xref: /openbmc/linux/drivers/xen/xenbus/xenbus_client.c (revision 81464192839de0b5bc84c5739381101e04d94f62)
1 /******************************************************************************
2  * Client-facing interface for the Xenbus driver.  In other words, the
3  * interface between the Xenbus and the device-specific code, be it the
4  * frontend or the backend of that driver.
5  *
6  * Copyright (C) 2005 XenSource Ltd
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License version 2
10  * as published by the Free Software Foundation; or, when distributed
11  * separately from the Linux kernel or incorporated into other
12  * software packages, subject to the following license:
13  *
14  * Permission is hereby granted, free of charge, to any person obtaining a copy
15  * of this source file (the "Software"), to deal in the Software without
16  * restriction, including without limitation the rights to use, copy, modify,
17  * merge, publish, distribute, sublicense, and/or sell copies of the Software,
18  * and to permit persons to whom the Software is furnished to do so, subject to
19  * the following conditions:
20  *
21  * The above copyright notice and this permission notice shall be included in
22  * all copies or substantial portions of the Software.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
27  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30  * IN THE SOFTWARE.
31  */
32 
33 #include <linux/mm.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/spinlock.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <asm/xen/hypervisor.h>
40 #include <xen/page.h>
41 #include <xen/interface/xen.h>
42 #include <xen/interface/event_channel.h>
43 #include <xen/balloon.h>
44 #include <xen/events.h>
45 #include <xen/grant_table.h>
46 #include <xen/xenbus.h>
47 #include <xen/xen.h>
48 #include <xen/features.h>
49 
50 #include "xenbus.h"
51 
52 #define XENBUS_PAGES(_grants)	(DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE))
53 
54 #define XENBUS_MAX_RING_PAGES	(XENBUS_PAGES(XENBUS_MAX_RING_GRANTS))
55 
56 struct xenbus_map_node {
57 	struct list_head next;
58 	union {
59 		struct {
60 			struct vm_struct *area;
61 		} pv;
62 		struct {
63 			struct page *pages[XENBUS_MAX_RING_PAGES];
64 			unsigned long addrs[XENBUS_MAX_RING_GRANTS];
65 			void *addr;
66 		} hvm;
67 	};
68 	grant_handle_t handles[XENBUS_MAX_RING_GRANTS];
69 	unsigned int   nr_handles;
70 };
71 
72 static DEFINE_SPINLOCK(xenbus_valloc_lock);
73 static LIST_HEAD(xenbus_valloc_pages);
74 
75 struct xenbus_ring_ops {
76 	int (*map)(struct xenbus_device *dev,
77 		   grant_ref_t *gnt_refs, unsigned int nr_grefs,
78 		   void **vaddr);
79 	int (*unmap)(struct xenbus_device *dev, void *vaddr);
80 };
81 
82 static const struct xenbus_ring_ops *ring_ops __read_mostly;
83 
84 const char *xenbus_strstate(enum xenbus_state state)
85 {
86 	static const char *const name[] = {
87 		[ XenbusStateUnknown      ] = "Unknown",
88 		[ XenbusStateInitialising ] = "Initialising",
89 		[ XenbusStateInitWait     ] = "InitWait",
90 		[ XenbusStateInitialised  ] = "Initialised",
91 		[ XenbusStateConnected    ] = "Connected",
92 		[ XenbusStateClosing      ] = "Closing",
93 		[ XenbusStateClosed	  ] = "Closed",
94 		[XenbusStateReconfiguring] = "Reconfiguring",
95 		[XenbusStateReconfigured] = "Reconfigured",
96 	};
97 	return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID";
98 }
99 EXPORT_SYMBOL_GPL(xenbus_strstate);
100 
101 /**
102  * xenbus_watch_path - register a watch
103  * @dev: xenbus device
104  * @path: path to watch
105  * @watch: watch to register
106  * @callback: callback to register
107  *
108  * Register a @watch on the given path, using the given xenbus_watch structure
109  * for storage, and the given @callback function as the callback.  Return 0 on
110  * success, or -errno on error.  On success, the given @path will be saved as
111  * @watch->node, and remains the caller's to free.  On error, @watch->node will
112  * be NULL, the device will switch to %XenbusStateClosing, and the error will
113  * be saved in the store.
