1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Silicon Laboratories CP210x USB to RS232 serial adaptor driver 4 * 5 * Copyright (C) 2005 Craig Shelley (craig@microtron.org.uk) 6 * Copyright (C) 2010-2021 Johan Hovold (johan@kernel.org) 7 * 8 * Support to set flow control line levels using TIOCMGET and TIOCMSET 9 * thanks to Karl Hiramoto karl@hiramoto.org. RTSCTS hardware flow 10 * control thanks to Munir Nassar nassarmu@real-time.com 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/errno.h> 16 #include <linux/slab.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/module.h> 20 #include <linux/usb.h> 21 #include <linux/usb/serial.h> 22 #include <linux/gpio/driver.h> 23 #include <linux/bitops.h> 24 #include <linux/mutex.h> 25 26 #define DRIVER_DESC "Silicon Labs CP210x RS232 serial adaptor driver" 27 28 /* 29 * Function Prototypes 30 */ 31 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *); 32 static void cp210x_close(struct usb_serial_port *); 33 static void cp210x_change_speed(struct tty_struct *, struct usb_serial_port *, 34 const struct ktermios *); 35 static void cp210x_set_termios(struct tty_struct *, struct usb_serial_port *, 36 const struct ktermios *); 37 static bool cp210x_tx_empty(struct usb_serial_port *port); 38 static int cp210x_tiocmget(struct tty_struct *); 39 static int cp210x_tiocmset(struct tty_struct *, unsigned int, unsigned int); 40 static int cp210x_tiocmset_port(struct usb_serial_port *port, 41 unsigned int, unsigned int); 42 static void cp210x_break_ctl(struct tty_struct *, int); 43 static int cp210x_attach(struct usb_serial *); 44 static void cp210x_disconnect(struct usb_serial *); 45 static void cp210x_release(struct usb_serial *); 46 static int cp210x_port_probe(struct usb_serial_port *); 47 static void cp210x_port_remove(struct usb_serial_port *); 48 static void cp210x_dtr_rts(struct usb_serial_port *port, int on); 49 static void cp210x_process_read_urb(struct urb *urb); 50 static void cp210x_enable_event_mode(struct usb_serial_port *port); 51 static void cp210x_disable_event_mode(struct usb_serial_port *port); 52 53 static const struct usb_device_id id_table[] = { 54 { USB_DEVICE(0x0404, 0x034C) }, /* NCR Retail IO Box */ 55 { USB_DEVICE(0x045B, 0x0053) }, /* Renesas RX610 RX-Stick */ 56 { USB_DEVICE(0x0471, 0x066A) }, /* AKTAKOM ACE-1001 cable */ 57 { USB_DEVICE(0x0489, 0xE000) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 58 { USB_DEVICE(0x0489, 0xE003) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 59 { USB_DEVICE(0x0745, 0x1000) }, /* CipherLab USB CCD Barcode Scanner 1000 */ 60 { USB_DEVICE(0x0846, 0x1100) }, /* NetGear Managed Switch M4100 series, M5300 series, M7100 series */ 61 { USB_DEVICE(0x08e6, 0x5501) }, /* Gemalto Prox-PU/CU contactless smartcard reader */ 62 { USB_DEVICE(0x08FD, 0x000A) }, /* Digianswer A/S , ZigBee/802.15.4 MAC Device */ 63 { USB_DEVICE(0x0908, 0x01FF) }, /* Siemens RUGGEDCOM USB Serial Console */ 64 { USB_DEVICE(0x0988, 0x0578) }, /* Teraoka AD2000 */ 65 { USB_DEVICE(0x0B00, 0x3070) }, /* Ingenico 3070 */ 66 { USB_DEVICE(0x0BED, 0x1100) }, /* MEI (TM) Cashflow-SC Bill/Voucher Acceptor */ 67 { USB_DEVICE(0x0BED, 0x1101) }, /* MEI series 2000 Combo Acceptor */ 68 { USB_DEVICE(0x0FCF, 0x1003) }, /* Dynastream ANT development board */ 69 { USB_DEVICE(0x0FCF, 0x1004) }, /* Dynastream ANT2USB */ 70 { USB_DEVICE(0x0FCF, 0x1006) }, /* Dynastream ANT development board */ 71 { USB_DEVICE(0x0FDE, 0xCA05) }, /* OWL Wireless Electricity Monitor CM-160 */ 72 { USB_DEVICE(0x106F, 0x0003) }, /* CPI / Money Controls Bulk Coin Recycler */ 73 { USB_DEVICE(0x10A6, 0xAA26) }, /* Knock-off DCU-11 cable */ 74 { USB_DEVICE(0x10AB, 0x10C5) }, /* Siemens MC60 Cable */ 75 { USB_DEVICE(0x10B5, 0xAC70) }, /* Nokia CA-42 USB */ 76 { USB_DEVICE(0x10C4, 0x0F91) }, /* Vstabi */ 77 { USB_DEVICE(0x10C4, 0x1101) }, /* Arkham Technology DS101 Bus Monitor */ 78 { USB_DEVICE(0x10C4, 0x1601) }, /* Arkham Technology DS101 Adapter */ 79 { USB_DEVICE(0x10C4, 0x800A) }, /* SPORTident BSM7-D-USB main station */ 80 { USB_DEVICE(0x10C4, 0x803B) }, /* Pololu USB-serial converter */ 81 { USB_DEVICE(0x10C4, 0x8044) }, /* Cygnal Debug Adapter */ 82 { USB_DEVICE(0x10C4, 0x804E) }, /* Software Bisque Paramount ME build-in converter */ 83 { USB_DEVICE(0x10C4, 0x8053) }, /* Enfora EDG1228 */ 84 { USB_DEVICE(0x10C4, 0x8054) }, /* Enfora GSM2228 */ 85 { USB_DEVICE(0x10C4, 0x8056) }, /* Lorenz Messtechnik devices */ 86 { USB_DEVICE(0x10C4, 0x8066) }, /* Argussoft In-System Programmer */ 87 { USB_DEVICE(0x10C4, 0x806F) }, /* IMS USB to RS422 Converter Cable */ 88 { USB_DEVICE(0x10C4, 0x807A) }, /* Crumb128 board */ 89 { USB_DEVICE(0x10C4, 0x80C4) }, /* Cygnal Integrated Products, Inc., Optris infrared thermometer */ 90 { USB_DEVICE(0x10C4, 0x80CA) }, /* Degree Controls Inc */ 91 { USB_DEVICE(0x10C4, 0x80DD) }, /* Tracient RFID */ 92 { USB_DEVICE(0x10C4, 0x80F6) }, /* Suunto sports instrument */ 93 { USB_DEVICE(0x10C4, 0x8115) }, /* Arygon NFC/Mifare Reader */ 94 { USB_DEVICE(0x10C4, 0x813D) }, /* Burnside Telecom Deskmobile */ 95 { USB_DEVICE(0x10C4, 0x813F) }, /* Tams Master Easy Control */ 96 { USB_DEVICE(0x10C4, 0x814A) }, /* West Mountain Radio RIGblaster P&P */ 97 { USB_DEVICE(0x10C4, 0x814B) }, /* West Mountain Radio RIGtalk */ 98 { USB_DEVICE(0x2405, 0x0003) }, /* West Mountain Radio RIGblaster Advantage */ 99 { USB_DEVICE(0x10C4, 0x8156) }, /* B&G H3000 link cable */ 100 { USB_DEVICE(0x10C4, 0x815E) }, /* Helicomm IP-Link 1220-DVM */ 101 { USB_DEVICE(0x10C4, 0x815F) }, /* Timewave HamLinkUSB */ 102 { USB_DEVICE(0x10C4, 0x817C) }, /* CESINEL MEDCAL N Power Quality Monitor */ 103 { USB_DEVICE(0x10C4, 0x817D) }, /* CESINEL MEDCAL NT Power Quality Monitor */ 104 { USB_DEVICE(0x10C4, 0x817E) }, /* CESINEL MEDCAL S Power Quality Monitor */ 105 { USB_DEVICE(0x10C4, 0x818B) }, /* AVIT Research USB to TTL */ 106 { USB_DEVICE(0x10C4, 0x819F) }, /* MJS USB Toslink Switcher */ 107 { USB_DEVICE(0x10C4, 0x81A6) }, /* ThinkOptics WavIt */ 108 { USB_DEVICE(0x10C4, 0x81A9) }, /* Multiplex RC Interface */ 109 { USB_DEVICE(0x10C4, 0x81AC) }, /* MSD Dash Hawk */ 110 { USB_DEVICE(0x10C4, 0x81AD) }, /* INSYS USB Modem */ 111 { USB_DEVICE(0x10C4, 0x81C8) }, /* Lipowsky Industrie Elektronik GmbH, Baby-JTAG */ 112 { USB_DEVICE(0x10C4, 0x81D7) }, /* IAI Corp. RCB-CV-USB USB to RS485 Adaptor */ 113 { USB_DEVICE(0x10C4, 0x81E2) }, /* Lipowsky Industrie Elektronik GmbH, Baby-LIN */ 114 { USB_DEVICE(0x10C4, 0x81E7) }, /* Aerocomm Radio */ 115 { USB_DEVICE(0x10C4, 0x81E8) }, /* Zephyr Bioharness */ 116 { USB_DEVICE(0x10C4, 0x81F2) }, /* C1007 HF band RFID controller */ 117 { USB_DEVICE(0x10C4, 0x8218) }, /* Lipowsky Industrie Elektronik GmbH, HARP-1 */ 118 { USB_DEVICE(0x10C4, 0x822B) }, /* Modem EDGE(GSM) Comander 2 */ 119 { USB_DEVICE(0x10C4, 0x826B) }, /* Cygnal Integrated Products, Inc., Fasttrax GPS demonstration module */ 120 { USB_DEVICE(0x10C4, 0x8281) }, /* Nanotec Plug & Drive */ 121 { USB_DEVICE(0x10C4, 0x8293) }, /* Telegesis ETRX2USB */ 122 { USB_DEVICE(0x10C4, 0x82EF) }, /* CESINEL FALCO 6105 AC Power Supply */ 123 { USB_DEVICE(0x10C4, 0x82F1) }, /* CESINEL MEDCAL EFD Earth Fault Detector */ 124 { USB_DEVICE(0x10C4, 0x82F2) }, /* CESINEL MEDCAL ST Network Analyzer */ 125 { USB_DEVICE(0x10C4, 0x82F4) }, /* Starizona MicroTouch */ 126 { USB_DEVICE(0x10C4, 0x82F9) }, /* Procyon AVS */ 127 { USB_DEVICE(0x10C4, 0x8341) }, /* Siemens MC35PU GPRS Modem */ 128 { USB_DEVICE(0x10C4, 0x8382) }, /* Cygnal Integrated Products, Inc. */ 129 { USB_DEVICE(0x10C4, 0x83A8) }, /* Amber Wireless AMB2560 */ 130 { USB_DEVICE(0x10C4, 0x83AA) }, /* Mark-10 Digital Force Gauge */ 131 { USB_DEVICE(0x10C4, 0x83D8) }, /* DekTec DTA Plus VHF/UHF Booster/Attenuator */ 132 { USB_DEVICE(0x10C4, 0x8411) }, /* Kyocera GPS Module */ 133 { USB_DEVICE(0x10C4, 0x8414) }, /* Decagon USB Cable Adapter */ 134 { USB_DEVICE(0x10C4, 0x8418) }, /* IRZ Automation Teleport SG-10 GSM/GPRS Modem */ 135 { USB_DEVICE(0x10C4, 0x846E) }, /* BEI USB Sensor Interface (VCP) */ 136 { USB_DEVICE(0x10C4, 0x8470) }, /* Juniper Networks BX Series System Console */ 137 { USB_DEVICE(0x10C4, 0x8477) }, /* Balluff RFID */ 138 { USB_DEVICE(0x10C4, 0x84B6) }, /* Starizona Hyperion */ 139 { USB_DEVICE(0x10C4, 0x851E) }, /* CESINEL MEDCAL PT Network Analyzer */ 140 { USB_DEVICE(0x10C4, 0x85A7) }, /* LifeScan OneTouch Verio IQ */ 141 { USB_DEVICE(0x10C4, 0x85B8) }, /* CESINEL ReCon T Energy Logger */ 142 { USB_DEVICE(0x10C4, 0x85EA) }, /* AC-Services IBUS-IF */ 143 { USB_DEVICE(0x10C4, 0x85EB) }, /* AC-Services CIS-IBUS */ 144 { USB_DEVICE(0x10C4, 0x85F8) }, /* Virtenio Preon32 */ 145 { USB_DEVICE(0x10C4, 0x8664) }, /* AC-Services CAN-IF */ 146 { USB_DEVICE(0x10C4, 0x8665) }, /* AC-Services OBD-IF */ 147 { USB_DEVICE(0x10C4, 0x8856) }, /* CEL EM357 ZigBee USB Stick - LR */ 148 { USB_DEVICE(0x10C4, 0x8857) }, /* CEL EM357 ZigBee USB Stick */ 149 { USB_DEVICE(0x10C4, 0x88A4) }, /* MMB Networks ZigBee USB Device */ 150 { USB_DEVICE(0x10C4, 0x88A5) }, /* Planet Innovation Ingeni