1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Silicon Laboratories CP210x USB to RS232 serial adaptor driver 4 * 5 * Copyright (C) 2005 Craig Shelley (craig@microtron.org.uk) 6 * Copyright (C) 2010-2021 Johan Hovold (johan@kernel.org) 7 * 8 * Support to set flow control line levels using TIOCMGET and TIOCMSET 9 * thanks to Karl Hiramoto karl@hiramoto.org. RTSCTS hardware flow 10 * control thanks to Munir Nassar nassarmu@real-time.com 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/errno.h> 16 #include <linux/slab.h> 17 #include <linux/tty.h> 18 #include <linux/tty_flip.h> 19 #include <linux/module.h> 20 #include <linux/usb.h> 21 #include <linux/usb/serial.h> 22 #include <linux/gpio/driver.h> 23 #include <linux/bitops.h> 24 #include <linux/mutex.h> 25 26 #define DRIVER_DESC "Silicon Labs CP210x RS232 serial adaptor driver" 27 28 /* 29 * Function Prototypes 30 */ 31 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *); 32 static void cp210x_close(struct usb_serial_port *); 33 static void cp210x_change_speed(struct tty_struct *, struct usb_serial_port *, 34 const struct ktermios *); 35 static void cp210x_set_termios(struct tty_struct *, struct usb_serial_port *, 36 const struct ktermios *); 37 static bool cp210x_tx_empty(struct usb_serial_port *port); 38 static int cp210x_tiocmget(struct tty_struct *); 39 static int cp210x_tiocmset(struct tty_struct *, unsigned int, unsigned int); 40 static int cp210x_tiocmset_port(struct usb_serial_port *port, 41 unsigned int, unsigned int); 42 static int cp210x_break_ctl(struct tty_struct *, int); 43 static int cp210x_attach(struct usb_serial *); 44 static void cp210x_disconnect(struct usb_serial *); 45 static void cp210x_release(struct usb_serial *); 46 static int cp210x_port_probe(struct usb_serial_port *); 47 static void cp210x_port_remove(struct usb_serial_port *); 48 static void cp210x_dtr_rts(struct usb_serial_port *port, int on); 49 static void cp210x_process_read_urb(struct urb *urb); 50 static void cp210x_enable_event_mode(struct usb_serial_port *port); 51 static void cp210x_disable_event_mode(struct usb_serial_port *port); 52 53 static const struct usb_device_id id_table[] = { 54 { USB_DEVICE(0x0404, 0x034C) }, /* NCR Retail IO Box */ 55 { USB_DEVICE(0x045B, 0x0053) }, /* Renesas RX610 RX-Stick */ 56 { USB_DEVICE(0x0471, 0x066A) }, /* AKTAKOM ACE-1001 cable */ 57 { USB_DEVICE(0x0489, 0xE000) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 58 { USB_DEVICE(0x0489, 0xE003) }, /* Pirelli Broadband S.p.A, DP-L10 SIP/GSM Mobile */ 59 { USB_DEVICE(0x0745, 0x1000) }, /* CipherLab USB CCD Barcode Scanner 1000 */ 60 { USB_DEVICE(0x0846, 0x1100) }, /* NetGear Managed Switch M4100 series, M5300 series, M7100 series */ 61 { USB_DEVICE(0x08e6, 0x5501) }, /* Gemalto Prox-PU/CU contactless smartcard reader */ 62 { USB_DEVICE(0x08FD, 0x000A) }, /* Digianswer A/S , ZigBee/802.15.4 MAC Device */ 63 { USB_DEVICE(0x0908, 0x0070) }, /* Siemens SCALANCE LPE-9000 USB Serial Console */ 64 { USB_DEVICE(0x0908, 0x01FF) }, /* Siemens RUGGEDCOM USB Serial Console */ 65 { USB_DEVICE(0x0988, 0x0578) }, /* Teraoka AD2000 */ 66 { USB_DEVICE(0x0B00, 0x3070) }, /* Ingenico 3070 */ 67 { USB_DEVICE(0x0BED, 0x1100) }, /* MEI (TM) Cashflow-SC Bill/Voucher Acceptor */ 68 { USB_DEVICE(0x0BED, 0x1101) }, /* MEI series 2000 Combo Acceptor */ 69 { USB_DEVICE(0x0FCF, 0x1003) }, /* Dynastream ANT development board */ 70 { USB_DEVICE(0x0FCF, 0x1004) }, /* Dynastream ANT2USB */ 71 { USB_DEVICE(0x0FCF, 0x1006) }, /* Dynastream ANT development board */ 72 { USB_DEVICE(0x0FDE, 0xCA05) }, /* OWL Wireless Electricity Monitor CM-160 */ 73 { USB_DEVICE(0x106F, 0x0003) }, /* CPI / Money Controls Bulk Coin Recycler */ 74 { USB_DEVICE(0x10A6, 0xAA26) }, /* Knock-off DCU-11 cable */ 75 { USB_DEVICE(0x10AB, 0x10C5) }, /* Siemens MC60 Cable */ 76 { USB_DEVICE(0x10B5, 0xAC70) }, /* Nokia CA-42 USB */ 77 { USB_DEVICE(0x10C4, 0x0F91) }, /* Vstabi */ 78 { USB_DEVICE(0x10C4, 0x1101) }, /* Arkham Technology DS101 Bus Monitor */ 79 { USB_DEVICE(0x10C4, 0x1601) }, /* Arkham Technology DS101 Adapter */ 80 { USB_DEVICE(0x10C4, 0x800A) }, /* SPORTident BSM7-D-USB main station */ 81 { USB_DEVICE(0x10C4, 0x803B) }, /* Pololu USB-serial