114  */
115 int xenbus_watch_path(struct xenbus_device *dev, const char *path,
116 		      struct xenbus_watch *watch,
117 		      void (*callback)(struct xenbus_watch *,
118 				       const char *, const char *))
119 {
120 	int err;
121 
122 	watch->node = path;
123 	watch->callback = callback;
124 
125 	err = register_xenbus_watch(watch);
126 
127 	if (err) {
128 		watch->node = NULL;
129 		watch->callback = NULL;
130 		xenbus_dev_fatal(dev, err, "adding watch on %s", path);
131 	}
132 
133 	return err;
134 }
135 EXPORT_SYMBOL_GPL(xenbus_watch_path);
136 
137 
138 /**
139  * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path
140  * @dev: xenbus device
141  * @watch: watch to register
142  * @callback: callback to register
143  * @pathfmt: format of path to watch
144  *
145  * Register a watch on the given @path, using the given xenbus_watch
146  * structure for storage, and the given @callback function as the callback.
147  * Return 0 on success, or -errno on error.  On success, the watched path
148  * (@path/@path2) will be saved as @watch->node, and becomes the caller's to
149  * kfree().  On error, watch->node will be NULL, so the caller has nothing to
150  * free, the device will switch to %XenbusStateClosing, and the error will be
151  * saved in the store.
152  */
153 int xenbus_watch_pathfmt(struct xenbus_device *dev,
154 			 struct xenbus_watch *watch,
155 			 void (*callback)(struct xenbus_watch *,
156 					  const char *, const char *),
157 			 const char *pathfmt, ...)
158 {
159 	int err;
160 	va_list ap;
161 	char *path;
162 
163 	va_start(ap, pathfmt);
164 	path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap);
165 	va_end(ap);
166 
167 	if (!path) {
168 		xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch");
169 		return -ENOMEM;
170 	}
171 	err = xenbus_watch_path(dev, path, watch, callback);
172 
173 	if (err)
174 		kfree(path);
175 	return err;
176 }
177 EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt);
178 
179 static void xenbus_switch_fatal(struct xenbus_device *, int, int,
180 				const char *, ...);
181 
182 static int
183 __xenbus_switch_state(struct xenbus_device *dev,
184 		      enum xenbus_state state, int depth)
185 {
186 	/* We check whether the state is currently set to the given value, and
187 	   if not, then the state is set.  We don't want to unconditionally
188 	   write the given state, because we don't want to fire watches
189 	   unnecessarily.  Furthermore, if the node has gone, we don't write
190 	   to it, as the device will be tearing down, and we don't want to
191 	   resurrect that directory.
192 
193 	   Note that, because of this cached value of our state, this
194 	   function will not take a caller's Xenstore transaction
195 	   (something it was trying to in the past) because dev->state
196 	   would not get reset if the transaction was aborted.
197 	 */
198 
199 	struct xenbus_transaction xbt;
200 	int current_state;
201 	int err, abort;
202 
203 	if (state == dev->state)
204 		return 0;
205 
206 again:
207 	abort = 1;
208 
209 	err = xenbus_transaction_start(&xbt);
210 	if (err) {
211 		xenbus_switch_fatal(dev, depth, err, "starting transaction");
212 		return 0;
213 	}
214 
215 	err = xenbus_scanf(xbt, dev->nodename, "state", "%d", &current_state);
216 	if (err != 1)
217 		goto abort;
218 
219 	err = xenbus_printf(xbt, dev->nodename, "state", "%d", state);
220 	if (err) {
221 		xenbus_switch_fatal(dev, depth, err, "writing new state");
222 		goto abort;
223 	}
224 
225 	abort = 0;
226 abort:
227 	err = xenbus_transaction_end(xbt, abort);
228 	if (err) {
229 		if (err == -EAGAIN && !abort)
230 			goto again;
231 		xenbus_switch_fatal(dev, depth, err, "ending transaction");
232 	} else
233 		dev->state = state;
234 
235 	return 0;
236 }
237 
238 /**
239  * xenbus_switch_state
240  * @dev: xenbus device
241  * @state: new state
242  *
243  * Advertise in the store a change of the given driver to the given new_state.
244  * Return 0 on success, or -errno on error.  On error, the device will switch
245  * to XenbusStateClosing, and the error will be saved in the store.