ZigBee USB Device */ 151 { USB_DEVICE(0x10C4, 0x88D8) }, /* Acuity Brands nLight Air Adapter */ 152 { USB_DEVICE(0x10C4, 0x88FB) }, /* CESINEL MEDCAL STII Network Analyzer */ 153 { USB_DEVICE(0x10C4, 0x8938) }, /* CESINEL MEDCAL S II Network Analyzer */ 154 { USB_DEVICE(0x10C4, 0x8946) }, /* Ketra N1 Wireless Interface */ 155 { USB_DEVICE(0x10C4, 0x8962) }, /* Brim Brothers charging dock */ 156 { USB_DEVICE(0x10C4, 0x8977) }, /* CEL MeshWorks DevKit Device */ 157 { USB_DEVICE(0x10C4, 0x8998) }, /* KCF Technologies PRN */ 158 { USB_DEVICE(0x10C4, 0x89A4) }, /* CESINEL FTBC Flexible Thyristor Bridge Controller */ 159 { USB_DEVICE(0x10C4, 0x89FB) }, /* Qivicon ZigBee USB Radio Stick */ 160 { USB_DEVICE(0x10C4, 0x8A2A) }, /* HubZ dual ZigBee and Z-Wave dongle */ 161 { USB_DEVICE(0x10C4, 0x8A5B) }, /* CEL EM3588 ZigBee USB Stick */ 162 { USB_DEVICE(0x10C4, 0x8A5E) }, /* CEL EM3588 ZigBee USB Stick Long Range */ 163 { USB_DEVICE(0x10C4, 0x8B34) }, /* Qivicon ZigBee USB Radio Stick */ 164 { USB_DEVICE(0x10C4, 0xEA60) }, /* Silicon Labs factory default */ 165 { USB_DEVICE(0x10C4, 0xEA61) }, /* Silicon Labs factory default */ 166 { USB_DEVICE(0x10C4, 0xEA63) }, /* Silicon Labs Windows Update (CP2101-4/CP2102N) */ 167 { USB_DEVICE(0x10C4, 0xEA70) }, /* Silicon Labs factory default */ 168 { USB_DEVICE(0x10C4, 0xEA71) }, /* Infinity GPS-MIC-1 Radio Monophone */ 169 { USB_DEVICE(0x10C4, 0xEA7A) }, /* Silicon Labs Windows Update (CP2105) */ 170 { USB_DEVICE(0x10C4, 0xEA7B) }, /* Silicon Labs Windows Update (CP2108) */ 171 { USB_DEVICE(0x10C4, 0xF001) }, /* Elan Digital Systems USBscope50 */ 172 { USB_DEVICE(0x10C4, 0xF002) }, /* Elan Digital Systems USBwave12 */ 173 { USB_DEVICE(0x10C4, 0xF003) }, /* Elan Digital Systems USBpulse100 */ 174 { USB_DEVICE(0x10C4, 0xF004) }, /* Elan Digital Systems USBcount50 */ 175 { USB_DEVICE(0x10C5, 0xEA61) }, /* Silicon Labs MobiData GPRS USB Modem */ 176 { USB_DEVICE(0x10CE, 0xEA6A) }, /* Silicon Labs MobiData GPRS USB Modem 100EU */ 177 { USB_DEVICE(0x12B8, 0xEC60) }, /* Link G4 ECU */ 178 { USB_DEVICE(0x12B8, 0xEC62) }, /* Link G4+ ECU */ 179 { USB_DEVICE(0x13AD, 0x9999) }, /* Baltech card reader */ 180 { USB_DEVICE(0x1555, 0x0004) }, /* Owen AC4 USB-RS485 Converter */ 181 { USB_DEVICE(0x155A, 0x1006) }, /* ELDAT Easywave RX09 */ 182 { USB_DEVICE(0x166A, 0x0201) }, /* Clipsal 5500PACA C-Bus Pascal Automation Controller */ 183 { USB_DEVICE(0x166A, 0x0301) }, /* Clipsal 5800PC C-Bus Wireless PC Interface */ 184 { USB_DEVICE(0x166A, 0x0303) }, /* Clipsal 5500PCU C-Bus USB interface */ 185 { USB_DEVICE(0x166A, 0x0304) }, /* Clipsal 5000CT2 C-Bus Black and White Touchscreen */ 186 { USB_DEVICE(0x166A, 0x0305) }, /* Clipsal C-5000CT2 C-Bus Spectrum Colour Touchscreen */ 187 { USB_DEVICE(0x166A, 0x0401) }, /* Clipsal L51xx C-Bus Architectural Dimmer */ 188 { USB_DEVICE(0x166A, 0x0101) }, /* Clipsal 5560884 C-Bus Multi-room Audio Matrix Switcher */ 189 { USB_DEVICE(0x16C0, 0x09B0) }, /* Lunatico Seletek */ 190 { USB_DEVICE(0x16C0, 0x09B1) }, /* Lunatico Seletek */ 191 { USB_DEVICE(0x16D6, 0x0001) }, /* Jablotron serial interface */ 192 { USB_DEVICE(0x16DC, 0x0010) }, /* W-IE-NE-R Plein & Baus GmbH PL512 Power Supply */ 193 { USB_DEVICE(0x16DC, 0x0011) }, /* W-IE-NE-R Plein & Baus GmbH RCM Remote Control for MARATON Power Supply */ 194 { USB_DEVICE(0x16DC, 0x0012) }, /* W-IE-NE-R Plein & Baus GmbH MPOD Multi Channel Power Supply */ 195 { USB_DEVICE(0x16DC, 0x0015) }, /* W-IE-NE-R Plein & Baus GmbH CML Control, Monitoring and Data Logger */ 196 { USB_DEVICE(0x17A8, 0x0001) }, /* Kamstrup Optical Eye/3-wire */ 197 { USB_DEVICE(0x17A8, 0x0005) }, /* Kamstrup M-Bus Master MultiPort 250D */ 198 { USB_DEVICE(0x17A8, 0x0011) }, /* Kamstrup 444 MHz RF sniffer */ 199 { USB_DEVICE(0x17A8, 0x0013) }, /* Kamstrup 870 MHz RF sniffer */ 200 { USB_DEVICE(0x17A8, 0x0101) }, /* Kamstrup 868 MHz wM-Bus C-Mode Meter Reader (Int Ant) */ 201 { USB_DEVICE(0x17A8, 0x0102) }, /* Kamstrup 868 MHz wM-Bus C-Mode Meter Reader (Ext Ant) */ 202 { USB_DEVICE(0x17F4, 0xAAAA) }, /* Wavesense Jazz blood glucose meter */ 203 { USB_DEVICE(0x1843, 0x0200) }, /* Vaisala USB Instrument Cable */ 204 { USB_DEVICE(0x18EF, 0xE00F) }, /* ELV USB-I2C-Interface */ 205 { USB_DEVICE(0x18EF, 0xE025) }, /* ELV Marble Sound Board 1 */ 206 { USB_DEVICE(0x18EF, 0xE030) }, /* ELV ALC 8xxx Battery Charger */ 207 { USB_DEVICE(0x18EF, 0xE032) }, /* ELV TFD500 Data Logger */ 208 { USB_DEVICE(0x1901, 0x0190) }, /* GE B850 CP2105 Recorder interface */ 209 { USB_DEVICE(0x1901, 0x0193) }, /* GE B650 CP2104 PMC interface */ 210 { USB_DEVICE(0x1901, 0x0194) }, /* GE Healthcare Remote Alarm Box */ 211 { USB_DEVICE(0x1901, 0x0195) }, /* GE B850/B650/B450 CP2104 DP UART interface */ 212 { USB_DEVICE(0x1901, 0x0196) }, /* GE B850 CP2105 DP UART interface */ 213 { USB_DEVICE(0x1901, 0x0197) }, /* GE CS1000 M.2 Key E serial interface */ 214 { USB_DEVICE(0x1901, 0x0198) }, /* GE CS1000 Display serial interface */ 215 { USB_DEVICE(0x199B, 0xBA30) }, /* LORD WSDA-200-USB */ 216 { USB_DEVICE(0x19CF, 0x3000) }, /* Parrot NMEA GPS Flight Recorder */ 217 { USB_DEVICE(0x1ADB, 0x0001) }, /* Schweitzer Engineering C662 Cable */ 218 { USB_DEVICE(0x1B1C, 0x1C00) }, /* Corsair USB Dongle */ 219 { USB_DEVICE(0x1BA4, 0x0002) }, /* Silicon Labs 358x factory default */ 220 { USB_DEVICE(0x1BE3, 0x07A6) }, /* WAGO 750-923 USB Service Cable */ 221 { USB_DEVICE(0x1D6F, 0x0010) }, /* Seluxit ApS RF Dongle */ 222 { USB_DEVICE(0x1E29, 0x0102) }, /* Festo CPX-USB */ 223 { USB_DEVICE(0x1E29, 0x0501) }, /* Festo CMSP */ 224 { USB_DEVICE(0x1FB9, 0x0100) }, /* Lake Shore Model 121 Current Source */ 225 { USB_DEVICE(0x1FB9, 0x0200) }, /* Lake Shore Model 218A Temperature Monitor */ 226 { USB_DEVICE(0x1FB9, 0x0201) }, /* Lake Shore Model 219 Temperature Monitor */ 227 { USB_DEVICE(0x1FB9, 0x0202) }, /* Lake Shore Model 233 Temperature Transmitter */ 228 { USB_DEVICE(0x1FB9, 0x0203) }, /* Lake Shore Model 235 Temperature Transmitter */ 229 { USB_DEVICE(0x1FB9, 0x0300) }, /* Lake Shore Model 335 Temperature Controller */ 230 { USB_DEVICE(0x1FB9, 0x0301) }, /* Lake Shore Model 336 Temperature Controller */ 231 { USB_DEVICE(0x1FB9, 0x0302) }, /* Lake Shore Model 350 Temperature Controller */ 232 { USB_DEVICE(0x1FB9, 0x0303) }, /* Lake Shore Model 371 AC Bridge */ 233 { USB_DEVICE(0x1FB9, 0x0400) }, /* Lake Shore Model 411 Handheld Gaussmeter */ 234 { USB_DEVICE(0x1FB9, 0x0401) }, /* Lake Shore Model 425 Gaussmeter */ 235 { USB_DEVICE(0x1FB9, 0x0402) }, /* Lake Shore Model 455A Gaussmeter */ 236 { USB_DEVICE(0x1FB9, 0x0403) }, /* Lake Shore Model 475A Gaussmeter */ 237 { USB_DEVICE(0x1FB9, 0x0404) }, /* Lake Shore Model 465 Three Axis Gaussmeter */ 238 { USB_DEVICE(0x1FB9, 0x0600) }, /* Lake Shore Model 625A Superconducting MPS */ 239 { USB_DEVICE(0x1FB9, 0x0601) }, /* Lake Shore Model 642A Magnet Power Supply */ 240 { USB_DEVICE(0x1FB9, 0x0602) }, /* Lake Shore Model 648 Magnet Power Supply */ 241 { USB_DEVICE(0x1FB9, 0x0700) }, /* Lake Shore Model 737 VSM Controller */ 242 { USB_DEVICE(0x1FB9, 0x0701) }, /* Lake Shore Model 776 Hall Matrix */ 243 { USB_DEVICE(0x2184, 0x0030) }, /* GW Instek GDM-834x Digital Multimeter */ 244 { USB_DEVICE(0x2626, 0xEA60) }, /* Aruba Networks 7xxx USB Serial Console */ 245 { USB_DEVICE(0x3195, 0xF190) }, /* Link Instruments MSO-19 */ 246 { USB_DEVICE(0x3195, 0xF280) }, /* Link Instruments MSO-28 */ 247 { USB_DEVICE(0x3195, 0xF281) }, /* Link Instruments MSO-28 */ 248 { USB_DEVICE(0x3923, 0x7A0B) }, /* National Instruments USB Serial Console */ 249 { USB_DEVICE(0x413C, 0x9500) }, /* DW700 GPS USB interface */ 250 { } /* Terminating Entry */ 251 }; 252 253 MODULE_DEVICE_TABLE(usb, id_table); 254 255 struct cp210x_serial_private { 256 #ifdef CONFIG_GPIOLIB 257 struct gpio_chip gc; 258 bool gpio_registered; 259 u16 gpio_pushpull; 260 u16 gpio_altfunc; 261 u16 gpio_input; 262 #endif 263 u8 partnum; 264 u32 fw_version; 265 speed_t min_speed; 266 speed_t max_speed; 267 bool use_actual_rate; 268 bool no_flow_control; 269 bool no_event_mode; 270 }; 271 272 enum cp210x_event_state { 273 ES_DATA, 274 ES_ESCAPE, 275 ES_LSR, 276 ES_LSR_DATA_0, 277 ES_LSR_DATA_1, 278 ES_MSR 279 }; 280 281 struct cp210x_port_private { 282 u8 bInterfaceNumber; 283 bool event_mode; 284 enum cp210x_event_state event_state; 285 u8 lsr; 286 287 struct mutex mutex; 288 bool crtscts; 289 bool dtr; 290 bool rts; 291 }; 292 293 static struct usb_serial_driver cp210x_device = { 294 .driver = { 295 .owner = THIS_MODULE, 296 .name = "cp210x", 297 }, 298 .id_table = id_table, 299 .num_ports = 1, 300 .bulk_in_size = 256, 301 .bulk_out_size = 256, 302 .open = cp210x_open, 303 .close = cp210x_close, 304 .break_ctl = cp210x_break_ctl, 305 .set_termios = cp210x_set_termios, 306 .tx_empty = cp210x_tx_empty, 307 .throttle = usb_serial_generic_throttle, 308 .unthrottle = usb_serial_generic_unthrottle, 309 .tiocmget = cp210x_tiocmget, 310 .tiocmset = cp210x_tiocmset, 311 .get_icount = usb_serial_generic_get_icount, 312 .attach = cp210x_attach, 