xref: /openbmc/linux/fs/aio.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *
9  *	See ../COPYING for licensing terms.
10  */
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/errno.h>
14 #include <linux/time.h>
15 #include <linux/aio_abi.h>
16 #include <linux/module.h>
17 #include <linux/syscalls.h>
18 
19 #define DEBUG 0
20 
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/mm.h>
25 #include <linux/mman.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/aio.h>
29 #include <linux/highmem.h>
30 #include <linux/workqueue.h>
31 #include <linux/security.h>
32 
33 #include <asm/kmap_types.h>
34 #include <asm/uaccess.h>
35 #include <asm/mmu_context.h>
36 
37 #if DEBUG > 1
38 #define dprintk		printk
39 #else
40 #define dprintk(x...)	do { ; } while (0)
41 #endif
42 
43 long aio_run = 0; /* for testing only */
44 long aio_wakeups = 0; /* for testing only */
45 
46 /*------ sysctl variables----*/
47 atomic_t aio_nr = ATOMIC_INIT(0);	/* current system wide number of aio requests */
48 unsigned aio_max_nr = 0x10000;	/* system wide maximum number of aio requests */
49 /*----end sysctl variables---*/
50 
51 static kmem_cache_t	*kiocb_cachep;
52 static kmem_cache_t	*kioctx_cachep;
53 
54 static struct workqueue_struct *aio_wq;
55 
56 /* Used for rare fput completion. */
57 static void aio_fput_routine(void *);
58 static DECLARE_WORK(fput_work, aio_fput_routine, NULL);
59 
60 static DEFINE_SPINLOCK(fput_lock);
61 LIST_HEAD(fput_head);
62 
63 static void aio_kick_handler(void *);
64 
65 /* aio_setup
66  *	Creates the slab caches used by the aio routines, panic on
67  *	failure as this is done early during the boot sequence.
68  */
69 static int __init aio_setup(void)
70 {
71 	kiocb_cachep = kmem_cache_create("kiocb", sizeof(struct kiocb),
72 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
73 	kioctx_cachep = kmem_cache_create("kioctx", sizeof(struct kioctx),
74 				0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
75 
76 	aio_wq = create_workqueue("aio");
77 
78 	pr_debug("aio_setup: sizeof(struct page) = %d\n", (int)sizeof(struct page));
79 
80 	return 0;
81 }
82 
83 static void aio_free_ring(struct kioctx *ctx)
84 {
85 	struct aio_ring_info *info = &ctx->ring_info;
86 	long i;
87 
88 	for (i=0; i<info->nr_pages; i++)
89 		put_page(info->ring_pages[i]);
90 
91 	if (info->mmap_size) {
92 		down_write(&ctx->mm->mmap_sem);
93 		do_munmap(ctx->mm, info->mmap_base, info->mmap_size);
94 		up_write(&ctx->mm->mmap_sem);
95 	}
96 
97 	if (info->ring_pages && info->ring_pages != info->internal_pages)
98 		kfree(info->ring_pages);
99 	info->ring_pages = NULL;
100 	info->nr = 0;
101 }
102 
103 static int aio_setup_ring(struct kioctx *ctx)
104 {
105 	struct aio_ring *ring;
106 	struct aio_ring_info *info = &ctx->ring_info;
107 	unsigned nr_events = ctx->max_reqs;
108 	unsigned long size;
109 	int nr_pages;
110 
111 	/* Compensate for the ring buffer's head/tail overlap entry */
112 	nr_events += 2;	/* 1 is required, 2 for good luck */
113 
114 	size = sizeof(struct aio_ring);
115 	size += sizeof(struct io_event) * nr_events;
116 	nr_pages = (size + PAGE_SIZE-1) >> PAGE_SHIFT;
117 
118 	if (nr_pages < 0)
119 		return -EINVAL;
120 
121 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring)) / sizeof(struct io_event);
122 
123 	info->nr = 0;
124 	info->ring_pages = info->internal_pages;
125 	if (nr_pages > AIO_RING_PAGES) {
126 		info->ring_pages = kmalloc(sizeof(struct page *) * nr_pages, GFP_KERNEL);
127 		if (!info->ring_pages)
128 			return -ENOMEM;
129 		memset(info->ring_pages, 0, sizeof(struct page *) * nr_pages);
130 	}
131 
132 	info->mmap_size = nr_pages * PAGE_SIZE;
133 	dprintk("attempting mmap of %lu bytes\n", info->mmap_size);
134 	down_write(&ctx->mm->mmap_sem);
135 	info->mmap_base = do_mmap(NULL, 0, info->mmap_size,
136 				  PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE,
137 				  0);
138 	if (IS_ERR((void *)info->mmap_base)) {
139 		up_write(&ctx->mm->mmap_sem);
140 		printk("mmap err: %ld\n", -info->mmap_base);
141 		info->mmap_size = 0;
142 		aio_free_ring(ctx);
143 		return -EAGAIN;
144 	}
145 
146 	dprintk("mmap address: 0x%08lx\n", info->mmap_base);
147 	info->nr_pages = get_user_pages(current, ctx->mm,
148 					info->mmap_base, nr_pages,
149 					1, 0, info->ring_pages, NULL);
150 	up_write(&ctx->mm->mmap_sem);
151 
152 	if (unlikely(info->nr_pages != nr_pages)) {
153 		aio_free_ring(ctx);
154 		return -EAGAIN;
155 	}
156 
157 	ctx->user_id = info->mmap_base;
158 
159 	info->nr = nr_events;		/* trusted copy */
160 
161 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
162 	ring->nr = nr_events;	/* user copy */
163 	ring->id = ctx->user_id;
164 	ring->head = ring->tail = 0;
165 	ring->magic = AIO_RING_MAGIC;
166 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
167 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
168 	ring->header_length = sizeof(struct aio_ring);
169 	kunmap_atomic(ring, KM_USER0);
170 
171 	return 0;
172 }
173 
174 
175 /* aio_ring_event: returns a pointer to the event at the given index from
176  * kmap_atomic(, km).  Release the pointer with put_aio_ring_event();
177  */
178 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
179 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
180 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
181 
182 #define aio_ring_event(info, nr, km) ({					\
183 	unsigned pos = (nr) + AIO_EVENTS_OFFSET;			\
184 	struct io_event *__event;					\
185 	__event = kmap_atomic(						\
186 			(info)->ring_pages[pos / AIO_EVENTS_PER_PAGE], km); \
187 	__event += pos % AIO_EVENTS_PER_PAGE;				\
188 	__event;							\
189 })
190 
191 #define put_aio_ring_event(event, km) do {	\
192 	struct io_event *__event = (event);	\
193 	(void)__event;				\
194 	kunmap_atomic((void *)((unsigned long)__event & PAGE_MASK), km); \
195 } while(0)
196 
197 /* ioctx_alloc
198  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
199  */
200 static struct kioctx *ioctx_alloc(unsigned nr_events)
201 {
202 	struct mm_struct *mm;
203 	struct kioctx *ctx;
204 
205 	/* Prevent overflows */
206 	if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
207 	    (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
208 		pr_debug("ENOMEM: nr_events too high\n");
209 		return ERR_PTR(-EINVAL);
210 	}
211 
212 	if (nr_events > aio_max_nr)
213 		return ERR_PTR(-EAGAIN);
214 
215 	ctx = kmem_cache_alloc(kioctx_cachep, GFP_KERNEL);
216 	if (!ctx)
217 		return ERR_PTR(-ENOMEM);
218 
219 	memset(ctx, 0, sizeof(*ctx));
220 	ctx->max_reqs = nr_events;
221 	mm = ctx->mm = current->mm;
222 	atomic_inc(&mm->mm_count);
223 
224 	atomic_set(&ctx->users, 1);
225 	spin_lock_init(&ctx->ctx_lock);
226 	spin_lock_init(&ctx->ring_info.ring_lock);
227 	init_waitqueue_head(&ctx->wait);
228 
229 	INIT_LIST_HEAD(&ctx->active_reqs);
230 	INIT_LIST_HEAD(&ctx->run_list);
231 	INIT_WORK(&ctx->wq, aio_kick_handler, ctx);
232 
233 	if (aio_setup_ring(ctx) < 0)
234 		goto out_freectx;
235 
236 	/* limit the number of system wide aios */
237 	atomic_add(ctx->max_reqs, &aio_nr);	/* undone by __put_ioctx */
238 	if (unlikely(atomic_read(&aio_nr) > aio_max_nr))
239 		goto out_cleanup;
240 
241 	/* now link into global list.  kludge.  FIXME */
242 	write_lock(&mm->ioctx_list_lock);
243 	ctx->next = mm->ioctx_list;
244 	mm->ioctx_list = ctx;
245 	write_unlock(&mm->ioctx_list_lock);
246 
247 	dprintk("aio: allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
248 		ctx, ctx->user_id, current->mm, ctx->ring_info.nr);
249 	return ctx;
250 
251 out_cleanup:
252 	atomic_sub(ctx->max_reqs, &aio_nr);
253 	ctx->max_reqs = 0;	/* prevent __put_ioctx from sub'ing aio_nr */
254 	__put_ioctx(ctx);
255 	return ERR_PTR(-EAGAIN);
256 
257 out_freectx:
258 	mmdrop(mm);
259 	kmem_cache_free(kioctx_cachep, ctx);
260 	ctx = ERR_PTR(-ENOMEM);
261 
262 	dprintk("aio: error allocating ioctx %p\n", ctx);
263 	return ctx;
264 }
265 
266 /* aio_cancel_all
267  *	Cancels all outstanding aio requests on an aio context.  Used
268  *	when the processes owning a context have all exited to encourage
269  *	the rapid destruction of the kioctx.
