xref: /openbmc/linux/drivers/video/fbdev/sa1100fb.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  *  linux/drivers/video/sa1100fb.c
3  *
4  *  Copyright (C) 1999 Eric A. Thomas
5  *   Based on acornfb.c Copyright (C) Russell King.
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License.  See the file COPYING in the main directory of this archive for
9  * more details.
10  *
11  *	        StrongARM 1100 LCD Controller Frame Buffer Driver
12  *
13  * Please direct your questions and comments on this driver to the following
14  * email address:
15  *
16  *	linux-arm-kernel@lists.arm.linux.org.uk
17  *
18  * Clean patches should be sent to the ARM Linux Patch System.  Please see the
19  * following web page for more information:
20  *
21  *	http://www.arm.linux.org.uk/developer/patches/info.shtml
22  *
23  * Thank you.
24  *
25  * Known problems:
26  *	- With the Neponset plugged into an Assabet, LCD powerdown
27  *	  doesn't work (LCD stays powered up).  Therefore we shouldn't
28  *	  blank the screen.
29  *	- We don't limit the CPU clock rate nor the mode selection
30  *	  according to the available SDRAM bandwidth.
31  *
32  * Other notes:
33  *	- Linear grayscale palettes and the kernel.
34  *	  Such code does not belong in the kernel.  The kernel frame buffer
35  *	  drivers do not expect a linear colourmap, but a colourmap based on
36  *	  the VT100 standard mapping.
37  *
38  *	  If your _userspace_ requires a linear colourmap, then the setup of
39  *	  such a colourmap belongs _in userspace_, not in the kernel.  Code
40  *	  to set the colourmap correctly from user space has been sent to
41  *	  David Neuer.  It's around 8 lines of C code, plus another 4 to
42  *	  detect if we are using grayscale.
43  *
44  *	- The following must never be specified in a panel definition:
45  *	     LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
46  *
47  *	- The following should be specified:
48  *	     either LCCR0_Color or LCCR0_Mono
49  *	     either LCCR0_Sngl or LCCR0_Dual
50  *	     either LCCR0_Act or LCCR0_Pas
51  *	     either LCCR3_OutEnH or LCCD3_OutEnL
52  *	     either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53  *	     either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
54  *
55  * Code Status:
56  * 1999/04/01:
57  *	- Driver appears to be working for Brutus 320x200x8bpp mode.  Other
58  *	  resolutions are working, but only the 8bpp mode is supported.
59  *	  Changes need to be made to the palette encode and decode routines
60  *	  to support 4 and 16 bpp modes.
61  *	  Driver is not designed to be a module.  The FrameBuffer is statically
62  *	  allocated since dynamic allocation of a 300k buffer cannot be
63  *	  guaranteed.
64  *
65  * 1999/06/17:
66  *	- FrameBuffer memory is now allocated at run-time when the
67  *	  driver is initialized.
68  *
69  * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70  *	- Big cleanup for dynamic selection of machine type at run time.
71  *
72  * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73  *	- Support for Bitsy aka Compaq iPAQ H3600 added.
74  *
75  * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76  *	       Jeff Sutherland <jsutherland@accelent.com>
77  *	- Resolved an issue caused by a change made to the Assabet's PLD
78  *	  earlier this year which broke the framebuffer driver for newer
79  *	  Phase 4 Assabets.  Some other parameters were changed to optimize
80  *	  for the Sharp display.
81  *
82  * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83  *	- XP860 support added
84  *
85  * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86  *	- Allows standard options to be passed on the kernel command line
87  *	  for most common passive displays.
88  *
89  * 2000/08/29:
90  *	- s/save_flags_cli/local_irq_save/
91  *	- remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
92  *
93  * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94  *	- Updated LART stuff. Fixed some minor bugs.
95  *
96  * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97  *	- Pangolin support added
98  *
99  * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100  *	- Huw Webpanel support added
101  *
102  * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103  *	- Freebird add
104  *
105  * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106  *	       Cliff Brake <cbrake@accelent.com>
107  *	- Added PM callback
108  *
109  * 2001/05/26: <rmk@arm.linux.org.uk>
110  *	- Fix 16bpp so that (a) we use the right colours rather than some
111  *	  totally random colour depending on what was in page 0, and (b)
112  *	  we don't de-reference a NULL pointer.
113  *	- remove duplicated implementation of consistent_alloc()
114  *	- convert dma address types to dma_addr_t
115  *	- remove unused 'montype' stuff
116  *	- remove redundant zero inits of init_var after the initial
117  *	  memset.
118  *	- remove allow_modeset (acornfb idea does not belong here)
119  *
120  * 2001/05/28: <rmk@arm.linux.org.uk>
121  *	- massive cleanup - move machine dependent data into structures
122  *	- I've left various #warnings in - if you see one, and know
123  *	  the hardware concerned, please get in contact with me.
124  *
125  * 2001/05/31: <rmk@arm.linux.org.uk>
126  *	- Fix LCCR1 HSW value, fix all machine type specifications to
127  *	  keep values in line.  (Please check your machine type specs)
128  *
129  * 2001/06/10: <rmk@arm.linux.org.uk>
130  *	- Fiddle with the LCD controller from task context only; mainly
131  *	  so that we can run with interrupts on, and sleep.
132  *	- Convert #warnings into #errors.  No pain, no gain. ;)
133  *
134  * 2001/06/14: <rmk@arm.linux.org.uk>
135  *	- Make the palette BPS value for 12bpp come out correctly.
136  *	- Take notice of "greyscale" on any colour depth.
137  *	- Make truecolor visuals use the RGB channel encoding information.
138  *
139  * 2001/07/02: <rmk@arm.linux.org.uk>
140  *	- Fix colourmap problems.