313 .disconnect = cp210x_disconnect, 314 .release = cp210x_release, 315 .port_probe = cp210x_port_probe, 316 .port_remove = cp210x_port_remove, 317 .dtr_rts = cp210x_dtr_rts, 318 .process_read_urb = cp210x_process_read_urb, 319 }; 320 321 static struct usb_serial_driver * const serial_drivers[] = { 322 &cp210x_device, NULL 323 }; 324 325 /* Config request types */ 326 #define REQTYPE_HOST_TO_INTERFACE 0x41 327 #define REQTYPE_INTERFACE_TO_HOST 0xc1 328 #define REQTYPE_HOST_TO_DEVICE 0x40 329 #define REQTYPE_DEVICE_TO_HOST 0xc0 330 331 /* Config request codes */ 332 #define CP210X_IFC_ENABLE 0x00 333 #define CP210X_SET_BAUDDIV 0x01 334 #define CP210X_GET_BAUDDIV 0x02 335 #define CP210X_SET_LINE_CTL 0x03 336 #define CP210X_GET_LINE_CTL 0x04 337 #define CP210X_SET_BREAK 0x05 338 #define CP210X_IMM_CHAR 0x06 339 #define CP210X_SET_MHS 0x07 340 #define CP210X_GET_MDMSTS 0x08 341 #define CP210X_SET_XON 0x09 342 #define CP210X_SET_XOFF 0x0A 343 #define CP210X_SET_EVENTMASK 0x0B 344 #define CP210X_GET_EVENTMASK 0x0C 345 #define CP210X_SET_CHAR 0x0D 346 #define CP210X_GET_CHARS 0x0E 347 #define CP210X_GET_PROPS 0x0F 348 #define CP210X_GET_COMM_STATUS 0x10 349 #define CP210X_RESET 0x11 350 #define CP210X_PURGE 0x12 351 #define CP210X_SET_FLOW 0x13 352 #define CP210X_GET_FLOW 0x14 353 #define CP210X_EMBED_EVENTS 0x15 354 #define CP210X_GET_EVENTSTATE 0x16 355 #define CP210X_SET_CHARS 0x19 356 #define CP210X_GET_BAUDRATE 0x1D 357 #define CP210X_SET_BAUDRATE 0x1E 358 #define CP210X_VENDOR_SPECIFIC 0xFF 359 360 /* CP210X_IFC_ENABLE */ 361 #define UART_ENABLE 0x0001 362 #define UART_DISABLE 0x0000 363 364 /* CP210X_(SET|GET)_BAUDDIV */ 365 #define BAUD_RATE_GEN_FREQ 0x384000 366 367 /* CP210X_(SET|GET)_LINE_CTL */ 368 #define BITS_DATA_MASK 0X0f00 369 #define BITS_DATA_5 0X0500 370 #define BITS_DATA_6 0X0600 371 #define BITS_DATA_7 0X0700 372 #define BITS_DATA_8 0X0800 373 #define BITS_DATA_9 0X0900 374 375 #define BITS_PARITY_MASK 0x00f0 376 #define BITS_PARITY_NONE 0x0000 377 #define BITS_PARITY_ODD 0x0010 378 #define BITS_PARITY_EVEN 0x0020 379 #define BITS_PARITY_MARK 0x0030 380 #define BITS_PARITY_SPACE 0x0040 381 382 #define BITS_STOP_MASK 0x000f 383 #define BITS_STOP_1 0x0000 384 #define BITS_STOP_1_5 0x0001 385 #define BITS_STOP_2 0x0002 386 387 /* CP210X_SET_BREAK */ 388 #define BREAK_ON 0x0001 389 #define BREAK_OFF 0x0000 390 391 /* CP210X_(SET_MHS|GET_MDMSTS) */ 392 #define CONTROL_DTR 0x0001 393 #define CONTROL_RTS 0x0002 394 #define CONTROL_CTS 0x0010 395 #define CONTROL_DSR 0x0020 396 #define CONTROL_RING 0x0040 397 #define CONTROL_DCD 0x0080 398 #define CONTROL_WRITE_DTR 0x0100 399 #define CONTROL_WRITE_RTS 0x0200 400 401 /* CP210X_(GET|SET)_CHARS */ 402 struct cp210x_special_chars { 403 u8 bEofChar; 404 u8 bErrorChar; 405 u8 bBreakChar; 406 u8 bEventChar; 407 u8 bXonChar; 408 u8 bXoffChar; 409 }; 410 411 /* CP210X_VENDOR_SPECIFIC values */ 412 #define CP210X_GET_FW_VER 0x000E 413 #define CP210X_READ_2NCONFIG 0x000E 414 #define CP210X_GET_FW_VER_2N 0x0010 415 #define CP210X_READ_LATCH 0x00C2 416 #define CP210X_GET_PARTNUM 0x370B 417 #define CP210X_GET_PORTCONFIG 0x370C 418 #define CP210X_GET_DEVICEMODE 0x3711 419 #define CP210X_WRITE_LATCH 0x37E1 420 421 /* Part number definitions */ 422 #define CP210X_PARTNUM_CP2101 0x01 423 #define CP210X_PARTNUM_CP2102 0x02 424 #define CP210X_PARTNUM_CP2103 0x03 425 #define CP210X_PARTNUM_CP2104 0x04 426 #define CP210X_PARTNUM_CP2105 0x05 427 #define CP210X_PARTNUM_CP2108 0x08 428 #define CP210X_PARTNUM_CP2102N_QFN28 0x20 429 #define CP210X_PARTNUM_CP2102N_QFN24 0x21 430 #define CP210X_PARTNUM_CP2102N_QFN20 0x22 431 #define CP210X_PARTNUM_UNKNOWN 0xFF 432 433 /* CP210X_GET_COMM_STATUS returns these 0x13 bytes */ 434 struct cp210x_comm_status { 435 __le32 ulErrors; 436 __le32 ulHoldReasons; 437 __le32 ulAmountInInQueue; 438 __le32 ulAmountInOutQueue; 439 u8 bEofReceived; 440 u8 bWaitForImmediate; 441 u8 bReserved; 442 } __packed; 443 444 /* 445 * CP210X_PURGE - 16 bits passed in wValue of USB request. 446 * SiLabs app note AN571 gives a strange description of the 4 bits: 447 * bit 0 or bit 2 clears the transmit queue and 1 or 3 receive. 448 * writing 1 to all, however, purges cp2108 well enough to avoid the hang. 449 */ 450 #define PURGE_ALL 0x000f 451 452 /* CP210X_EMBED_EVENTS */ 453 #define CP210X_ESCCHAR 0xec 454 455 #define CP210X_LSR_OVERRUN BIT(1) 456 #define CP210X_LSR_PARITY BIT(2) 457 #define CP210X_LSR_FRAME BIT(3) 458 #define CP210X_LSR_BREAK BIT(4) 459 460 461 /* CP210X_GET_FLOW/CP210X_SET_FLOW read/write these 0x10 bytes */ 462 struct cp210x_flow_ctl { 463 __le32 ulControlHandshake; 464 __le32 ulFlowReplace; 465 __le32 ulXonLimit; 466 __le32 ulXoffLimit; 467 }; 468 469 /* cp210x_flow_ctl::ulControlHandshake */ 470 #define CP210X_SERIAL_DTR_MASK GENMASK(1, 0) 471 #define CP210X_SERIAL_DTR_INACTIVE (0 << 0) 472 #define CP210X_SERIAL_DTR_ACTIVE (1 << 0) 473 #define CP210X_SERIAL_DTR_FLOW_CTL (2 << 0) 474 #define CP210X_SERIAL_CTS_HANDSHAKE BIT(3) 475 #define CP210X_SERIAL_DSR_HANDSHAKE BIT(4) 476 #define CP210X_SERIAL_DCD_HANDSHAKE BIT(5) 477 #define CP210X_SERIAL_DSR_SENSITIVITY BIT(6) 478 479 /* cp210x_flow_ctl::ulFlowReplace */ 480 #define CP210X_SERIAL_AUTO_TRANSMIT BIT(0) 481 #define CP210X_SERIAL_AUTO_RECEIVE BIT(1) 482 #define CP210X_SERIAL_ERROR_CHAR BIT(2) 483 #define CP210X_SERIAL_NULL_STRIPPING BIT(3) 484 #define CP210X_SERIAL_BREAK_CHAR BIT(4) 485 #define CP210X_SERIAL_RTS_MASK GENMASK(7, 6) 486 #define CP210X_SERIAL_RTS_INACTIVE (0 << 6) 487 #define CP210X_SERIAL_RTS_ACTIVE (1 << 6) 488 #define CP210X_SERIAL_RTS_FLOW_CTL (2 << 6) 489 #define CP210X_SERIAL_XOFF_CONTINUE BIT(31) 490 491 /* CP210X_VENDOR_SPECIFIC, CP210X_GET_DEVICEMODE call reads these 0x2 bytes. */ 492 struct cp210x_pin_mode { 493 u8 eci; 494 u8 sci; 495 }; 496 497 #define CP210X_PIN_MODE_MODEM 0 498 #define CP210X_PIN_MODE_GPIO BIT(0) 499 500 /* 501 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xf bytes 502 * on a CP2105 chip. Structure needs padding due to unused/unspecified bytes. 503 */ 504 struct cp210x_dual_port_config { 505 __le16 gpio_mode; 506 u8 __pad0[2]; 507 __le16 reset_state; 508 u8 __pad1[4]; 509 __le16 suspend_state; 510 u8 sci_cfg; 511 u8 eci_cfg; 512 u8 device_cfg; 513 } __packed; 514 515 /* 516 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xd bytes 517 * on a CP2104 chip. Structure needs padding due to unused/unspecified bytes. 518 */ 519 struct cp210x_single_port_config { 520 __le16 gpio_mode; 521 u8 __pad0[2]; 522 __le16 reset_state; 523 u8 __pad1[4]; 524 __le16 suspend_state; 525 u8 device_cfg; 526 } __packed; 527 528 /* GPIO modes */ 529 #define CP210X_SCI_GPIO_MODE_OFFSET 9 530 #define CP210X_SCI_GPIO_MODE_MASK GENMASK(11, 9) 531 532 #define CP210X_ECI_GPIO_MODE_OFFSET 2 533 #define CP210X_ECI_GPIO_MODE_MASK GENMASK(3, 2) 534 535 #define CP210X_GPIO_MODE_OFFSET 8 536 #define CP210X_GPIO_MODE_MASK GENMASK(11, 8) 537 538 /* CP2105 port configuration values */ 539 #define CP2105_GPIO0_TXLED_MODE BIT(0) 540 #define CP2105_GPIO1_RXLED_MODE BIT(1) 541 #define CP2105_GPIO1_RS485_MODE BIT(2) 542 543 /* CP2104 port configuration values */ 544 #define CP2104_GPIO0_TXLED_MODE BIT(0) 545 #define CP2104_GPIO1_RXLED_MODE BIT(1) 546 #define CP2104_GPIO2_RS485_MODE BIT(2) 547 548 struct cp210x_quad_port_state { 549 __le16 gpio_mode_pb0; 550 __le16 gpio_mode_pb1; 551 __le16 gpio_mode_pb2; 552 __le16 gpio_mode_pb3; 553 __le16 gpio_mode_pb4; 554 555 __le16 gpio_lowpower_pb0; 556 __le16 gpio_lowpower_pb1; 557 __le16 gpio_lowpower_pb2; 558 __le16 gpio_lowpower_pb3; 559 __le16 gpio_lowpower_pb4; 560 561 __le16 gpio_latch_pb0; 562 __le16 gpio_latch_pb1; 563 __le16 gpio_latch_pb2; 564 __le16 gpio_latch_pb3; 565 __le16 gpio_latch_pb4; 566 }; 567 568 /* 569 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0x49 bytes 570 * on a CP2108 chip. 571 * 572 * See https://www.silabs.com/documents/public/application-notes/an978-cp210x-usb-to-uart-api-specification.pdf 573 */ 574 struct cp210x_quad_port_config { 575 struct cp210x_quad_port_state reset_state; 576 struct cp210x_quad_port_state suspend_state; 577 u8 ipdelay_ifc[4]; 578 u8 enhancedfxn_ifc[4]; 579 u8 enhancedfxn_device; 580 u8 extclkfreq[4]; 581 } __packed; 582 583 #define CP2108_EF_IFC_GPIO_TXLED 0x01 584 #define CP2108_EF_IFC_GPIO_RXLED 0x02 585 #define CP2108_EF_IFC_GPIO_RS485 0x04 586 #define CP2108_EF_IFC_GPIO_RS485_LOGIC 0x08 587 #define CP2108_EF_IFC_GPIO_CLOCK 0x10 588 #define CP2108_EF_IFC_DYNAMIC_SUSPEND 0x40 589 590 /* CP2102N configuration array indices */ 591 #define CP210X_2NCONFIG_CONFIG_VERSION_IDX 2 592 #define CP210X_2NCONFIG_GPIO_MODE_IDX 581 593 #define CP210X_2NCONFIG_GPIO_RSTLATCH_IDX 587 594 #define CP210X_2NCONFIG_GPIO_CONTROL_IDX 600 595 596 /* CP2102N QFN20 port configuration values */ 597 #define CP2102N_QFN20_GPIO2_TXLED_MODE BIT(2) 598 #define CP2102N_QFN20_GPIO3_RXLED_MODE BIT(3) 599 #define CP2102N_QFN20_GPIO1_RS485_MODE BIT(4) 600 #define CP2102N_QFN20_GPIO0_CLK_MODE BIT(6) 601 602 /* 603 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x02 bytes 604 * for CP2102N, CP2103, CP2104 and CP2105. 