converter */ 82 { USB_DEVICE(0x10C4, 0x8044) }, /* Cygnal Debug Adapter */ 83 { USB_DEVICE(0x10C4, 0x804E) }, /* Software Bisque Paramount ME build-in converter */ 84 { USB_DEVICE(0x10C4, 0x8053) }, /* Enfora EDG1228 */ 85 { USB_DEVICE(0x10C4, 0x8054) }, /* Enfora GSM2228 */ 86 { USB_DEVICE(0x10C4, 0x8056) }, /* Lorenz Messtechnik devices */ 87 { USB_DEVICE(0x10C4, 0x8066) }, /* Argussoft In-System Programmer */ 88 { USB_DEVICE(0x10C4, 0x806F) }, /* IMS USB to RS422 Converter Cable */ 89 { USB_DEVICE(0x10C4, 0x807A) }, /* Crumb128 board */ 90 { USB_DEVICE(0x10C4, 0x80C4) }, /* Cygnal Integrated Products, Inc., Optris infrared thermometer */ 91 { USB_DEVICE(0x10C4, 0x80CA) }, /* Degree Controls Inc */ 92 { USB_DEVICE(0x10C4, 0x80DD) }, /* Tracient RFID */ 93 { USB_DEVICE(0x10C4, 0x80F6) }, /* Suunto sports instrument */ 94 { USB_DEVICE(0x10C4, 0x8115) }, /* Arygon NFC/Mifare Reader */ 95 { USB_DEVICE(0x10C4, 0x813D) }, /* Burnside Telecom Deskmobile */ 96 { USB_DEVICE(0x10C4, 0x813F) }, /* Tams Master Easy Control */ 97 { USB_DEVICE(0x10C4, 0x814A) }, /* West Mountain Radio RIGblaster P&P */ 98 { USB_DEVICE(0x10C4, 0x814B) }, /* West Mountain Radio RIGtalk */ 99 { USB_DEVICE(0x2405, 0x0003) }, /* West Mountain Radio RIGblaster Advantage */ 100 { USB_DEVICE(0x10C4, 0x8156) }, /* B&G H3000 link cable */ 101 { USB_DEVICE(0x10C4, 0x815E) }, /* Helicomm IP-Link 1220-DVM */ 102 { USB_DEVICE(0x10C4, 0x815F) }, /* Timewave HamLinkUSB */ 103 { USB_DEVICE(0x10C4, 0x817C) }, /* CESINEL MEDCAL N Power Quality Monitor */ 104 { USB_DEVICE(0x10C4, 0x817D) }, /* CESINEL MEDCAL NT Power Quality Monitor */ 105 { USB_DEVICE(0x10C4, 0x817E) }, /* CESINEL MEDCAL S Power Quality Monitor */ 106 { USB_DEVICE(0x10C4, 0x818B) }, /* AVIT Research USB to TTL */ 107 { USB_DEVICE(0x10C4, 0x819F) }, /* MJS USB Toslink Switcher */ 108 { USB_DEVICE(0x10C4, 0x81A6) }, /* ThinkOptics WavIt */ 109 { USB_DEVICE(0x10C4, 0x81A9) }, /* Multiplex RC Interface */ 110 { USB_DEVICE(0x10C4, 0x81AC) }, /* MSD Dash Hawk */ 111 { USB_DEVICE(0x10C4, 0x81AD) }, /* INSYS USB Modem */ 112 { USB_DEVICE(0x10C4, 0x81C8) }, /* Lipowsky Industrie Elektronik GmbH, Baby-JTAG */ 113 { USB_DEVICE(0x10C4, 0x81D7) }, /* IAI Corp. RCB-CV-USB USB to RS485 Adaptor */ 114 { USB_DEVICE(0x10C4, 0x81E2) }, /* Lipowsky Industrie Elektronik GmbH, Baby-LIN */ 115 { USB_DEVICE(0x10C4, 0x81E7) }, /* Aerocomm Radio */ 116 { USB_DEVICE(0x10C4, 0x81E8) }, /* Zephyr Bioharness */ 117 { USB_DEVICE(0x10C4, 0x81F2) }, /* C1007 HF band RFID controller */ 118 { USB_DEVICE(0x10C4, 0x8218) }, /* Lipowsky Industrie Elektronik GmbH, HARP-1 */ 119 { USB_DEVICE(0x10C4, 0x822B) }, /* Modem EDGE(GSM) Comander 2 */ 120 { USB_DEVICE(0x10C4, 0x826B) }, /* Cygnal Integrated Products, Inc., Fasttrax GPS demonstration module */ 121 { USB_DEVICE(0x10C4, 0x8281) }, /* Nanotec Plug & Drive */ 122 { USB_DEVICE(0x10C4, 0x8293) }, /* Telegesis ETRX2USB */ 123 { USB_DEVICE(0x10C4, 0x82AA) }, /* Silicon Labs IFS-USB-DATACABLE used with Quint UPS */ 124 { USB_DEVICE(0x10C4, 0x82EF) }, /* CESINEL FALCO 6105 AC Power Supply */ 125 { USB_DEVICE(0x10C4, 0x82F1) }, /* CESINEL MEDCAL EFD Earth Fault Detector */ 126 { USB_DEVICE(0x10C4, 0x82F2) }, /* CESINEL MEDCAL ST Network Analyzer */ 127 { USB_DEVICE(0x10C4, 0x82F4) }, /* Starizona MicroTouch */ 128 { USB_DEVICE(0x10C4, 0x82F9) }, /* Procyon AVS */ 129 { USB_DEVICE(0x10C4, 0x8341) }, /* Siemens MC35PU GPRS Modem */ 130 { USB_DEVICE(0x10C4, 0x8382) }, /* Cygnal Integrated Products, Inc. */ 131 { USB_DEVICE(0x10C4, 0x83A8) }, /* Amber Wireless AMB2560 */ 132 { USB_DEVICE(0x10C4, 0x83AA) }, /* Mark-10 Digital Force Gauge */ 133 { USB_DEVICE(0x10C4, 0x83D8) }, /* DekTec DTA Plus VHF/UHF Booster/Attenuator */ 134 { USB_DEVICE(0x10C4, 0x8411) }, /* Kyocera GPS Module */ 135 { USB_DEVICE(0x10C4, 0x8414) }, /* Decagon USB Cable Adapter */ 136 { USB_DEVICE(0x10C4, 0x8418) }, /* IRZ Automation Teleport SG-10 GSM/GPRS Modem */ 137 { USB_DEVICE(0x10C4, 0x846E) }, /* BEI USB Sensor Interface (VCP) */ 138 { USB_DEVICE(0x10C4, 0x8470) }, /* Juniper Networks BX Series System Console */ 139 { USB_DEVICE(0x10C4, 0x8477) }, /* Balluff RFID */ 140 { USB_DEVICE(0x10C4, 0x84B6) }, /* Starizona Hyperion */ 