270  */
271 static void aio_cancel_all(struct kioctx *ctx)
272 {
273 	int (*cancel)(struct kiocb *, struct io_event *);
274 	struct io_event res;
275 	spin_lock_irq(&ctx->ctx_lock);
276 	ctx->dead = 1;
277 	while (!list_empty(&ctx->active_reqs)) {
278 		struct list_head *pos = ctx->active_reqs.next;
279 		struct kiocb *iocb = list_kiocb(pos);
280 		list_del_init(&iocb->ki_list);
281 		cancel = iocb->ki_cancel;
282 		kiocbSetCancelled(iocb);
283 		if (cancel) {
284 			iocb->ki_users++;
285 			spin_unlock_irq(&ctx->ctx_lock);
286 			cancel(iocb, &res);
287 			spin_lock_irq(&ctx->ctx_lock);
288 		}
289 	}
290 	spin_unlock_irq(&ctx->ctx_lock);
291 }
292 
293 void wait_for_all_aios(struct kioctx *ctx)
294 {
295 	struct task_struct *tsk = current;
296 	DECLARE_WAITQUEUE(wait, tsk);
297 
298 	if (!ctx->reqs_active)
299 		return;
300 
301 	add_wait_queue(&ctx->wait, &wait);
302 	set_task_state(tsk, TASK_UNINTERRUPTIBLE);
303 	while (ctx->reqs_active) {
304 		schedule();
305 		set_task_state(tsk, TASK_UNINTERRUPTIBLE);
306 	}
307 	__set_task_state(tsk, TASK_RUNNING);
308 	remove_wait_queue(&ctx->wait, &wait);
309 }
310 
311 /* wait_on_sync_kiocb:
312  *	Waits on the given sync kiocb to complete.
313  */
314 ssize_t fastcall wait_on_sync_kiocb(struct kiocb *iocb)
315 {
316 	while (iocb->ki_users) {
317 		set_current_state(TASK_UNINTERRUPTIBLE);
318 		if (!iocb->ki_users)
319 			break;
320 		schedule();
321 	}
322 	__set_current_state(TASK_RUNNING);
323 	return iocb->ki_user_data;
324 }
325 
326 /* exit_aio: called when the last user of mm goes away.  At this point,
327  * there is no way for any new requests to be submited or any of the
328  * io_* syscalls to be called on the context.  However, there may be
329  * outstanding requests which hold references to the context; as they
330  * go away, they will call put_ioctx and release any pinned memory
331  * associated with the request (held via struct page * references).
332  */
333 void fastcall exit_aio(struct mm_struct *mm)
334 {
335 	struct kioctx *ctx = mm->ioctx_list;
336 	mm->ioctx_list = NULL;
337 	while (ctx) {
338 		struct kioctx *next = ctx->next;
339 		ctx->next = NULL;
340 		aio_cancel_all(ctx);
341 
342 		wait_for_all_aios(ctx);
343 		/*
344 		 * this is an overkill, but ensures we don't leave
345 		 * the ctx on the aio_wq
346 		 */
347 		flush_workqueue(aio_wq);
348 
349 		if (1 != atomic_read(&ctx->users))
350 			printk(KERN_DEBUG
351 				"exit_aio:ioctx still alive: %d %d %d\n",
352 				atomic_read(&ctx->users), ctx->dead,
353 				ctx->reqs_active);
354 		put_ioctx(ctx);
355 		ctx = next;
356 	}
357 }
358 
359 /* __put_ioctx
360  *	Called when the last user of an aio context has gone away,
361  *	and the struct needs to be freed.
362  */
363 void fastcall __put_ioctx(struct kioctx *ctx)
364 {
365 	unsigned nr_events = ctx->max_reqs;
366 
367 	if (unlikely(ctx->reqs_active))
368 		BUG();
369 
370 	cancel_delayed_work(&ctx->wq);
371 	flush_workqueue(aio_wq);
372 	aio_free_ring(ctx);
373 	mmdrop(ctx->mm);
374 	ctx->mm = NULL;
375 	pr_debug("__put_ioctx: freeing %p\n", ctx);
376 	kmem_cache_free(kioctx_cachep, ctx);
377 
378 	atomic_sub(nr_events, &aio_nr);
379 }
380 
381 /* aio_get_req
382  *	Allocate a slot for an aio request.  Increments the users count
383  * of the kioctx so that the kioctx stays around until all requests are
384  * complete.  Returns NULL if no requests are free.
385  *
386  * Returns with kiocb->users set to 2.  The io submit code path holds
387  * an extra reference while submitting the i/o.
388  * This prevents races between the aio code path referencing the
389  * req (after submitting it) and aio_complete() freeing the req.
390  */
391 static struct kiocb *FASTCALL(__aio_get_req(struct kioctx *ctx));
392 static struct kiocb fastcall *__aio_get_req(struct kioctx *ctx)
393 {
394 	struct kiocb *req = NULL;
395 	struct aio_ring *ring;
396 	int okay = 0;
397 
398 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
399 	if (unlikely(!req))
400 		return NULL;
401 
402 	req->ki_flags = 1 << KIF_LOCKED;
403 	req->ki_users = 2;
404 	req->ki_key = 0;
405 	req->ki_ctx = ctx;
406 	req->ki_cancel = NULL;
407 	req->ki_retry = NULL;
408 	req->ki_obj.user = NULL;
409 	req->ki_dtor = NULL;
410 	req->private = NULL;
411 	INIT_LIST_HEAD(&req->ki_run_list);
412 
413 	/* Check if the completion queue has enough free space to
414 	 * accept an event from this io.
415 	 */
416 	spin_lock_irq(&ctx->ctx_lock);
417 	ring = kmap_atomic(ctx->ring_info.ring_pages[0], KM_USER0);
418 	if (ctx->reqs_active < aio_ring_avail(&ctx->ring_info, ring)) {
419 		list_add(&req->ki_list, &ctx->active_reqs);
420 		get_ioctx(ctx);
421 		ctx->reqs_active++;
422 		okay = 1;
423 	}
424 	kunmap_atomic(ring, KM_USER0);
425 	spin_unlock_irq(&ctx->ctx_lock);
426 
427 	if (!okay) {
428 		kmem_cache_free(kiocb_cachep, req);
429 		req = NULL;
430 	}
431 
432 	return req;
433 }
434 
435 static inline struct kiocb *aio_get_req(struct kioctx *ctx)
436 {
437 	struct kiocb *req;
438 	/* Handle a potential starvation case -- should be exceedingly rare as
439 	 * requests will be stuck on fput_head only if the aio_fput_routine is
440 	 * delayed and the requests were the last user of the struct file.
