xref: /openbmc/linux/drivers/video/backlight/pwm_bl.c (revision 3381df0954199458fa3993db72fb427f0ed1e43b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Simple PWM based backlight control, board code has to setup
4  * 1) pin configuration so PWM waveforms can output
5  * 2) platform_data being correctly configured
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/gpio/consumer.h>
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/platform_device.h>
14 #include <linux/fb.h>
15 #include <linux/backlight.h>
16 #include <linux/err.h>
17 #include <linux/pwm.h>
18 #include <linux/pwm_backlight.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 
22 struct pwm_bl_data {
23 	struct pwm_device	*pwm;
24 	struct device		*dev;
25 	unsigned int		lth_brightness;
26 	unsigned int		*levels;
27 	bool			enabled;
28 	struct regulator	*power_supply;
29 	struct gpio_desc	*enable_gpio;
30 	unsigned int		scale;
31 	bool			legacy;
32 	unsigned int		post_pwm_on_delay;
33 	unsigned int		pwm_off_delay;
34 	int			(*notify)(struct device *,
35 					  int brightness);
36 	void			(*notify_after)(struct device *,
37 					int brightness);
38 	int			(*check_fb)(struct device *, struct fb_info *);
39 	void			(*exit)(struct device *);
40 };
41 
42 static void pwm_backlight_power_on(struct pwm_bl_data *pb)
43 {
44 	struct pwm_state state;
45 	int err;
46 
47 	pwm_get_state(pb->pwm, &state);
48 	if (pb->enabled)
49 		return;
50 
51 	err = regulator_enable(pb->power_supply);
52 	if (err < 0)
53 		dev_err(pb->dev, "failed to enable power supply\n");
54 
55 	state.enabled = true;
56 	pwm_apply_state(pb->pwm, &state);
57 
58 	if (pb->post_pwm_on_delay)
59 		msleep(pb->post_pwm_on_delay);
60 
61 	if (pb->enable_gpio)
62 		gpiod_set_value_cansleep(pb->enable_gpio, 1);
63 
64 	pb->enabled = true;
65 }
66 
67 static void pwm_backlight_power_off(struct pwm_bl_data *pb)
68 {
69 	struct pwm_state state;
70 
71 	pwm_get_state(pb->pwm, &state);
72 	if (!pb->enabled)
73 		return;
74 
75 	if (pb->enable_gpio)
76 		gpiod_set_value_cansleep(pb->enable_gpio, 0);
77 
78 	if (pb->pwm_off_delay)
79 		msleep(pb->pwm_off_delay);
80 
81 	state.enabled = false;
82 	state.duty_cycle = 0;
83 	pwm_apply_state(pb->pwm, &state);
84 
85 	regulator_disable(pb->power_supply);
86 	pb->enabled = false;
87 }
88 
89 static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness)
90 {
91 	unsigned int lth = pb->lth_brightness;
92 	struct pwm_state state;
93 	u64 duty_cycle;
94 
95 	pwm_get_state(pb->pwm, &state);
96 
97 	if (pb->levels)
98 		duty_cycle = pb->levels[brightness];
99 	else
100 		duty_cycle = brightness;
101 
102 	duty_cycle *= state.period - lth;
103 	do_div(duty_cycle, pb->scale);
104 
105 	return duty_cycle + lth;
106 }
107 
108 static int pwm_backlight_update_status(struct backlight_device *bl)
109 {
110 	struct pwm_bl_data *pb = bl_get_data(bl);
111 	int brightness = bl->props.brightness;
112 	struct pwm_state state;
113 
114 	if (bl->props.power != FB_BLANK_UNBLANK ||
115 	    bl->props.fb_blank != FB_BLANK_UNBLANK ||
116 	    bl->props.state & BL_CORE_FBBLANK)
117 		brightness = 0;
118 
119 	if (pb->notify)
120 		brightness = pb->notify(pb->dev, brightness);
121 
122 	if (brightness > 0) {
123 		pwm_get_state(pb->pwm, &state);
124 		state.duty_cycle = compute_duty_cycle(pb, brightness);
125 		pwm_apply_state(pb->pwm, &state);
126 		pwm_backlight_power_on(pb);
127 	} else {
128 		pwm_backlight_power_off(pb);
129 	}
130 
131 	if (pb->notify_after)
132 		pb->notify_after(pb->dev, brightness);
133 
134 	return 0;
135 }
136 
137 static int pwm_backlight_check_fb(struct backlight_device *bl,
138 				  struct fb_info *info)
139 {
140 	struct pwm_bl_data *pb = bl_get_data(bl);
141 
142 	return !pb->check_fb || pb->check_fb(pb->dev, info);
143 }
144 
145 static const struct backlight_ops pwm_backlight_ops = {
146 	.update_status	= pwm_backlight_update_status,
147 	.check_fb	= pwm_backlight_check_fb,
148 };
149 
150 #ifdef CONFIG_OF
151 #define PWM_LUMINANCE_SHIFT	16
152 #define PWM_LUMINANCE_SCALE	(1 << PWM_LUMINANCE_SHIFT) /* luminance scale */
153 
154 /*
155  * CIE lightness to PWM conversion.
