xref: /openbmc/linux/fs/afs/rxrpc.c (revision 2c099014a0a456012c1778e80adce839bf956b77)
1 /* Maintain an RxRPC server socket to do AFS communications through
2  *
3  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/sched/signal.h>
14 
15 #include <net/sock.h>
16 #include <net/af_rxrpc.h>
17 #include "internal.h"
18 #include "afs_cm.h"
19 
20 struct workqueue_struct *afs_async_calls;
21 
22 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
23 static long afs_wait_for_call_to_complete(struct afs_call *, struct afs_addr_cursor *);
24 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
25 static void afs_process_async_call(struct work_struct *);
26 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
27 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
28 static int afs_deliver_cm_op_id(struct afs_call *);
29 
30 /* asynchronous incoming call initial processing */
31 static const struct afs_call_type afs_RXCMxxxx = {
32 	.name		= "CB.xxxx",
33 	.deliver	= afs_deliver_cm_op_id,
34 };
35 
36 /*
37  * open an RxRPC socket and bind it to be a server for callback notifications
38  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
39  */
40 int afs_open_socket(struct afs_net *net)
41 {
42 	struct sockaddr_rxrpc srx;
43 	struct socket *socket;
44 	int ret;
45 
46 	_enter("");
47 
48 	ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
49 	if (ret < 0)
50 		goto error_1;
51 
52 	socket->sk->sk_allocation = GFP_NOFS;
53 
54 	/* bind the callback manager's address to make this a server socket */
55 	memset(&srx, 0, sizeof(srx));
56 	srx.srx_family			= AF_RXRPC;
57 	srx.srx_service			= CM_SERVICE;
58 	srx.transport_type		= SOCK_DGRAM;
59 	srx.transport_len		= sizeof(srx.transport.sin6);
60 	srx.transport.sin6.sin6_family	= AF_INET6;
61 	srx.transport.sin6.sin6_port	= htons(AFS_CM_PORT);
62 
63 	ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
64 	if (ret < 0)
65 		goto error_2;
66 
67 	rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
68 					   afs_rx_discard_new_call);
69 
70 	ret = kernel_listen(socket, INT_MAX);
71 	if (ret < 0)
72 		goto error_2;
73 
74 	net->socket = socket;
75 	afs_charge_preallocation(&net->charge_preallocation_work);
76 	_leave(" = 0");
77 	return 0;
78 
79 error_2:
80 	sock_release(socket);
81 error_1:
82 	_leave(" = %d", ret);
83 	return ret;
84 }
85 
86 /*
87  * close the RxRPC socket AFS was using
88  */
89 void afs_close_socket(struct afs_net *net)
90 {
91 	_enter("");
92 
93 	kernel_listen(net->socket, 0);
94 	flush_workqueue(afs_async_calls);
95 
96 	if (net->spare_incoming_call) {
97 		afs_put_call(net->spare_incoming_call);
98 		net->spare_incoming_call = NULL;
99 	}
100 
101 	_debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
102 	wait_on_atomic_t(&net->nr_outstanding_calls, atomic_t_wait,
103 			 TASK_UNINTERRUPTIBLE);
104 	_debug("no outstanding calls");
105 
106 	kernel_sock_shutdown(net->socket, SHUT_RDWR);
107 	flush_workqueue(afs_async_calls);
108 	sock_release(net->socket);
109 
110 	_debug("dework");
111 	_leave("");
112 }
113 
114 /*
115  * Allocate a call.
116  */
117 static struct afs_call *afs_alloc_call(struct afs_net *net,
118 				       const struct afs_call_type *type,
119 				       gfp_t gfp)
120 {
121 	struct afs_call *call;
122 	int o;
123 
124 	call = kzalloc(sizeof(*call), gfp);
125 	if (!call)
126 		return NULL;
127 
128 	call->type = type;
129 	call->net = net;
130 	atomic_set(&call->usage, 1);
131 	INIT_WORK(&call->async_work, afs_process_async_call);
132 	init_waitqueue_head(&call->waitq);
133 
134 	o = atomic_inc_return(&net->nr_outstanding_calls);
135 	trace_afs_call(call, afs_call_trace_alloc, 1, o,
136 		       __builtin_return_address(0));
137 	return call;
138 }
139 
140 /*
141  * Dispose of a reference on a call.