441 	 */
442 	req = __aio_get_req(ctx);
443 	if (unlikely(NULL == req)) {
444 		aio_fput_routine(NULL);
445 		req = __aio_get_req(ctx);
446 	}
447 	return req;
448 }
449 
450 static inline void really_put_req(struct kioctx *ctx, struct kiocb *req)
451 {
452 	if (req->ki_dtor)
453 		req->ki_dtor(req);
454 	req->ki_ctx = NULL;
455 	req->ki_filp = NULL;
456 	req->ki_obj.user = NULL;
457 	req->ki_dtor = NULL;
458 	req->private = NULL;
459 	kmem_cache_free(kiocb_cachep, req);
460 	ctx->reqs_active--;
461 
462 	if (unlikely(!ctx->reqs_active && ctx->dead))
463 		wake_up(&ctx->wait);
464 }
465 
466 static void aio_fput_routine(void *data)
467 {
468 	spin_lock_irq(&fput_lock);
469 	while (likely(!list_empty(&fput_head))) {
470 		struct kiocb *req = list_kiocb(fput_head.next);
471 		struct kioctx *ctx = req->ki_ctx;
472 
473 		list_del(&req->ki_list);
474 		spin_unlock_irq(&fput_lock);
475 
476 		/* Complete the fput */
477 		__fput(req->ki_filp);
478 
479 		/* Link the iocb into the context's free list */
480 		spin_lock_irq(&ctx->ctx_lock);
481 		really_put_req(ctx, req);
482 		spin_unlock_irq(&ctx->ctx_lock);
483 
484 		put_ioctx(ctx);
485 		spin_lock_irq(&fput_lock);
486 	}
487 	spin_unlock_irq(&fput_lock);
488 }
489 
490 /* __aio_put_req
491  *	Returns true if this put was the last user of the request.
492  */
493 static int __aio_put_req(struct kioctx *ctx, struct kiocb *req)
494 {
495 	dprintk(KERN_DEBUG "aio_put(%p): f_count=%d\n",
496 		req, atomic_read(&req->ki_filp->f_count));
497 
498 	req->ki_users --;
499 	if (unlikely(req->ki_users < 0))
500 		BUG();
501 	if (likely(req->ki_users))
502 		return 0;
503 	list_del(&req->ki_list);		/* remove from active_reqs */
504 	req->ki_cancel = NULL;
505 	req->ki_retry = NULL;
506 
507 	/* Must be done under the lock to serialise against cancellation.
508 	 * Call this aio_fput as it duplicates fput via the fput_work.
509 	 */
510 	if (unlikely(atomic_dec_and_test(&req->ki_filp->f_count))) {
511 		get_ioctx(ctx);
512 		spin_lock(&fput_lock);
513 		list_add(&req->ki_list, &fput_head);
514 		spin_unlock(&fput_lock);
515 		queue_work(aio_wq, &fput_work);
516 	} else
517 		really_put_req(ctx, req);
518 	return 1;
519 }
520 
521 /* aio_put_req
522  *	Returns true if this put was the last user of the kiocb,
523  *	false if the request is still in use.
524  */
525 int fastcall aio_put_req(struct kiocb *req)
526 {
527 	struct kioctx *ctx = req->ki_ctx;
528 	int ret;
529 	spin_lock_irq(&ctx->ctx_lock);
530 	ret = __aio_put_req(ctx, req);
531 	spin_unlock_irq(&ctx->ctx_lock);
532 	if (ret)
533 		put_ioctx(ctx);
534 	return ret;
535 }
536 
537 /*	Lookup an ioctx id.  ioctx_list is lockless for reads.
538  *	FIXME: this is O(n) and is only suitable for development.
539  */
540 struct kioctx *lookup_ioctx(unsigned long ctx_id)
541 {
542 	struct kioctx *ioctx;
543 	struct mm_struct *mm;
544 
545 	mm = current->mm;
546 	read_lock(&mm->ioctx_list_lock);
547 	for (ioctx = mm->ioctx_list; ioctx; ioctx = ioctx->next)
548 		if (likely(ioctx->user_id == ctx_id && !ioctx->dead)) {
549 			get_ioctx(ioctx);
550 			break;
551 		}
552 	read_unlock(&mm->ioctx_list_lock);
553 
554 	return ioctx;
555 }
556 
557 /*
558  * use_mm
559  *	Makes the calling kernel thread take on the specified
560  *	mm context.
561  *	Called by the retry thread execute retries within the
562  *	iocb issuer's mm context, so that copy_from/to_user
563  *	operations work seamlessly for aio.
564  *	(Note: this routine is intended to be called only
565  *	from a kernel thread context)
566  */
567 static void use_mm(struct mm_struct *mm)
568 {
569 	struct mm_struct *active_mm;
570 	struct task_struct *tsk = current;
571 
572 	task_lock(tsk);
573 	tsk->flags |= PF_BORROWED_MM;
574 	active_mm = tsk->active_mm;
575 	atomic_inc(&mm->mm_count);
576 	tsk->mm = mm;
577 	tsk->active_mm = mm;
578 	activate_mm(active_mm, mm);
579 	task_unlock(tsk);
580 
581 	mmdrop(active_mm);
582 }
583 
584 /*
585  * unuse_mm
586  *	Reverses the effect of use_mm, i.e. releases the
587  *	specified mm context which was earlier taken on
588  *	by the calling kernel thread
589  *	(Note: this routine is intended to be called only
590  *	from a kernel thread context)
591  *
592  * Comments: Called with ctx->ctx_lock held. This nests
593  * task_lock instead ctx_lock.
594  */
595 void unuse_mm(struct mm_struct *mm)
596 {
597 	struct task_struct *tsk = current;
598 
599 	task_lock(tsk);
600 	tsk->flags &= ~PF_BORROWED_MM;
601 	tsk->mm = NULL;
602 	/* active_mm is still 'mm' */
603 	enter_lazy_tlb(mm, tsk);
604 	task_unlock(tsk);
605 }
606 
607 /*
608  * Queue up a kiocb to be retried. Assumes that the kiocb
609  * has already been marked as kicked, and places it on
610  * the retry run list for the corresponding ioctx, if it
611  * isn't already queued. Returns 1 if it actually queued
612  * the kiocb (to tell the caller to activate the work
613  * queue to process it), or 0, if it found that it was
614  * already queued.
615  *
616  * Should be called with the spin lock iocb->ki_ctx->ctx_lock
617  * held
618  */
619 static inline int __queue_kicked_iocb(struct kiocb *iocb)
620 {
621 	struct kioctx *ctx = iocb->ki_ctx;
622 
623 	if (list_empty(&iocb->ki_run_list)) {
624 		list_add_tail(&iocb->ki_run_list,
625 			&ctx->run_list);
626 		iocb->ki_queued++;
627 		return 1;
628 	}
629 	return 0;
630 }
631 
632 /* aio_run_iocb
633  *	This is the core aio execution routine. It is
634  *	invoked both for initial i/o submission and
635  *	subsequent retries via the aio_kick_handler.
636  *	Expects to be invoked with iocb->ki_ctx->lock
637  *	already held. The lock is released and reaquired
638  *	as needed during processing.
639  *
640  * Calls the iocb retry method (already setup for the
641  * iocb on initial submission) for operation specific
642  * handling, but takes care of most of common retry
643  * execution details for a given iocb. The retry method
644  * needs to be non-blocking as far as possible, to avoid
645  * holding up other iocbs waiting to be serviced by the
646  * retry kernel thread.
647  *
648  * The trickier parts in this code have to do with
649  * ensuring that only one retry instance is in progress
650  * for a given iocb at any time. Providing that guarantee
651  * simplifies the coding of individual aio operations as
652  * it avoids various potential races.