156  *
157  * The CIE 1931 lightness formula is what actually describes how we perceive
158  * light:
159  *          Y = (L* / 903.3)           if L* ≤ 8
160  *          Y = ((L* + 16) / 116)^3    if L* > 8
161  *
162  * Where Y is the luminance, the amount of light coming out of the screen, and
163  * is a number between 0.0 and 1.0; and L* is the lightness, how bright a human
164  * perceives the screen to be, and is a number between 0 and 100.
165  *
166  * The following function does the fixed point maths needed to implement the
167  * above formula.
168  */
169 static u64 cie1931(unsigned int lightness)
170 {
171 	u64 retval;
172 
173 	/*
174 	 * @lightness is given as a number between 0 and 1, expressed
175 	 * as a fixed-point number in scale
176 	 * PWM_LUMINANCE_SCALE. Convert to a percentage, still
177 	 * expressed as a fixed-point number, so the above formulas
178 	 * can be applied.
179 	 */
180 	lightness *= 100;
181 	if (lightness <= (8 * PWM_LUMINANCE_SCALE)) {
182 		retval = DIV_ROUND_CLOSEST(lightness * 10, 9033);
183 	} else {
184 		retval = (lightness + (16 * PWM_LUMINANCE_SCALE)) / 116;
185 		retval *= retval * retval;
186 		retval += 1ULL << (2*PWM_LUMINANCE_SHIFT - 1);
187 		retval >>= 2*PWM_LUMINANCE_SHIFT;
188 	}
189 
190 	return retval;
191 }
192 
193 /*
194  * Create a default correction table for PWM values to create linear brightness
195  * for LED based backlights using the CIE1931 algorithm.
196  */
197 static
198 int pwm_backlight_brightness_default(struct device *dev,
199 				     struct platform_pwm_backlight_data *data,
200 				     unsigned int period)
201 {
202 	unsigned int i;
203 	u64 retval;
204 
205 	/*
206 	 * Once we have 4096 levels there's little point going much higher...
207 	 * neither interactive sliders nor animation benefits from having
208 	 * more values in the table.
209 	 */
210 	data->max_brightness =
211 		min((int)DIV_ROUND_UP(period, fls(period)), 4096);
212 
213 	data->levels = devm_kcalloc(dev, data->max_brightness,
214 				    sizeof(*data->levels), GFP_KERNEL);
215 	if (!data->levels)
216 		return -ENOMEM;
217 
218 	/* Fill the table using the cie1931 algorithm */
219 	for (i = 0; i < data->max_brightness; i++) {
220 		retval = cie1931((i * PWM_LUMINANCE_SCALE) /
221 				 data->max_brightness) * period;
222 		retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE);
223 		if (retval > UINT_MAX)
224 			return -EINVAL;
225 		data->levels[i] = (unsigned int)retval;
226 	}
227 
228 	data->dft_brightness = data->max_brightness / 2;
229 	data->max_brightness--;
230 
231 	return 0;
232 }
233 
234 static int pwm_backlight_parse_dt(struct device *dev,
235 				  struct platform_pwm_backlight_data *data)
236 {
237 	struct device_node *node = dev->of_node;
238 	unsigned int num_levels = 0;
239 	unsigned int levels_count;
240 	unsigned int num_steps = 0;
241 	struct property *prop;
242 	unsigned int *table;
243 	int length;
244 	u32 value;
245 	int ret;
246 
247 	if (!node)
248 		return -ENODEV;
249 
250 	memset(data, 0, sizeof(*data));
251 
252 	/*
253 	 * These values are optional and set as 0 by default, the out values
254 	 * are modified only if a valid u32 value can be decoded.