141 { USB_DEVICE(0x10C4, 0x851E) }, /* CESINEL MEDCAL PT Network Analyzer */ 142 { USB_DEVICE(0x10C4, 0x85A7) }, /* LifeScan OneTouch Verio IQ */ 143 { USB_DEVICE(0x10C4, 0x85B8) }, /* CESINEL ReCon T Energy Logger */ 144 { USB_DEVICE(0x10C4, 0x85EA) }, /* AC-Services IBUS-IF */ 145 { USB_DEVICE(0x10C4, 0x85EB) }, /* AC-Services CIS-IBUS */ 146 { USB_DEVICE(0x10C4, 0x85F8) }, /* Virtenio Preon32 */ 147 { USB_DEVICE(0x10C4, 0x8664) }, /* AC-Services CAN-IF */ 148 { USB_DEVICE(0x10C4, 0x8665) }, /* AC-Services OBD-IF */ 149 { USB_DEVICE(0x10C4, 0x87ED) }, /* IMST USB-Stick for Smart Meter */ 150 { USB_DEVICE(0x10C4, 0x8856) }, /* CEL EM357 ZigBee USB Stick - LR */ 151 { USB_DEVICE(0x10C4, 0x8857) }, /* CEL EM357 ZigBee USB Stick */ 152 { USB_DEVICE(0x10C4, 0x88A4) }, /* MMB Networks ZigBee USB Device */ 153 { USB_DEVICE(0x10C4, 0x88A5) }, /* Planet Innovation Ingeni ZigBee USB Device */ 154 { USB_DEVICE(0x10C4, 0x88D8) }, /* Acuity Brands nLight Air Adapter */ 155 { USB_DEVICE(0x10C4, 0x88FB) }, /* CESINEL MEDCAL STII Network Analyzer */ 156 { USB_DEVICE(0x10C4, 0x8938) }, /* CESINEL MEDCAL S II Network Analyzer */ 157 { USB_DEVICE(0x10C4, 0x8946) }, /* Ketra N1 Wireless Interface */ 158 { USB_DEVICE(0x10C4, 0x8962) }, /* Brim Brothers charging dock */ 159 { USB_DEVICE(0x10C4, 0x8977) }, /* CEL MeshWorks DevKit Device */ 160 { USB_DEVICE(0x10C4, 0x8998) }, /* KCF Technologies PRN */ 161 { USB_DEVICE(0x10C4, 0x89A4) }, /* CESINEL FTBC Flexible Thyristor Bridge Controller */ 162 { USB_DEVICE(0x10C4, 0x89FB) }, /* Qivicon ZigBee USB Radio Stick */ 163 { USB_DEVICE(0x10C4, 0x8A2A) }, /* HubZ dual ZigBee and Z-Wave dongle */ 164 { USB_DEVICE(0x10C4, 0x8A5B) }, /* CEL EM3588 ZigBee USB Stick */ 165 { USB_DEVICE(0x10C4, 0x8A5E) }, /* CEL EM3588 ZigBee USB Stick Long Range */ 166 { USB_DEVICE(0x10C4, 0x8B34) }, /* Qivicon ZigBee USB Radio Stick */ 167 { USB_DEVICE(0x10C4, 0xEA60) }, /* Silicon Labs factory default */ 168 { USB_DEVICE(0x10C4, 0xEA61) }, /* Silicon Labs factory default */ 169 { USB_DEVICE(0x10C4, 0xEA63) }, /* Silicon Labs Windows Update (CP2101-4/CP2102N) */ 170 { USB_DEVICE(0x10C4, 0xEA70) }, /* Silicon Labs factory default */ 171 { USB_DEVICE(0x10C4, 0xEA71) }, /* Infinity GPS-MIC-1 Radio Monophone */ 172 { USB_DEVICE(0x10C4, 0xEA7A) }, /* Silicon Labs Windows Update (CP2105) */ 173 { USB_DEVICE(0x10C4, 0xEA7B) }, /* Silicon Labs Windows Update (CP2108) */ 174 { USB_DEVICE(0x10C4, 0xF001) }, /* Elan Digital Systems USBscope50 */ 175 { USB_DEVICE(0x10C4, 0xF002) }, /* Elan Digital Systems USBwave12 */ 176 { USB_DEVICE(0x10C4, 0xF003) }, /* Elan Digital Systems USBpulse100 */ 177 { USB_DEVICE(0x10C4, 0xF004) }, /* Elan Digital Systems USBcount50 */ 178 { USB_DEVICE(0x10C5, 0xEA61) }, /* Silicon Labs MobiData GPRS USB Modem */ 179 { USB_DEVICE(0x10CE, 0xEA6A) }, /* Silicon Labs MobiData GPRS USB Modem 100EU */ 180 { USB_DEVICE(0x11CA, 0x0212) }, /* Verifone USB to Printer (UART, CP2102) */ 181 { USB_DEVICE(0x12B8, 0xEC60) }, /* Link G4 ECU */ 182 { USB_DEVICE(0x12B8, 0xEC62) }, /* Link G4+ ECU */ 183 { USB_DEVICE(0x13AD, 0x9999) }, /* Baltech card reader */ 184 { USB_DEVICE(0x1555, 0x0004) }, /* Owen AC4 USB-RS485 Converter */ 185 { USB_DEVICE(0x155A, 0x1006) }, /* ELDAT Easywave RX09 */ 186 { USB_DEVICE(0x166A, 0x0201) }, /* Clipsal 5500PACA C-Bus Pascal Automation Controller */ 187 { USB_DEVICE(0x166A, 0x0301) }, /* Clipsal 5800PC C-Bus Wireless PC Interface */ 188 { USB_DEVICE(0x166A, 0x0303) }, /* Clipsal 5500PCU C-Bus USB interface */ 189 { USB_DEVICE(0x166A, 0x0304) }, /* Clipsal 5000CT2 C-Bus Black and White Touchscreen */ 190 { USB_DEVICE(0x166A, 0x0305) }, /* Clipsal C-5000CT2 C-Bus Spectrum Colour Touchscreen */ 191 { USB_DEVICE(0x166A, 0x0401) }, /* Clipsal L51xx C-Bus Architectural Dimmer */ 192 { USB_DEVICE(0x166A, 0x0101) }, /* Clipsal 5560884 C-Bus Multi-room Audio Matrix Switcher */ 193 { USB_DEVICE(0x16C0, 0x09B0) }, /* Lunatico Seletek */ 194 { USB_DEVICE(0x16C0, 0x09B1) }, /* Lunatico Seletek */ 195 { USB_DEVICE(0x16D6, 0x0001) }, /* Jablotron serial interface */ 196 { USB_DEVICE(0x16DC, 0x0010) }, /* W-IE-NE-R Plein & Baus GmbH PL512 Power Supply */ 197 { USB_DEVICE(0x16DC, 0x0011) }, /* W-IE-NE-R Plein & Baus GmbH RCM Remote Control for MARATON Power Supply */ 198 { USB_DEVICE(0x16DC, 0x0012) }, /* W-IE-NE-R Plein & Baus GmbH MPOD Multi Channel Power Supply */ 199 { USB_DEVICE(0x16DC, 0x0015) }, /* W-IE-NE-R Plein & Baus GmbH CML Control, Monitoring and Data Logger */ 200 { USB_DEVICE(0x17A8, 0x0001) }, /* Kamstrup Optical Eye/3-wire */ 201 { USB_DEVICE(0x17A8, 0x0005) }, /* Kamstrup M-Bus Master MultiPort 250D */ 202 { USB_DEVICE(0x17A8, 0x0011) }, /* Kamstrup 444 MHz RF sniffer */ 203 { USB_DEVICE(0x17A8, 0x0013) }, /* Kamstrup 870 MHz RF sniffer */ 204 { USB_DEVICE(0x17A8, 0x0101) }, /* Kamstrup 868 MHz wM-Bus C-Mode Meter Reader (Int Ant) */ 205 { USB_DEVICE(0x17A8, 0x0102) }, /* Kamstrup 868 MHz wM-Bus C-Mode Meter Reader (Ext Ant) */ 206 { USB_DEVICE(0x17F4, 0xAAAA) }, /* Wavesense Jazz blood glucose meter */ 207 { USB_DEVICE(0x1843, 0x0200) }, /* Vaisala USB Instrument Cable */ 208 { USB_DEVICE(0x18EF, 0xE00F) }, /* ELV USB-I2C-Interface */ 209 { USB_DEVICE(0x18EF, 0xE025) }, /* ELV Marble Sound Board 1 */ 210 { USB_DEVICE(0x18EF, 0xE030) }, /* ELV ALC 8xxx Battery Charger */ 211 { USB_DEVICE(0x18EF, 0xE032) }, /* ELV TFD500 Data Logger */ 212 { USB_DEVICE(0x1901, 0x0190) }, /* GE B850 CP2105 Recorder interface */ 213 { USB_DEVICE(0x1901, 0x0193) }, /* GE B650 CP2104 PMC interface */ 214 { USB_DEVICE(0x1901, 0x0194) }, /* GE Healthcare Remote Alarm Box */ 215 { USB_DEVICE(0x1901, 0x0195) }, /* GE B850/B650/B450 CP2104 DP UART interface */ 216 { USB_DEVICE(0x1901, 0x0196) }, /* GE B850 CP2105 DP UART interface */ 217 { USB_DEVICE(0x1901, 0x0197) }, /* GE CS1000 M.2 Key E serial interface */ 218 { USB_DEVICE(0x1901, 0x0198) }, /* GE CS1000 Display serial interface */ 219 { USB_DEVICE(0x199B, 0xBA30) }, /* LORD WSDA-200-USB */ 220 { USB_DEVICE(0x19CF, 0x3000) }, /* Parrot NMEA GPS Flight Recorder */ 221 { USB_DEVICE(0x1ADB, 0x0001) }, /* Schweitzer Engineering C662 Cable */ 222 { USB_DEVICE(0x1B1C, 0x1C00) }, /* Corsair USB Dongle */ 223 { USB_DEVICE(0x1BA4, 0x0002) }, /* Silicon Labs 358x factory default */ 224 { USB_DEVICE(0x1BE3, 0x07A6) }, /* WAGO 750-923 USB Service Cable */ 225 { USB_DEVICE(0x1D6F, 0x0010) }, /* Seluxit ApS RF Dongle */ 226 { USB_DEVICE(0x1E29, 0x0102) }, /* Festo CPX-USB */ 227 { USB_DEVICE(0x1E29, 0x0501) }, /* Festo CMSP */ 228 { USB_DEVICE(0x1FB9, 0x0100) }, /* Lake Shore Model 121 Current Source */ 229 { USB_DEVICE(0x1FB9, 0x0200) }, /* Lake Shore Model 218A Temperature Monitor */ 230 { USB_DEVICE(0x1FB9, 0x0201) }, /* Lake Shore Model 219 Temperature Monitor */ 231 { USB_DEVICE(0x1FB9, 0x0202) }, /* Lake Shore Model 233 Temperature Transmitter */ 232 { USB_DEVICE(0x1FB9, 0x0203) }, /* Lake Shore Model 235 Temperature Transmitter */ 233 { USB_DEVICE(0x1FB9, 0x0300) }, /* Lake Shore Model 335 Temperature Controller */ 234 { USB_DEVICE(0x1FB9, 0x0301) }, /* Lake Shore Model 336 Temperature Controller */ 235 { USB_DEVICE(0x1FB9, 0x0302) }, /* Lake Shore Model 350 Temperature Controller */ 236 { USB_DEVICE(0x1FB9, 0x0303) }, /* Lake Shore Model 371 AC Bridge */ 237 { USB_DEVICE(0x1FB9, 0x0400) }, /* Lake Shore Model 411 Handheld Gaussmeter */ 238 { USB_DEVICE(0x1FB9, 0x0401) }, /* Lake Shore Model 425 Gaussmeter */ 239 { USB_DEVICE(0x1FB9, 0x0402) }, /* Lake Shore Model 455A Gaussmeter */ 240 { USB_DEVICE(0x1FB9, 0x0403) }, /* Lake Shore Model 475A Gaussmeter */ 241 { USB_DEVICE(0x1FB9, 0x0404) }, /* Lake Shore Model 465 Three Axis Gaussmeter */ 242 { USB_DEVICE(0x1FB9, 0x0600) }, /* Lake Shore Model 625A Superconducting MPS */ 243 { USB_DEVICE(0x1FB9, 0x0601) }, /* Lake Shore Model 642A Magnet Power Supply */ 244 { USB_DEVICE(0x1FB9, 0x0602) }, /* Lake Shore Model 648 Magnet Power Supply */ 245 { USB_DEVICE(0x1FB9, 0x0700) }, /* Lake Shore Model 737 VSM Controller */ 246 { USB_DEVICE(0x1FB9, 0x0701) }, /* Lake Shore Model 776 Hall Matrix */ 247 { USB_DEVICE(0x2184, 0x0030) }, /* GW Instek GDM-834x Digital Multimeter */ 248 { USB_DEVICE(0x2626, 0xEA60) }, /* Aruba Networks 7xxx USB Serial Console */ 249 { USB_DEVICE(0x3195, 0xF190) }, /* Link Instruments MSO-19 */ 250 { USB_DEVICE(0x3195, 0xF280) }, /* Link Instruments MSO-28 */ 251 { USB_DEVICE(0x3195, 0xF281) }, /* Link Instruments MSO-28 */ 