kiocb->ki_retry = aio_fdsync; 1438 break; 1439 case IOCB_CMD_FSYNC: 1440 ret = -EINVAL; 1441 if (file->f_op->aio_fsync) 1442 kiocb->ki_retry = aio_fsync; 1443 break; 1444 default: 1445 dprintk("EINVAL: io_submit: no operation provided\n"); 1446 ret = -EINVAL; 1447 } 1448 1449 if (!kiocb->ki_retry) 1450 return ret; 1451 1452 return 0; 1453 } 1454 1455 /* 1456 * aio_wake_function: 1457 * wait queue callback function for aio notification, 1458 * Simply triggers a retry of the operation via kick_iocb. 1459 * 1460 * This callback is specified in the wait queue entry in 1461 * a kiocb (current->io_wait points to this wait queue 1462 * entry when an aio operation executes; it is used 1463 * instead of a synchronous wait when an i/o blocking 1464 * condition is encountered during aio). 1465 * 1466 * Note: 1467 * This routine is executed with the wait queue lock held. 1468 * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests 1469 * the ioctx lock inside the wait queue lock. This is safe 1470 * because this callback isn't used for wait queues which 1471 * are nested inside ioctx lock (i.e. ctx->wait) 1472 */ 1473 int aio_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) 1474 { 1475 struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait); 1476 1477 list_del_init(&wait->task_list); 1478 kick_iocb(iocb); 1479 return 1; 1480 } 1481 1482 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb, 1483 struct iocb *iocb) 1484 { 1485 struct kiocb *req; 1486 struct file *file; 1487 ssize_t ret; 1488 1489 /* enforce forwards compatibility on users */ 1490 if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 || 1491 iocb->aio_reserved3)) { 1492 pr_debug("EINVAL: io_submit: reserve field set\n"); 1493 return -EINVAL; 1494 } 1495 1496 /* prevent overflows */ 1497 if (unlikely( 1498 (iocb->aio_buf != (unsigned long)iocb->aio_buf) || 1499 (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) || 1500 ((ssize_t)iocb->aio_nbytes < 0) 1501 )) { 1502 pr_debug("EINVAL: io_submit: overflow check\n"); 1503 return -EINVAL; 1504 } 1505 1506 file = fget(iocb->aio_fildes); 1507 if (unlikely(!file)) 1508 return -EBADF; 1509 1510 req = aio_get_req(ctx); /* returns with 2 references to req */ 1511 if (unlikely(!req)) { 1512 fput(file); 1513 return -EAGAIN; 1514 } 1515 1516 req->ki_filp = file; 1517 iocb->aio_key = req->ki_key; 1518 ret = put_user(iocb->aio_key, &user_iocb->aio_key); 1519 if (unlikely(ret)) { 1520 dprintk("EFAULT: aio_key\n"); 1521 goto out_put_req; 1522 } 1523 1524 req->ki_obj.user = user_iocb; 1525 req->ki_user_data = iocb->aio_data; 1526 req->ki_pos = iocb->aio_offset; 1527 1528 req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf; 1529 req->ki_left = req->ki_nbytes = iocb->aio_nbytes; 1530 req->ki_opcode = iocb->aio_lio_opcode; 1531 init_waitqueue_func_entry(&req->ki_wait, aio_wake_function); 1532 INIT_LIST_HEAD(&req->ki_wait.task_list); 1533 req->ki_run_list.next = req->ki_run_list.prev = NULL; 1534 req->ki_retry = NULL; 1535 req->ki_retried = 0; 1536 req->ki_kicked = 0; 1537 req->ki_queued = 0; 1538 aio_run = 0; 1539 aio_wakeups = 0; 1540 1541 ret = aio_setup_iocb(req); 1542 1543 if (ret) 1544 goto out_put_req; 1545 1546 spin_lock_irq(&ctx->ctx_lock); 1547 list_add_tail(&req->ki_run_list, &ctx->run_list); 1548 /* drain the run list */ 1549 while (__aio_run_iocbs(ctx)) 1550 ; 1551 spin_unlock_irq(&ctx->ctx_lock); 1552 aio_put_req(req); /* drop extra ref to req */ 1553 return 0; 1554 1555 out_put_req: 1556 aio_put_req(req); /* drop extra ref to req */ 1557 aio_put_req(req); /* drop i/o ref to req */ 1558 return ret; 1559 } 1560 1561 /* sys_io_submit: 1562 * Queue the nr iocbs pointed to by iocbpp for processing. Returns 1563 * the number of iocbs queued. May return -EINVAL if the aio_context 1564 * specified by ctx_id is invalid, if nr is < 0, if the iocb at 1565 * *iocbpp[0] is not properly initialized, if the operation specified 1566 * is invalid for the file descriptor in the iocb. May fail with 1567 * -EFAULT if any of the data structures point to invalid data. May 1568 * fail with -EBADF if the file descriptor specified in the first 1569 * iocb is invalid. May fail with -EAGAIN if insufficient resources 1570 * are available to queue any iocbs. Will return 0 if nr is 0. Will 1571 * fail with -ENOSYS if not implemented. 