1 /* Maintain an RxRPC server socket to do AFS communications through 2 * 3 * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. 4 * Written by David Howells (dhowells@redhat.com) 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 9 * 2 of the License, or (at your option) any later version. 10 */ 11 12 #include <linux/slab.h> 13 #include <net/sock.h> 14 #include <net/af_rxrpc.h> 15 #include <rxrpc/packet.h> 16 #include "internal.h" 17 #include "afs_cm.h" 18 19 struct socket *afs_socket; /* my RxRPC socket */ 20 static struct workqueue_struct *afs_async_calls; 21 static struct afs_call *afs_spare_incoming_call; 22 static atomic_t afs_outstanding_calls; 23 24 static void afs_free_call(struct afs_call *); 25 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); 26 static int afs_wait_for_call_to_complete(struct afs_call *); 27 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); 28 static int afs_dont_wait_for_call_to_complete(struct afs_call *); 29 static void afs_process_async_call(struct work_struct *); 30 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); 31 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); 32 static int afs_deliver_cm_op_id(struct afs_call *); 33 34 /* synchronous call management */ 35 const struct afs_wait_mode afs_sync_call = { 36 .notify_rx = afs_wake_up_call_waiter, 37 .wait = afs_wait_for_call_to_complete, 38 }; 39 40 /* asynchronous call management */ 41 const struct afs_wait_mode afs_async_call = { 42 .notify_rx = afs_wake_up_async_call, 43 .wait = afs_dont_wait_for_call_to_complete, 44 }; 45 46 /* asynchronous incoming call management */ 47 static const struct afs_wait_mode afs_async_incoming_call = { 48 .notify_rx = afs_wake_up_async_call, 49 }; 50 51 /* asynchronous incoming call initial processing */ 52 static const struct afs_call_type afs_RXCMxxxx = { 53 .name = "CB.xxxx", 54 .deliver = afs_deliver_cm_op_id, 55 .abort_to_error = afs_abort_to_error, 56 }; 57 58 static void afs_charge_preallocation(struct work_struct *); 59 60 static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation); 61 62 static int afs_wait_atomic_t(atomic_t *p) 63 { 64 schedule(); 65 return 0; 66 } 67 68 /* 69 * open an RxRPC socket and bind it to be a server for callback notifications 70 * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT 71 */ 72 int afs_open_socket(void) 73 { 74 struct sockaddr_rxrpc srx; 75 struct socket *socket; 76 int ret; 77 78 _enter(""); 79 80 ret = -ENOMEM; 81 afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0); 82 if (!afs_async_calls) 83 goto error_0; 84 85 ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket); 86 if (ret < 0) 87 goto error_1; 88 89 socket->sk->sk_allocation = GFP_NOFS; 90 91 /* bind the callback manager's address to make this a server socket */ 92 srx.srx_family = AF_RXRPC; 93 srx.srx_service = CM_SERVICE; 94 srx.transport_type = SOCK_DGRAM; 95 srx.transport_len = sizeof(srx.transport.sin); 96 srx.transport.sin.sin_family = AF_INET; 97 srx.transport.sin.sin_port = htons(AFS_CM_PORT); 98 memset(&srx.transport.sin.sin_addr, 0, 99 sizeof(srx.transport.sin.sin_addr)); 100 101 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); 102 if (ret < 0) 103 goto error_2; 104 105 rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, 106 afs_rx_discard_new_call); 107 108 ret = kernel_listen(socket, INT_MAX); 109 if (ret < 0) 110 goto error_2; 111 112 afs_socket = socket; 113 afs_charge_preallocation(NULL); 114 _leave(" = 