142  */
143 void afs_put_call(struct afs_call *call)
144 {
145 	struct afs_net *net = call->net;
146 	int n = atomic_dec_return(&call->usage);
147 	int o = atomic_read(&net->nr_outstanding_calls);
148 
149 	trace_afs_call(call, afs_call_trace_put, n + 1, o,
150 		       __builtin_return_address(0));
151 
152 	ASSERTCMP(n, >=, 0);
153 	if (n == 0) {
154 		ASSERT(!work_pending(&call->async_work));
155 		ASSERT(call->type->name != NULL);
156 
157 		if (call->rxcall) {
158 			rxrpc_kernel_end_call(net->socket, call->rxcall);
159 			call->rxcall = NULL;
160 		}
161 		if (call->type->destructor)
162 			call->type->destructor(call);
163 
164 		afs_put_server(call->net, call->cm_server);
165 		afs_put_cb_interest(call->net, call->cbi);
166 		kfree(call->request);
167 		kfree(call);
168 
169 		o = atomic_dec_return(&net->nr_outstanding_calls);
170 		trace_afs_call(call, afs_call_trace_free, 0, o,
171 			       __builtin_return_address(0));
172 		if (o == 0)
173 			wake_up_atomic_t(&net->nr_outstanding_calls);
174 	}
175 }
176 
177 /*
178  * Queue the call for actual work.  Returns 0 unconditionally for convenience.
179  */
180 int afs_queue_call_work(struct afs_call *call)
181 {
182 	int u = atomic_inc_return(&call->usage);
183 
184 	trace_afs_call(call, afs_call_trace_work, u,
185 		       atomic_read(&call->net->nr_outstanding_calls),
186 		       __builtin_return_address(0));
187 
188 	INIT_WORK(&call->work, call->type->work);
189 
190 	if (!queue_work(afs_wq, &call->work))
191 		afs_put_call(call);
192 	return 0;
193 }
194 
195 /*
196  * allocate a call with flat request and reply buffers
197  */
198 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
199 				     const struct afs_call_type *type,
200 				     size_t request_size, size_t reply_max)
201 {
202 	struct afs_call *call;
203 
204 	call = afs_alloc_call(net, type, GFP_NOFS);
205 	if (!call)
206 		goto nomem_call;
207 
208 	if (request_size) {
209 		call->request_size = request_size;
210 		call->request = kmalloc(request_size, GFP_NOFS);
211 		if (!call->request)
212 			goto nomem_free;
213 	}
214 
215 	if (reply_max) {
216 		call->reply_max = reply_max;
217 		call->buffer = kmalloc(reply_max, GFP_NOFS);
218 		if (!call->buffer)
219 			goto nomem_free;
220 	}
221 
222 	call->operation_ID = type->op;
223 	init_waitqueue_head(&call->waitq);
224 	return call;
225 
226 nomem_free:
227 	afs_put_call(call);
228 nomem_call:
229 	return NULL;
230 }
231 
232 /*
233  * clean up a call with flat buffer
234  */
235 void afs_flat_call_destructor(struct afs_call *call)
236 {
237 	_enter("");
238 
239 	kfree(call->request);
240 	call->request = NULL;
241 	kfree(call->buffer);
242 	call->buffer = NULL;
243 }
244 
245 #define AFS_BVEC_MAX 8
246 
247 /*
248  * Load the given bvec with the next few pages.