653  */
654 static ssize_t aio_run_iocb(struct kiocb *iocb)
655 {
656 	struct kioctx	*ctx = iocb->ki_ctx;
657 	ssize_t (*retry)(struct kiocb *);
658 	ssize_t ret;
659 
660 	if (iocb->ki_retried++ > 1024*1024) {
661 		printk("Maximal retry count.  Bytes done %Zd\n",
662 			iocb->ki_nbytes - iocb->ki_left);
663 		return -EAGAIN;
664 	}
665 
666 	if (!(iocb->ki_retried & 0xff)) {
667 		pr_debug("%ld retry: %d of %d (kick %ld, Q %ld run %ld, wake %ld)\n",
668 			iocb->ki_retried,
669 			iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes,
670 			iocb->ki_kicked, iocb->ki_queued, aio_run, aio_wakeups);
671 	}
672 
673 	if (!(retry = iocb->ki_retry)) {
674 		printk("aio_run_iocb: iocb->ki_retry = NULL\n");
675 		return 0;
676 	}
677 
678 	/*
679 	 * We don't want the next retry iteration for this
680 	 * operation to start until this one has returned and
681 	 * updated the iocb state. However, wait_queue functions
682 	 * can trigger a kick_iocb from interrupt context in the
683 	 * meantime, indicating that data is available for the next
684 	 * iteration. We want to remember that and enable the
685 	 * next retry iteration _after_ we are through with
686 	 * this one.
687 	 *
688 	 * So, in order to be able to register a "kick", but
689 	 * prevent it from being queued now, we clear the kick
690 	 * flag, but make the kick code *think* that the iocb is
691 	 * still on the run list until we are actually done.
692 	 * When we are done with this iteration, we check if
693 	 * the iocb was kicked in the meantime and if so, queue
694 	 * it up afresh.
695 	 */
696 
697 	kiocbClearKicked(iocb);
698 
699 	/*
700 	 * This is so that aio_complete knows it doesn't need to
701 	 * pull the iocb off the run list (We can't just call
702 	 * INIT_LIST_HEAD because we don't want a kick_iocb to
703 	 * queue this on the run list yet)
704 	 */
705 	iocb->ki_run_list.next = iocb->ki_run_list.prev = NULL;
706 	spin_unlock_irq(&ctx->ctx_lock);
707 
708 	/* Quit retrying if the i/o has been cancelled */
709 	if (kiocbIsCancelled(iocb)) {
710 		ret = -EINTR;
711 		aio_complete(iocb, ret, 0);
712 		/* must not access the iocb after this */
713 		goto out;
714 	}
715 
716 	/*
717 	 * Now we are all set to call the retry method in async
718 	 * context. By setting this thread's io_wait context
719 	 * to point to the wait queue entry inside the currently
720 	 * running iocb for the duration of the retry, we ensure
721 	 * that async notification wakeups are queued by the
722 	 * operation instead of blocking waits, and when notified,
723 	 * cause the iocb to be kicked for continuation (through
724 	 * the aio_wake_function callback).
725 	 */
726 	BUG_ON(current->io_wait != NULL);
727 	current->io_wait = &iocb->ki_wait;
728 	ret = retry(iocb);
729 	current->io_wait = NULL;
730 
731 	if (-EIOCBRETRY != ret) {
732  		if (-EIOCBQUEUED != ret) {
733 			BUG_ON(!list_empty(&iocb->ki_wait.task_list));
734 			aio_complete(iocb, ret, 0);
735 			/* must not access the iocb after this */
736 		}
737 	} else {
738 		/*
739 		 * Issue an additional retry to avoid waiting forever if
740 		 * no waits were queued (e.g. in case of a short read).
741 		 */
742 		if (list_empty(&iocb->ki_wait.task_list))
743 			kiocbSetKicked(iocb);
744 	}
745 out:
746 	spin_lock_irq(&ctx->ctx_lock);
747 
748 	if (-EIOCBRETRY == ret) {
749 		/*
750 		 * OK, now that we are done with this iteration
751 		 * and know that there is more left to go,
752 		 * this is where we let go so that a subsequent
753 		 * "kick" can start the next iteration
754 		 */
755 
756 		/* will make __queue_kicked_iocb succeed from here on */
757 		INIT_LIST_HEAD(&iocb->ki_run_list);
758 		/* we must queue the next iteration ourselves, if it
759 		 * has already been kicked */
760 		if (kiocbIsKicked(iocb)) {
761 			__queue_kicked_iocb(iocb);
762 		}
763 	}
764 	return ret;
765 }
766 
767 /*
768  * __aio_run_iocbs:
769  * 	Process all pending retries queued on the ioctx
770  * 	run list.
771  * Assumes it is operating within the aio issuer's mm
772  * context. Expects to be called with ctx->ctx_lock held
773  */
774 static int __aio_run_iocbs(struct kioctx *ctx)
775 {
776 	struct kiocb *iocb;
777 	int count = 0;
778 	LIST_HEAD(run_list);
779 
780 	list_splice_init(&ctx->run_list, &run_list);
781 	while (!list_empty(&run_list)) {
782 		iocb = list_entry(run_list.next, struct kiocb,
783 			ki_run_list);
784 		list_del(&iocb->ki_run_list);
785 		/*
786 		 * Hold an extra reference while retrying i/o.
787 		 */
788 		iocb->ki_users++;       /* grab extra reference */
789 		aio_run_iocb(iocb);
790 		if (__aio_put_req(ctx, iocb))  /* drop extra ref */
791 			put_ioctx(ctx);
792 		count++;
793  	}
794 	aio_run++;
795 	if (!list_empty(&ctx->run_list))
796 		return 1;
797 	return 0;
798 }
799 
800 static void aio_queue_work(struct kioctx * ctx)
801 {
802 	unsigned long timeout;
803 	/*
804 	 * if someone is waiting, get the work started right
805 	 * away, otherwise, use a longer delay
806 	 */
807 	smp_mb();
808 	if (waitqueue_active(&ctx->wait))
809 		timeout = 1;
810 	else
811 		timeout = HZ/10;
812 	queue_delayed_work(aio_wq, &ctx->wq, timeout);
813 }
814 
815 
816 /*
817  * aio_run_iocbs:
818  * 	Process all pending retries queued on the ioctx
819  * 	run list.
820  * Assumes it is operating within the aio issuer's mm
821  * context.
822  */
823 static inline void aio_run_iocbs(struct kioctx *ctx)
824 {
825 	int requeue;
826 
827 	spin_lock_irq(&ctx->ctx_lock);
828 
829 	requeue = __aio_run_iocbs(ctx);
830 	spin_unlock_irq(&ctx->ctx_lock);
831 	if (requeue)
832 		aio_queue_work(ctx);
833 }
834 
835 /*
836  * just like aio_run_iocbs, but keeps running them until
837  * the list stays empty
838  */
839 static inline void aio_run_all_iocbs(struct kioctx *ctx)
840 {
841 	spin_lock_irq(&ctx->ctx_lock);
842 	while (__aio_run_iocbs(ctx))
843 		;
844 	spin_unlock_irq(&ctx->ctx_lock);
845 }
846 
847 /*
848  * aio_kick_handler:
849  * 	Work queue handler triggered to process pending
850  * 	retries on an ioctx. Takes on the aio issuer's
851  *	mm context before running the iocbs, so that
852  *	copy_xxx_user operates on the issuer's address
853  *      space.
854  * Run on aiod's context.