0"); 115 return 0; 116 117 error_2: 118 sock_release(socket); 119 error_1: 120 destroy_workqueue(afs_async_calls); 121 error_0: 122 _leave(" = %d", ret); 123 return ret; 124 } 125 126 /* 127 * close the RxRPC socket AFS was using 128 */ 129 void afs_close_socket(void) 130 { 131 _enter(""); 132 133 if (afs_spare_incoming_call) { 134 atomic_inc(&afs_outstanding_calls); 135 afs_free_call(afs_spare_incoming_call); 136 afs_spare_incoming_call = NULL; 137 } 138 139 _debug("outstanding %u", atomic_read(&afs_outstanding_calls)); 140 wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t, 141 TASK_UNINTERRUPTIBLE); 142 _debug("no outstanding calls"); 143 144 flush_workqueue(afs_async_calls); 145 kernel_sock_shutdown(afs_socket, SHUT_RDWR); 146 flush_workqueue(afs_async_calls); 147 sock_release(afs_socket); 148 149 _debug("dework"); 150 destroy_workqueue(afs_async_calls); 151 _leave(""); 152 } 153 154 /* 155 * free a call 156 */ 157 static void afs_free_call(struct afs_call *call) 158 { 159 _debug("DONE %p{%s} [%d]", 160 call, call->type->name, atomic_read(&afs_outstanding_calls)); 161 162 ASSERTCMP(call->rxcall, ==, NULL); 163 ASSERT(!work_pending(&call->async_work)); 164 ASSERT(call->type->name != NULL); 165 166 kfree(call->request); 167 kfree(call); 168 169 if (atomic_dec_and_test(&afs_outstanding_calls)) 170 wake_up_atomic_t(&afs_outstanding_calls); 171 } 172 173 /* 174 * End a call but do not free it 175 */ 176 static void afs_end_call_nofree(struct afs_call *call) 177 { 178 if (call->rxcall) { 179 rxrpc_kernel_end_call(afs_socket, call->rxcall); 180 call->rxcall = NULL; 181 } 182 if (call->type->destructor) 183 call->type->destructor(call); 184 } 185 186 /* 187 * End a call and free it 188 */ 189 static void afs_end_call(struct afs_call *call) 190 { 191 afs_end_call_nofree(call); 192 afs_free_call(call); 193 } 194 195 /* 196 * allocate a call with flat request and reply buffers 197 */ 198 struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type, 199 size_t request_size, size_t reply_max) 200 { 201 struct afs_call *call; 202 203 call = kzalloc(sizeof(*call), GFP_NOFS); 204 if (!call) 205 goto nomem_call; 206 207 _debug("CALL %p{%s} [%d]", 208 call, type->name, atomic_read(&afs_outstanding_calls)); 209 atomic_inc(&afs_outstanding_calls); 210 211 call->type = type; 212 call->request_size = request_size; 213 call->reply_max = reply_max; 214 215 if (request_size) { 216 call->request = kmalloc(request_size, GFP_NOFS); 217 if (!call->request) 218 goto nomem_free; 219 } 220 221 if (reply_max) { 222 call->buffer = kmalloc(reply_max, GFP_NOFS); 223 if (!call->buffer) 224 goto nomem_free; 225 } 226 227 init_waitqueue_head(&call->waitq); 228 return call; 229 230 nomem_free: 231 afs_free_call(call); 232 nomem_call: 233 return NULL; 234 } 235 236 /* 237 * clean up a call with flat buffer 238 */ 239 void afs_flat_call_destructor(struct afs_call *call) 240 { 241 _enter(""); 242 243 kfree(call->request); 244 call->request = NULL; 245 kfree(call->buffer); 246 call->buffer = NULL; 247 } 248 249 /* 250 * attach the data from a bunch of pages on an inode to a call 251 */ 252 static int afs_send_pages(struct afs_call *call, struct msghdr *msg, 253 struct kvec *iov) 254 { 255 struct page *pages[8]; 256 unsigned count, n, loop, offset, to; 257 pgoff_t first = call->first, last = call->last; 258 int ret; 259 260 _enter(""); 261 262 offset = call->first_offset; 263 call->first_offset = 0; 264 265 do { 266 _debug("attach %lx-%lx", first, last); 267 268 count = last - first + 1; 269 if (count > ARRAY_SIZE(pages)) 270 count = ARRAY_SIZE(pages); 271 n = find_get_pages_contig(call->mapping, first, count, pages); 272 ASSERTCMP(n, ==, count); 273 274 loop = 0; 275 do { 276 msg->msg_flags = 0; 277 to = PAGE_SIZE; 278 if (first + loop >= last) 279 to = call->last_to; 280 else 281 msg->msg_flags = MSG_MORE; 282 iov->iov_base = kmap(pages[loop]) + offset; 283 iov->iov_len = to - offset; 284 offset = 0; 285 286 _debug("- range %u-%u%s", 287 offset, to, msg->msg_flags ? " [more]" : ""); 288 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, 289 iov, 1, to - offset); 290 291 /* have to change the state *before* sending the last 292 * packet as RxRPC might give us the reply before it 293 * returns from sending the request */ 294 if (first + loop >= last) 295 call->state = AFS_CALL_AWAIT_REPLY; 296 ret = rxrpc_kernel_send_data(afs_socket, call->rxcall, 297 msg, to - offset); 298 kunmap(pages[loop]); 299 if (ret < 0) 300 break; 301 } while (++loop < count); 302 first += count; 303 304 for (loop = 0; loop < count; loop++) 305 put_page(pages[loop]); 306 if (ret < 0) 307 break; 308 } while (first <= last); 309 310 _leave(" = %d", ret); 311 return ret; 312 } 313 314 /* 315 * initiate a call 316 */ 317 int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp, 318 const struct afs_wait_mode *wait_mode) 319 { 320 struct sockaddr_rxrpc srx; 321 struct rxrpc_call *rxcall; 322 struct msghdr msg; 323 struct kvec iov[1]; 324 int ret; 325 326 _enter("%x,{%d},", addr->s_addr, ntohs(call->port)); 327 328 ASSERT(call->type != NULL); 329 ASSERT(call->type->name != NULL); 330 331 _debug("____MAKE %p{%s,%x} [%d]____", 332 call, call->type->name, key_serial(call->key), 333 atomic_read(&afs_outstanding_calls)); 334 335 call->wait_mode = wait_mode; 336 INIT_WORK(&call->async_work, afs_process_async_call); 337 338 memset(&srx, 0, sizeof(srx)); 339 srx.srx_family = AF_RXRPC; 340 srx.srx_service = call->service_id; 341 srx.transport_type = SOCK_DGRAM; 342 srx.transport_len = sizeof(srx.transport.sin); 343 srx.transport.sin.sin_family = AF_INET; 344 srx.transport.sin.sin_port = call->port; 345 memcpy(&srx.transport.sin.sin_addr, addr, 4); 346 347 /* create a call */ 348 rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key, 349 (unsigned long) call, gfp, 350 wait_mode->notify_rx); 351 call->key = NULL; 352 if (IS_ERR(rxcall)) { 353 ret = PTR_ERR(rxcall); 354 goto error_kill_call; 355 } 356 357 call->rxcall = rxcall; 358 359 /* send the request */ 360 iov[0].iov_base = call->request; 361 iov[0].iov_len = call->request_size; 362 363 msg.msg_name = NULL; 364 msg.msg_namelen = 0; 365 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, 366 call->request_size); 367 msg.msg_control = NULL; 368 msg.msg_controllen = 0; 369 msg.msg_flags = (call->send_pages ? MSG_MORE : 0); 370 371 /* have to change the state *before* sending the last packet as RxRPC 372 * might give us the reply before it returns from sending the 373 * request */ 374 if (!call->send_pages) 375 call->state = AFS_CALL_AWAIT_REPLY; 376 ret = rxrpc_kernel_send_data(afs_socket, rxcall, 377 &msg, call->request_size); 378 if (ret < 0) 379 goto error_do_abort; 380 381 if (call->send_pages) { 382 ret = afs_send_pages(call, &msg, iov); 383 if (ret < 0) 384 goto error_do_abort; 385 } 386 387 /* at this point, an async call may no longer exist as it may have 388 * already completed */ 389 