1572 */ 1573 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr, 1574 struct iocb __user * __user *iocbpp) 1575 { 1576 struct kioctx *ctx; 1577 long ret = 0; 1578 int i; 1579 1580 if (unlikely(nr < 0)) 1581 return -EINVAL; 1582 1583 if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp))))) 1584 return -EFAULT; 1585 1586 ctx = lookup_ioctx(ctx_id); 1587 if (unlikely(!ctx)) { 1588 pr_debug("EINVAL: io_submit: invalid context id\n"); 1589 return -EINVAL; 1590 } 1591 1592 /* 1593 * AKPM: should this return a partial result if some of the IOs were 1594 * successfully submitted? 1595 */ 1596 for (i=0; i<nr; i++) { 1597 struct iocb __user *user_iocb; 1598 struct iocb tmp; 1599 1600 if (unlikely(__get_user(user_iocb, iocbpp + i))) { 1601 ret = -EFAULT; 1602 break; 1603 } 1604 1605 if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) { 1606 ret = -EFAULT; 1607 break; 1608 } 1609 1610 ret = io_submit_one(ctx, user_iocb, &tmp); 1611 if (ret) 1612 break; 1613 } 1614 1615 put_ioctx(ctx); 1616 return i ? i : ret; 1617 } 1618 1619 /* lookup_kiocb 1620 * Finds a given iocb for cancellation. 1621 * MUST be called with ctx->ctx_lock held. 1622 */ 1623 struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key) 1624 { 1625 struct list_head *pos; 1626 /* TODO: use a hash or array, this sucks. */ 1627 list_for_each(pos, &ctx->active_reqs) { 1628 struct kiocb *kiocb = list_kiocb(pos); 1629 if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key) 1630 return kiocb; 1631 } 1632 return NULL; 1633 } 1634 1635 /* sys_io_cancel: 1636 * Attempts to cancel an iocb previously passed to io_submit. If 1637 * the operation is successfully cancelled, the resulting event is 1638 * copied into the memory pointed to by result without being placed 1639 * into the completion queue and 0 is returned. May fail with 1640 * -EFAULT if any of the data structures pointed to are invalid. 1641 * May fail with -EINVAL if aio_context specified by ctx_id is 1642 * invalid. May fail with -EAGAIN if the iocb specified was not 1643 * cancelled. Will fail with -ENOSYS if not implemented. 1644 */ 1645 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb, 1646 struct io_event __user *result) 1647 { 1648 int (*cancel)(struct kiocb *iocb, struct io_event *res); 1649 struct kioctx *ctx; 1650 struct kiocb *kiocb; 1651 u32 key; 1652 int ret; 1653 1654 ret = get_user(key, &iocb->aio_key); 1655 if (unlikely(ret)) 1656 return -EFAULT; 1657 1658 ctx = lookup_ioctx(ctx_id); 1659 if (unlikely(!ctx)) 1660 return -EINVAL; 1661 1662 spin_lock_irq(&ctx->ctx_lock); 1663 ret = -EAGAIN; 1664 kiocb = lookup_kiocb(ctx, iocb, key); 1665 if (kiocb && kiocb->ki_cancel) { 1666 cancel = kiocb->ki_cancel; 1667 kiocb->ki_users ++; 1668 kiocbSetCancelled(kiocb); 1669 } else 1670 cancel = NULL; 1671 spin_unlock_irq(&ctx->ctx_lock); 1672 1673 if (NULL != cancel) { 1674 struct io_event tmp; 1675 pr_debug("calling cancel\n"); 1676 memset(&tmp, 0, sizeof(tmp)); 1677 tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user; 1678 tmp.data = kiocb->ki_user_data; 1679 ret = cancel(kiocb, &tmp); 1680 if (!ret) { 1681 /* Cancellation succeeded -- copy the result 1682 * into the user's buffer. 1683 */ 1684 if (copy_to_user(result, &tmp, sizeof(tmp))) 1685 ret = -EFAULT; 1686 } 1687 } else 1688 printk(KERN_DEBUG "iocb has no cancel operation\n"); 1689 1690 put_ioctx(ctx); 1691 1692 return ret; 1693 } 1694 1695 /* io_getevents: 1696 * Attempts to read at least min_nr events and up to nr events from 1697 * the completion queue for the aio_context specified by ctx_id. May 1698 * fail with -EINVAL if ctx_id is invalid, if min_nr is out of range, 1699 * if nr is out of range, if when is out of range. May fail with 1700 * -EFAULT if any of the memory specified to is invalid. May return 1701 * 0 or < min_nr if no events are available and the timeout specified 1702 * by when has elapsed, where when == NULL specifies an infinite 1703 * timeout. Note that the timeout pointed to by when is relative and 1704 * will be updated if not NULL and the operation blocks. Will fail 1705 * with -ENOSYS if not implemented. 1706 */ 1707 asmlinkage long sys_io_getevents(aio_context_t ctx_id, 1708 long min_nr, 1709 long nr, 1710 struct io_event __user *events, 1711 struct timespec __user *timeout) 1712 { 1713 struct kioctx *ioctx = lookup_ioctx(ctx_id); 1714 long ret = -EINVAL; 1715 1716 if (likely(ioctx)) { 1717 if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0)) 1718 ret = read_events(ioctx, min_nr, nr, events, timeout); 1719 put_ioctx(ioctx); 1720 } 1721 1722 return ret; 1723 } 1724 1725 __initcall(aio_setup); 1726 1727 EXPORT_SYMBOL(aio_complete); 1728 EXPORT_SYMBOL(aio_put_req); 1729 EXPORT_SYMBOL(wait_on_sync_kiocb); 1730