249  */
250 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
251 			  struct bio_vec *bv, pgoff_t first, pgoff_t last,
252 			  unsigned offset)
253 {
254 	struct page *pages[AFS_BVEC_MAX];
255 	unsigned int nr, n, i, to, bytes = 0;
256 
257 	nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
258 	n = find_get_pages_contig(call->mapping, first, nr, pages);
259 	ASSERTCMP(n, ==, nr);
260 
261 	msg->msg_flags |= MSG_MORE;
262 	for (i = 0; i < nr; i++) {
263 		to = PAGE_SIZE;
264 		if (first + i >= last) {
265 			to = call->last_to;
266 			msg->msg_flags &= ~MSG_MORE;
267 		}
268 		bv[i].bv_page = pages[i];
269 		bv[i].bv_len = to - offset;
270 		bv[i].bv_offset = offset;
271 		bytes += to - offset;
272 		offset = 0;
273 	}
274 
275 	iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes);
276 }
277 
278 /*
279  * Advance the AFS call state when the RxRPC call ends the transmit phase.
280  */
281 static void afs_notify_end_request_tx(struct sock *sock,
282 				      struct rxrpc_call *rxcall,
283 				      unsigned long call_user_ID)
284 {
285 	struct afs_call *call = (struct afs_call *)call_user_ID;
286 
287 	if (call->state == AFS_CALL_REQUESTING)
288 		call->state = AFS_CALL_AWAIT_REPLY;
289 }
290 
291 /*
292  * attach the data from a bunch of pages on an inode to a call
293  */
294 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
295 {
296 	struct bio_vec bv[AFS_BVEC_MAX];
297 	unsigned int bytes, nr, loop, offset;
298 	pgoff_t first = call->first, last = call->last;
299 	int ret;
300 
301 	offset = call->first_offset;
302 	call->first_offset = 0;
303 
304 	do {
305 		afs_load_bvec(call, msg, bv, first, last, offset);
306 		trace_afs_send_pages(call, msg, first, last, offset);
307 
308 		offset = 0;
309 		bytes = msg->msg_iter.count;
310 		nr = msg->msg_iter.nr_segs;
311 
312 		ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg,
313 					     bytes, afs_notify_end_request_tx);
314 		for (loop = 0; loop < nr; loop++)
315 			put_page(bv[loop].bv_page);
316 		if (ret < 0)
317 			break;
318 
319 		first += nr;
320 	} while (first <= last);
321 
322 	trace_afs_sent_pages(call, call->first, last, first, ret);
323 	return ret;
324 }
325 
326 /*
327  * initiate a call
328  */
329 long afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call,
330 		   gfp_t gfp, bool async)
331 {
332 	struct sockaddr_rxrpc *srx = ac->addr;
333 	struct rxrpc_call *rxcall;
334 	struct msghdr msg;
335 	struct kvec iov[1];
336 	size_t offset;
337 	s64 tx_total_len;
338 	int ret;
339 
340 	_enter(",{%pISp},", &srx->transport);
341 
342 	ASSERT(call->type != NULL);
343 	ASSERT(call->type->name != NULL);
344 
345 	_debug("____MAKE %p{%s,%x} [%d]____",
346 	       call, call->type->name, key_serial(call->key),
347 	       atomic_read(&call->net->nr_outstanding_calls));
348 
349 	call->async = async;
350 
351 	/* Work out the length we're going to transmit.  This is awkward for
352 	 * calls such as FS.StoreData where there's an extra injection of data
353 	 * after the initial fixed part.
354 	 */
355 	tx_total_len = call->request_size;
356 	if (call->send_pages) {
357 		if (call->last == call->first) {
358 			tx_total_len += call->last_to - call->first_offset;
359 		} else {
360 			/* It looks mathematically like you should be able to
361 			 * combine the following lines with the ones above, but
362 			 * unsigned arithmetic is fun when it wraps...
363 			 */
364 			tx_total_len += PAGE_SIZE - call->first_offset;
365 			tx_total_len += call->last_to;
366 			tx_total_len += (call->last - call->first - 1) * PAGE_SIZE;
367 		}
368 	}
369 
370 	/* create a call */
371 	rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
372 					 (unsigned long)call,
373 					 tx_total_len, gfp,
374 					 (async ?