605 */ 606 struct cp210x_gpio_write { 607 u8 mask; 608 u8 state; 609 }; 610 611 /* 612 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x04 bytes 613 * for CP2108. 614 */ 615 struct cp210x_gpio_write16 { 616 __le16 mask; 617 __le16 state; 618 }; 619 620 /* 621 * Helper to get interface number when we only have struct usb_serial. 622 */ 623 static u8 cp210x_interface_num(struct usb_serial *serial) 624 { 625 struct usb_host_interface *cur_altsetting; 626 627 cur_altsetting = serial->interface->cur_altsetting; 628 629 return cur_altsetting->desc.bInterfaceNumber; 630 } 631 632 /* 633 * Reads a variable-sized block of CP210X_ registers, identified by req. 634 * Returns data into buf in native USB byte order. 635 */ 636 static int cp210x_read_reg_block(struct usb_serial_port *port, u8 req, 637 void *buf, int bufsize) 638 { 639 struct usb_serial *serial = port->serial; 640 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 641 int result; 642 643 644 result = usb_control_msg_recv(serial->dev, 0, req, 645 REQTYPE_INTERFACE_TO_HOST, 0, 646 port_priv->bInterfaceNumber, buf, bufsize, 647 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 648 if (result) { 649 dev_err(&port->dev, "failed get req 0x%x size %d status: %d\n", 650 req, bufsize, result); 651 return result; 652 } 653 654 return 0; 655 } 656 657 /* 658 * Reads any 8-bit CP210X_ register identified by req. 659 */ 660 static int cp210x_read_u8_reg(struct usb_serial_port *port, u8 req, u8 *val) 661 { 662 return cp210x_read_reg_block(port, req, val, sizeof(*val)); 663 } 664 665 /* 666 * Reads a variable-sized vendor block of CP210X_ registers, identified by val. 667 * Returns data into buf in native USB byte order. 668 */ 669 static int cp210x_read_vendor_block(struct usb_serial *serial, u8 type, u16 val, 670 void *buf, int bufsize) 671 { 672 int result; 673 674 result = usb_control_msg_recv(serial->dev, 0, CP210X_VENDOR_SPECIFIC, 675 type, val, cp210x_interface_num(serial), buf, bufsize, 676 USB_CTRL_GET_TIMEOUT, GFP_KERNEL); 677 if (result) { 678 dev_err(&serial->interface->dev, 679 "failed to get vendor val 0x%04x size %d: %d\n", val, 680 bufsize, result); 681 return result; 682 } 683 684 return 0; 685 } 686 687 /* 688 * Writes any 16-bit CP210X_ register (req) whose value is passed 689 * entirely in the wValue field of the USB request. 690 */ 691 static int cp210x_write_u16_reg(struct usb_serial_port *port, u8 req, u16 val) 692 { 693 struct usb_serial *serial = port->serial; 694 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 695 int result; 696 697 result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), 698 req, REQTYPE_HOST_TO_INTERFACE, val, 699 port_priv->bInterfaceNumber, NULL, 0, 700 USB_CTRL_SET_TIMEOUT); 701 if (result < 0) { 702 dev_err(&port->dev, "failed set request 0x%x status: %d\n", 703 req, result); 704 } 705 706 return result; 707 } 708 709 /* 710 * Writes a variable-sized block of CP210X_ registers, identified by req. 711 * Data in buf must be in native USB byte order. 712 */ 713 static int cp210x_write_reg_block(struct usb_serial_port *port, u8 req, 714 void *buf, int bufsize) 715 { 716 struct usb_serial *serial = port->serial; 717 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 718 int result; 719 720 result = usb_control_msg_send(serial->dev, 0, req, 721 REQTYPE_HOST_TO_INTERFACE, 0, 722 port_priv->bInterfaceNumber, buf, bufsize, 723 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 724 if (result) { 725 dev_err(&port->dev, "failed set req 0x%x size %d status: %d\n", 726 req, bufsize, result); 727 return result; 728 } 729 730 return 0; 731 } 732 733 /* 734 * Writes any 32-bit CP210X_ register identified by req. 735 */ 736 static int cp210x_write_u32_reg(struct usb_serial_port *port, u8 req, u32 val) 737 { 738 __le32 le32_val; 739 740 le32_val = cpu_to_le32(val); 741 742 return cp210x_write_reg_block(port, req, &le32_val, sizeof(le32_val)); 743 } 744 745 #ifdef CONFIG_GPIOLIB 746 /* 747 * Writes a variable-sized vendor block of CP210X_ registers, identified by val. 748 * Data in buf must be in native USB byte order. 749 */ 750 static int cp210x_write_vendor_block(struct usb_serial *serial, u8 type, 751 u16 val, void *buf, int bufsize) 752 { 753 int result; 754 755 result = usb_control_msg_send(serial->dev, 0, CP210X_VENDOR_SPECIFIC, 756 type, val, cp210x_interface_num(serial), buf, bufsize, 757 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 758 if (result) { 759 dev_err(&serial->interface->dev, 760 "failed to set vendor val 0x%04x size %d: %d\n", val, 761 bufsize, result); 762 return result; 763 } 764 765 return 0; 766 } 767 #endif 768 769 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *port) 770 { 771 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 772 int result; 773 774 result = cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_ENABLE); 775 if (result) { 776 dev_err(&port->dev, "%s - Unable to enable UART\n", __func__); 777 return result; 778 } 779 780 if (tty) 781 cp210x_set_termios(tty, port, NULL); 782 783 result = usb_serial_generic_open(tty, port); 784 if (result) 785 goto err_disable; 786 787 return 0; 788 789 err_disable: 790 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 791 port_priv->event_mode = false; 792 793 return result; 794 } 795 796 static void cp210x_close(struct usb_serial_port *port) 797 { 798 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 799 800 usb_serial_generic_close(port); 801 802 /* Clear both queues; cp2108 needs this to avoid an occasional hang */ 803 cp210x_write_u16_reg(port, CP210X_PURGE, PURGE_ALL); 804 805 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 806 807 /* Disabling the interface disables event-insertion mode. */ 808 port_priv->event_mode = false; 809 } 810 811 static void cp210x_process_lsr(struct usb_serial_port *port, unsigned char lsr, char *flag) 812 { 813 if (lsr & CP210X_LSR_BREAK) { 814 port->icount.brk++; 815 *flag = TTY_BREAK; 816 } else if (lsr & CP210X_LSR_PARITY) { 817 port->icount.parity++; 818 *flag = TTY_PARITY; 819 } else if (lsr & CP210X_LSR_FRAME) { 820 port->icount.frame++; 821 *flag = TTY_FRAME; 822 } 823 824 if (lsr & CP210X_LSR_OVERRUN) { 825 port->icount.overrun++; 826 tty_insert_flip_char(&port->port, 0, TTY_OVERRUN); 827 } 828 } 829 830 static bool cp210x_process_char(struct usb_serial_port *port, unsigned char *ch, char *flag) 831 { 832 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 833 834 switch (port_priv->event_state) { 835 case ES_DATA: 836 if (*ch == CP210X_ESCCHAR) { 837 port_priv->event_state = ES_ESCAPE; 838 break; 839 } 840 return false; 841 case ES_ESCAPE: 842 switch (*ch) { 843 case 0: 844 dev_dbg(&port->dev, "%s - escape char\n", __func__); 845 *ch = CP210X_ESCCHAR; 846 port_priv->event_state = ES_DATA; 847 return false; 848 case 1: 849 port_priv->event_state = ES_LSR_DATA_0; 850 break; 851 case 2: 852 port_priv->event_state = ES_LSR; 853 break; 854 case 3: 855 port_priv->event_state = ES_MSR; 856 break; 857 default: 858 dev_err(&port->dev, "malformed event 0x%02x\n", *ch); 859 port_priv->event_state = ES_DATA; 860 break; 861 } 862 break; 863 case ES_LSR_DATA_0: 864 port_priv->lsr = *ch; 865 port_priv->event_state = ES_LSR_DATA_1; 866 break; 867 case ES_LSR_DATA_1: 868 dev_dbg(&port->dev, "%s - lsr = 0x%02x, data = 0x%02x\n", 869 __func__, port_priv->lsr, *ch); 870 cp210x_process_lsr(port, port_priv->lsr, flag); 871 port_priv->event_state = ES_DATA; 872 return false; 873 case ES_LSR: 874 dev_dbg(&port->dev, "%s - lsr = 0x%02x\n", __func__, *ch); 875 port_priv->lsr = *ch; 876 cp210x_process_lsr(port, port_priv->lsr, flag); 877 port_priv->event_state = ES_DATA; 878 break; 879 case ES_MSR: 880 dev_dbg(&port->dev, "%s - msr = 0x%02x\n", __func__, *ch); 881 /* unimplemented */ 882 port_priv->event_state = ES_DATA; 883 break; 884 } 885 886 return true; 887 } 888 889 static void cp210x_process_read_urb(struct urb *urb) 890 { 891 struct usb_serial_port *port = urb->context; 892 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 893 unsigned char *ch = urb->transfer_buffer; 894 char flag; 895 int i; 896 897 if (!urb->actual_length) 898 return; 899 900 if (port_priv->event_mode) { 901 for (i = 0; i < urb->actual_length; i++, ch++) { 902 flag = TTY_NORMAL; 903 904 if (cp210x_process_char(port, ch, &flag)) 905 continue; 906 907 tty_insert_flip_char(&port->port, *ch, flag); 908 } 909 } else { 910 tty_insert_flip_string(&port->port, ch, urb->actual_length); 911 } 912 tty_flip_buffer_push(&port->port); 913 } 914 915 /* 916 * Read how many bytes are waiting in the TX queue. 