855  */
856 static void aio_kick_handler(void *data)
857 {
858 	struct kioctx *ctx = data;
859 	mm_segment_t oldfs = get_fs();
860 	int requeue;
861 
862 	set_fs(USER_DS);
863 	use_mm(ctx->mm);
864 	spin_lock_irq(&ctx->ctx_lock);
865 	requeue =__aio_run_iocbs(ctx);
866  	unuse_mm(ctx->mm);
867 	spin_unlock_irq(&ctx->ctx_lock);
868 	set_fs(oldfs);
869 	/*
870 	 * we're in a worker thread already, don't use queue_delayed_work,
871 	 */
872 	if (requeue)
873 		queue_work(aio_wq, &ctx->wq);
874 }
875 
876 
877 /*
878  * Called by kick_iocb to queue the kiocb for retry
879  * and if required activate the aio work queue to process
880  * it
881  */
882 void queue_kicked_iocb(struct kiocb *iocb)
883 {
884  	struct kioctx	*ctx = iocb->ki_ctx;
885 	unsigned long flags;
886 	int run = 0;
887 
888 	WARN_ON((!list_empty(&iocb->ki_wait.task_list)));
889 
890 	spin_lock_irqsave(&ctx->ctx_lock, flags);
891 	run = __queue_kicked_iocb(iocb);
892 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
893 	if (run) {
894 		aio_queue_work(ctx);
895 		aio_wakeups++;
896 	}
897 }
898 
899 /*
900  * kick_iocb:
901  *      Called typically from a wait queue callback context
902  *      (aio_wake_function) to trigger a retry of the iocb.
903  *      The retry is usually executed by aio workqueue
904  *      threads (See aio_kick_handler).
905  */
906 void fastcall kick_iocb(struct kiocb *iocb)
907 {
908 	/* sync iocbs are easy: they can only ever be executing from a
909 	 * single context. */
910 	if (is_sync_kiocb(iocb)) {
911 		kiocbSetKicked(iocb);
912 	        wake_up_process(iocb->ki_obj.tsk);
913 		return;
914 	}
915 
916 	iocb->ki_kicked++;
917 	/* If its already kicked we shouldn't queue it again */
918 	if (!kiocbTryKick(iocb)) {
919 		queue_kicked_iocb(iocb);
920 	}
921 }
922 EXPORT_SYMBOL(kick_iocb);
923 
924 /* aio_complete
925  *	Called when the io request on the given iocb is complete.
926  *	Returns true if this is the last user of the request.  The
927  *	only other user of the request can be the cancellation code.
928  */
929 int fastcall aio_complete(struct kiocb *iocb, long res, long res2)
930 {
931 	struct kioctx	*ctx = iocb->ki_ctx;
932 	struct aio_ring_info	*info;
933 	struct aio_ring	*ring;
934 	struct io_event	*event;
935 	unsigned long	flags;
936 	unsigned long	tail;
937 	int		ret;
938 
939 	/* Special case handling for sync iocbs: events go directly
940 	 * into the iocb for fast handling.  Note that this will not
941 	 * work if we allow sync kiocbs to be cancelled. in which
942 	 * case the usage count checks will have to move under ctx_lock
943 	 * for all cases.
944 	 */
945 	if (is_sync_kiocb(iocb)) {
946 		int ret;
947 
948 		iocb->ki_user_data = res;
949 		if (iocb->ki_users == 1) {
950 			iocb->ki_users = 0;
951 			ret = 1;
952 		} else {
953 			spin_lock_irq(&ctx->ctx_lock);
954 			iocb->ki_users--;
955 			ret = (0 == iocb->ki_users);
956 			spin_unlock_irq(&ctx->ctx_lock);
957 		}
958 		/* sync iocbs put the task here for us */
959 		wake_up_process(iocb->ki_obj.tsk);
960 		return ret;
961 	}
962 
963 	info = &ctx->ring_info;
964 
965 	/* add a completion event to the ring buffer.
966 	 * must be done holding ctx->ctx_lock to prevent
967 	 * other code from messing with the tail
968 	 * pointer since we might be called from irq
969 	 * context.
970 	 */
971 	spin_lock_irqsave(&ctx->ctx_lock, flags);
972 
973 	if (iocb->ki_run_list.prev && !list_empty(&iocb->ki_run_list))
974 		list_del_init(&iocb->ki_run_list);
975 
976 	/*
977 	 * cancelled requests don't get events, userland was given one
978 	 * when the event got cancelled.
979 	 */
980 	if (kiocbIsCancelled(iocb))
981 		goto put_rq;
982 
983 	ring = kmap_atomic(info->ring_pages[0], KM_IRQ1);
984 
985 	tail = info->tail;
986 	event = aio_ring_event(info, tail, KM_IRQ0);
987 	tail = (tail + 1) % info->nr;
988 
989 	event->obj = (u64)(unsigned long)iocb->ki_obj.user;
990 	event->data = iocb->ki_user_data;
991 	event->res = res;
992 	event->res2 = res2;
993 
994 	dprintk("aio_complete: %p[%lu]: %p: %p %Lx %lx %lx\n",
995 		ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
996 		res, res2);
997 
998 	/* after flagging the request as done, we
999 	 * must never even look at it again
1000 	 */
1001 	smp_wmb();	/* make event visible before updating tail */
1002 
1003 	info->tail = tail;
1004 	ring->tail = tail;
1005 
1006 	put_aio_ring_event(event, KM_IRQ0);
1007 	kunmap_atomic(ring, KM_IRQ1);
1008 
1009 	pr_debug("added to ring %p at [%lu]\n", iocb, tail);
1010 
1011 	pr_debug("%ld retries: %d of %d (kicked %ld, Q %ld run %ld wake %ld)\n",
1012 		iocb->ki_retried,
1013 		iocb->ki_nbytes - iocb->ki_left, iocb->ki_nbytes,
1014 		iocb->ki_kicked, iocb->ki_queued, aio_run, aio_wakeups);
1015 put_rq:
1016 	/* everything turned out well, dispose of the aiocb. */
1017 	ret = __aio_put_req(ctx, iocb);
1018 
1019 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1020 
1021 	if (waitqueue_active(&ctx->wait))
1022 		wake_up(&ctx->wait);
1023 
1024 	if (ret)
1025 		put_ioctx(ctx);
1026 
1027 	return ret;
1028 }
1029 
1030 /* aio_read_evt
1031  *	Pull an event off of the ioctx's event ring.  Returns the number of
1032  *	events fetched (0 or 1 ;-)
1033  *	FIXME: make this use cmpxchg.
1034  *	TODO: make the ringbuffer user mmap()able (requires FIXME).
1035  */
1036 static int aio_read_evt(struct kioctx *ioctx, struct io_event *ent)
1037 {
1038 	struct aio_ring_info *info = &ioctx->ring_info;
1039 	struct aio_ring *ring;
1040 	unsigned long head;
1041 	int ret = 0;
1042 
1043 	ring = kmap_atomic(info->ring_pages[0], KM_USER0);
1044 	dprintk("in aio_read_evt h%lu t%lu m%lu\n",
1045 		 (unsigned long)ring->head, (unsigned long)ring->tail,
1046 		 (unsigned long)ring->nr);
1047 
1048 	if (ring->head == ring->tail)
1049 		goto out;
1050 
1051 	spin_lock(&info->ring_lock);
1052 
1053 	head = ring->head % info->nr;
1054 	if (head != ring->tail) {
1055 		struct io_event *evp = aio_ring_event(info, head, KM_USER1);
1056 		*ent = *evp;
1057 		head = (head + 1) % info->nr;
1058 		smp_mb(); /* finish reading the event before updatng the head */
1059 		ring->head = head;
1060 		ret = 1;
1061 		put_aio_ring_event(evp, KM_USER1);
1062 	}
1063 	spin_unlock(&info->ring_lock);
1064 
1065 out:
1066 	kunmap_atomic(ring, KM_USER0);
1067 	dprintk("leaving aio_read_evt: %d  h%lu t%lu\n", ret,
1068 		 (unsigned long)ring->head, (unsigned long)ring->tail);
1069 	return ret;
1070 }
1071 
1072 struct aio_timeout {
1073 	struct timer_list	timer;
1074 	int			timed_out;
1075 	struct task_struct	*p;
1076 };
1077 
1078 static void timeout_func(unsigned long data)
1079 {
1080 	struct aio_timeout *to = (struct aio_timeout *)data;
1081 
1082 	to->timed_out = 1;
1083 	wake_up_process(to->p);
1084 }
1085 
1086 static inline void init_timeout(struct aio_timeout *to)
1087 {
1088 	init_timer(&to->timer);
1089 	to->timer.data = (unsigned long)to;
1090 	to->timer.function = timeout_func;
1091 	to->timed_out = 0;
1092 	to->p = current;
1093 }
1094 
1095 static inline void set_timeout(long start_jiffies, struct aio_timeout *to,
1096 			       const struct timespec *ts)
1097 {
1098 	to->timer.expires = start_jiffies + timespec_to_jiffies(ts);
1099 	if (time_after(to->timer.expires, jiffies))
1100 		add_timer(&to->timer);
1101 	else
1102 		to->timed_out = 1;
1103 }
1104 
1105 static inline void clear_timeout(struct aio_timeout *to)
1106 {
1107 	del_singleshot_timer_sync(&to->timer);
1108 }
1109 
1110 static int read_events(struct kioctx *ctx,
1111 			long min_nr, long nr,
1112 			struct io_event __user *event,
1113 			struct timespec __user *timeout)
1114 {
1115 	long			start_jiffies = jiffies;
1116 	struct task_struct	*tsk = current;
1117 	DECLARE_WAITQUEUE(wait, tsk);
1118 	int			ret;
1119 	int			i = 0;
1120 	struct io_event		ent;
1121 	struct aio_timeout	to;
1122 	int 			event_loop = 0; /* testing only */
1123 	int			retry = 0;
1124 
1125 	/* needed to zero any padding within an entry (there shouldn't be
1126 	 * any, but C is fun!