141  *
142  * 2001/07/13: <abraham@2d3d.co.za>
143  *	- Added support for the ICP LCD-Kit01 on LART. This LCD is
144  *	  manufactured by Prime View, model no V16C6448AB
145  *
146  * 2001/07/23: <rmk@arm.linux.org.uk>
147  *	- Hand merge version from handhelds.org CVS tree.  See patch
148  *	  notes for 595/1 for more information.
149  *	- Drop 12bpp (it's 16bpp with different colour register mappings).
150  *	- This hardware can not do direct colour.  Therefore we don't
151  *	  support it.
152  *
153  * 2001/07/27: <rmk@arm.linux.org.uk>
154  *	- Halve YRES on dual scan LCDs.
155  *
156  * 2001/08/22: <rmk@arm.linux.org.uk>
157  *	- Add b/w iPAQ pixclock value.
158  *
159  * 2001/10/12: <rmk@arm.linux.org.uk>
160  *	- Add patch 681/1 and clean up stork definitions.
161  */
162 
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/mm.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/gpio.h>
177 #include <linux/platform_device.h>
178 #include <linux/dma-mapping.h>
179 #include <linux/mutex.h>
180 #include <linux/io.h>
181 #include <linux/clk.h>
182 
183 #include <video/sa1100fb.h>
184 
185 #include <mach/hardware.h>
186 #include <asm/mach-types.h>
187 #include <mach/shannon.h>
188 
189 /*
190  * Complain if VAR is out of range.
191  */
192 #define DEBUG_VAR 1
193 
194 #include "sa1100fb.h"
195 
196 static const struct sa1100fb_rgb rgb_4 = {
197 	.red	= { .offset = 0,  .length = 4, },
198 	.green	= { .offset = 0,  .length = 4, },
199 	.blue	= { .offset = 0,  .length = 4, },
200 	.transp	= { .offset = 0,  .length = 0, },
201 };
202 
203 static const struct sa1100fb_rgb rgb_8 = {
204 	.red	= { .offset = 0,  .length = 8, },
205 	.green	= { .offset = 0,  .length = 8, },
206 	.blue	= { .offset = 0,  .length = 8, },
207 	.transp	= { .offset = 0,  .length = 0, },
208 };
209 
210 static const struct sa1100fb_rgb def_rgb_16 = {
211 	.red	= { .offset = 11, .length = 5, },
212 	.green	= { .offset = 5,  .length = 6, },
213 	.blue	= { .offset = 0,  .length = 5, },
214 	.transp	= { .offset = 0,  .length = 0, },
215 };
216 
217 
218 
219 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
220 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
221 
222 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
223 {
224 	unsigned long flags;
225 
226 	local_irq_save(flags);
227 	/*
228 	 * We need to handle two requests being made at the same time.
229 	 * There are two important cases:
230 	 *  1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
231 	 *     We must perform the unblanking, which will do our REENABLE for us.
232 	 *  2. When we are blanking, but immediately unblank before we have
233 	 *     blanked.  We do the "REENABLE" thing here as well, just to be sure.
234 	 */
235 	if (fbi->task_state == C_ENABLE && state == C_REENABLE)
236 		state = (u_int) -1;
237 	if (fbi->task_state == C_DISABLE && state == C_ENABLE)
238 		state = C_REENABLE;
239 
240 	if (state != (u_int)-1) {
241 		fbi->task_state = state;
242 		schedule_work(&fbi->task);
243 	}
244 	local_irq_restore(flags);
245 }
246 
247 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
248 {
249 	chan &= 0xffff;
250 	chan >>= 16 - bf->length;
251 	return chan << bf->offset;
252 }
253 
254 /*
255  * Convert bits-per-pixel to a hardware palette PBS value.
256  */
257 static inline u_int palette_pbs(struct fb_var_screeninfo *var)
258 {
259 	int ret = 0;
260 	switch (var->bits_per_pixel) {
261 	case 4:  ret = 0 << 12;	break;
262 	case 8:  ret = 1 << 12; break;
263 	case 16: ret = 2 << 12; break;
264 	}
265 	return ret;
266 }
267 
268 static int
269 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
270 		       u_int trans, struct fb_info *info)
271 {
272 	struct sa1100fb_info *fbi =
273 		container_of(info, struct sa1100fb_info, fb);
274 	u_int val, ret = 1;
275 
276 	if (regno < fbi->palette_size) {
277 		val = ((red >> 4) & 0xf00);
278 		val |= ((green >> 8) & 0x0f0);
279 		val |= ((blue >> 12) & 0x00f);
280 
281 		if (regno == 0)
282 			val |= palette_pbs(&fbi->fb.var);
283 
284 		fbi->palette_cpu[regno] = val;
285 		ret = 0;
286 	}
287 	return ret;
288 }
289 
290 static int
291 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
292 		   u_int trans, struct fb_info *info)
293 {
294 	struct sa1100fb_info *fbi =
295 		container_of(info, struct sa1100fb_info, fb);
296 	unsigned int val;
297 	int ret = 1;
298 
299 	/*
300 	 * If inverse mode was selected, invert all the colours
301 	 * rather than the register number.  The register number
302 	 * is what you poke into the framebuffer to produce the
303 	 * colour you requested.
304 	 */
305 	if (fbi->inf->cmap_inverse) {
306 		red   = 0xffff - red;
307 		green = 0xffff - green;
308 		blue  = 0xffff - blue;
309 	}
310 
311 	/*
312 	 * If greyscale is true, then we convert the RGB value
313 	 * to greyscale no mater what visual we are using.
314 	 */
315 	if (fbi->fb.var.grayscale)
316 		red = green = blue = (19595 * red + 38470 * green +
317 					7471 * blue) >> 16;
318 
319 	switch (fbi->fb.fix.visual) {
320 	case FB_VISUAL_TRUECOLOR:
321 		/*
322 		 * 12 or 16-bit True Colour.  We encode the RGB value
323 		 * according to the RGB bitfield information.