255 	 */
256 	of_property_read_u32(node, "post-pwm-on-delay-ms",
257 			     &data->post_pwm_on_delay);
258 	of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay);
259 
260 	/*
261 	 * Determine the number of brightness levels, if this property is not
262 	 * set a default table of brightness levels will be used.
263 	 */
264 	prop = of_find_property(node, "brightness-levels", &length);
265 	if (!prop)
266 		return 0;
267 
268 	data->max_brightness = length / sizeof(u32);
269 
270 	/* read brightness levels from DT property */
271 	if (data->max_brightness > 0) {
272 		size_t size = sizeof(*data->levels) * data->max_brightness;
273 		unsigned int i, j, n = 0;
274 
275 		data->levels = devm_kzalloc(dev, size, GFP_KERNEL);
276 		if (!data->levels)
277 			return -ENOMEM;
278 
279 		ret = of_property_read_u32_array(node, "brightness-levels",
280 						 data->levels,
281 						 data->max_brightness);
282 		if (ret < 0)
283 			return ret;
284 
285 		ret = of_property_read_u32(node, "default-brightness-level",
286 					   &value);
287 		if (ret < 0)
288 			return ret;
289 
290 		data->dft_brightness = value;
291 
292 		/*
293 		 * This property is optional, if is set enables linear
294 		 * interpolation between each of the values of brightness levels
295 		 * and creates a new pre-computed table.
296 		 */
297 		of_property_read_u32(node, "num-interpolated-steps",
298 				     &num_steps);
299 
300 		/*
301 		 * Make sure that there is at least two entries in the
302 		 * brightness-levels table, otherwise we can't interpolate
303 		 * between two points.
304 		 */
305 		if (num_steps) {
306 			if (data->max_brightness < 2) {
307 				dev_err(dev, "can't interpolate\n");
308 				return -EINVAL;
309 			}
310 
311 			/*
312 			 * Recalculate the number of brightness levels, now
313 			 * taking in consideration the number of interpolated
314 			 * steps between two levels.
315 			 */
316 			for (i = 0; i < data->max_brightness - 1; i++) {
317 				if ((data->levels[i + 1] - data->levels[i]) /
318 				   num_steps)
319 					num_levels += num_steps;
320 				else
321 					num_levels++;
322 			}
323 			num_levels++;
324 			dev_dbg(dev, "new number of brightness levels: %d\n",
325 				num_levels);
326 
327 			/*
328 			 * Create a new table of brightness levels with all the
329 			 * interpolated steps.
330 			 */
331 			size = sizeof(*table) * num_levels;
332 			table = devm_kzalloc(dev, size, GFP_KERNEL);
333 			if (!table)
334 				return -ENOMEM;
335 
336 			/* Fill the interpolated table. */
337 			levels_count = 0;
338 			for (i = 0; i < data->max_brightness - 1; i++) {
339 				value = data->levels[i];
340 				n = (data->levels[i + 1] - value) / num_steps;
341 				if (n > 0) {
342 					for (j = 0; j < num_steps; j++) {
343 						table[levels_count] = value;
344 						value += n;
345 						levels_count++;
346 					}
347 				} else {
348 					table[levels_count] = data->levels[i];
349 					levels_count++;
350 				}
351 			}
352 			table[levels_count] = data->levels[i];
353 
354 			/*
355 			 * As we use interpolation lets remove current
356 			 * brightness levels table and replace for the
357 			 * new interpolated table.
358 			 */
359 			devm_kfree(dev, data->levels);
360 			data->levels = table;
361 
362 			/*
363 			 * Reassign max_brightness value to the new total number
364 			 * of brightness levels.