return wait_mode->wait(call); 390 391 error_do_abort: 392 rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT, -ret, "KSD"); 393 error_kill_call: 394 afs_end_call(call); 395 _leave(" = %d", ret); 396 return ret; 397 } 398 399 /* 400 * deliver messages to a call 401 */ 402 static void afs_deliver_to_call(struct afs_call *call) 403 { 404 u32 abort_code; 405 int ret; 406 407 _enter("%s", call->type->name); 408 409 while (call->state == AFS_CALL_AWAIT_REPLY || 410 call->state == AFS_CALL_AWAIT_OP_ID || 411 call->state == AFS_CALL_AWAIT_REQUEST || 412 call->state == AFS_CALL_AWAIT_ACK 413 ) { 414 if (call->state == AFS_CALL_AWAIT_ACK) { 415 size_t offset = 0; 416 ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall, 417 NULL, 0, &offset, false, 418 &call->abort_code); 419 trace_afs_recv_data(call, 0, offset, false, ret); 420 421 if (ret == -EINPROGRESS || ret == -EAGAIN) 422 return; 423 if (ret == 1 || ret < 0) { 424 call->state = AFS_CALL_COMPLETE; 425 goto done; 426 } 427 return; 428 } 429 430 ret = call->type->deliver(call); 431 switch (ret) { 432 case 0: 433 if (call->state == AFS_CALL_AWAIT_REPLY) 434 call->state = AFS_CALL_COMPLETE; 435 goto done; 436 case -EINPROGRESS: 437 case -EAGAIN: 438 goto out; 439 case -ENOTCONN: 440 abort_code = RX_CALL_DEAD; 441 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 442 abort_code, -ret, "KNC"); 443 goto do_abort; 444 case -ENOTSUPP: 445 abort_code = RX_INVALID_OPERATION; 446 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 447 abort_code, -ret, "KIV"); 448 goto do_abort; 449 case -ENODATA: 450 case -EBADMSG: 451 case -EMSGSIZE: 452 default: 453 abort_code = RXGEN_CC_UNMARSHAL; 454 if (call->state != AFS_CALL_AWAIT_REPLY) 455 abort_code = RXGEN_SS_UNMARSHAL; 456 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 457 abort_code, EBADMSG, "KUM"); 458 goto do_abort; 459 } 460 } 461 462 done: 463 if (call->state == AFS_CALL_COMPLETE && call->incoming) 464 afs_end_call(call); 465 out: 466 _leave(""); 467 return; 468 469 do_abort: 470 call->error = ret; 471 call->state = AFS_CALL_COMPLETE; 472 goto done; 473 } 474 475 /* 476 * wait synchronously for a call to complete 477 */ 478 static int afs_wait_for_call_to_complete(struct afs_call *call) 479 { 480 const char *abort_why; 481 int ret; 482 483 DECLARE_WAITQUEUE(myself, current); 484 485 _enter(""); 486 487 add_wait_queue(&call->waitq, &myself); 488 for (;;) { 489 set_current_state(TASK_INTERRUPTIBLE); 490 491 /* deliver any messages that are in the queue */ 492 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 493 call->need_attention = false; 494 __set_current_state(TASK_RUNNING); 495 afs_deliver_to_call(call); 496 continue; 497 } 498 499 abort_why = "KWC"; 500 ret = call->error; 501 if (call->state == AFS_CALL_COMPLETE) 502 break; 503 abort_why = "KWI"; 504 ret = -EINTR; 505 if (signal_pending(current)) 506 break; 507 schedule(); 508 } 509 510 remove_wait_queue(&call->waitq, &myself); 511 __set_current_state(TASK_RUNNING); 512 513 /* kill the call */ 514 if (call->state < AFS_CALL_COMPLETE) { 515 _debug("call incomplete"); 516 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 517 RX_CALL_DEAD, -ret, abort_why); 518 } 519 520 _debug("call complete"); 521 afs_end_call(call); 522 _leave(" = %d", ret); 523 return ret; 524 } 525 526 /* 527 * wake up a waiting call 528 */ 529 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, 530 unsigned long call_user_ID) 531 { 532 struct afs_call *call = (struct afs_call *)call_user_ID; 533 534 call->need_attention = true; 535 wake_up(&call->waitq); 536 } 537 538 /* 539 * wake up an asynchronous call 540 */ 541 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, 542 unsigned long call_user_ID) 543 { 544 struct afs_call *call = (struct afs_call *)call_user_ID; 545 546 trace_afs_notify_call(rxcall, call); 547 call->need_attention = true; 548 queue_work(afs_async_calls, &call->async_work); 549 } 550 551 /* 552 * put a call into asynchronous mode 553 * - mustn't touch the call descriptor as the call my have completed by the 554 * time we get here 555 */ 556 static int afs_dont_wait_for_call_to_complete(struct afs_call *call) 557 { 558 _enter(""); 559 return -EINPROGRESS; 560 } 561 562 /* 563 * delete an asynchronous call 564 */ 565 static void afs_delete_async_call(struct work_struct *work) 566 { 567 struct afs_call *call = container_of(work, struct afs_call, async_work); 568 569 _enter(""); 570 571 afs_free_call(call); 572 573 _leave(""); 574 } 575 576 /* 577 * perform processing on an asynchronous call 578 */ 579 static void afs_process_async_call(struct work_struct *work) 580 { 581 struct afs_call *call = container_of(work, struct afs_call, async_work); 582 583 _enter(""); 584 585 if (call->state < AFS_CALL_COMPLETE && call->need_attention) { 586 call->need_attention = false; 587 afs_deliver_to_call(call); 588 } 589 590 if (call->state == AFS_CALL_COMPLETE && call->wait_mode) { 591 if (call->wait_mode->async_complete) 592 call->wait_mode->async_complete(call->reply, 593 call->error); 594 call->reply = NULL; 595 596 /* kill the call */ 597 afs_end_call_nofree(call); 598 599 /* we can't just delete the call because the work item may be 600 * queued */ 601 call->async_work.func = afs_delete_async_call; 602 queue_work(afs_async_calls, &call->async_work); 603 } 604 605 _leave(""); 606 } 607 608 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) 609 { 610 struct afs_call *call = (struct afs_call *)user_call_ID; 611 612 call->rxcall = rxcall; 613 } 614 615 /* 616 * Charge the incoming call preallocation. 617 */ 618 static void afs_charge_preallocation(struct work_struct *work) 619 { 620 struct afs_call *call = afs_spare_incoming_call; 621 622 for (;;) { 623 if (!call) { 624 call = kzalloc(sizeof(struct afs_call), GFP_KERNEL); 625 if (!call) 626 break; 627 628 INIT_WORK(&call->async_work, afs_process_async_call); 629 call->wait_mode = &afs_async_incoming_call; 630 call->type = &afs_RXCMxxxx; 631 init_waitqueue_head(&call->waitq); 632 call->state = AFS_CALL_AWAIT_OP_ID; 633 } 634 635 if (rxrpc_kernel_charge_accept(afs_socket, 636 afs_wake_up_async_call, 637 afs_rx_attach, 638 (unsigned long)call, 639 GFP_KERNEL) < 0) 640 break; 641 call = NULL; 642 } 643 afs_spare_incoming_call = call; 644 } 645 646 /* 647 * Discard a preallocated call when a socket is shut down. 648 */ 649 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, 650 unsigned long user_call_ID) 651 { 652 struct afs_call *call = (struct afs_call *)user_call_ID; 653 654 atomic_inc(&afs_outstanding_calls); 655 call->rxcall = NULL; 656 afs_free_call(call); 657 } 658 659 /* 660 * Notification of an incoming call. 661 */ 662 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, 663 unsigned long user_call_ID) 664 { 665 atomic_inc(&afs_outstanding_calls); 666 queue_work(afs_wq, &afs_charge_preallocation_work); 667 } 668 669 /* 670 * Grab the operation ID from an incoming cache manager