252 { USB_DEVICE(0x3923, 0x7A0B) }, /* National Instruments USB Serial Console */ 253 { USB_DEVICE(0x413C, 0x9500) }, /* DW700 GPS USB interface */ 254 { } /* Terminating Entry */ 255 }; 256 257 MODULE_DEVICE_TABLE(usb, id_table); 258 259 struct cp210x_serial_private { 260 #ifdef CONFIG_GPIOLIB 261 struct gpio_chip gc; 262 bool gpio_registered; 263 u16 gpio_pushpull; 264 u16 gpio_altfunc; 265 u16 gpio_input; 266 #endif 267 u8 partnum; 268 u32 fw_version; 269 speed_t min_speed; 270 speed_t max_speed; 271 bool use_actual_rate; 272 bool no_flow_control; 273 bool no_event_mode; 274 }; 275 276 enum cp210x_event_state { 277 ES_DATA, 278 ES_ESCAPE, 279 ES_LSR, 280 ES_LSR_DATA_0, 281 ES_LSR_DATA_1, 282 ES_MSR 283 }; 284 285 struct cp210x_port_private { 286 u8 bInterfaceNumber; 287 bool event_mode; 288 enum cp210x_event_state event_state; 289 u8 lsr; 290 291 struct mutex mutex; 292 bool crtscts; 293 bool dtr; 294 bool rts; 295 }; 296 297 static struct usb_serial_driver cp210x_device = { 298 .driver = { 299 .owner = THIS_MODULE, 300 .name = "cp210x", 301 }, 302 .id_table = id_table, 303 .num_ports = 1, 304 .bulk_in_size = 256, 305 .bulk_out_size = 256, 306 .open = cp210x_open, 307 .close = cp210x_close, 308 .break_ctl = cp210x_break_ctl, 309 .set_termios = cp210x_set_termios, 310 .tx_empty = cp210x_tx_empty, 311 .throttle = usb_serial_generic_throttle, 312 .unthrottle = usb_serial_generic_unthrottle, 313 .tiocmget = cp210x_tiocmget, 314 .tiocmset = cp210x_tiocmset, 315 .get_icount = usb_serial_generic_get_icount, 316 .attach = cp210x_attach, 317 .disconnect = cp210x_disconnect, 318 .release = cp210x_release, 319 .port_probe = cp210x_port_probe, 320 .port_remove = cp210x_port_remove, 321 .dtr_rts = cp210x_dtr_rts, 322 .process_read_urb = cp210x_process_read_urb, 323 }; 324 325 static struct usb_serial_driver * const serial_drivers[] = { 326 &cp210x_device, NULL 327 }; 328 329 /* Config request types */ 330 #define REQTYPE_HOST_TO_INTERFACE 0x41 331 #define REQTYPE_INTERFACE_TO_HOST 0xc1 332 #define REQTYPE_HOST_TO_DEVICE 0x40 333 #define REQTYPE_DEVICE_TO_HOST 0xc0 334 335 /* Config request codes */ 336 #define CP210X_IFC_ENABLE 0x00 337 #define CP210X_SET_BAUDDIV 0x01 338 #define CP210X_GET_BAUDDIV 0x02 339 #define CP210X_SET_LINE_CTL 0x03 340 #define CP210X_GET_LINE_CTL 0x04 341 #define CP210X_SET_BREAK 0x05 342 #define CP210X_IMM_CHAR 0x06 343 #define CP210X_SET_MHS 0x07 344 #define CP210X_GET_MDMSTS 0x08 345 #define CP210X_SET_XON 0x09 346 #define CP210X_SET_XOFF 0x0A 347 #define CP210X_SET_EVENTMASK 0x0B 348 #define CP210X_GET_EVENTMASK 0x0C 349 #define CP210X_SET_CHAR 0x0D 350 #define CP210X_GET_CHARS 0x0E 351 #define CP210X_GET_PROPS 0x0F 352 #define CP210X_GET_COMM_STATUS 0x10 353 #define CP210X_RESET 0x11 354 #define CP210X_PURGE 0x12 355 #define CP210X_SET_FLOW 0x13 356 #define CP210X_GET_FLOW 0x14 357 #define CP210X_EMBED_EVENTS 0x15 358 #define CP210X_GET_EVENTSTATE 0x16 359 #define CP210X_SET_CHARS 0x19 360 #define CP210X_GET_BAUDRATE 0x1D 361 #define CP210X_SET_BAUDRATE 0x1E 362 #define CP210X_VENDOR_SPECIFIC 0xFF 363 364 /* CP210X_IFC_ENABLE */ 365 #define UART_ENABLE 0x0001 366 #define UART_DISABLE 0x0000 367 368 /* CP210X_(SET|GET)_BAUDDIV */ 369 #define BAUD_RATE_GEN_FREQ 0x384000 370 371 /* CP210X_(SET|GET)_LINE_CTL */ 372 #define BITS_DATA_MASK 0X0f00 373 #define BITS_DATA_5 0X0500 374 #define BITS_DATA_6 0X0600 375 #define BITS_DATA_7 0X0700 376 #define BITS_DATA_8 0X0800 377 #define BITS_DATA_9 0X0900 378 379 #define BITS_PARITY_MASK 0x00f0 380 #define BITS_PARITY_NONE 0x0000 381 #define BITS_PARITY_ODD 0x0010 382 #define BITS_PARITY_EVEN 0x0020 383 #define BITS_PARITY_MARK 0x0030 384 #define BITS_PARITY_SPACE 0x0040 385 386 #define BITS_STOP_MASK 0x000f 387 #define BITS_STOP_1 0x0000 388 #define BITS_STOP_1_5 0x0001 389 #define BITS_STOP_2 0x0002 390 391 /* CP210X_SET_BREAK */ 392 #define BREAK_ON 0x0001 393 #define BREAK_OFF 0x0000 394 395 /* CP210X_(SET_MHS|GET_MDMSTS) */ 396 #define CONTROL_DTR 0x0001 397 #define CONTROL_RTS 0x0002 398 #define CONTROL_CTS 0x0010 399 #define CONTROL_DSR 0x0020 400 #define CONTROL_RING 0x0040 401 #define CONTROL_DCD 0x0080 402 #define CONTROL_WRITE_DTR 0x0100 403 #define CONTROL_WRITE_RTS 