365 			 */
366 			data->max_brightness = num_levels;
367 		}
368 
369 		data->max_brightness--;
370 	}
371 
372 	return 0;
373 }
374 
375 static const struct of_device_id pwm_backlight_of_match[] = {
376 	{ .compatible = "pwm-backlight" },
377 	{ }
378 };
379 
380 MODULE_DEVICE_TABLE(of, pwm_backlight_of_match);
381 #else
382 static int pwm_backlight_parse_dt(struct device *dev,
383 				  struct platform_pwm_backlight_data *data)
384 {
385 	return -ENODEV;
386 }
387 
388 static
389 int pwm_backlight_brightness_default(struct device *dev,
390 				     struct platform_pwm_backlight_data *data,
391 				     unsigned int period)
392 {
393 	return -ENODEV;
394 }
395 #endif
396 
397 static bool pwm_backlight_is_linear(struct platform_pwm_backlight_data *data)
398 {
399 	unsigned int nlevels = data->max_brightness + 1;
400 	unsigned int min_val = data->levels[0];
401 	unsigned int max_val = data->levels[nlevels - 1];
402 	/*
403 	 * Multiplying by 128 means that even in pathological cases such
404 	 * as (max_val - min_val) == nlevels the error at max_val is less
405 	 * than 1%.
406 	 */
407 	unsigned int slope = (128 * (max_val - min_val)) / nlevels;
408 	unsigned int margin = (max_val - min_val) / 20; /* 5% */
409 	int i;
410 
411 	for (i = 1; i < nlevels; i++) {
412 		unsigned int linear_value = min_val + ((i * slope) / 128);
413 		unsigned int delta = abs(linear_value - data->levels[i]);
414 
415 		if (delta > margin)
416 			return false;
417 	}
418 
419 	return true;
420 }
421 
422 static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb)
423 {
424 	struct device_node *node = pb->dev->of_node;
425 
426 	/* Not booted with device tree or no phandle link to the node */
427 	if (!node || !node->phandle)
428 		return FB_BLANK_UNBLANK;
429 
430 	/*
431 	 * If the driver is probed from the device tree and there is a
432 	 * phandle link pointing to the backlight node, it is safe to
433 	 * assume that another driver will enable the backlight at the
434 	 * appropriate time. Therefore, if it is disabled, keep it so.
435 	 */
436 
437 	/* if the enable GPIO is disabled, do not enable the backlight */
438 	if (pb->enable_gpio && gpiod_get_value_cansleep(pb->enable_gpio) == 0)
439 		return FB_BLANK_POWERDOWN;
440 
441 	/* The regulator is disabled, do not enable the backlight */
442 	if (!regulator_is_enabled(pb->power_supply))
443 		return FB_BLANK_POWERDOWN;
444 
445 	/* The PWM is disabled, keep it like this */
446 	if (!pwm_is_enabled(pb->pwm))
447 		return FB_BLANK_POWERDOWN;
448 
449 	return FB_BLANK_UNBLANK;
450 }
451 
452 static int pwm_backlight_probe(struct platform_device *pdev)
453 {
454 	struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev);
455 	struct platform_pwm_backlight_data defdata;
456 	struct backlight_properties props;
457 	struct backlight_device *bl;
458 	struct device_node *node = pdev->dev.of_node;
459 	struct pwm_bl_data *pb;
460 	struct pwm_state state;
461 	unsigned int i;
462 	int ret;
463 
464 	if (!data) {
465 		ret = pwm_backlight_parse_dt(&pdev->dev, &defdata);
466 		if (ret < 0) {
467 			dev_err(&pdev->dev, "failed to find platform data\n");
468 			return ret;
469 		}
470 
471 		data = &defdata;
472 	}
473 
474 	if (data->init) {
475 		ret = data->init(&pdev->dev);
476 		if (ret < 0)
477 			return ret;
478 	}
479 
480 	pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL);
481 	if (!pb) {
482 		ret = -ENOMEM;
483 		goto err_alloc;
484 	}
485 
486 	pb->notify = data->notify;
487 	pb->notify_after = data->notify_after;
488 	pb->check_fb = data->check_fb;
489 	pb->exit = data->exit;
490 	pb->dev = &pdev->dev;
491 	pb->enabled = false;
492 	pb->post_pwm_on_delay = data->post_pwm_on_delay;
493 	pb->pwm_off_delay = data->pwm_off_delay;
494 
495 	pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable",
496 						  GPIOD_ASIS);
497 	if (IS_ERR(pb->enable_gpio)) {
498 		ret = PTR_ERR(pb->enable_gpio);
499 		goto err_alloc;
500 	}
501 
502 	/*
503 	 * If the GPIO is not known to be already configured as output, that
504 	 * is, if gpiod_get_direction returns either 1 or -EINVAL, change the
505 	 * direction to output and set the GPIO as active.