375 					  afs_wake_up_async_call :
376 					  afs_wake_up_call_waiter),
377 					 call->upgrade);
378 	if (IS_ERR(rxcall)) {
379 		ret = PTR_ERR(rxcall);
380 		goto error_kill_call;
381 	}
382 
383 	call->rxcall = rxcall;
384 
385 	/* send the request */
386 	iov[0].iov_base	= call->request;
387 	iov[0].iov_len	= call->request_size;
388 
389 	msg.msg_name		= NULL;
390 	msg.msg_namelen		= 0;
391 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
392 		      call->request_size);
393 	msg.msg_control		= NULL;
394 	msg.msg_controllen	= 0;
395 	msg.msg_flags		= MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
396 
397 	ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
398 				     &msg, call->request_size,
399 				     afs_notify_end_request_tx);
400 	if (ret < 0)
401 		goto error_do_abort;
402 
403 	if (call->send_pages) {
404 		ret = afs_send_pages(call, &msg);
405 		if (ret < 0)
406 			goto error_do_abort;
407 	}
408 
409 	/* at this point, an async call may no longer exist as it may have
410 	 * already completed */
411 	if (call->async)
412 		return -EINPROGRESS;
413 
414 	return afs_wait_for_call_to_complete(call, ac);
415 
416 error_do_abort:
417 	call->state = AFS_CALL_COMPLETE;
418 	if (ret != -ECONNABORTED) {
419 		rxrpc_kernel_abort_call(call->net->socket, rxcall,
420 					RX_USER_ABORT, ret, "KSD");
421 	} else {
422 		offset = 0;
423 		rxrpc_kernel_recv_data(call->net->socket, rxcall, NULL,
424 				       0, &offset, false, &call->abort_code,
425 				       &call->service_id);
426 		ac->abort_code = call->abort_code;
427 		ac->responded = true;
428 	}
429 	call->error = ret;
430 	trace_afs_call_done(call);
431 error_kill_call:
432 	afs_put_call(call);
433 	ac->error = ret;
434 	_leave(" = %d", ret);
435 	return ret;
436 }
437 
438 /*
439  * deliver messages to a call
440  */
441 static void afs_deliver_to_call(struct afs_call *call)
442 {
443 	u32 abort_code;
444 	int ret;
445 
446 	_enter("%s", call->type->name);
447 
448 	while (call->state == AFS_CALL_AWAIT_REPLY ||
449 	       call->state == AFS_CALL_AWAIT_OP_ID ||
450 	       call->state == AFS_CALL_AWAIT_REQUEST ||
451 	       call->state == AFS_CALL_AWAIT_ACK
452 	       ) {
453 		if (call->state == AFS_CALL_AWAIT_ACK) {
454 			size_t offset = 0;
455 			ret = rxrpc_kernel_recv_data(call->net->socket,
456 						     call->rxcall,
457 						     NULL, 0, &offset, false,
458 						     &call->abort_code,
459 						     &call->service_id);
460 			trace_afs_recv_data(call, 0, offset, false, ret);
461 
462 			if (ret == -EINPROGRESS || ret == -EAGAIN)
463 				return;
464 			if (ret < 0)
465 				call->error = ret;
466 			if (ret < 0 || ret == 1)
467 				goto call_complete;
468 			return;
469 		}
470 
471 		ret = call->type->deliver(call);
472 		switch (ret) {
473 		case 0:
474 			if (call->state == AFS_CALL_AWAIT_REPLY)
475 				goto call_complete;
476 			goto done;
477 		case -EINPROGRESS:
478 		case -EAGAIN:
479 			goto out;
480 		case -ECONNABORTED:
481 			goto save_error;
482 		case -ENOTCONN:
483 			abort_code = RX_CALL_DEAD;
484 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
485 						abort_code, ret, "KNC");
486 			goto save_error;
487 		case -ENOTSUPP:
488 			abort_code = RXGEN_OPCODE;
489 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
490 						abort_code, ret, "KIV");
491 			goto save_error;
492 		case -ENODATA:
493 		case -EBADMSG:
494 		case -EMSGSIZE:
495 		default:
496 			abort_code = RXGEN_CC_UNMARSHAL;
497 			if (call->state != AFS_CALL_AWAIT_REPLY)
498 				abort_code = RXGEN_SS_UNMARSHAL;
499 			rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
500 						abort_code, -EBADMSG, "KUM");