0x0200 404 405 /* CP210X_(GET|SET)_CHARS */ 406 struct cp210x_special_chars { 407 u8 bEofChar; 408 u8 bErrorChar; 409 u8 bBreakChar; 410 u8 bEventChar; 411 u8 bXonChar; 412 u8 bXoffChar; 413 }; 414 415 /* CP210X_VENDOR_SPECIFIC values */ 416 #define CP210X_GET_FW_VER 0x000E 417 #define CP210X_READ_2NCONFIG 0x000E 418 #define CP210X_GET_FW_VER_2N 0x0010 419 #define CP210X_READ_LATCH 0x00C2 420 #define CP210X_GET_PARTNUM 0x370B 421 #define CP210X_GET_PORTCONFIG 0x370C 422 #define CP210X_GET_DEVICEMODE 0x3711 423 #define CP210X_WRITE_LATCH 0x37E1 424 425 /* Part number definitions */ 426 #define CP210X_PARTNUM_CP2101 0x01 427 #define CP210X_PARTNUM_CP2102 0x02 428 #define CP210X_PARTNUM_CP2103 0x03 429 #define CP210X_PARTNUM_CP2104 0x04 430 #define CP210X_PARTNUM_CP2105 0x05 431 #define CP210X_PARTNUM_CP2108 0x08 432 #define CP210X_PARTNUM_CP2102N_QFN28 0x20 433 #define CP210X_PARTNUM_CP2102N_QFN24 0x21 434 #define CP210X_PARTNUM_CP2102N_QFN20 0x22 435 #define CP210X_PARTNUM_UNKNOWN 0xFF 436 437 /* CP210X_GET_COMM_STATUS returns these 0x13 bytes */ 438 struct cp210x_comm_status { 439 __le32 ulErrors; 440 __le32 ulHoldReasons; 441 __le32 ulAmountInInQueue; 442 __le32 ulAmountInOutQueue; 443 u8 bEofReceived; 444 u8 bWaitForImmediate; 445 u8 bReserved; 446 } __packed; 447 448 /* 449 * CP210X_PURGE - 16 bits passed in wValue of USB request. 450 * SiLabs app note AN571 gives a strange description of the 4 bits: 451 * bit 0 or bit 2 clears the transmit queue and 1 or 3 receive. 452 * writing 1 to all, however, purges cp2108 well enough to avoid the hang. 453 */ 454 #define PURGE_ALL 0x000f 455 456 /* CP210X_EMBED_EVENTS */ 457 #define CP210X_ESCCHAR 0xec 458 459 #define CP210X_LSR_OVERRUN BIT(1) 460 #define CP210X_LSR_PARITY BIT(2) 461 #define CP210X_LSR_FRAME BIT(3) 462 #define CP210X_LSR_BREAK BIT(4) 463 464 465 /* CP210X_GET_FLOW/CP210X_SET_FLOW read/write these 0x10 bytes */ 466 struct cp210x_flow_ctl { 467 __le32 ulControlHandshake; 468 __le32 ulFlowReplace; 469 __le32 ulXonLimit; 470 __le32 ulXoffLimit; 471 }; 472 473 /* cp210x_flow_ctl::ulControlHandshake */ 474 #define CP210X_SERIAL_DTR_MASK GENMASK(1, 0) 475 #define CP210X_SERIAL_DTR_INACTIVE (0 << 0) 476 #define CP210X_SERIAL_DTR_ACTIVE (1 << 0) 477 #define CP210X_SERIAL_DTR_FLOW_CTL (2 << 0) 478 #define CP210X_SERIAL_CTS_HANDSHAKE BIT(3) 479 #define CP210X_SERIAL_DSR_HANDSHAKE BIT(4) 480 #define CP210X_SERIAL_DCD_HANDSHAKE BIT(5) 481 #define CP210X_SERIAL_DSR_SENSITIVITY BIT(6) 482 483 /* cp210x_flow_ctl::ulFlowReplace */ 484 #define CP210X_SERIAL_AUTO_TRANSMIT BIT(0) 485 #define CP210X_SERIAL_AUTO_RECEIVE BIT(1) 486 #define CP210X_SERIAL_ERROR_CHAR BIT(2) 487 #define CP210X_SERIAL_NULL_STRIPPING BIT(3) 488 #define CP210X_SERIAL_BREAK_CHAR BIT(4) 489 #define CP210X_SERIAL_RTS_MASK GENMASK(7, 6) 490 #define CP210X_SERIAL_RTS_INACTIVE (0 << 6) 491 #define CP210X_SERIAL_RTS_ACTIVE (1 << 6) 492 #define CP210X_SERIAL_RTS_FLOW_CTL (2 << 6) 493 #define CP210X_SERIAL_XOFF_CONTINUE BIT(31) 494 495 /* CP210X_VENDOR_SPECIFIC, CP210X_GET_DEVICEMODE call reads these 0x2 bytes. */ 496 struct cp210x_pin_mode { 497 u8 eci; 498 u8 sci; 499 }; 500 501 #define CP210X_PIN_MODE_MODEM 0 502 #define CP210X_PIN_MODE_GPIO BIT(0) 503 504 /* 505 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xf bytes 506 * on a CP2105 chip. Structure needs padding due to unused/unspecified bytes. 507 */ 508 struct cp210x_dual_port_config { 509 __le16 gpio_mode; 510 u8 __pad0[2]; 511 __le16 reset_state; 512 u8 __pad1[4]; 513 __le16 suspend_state; 514 u8 sci_cfg; 515 u8 eci_cfg; 516 u8 device_cfg; 517 } __packed; 518 519 /* 520 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0xd bytes 521 * on a CP2104 chip. Structure needs padding due to unused/unspecified bytes. 