506 	 * Do not force the GPIO to active when it was already output as it
507 	 * could cause backlight flickering or we would enable the backlight too
508 	 * early. Leave the decision of the initial backlight state for later.
509 	 */
510 	if (pb->enable_gpio &&
511 	    gpiod_get_direction(pb->enable_gpio) != 0)
512 		gpiod_direction_output(pb->enable_gpio, 1);
513 
514 	pb->power_supply = devm_regulator_get(&pdev->dev, "power");
515 	if (IS_ERR(pb->power_supply)) {
516 		ret = PTR_ERR(pb->power_supply);
517 		goto err_alloc;
518 	}
519 
520 	pb->pwm = devm_pwm_get(&pdev->dev, NULL);
521 	if (IS_ERR(pb->pwm) && PTR_ERR(pb->pwm) != -EPROBE_DEFER && !node) {
522 		dev_err(&pdev->dev, "unable to request PWM, trying legacy API\n");
523 		pb->legacy = true;
524 		pb->pwm = pwm_request(data->pwm_id, "pwm-backlight");
525 	}
526 
527 	if (IS_ERR(pb->pwm)) {
528 		ret = PTR_ERR(pb->pwm);
529 		if (ret != -EPROBE_DEFER)
530 			dev_err(&pdev->dev, "unable to request PWM\n");
531 		goto err_alloc;
532 	}
533 
534 	dev_dbg(&pdev->dev, "got pwm for backlight\n");
535 
536 	/* Sync up PWM state. */
537 	pwm_init_state(pb->pwm, &state);
538 
539 	/*
540 	 * The DT case will set the pwm_period_ns field to 0 and store the
541 	 * period, parsed from the DT, in the PWM device. For the non-DT case,
542 	 * set the period from platform data if it has not already been set
543 	 * via the PWM lookup table.
544 	 */
545 	if (!state.period && (data->pwm_period_ns > 0))
546 		state.period = data->pwm_period_ns;
547 
548 	ret = pwm_apply_state(pb->pwm, &state);
549 	if (ret) {
550 		dev_err(&pdev->dev, "failed to apply initial PWM state: %d\n",
551 			ret);
552 		goto err_alloc;
553 	}
554 
555 	memset(&props, 0, sizeof(struct backlight_properties));
556 
557 	if (data->levels) {
558 		pb->levels = data->levels;
559 
560 		/*
561 		 * For the DT case, only when brightness levels is defined
562 		 * data->levels is filled. For the non-DT case, data->levels
563 		 * can come from platform data, however is not usual.
564 		 */
565 		for (i = 0; i <= data->max_brightness; i++)
566 			if (data->levels[i] > pb->scale)
567 				pb->scale = data->levels[i];
568 
569 		if (pwm_backlight_is_linear(data))
570 			props.scale = BACKLIGHT_SCALE_LINEAR;
571 		else
572 			props.scale = BACKLIGHT_SCALE_NON_LINEAR;
573 	} else if (!data->max_brightness) {
574 		/*
575 		 * If no brightness levels are provided and max_brightness is
576 		 * not set, use the default brightness table. For the DT case,
577 		 * max_brightness is set to 0 when brightness levels is not
578 		 * specified. For the non-DT case, max_brightness is usually
579 		 * set to some value.
580 		 */
581 
582 		/* Get the PWM period (in nanoseconds) */
583 		pwm_get_state(pb->pwm, &state);
584 
585 		ret = pwm_backlight_brightness_default(&pdev->dev, data,
586 						       state.period);
587 		if (ret < 0) {
588 			dev_err(&pdev->dev,
589 				"failed to setup default brightness table\n");
590 			goto err_alloc;
591 		}
592 
593 		for (i = 0; i <= data->max_brightness; i++) {
594 			if (data->levels[i] > pb->scale)
595 				pb->scale = data->levels[i];
596 
597 			pb->levels = data->levels;
598 		}
599 
600 		props.scale = BACKLIGHT_SCALE_NON_LINEAR;
601 	} else {
602 		/*
603 		 * That only happens for the non-DT case, where platform data
604 		 * sets the max_brightness value.