324 		 */
325 		if (regno < 16) {
326 			u32 *pal = fbi->fb.pseudo_palette;
327 
328 			val  = chan_to_field(red, &fbi->fb.var.red);
329 			val |= chan_to_field(green, &fbi->fb.var.green);
330 			val |= chan_to_field(blue, &fbi->fb.var.blue);
331 
332 			pal[regno] = val;
333 			ret = 0;
334 		}
335 		break;
336 
337 	case FB_VISUAL_STATIC_PSEUDOCOLOR:
338 	case FB_VISUAL_PSEUDOCOLOR:
339 		ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
340 		break;
341 	}
342 
343 	return ret;
344 }
345 
346 #ifdef CONFIG_CPU_FREQ
347 /*
348  *  sa1100fb_display_dma_period()
349  *    Calculate the minimum period (in picoseconds) between two DMA
350  *    requests for the LCD controller.  If we hit this, it means we're
351  *    doing nothing but LCD DMA.
352  */
353 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
354 {
355 	/*
356 	 * Period = pixclock * bits_per_byte * bytes_per_transfer
357 	 *		/ memory_bits_per_pixel;
358 	 */
359 	return var->pixclock * 8 * 16 / var->bits_per_pixel;
360 }
361 #endif
362 
363 /*
364  *  sa1100fb_check_var():
365  *    Round up in the following order: bits_per_pixel, xres,
366  *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
367  *    bitfields, horizontal timing, vertical timing.
368  */
369 static int
370 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
371 {
372 	struct sa1100fb_info *fbi =
373 		container_of(info, struct sa1100fb_info, fb);
374 	int rgbidx;
375 
376 	if (var->xres < MIN_XRES)
377 		var->xres = MIN_XRES;
378 	if (var->yres < MIN_YRES)
379 		var->yres = MIN_YRES;
380 	if (var->xres > fbi->inf->xres)
381 		var->xres = fbi->inf->xres;
382 	if (var->yres > fbi->inf->yres)
383 		var->yres = fbi->inf->yres;
384 	var->xres_virtual = max(var->xres_virtual, var->xres);
385 	var->yres_virtual = max(var->yres_virtual, var->yres);
386 
387 	dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
388 	switch (var->bits_per_pixel) {
389 	case 4:
390 		rgbidx = RGB_4;
391 		break;
392 	case 8:
393 		rgbidx = RGB_8;
394 		break;
395 	case 16:
396 		rgbidx = RGB_16;
397 		break;
398 	default:
399 		return -EINVAL;
400 	}
401 
402 	/*
403 	 * Copy the RGB parameters for this display
404 	 * from the machine specific parameters.
405 	 */
406 	var->red    = fbi->rgb[rgbidx]->red;
407 	var->green  = fbi->rgb[rgbidx]->green;
408 	var->blue   = fbi->rgb[rgbidx]->blue;
409 	var->transp = fbi->rgb[rgbidx]->transp;
410 
411 	dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
412 		var->red.length, var->green.length, var->blue.length,
413 		var->transp.length);
414 
415 	dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
416 		var->red.offset, var->green.offset, var->blue.offset,
417 		var->transp.offset);
418 
419 #ifdef CONFIG_CPU_FREQ
420 	dev_dbg(fbi->dev, "dma period = %d ps, clock = %ld kHz\n",
421 		sa1100fb_display_dma_period(var),
422 		clk_get_rate(fbi->clk) / 1000);
423 #endif
424 
425 	return 0;
426 }
427 
428 static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
429 {
430 	if (fbi->inf->set_visual)
431 		fbi->inf->set_visual(visual);
432 }
433 
434 /*
435  * sa1100fb_set_par():
436  *	Set the user defined part of the display for the specified console
437  */
438 static int sa1100fb_set_par(struct fb_info *info)
439 {
440 	struct sa1100fb_info *fbi =
441 		container_of(info, struct sa1100fb_info, fb);
442 	struct fb_var_screeninfo *var = &info->var;
443 	unsigned long palette_mem_size;
444 
445 	dev_dbg(fbi->dev, "set_par\n");
446 
447 	if (var->bits_per_pixel == 16)
448 		fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
449 	else if (!fbi->inf->cmap_static)
450 		fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
451 	else {
452 		/*
453 		 * Some people have weird ideas about wanting static
454 		 * pseudocolor maps.  I suspect their user space
455 		 * applications are broken.
456 		 */
457 		fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
458 	}
459 
460 	fbi->fb.fix.line_length = var->xres_virtual *
461 				  var->bits_per_pixel / 8;
462 	fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
463 
464 	palette_mem_size = fbi->palette_size * sizeof(u16);
465 
466 	dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
467 
468 	fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
469 	fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
470 
471 	/*
472 	 * Set (any) board control register to handle new color depth
473 	 */
474 	sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
475 	sa1100fb_activate_var(var, fbi);
476 
477 	return 0;
478 }
479 
480 #if 0
481 static int
482 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
483 		  struct fb_info *info)
484 {
485 	struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
486 
487 	/*
488 	 * Make sure the user isn't doing something stupid.
489 	 */
490 	if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
491 		return -EINVAL;
492 
493 	return gen_set_cmap(cmap, kspc, con, info);
494 }
495 #endif
496 
497 /*
498  * Formal definition of the VESA spec:
499  *  On
500  *  	This refers to the state of the display when it is in full operation
501  *  Stand-By
502  *  	This defines an optional operating state of minimal power reduction with
503  *  	the shortest recovery time
504  *  Suspend
505  *  	This refers to a level of power management in which substantial power
506  *  	reduction is achieved by the display.  The display can have a longer
507  *  	recovery time from this state than from the Stand-by state
508  *  Off
509  *  	This indicates that the display is consuming the lowest level of power
510  *  	and is non-operational. Recovery from this state may optionally require
511  *  	the user to manually power on the monitor
512  *
513  *  Now, the fbdev driver adds an additional state, (blank), where they
514  *  turn off the video (maybe by colormap tricks), but don't mess with the
515  *  video itself: think of it semantically between on and Stand-By.