522 */ 523 struct cp210x_single_port_config { 524 __le16 gpio_mode; 525 u8 __pad0[2]; 526 __le16 reset_state; 527 u8 __pad1[4]; 528 __le16 suspend_state; 529 u8 device_cfg; 530 } __packed; 531 532 /* GPIO modes */ 533 #define CP210X_SCI_GPIO_MODE_OFFSET 9 534 #define CP210X_SCI_GPIO_MODE_MASK GENMASK(11, 9) 535 536 #define CP210X_ECI_GPIO_MODE_OFFSET 2 537 #define CP210X_ECI_GPIO_MODE_MASK GENMASK(3, 2) 538 539 #define CP210X_GPIO_MODE_OFFSET 8 540 #define CP210X_GPIO_MODE_MASK GENMASK(11, 8) 541 542 /* CP2105 port configuration values */ 543 #define CP2105_GPIO0_TXLED_MODE BIT(0) 544 #define CP2105_GPIO1_RXLED_MODE BIT(1) 545 #define CP2105_GPIO1_RS485_MODE BIT(2) 546 547 /* CP2104 port configuration values */ 548 #define CP2104_GPIO0_TXLED_MODE BIT(0) 549 #define CP2104_GPIO1_RXLED_MODE BIT(1) 550 #define CP2104_GPIO2_RS485_MODE BIT(2) 551 552 struct cp210x_quad_port_state { 553 __le16 gpio_mode_pb0; 554 __le16 gpio_mode_pb1; 555 __le16 gpio_mode_pb2; 556 __le16 gpio_mode_pb3; 557 __le16 gpio_mode_pb4; 558 559 __le16 gpio_lowpower_pb0; 560 __le16 gpio_lowpower_pb1; 561 __le16 gpio_lowpower_pb2; 562 __le16 gpio_lowpower_pb3; 563 __le16 gpio_lowpower_pb4; 564 565 __le16 gpio_latch_pb0; 566 __le16 gpio_latch_pb1; 567 __le16 gpio_latch_pb2; 568 __le16 gpio_latch_pb3; 569 __le16 gpio_latch_pb4; 570 }; 571 572 /* 573 * CP210X_VENDOR_SPECIFIC, CP210X_GET_PORTCONFIG call reads these 0x49 bytes 574 * on a CP2108 chip. 575 * 576 * See https://www.silabs.com/documents/public/application-notes/an978-cp210x-usb-to-uart-api-specification.pdf 577 */ 578 struct cp210x_quad_port_config { 579 struct cp210x_quad_port_state reset_state; 580 struct cp210x_quad_port_state suspend_state; 581 u8 ipdelay_ifc[4]; 582 u8 enhancedfxn_ifc[4]; 583 u8 enhancedfxn_device; 584 u8 extclkfreq[4]; 585 } __packed; 586 587 #define CP2108_EF_IFC_GPIO_TXLED 0x01 588 #define CP2108_EF_IFC_GPIO_RXLED 0x02 589 #define CP2108_EF_IFC_GPIO_RS485 0x04 590 #define CP2108_EF_IFC_GPIO_RS485_LOGIC 0x08 591 #define CP2108_EF_IFC_GPIO_CLOCK 0x10 592 #define CP2108_EF_IFC_DYNAMIC_SUSPEND 0x40 593 594 /* CP2102N configuration array indices */ 595 #define CP210X_2NCONFIG_CONFIG_VERSION_IDX 2 596 #define CP210X_2NCONFIG_GPIO_MODE_IDX 581 597 #define CP210X_2NCONFIG_GPIO_RSTLATCH_IDX 587 598 #define CP210X_2NCONFIG_GPIO_CONTROL_IDX 600 599 600 /* CP2102N QFN20 port configuration values */ 601 #define CP2102N_QFN20_GPIO2_TXLED_MODE BIT(2) 602 #define CP2102N_QFN20_GPIO3_RXLED_MODE BIT(3) 603 #define CP2102N_QFN20_GPIO1_RS485_MODE BIT(4) 604 #define CP2102N_QFN20_GPIO0_CLK_MODE BIT(6) 605 606 /* 607 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x02 bytes 608 * for CP2102N, CP2103, CP2104 and CP2105. 609 */ 610 struct cp210x_gpio_write { 611 u8 mask; 612 u8 state; 613 }; 614 615 /* 616 * CP210X_VENDOR_SPECIFIC, CP210X_WRITE_LATCH call writes these 0x04 bytes 617 * for CP2108. 618 */ 619 struct cp210x_gpio_write16 { 620 __le16 mask; 621 __le16 state; 622 }; 623 624 /* 625 * Helper to get interface number when we only have struct usb_serial. 626 */ 627 static u8 cp210x_interface_num(struct usb_serial *serial) 628 { 629 struct usb_host_interface *cur_altsetting; 630 631 cur_altsetting = serial->interface->cur_altsetting; 632 633 return cur_altsetting->desc.bInterfaceNumber; 634 } 635 636 /* 637 * Reads a variable-sized block of CP210X_ registers, identified by req. 638 * Returns data into buf in native USB byte order. 639 */ 640 static int cp210x_read_reg_block(struct usb_serial_port *port, u8 req, 641 void *buf, int bufsize) 642 { 643 struct usb_serial *serial = port->serial; 644 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 645 int result; 646 647 648 result = usb_control_msg_recv(serial->dev, 0, req, 649 REQTYPE_INTERFACE_TO_HOST, 0, 650 port_priv->bInterfaceNumber, buf, bufsize, 651 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 652 if (result) { 653 dev_err(&port->dev, "failed get req 0x%x size %d status: %d\n", 654 req, bufsize, result); 655 return result; 656 } 657 658 return 0; 659 } 660 661 /* 662 * Reads any 8-bit CP210X_ register identified by req. 663 */ 664 static int cp210x_read_u8_reg(struct usb_serial_port *port, u8 req, u8 *val) 665 { 666 return cp210x_read_reg_block(port, req, val, sizeof(*val)); 667 } 668 669 /* 670 * Reads a variable-sized vendor block of CP210X_ registers, identified by val. 671 * Returns data into buf in native USB byte order. 