501 			goto save_error;
502 		}
503 	}
504 
505 done:
506 	if (call->state == AFS_CALL_COMPLETE && call->incoming)
507 		afs_put_call(call);
508 out:
509 	_leave("");
510 	return;
511 
512 save_error:
513 	call->error = ret;
514 call_complete:
515 	if (call->state != AFS_CALL_COMPLETE) {
516 		call->state = AFS_CALL_COMPLETE;
517 		trace_afs_call_done(call);
518 	}
519 	goto done;
520 }
521 
522 /*
523  * wait synchronously for a call to complete
524  */
525 static long afs_wait_for_call_to_complete(struct afs_call *call,
526 					  struct afs_addr_cursor *ac)
527 {
528 	signed long rtt2, timeout;
529 	long ret;
530 	u64 rtt;
531 	u32 life, last_life;
532 
533 	DECLARE_WAITQUEUE(myself, current);
534 
535 	_enter("");
536 
537 	rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall);
538 	rtt2 = nsecs_to_jiffies64(rtt) * 2;
539 	if (rtt2 < 2)
540 		rtt2 = 2;
541 
542 	timeout = rtt2;
543 	last_life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
544 
545 	add_wait_queue(&call->waitq, &myself);
546 	for (;;) {
547 		set_current_state(TASK_UNINTERRUPTIBLE);
548 
549 		/* deliver any messages that are in the queue */
550 		if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
551 			call->need_attention = false;
552 			__set_current_state(TASK_RUNNING);
553 			afs_deliver_to_call(call);
554 			continue;
555 		}
556 
557 		if (call->state == AFS_CALL_COMPLETE)
558 			break;
559 
560 		life = rxrpc_kernel_check_life(call->net->socket, call->rxcall);
561 		if (timeout == 0 &&
562 		    life == last_life && signal_pending(current))
563 				break;
564 
565 		if (life != last_life) {
566 			timeout = rtt2;
567 			last_life = life;
568 		}
569 
570 		timeout = schedule_timeout(timeout);
571 	}
572 
573 	remove_wait_queue(&call->waitq, &myself);
574 	__set_current_state(TASK_RUNNING);
575 
576 	/* Kill off the call if it's still live. */
577 	if (call->state < AFS_CALL_COMPLETE) {
578 		_debug("call interrupted");
579 		if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
580 					    RX_USER_ABORT, -EINTR, "KWI")) {
581 			call->error = -ERESTARTSYS;
582 			trace_afs_call_done(call);
583 		}
584 	}
585 
586 	ac->abort_code = call->abort_code;
587 	ac->error = call->error;
588 
589 	ret = ac->error;
590 	switch (ret) {
591 	case 0:
592 		if (call->ret_reply0) {
593 			ret = (long)call->reply[0];
594 			call->reply[0] = NULL;
595 		}
596 		/* Fall through */
597 	case -ECONNABORTED:
598 		ac->responded = true;
599 		break;
600 	}
601 
602 	_debug("call complete");
603 	afs_put_call(call);
604 	_leave(" = %p", (void *)ret);
605 	return ret;
606 }
607 
608 /*
609  * wake up a waiting call
610  */
611 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
612 				    unsigned long call_user_ID)
613 {
614 	struct afs_call *call = (struct afs_call *)call_user_ID;
615 
616 	call->need_attention = true;
617 	wake_up(&call->waitq);
618 }
619 
620 /*
621  * wake up an asynchronous call
622  */
623 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
624 				   unsigned long call_user_ID)
625 {
626 	struct afs_call *call = (struct afs_call *)call_user_ID;
627 	int u;
628 
629 	trace_afs_notify_call(rxcall, call);
630 	call->need_attention = true;
631 
632 	u = __atomic_add_unless(&call->usage, 1, 0);
633 	if (u != 0) {
634 		trace_afs_call(call, afs_call_trace_wake, u,
635 			       atomic_read(&call->net->nr_outstanding_calls),
636 			       __builtin_return_address(0));
637 
638 		if (!queue_work(afs_async_calls, &call->async_work))
639 			afs_put_call(call);
640 	}
641 }
642 
643 /*
644  * Delete an asynchronous call.  The work item carries a ref to the call struct
645  * that we need to release.