246  */
247 int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state)
248 {
249 	return __xenbus_switch_state(dev, state, 0);
250 }
251 
252 EXPORT_SYMBOL_GPL(xenbus_switch_state);
253 
254 int xenbus_frontend_closed(struct xenbus_device *dev)
255 {
256 	xenbus_switch_state(dev, XenbusStateClosed);
257 	complete(&dev->down);
258 	return 0;
259 }
260 EXPORT_SYMBOL_GPL(xenbus_frontend_closed);
261 
262 static void xenbus_va_dev_error(struct xenbus_device *dev, int err,
263 				const char *fmt, va_list ap)
264 {
265 	unsigned int len;
266 	char *printf_buffer;
267 	char *path_buffer;
268 
269 #define PRINTF_BUFFER_SIZE 4096
270 
271 	printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL);
272 	if (!printf_buffer)
273 		return;
274 
275 	len = sprintf(printf_buffer, "%i ", -err);
276 	vsnprintf(printf_buffer + len, PRINTF_BUFFER_SIZE - len, fmt, ap);
277 
278 	dev_err(&dev->dev, "%s\n", printf_buffer);
279 
280 	path_buffer = kasprintf(GFP_KERNEL, "error/%s", dev->nodename);
281 	if (path_buffer)
282 		xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer);
283 
284 	kfree(printf_buffer);
285 	kfree(path_buffer);
286 }
287 
288 /**
289  * xenbus_dev_error
290  * @dev: xenbus device
291  * @err: error to report
292  * @fmt: error message format
293  *
294  * Report the given negative errno into the store, along with the given
295  * formatted message.
296  */
297 void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...)
298 {
299 	va_list ap;
300 
301 	va_start(ap, fmt);
302 	xenbus_va_dev_error(dev, err, fmt, ap);
303 	va_end(ap);
304 }
305 EXPORT_SYMBOL_GPL(xenbus_dev_error);
306 
307 /**
308  * xenbus_dev_fatal
309  * @dev: xenbus device
310  * @err: error to report
311  * @fmt: error message format
312  *
313  * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by
314  * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly
315  * closedown of this driver and its peer.
316  */
317 
318 void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...)
319 {
320 	va_list ap;
321 
322 	va_start(ap, fmt);
323 	xenbus_va_dev_error(dev, err, fmt, ap);
324 	va_end(ap);
325 
326 	xenbus_switch_state(dev, XenbusStateClosing);
327 }
328 EXPORT_SYMBOL_GPL(xenbus_dev_fatal);
329 
330 /**
331  * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps
332  * avoiding recursion within xenbus_switch_state.
333  */
334 static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err,
335 				const char *fmt, ...)
336 {
337 	va_list ap;
338 
339 	va_start(ap, fmt);
340 	xenbus_va_dev_error(dev, err, fmt, ap);
341 	va_end(ap);
342 
343 	if (!depth)
344 		__xenbus_switch_state(dev, XenbusStateClosing, 1);
345 }
346 
347 /**
348  * xenbus_grant_ring
349  * @dev: xenbus device
350  * @vaddr: starting virtual address of the ring
351  * @nr_pages: number of pages to be granted
352  * @grefs: grant reference array to be filled in
353  *
354  * Grant access to the given @vaddr to the peer of the given device.
355  * Then fill in @grefs with grant references.  Return 0 on success, or
356  * -errno on error.  On error, the device will switch to
357  * XenbusStateClosing, and the error will be saved in the store.
358  */
359 int xenbus_grant_ring(struct xenbus_device *dev, void *vaddr,
360 		      unsigned int nr_pages, grant_ref_t *grefs)
361 {
362 	int err;
363 	int i, j;
364 
365 	for (i = 0; i < nr_pages; i++) {
366 		err = gnttab_grant_foreign_access(dev->otherend_id,
367 						  virt_to_gfn(vaddr), 0);
368 		if (err < 0) {
369 			xenbus_dev_fatal(dev, err,
370 					 "granting access to ring page");
371 			goto fail;
372 		}
373 		grefs[i] = err;
374 
375 		vaddr = vaddr + XEN_PAGE_SIZE;
376 	}
377 
378 	return 0;
379 
380 fail:
381 	for (j = 0; j < i; j++)
382 		gnttab_end_foreign_access_ref(grefs[j], 0);
383 	return err;
384 }
385 EXPORT_SYMBOL_GPL(xenbus_grant_ring);
386 
387 
388 /**
389  * Allocate an event channel for the given xenbus_device, assigning the newly
390  * created local port to *port.  Return 0 on success, or -errno on error.  On
391  * error, the device will switch to XenbusStateClosing, and the error will be
392  * saved in the store.