516  *
517  *  So here's what we should do in our fbdev blank routine:
518  *
519  *  	VESA_NO_BLANKING (mode 0)	Video on,  front/back light on
520  *  	VESA_VSYNC_SUSPEND (mode 1)  	Video on,  front/back light off
521  *  	VESA_HSYNC_SUSPEND (mode 2)  	Video on,  front/back light off
522  *  	VESA_POWERDOWN (mode 3)		Video off, front/back light off
523  *
524  *  This will match the matrox implementation.
525  */
526 /*
527  * sa1100fb_blank():
528  *	Blank the display by setting all palette values to zero.  Note, the
529  * 	12 and 16 bpp modes don't really use the palette, so this will not
530  *      blank the display in all modes.
531  */
532 static int sa1100fb_blank(int blank, struct fb_info *info)
533 {
534 	struct sa1100fb_info *fbi =
535 		container_of(info, struct sa1100fb_info, fb);
536 	int i;
537 
538 	dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
539 
540 	switch (blank) {
541 	case FB_BLANK_POWERDOWN:
542 	case FB_BLANK_VSYNC_SUSPEND:
543 	case FB_BLANK_HSYNC_SUSPEND:
544 	case FB_BLANK_NORMAL:
545 		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
546 		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
547 			for (i = 0; i < fbi->palette_size; i++)
548 				sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
549 		sa1100fb_schedule_work(fbi, C_DISABLE);
550 		break;
551 
552 	case FB_BLANK_UNBLANK:
553 		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
554 		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
555 			fb_set_cmap(&fbi->fb.cmap, info);
556 		sa1100fb_schedule_work(fbi, C_ENABLE);
557 	}
558 	return 0;
559 }
560 
561 static int sa1100fb_mmap(struct fb_info *info,
562 			 struct vm_area_struct *vma)
563 {
564 	struct sa1100fb_info *fbi =
565 		container_of(info, struct sa1100fb_info, fb);
566 	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
567 
568 	if (off < info->fix.smem_len) {
569 		vma->vm_pgoff += 1; /* skip over the palette */
570 		return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
571 					     fbi->map_dma, fbi->map_size);
572 	}
573 
574 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
575 
576 	return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len);
577 }
578 
579 static struct fb_ops sa1100fb_ops = {
580 	.owner		= THIS_MODULE,
581 	.fb_check_var	= sa1100fb_check_var,
582 	.fb_set_par	= sa1100fb_set_par,
583 //	.fb_set_cmap	= sa1100fb_set_cmap,
584 	.fb_setcolreg	= sa1100fb_setcolreg,
585 	.fb_fillrect	= cfb_fillrect,
586 	.fb_copyarea	= cfb_copyarea,
587 	.fb_imageblit	= cfb_imageblit,
588 	.fb_blank	= sa1100fb_blank,
589 	.fb_mmap	= sa1100fb_mmap,
590 };
591 
592 /*
593  * Calculate the PCD value from the clock rate (in picoseconds).
594  * We take account of the PPCR clock setting.
595  */
596 static inline unsigned int get_pcd(struct sa1100fb_info *fbi,
597 		unsigned int pixclock)
598 {
599 	unsigned int pcd = clk_get_rate(fbi->clk) / 100 / 1000;
600 
601 	pcd *= pixclock;
602 	pcd /= 10000000;
603 
604 	return pcd + 1;	/* make up for integer math truncations */
605 }
606 
607 /*
608  * sa1100fb_activate_var():
609  *	Configures LCD Controller based on entries in var parameter.  Settings are
610  *	only written to the controller if changes were made.
611  */
612 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
613 {
614 	struct sa1100fb_lcd_reg new_regs;
615 	u_int half_screen_size, yres, pcd;
616 	u_long flags;
617 
618 	dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
619 
620 	dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
621 		var->xres, var->hsync_len,
622 		var->left_margin, var->right_margin);
623 	dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
624 		var->yres, var->vsync_len,
625 		var->upper_margin, var->lower_margin);
626 
627 #if DEBUG_VAR
628 	if (var->xres < 16        || var->xres > 1024)
629 		dev_err(fbi->dev, "%s: invalid xres %d\n",
630 			fbi->fb.fix.id, var->xres);
631 	if (var->hsync_len < 1    || var->hsync_len > 64)
632 		dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
633 			fbi->fb.fix.id, var->hsync_len);
634 	if (var->left_margin < 1  || var->left_margin > 255)
635 		dev_err(fbi->dev, "%s: invalid left_margin %d\n",
636 			fbi->fb.fix.id, var->left_margin);
637 	if (var->right_margin < 1 || var->right_margin > 255)
638 		dev_err(fbi->dev, "%s: invalid right_margin %d\n",
639 			fbi->fb.fix.id, var->right_margin);
640 	if (var->yres < 1         || var->yres > 1024)
641 		dev_err(fbi->dev, "%s: invalid yres %d\n",
642 			fbi->fb.fix.id, var->yres);
643 	if (var->vsync_len < 1    || var->vsync_len > 64)
644 		dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
645 			fbi->fb.fix.id, var->vsync_len);
646 	if (var->upper_margin < 0 || var->upper_margin > 255)
647 		dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
648 			fbi->fb.fix.id, var->upper_margin);
649 	if (var->lower_margin < 0 || var->lower_margin > 255)
650 		dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
651 			fbi->fb.fix.id, var->lower_margin);
652 #endif
653 
654 	new_regs.lccr0 = fbi->inf->lccr0 |
655 		LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
656 		LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
657 
658 	new_regs.lccr1 =
659 		LCCR1_DisWdth(var->xres) +
660 		LCCR1_HorSnchWdth(var->hsync_len) +
661 		LCCR1_BegLnDel(var->left_margin) +
662 		LCCR1_EndLnDel(var->right_margin);
663 
664 	/*
665 	 * If we have a dual scan LCD, then we need to halve
666 	 * the YRES parameter.