call. The socket 671 * buffer is discarded on error or if we don't yet have sufficient data. 672 */ 673 static int afs_deliver_cm_op_id(struct afs_call *call) 674 { 675 int ret; 676 677 _enter("{%zu}", call->offset); 678 679 ASSERTCMP(call->offset, <, 4); 680 681 /* the operation ID forms the first four bytes of the request data */ 682 ret = afs_extract_data(call, &call->tmp, 4, true); 683 if (ret < 0) 684 return ret; 685 686 call->operation_ID = ntohl(call->tmp); 687 call->state = AFS_CALL_AWAIT_REQUEST; 688 call->offset = 0; 689 690 /* ask the cache manager to route the call (it'll change the call type 691 * if successful) */ 692 if (!afs_cm_incoming_call(call)) 693 return -ENOTSUPP; 694 695 trace_afs_cb_call(call); 696 697 /* pass responsibility for the remainer of this message off to the 698 * cache manager op */ 699 return call->type->deliver(call); 700 } 701 702 /* 703 * send an empty reply 704 */ 705 void afs_send_empty_reply(struct afs_call *call) 706 { 707 struct msghdr msg; 708 709 _enter(""); 710 711 msg.msg_name = NULL; 712 msg.msg_namelen = 0; 713 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0); 714 msg.msg_control = NULL; 715 msg.msg_controllen = 0; 716 msg.msg_flags = 0; 717 718 call->state = AFS_CALL_AWAIT_ACK; 719 switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0)) { 720 case 0: 721 _leave(" [replied]"); 722 return; 723 724 case -ENOMEM: 725 _debug("oom"); 726 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 727 RX_USER_ABORT, ENOMEM, "KOO"); 728 default: 729 afs_end_call(call); 730 _leave(" [error]"); 731 return; 732 } 733 } 734 735 /* 736 * send a simple reply 737 */ 738 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) 739 { 740 struct msghdr msg; 741 struct kvec iov[1]; 742 int n; 743 744 _enter(""); 745 746 iov[0].iov_base = (void *) buf; 747 iov[0].iov_len = len; 748 msg.msg_name = NULL; 749 msg.msg_namelen = 0; 750 iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len); 751 msg.msg_control = NULL; 752 msg.msg_controllen = 0; 753 msg.msg_flags = 0; 754 755 call->state = AFS_CALL_AWAIT_ACK; 756 n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len); 757 if (n >= 0) { 758 /* Success */ 759 _leave(" [replied]"); 760 return; 761 } 762 763 if (n == -ENOMEM) { 764 _debug("oom"); 765 rxrpc_kernel_abort_call(afs_socket, call->rxcall, 766 RX_USER_ABORT, ENOMEM, "KOO"); 767 } 768 afs_end_call(call); 769 _leave(" [error]"); 770 } 771 772 /* 773 * Extract a piece of data from the received data socket buffers. 774 */ 775 int afs_extract_data(struct afs_call *call, void *buf, size_t count, 776 bool want_more) 777 { 778 int ret; 779 780 _enter("{%s,%zu},,%zu,%d", 781 call->type->name, call->offset, count, want_more); 782 783 ASSERTCMP(call->offset, <=, count); 784 785 ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall, 786 buf, count, &call->offset, 787 want_more, &call->abort_code); 788 trace_afs_recv_data(call, count, call->offset, want_more, ret); 789 if (ret == 0 || ret == -EAGAIN) 790 return ret; 791 792 if (ret == 1) { 793 switch (call->state) { 794 case AFS_CALL_AWAIT_REPLY: 795 call->state = AFS_CALL_COMPLETE; 796 break; 797 case AFS_CALL_AWAIT_REQUEST: 798 call->state = AFS_CALL_REPLYING; 799 break; 800 default: 801 break; 802 } 803 return 0; 804 } 805 806 if (ret == -ECONNABORTED) 807 call->error = call->type->abort_to_error(call->abort_code); 808 else 809 call->error = ret; 810 call->state = AFS_CALL_COMPLETE; 811 return ret; 812 } 813