917 */ 918 static int cp210x_get_tx_queue_byte_count(struct usb_serial_port *port, 919 u32 *count) 920 { 921 struct usb_serial *serial = port->serial; 922 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 923 struct cp210x_comm_status sts; 924 int result; 925 926 result = usb_control_msg_recv(serial->dev, 0, CP210X_GET_COMM_STATUS, 927 REQTYPE_INTERFACE_TO_HOST, 0, 928 port_priv->bInterfaceNumber, &sts, sizeof(sts), 929 USB_CTRL_GET_TIMEOUT, GFP_KERNEL); 930 if (result) { 931 dev_err(&port->dev, "failed to get comm status: %d\n", result); 932 return result; 933 } 934 935 *count = le32_to_cpu(sts.ulAmountInOutQueue); 936 937 return 0; 938 } 939 940 static bool cp210x_tx_empty(struct usb_serial_port *port) 941 { 942 int err; 943 u32 count; 944 945 err = cp210x_get_tx_queue_byte_count(port, &count); 946 if (err) 947 return true; 948 949 return !count; 950 } 951 952 struct cp210x_rate { 953 speed_t rate; 954 speed_t high; 955 }; 956 957 static const struct cp210x_rate cp210x_an205_table1[] = { 958 { 300, 300 }, 959 { 600, 600 }, 960 { 1200, 1200 }, 961 { 1800, 1800 }, 962 { 2400, 2400 }, 963 { 4000, 4000 }, 964 { 4800, 4803 }, 965 { 7200, 7207 }, 966 { 9600, 9612 }, 967 { 14400, 14428 }, 968 { 16000, 16062 }, 969 { 19200, 19250 }, 970 { 28800, 28912 }, 971 { 38400, 38601 }, 972 { 51200, 51558 }, 973 { 56000, 56280 }, 974 { 57600, 58053 }, 975 { 64000, 64111 }, 976 { 76800, 77608 }, 977 { 115200, 117028 }, 978 { 128000, 129347 }, 979 { 153600, 156868 }, 980 { 230400, 237832 }, 981 { 250000, 254234 }, 982 { 256000, 273066 }, 983 { 460800, 491520 }, 984 { 500000, 567138 }, 985 { 576000, 670254 }, 986 { 921600, UINT_MAX } 987 }; 988 989 /* 990 * Quantises the baud rate as per AN205 Table 1 991 */ 992 static speed_t cp210x_get_an205_rate(speed_t baud) 993 { 994 int i; 995 996 for (i = 0; i < ARRAY_SIZE(cp210x_an205_table1); ++i) { 997 if (baud <= cp210x_an205_table1[i].high) 998 break; 999 } 1000 1001 return cp210x_an205_table1[i].rate; 1002 } 1003 1004 static speed_t cp210x_get_actual_rate(speed_t baud) 1005 { 1006 unsigned int prescale = 1; 1007 unsigned int div; 1008 1009 if (baud <= 365) 1010 prescale = 4; 1011 1012 div = DIV_ROUND_CLOSEST(48000000, 2 * prescale * baud); 1013 baud = 48000000 / (2 * prescale * div); 1014 1015 return baud; 1016 } 1017 1018 /* 1019 * CP2101 supports the following baud rates: 1020 * 1021 * 300, 600, 1200, 1800, 2400, 4800, 7200, 9600, 14400, 19200, 28800, 1022 * 38400, 56000, 57600, 115200, 128000, 230400, 460800, 921600 1023 * 1024 * CP2102 and CP2103 support the following additional rates: 1025 * 1026 * 4000, 16000, 51200, 64000, 76800, 153600, 250000, 256000, 500000, 1027 * 576000 1028 * 1029 * The device will map a requested rate to a supported one, but the result 1030 * of requests for rates greater than 1053257 is undefined (see AN205). 1031 * 1032 * CP2104, CP2105 and CP2110 support most rates up to 2M, 921k and 1M baud, 1033 * respectively, with an error less than 1%. The actual rates are determined 1034 * by 1035 * 1036 * div = round(freq / (2 x prescale x request)) 1037 * actual = freq / (2 x prescale x div) 1038 * 1039 * For CP2104 and CP2105 freq is 48Mhz and prescale is 4 for request <= 365bps 1040 * or 1 otherwise. 1041 * For CP2110 freq is 24Mhz and prescale is 4 for request <= 300bps or 1 1042 * otherwise. 1043 */ 1044 static void cp210x_change_speed(struct tty_struct *tty, 1045 struct usb_serial_port *port, 1046 const struct ktermios *old_termios) 1047 { 1048 struct usb_serial *serial = port->serial; 1049 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1050 u32 baud; 1051 1052 /* 1053 * This maps the requested rate to the actual rate, a valid rate on 1054 * cp2102 or cp2103, or to an arbitrary rate in [1M, max_speed]. 1055 * 1056 * NOTE: B0 is not implemented. 1057 */ 1058 baud = clamp(tty->termios.c_ospeed, priv->min_speed, priv->max_speed); 1059 1060 if (priv->use_actual_rate) 1061 baud = cp210x_get_actual_rate(baud); 1062 else if (baud < 1000000) 1063 baud = cp210x_get_an205_rate(baud); 1064 1065 dev_dbg(&port->dev, "%s - setting baud rate to %u\n", __func__, baud); 1066 if (cp210x_write_u32_reg(port, CP210X_SET_BAUDRATE, baud)) { 1067 dev_warn(&port->dev, "failed to set baud rate to %u\n", baud); 1068 if (old_termios) 1069 baud = old_termios->c_ospeed; 1070 else 1071 baud = 9600; 1072 } 1073 1074 tty_encode_baud_rate(tty, baud, baud); 1075 } 1076 1077 static void cp210x_enable_event_mode(struct usb_serial_port *port) 1078 { 1079 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1080 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1081 int ret; 1082 1083 if (port_priv->event_mode) 1084 return; 1085 1086 if (priv->no_event_mode) 1087 return; 1088 1089 port_priv->event_state = ES_DATA; 1090 port_priv->event_mode = true; 1091 1092 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, CP210X_ESCCHAR); 1093 if (ret) { 1094 dev_err(&port->dev, "failed to enable events: %d\n", ret); 1095 port_priv->event_mode = false; 1096 } 1097 } 1098 1099 static void cp210x_disable_event_mode(struct usb_serial_port *port) 1100 { 1101 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1102 int ret; 1103 1104 if (!port_priv->event_mode) 1105 return; 1106 1107 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, 0); 1108 if (ret) { 1109 dev_err(&port->dev, "failed to disable events: %d\n", ret); 1110 return; 1111 } 1112 1113 port_priv->event_mode = false; 1114 } 1115 1116 static bool cp210x_termios_change(const struct ktermios *a, const struct ktermios *b) 1117 { 1118 bool iflag_change, cc_change; 1119 1120 iflag_change = ((a->c_iflag ^ b->c_iflag) & (INPCK | IXON | IXOFF)); 1121 cc_change = a->c_cc[VSTART] != b->c_cc[VSTART] || 1122 a->c_cc[VSTOP] != b->c_cc[VSTOP]; 1123 1124 return tty_termios_hw_change(a, b) || iflag_change || cc_change; 1125 } 1126 1127 static void cp210x_set_flow_control(struct tty_struct *tty, 1128 struct usb_serial_port *port, 1129 const struct ktermios *old_termios) 1130 { 1131 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1132 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1133 struct cp210x_special_chars chars; 1134 struct cp210x_flow_ctl flow_ctl; 1135 u32 flow_repl; 1136 u32 ctl_hs; 1137 bool crtscts; 1138 int ret; 1139 1140 /* 1141 * Some CP2102N interpret ulXonLimit as ulFlowReplace (erratum 1142 * CP2102N_E104). Report back that flow control is not supported. 1143 */ 1144 if (priv->no_flow_control) { 1145 tty->termios.c_cflag &= ~CRTSCTS; 1146 tty->termios.c_iflag &= ~(IXON | IXOFF); 1147 } 1148 1149 if (old_termios && 1150 C_CRTSCTS(tty) == (old_termios->c_cflag & CRTSCTS) && 1151 I_IXON(tty) == (old_termios->c_iflag & IXON) && 1152 I_IXOFF(tty) == (old_termios->c_iflag & IXOFF) && 1153 START_CHAR(tty) == old_termios->c_cc[VSTART] && 1154 STOP_CHAR(tty) == old_termios->c_cc[VSTOP]) { 1155 return; 1156 } 1157 1158 if (I_IXON(tty) || I_IXOFF(tty)) { 1159 memset(&chars, 0, sizeof(chars)); 1160 1161 chars.bXonChar = START_CHAR(tty); 1162 chars.bXoffChar = STOP_CHAR(tty); 1163 1164 ret = cp210x_write_reg_block(port, CP210X_SET_CHARS, &chars, 1165 sizeof(chars)); 1166 if (ret) { 1167 dev_err(&port->dev, "failed to set special chars: %d\n", 1168 ret); 1169 } 1170 } 1171 1172 mutex_lock(&port_priv->mutex); 1173 1174 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1175 sizeof(flow_ctl)); 1176 if (ret) 1177 goto out_unlock; 1178 1179 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1180 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1181 1182 ctl_hs &= ~CP210X_SERIAL_DSR_HANDSHAKE; 1183 ctl_hs &= ~CP210X_SERIAL_DCD_HANDSHAKE; 1184 ctl_hs &= ~CP210X_SERIAL_DSR_SENSITIVITY; 1185 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1186 if (port_priv->dtr) 1187 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1188 else 1189 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1190 1191 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1192 if (C_CRTSCTS(tty)) { 1193 ctl_hs |= CP210X_SERIAL_CTS_HANDSHAKE; 1194 if (port_priv->rts) 1195 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1196 else 1197 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1198 crtscts = true; 1199 } else { 1200 ctl_hs &= ~CP210X_SERIAL_CTS_HANDSHAKE; 1201 if (port_priv->rts) 1202 flow_repl |= CP210X_SERIAL_RTS_ACTIVE; 1203 else 1204 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1205 crtscts = false; 1206 } 1207 1208 if (I_IXOFF(tty)) { 1209 flow_repl |= CP210X_SERIAL_AUTO_RECEIVE; 1210 1211 flow_ctl.ulXonLimit = cpu_to_le32(128); 1212 flow_ctl.ulXoffLimit = cpu_to_le32(128); 1213 } else { 1214 flow_repl &= ~CP210X_SERIAL_AUTO_RECEIVE; 1215 } 1216 1217 if (I_IXON(tty)) 1218 flow_repl |= CP210X_SERIAL_AUTO_TRANSMIT; 1219 else 1220 flow_repl &= ~CP210X_SERIAL_AUTO_TRANSMIT; 1221 1222 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", __func__, 1223 ctl_hs, flow_repl); 1224 1225 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1226 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1227 1228 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1229 sizeof(flow_ctl)); 1230 if (ret) 1231 goto out_unlock; 1232 1233 port_priv->crtscts = crtscts; 1234 out_unlock: 1235 mutex_unlock(&port_priv->mutex); 1236 } 1237 1238 static void cp210x_set_termios(struct tty_struct *tty, 1239 struct usb_serial_port *port, 1240 const struct ktermios *old_termios) 1241 { 1242 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1243 