667 	 */
668 	yres = var->yres;
669 	if (fbi->inf->lccr0 & LCCR0_Dual)
670 		yres /= 2;
671 
672 	new_regs.lccr2 =
673 		LCCR2_DisHght(yres) +
674 		LCCR2_VrtSnchWdth(var->vsync_len) +
675 		LCCR2_BegFrmDel(var->upper_margin) +
676 		LCCR2_EndFrmDel(var->lower_margin);
677 
678 	pcd = get_pcd(fbi, var->pixclock);
679 	new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
680 		(var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
681 		(var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
682 
683 	dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
684 	dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
685 	dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
686 	dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
687 
688 	half_screen_size = var->bits_per_pixel;
689 	half_screen_size = half_screen_size * var->xres * var->yres / 16;
690 
691 	/* Update shadow copy atomically */
692 	local_irq_save(flags);
693 	fbi->dbar1 = fbi->palette_dma;
694 	fbi->dbar2 = fbi->screen_dma + half_screen_size;
695 
696 	fbi->reg_lccr0 = new_regs.lccr0;
697 	fbi->reg_lccr1 = new_regs.lccr1;
698 	fbi->reg_lccr2 = new_regs.lccr2;
699 	fbi->reg_lccr3 = new_regs.lccr3;
700 	local_irq_restore(flags);
701 
702 	/*
703 	 * Only update the registers if the controller is enabled
704 	 * and something has changed.
705 	 */
706 	if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
707 	    readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
708 	    readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
709 	    readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
710 	    readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
711 	    readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
712 		sa1100fb_schedule_work(fbi, C_REENABLE);
713 
714 	return 0;
715 }
716 
717 /*
718  * NOTE!  The following functions are purely helpers for set_ctrlr_state.
719  * Do not call them directly; set_ctrlr_state does the correct serialisation
720  * to ensure that things happen in the right way 100% of time time.
721  *	-- rmk
722  */
723 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
724 {
725 	dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
726 
727 	if (fbi->inf->backlight_power)
728 		fbi->inf->backlight_power(on);
729 }
730 
731 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
732 {
733 	dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
734 
735 	if (fbi->inf->lcd_power)
736 		fbi->inf->lcd_power(on);
737 }
738 
739 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
740 {
741 	u_int mask = 0;
742 
743 	/*
744 	 * Enable GPIO<9:2> for LCD use if:
745 	 *  1. Active display, or
746 	 *  2. Color Dual Passive display
747 	 *
748 	 * see table 11.8 on page 11-27 in the SA1100 manual
749 	 *   -- Erik.
750 	 *
751 	 * SA1110 spec update nr. 25 says we can and should
752 	 * clear LDD15 to 12 for 4 or 8bpp modes with active
753 	 * panels.
754 	 */
755 	if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
756 	    (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
757 		mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9  | GPIO_LDD8;
758 
759 		if (fbi->fb.var.bits_per_pixel > 8 ||
760 		    (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
761 			mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
762 
763 	}
764 
765 	if (mask) {
766 		unsigned long flags;
767 
768 		/*
769 		 * SA-1100 requires the GPIO direction register set
770 		 * appropriately for the alternate function.  Hence
771 		 * we set it here via bitmask rather than excessive
772 		 * fiddling via the GPIO subsystem - and even then
773 		 * we'll still have to deal with GAFR.
774 		 */
775 		local_irq_save(flags);
776 		GPDR |= mask;
777 		GAFR |= mask;
778 		local_irq_restore(flags);
779 	}
780 }
781 
782 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
783 {
784 	dev_dbg(fbi->dev, "Enabling LCD controller\n");
785 
786 	/*
787 	 * Make sure the mode bits are present in the first palette entry
788 	 */
789 	fbi->palette_cpu[0] &= 0xcfff;
790 	fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
791 
792 	/* enable LCD controller clock */
793 	clk_prepare_enable(fbi->clk);
794 
795 	/* Sequence from 11.7.10 */
796 	writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
797 	writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
798 	writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
799 	writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
800 	writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
801 	writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
802 	writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
803 
804 	if (machine_is_shannon())
805 		gpio_set_value(SHANNON_GPIO_DISP_EN, 1);
806 
807 	dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
808 	dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
809 	dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
810 	dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
811 	dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
812 	dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
813 }
814 
815 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
816 {
817 	DECLARE_WAITQUEUE(wait, current);
818 	u32 lccr0;
819 
820 	dev_dbg(fbi->dev, "Disabling LCD controller\n");
821 
822 	if (machine_is_shannon())
823 		gpio_set_value(SHANNON_GPIO_DISP_EN, 0);
824 
825 	set_current_state(TASK_UNINTERRUPTIBLE);
826 	add_wait_queue(&fbi->ctrlr_wait, &wait);
827 
828 	/* Clear LCD Status Register */
829 	writel_relaxed(~0, fbi->base + LCSR);
830 
831 	lccr0 = readl_relaxed(fbi->base + LCCR0);
832 	lccr0 &= ~LCCR0_LDM;	/* Enable LCD Disable Done Interrupt */
833 	writel_relaxed(lccr0, fbi->base + LCCR0);
834 	lccr0 &= ~LCCR0_LEN;	/* Disable LCD Controller */
835 	writel_relaxed(lccr0, fbi->base + LCCR0);
836 
837 	schedule_timeout(20 * HZ / 1000);
838 	remove_wait_queue(&fbi->ctrlr_wait, &wait);
839 
840 	/* disable LCD controller clock */
841 	clk_disable_unprepare(fbi->clk);
842 }
843 
844 /*
845  *  sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
846  */
847 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
848 {
849 	struct sa1100fb_info *fbi = dev_id;
850 	unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
851 
852 	if (lcsr & LCSR_LDD) {
853 		u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
854 		writel_relaxed(lccr0, fbi->base + LCCR0);
855 		wake_up(&fbi->ctrlr_wait);
856 	}
857 
858 	writel_relaxed(lcsr, fbi->base + LCSR);
859 	return IRQ_HANDLED;
860 }
861 
862 /*
863  * This function must be called from task context only, since it will
864  * sleep when disabling the LCD controller, or if we get two contending
865  * processes trying to alter state.