393  */
394 int xenbus_alloc_evtchn(struct xenbus_device *dev, evtchn_port_t *port)
395 {
396 	struct evtchn_alloc_unbound alloc_unbound;
397 	int err;
398 
399 	alloc_unbound.dom = DOMID_SELF;
400 	alloc_unbound.remote_dom = dev->otherend_id;
401 
402 	err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound,
403 					  &alloc_unbound);
404 	if (err)
405 		xenbus_dev_fatal(dev, err, "allocating event channel");
406 	else
407 		*port = alloc_unbound.port;
408 
409 	return err;
410 }
411 EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn);
412 
413 
414 /**
415  * Free an existing event channel. Returns 0 on success or -errno on error.
416  */
417 int xenbus_free_evtchn(struct xenbus_device *dev, evtchn_port_t port)
418 {
419 	struct evtchn_close close;
420 	int err;
421 
422 	close.port = port;
423 
424 	err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close);
425 	if (err)
426 		xenbus_dev_error(dev, err, "freeing event channel %u", port);
427 
428 	return err;
429 }
430 EXPORT_SYMBOL_GPL(xenbus_free_evtchn);
431 
432 
433 /**
434  * xenbus_map_ring_valloc
435  * @dev: xenbus device
436  * @gnt_refs: grant reference array
437  * @nr_grefs: number of grant references
438  * @vaddr: pointer to address to be filled out by mapping
439  *
440  * Map @nr_grefs pages of memory into this domain from another
441  * domain's grant table.  xenbus_map_ring_valloc allocates @nr_grefs
442  * pages of virtual address space, maps the pages to that address, and
443  * sets *vaddr to that address.  Returns 0 on success, and GNTST_*
444  * (see xen/include/interface/grant_table.h) or -ENOMEM / -EINVAL on
445  * error. If an error is returned, device will switch to
446  * XenbusStateClosing and the error message will be saved in XenStore.
447  */
448 int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs,
449 			   unsigned int nr_grefs, void **vaddr)
450 {
451 	int err;
452 
453 	err = ring_ops->map(dev, gnt_refs, nr_grefs, vaddr);
454 	/* Some hypervisors are buggy and can return 1. */
455 	if (err > 0)
456 		err = GNTST_general_error;
457 
458 	return err;
459 }
460 EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc);
461 
462 /* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned
463  * long), e.g. 32-on-64.  Caller is responsible for preparing the
464  * right array to feed into this function */
465 static int __xenbus_map_ring(struct xenbus_device *dev,
466 			     grant_ref_t *gnt_refs,
467 			     unsigned int nr_grefs,
468 			     grant_handle_t *handles,
469 			     phys_addr_t *addrs,
470 			     unsigned int flags,
471 			     bool *leaked)
472 {
473 	struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS];
474 	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
475 	int i, j;
476 	int err = GNTST_okay;
477 
478 	if (nr_grefs > XENBUS_MAX_RING_GRANTS)
479 		return -EINVAL;
480 
481 	for (i = 0; i < nr_grefs; i++) {
482 		memset(&map[i], 0, sizeof(map[i]));
483 		gnttab_set_map_op(&map[i], addrs[i], flags, gnt_refs[i],
484 				  dev->otherend_id);
485 		handles[i] = INVALID_GRANT_HANDLE;
486 	}
487 
488 	gnttab_batch_map(map, i);
489 
490 	for (i = 0; i < nr_grefs; i++) {
491 		if (map[i].status != GNTST_okay) {
492 			err = map[i].status;
493 			xenbus_dev_fatal(dev, map[i].status,
494 					 "mapping in shared page %d from domain %d",
495 					 gnt_refs[i], dev->otherend_id);
496 			goto fail;
497 		} else
498 			handles[i] = map[i].handle;
499 	}
500 
501 	return GNTST_okay;
502 
503  fail:
504 	for (i = j = 0; i < nr_grefs; i++) {
505 		if (handles[i] != INVALID_GRANT_HANDLE) {
506 			memset(&unmap[j], 0, sizeof(unmap[j]));
507 			gnttab_set_unmap_op(&unmap[j], (phys_addr_t)addrs[i],
508 					    GNTMAP_host_map, handles[i]);
509 			j++;
510 		}
511 	}
512 
513 	if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, j))
514 		BUG();
515 
516 	*leaked = false;
517 	for (i = 0; i < j; i++) {
518 		if (unmap[i].status != GNTST_okay) {
519 			*leaked = true;
520 			break;
521 		}
522 	}
523 
524 	return err;
525 }
526 
527 /**
528  * xenbus_unmap_ring
529  * @dev: xenbus device
530  * @handles: grant handle array
531  * @nr_handles: number of handles in the array
532  * @vaddrs: addresses to unmap
533  *
534  * Unmap memory in this domain that was imported from another domain.