646  */
647 static void afs_delete_async_call(struct work_struct *work)
648 {
649 	struct afs_call *call = container_of(work, struct afs_call, async_work);
650 
651 	_enter("");
652 
653 	afs_put_call(call);
654 
655 	_leave("");
656 }
657 
658 /*
659  * Perform I/O processing on an asynchronous call.  The work item carries a ref
660  * to the call struct that we either need to release or to pass on.
661  */
662 static void afs_process_async_call(struct work_struct *work)
663 {
664 	struct afs_call *call = container_of(work, struct afs_call, async_work);
665 
666 	_enter("");
667 
668 	if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
669 		call->need_attention = false;
670 		afs_deliver_to_call(call);
671 	}
672 
673 	if (call->state == AFS_CALL_COMPLETE) {
674 		call->reply[0] = NULL;
675 
676 		/* We have two refs to release - one from the alloc and one
677 		 * queued with the work item - and we can't just deallocate the
678 		 * call because the work item may be queued again.
679 		 */
680 		call->async_work.func = afs_delete_async_call;
681 		if (!queue_work(afs_async_calls, &call->async_work))
682 			afs_put_call(call);
683 	}
684 
685 	afs_put_call(call);
686 	_leave("");
687 }
688 
689 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
690 {
691 	struct afs_call *call = (struct afs_call *)user_call_ID;
692 
693 	call->rxcall = rxcall;
694 }
695 
696 /*
697  * Charge the incoming call preallocation.
698  */
699 void afs_charge_preallocation(struct work_struct *work)
700 {
701 	struct afs_net *net =
702 		container_of(work, struct afs_net, charge_preallocation_work);
703 	struct afs_call *call = net->spare_incoming_call;
704 
705 	for (;;) {
706 		if (!call) {
707 			call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
708 			if (!call)
709 				break;
710 
711 			call->async = true;
712 			call->state = AFS_CALL_AWAIT_OP_ID;
713 			init_waitqueue_head(&call->waitq);
714 		}
715 
716 		if (rxrpc_kernel_charge_accept(net->socket,
717 					       afs_wake_up_async_call,
718 					       afs_rx_attach,
719 					       (unsigned long)call,
720 					       GFP_KERNEL) < 0)
721 			break;
722 		call = NULL;
723 	}
724 	net->spare_incoming_call = call;
725 }
726 
727 /*
728  * Discard a preallocated call when a socket is shut down.
729  */
730 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
731 				    unsigned long user_call_ID)
732 {
733 	struct afs_call *call = (struct afs_call *)user_call_ID;
734 
735 	call->rxcall = NULL;
736 	afs_put_call(call);
737 }
738 
739 /*
740  * Notification of an incoming call.
741  */
742 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
743 			    unsigned long user_call_ID)
744 {
745 	struct afs_net *net = afs_sock2net(sk);
746 
747 	queue_work(afs_wq, &net->charge_preallocation_work);
748 }
749 
750 /*
751  * Grab the operation ID from an incoming cache manager call.  The socket
752  * buffer is discarded on error or if we don't yet have sufficient data.
753  */
754 static int afs_deliver_cm_op_id(struct afs_call *call)
755 {
756 	int ret;
757 
758 	_enter("{%zu}", call->offset);
759 
760 	ASSERTCMP(call->offset, <, 4);
761 
762 	/* the operation ID forms the first four bytes of the request data */
763 	ret = afs_extract_data(call, &call->tmp, 4, true);
764 	if (ret < 0)
765 		return ret;
766 
767 	call->operation_ID = ntohl(call->tmp);
768 	call->state = AFS_CALL_AWAIT_REQUEST;
769 	call->offset = 0;
770 
771 	/* ask the cache manager to route the call (it'll change the call type
772 	 * if successful) */
773 	if (!afs_cm_incoming_call(call))
774 		return -ENOTSUPP;
775 
776 	trace_afs_cb_call(call);
777 
778 	/* pass responsibility for the remainer of this message off to the
779 	 * cache manager op */
780 	return call->type->deliver(call);
781 }
782 
783 /*
784  * Advance the AFS call state when an RxRPC service call ends the transmit
785  * phase.