866  */
867 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
868 {
869 	u_int old_state;
870 
871 	mutex_lock(&fbi->ctrlr_lock);
872 
873 	old_state = fbi->state;
874 
875 	/*
876 	 * Hack around fbcon initialisation.
877 	 */
878 	if (old_state == C_STARTUP && state == C_REENABLE)
879 		state = C_ENABLE;
880 
881 	switch (state) {
882 	case C_DISABLE_CLKCHANGE:
883 		/*
884 		 * Disable controller for clock change.  If the
885 		 * controller is already disabled, then do nothing.
886 		 */
887 		if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
888 			fbi->state = state;
889 			sa1100fb_disable_controller(fbi);
890 		}
891 		break;
892 
893 	case C_DISABLE_PM:
894 	case C_DISABLE:
895 		/*
896 		 * Disable controller
897 		 */
898 		if (old_state != C_DISABLE) {
899 			fbi->state = state;
900 
901 			__sa1100fb_backlight_power(fbi, 0);
902 			if (old_state != C_DISABLE_CLKCHANGE)
903 				sa1100fb_disable_controller(fbi);
904 			__sa1100fb_lcd_power(fbi, 0);
905 		}
906 		break;
907 
908 	case C_ENABLE_CLKCHANGE:
909 		/*
910 		 * Enable the controller after clock change.  Only
911 		 * do this if we were disabled for the clock change.
912 		 */
913 		if (old_state == C_DISABLE_CLKCHANGE) {
914 			fbi->state = C_ENABLE;
915 			sa1100fb_enable_controller(fbi);
916 		}
917 		break;
918 
919 	case C_REENABLE:
920 		/*
921 		 * Re-enable the controller only if it was already
922 		 * enabled.  This is so we reprogram the control
923 		 * registers.
924 		 */
925 		if (old_state == C_ENABLE) {
926 			sa1100fb_disable_controller(fbi);
927 			sa1100fb_setup_gpio(fbi);
928 			sa1100fb_enable_controller(fbi);
929 		}
930 		break;
931 
932 	case C_ENABLE_PM:
933 		/*
934 		 * Re-enable the controller after PM.  This is not
935 		 * perfect - think about the case where we were doing
936 		 * a clock change, and we suspended half-way through.
937 		 */
938 		if (old_state != C_DISABLE_PM)
939 			break;
940 		/* fall through */
941 
942 	case C_ENABLE:
943 		/*
944 		 * Power up the LCD screen, enable controller, and
945 		 * turn on the backlight.
946 		 */
947 		if (old_state != C_ENABLE) {
948 			fbi->state = C_ENABLE;
949 			sa1100fb_setup_gpio(fbi);
950 			__sa1100fb_lcd_power(fbi, 1);
951 			sa1100fb_enable_controller(fbi);
952 			__sa1100fb_backlight_power(fbi, 1);
953 		}
954 		break;
955 	}
956 	mutex_unlock(&fbi->ctrlr_lock);
957 }
958 
959 /*
960  * Our LCD controller task (which is called when we blank or unblank)
961  * via keventd.
962  */
963 static void sa1100fb_task(struct work_struct *w)
964 {
965 	struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
966 	u_int state = xchg(&fbi->task_state, -1);
967 
968 	set_ctrlr_state(fbi, state);
969 }
970 
971 #ifdef CONFIG_CPU_FREQ
972 /*
973  * Calculate the minimum DMA period over all displays that we own.
974  * This, together with the SDRAM bandwidth defines the slowest CPU
975  * frequency that can be selected.
976  */
977 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
978 {
979 #if 0
980 	unsigned int min_period = (unsigned int)-1;
981 	int i;
982 
983 	for (i = 0; i < MAX_NR_CONSOLES; i++) {
984 		struct display *disp = &fb_display[i];
985 		unsigned int period;
986 
987 		/*
988 		 * Do we own this display?
989 		 */
990 		if (disp->fb_info != &fbi->fb)
991 			continue;
992 
993 		/*
994 		 * Ok, calculate its DMA period
995 		 */
996 		period = sa1100fb_display_dma_period(&disp->var);
997 		if (period < min_period)
998 			min_period = period;
999 	}
1000 
1001 	return min_period;
1002 #else
1003 	/*
1004 	 * FIXME: we need to verify _all_ consoles.
1005 	 */
1006 	return sa1100fb_display_dma_period(&fbi->fb.var);
1007 #endif
1008 }
1009 
1010 /*
1011  * CPU clock speed change handler.  We need to adjust the LCD timing
1012  * parameters when the CPU clock is adjusted by the power management
1013  * subsystem.
1014  */
1015 static int
1016 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1017 			 void *data)
1018 {
1019 	struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1020 	u_int pcd;
1021 
1022 	switch (val) {
1023 	case CPUFREQ_PRECHANGE:
1024 		set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1025 		break;
1026 
1027 	case CPUFREQ_POSTCHANGE:
1028 		pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1029 		fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1030 		set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1031 		break;
1032 	}
1033 	return 0;
1034 }
1035 
1036 static int
1037 sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1038 		     void *data)
1039 {
1040 	struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1041 	struct cpufreq_policy *policy = data;
1042 
1043 	switch (val) {
1044 	case CPUFREQ_ADJUST:
1045 		dev_dbg(fbi->dev, "min dma period: %d ps, "
1046 			"new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1047 			policy->max);
1048 		/* todo: fill in min/max values */
1049 		break;
1050 	case CPUFREQ_NOTIFY:
1051 		do {} while(0);
1052 		/* todo: panic if min/max values aren't fulfilled
1053 		 * [can't really happen unless there's a bug in the
1054 		 * CPU policy verififcation process *
1055 		 */
1056 		break;
1057 	}
1058 	return 0;
1059 }
1060 #endif
1061 
1062 #ifdef CONFIG_PM
1063 /*
1064  * Power management hooks.  Note that we won't be called from IRQ context,
1065  * unlike the blank functions above, so we may sleep.