535  * Returns 0 on success and returns GNTST_* on error
536  * (see xen/include/interface/grant_table.h).
537  */
538 static int xenbus_unmap_ring(struct xenbus_device *dev, grant_handle_t *handles,
539 			     unsigned int nr_handles, unsigned long *vaddrs)
540 {
541 	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
542 	int i;
543 	int err;
544 
545 	if (nr_handles > XENBUS_MAX_RING_GRANTS)
546 		return -EINVAL;
547 
548 	for (i = 0; i < nr_handles; i++)
549 		gnttab_set_unmap_op(&unmap[i], vaddrs[i],
550 				    GNTMAP_host_map, handles[i]);
551 
552 	if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
553 		BUG();
554 
555 	err = GNTST_okay;
556 	for (i = 0; i < nr_handles; i++) {
557 		if (unmap[i].status != GNTST_okay) {
558 			xenbus_dev_error(dev, unmap[i].status,
559 					 "unmapping page at handle %d error %d",
560 					 handles[i], unmap[i].status);
561 			err = unmap[i].status;
562 			break;
563 		}
564 	}
565 
566 	return err;
567 }
568 
569 struct map_ring_valloc_hvm
570 {
571 	unsigned int idx;
572 
573 	/* Why do we need two arrays? See comment of __xenbus_map_ring */
574 	phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
575 	unsigned long addrs[XENBUS_MAX_RING_GRANTS];
576 };
577 
578 static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn,
579 					    unsigned int goffset,
580 					    unsigned int len,
581 					    void *data)
582 {
583 	struct map_ring_valloc_hvm *info = data;
584 	unsigned long vaddr = (unsigned long)gfn_to_virt(gfn);
585 
586 	info->phys_addrs[info->idx] = vaddr;
587 	info->addrs[info->idx] = vaddr;
588 
589 	info->idx++;
590 }
591 
592 static int xenbus_map_ring_valloc_hvm(struct xenbus_device *dev,
593 				      grant_ref_t *gnt_ref,
594 				      unsigned int nr_grefs,
595 				      void **vaddr)
596 {
597 	struct xenbus_map_node *node;
598 	int err;
599 	void *addr;
600 	bool leaked = false;
601 	struct map_ring_valloc_hvm info = {
602 		.idx = 0,
603 	};
604 	unsigned int nr_pages = XENBUS_PAGES(nr_grefs);
605 
606 	if (nr_grefs > XENBUS_MAX_RING_GRANTS)
607 		return -EINVAL;
608 
609 	*vaddr = NULL;
610 
611 	node = kzalloc(sizeof(*node), GFP_KERNEL);
612 	if (!node)
613 		return -ENOMEM;
614 
615 	err = alloc_xenballooned_pages(nr_pages, node->hvm.pages);
616 	if (err)
617 		goto out_err;
618 
619 	gnttab_foreach_grant(node->hvm.pages, nr_grefs,
620 			     xenbus_map_ring_setup_grant_hvm,
621 			     &info);
622 
623 	err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles,
624 				info.phys_addrs, GNTMAP_host_map, &leaked);
625 	node->nr_handles = nr_grefs;
626 
627 	if (err)
628 		goto out_free_ballooned_pages;
629 
630 	addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP,
631 		    PAGE_KERNEL);
632 	if (!addr) {
633 		err = -ENOMEM;
634 		goto out_xenbus_unmap_ring;
635 	}
636 
637 	node->hvm.addr = addr;
638 
639 	spin_lock(&xenbus_valloc_lock);
640 	list_add(&node->next, &xenbus_valloc_pages);
641 	spin_unlock(&xenbus_valloc_lock);
642 
643 	*vaddr = addr;
644 	return 0;
645 
646  out_xenbus_unmap_ring:
647 	if (!leaked)
648 		xenbus_unmap_ring(dev, node->handles, nr_grefs, info.addrs);
649 	else
650 		pr_alert("leaking %p size %u page(s)",
651 			 addr, nr_pages);
652  out_free_ballooned_pages:
653 	if (!leaked)
654 		free_xenballooned_pages(nr_pages, node->hvm.pages);
655  out_err:
656 	kfree(node);
657 	return err;
658 }
659 
660 /**
661  * xenbus_unmap_ring_vfree
662  * @dev: xenbus device
663  * @vaddr: addr to unmap
664  *
665  * Based on Rusty Russell's skeleton driver's unmap_page.