1127 	 */
1128 	memset(&ent, 0, sizeof(ent));
1129 retry:
1130 	ret = 0;
1131 	while (likely(i < nr)) {
1132 		ret = aio_read_evt(ctx, &ent);
1133 		if (unlikely(ret <= 0))
1134 			break;
1135 
1136 		dprintk("read event: %Lx %Lx %Lx %Lx\n",
1137 			ent.data, ent.obj, ent.res, ent.res2);
1138 
1139 		/* Could we split the check in two? */
1140 		ret = -EFAULT;
1141 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1142 			dprintk("aio: lost an event due to EFAULT.\n");
1143 			break;
1144 		}
1145 		ret = 0;
1146 
1147 		/* Good, event copied to userland, update counts. */
1148 		event ++;
1149 		i ++;
1150 	}
1151 
1152 	if (min_nr <= i)
1153 		return i;
1154 	if (ret)
1155 		return ret;
1156 
1157 	/* End fast path */
1158 
1159 	/* racey check, but it gets redone */
1160 	if (!retry && unlikely(!list_empty(&ctx->run_list))) {
1161 		retry = 1;
1162 		aio_run_all_iocbs(ctx);
1163 		goto retry;
1164 	}
1165 
1166 	init_timeout(&to);
1167 	if (timeout) {
1168 		struct timespec	ts;
1169 		ret = -EFAULT;
1170 		if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1171 			goto out;
1172 
1173 		set_timeout(start_jiffies, &to, &ts);
1174 	}
1175 
1176 	while (likely(i < nr)) {
1177 		add_wait_queue_exclusive(&ctx->wait, &wait);
1178 		do {
1179 			set_task_state(tsk, TASK_INTERRUPTIBLE);
1180 			ret = aio_read_evt(ctx, &ent);
1181 			if (ret)
1182 				break;
1183 			if (min_nr <= i)
1184 				break;
1185 			ret = 0;
1186 			if (to.timed_out)	/* Only check after read evt */
1187 				break;
1188 			schedule();
1189 			event_loop++;
1190 			if (signal_pending(tsk)) {
1191 				ret = -EINTR;
1192 				break;
1193 			}
1194 			/*ret = aio_read_evt(ctx, &ent);*/
1195 		} while (1) ;
1196 
1197 		set_task_state(tsk, TASK_RUNNING);
1198 		remove_wait_queue(&ctx->wait, &wait);
1199 
1200 		if (unlikely(ret <= 0))
1201 			break;
1202 
1203 		ret = -EFAULT;
1204 		if (unlikely(copy_to_user(event, &ent, sizeof(ent)))) {
1205 			dprintk("aio: lost an event due to EFAULT.\n");
1206 			break;
1207 		}
1208 
1209 		/* Good, event copied to userland, update counts. */
1210 		event ++;
1211 		i ++;
1212 	}
1213 
1214 	if (timeout)
1215 		clear_timeout(&to);
1216 out:
1217 	pr_debug("event loop executed %d times\n", event_loop);
1218 	pr_debug("aio_run %ld\n", aio_run);
1219 	pr_debug("aio_wakeups %ld\n", aio_wakeups);
1220 	return i ? i : ret;
1221 }
1222 
1223 /* Take an ioctx and remove it from the list of ioctx's.  Protects
1224  * against races with itself via ->dead.
1225  */
1226 static void io_destroy(struct kioctx *ioctx)
1227 {
1228 	struct mm_struct *mm = current->mm;
1229 	struct kioctx **tmp;
1230 	int was_dead;
1231 
1232 	/* delete the entry from the list is someone else hasn't already */
1233 	write_lock(&mm->ioctx_list_lock);
1234 	was_dead = ioctx->dead;
1235 	ioctx->dead = 1;
1236 	for (tmp = &mm->ioctx_list; *tmp && *tmp != ioctx;
1237 	     tmp = &(*tmp)->next)
1238 		;
1239 	if (*tmp)
1240 		*tmp = ioctx->next;
1241 	write_unlock(&mm->ioctx_list_lock);
1242 
1243 	dprintk("aio_release(%p)\n", ioctx);
1244 	if (likely(!was_dead))
1245 		put_ioctx(ioctx);	/* twice for the list */
1246 
1247 	aio_cancel_all(ioctx);
1248 	wait_for_all_aios(ioctx);
1249 	put_ioctx(ioctx);	/* once for the lookup */
1250 }
1251 
1252 /* sys_io_setup:
1253  *	Create an aio_context capable of receiving at least nr_events.
1254  *	ctxp must not point to an aio_context that already exists, and
1255  *	must be initialized to 0 prior to the call.  On successful
1256  *	creation of the aio_context, *ctxp is filled in with the resulting
1257  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1258  *	if the specified nr_events exceeds internal limits.  May fail
1259  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1260  *	of available events.  May fail with -ENOMEM if insufficient kernel
1261  *	resources are available.  May fail with -EFAULT if an invalid
1262  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1263  *	implemented.
1264  */
1265 asmlinkage long sys_io_setup(unsigned nr_events, aio_context_t __user *ctxp)
1266 {
1267 	struct kioctx *ioctx = NULL;
1268 	unsigned long ctx;
1269 	long ret;
1270 
1271 	ret = get_user(ctx, ctxp);
1272 	if (unlikely(ret))
1273 		goto out;
1274 
1275 	ret = -EINVAL;
1276 	if (unlikely(ctx || (int)nr_events <= 0)) {
1277 		pr_debug("EINVAL: io_setup: ctx or nr_events > max\n");
1278 		goto out;
1279 	}
1280 
1281 	ioctx = ioctx_alloc(nr_events);
1282 	ret = PTR_ERR(ioctx);
1283 	if (!IS_ERR(ioctx)) {
1284 		ret = put_user(ioctx->user_id, ctxp);
1285 		if (!ret)
1286 			return 0;
1287 
1288 		get_ioctx(ioctx); /* io_destroy() expects us to hold a ref */
1289 		io_destroy(ioctx);
1290 	}
1291 
1292 out:
1293 	return ret;
1294 }
1295 
1296 /* sys_io_destroy:
1297  *	Destroy the aio_context specified.  May cancel any outstanding
1298  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1299  *	implemented.  May fail with -EFAULT if the context pointed to
1300  *	is invalid.