1066  */
1067 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1068 {
1069 	struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1070 
1071 	set_ctrlr_state(fbi, C_DISABLE_PM);
1072 	return 0;
1073 }
1074 
1075 static int sa1100fb_resume(struct platform_device *dev)
1076 {
1077 	struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1078 
1079 	set_ctrlr_state(fbi, C_ENABLE_PM);
1080 	return 0;
1081 }
1082 #else
1083 #define sa1100fb_suspend	NULL
1084 #define sa1100fb_resume		NULL
1085 #endif
1086 
1087 /*
1088  * sa1100fb_map_video_memory():
1089  *      Allocates the DRAM memory for the frame buffer.  This buffer is
1090  *	remapped into a non-cached, non-buffered, memory region to
1091  *      allow palette and pixel writes to occur without flushing the
1092  *      cache.  Once this area is remapped, all virtual memory
1093  *      access to the video memory should occur at the new region.
1094  */
1095 static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1096 {
1097 	/*
1098 	 * We reserve one page for the palette, plus the size
1099 	 * of the framebuffer.
1100 	 */
1101 	fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1102 	fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1103 					      &fbi->map_dma, GFP_KERNEL);
1104 
1105 	if (fbi->map_cpu) {
1106 		fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1107 		fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1108 		/*
1109 		 * FIXME: this is actually the wrong thing to place in
1110 		 * smem_start.  But fbdev suffers from the problem that
1111 		 * it needs an API which doesn't exist (in this case,
1112 		 * dma_writecombine_mmap)
1113 		 */
1114 		fbi->fb.fix.smem_start = fbi->screen_dma;
1115 	}
1116 
1117 	return fbi->map_cpu ? 0 : -ENOMEM;
1118 }
1119 
1120 /* Fake monspecs to fill in fbinfo structure */
1121 static struct fb_monspecs monspecs = {
1122 	.hfmin	= 30000,
1123 	.hfmax	= 70000,
1124 	.vfmin	= 50,
1125 	.vfmax	= 65,
1126 };
1127 
1128 
1129 static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev)
1130 {
1131 	struct sa1100fb_mach_info *inf = dev_get_platdata(dev);
1132 	struct sa1100fb_info *fbi;
1133 	unsigned i;
1134 
1135 	fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
1136 		      GFP_KERNEL);
1137 	if (!fbi)
1138 		return NULL;
1139 
1140 	memset(fbi, 0, sizeof(struct sa1100fb_info));
1141 	fbi->dev = dev;
1142 
1143 	strcpy(fbi->fb.fix.id, SA1100_NAME);
1144 
1145 	fbi->fb.fix.type	= FB_TYPE_PACKED_PIXELS;
1146 	fbi->fb.fix.type_aux	= 0;
1147 	fbi->fb.fix.xpanstep	= 0;
1148 	fbi->fb.fix.ypanstep	= 0;
1149 	fbi->fb.fix.ywrapstep	= 0;
1150 	fbi->fb.fix.accel	= FB_ACCEL_NONE;
1151 
1152 	fbi->fb.var.nonstd	= 0;
1153 	fbi->fb.var.activate	= FB_ACTIVATE_NOW;
1154 	fbi->fb.var.height	= -1;
1155 	fbi->fb.var.width	= -1;
1156 	fbi->fb.var.accel_flags	= 0;
1157 	fbi->fb.var.vmode	= FB_VMODE_NONINTERLACED;
1158 
1159 	fbi->fb.fbops		= &sa1100fb_ops;
1160 	fbi->fb.flags		= FBINFO_DEFAULT;
1161 	fbi->fb.monspecs	= monspecs;
1162 	fbi->fb.pseudo_palette	= (fbi + 1);
1163 
1164 	fbi->rgb[RGB_4]		= &rgb_4;
1165 	fbi->rgb[RGB_8]		= &rgb_8;
1166 	fbi->rgb[RGB_16]	= &def_rgb_16;
1167 
1168 	/*
1169 	 * People just don't seem to get this.  We don't support
1170 	 * anything but correct entries now, so panic if someone
1171 	 * does something stupid.