666  * Unmap a page of memory in this domain that was imported from another domain.
667  * Use xenbus_unmap_ring_vfree if you mapped in your memory with
668  * xenbus_map_ring_valloc (it will free the virtual address space).
669  * Returns 0 on success and returns GNTST_* on error
670  * (see xen/include/interface/grant_table.h).
671  */
672 int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr)
673 {
674 	return ring_ops->unmap(dev, vaddr);
675 }
676 EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree);
677 
678 #ifdef CONFIG_XEN_PV
679 static int xenbus_map_ring_valloc_pv(struct xenbus_device *dev,
680 				     grant_ref_t *gnt_refs,
681 				     unsigned int nr_grefs,
682 				     void **vaddr)
683 {
684 	struct xenbus_map_node *node;
685 	struct vm_struct *area;
686 	pte_t *ptes[XENBUS_MAX_RING_GRANTS];
687 	phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
688 	int err = GNTST_okay;
689 	int i;
690 	bool leaked;
691 
692 	*vaddr = NULL;
693 
694 	if (nr_grefs > XENBUS_MAX_RING_GRANTS)
695 		return -EINVAL;
696 
697 	node = kzalloc(sizeof(*node), GFP_KERNEL);
698 	if (!node)
699 		return -ENOMEM;
700 
701 	area = alloc_vm_area(XEN_PAGE_SIZE * nr_grefs, ptes);
702 	if (!area) {
703 		kfree(node);
704 		return -ENOMEM;
705 	}
706 
707 	for (i = 0; i < nr_grefs; i++)
708 		phys_addrs[i] = arbitrary_virt_to_machine(ptes[i]).maddr;
709 
710 	err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles,
711 				phys_addrs,
712 				GNTMAP_host_map | GNTMAP_contains_pte,
713 				&leaked);
714 	if (err)
715 		goto failed;
716 
717 	node->nr_handles = nr_grefs;
718 	node->pv.area = area;
719 
720 	spin_lock(&xenbus_valloc_lock);
721 	list_add(&node->next, &xenbus_valloc_pages);
722 	spin_unlock(&xenbus_valloc_lock);
723 
724 	*vaddr = area->addr;
725 	return 0;
726 
727 failed:
728 	if (!leaked)
729 		free_vm_area(area);
730 	else
731 		pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs);
732 
733 	kfree(node);
734 	return err;
735 }
736 
737 static int xenbus_unmap_ring_vfree_pv(struct xenbus_device *dev, void *vaddr)
738 {
739 	struct xenbus_map_node *node;
740 	struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
741 	unsigned int level;
742 	int i;
743 	bool leaked = false;
744 	int err;
745 
746 	spin_lock(&xenbus_valloc_lock);
747 	list_for_each_entry(node, &xenbus_valloc_pages, next) {
748 		if (node->pv.area->addr == vaddr) {
749 			list_del(&node->next);
750 			goto found;
751 		}
752 	}
753 	node = NULL;
754  found:
755 	spin_unlock(&xenbus_valloc_lock);
756 
757 	if (!node) {
758 		xenbus_dev_error(dev, -ENOENT,
759 				 "can't find mapped virtual address %p", vaddr);
760 		return GNTST_bad_virt_addr;
761 	}
762 
763 	for (i = 0; i < node->nr_handles; i++) {
764 		unsigned long addr;
765 
766 		memset(&unmap[i], 0, sizeof(unmap[i]));
767 		addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i);
768 		unmap[i].host_addr = arbitrary_virt_to_machine(
769 			lookup_address(addr, &level)).maddr;
770 		unmap[i].dev_bus_addr = 0;
771 		unmap[i].handle = node->handles[i];
772 	}
773 
774 	if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
775 		BUG();
776 
777 	err = GNTST_okay;
778 	leaked = false;