u16 bits; 1244 int ret; 1245 1246 if (old_termios && !cp210x_termios_change(&tty->termios, old_termios)) 1247 return; 1248 1249 if (!old_termios || tty->termios.c_ospeed != old_termios->c_ospeed) 1250 cp210x_change_speed(tty, port, old_termios); 1251 1252 /* CP2101 only supports CS8, 1 stop bit and non-stick parity. */ 1253 if (priv->partnum == CP210X_PARTNUM_CP2101) { 1254 tty->termios.c_cflag &= ~(CSIZE | CSTOPB | CMSPAR); 1255 tty->termios.c_cflag |= CS8; 1256 } 1257 1258 bits = 0; 1259 1260 switch (C_CSIZE(tty)) { 1261 case CS5: 1262 bits |= BITS_DATA_5; 1263 break; 1264 case CS6: 1265 bits |= BITS_DATA_6; 1266 break; 1267 case CS7: 1268 bits |= BITS_DATA_7; 1269 break; 1270 case CS8: 1271 default: 1272 bits |= BITS_DATA_8; 1273 break; 1274 } 1275 1276 if (C_PARENB(tty)) { 1277 if (C_CMSPAR(tty)) { 1278 if (C_PARODD(tty)) 1279 bits |= BITS_PARITY_MARK; 1280 else 1281 bits |= BITS_PARITY_SPACE; 1282 } else { 1283 if (C_PARODD(tty)) 1284 bits |= BITS_PARITY_ODD; 1285 else 1286 bits |= BITS_PARITY_EVEN; 1287 } 1288 } 1289 1290 if (C_CSTOPB(tty)) 1291 bits |= BITS_STOP_2; 1292 else 1293 bits |= BITS_STOP_1; 1294 1295 ret = cp210x_write_u16_reg(port, CP210X_SET_LINE_CTL, bits); 1296 if (ret) 1297 dev_err(&port->dev, "failed to set line control: %d\n", ret); 1298 1299 cp210x_set_flow_control(tty, port, old_termios); 1300 1301 /* 1302 * Enable event-insertion mode only if input parity checking is 1303 * enabled for now. 1304 */ 1305 if (I_INPCK(tty)) 1306 cp210x_enable_event_mode(port); 1307 else 1308 cp210x_disable_event_mode(port); 1309 } 1310 1311 static int cp210x_tiocmset(struct tty_struct *tty, 1312 unsigned int set, unsigned int clear) 1313 { 1314 struct usb_serial_port *port = tty->driver_data; 1315 return cp210x_tiocmset_port(port, set, clear); 1316 } 1317 1318 static int cp210x_tiocmset_port(struct usb_serial_port *port, 1319 unsigned int set, unsigned int clear) 1320 { 1321 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1322 struct cp210x_flow_ctl flow_ctl; 1323 u32 ctl_hs, flow_repl; 1324 u16 control = 0; 1325 int ret; 1326 1327 mutex_lock(&port_priv->mutex); 1328 1329 if (set & TIOCM_RTS) { 1330 port_priv->rts = true; 1331 control |= CONTROL_RTS; 1332 control |= CONTROL_WRITE_RTS; 1333 } 1334 if (set & TIOCM_DTR) { 1335 port_priv->dtr = true; 1336 control |= CONTROL_DTR; 1337 control |= CONTROL_WRITE_DTR; 1338 } 1339 if (clear & TIOCM_RTS) { 1340 port_priv->rts = false; 1341 control &= ~CONTROL_RTS; 1342 control |= CONTROL_WRITE_RTS; 1343 } 1344 if (clear & TIOCM_DTR) { 1345 port_priv->dtr = false; 1346 control &= ~CONTROL_DTR; 1347 control |= CONTROL_WRITE_DTR; 1348 } 1349 1350 /* 1351 * Use SET_FLOW to set DTR and enable/disable auto-RTS when hardware 1352 * flow control is enabled. 1353 */ 1354 if (port_priv->crtscts && control & CONTROL_WRITE_RTS) { 1355 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1356 sizeof(flow_ctl)); 1357 if (ret) 1358 goto out_unlock; 1359 1360 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1361 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1362 1363 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1364 if (port_priv->dtr) 1365 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1366 else 1367 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1368 1369 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1370 if (port_priv->rts) 1371 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1372 else 1373 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1374 1375 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1376 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1377 1378 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", 1379 __func__, ctl_hs, flow_repl); 1380 1381 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1382 sizeof(flow_ctl)); 1383 } else { 1384 dev_dbg(&port->dev, "%s - control = 0x%04x\n", __func__, control); 1385 1386 ret = cp210x_write_u16_reg(port, CP210X_SET_MHS, control); 1387 } 1388 out_unlock: 1389 mutex_unlock(&port_priv->mutex); 1390 1391 return ret; 1392 } 1393 1394 static void cp210x_dtr_rts(struct usb_serial_port *port, int on) 1395 { 1396 if (on) 1397 cp210x_tiocmset_port(port, TIOCM_DTR | TIOCM_RTS, 0); 1398 else 1399 cp210x_tiocmset_port(port, 0, TIOCM_DTR | TIOCM_RTS); 1400 } 1401 1402 static int cp210x_tiocmget(struct tty_struct *tty) 1403 { 1404 struct usb_serial_port *port = tty->driver_data; 1405 u8 control; 1406 int result; 1407 1408 result = cp210x_read_u8_reg(port, CP210X_GET_MDMSTS, &control); 1409 if (result) 1410 return result; 1411 1412 result = ((control & CONTROL_DTR) ? TIOCM_DTR : 0) 1413 |((control & CONTROL_RTS) ? TIOCM_RTS : 0) 1414 |((control & CONTROL_CTS) ? TIOCM_CTS : 0) 1415 |((control & CONTROL_DSR) ? TIOCM_DSR : 0) 1416 |((control & CONTROL_RING)? TIOCM_RI : 0) 1417 |((control & CONTROL_DCD) ? TIOCM_CD : 0); 1418 1419 dev_dbg(&port->dev, "%s - control = 0x%02x\n", __func__, control); 1420 1421 return result; 1422 } 1423 1424 static void cp210x_break_ctl(struct tty_struct *tty, int break_state) 1425 { 1426 struct usb_serial_port *port = tty->driver_data; 1427 u16 state; 1428 1429 if (break_state == 0) 1430 state = BREAK_OFF; 1431 else 1432 state = BREAK_ON; 1433 dev_dbg(&port->dev, "%s - turning break %s\n", __func__, 1434 state == BREAK_OFF ? "off" : "on"); 1435 cp210x_write_u16_reg(port, CP210X_SET_BREAK, state); 1436 } 1437 1438 #ifdef CONFIG_GPIOLIB 1439 static int cp210x_gpio_get(struct gpio_chip *gc, unsigned int gpio) 1440 { 1441 struct usb_serial *serial = gpiochip_get_data(gc); 1442 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1443 u8 req_type; 1444 u16 mask; 1445 int result; 1446 int len; 1447 1448 result = usb_autopm_get_interface(serial->interface); 1449 if (result) 1450 return result; 1451 1452 switch (priv->partnum) { 1453 case CP210X_PARTNUM_CP2105: 1454 req_type = REQTYPE_INTERFACE_TO_HOST; 1455 len = 1; 1456 break; 1457 case CP210X_PARTNUM_CP2108: 1458 req_type = REQTYPE_INTERFACE_TO_HOST; 1459 len = 2; 1460 break; 1461 default: 1462 req_type = REQTYPE_DEVICE_TO_HOST; 1463 len = 1; 1464 break; 1465 } 1466 1467 mask = 0; 1468 result = cp210x_read_vendor_block(serial, req_type, CP210X_READ_LATCH, 1469 &mask, len); 1470 1471 usb_autopm_put_interface(serial->interface); 1472 1473 if (result < 0) 1474 return result; 1475 1476 le16_to_cpus(&mask); 1477 1478 return !!(mask & BIT(gpio)); 1479 } 1480 1481 static void cp210x_gpio_set(struct gpio_chip *gc, unsigned int gpio, int value) 1482 { 1483 struct usb_serial *serial = gpiochip_get_data(gc); 1484 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1485 struct cp210x_gpio_write16 buf16; 1486 struct cp210x_gpio_write buf; 1487 u16 mask, state; 1488 u16 wIndex; 1489 int result; 1490 1491 if (value == 1) 1492 state = BIT(gpio); 1493 else 1494 state = 0; 1495 1496 mask = BIT(gpio); 1497 1498 result = usb_autopm_get_interface(serial->interface); 1499 if (result) 1500 goto out; 1501 1502 switch (priv->partnum) { 1503 case CP210X_PARTNUM_CP2105: 1504 buf.mask = (u8)mask; 1505 buf.state = (u8)state; 1506 result = cp210x_write_vendor_block(serial, 1507 REQTYPE_HOST_TO_INTERFACE, 1508 CP210X_WRITE_LATCH, &buf, 1509 sizeof(buf)); 1510 break; 1511 case CP210X_PARTNUM_CP2108: 1512 buf16.mask = cpu_to_le16(mask); 1513 buf16.state = cpu_to_le16(state); 1514 result = cp210x_write_vendor_block(serial, 1515 REQTYPE_HOST_TO_INTERFACE, 1516 CP210X_WRITE_LATCH, &buf16, 1517 sizeof(buf16)); 1518 break; 1519 default: 1520 wIndex = state << 8 | mask; 1521 result = usb_control_msg(serial->dev, 1522 usb_sndctrlpipe(serial->dev, 0), 1523 CP210X_VENDOR_SPECIFIC, 1524 REQTYPE_HOST_TO_DEVICE, 1525 CP210X_WRITE_LATCH, 1526 wIndex, 1527 NULL, 0, USB_CTRL_SET_TIMEOUT); 1528 break; 1529 } 1530 1531 usb_autopm_put_interface(serial->interface); 1532 out: 1533 if (result < 0) { 1534 dev_err(&serial->interface->dev, "failed to set GPIO value: %d\n", 1535 result); 1536 } 1537 } 1538 1539 static int cp210x_gpio_direction_get(struct gpio_chip *gc, unsigned int gpio) 1540 { 1541 struct usb_serial *serial = gpiochip_get_data(gc); 1542 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1543 1544 return priv->gpio_input & BIT(gpio); 1545 } 1546 1547 static int cp210x_gpio_direction_input(struct gpio_chip *gc, unsigned int gpio) 1548 { 1549 struct usb_serial *serial = gpiochip_get_data(gc); 1550 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1551 1552 if (priv->partnum == CP210X_PARTNUM_CP2105) { 1553 /* hardware does not support an input mode */ 1554 return -ENOTSUPP; 1555 } 1556 1557 /* push-pull pins cannot be changed to be inputs */ 1558 if (priv->gpio_pushpull & BIT(gpio)) 1559 return -EINVAL; 1560 1561 /* make sure to release pin if it is being driven low */ 1562 cp210x_gpio_set(gc, gpio, 1); 1563 1564 priv->gpio_input |= BIT(gpio); 1565 1566 return 0; 1567 } 1568 1569 static int cp210x_gpio_direction_output(struct gpio_chip *gc, unsigned int gpio, 1570 int value) 1571 { 1572 struct usb_serial *serial = gpiochip_get_data(gc); 1573 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1574 1575 priv->gpio_input &= ~BIT(gpio); 1576 cp210x_gpio_set(gc, gpio, value); 1577 1578 return 0; 1579 } 1580 1581 static int cp210x_gpio_set_config(struct gpio_chip *gc, unsigned int gpio, 1582 unsigned long config) 1583 { 1584 struct usb_serial *serial = gpiochip_get_data(gc); 1585 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1586 enum pin_config_param param = pinconf_to_config_param(config); 1587 1588 /* Succeed only if in correct mode (this can't be set at runtime) */ 1589 if ((param == PIN_CONFIG_DRIVE_PUSH_PULL) && 1590 (priv->gpio_pushpull & BIT(gpio))) 1591 return 0; 1592 1593 if ((param == PIN_CONFIG_DRIVE_OPEN_DRAIN) && 1594 !