605 		 */
606 		pb->scale = data->max_brightness;
607 	}
608 
609 	pb->lth_brightness = data->lth_brightness * (state.period / pb->scale);
610 
611 	props.type = BACKLIGHT_RAW;
612 	props.max_brightness = data->max_brightness;
613 	bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb,
614 				       &pwm_backlight_ops, &props);
615 	if (IS_ERR(bl)) {
616 		dev_err(&pdev->dev, "failed to register backlight\n");
617 		ret = PTR_ERR(bl);
618 		if (pb->legacy)
619 			pwm_free(pb->pwm);
620 		goto err_alloc;
621 	}
622 
623 	if (data->dft_brightness > data->max_brightness) {
624 		dev_warn(&pdev->dev,
625 			 "invalid default brightness level: %u, using %u\n",
626 			 data->dft_brightness, data->max_brightness);
627 		data->dft_brightness = data->max_brightness;
628 	}
629 
630 	bl->props.brightness = data->dft_brightness;
631 	bl->props.power = pwm_backlight_initial_power_state(pb);
632 	backlight_update_status(bl);
633 
634 	platform_set_drvdata(pdev, bl);
635 	return 0;
636 
637 err_alloc:
638 	if (data->exit)
639 		data->exit(&pdev->dev);
640 	return ret;
641 }
642 
643 static int pwm_backlight_remove(struct platform_device *pdev)
644 {
645 	struct backlight_device *bl = platform_get_drvdata(pdev);
646 	struct pwm_bl_data *pb = bl_get_data(bl);
647 
648 	backlight_device_unregister(bl);
649 	pwm_backlight_power_off(pb);
650 
651 	if (pb->exit)
652 		pb->exit(&pdev->dev);
653 	if (pb->legacy)
654 		pwm_free(pb->pwm);
655 
656 	return 0;
657 }
658 
659 static void pwm_backlight_shutdown(struct platform_device *pdev)
660 {
661 	struct backlight_device *bl = platform_get_drvdata(pdev);
662 	struct pwm_bl_data *pb = bl_get_data(bl);
663 
664 	pwm_backlight_power_off(pb);
665 }
666 
667 #ifdef CONFIG_PM_SLEEP
668 static int pwm_backlight_suspend(struct device *dev)
669 {
670 	struct backlight_device *bl = dev_get_drvdata(dev);
671 	struct pwm_bl_data *pb = bl_get_data(bl);
672 
673 	if (pb->notify)
674 		pb->notify(pb->dev, 0);
675 
676 	pwm_backlight_power_off(pb);
677 
678 	if (pb->notify_after)
679 		pb->notify_after(pb->dev, 0);
680 
681 	return 0;
682 }
683 
684 static int pwm_backlight_resume(struct device *dev)
685 {
686 	struct backlight_device *bl = dev_get_drvdata(dev);
687 
688 	backlight_update_status(bl);
689 
690 	return 0;
691 }
692 #endif
693 
694 static const struct dev_pm_ops pwm_backlight_pm_ops = {
695 #ifdef CONFIG_PM_SLEEP
696 	.suspend = pwm_backlight_suspend,
697 	.resume = pwm_backlight_resume,
698 	.poweroff = pwm_backlight_suspend,
699 	.restore = pwm_backlight_resume,
700 #endif
701 };
702 
703 static struct platform_driver pwm_backlight_driver = {
704 	.driver		= {
705 		.name		= "pwm-backlight",
706 		.pm		= &pwm_backlight_pm_ops,
707 		.of_match_table	= of_match_ptr(pwm_backlight_of_match),
708 	},
709 	.probe		= pwm_backlight_probe,
710 	.remove		= pwm_backlight_remove,
711 	.shutdown	= pwm_backlight_shutdown,
712 };
713 
714 module_platform_driver(pwm_backlight_driver);
715 
716 MODULE_DESCRIPTION("PWM based Backlight Driver");
717 MODULE_LICENSE("GPL v2");
718 MODULE_ALIAS("platform:pwm-backlight");
719