779 	for (i = 0; i < node->nr_handles; i++) {
780 		if (unmap[i].status != GNTST_okay) {
781 			leaked = true;
782 			xenbus_dev_error(dev, unmap[i].status,
783 					 "unmapping page at handle %d error %d",
784 					 node->handles[i], unmap[i].status);
785 			err = unmap[i].status;
786 			break;
787 		}
788 	}
789 
790 	if (!leaked)
791 		free_vm_area(node->pv.area);
792 	else
793 		pr_alert("leaking VM area %p size %u page(s)",
794 			 node->pv.area, node->nr_handles);
795 
796 	kfree(node);
797 	return err;
798 }
799 
800 static const struct xenbus_ring_ops ring_ops_pv = {
801 	.map = xenbus_map_ring_valloc_pv,
802 	.unmap = xenbus_unmap_ring_vfree_pv,
803 };
804 #endif
805 
806 struct unmap_ring_vfree_hvm
807 {
808 	unsigned int idx;
809 	unsigned long addrs[XENBUS_MAX_RING_GRANTS];
810 };
811 
812 static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,
813 					      unsigned int goffset,
814 					      unsigned int len,
815 					      void *data)
816 {
817 	struct unmap_ring_vfree_hvm *info = data;
818 
819 	info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn);
820 
821 	info->idx++;
822 }
823 
824 static int xenbus_unmap_ring_vfree_hvm(struct xenbus_device *dev, void *vaddr)
825 {
826 	int rv;
827 	struct xenbus_map_node *node;
828 	void *addr;
829 	struct unmap_ring_vfree_hvm info = {
830 		.idx = 0,
831 	};
832 	unsigned int nr_pages;
833 
834 	spin_lock(&xenbus_valloc_lock);
835 	list_for_each_entry(node, &xenbus_valloc_pages, next) {
836 		addr = node->hvm.addr;
837 		if (addr == vaddr) {
838 			list_del(&node->next);
839 			goto found;
840 		}
841 	}
842 	node = addr = NULL;
843  found:
844 	spin_unlock(&xenbus_valloc_lock);
845 
846 	if (!node) {
847 		xenbus_dev_error(dev, -ENOENT,
848 				 "can't find mapped virtual address %p", vaddr);
849 		return GNTST_bad_virt_addr;
850 	}
851 
852 	nr_pages = XENBUS_PAGES(node->nr_handles);
853 
854 	gnttab_foreach_grant(node->hvm.pages, node->nr_handles,
855 			     xenbus_unmap_ring_setup_grant_hvm,
856 			     &info);
857 
858 	rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles,
859 			       info.addrs);
860 	if (!rv) {
861 		vunmap(vaddr);
862 		free_xenballooned_pages(nr_pages, node->hvm.pages);
863 	}
864 	else
865 		WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages);
866 
867 	kfree(node);
868 	return rv;
869 }
870 
871 /**
872  * xenbus_read_driver_state
873  * @path: path for driver
874  *
875  * Return the state of the driver rooted at the given store path, or
876  * XenbusStateUnknown if no state can be read.
877  */
878 enum xenbus_state xenbus_read_driver_state(const char *path)
879 {
880 	enum xenbus_state result;
881 	int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL);
882 	if (err)
883 		result = XenbusStateUnknown;
884 
885 	return result;
886 }
887 EXPORT_SYMBOL_GPL(xenbus_read_driver_state);
888 
889 static const struct xenbus_ring_ops ring_ops_hvm = {
890 	.map = xenbus_map_ring_valloc_hvm,
891 	.unmap = xenbus_unmap_ring_vfree_hvm,
892 };
893 
894 void __init xenbus_ring_ops_init(void)
895 {
896 #ifdef CONFIG_XEN_PV
897 	if (!xen_feature(XENFEAT_auto_translated_physmap))
898 		ring_ops = &ring_ops_pv;
899 	else
900 #endif
901 		ring_ops = &ring_ops_hvm;
902 }
903