1301  */
1302 asmlinkage long sys_io_destroy(aio_context_t ctx)
1303 {
1304 	struct kioctx *ioctx = lookup_ioctx(ctx);
1305 	if (likely(NULL != ioctx)) {
1306 		io_destroy(ioctx);
1307 		return 0;
1308 	}
1309 	pr_debug("EINVAL: io_destroy: invalid context id\n");
1310 	return -EINVAL;
1311 }
1312 
1313 /*
1314  * Default retry method for aio_read (also used for first time submit)
1315  * Responsible for updating iocb state as retries progress
1316  */
1317 static ssize_t aio_pread(struct kiocb *iocb)
1318 {
1319 	struct file *file = iocb->ki_filp;
1320 	struct address_space *mapping = file->f_mapping;
1321 	struct inode *inode = mapping->host;
1322 	ssize_t ret = 0;
1323 
1324 	ret = file->f_op->aio_read(iocb, iocb->ki_buf,
1325 		iocb->ki_left, iocb->ki_pos);
1326 
1327 	/*
1328 	 * Can't just depend on iocb->ki_left to determine
1329 	 * whether we are done. This may have been a short read.
1330 	 */
1331 	if (ret > 0) {
1332 		iocb->ki_buf += ret;
1333 		iocb->ki_left -= ret;
1334 		/*
1335 		 * For pipes and sockets we return once we have
1336 		 * some data; for regular files we retry till we
1337 		 * complete the entire read or find that we can't
1338 		 * read any more data (e.g short reads).
1339 		 */
1340 		if (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))
1341 			ret = -EIOCBRETRY;
1342 	}
1343 
1344 	/* This means we must have transferred all that we could */
1345 	/* No need to retry anymore */
1346 	if ((ret == 0) || (iocb->ki_left == 0))
1347 		ret = iocb->ki_nbytes - iocb->ki_left;
1348 
1349 	return ret;
1350 }
1351 
1352 /*
1353  * Default retry method for aio_write (also used for first time submit)
1354  * Responsible for updating iocb state as retries progress
1355  */
1356 static ssize_t aio_pwrite(struct kiocb *iocb)
1357 {
1358 	struct file *file = iocb->ki_filp;
1359 	ssize_t ret = 0;
1360 
1361 	ret = file->f_op->aio_write(iocb, iocb->ki_buf,
1362 		iocb->ki_left, iocb->ki_pos);
1363 
1364 	if (ret > 0) {
1365 		iocb->ki_buf += ret;
1366 		iocb->ki_left -= ret;
1367 
1368 		ret = -EIOCBRETRY;
1369 	}
1370 
1371 	/* This means we must have transferred all that we could */
1372 	/* No need to retry anymore */
1373 	if ((ret == 0) || (iocb->ki_left == 0))
1374 		ret = iocb->ki_nbytes - iocb->ki_left;
1375 
1376 	return ret;
1377 }
1378 
1379 static ssize_t aio_fdsync(struct kiocb *iocb)
1380 {
1381 	struct file *file = iocb->ki_filp;
1382 	ssize_t ret = -EINVAL;
1383 
1384 	if (file->f_op->aio_fsync)
1385 		ret = file->f_op->aio_fsync(iocb, 1);
1386 	return ret;
1387 }
1388 
1389 static ssize_t aio_fsync(struct kiocb *iocb)
1390 {
1391 	struct file *file = iocb->ki_filp;
1392 	ssize_t ret = -EINVAL;
1393 
1394 	if (file->f_op->aio_fsync)
1395 		ret = file->f_op->aio_fsync(iocb, 0);
1396 	return ret;
1397 }
1398 
1399 /*
1400  * aio_setup_iocb:
1401  *	Performs the initial checks and aio retry method
1402  *	setup for the kiocb at the time of io submission.
1403  */
1404 ssize_t aio_setup_iocb(struct kiocb *kiocb)
1405 {
1406 	struct file *file = kiocb->ki_filp;
1407 	ssize_t ret = 0;
1408 
1409 	switch (kiocb->ki_opcode) {
1410 	case IOCB_CMD_PREAD:
1411 		ret = -EBADF;
1412 		if (unlikely(!(file->f_mode & FMODE_READ)))
1413 			break;
1414 		ret = -EFAULT;
1415 		if (unlikely(!access_ok(VERIFY_WRITE, kiocb->ki_buf,
1416 			kiocb->ki_left)))
1417 			break;
1418 		ret = -EINVAL;
1419 		if (file->f_op->aio_read)
1420 			kiocb->ki_retry = aio_pread;
1421 		break;
1422 	case IOCB_CMD_PWRITE:
1423 		ret = -EBADF;
1424 		if (unlikely(!(file->f_mode & FMODE_WRITE)))
1425 			break;
1426 		ret = -EFAULT;
1427 		if (unlikely(!access_ok(VERIFY_READ, kiocb->ki_buf,
1428 			kiocb->ki_left)))
1429 			break;
1430 		ret = -EINVAL;
1431 		if (file->f_op->aio_write)
1432 			kiocb->ki_retry = aio_pwrite;
1433 		break;
1434 	case IOCB_CMD_FDSYNC:
1435 		ret = -EINVAL;
1436 		if (file->f_op->aio_fsync)
1437 			kiocb->ki_retry = aio_fdsync;
1438 		break;
1439 	case IOCB_CMD_FSYNC:
1440 		ret = -EINVAL;
1441 		if (file->f_op->aio_fsync)
1442 			kiocb->ki_retry = aio_fsync;
1443 		break;
1444 	default:
1445 		dprintk("EINVAL: io_submit: no operation provided\n");
1446 		ret = -EINVAL;
1447 	}
1448 
1449 	if (!kiocb->ki_retry)
1450 		return ret;
1451 
1452 	return 0;
1453 }
1454 
1455 /*
1456  * aio_wake_function:
1457  * 	wait queue callback function for aio notification,
1458  * 	Simply triggers a retry of the operation via kick_iocb.
1459  *
1460  * 	This callback is specified in the wait queue entry in
1461  *	a kiocb	(current->io_wait points to this wait queue
1462  *	entry when an aio operation executes; it is used
1463  * 	instead of a synchronous wait when an i/o blocking
1464  *	condition is encountered during aio).
1465  *
1466  * Note:
1467  * This routine is executed with the wait queue lock held.
1468  * Since kick_iocb acquires iocb->ctx->ctx_lock, it nests
1469  * the ioctx lock inside the wait queue lock. This is safe
1470  * because this callback isn't used for wait queues which
1471  * are nested inside ioctx lock (i.e. ctx->wait)
1472  */
1473 int aio_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
1474 {
1475 	struct kiocb *iocb = container_of(wait, struct kiocb, ki_wait);
1476 
1477 	list_del_init(&wait->task_list);
1478 	kick_iocb(iocb);
1479 	return 1;
1480 }
1481 
1482 int fastcall io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1483 			 struct iocb *iocb)
1484 {
1485 	struct kiocb *req;
1486 	struct file *file;
1487 	ssize_t ret;
1488 
1489 	/* enforce forwards compatibility on users */
1490 	if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2 ||
1491 		     iocb->aio_reserved3)) {
1492 		pr_debug("EINVAL: io_submit: reserve field set\n");
1493 		return -EINVAL;
1494 	}
1495 
1496 	/* prevent overflows */
1497 	if (unlikely(
1498 	    (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1499 	    (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1500 	    ((ssize_t)iocb->aio_nbytes < 0)
1501 	   )) {
1502 		pr_debug("EINVAL: io_submit: overflow check\n");
1503 		return -EINVAL;
1504 	}
1505 
1506 	file = fget(iocb->aio_fildes);
1507 	if (unlikely(!file))
1508 		return -EBADF;
1509 
1510 	req = aio_get_req(ctx);		/* returns with 2 references to req */
1511 	if (unlikely(!req)) {
1512 		fput(file);
1513 		return -EAGAIN;
1514 	}
1515 
1516 	req->ki_filp = file;
1517 	iocb->aio_key = req->ki_key;
1518 	ret = put_user(iocb->aio_key, &user_iocb->aio_key);
1519 	if (unlikely(ret)) {
1520 		dprintk("EFAULT: aio_key\n");
1521 		goto out_put_req;
1522 	}
1523 
1524 	req->ki_obj.user = user_iocb;
1525 	req->ki_user_data = iocb->aio_data;
1526 	req->ki_pos = iocb->aio_offset;
1527 
1528 	req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
1529 	req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
1530 	req->ki_opcode = iocb->aio_lio_opcode;
1531 	init_waitqueue_func_entry(&req->ki_wait, aio_wake_function);
1532 	INIT_LIST_HEAD(&req->ki_wait.task_list);
1533 	req->ki_run_list.next = req->ki_run_list.prev = NULL;
1534 	req->ki_retry = NULL;
1535 	req->ki_retried = 0;
1536 	req->ki_kicked = 0;
1537 	req->ki_queued = 0;
1538 	aio_run = 0;
1539 	aio_wakeups = 0;
1540 
1541 	ret = aio_setup_iocb(req);
1542 
1543 	if (ret)
1544 		goto out_put_req;
1545 
1546 	spin_lock_irq(&ctx->ctx_lock);
1547 	list_add_tail(&req->ki_run_list, &ctx->run_list);
1548 	/* drain the run list */
1549 	while (__aio_run_iocbs(ctx))
1550 		;
1551 	spin_unlock_irq(&ctx->ctx_lock);
1552 	aio_put_req(req);	/* drop extra ref to req */
1553 	return 0;
1554 
1555 out_put_req:
1556 	aio_put_req(req);	/* drop extra ref to req */
1557 	aio_put_req(req);	/* drop i/o ref to req */
1558 	return ret;
1559 }
1560 
1561 /* sys_io_submit:
1562  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1563  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1564  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1565  *	*iocbpp[0] is not properly initialized, if the operation specified
1566  *	is invalid for the file descriptor in the iocb.  May fail with
1567  *	-EFAULT if any of the data structures point to invalid data.  May
1568  *	fail with -EBADF if the file descriptor specified in the first
1569  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1570  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1571  *	fail with -ENOSYS if not implemented.