(priv->gpio_pushpull & BIT(gpio))) 1595 return 0; 1596 1597 return -ENOTSUPP; 1598 } 1599 1600 static int cp210x_gpio_init_valid_mask(struct gpio_chip *gc, 1601 unsigned long *valid_mask, unsigned int ngpios) 1602 { 1603 struct usb_serial *serial = gpiochip_get_data(gc); 1604 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1605 struct device *dev = &serial->interface->dev; 1606 unsigned long altfunc_mask = priv->gpio_altfunc; 1607 1608 bitmap_complement(valid_mask, &altfunc_mask, ngpios); 1609 1610 if (bitmap_empty(valid_mask, ngpios)) 1611 dev_dbg(dev, "no pin configured for GPIO\n"); 1612 else 1613 dev_dbg(dev, "GPIO.%*pbl configured for GPIO\n", ngpios, 1614 valid_mask); 1615 return 0; 1616 } 1617 1618 /* 1619 * This function is for configuring GPIO using shared pins, where other signals 1620 * are made unavailable by configuring the use of GPIO. This is believed to be 1621 * only applicable to the cp2105 at this point, the other devices supported by 1622 * this driver that provide GPIO do so in a way that does not impact other 1623 * signals and are thus expected to have very different initialisation. 1624 */ 1625 static int cp2105_gpioconf_init(struct usb_serial *serial) 1626 { 1627 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1628 struct cp210x_pin_mode mode; 1629 struct cp210x_dual_port_config config; 1630 u8 intf_num = cp210x_interface_num(serial); 1631 u8 iface_config; 1632 int result; 1633 1634 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1635 CP210X_GET_DEVICEMODE, &mode, 1636 sizeof(mode)); 1637 if (result < 0) 1638 return result; 1639 1640 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1641 CP210X_GET_PORTCONFIG, &config, 1642 sizeof(config)); 1643 if (result < 0) 1644 return result; 1645 1646 /* 2 banks of GPIO - One for the pins taken from each serial port */ 1647 if (intf_num == 0) { 1648 priv->gc.ngpio = 2; 1649 1650 if (mode.eci == CP210X_PIN_MODE_MODEM) { 1651 /* mark all GPIOs of this interface as reserved */ 1652 priv->gpio_altfunc = 0xff; 1653 return 0; 1654 } 1655 1656 iface_config = config.eci_cfg; 1657 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1658 CP210X_ECI_GPIO_MODE_MASK) >> 1659 CP210X_ECI_GPIO_MODE_OFFSET); 1660 } else if (intf_num == 1) { 1661 priv->gc.ngpio = 3; 1662 1663 if (mode.sci == CP210X_PIN_MODE_MODEM) { 1664 /* mark all GPIOs of this interface as reserved */ 1665 priv->gpio_altfunc = 0xff; 1666 return 0; 1667 } 1668 1669 iface_config = config.sci_cfg; 1670 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1671 CP210X_SCI_GPIO_MODE_MASK) >> 1672 CP210X_SCI_GPIO_MODE_OFFSET); 1673 } else { 1674 return -ENODEV; 1675 } 1676 1677 /* mark all pins which are not in GPIO mode */ 1678 if (iface_config & CP2105_GPIO0_TXLED_MODE) /* GPIO 0 */ 1679 priv->gpio_altfunc |= BIT(0); 1680 if (iface_config & (CP2105_GPIO1_RXLED_MODE | /* GPIO 1 */ 1681 CP2105_GPIO1_RS485_MODE)) 1682 priv->gpio_altfunc |= BIT(1); 1683 1684 /* driver implementation for CP2105 only supports outputs */ 1685 priv->gpio_input = 0; 1686 1687 return 0; 1688 } 1689 1690 static int cp2104_gpioconf_init(struct usb_serial *serial) 1691 { 1692 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1693 struct cp210x_single_port_config config; 1694 u8 iface_config; 1695 u8 gpio_latch; 1696 int result; 1697 u8 i; 1698 1699 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1700 CP210X_GET_PORTCONFIG, &config, 1701 sizeof(config)); 1702 if (result < 0) 1703 return result; 1704 1705 priv->gc.ngpio = 4; 1706 1707 iface_config = config.device_cfg; 1708 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1709 CP210X_GPIO_MODE_MASK) >> 1710 CP210X_GPIO_MODE_OFFSET); 1711 gpio_latch = (u8)((le16_to_cpu(config.reset_state) & 1712 CP210X_GPIO_MODE_MASK) >> 1713 CP210X_GPIO_MODE_OFFSET); 1714 1715 /* mark all pins which are not in GPIO mode */ 1716 if (iface_config & CP2104_GPIO0_TXLED_MODE) /* GPIO 0 */ 1717 priv->gpio_altfunc |= BIT(0); 1718 if (iface_config & CP2104_GPIO1_RXLED_MODE) /* GPIO 1 */ 1719 priv->gpio_altfunc |= BIT(1); 1720 if (iface_config & CP2104_GPIO2_RS485_MODE) /* GPIO 2 */ 1721 priv->gpio_altfunc |= BIT(2); 1722 1723 /* 1724 * Like CP2102N, CP2104 has also no strict input and output pin 1725 * modes. 1726 * Do the same input mode emulation as CP2102N. 1727 */ 1728 for (i = 0; i < priv->gc.ngpio; ++i) { 1729 /* 1730 * Set direction to "input" iff pin is open-drain and reset 1731 * value is 1. 1732 */ 1733 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1734 priv->gpio_input |= BIT(i); 1735 } 1736 1737 return 0; 1738 } 1739 1740 static int cp2108_gpio_init(struct usb_serial *serial) 1741 { 1742 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1743 struct cp210x_quad_port_config config; 1744 u16 gpio_latch; 1745 int result; 1746 u8 i; 1747 1748 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1749 CP210X_GET_PORTCONFIG, &config, 1750 sizeof(config)); 1751 if (result < 0) 1752 return result; 1753 1754 priv->gc.ngpio = 16; 1755 priv->gpio_pushpull = le16_to_cpu(config.reset_state.gpio_mode_pb1); 1756 gpio_latch = le16_to_cpu(config.reset_state.gpio_latch_pb1); 1757 1758 /* 1759 * Mark all pins which are not in GPIO mode. 1760 * 1761 * Refer to table 9.1 "GPIO Mode alternate Functions" in the datasheet: 1762 * https://www.silabs.com/documents/public/data-sheets/cp2108-datasheet.pdf 1763 * 1764 * Alternate functions of GPIO0 to GPIO3 are determine by enhancedfxn_ifc[0] 1765 * and the similarly for the other pins; enhancedfxn_ifc[1]: GPIO4 to GPIO7, 1766 * enhancedfxn_ifc[2]: GPIO8 to GPIO11, enhancedfxn_ifc[3]: GPIO12 to GPIO15. 1767 */ 1768 for (i = 0; i < 4; i++) { 1769 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_TXLED) 1770 priv->gpio_altfunc |= BIT(i * 4); 1771 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RXLED) 1772 priv->gpio_altfunc |= BIT((i * 4) + 1); 1773 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RS485) 1774 priv->gpio_altfunc |= BIT((i * 4) + 2); 1775 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_CLOCK) 1776 priv->gpio_altfunc |= BIT((i * 4) + 3); 1777 } 1778 1779 /* 1780 * Like CP2102N, CP2108 has also no strict input and output pin 1781 * modes. Do the same input mode emulation as CP2102N. 1782 */ 1783 for (i = 0; i < priv->gc.ngpio; ++i) { 1784 /* 1785 * Set direction to "input" iff pin is open-drain and reset 1786 * value is 1. 1787 */ 1788 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1789 priv->gpio_input |= BIT(i); 1790 } 1791 1792 return 0; 1793 } 1794 1795 static int cp2102n_gpioconf_init(struct usb_serial *serial) 1796 { 1797 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1798 const u16 config_size = 0x02a6; 1799 u8 gpio_rst_latch; 1800 u8 config_version; 1801 u8 gpio_pushpull; 1802 u8 *config_buf; 1803 u8 gpio_latch; 1804 u8 gpio_ctrl; 1805 int result; 1806 u8 i; 1807 1808 /* 1809 * Retrieve device configuration from the device. 1810 * The array received contains all customization settings done at the 1811 * factory/manufacturer. Format of the array is documented at the 1812 * time of writing at: 1813 * https://www.silabs.com/community/interface/knowledge-base.entry.html/2017/03/31/cp2102n_setconfig-xsfa 1814 */ 1815 config_buf = kmalloc(config_size, GFP_KERNEL); 1816 if (!config_buf) 1817 return -ENOMEM; 1818 1819 result = cp210x_read_vendor_block(serial, 1820 REQTYPE_DEVICE_TO_HOST, 1821 CP210X_READ_2NCONFIG, 1822 config_buf, 1823 config_size); 1824 if (result < 0) { 1825 kfree(config_buf); 1826 return result; 1827 } 1828 1829 config_version = config_buf[CP210X_2NCONFIG_CONFIG_VERSION_IDX]; 1830 gpio_pushpull = config_buf[CP210X_2NCONFIG_GPIO_MODE_IDX]; 1831 gpio_ctrl = config_buf[CP210X_2NCONFIG_GPIO_CONTROL_IDX]; 1832 gpio_rst_latch = config_buf[CP210X_2NCONFIG_GPIO_RSTLATCH_IDX]; 1833 1834 kfree(config_buf); 1835 1836 /* Make sure this is a config format we understand. */ 1837 if (config_version != 0x01) 1838 return -ENOTSUPP; 1839 1840 priv->gc.ngpio = 4; 1841 1842 /* 1843 * Get default pin states after reset. Needed so we can determine 1844 * the direction of an open-drain pin. 1845 */ 1846 gpio_latch = (gpio_rst_latch >> 3) & 0x0f; 1847 1848 /* 0 indicates open-drain mode, 1 is push-pull */ 1849 priv->gpio_pushpull = (gpio_pushpull >> 3) & 0x0f; 1850 1851 /* 0 indicates GPIO mode, 1 is alternate function */ 1852 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN20) { 1853 /* QFN20 is special... */ 1854 if (gpio_ctrl & CP2102N_QFN20_GPIO0_CLK_MODE) /* GPIO 0 */ 1855 priv->gpio_altfunc |= BIT(0); 1856 if (gpio_ctrl & CP2102N_QFN20_GPIO1_RS485_MODE) /* GPIO 1 */ 1857 priv->gpio_altfunc |= BIT(1); 1858 if (gpio_ctrl & CP2102N_QFN20_GPIO2_TXLED_MODE) /* GPIO 2 */ 1859 priv->gpio_altfunc |= BIT(2); 1860 if (gpio_ctrl & CP2102N_QFN20_GPIO3_RXLED_MODE) /* GPIO 3 */ 1861 priv->gpio_altfunc |= BIT(3); 1862 } else { 1863 priv->gpio_altfunc = (gpio_ctrl >> 2) & 0x0f; 1864 } 1865 1866 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN28) { 1867 /* 1868 * For the QFN28 package, GPIO4-6 are controlled by 1869 * the low three bits of the mode/latch fields. 