786  */
787 static void afs_notify_end_reply_tx(struct sock *sock,
788 				    struct rxrpc_call *rxcall,
789 				    unsigned long call_user_ID)
790 {
791 	struct afs_call *call = (struct afs_call *)call_user_ID;
792 
793 	if (call->state == AFS_CALL_REPLYING)
794 		call->state = AFS_CALL_AWAIT_ACK;
795 }
796 
797 /*
798  * send an empty reply
799  */
800 void afs_send_empty_reply(struct afs_call *call)
801 {
802 	struct afs_net *net = call->net;
803 	struct msghdr msg;
804 
805 	_enter("");
806 
807 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
808 
809 	msg.msg_name		= NULL;
810 	msg.msg_namelen		= 0;
811 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
812 	msg.msg_control		= NULL;
813 	msg.msg_controllen	= 0;
814 	msg.msg_flags		= 0;
815 
816 	switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
817 				       afs_notify_end_reply_tx)) {
818 	case 0:
819 		_leave(" [replied]");
820 		return;
821 
822 	case -ENOMEM:
823 		_debug("oom");
824 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
825 					RX_USER_ABORT, -ENOMEM, "KOO");
826 	default:
827 		_leave(" [error]");
828 		return;
829 	}
830 }
831 
832 /*
833  * send a simple reply
834  */
835 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
836 {
837 	struct afs_net *net = call->net;
838 	struct msghdr msg;
839 	struct kvec iov[1];
840 	int n;
841 
842 	_enter("");
843 
844 	rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
845 
846 	iov[0].iov_base		= (void *) buf;
847 	iov[0].iov_len		= len;
848 	msg.msg_name		= NULL;
849 	msg.msg_namelen		= 0;
850 	iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
851 	msg.msg_control		= NULL;
852 	msg.msg_controllen	= 0;
853 	msg.msg_flags		= 0;
854 
855 	n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
856 				   afs_notify_end_reply_tx);
857 	if (n >= 0) {
858 		/* Success */
859 		_leave(" [replied]");
860 		return;
861 	}
862 
863 	if (n == -ENOMEM) {
864 		_debug("oom");
865 		rxrpc_kernel_abort_call(net->socket, call->rxcall,
866 					RX_USER_ABORT, -ENOMEM, "KOO");
867 	}
868 	_leave(" [error]");
869 }
870 
871 /*
872  * Extract a piece of data from the received data socket buffers.
873  */
874 int afs_extract_data(struct afs_call *call, void *buf, size_t count,
875 		     bool want_more)
876 {
877 	struct afs_net *net = call->net;
878 	int ret;
879 
880 	_enter("{%s,%zu},,%zu,%d",
881 	       call->type->name, call->offset, count, want_more);
882 
883 	ASSERTCMP(call->offset, <=, count);
884 
885 	ret = rxrpc_kernel_recv_data(net->socket, call->rxcall,
886 				     buf, count, &call->offset,
887 				     want_more, &call->abort_code,
888 				     &call->service_id);
889 	trace_afs_recv_data(call, count, call->offset, want_more, ret);
890 	if (ret == 0 || ret == -EAGAIN)
891 		return ret;
892 
893 	if (ret == 1) {
894 		switch (call->state) {
895 		case AFS_CALL_AWAIT_REPLY:
896 			call->state = AFS_CALL_COMPLETE;
897 			trace_afs_call_done(call);
898 			break;
899 		case AFS_CALL_AWAIT_REQUEST:
900 			call->state = AFS_CALL_REPLYING;
901 			break;
902 		default:
903 			break;
904 		}
905 		return 0;
906 	}
907 
908 	call->error = ret;
909 	call->state = AFS_CALL_COMPLETE;
910 	trace_afs_call_done(call);
911 	return ret;
912 }
913