1572  */
1573 asmlinkage long sys_io_submit(aio_context_t ctx_id, long nr,
1574 			      struct iocb __user * __user *iocbpp)
1575 {
1576 	struct kioctx *ctx;
1577 	long ret = 0;
1578 	int i;
1579 
1580 	if (unlikely(nr < 0))
1581 		return -EINVAL;
1582 
1583 	if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1584 		return -EFAULT;
1585 
1586 	ctx = lookup_ioctx(ctx_id);
1587 	if (unlikely(!ctx)) {
1588 		pr_debug("EINVAL: io_submit: invalid context id\n");
1589 		return -EINVAL;
1590 	}
1591 
1592 	/*
1593 	 * AKPM: should this return a partial result if some of the IOs were
1594 	 * successfully submitted?
1595 	 */
1596 	for (i=0; i<nr; i++) {
1597 		struct iocb __user *user_iocb;
1598 		struct iocb tmp;
1599 
1600 		if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1601 			ret = -EFAULT;
1602 			break;
1603 		}
1604 
1605 		if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1606 			ret = -EFAULT;
1607 			break;
1608 		}
1609 
1610 		ret = io_submit_one(ctx, user_iocb, &tmp);
1611 		if (ret)
1612 			break;
1613 	}
1614 
1615 	put_ioctx(ctx);
1616 	return i ? i : ret;
1617 }
1618 
1619 /* lookup_kiocb
1620  *	Finds a given iocb for cancellation.
1621  *	MUST be called with ctx->ctx_lock held.
1622  */
1623 struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1624 {
1625 	struct list_head *pos;
1626 	/* TODO: use a hash or array, this sucks. */
1627 	list_for_each(pos, &ctx->active_reqs) {
1628 		struct kiocb *kiocb = list_kiocb(pos);
1629 		if (kiocb->ki_obj.user == iocb && kiocb->ki_key == key)
1630 			return kiocb;
1631 	}
1632 	return NULL;
1633 }
1634 
1635 /* sys_io_cancel:
1636  *	Attempts to cancel an iocb previously passed to io_submit.  If
1637  *	the operation is successfully cancelled, the resulting event is
1638  *	copied into the memory pointed to by result without being placed
1639  *	into the completion queue and 0 is returned.  May fail with
1640  *	-EFAULT if any of the data structures pointed to are invalid.
1641  *	May fail with -EINVAL if aio_context specified by ctx_id is
1642  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1643  *	cancelled.  Will fail with -ENOSYS if not implemented.
1644  */
1645 asmlinkage long sys_io_cancel(aio_context_t ctx_id, struct iocb __user *iocb,
1646 			      struct io_event __user *result)
1647 {
1648 	int (*cancel)(struct kiocb *iocb, struct io_event *res);
1649 	struct kioctx *ctx;
1650 	struct kiocb *kiocb;
1651 	u32 key;
1652 	int ret;
1653 
1654 	ret = get_user(key, &iocb->aio_key);
1655 	if (unlikely(ret))
1656 		return -EFAULT;
1657 
1658 	ctx = lookup_ioctx(ctx_id);
1659 	if (unlikely(!ctx))
1660 		return -EINVAL;
1661 
1662 	spin_lock_irq(&ctx->ctx_lock);
1663 	ret = -EAGAIN;
1664 	kiocb = lookup_kiocb(ctx, iocb, key);
1665 	if (kiocb && kiocb->ki_cancel) {
1666 		cancel = kiocb->ki_cancel;
1667 		kiocb->ki_users ++;
1668 		kiocbSetCancelled(kiocb);
1669 	} else
1670 		cancel = NULL;
1671 	spin_unlock_irq(&ctx->ctx_lock);
1672 
1673 	if (NULL != cancel) {
1674 		struct io_event tmp;
1675 		pr_debug("calling cancel\n");
1676 		memset(&tmp, 0, sizeof(tmp));
1677 		tmp.obj = (u64)(unsigned long)kiocb->ki_obj.user;
1678 		tmp.data = kiocb->ki_user_data;
1679 		ret = cancel(kiocb, &tmp);
1680 		if (!ret) {
1681 			/* Cancellation succeeded -- copy the result
1682 			 * into the user's buffer.
1683 			 */
1684 			if (copy_to_user(result, &tmp, sizeof(tmp)))
1685 				ret = -EFAULT;
1686 		}
1687 	} else
1688 		printk(KERN_DEBUG "iocb has no cancel operation\n");
1689 
1690 	put_ioctx(ctx);
1691 
1692 	return ret;
1693 }
1694 
1695 /* io_getevents:
1696  *	Attempts to read at least min_nr events and up to nr events from
1697  *	the completion queue for the aio_context specified by ctx_id.  May
1698  *	fail with -EINVAL if ctx_id is invalid, if min_nr is out of range,
1699  *	if nr is out of range, if when is out of range.  May fail with
1700  *	-EFAULT if any of the memory specified to is invalid.  May return
1701  *	0 or < min_nr if no events are available and the timeout specified
1702  *	by when	has elapsed, where when == NULL specifies an infinite
1703  *	timeout.  Note that the timeout pointed to by when is relative and
1704  *	will be updated if not NULL and the operation blocks.  Will fail
1705  *	with -ENOSYS if not implemented.
1706  */
1707 asmlinkage long sys_io_getevents(aio_context_t ctx_id,
1708 				 long min_nr,
1709 				 long nr,
1710 				 struct io_event __user *events,
1711 				 struct timespec __user *timeout)
1712 {
1713 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
1714 	long ret = -EINVAL;
1715 
1716 	if (likely(ioctx)) {
1717 		if (likely(min_nr <= nr && min_nr >= 0 && nr >= 0))
1718 			ret = read_events(ioctx, min_nr, nr, events, timeout);
1719 		put_ioctx(ioctx);
1720 	}
1721 
1722 	return ret;
1723 }
1724 
1725 __initcall(aio_setup);
1726 
1727 EXPORT_SYMBOL(aio_complete);
1728 EXPORT_SYMBOL(aio_put_req);
1729 EXPORT_SYMBOL(wait_on_sync_kiocb);
1730