1870 * Contrary to the document linked above, the bits for 1871 * the SUSPEND pins are elsewhere. No alternate 1872 * function is available for these pins. 1873 */ 1874 priv->gc.ngpio = 7; 1875 gpio_latch |= (gpio_rst_latch & 7) << 4; 1876 priv->gpio_pushpull |= (gpio_pushpull & 7) << 4; 1877 } 1878 1879 /* 1880 * The CP2102N does not strictly has input and output pin modes, 1881 * it only knows open-drain and push-pull modes which is set at 1882 * factory. An open-drain pin can function both as an 1883 * input or an output. We emulate input mode for open-drain pins 1884 * by making sure they are not driven low, and we do not allow 1885 * push-pull pins to be set as an input. 1886 */ 1887 for (i = 0; i < priv->gc.ngpio; ++i) { 1888 /* 1889 * Set direction to "input" iff pin is open-drain and reset 1890 * value is 1. 1891 */ 1892 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1893 priv->gpio_input |= BIT(i); 1894 } 1895 1896 return 0; 1897 } 1898 1899 static int cp210x_gpio_init(struct usb_serial *serial) 1900 { 1901 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1902 int result; 1903 1904 switch (priv->partnum) { 1905 case CP210X_PARTNUM_CP2104: 1906 result = cp2104_gpioconf_init(serial); 1907 break; 1908 case CP210X_PARTNUM_CP2105: 1909 result = cp2105_gpioconf_init(serial); 1910 break; 1911 case CP210X_PARTNUM_CP2108: 1912 /* 1913 * The GPIOs are not tied to any specific port so only register 1914 * once for interface 0. 1915 */ 1916 if (cp210x_interface_num(serial) != 0) 1917 return 0; 1918 result = cp2108_gpio_init(serial); 1919 break; 1920 case CP210X_PARTNUM_CP2102N_QFN28: 1921 case CP210X_PARTNUM_CP2102N_QFN24: 1922 case CP210X_PARTNUM_CP2102N_QFN20: 1923 result = cp2102n_gpioconf_init(serial); 1924 break; 1925 default: 1926 return 0; 1927 } 1928 1929 if (result < 0) 1930 return result; 1931 1932 priv->gc.label = "cp210x"; 1933 priv->gc.get_direction = cp210x_gpio_direction_get; 1934 priv->gc.direction_input = cp210x_gpio_direction_input; 1935 priv->gc.direction_output = cp210x_gpio_direction_output; 1936 priv->gc.get = cp210x_gpio_get; 1937 priv->gc.set = cp210x_gpio_set; 1938 priv->gc.set_config = cp210x_gpio_set_config; 1939 priv->gc.init_valid_mask = cp210x_gpio_init_valid_mask; 1940 priv->gc.owner = THIS_MODULE; 1941 priv->gc.parent = &serial->interface->dev; 1942 priv->gc.base = -1; 1943 priv->gc.can_sleep = true; 1944 1945 result = gpiochip_add_data(&priv->gc, serial); 1946 if (!result) 1947 priv->gpio_registered = true; 1948 1949 return result; 1950 } 1951 1952 static void cp210x_gpio_remove(struct usb_serial *serial) 1953 { 1954 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1955 1956 if (priv->gpio_registered) { 1957 gpiochip_remove(&priv->gc); 1958 priv->gpio_registered = false; 1959 } 1960 } 1961 1962 #else 1963 1964 static int cp210x_gpio_init(struct usb_serial *serial) 1965 { 1966 return 0; 1967 } 1968 1969 static void cp210x_gpio_remove(struct usb_serial *serial) 1970 { 1971 /* Nothing to do */ 1972 } 1973 1974 #endif 1975 1976 static int cp210x_port_probe(struct usb_serial_port *port) 1977 { 1978 struct usb_serial *serial = port->serial; 1979 struct cp210x_port_private *port_priv; 1980 1981 port_priv = kzalloc(sizeof(*port_priv), GFP_KERNEL); 1982 if (!port_priv) 1983 return -ENOMEM; 1984 1985 port_priv->bInterfaceNumber = cp210x_interface_num(serial); 1986 mutex_init(&port_priv->mutex); 1987 1988 usb_set_serial_port_data(port, port_priv); 1989 1990 return 0; 1991 } 1992 1993 static void cp210x_port_remove(struct usb_serial_port *port) 1994 { 1995 struct cp210x_port_private *port_priv; 1996 1997 port_priv = usb_get_serial_port_data(port); 1998 kfree(port_priv); 1999 } 2000 2001 static void cp210x_init_max_speed(struct usb_serial *serial) 2002 { 2003 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2004 bool use_actual_rate = false; 2005 speed_t min = 300; 2006 speed_t max; 2007 2008 switch (priv->partnum) { 2009 case CP210X_PARTNUM_CP2101: 2010 max = 921600; 2011 break; 2012 case CP210X_PARTNUM_CP2102: 2013 case CP210X_PARTNUM_CP2103: 2014 max = 1000000; 2015 break; 2016 case CP210X_PARTNUM_CP2104: 2017 use_actual_rate = true; 2018 max = 2000000; 2019 break; 2020 case CP210X_PARTNUM_CP2108: 2021 max = 2000000; 2022 break; 2023 case CP210X_PARTNUM_CP2105: 2024 if (cp210x_interface_num(serial) == 0) { 2025 use_actual_rate = true; 2026 max = 2000000; /* ECI */ 2027 } else { 2028 min = 2400; 2029 max = 921600; /* SCI */ 2030 } 2031 break; 2032 case CP210X_PARTNUM_CP2102N_QFN28: 2033 case CP210X_PARTNUM_CP2102N_QFN24: 2034 case CP210X_PARTNUM_CP2102N_QFN20: 2035 use_actual_rate = true; 2036 max = 3000000; 2037 break; 2038 default: 2039 max = 2000000; 2040 break; 2041 } 2042 2043 priv->min_speed = min; 2044 priv->max_speed = max; 2045 priv->use_actual_rate = use_actual_rate; 2046 } 2047 2048 static void cp2102_determine_quirks(struct usb_serial *serial) 2049 { 2050 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2051 u8 *buf; 2052 int ret; 2053 2054 buf = kmalloc(2, GFP_KERNEL); 2055 if (!buf) 2056 return; 2057 /* 2058 * Some (possibly counterfeit) CP2102 do not support event-insertion 2059 * mode and respond differently to malformed vendor requests. 2060 * Specifically, they return one instead of two bytes when sent a 2061 * two-byte part-number request. 2062 */ 2063 ret = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), 2064 CP210X_VENDOR_SPECIFIC, REQTYPE_DEVICE_TO_HOST, 2065 CP210X_GET_PARTNUM, 0, buf, 2, USB_CTRL_GET_TIMEOUT); 2066 if (ret == 1) { 2067 dev_dbg(&serial->interface->dev, 2068 "device does not support event-insertion mode\n"); 2069 priv->no_event_mode = true; 2070 } 2071 2072 kfree(buf); 2073 } 2074 2075 static int cp210x_get_fw_version(struct usb_serial *serial, u16 value) 2076 { 2077 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2078 u8 ver[3]; 2079 int ret; 2080 2081 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, value, 2082 ver, sizeof(ver)); 2083 if (ret) 2084 return ret; 2085 2086 dev_dbg(&serial->interface->dev, "%s - %d.%d.%d\n", __func__, 2087 ver[0], ver[1], ver[2]); 2088 2089 priv->fw_version = ver[0] << 16 | ver[1] << 8 | ver[2]; 2090 2091 return 0; 2092 } 2093 2094 static void cp210x_determine_type(struct usb_serial *serial) 2095 { 2096 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2097 int ret; 2098 2099 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 2100 CP210X_GET_PARTNUM, &priv->partnum, 2101 sizeof(priv->partnum)); 2102 if (ret < 0) { 2103 dev_warn(&serial->interface->dev, 2104 "querying part number failed\n"); 2105 priv->partnum = CP210X_PARTNUM_UNKNOWN; 2106 return; 2107 } 2108 2109 dev_dbg(&serial->interface->dev, "partnum = 0x%02x\n", priv->partnum); 2110 2111 switch (priv->partnum) { 2112 case CP210X_PARTNUM_CP2102: 2113 cp2102_determine_quirks(serial); 2114 break; 2115 case CP210X_PARTNUM_CP2105: 2116 case CP210X_PARTNUM_CP2108: 2117 cp210x_get_fw_version(serial, CP210X_GET_FW_VER); 2118 break; 2119 case CP210X_PARTNUM_CP2102N_QFN28: 2120 case CP210X_PARTNUM_CP2102N_QFN24: 2121 case CP210X_PARTNUM_CP2102N_QFN20: 2122 ret = cp210x_get_fw_version(serial, CP210X_GET_FW_VER_2N); 2123 if (ret) 2124 break; 2125 if (priv->fw_version <= 0x10004) 2126 priv->no_flow_control = true; 2127 break; 2128 default: 2129 break; 2130 } 2131 } 2132 2133 static int cp210x_attach(struct usb_serial *serial) 2134 { 2135 int result; 2136 struct cp210x_serial_private *priv; 2137 2138 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 2139 if (!priv) 2140 return -ENOMEM; 2141 2142 usb_set_serial_data(serial, priv); 2143 2144 cp210x_determine_type(serial); 2145 cp210x_init_max_speed(serial); 2146 2147 result = cp210x_gpio_init(serial); 2148 if (result < 0) { 2149 dev_err(&serial->interface->dev, "GPIO initialisation failed: %d\n", 2150 result); 2151 } 2152 2153 return 0; 2154 } 2155 2156 static void cp210x_disconnect(struct usb_serial *serial) 2157 { 2158 cp210x_gpio_remove(serial); 2159 } 2160 2161 static void cp210x_release(struct usb_serial *serial) 2162 { 2163 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2164 2165 cp210x_gpio_remove(serial); 2166 2167 kfree(priv); 2168 } 2169 2170 module_usb_serial_driver(serial_drivers, id_table); 2171 2172 MODULE_DESCRIPTION(DRIVER_DESC); 2173 MODULE_LICENSE("GPL v2"); 2174