1172 	 */
1173 	if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1174 	    inf->pixclock == 0)
1175 		panic("sa1100fb error: invalid LCCR3 fields set or zero "
1176 			"pixclock.");
1177 
1178 	fbi->fb.var.xres		= inf->xres;
1179 	fbi->fb.var.xres_virtual	= inf->xres;
1180 	fbi->fb.var.yres		= inf->yres;
1181 	fbi->fb.var.yres_virtual	= inf->yres;
1182 	fbi->fb.var.bits_per_pixel	= inf->bpp;
1183 	fbi->fb.var.pixclock		= inf->pixclock;
1184 	fbi->fb.var.hsync_len		= inf->hsync_len;
1185 	fbi->fb.var.left_margin		= inf->left_margin;
1186 	fbi->fb.var.right_margin	= inf->right_margin;
1187 	fbi->fb.var.vsync_len		= inf->vsync_len;
1188 	fbi->fb.var.upper_margin	= inf->upper_margin;
1189 	fbi->fb.var.lower_margin	= inf->lower_margin;
1190 	fbi->fb.var.sync		= inf->sync;
1191 	fbi->fb.var.grayscale		= inf->cmap_greyscale;
1192 	fbi->state			= C_STARTUP;
1193 	fbi->task_state			= (u_char)-1;
1194 	fbi->fb.fix.smem_len		= inf->xres * inf->yres *
1195 					  inf->bpp / 8;
1196 	fbi->inf			= inf;
1197 
1198 	/* Copy the RGB bitfield overrides */
1199 	for (i = 0; i < NR_RGB; i++)
1200 		if (inf->rgb[i])
1201 			fbi->rgb[i] = inf->rgb[i];
1202 
1203 	init_waitqueue_head(&fbi->ctrlr_wait);
1204 	INIT_WORK(&fbi->task, sa1100fb_task);
1205 	mutex_init(&fbi->ctrlr_lock);
1206 
1207 	return fbi;
1208 }
1209 
1210 static int sa1100fb_probe(struct platform_device *pdev)
1211 {
1212 	struct sa1100fb_info *fbi;
1213 	struct resource *res;
1214 	int ret, irq;
1215 
1216 	if (!dev_get_platdata(&pdev->dev)) {
1217 		dev_err(&pdev->dev, "no platform LCD data\n");
1218 		return -EINVAL;
1219 	}
1220 
1221 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1222 	irq = platform_get_irq(pdev, 0);
1223 	if (irq < 0 || !res)
1224 		return -EINVAL;
1225 
1226 	if (!request_mem_region(res->start, resource_size(res), "LCD"))
1227 		return -EBUSY;
1228 
1229 	fbi = sa1100fb_init_fbinfo(&pdev->dev);
1230 	ret = -ENOMEM;
1231 	if (!fbi)
1232 		goto failed;
1233 
1234 	fbi->clk = clk_get(&pdev->dev, NULL);
1235 	if (IS_ERR(fbi->clk)) {
1236 		ret = PTR_ERR(fbi->clk);
1237 		fbi->clk = NULL;
1238 		goto failed;
1239 	}
1240 
1241 	fbi->base = ioremap(res->start, resource_size(res));
1242 	if (!fbi->base)
1243 		goto failed;
1244 
1245 	/* Initialize video memory */
1246 	ret = sa1100fb_map_video_memory(fbi);
1247 	if (ret)
1248 		goto failed;
1249 
1250 	ret = request_irq(irq, sa1100fb_handle_irq, 0, "LCD", fbi);
1251 	if (ret) {
1252 		dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1253 		goto failed;
1254 	}
1255 
1256 	if (machine_is_shannon()) {
1257 		ret = gpio_request_one(SHANNON_GPIO_DISP_EN,
1258 			GPIOF_OUT_INIT_LOW, "display enable");
1259 		if (ret)
1260 			goto err_free_irq;
1261 	}
1262 
1263 	/*
1264 	 * This makes sure that our colour bitfield
1265 	 * descriptors are correctly initialised.
1266 	 */
1267 	sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1268 
1269 	platform_set_drvdata(pdev, fbi);
1270 
1271 	ret = register_framebuffer(&fbi->fb);
1272 	if (ret < 0)
1273 		goto err_reg_fb;
1274 
1275 #ifdef CONFIG_CPU_FREQ
1276 	fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1277 	fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1278 	cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1279 	cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1280 #endif
1281 
1282 	/* This driver cannot be unloaded at the moment */
1283 	return 0;
1284 
1285  err_reg_fb:
1286 	if (machine_is_shannon())
1287 		gpio_free(SHANNON_GPIO_DISP_EN);
1288  err_free_irq:
1289 	free_irq(irq, fbi);
1290  failed:
1291 	if (fbi)
1292 		iounmap(fbi->base);
1293 	if (fbi->clk)
1294 		clk_put(fbi->clk);
1295 	kfree(fbi);
1296 	release_mem_region(res->start, resource_size(res));
1297 	return ret;
1298 }
1299 
1300 static struct platform_driver sa1100fb_driver = {
1301 	.probe		= sa1100fb_probe,
1302 	.suspend	= sa1100fb_suspend,
1303 	.resume		= sa1100fb_resume,
1304 	.driver		= {
1305 		.name	= "sa11x0-fb",
1306 	},
1307 };
1308 
1309 int __init sa1100fb_init(void)
1310 {
1311 	if (fb_get_options("sa1100fb", NULL))
1312 		return -ENODEV;
1313 
1314 	return platform_driver_register(&sa1100fb_driver);
1315 }
1316 
1317 int __init sa1100fb_setup(char *options)
1318 {
1319 #if 0
1320 	char *this_opt;
1321 
1322 	if (!options || !*options)
1323 		return 0;
1324 
1325 	while ((this_opt = strsep(&options, ",")) != NULL) {
1326 
1327 		if (!strncmp(this_opt, "bpp:", 4))
1328 			current_par.max_bpp =
1329 			    simple_strtoul(this_opt + 4, NULL, 0);
1330 
1331 		if (!strncmp(this_opt, "lccr0:", 6))
1332 			lcd_shadow.lccr0 =
1333 			    simple_strtoul(this_opt + 6, NULL, 0);
1334 		if (!strncmp(this_opt, "lccr1:", 6)) {
1335 			lcd_shadow.lccr1 =
1336 			    simple_strtoul(this_opt + 6, NULL, 0);
1337 			current_par.max_xres =
1338 			    (lcd_shadow.lccr1 & 0x3ff) + 16;
1339 		}
1340 		if (!strncmp(this_opt, "lccr2:", 6)) {
1341 			lcd_shadow.lccr2 =
1342 			    simple_strtoul(this_opt + 6, NULL, 0);
1343 			current_par.max_yres =
1344 			    (lcd_shadow.
1345 			     lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1346 						    lccr2 & 0x3ff) +
1347 						   1) *
1348 			    2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1349 		}
1350 		if (!strncmp(this_opt, "lccr3:", 6))
1351 			lcd_shadow.lccr3 =
1352 			    simple_strtoul(this_opt + 6, NULL, 0);
1353 	}
1354 #endif
1355 	return 0;
1356 }
1357 
1358 module_init(sa1100fb_init);
1359 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1360 MODULE_LICENSE("GPL");
1361