672 */ 673 static int cp210x_read_vendor_block(struct usb_serial *serial, u8 type, u16 val, 674 void *buf, int bufsize) 675 { 676 int result; 677 678 result = usb_control_msg_recv(serial->dev, 0, CP210X_VENDOR_SPECIFIC, 679 type, val, cp210x_interface_num(serial), buf, bufsize, 680 USB_CTRL_GET_TIMEOUT, GFP_KERNEL); 681 if (result) { 682 dev_err(&serial->interface->dev, 683 "failed to get vendor val 0x%04x size %d: %d\n", val, 684 bufsize, result); 685 return result; 686 } 687 688 return 0; 689 } 690 691 /* 692 * Writes any 16-bit CP210X_ register (req) whose value is passed 693 * entirely in the wValue field of the USB request. 694 */ 695 static int cp210x_write_u16_reg(struct usb_serial_port *port, u8 req, u16 val) 696 { 697 struct usb_serial *serial = port->serial; 698 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 699 int result; 700 701 result = usb_control_msg(serial->dev, usb_sndctrlpipe(serial->dev, 0), 702 req, REQTYPE_HOST_TO_INTERFACE, val, 703 port_priv->bInterfaceNumber, NULL, 0, 704 USB_CTRL_SET_TIMEOUT); 705 if (result < 0) { 706 dev_err(&port->dev, "failed set request 0x%x status: %d\n", 707 req, result); 708 } 709 710 return result; 711 } 712 713 /* 714 * Writes a variable-sized block of CP210X_ registers, identified by req. 715 * Data in buf must be in native USB byte order. 716 */ 717 static int cp210x_write_reg_block(struct usb_serial_port *port, u8 req, 718 void *buf, int bufsize) 719 { 720 struct usb_serial *serial = port->serial; 721 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 722 int result; 723 724 result = usb_control_msg_send(serial->dev, 0, req, 725 REQTYPE_HOST_TO_INTERFACE, 0, 726 port_priv->bInterfaceNumber, buf, bufsize, 727 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 728 if (result) { 729 dev_err(&port->dev, "failed set req 0x%x size %d status: %d\n", 730 req, bufsize, result); 731 return result; 732 } 733 734 return 0; 735 } 736 737 /* 738 * Writes any 32-bit CP210X_ register identified by req. 739 */ 740 static int cp210x_write_u32_reg(struct usb_serial_port *port, u8 req, u32 val) 741 { 742 __le32 le32_val; 743 744 le32_val = cpu_to_le32(val); 745 746 return cp210x_write_reg_block(port, req, &le32_val, sizeof(le32_val)); 747 } 748 749 #ifdef CONFIG_GPIOLIB 750 /* 751 * Writes a variable-sized vendor block of CP210X_ registers, identified by val. 752 * Data in buf must be in native USB byte order. 753 */ 754 static int cp210x_write_vendor_block(struct usb_serial *serial, u8 type, 755 u16 val, void *buf, int bufsize) 756 { 757 int result; 758 759 result = usb_control_msg_send(serial->dev, 0, CP210X_VENDOR_SPECIFIC, 760 type, val, cp210x_interface_num(serial), buf, bufsize, 761 USB_CTRL_SET_TIMEOUT, GFP_KERNEL); 762 if (result) { 763 dev_err(&serial->interface->dev, 764 "failed to set vendor val 0x%04x size %d: %d\n", val, 765 bufsize, result); 766 return result; 767 } 768 769 return 0; 770 } 771 #endif 772 773 static int cp210x_open(struct tty_struct *tty, struct usb_serial_port *port) 774 { 775 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 776 int result; 777 778 result = cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_ENABLE); 779 if (result) { 780 dev_err(&port->dev, "%s - Unable to enable UART\n", __func__); 781 return result; 782 } 783 784 if (tty) 785 cp210x_set_termios(tty, port, NULL); 786 787 result = usb_serial_generic_open(tty, port); 788 if (result) 789 goto err_disable; 790 791 return 0; 792 793 err_disable: 794 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 795 port_priv->event_mode = false; 796 797 return result; 798 } 799 800 static void cp210x_close(struct usb_serial_port *port) 801 { 802 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 803 804 usb_serial_generic_close(port); 805 806 /* Clear both queues; cp2108 needs this to avoid an occasional hang */ 807 cp210x_write_u16_reg(port, CP210X_PURGE, PURGE_ALL); 808 809 cp210x_write_u16_reg(port, CP210X_IFC_ENABLE, UART_DISABLE); 810 811 /* Disabling the interface disables event-insertion mode. */ 812 port_priv->event_mode = false; 813 } 814 815 static void cp210x_process_lsr(struct usb_serial_port *port, unsigned char lsr, char *flag) 816 { 817 if (lsr & CP210X_LSR_BREAK) { 818 port->icount.brk++; 819 *flag = TTY_BREAK; 820 } else if (lsr & CP210X_LSR_PARITY) { 821 port->icount.parity++; 822 *flag = TTY_PARITY; 823 } else if (lsr & CP210X_LSR_FRAME) { 824 port->icount.frame++; 825 *flag = TTY_FRAME; 826 } 827 828 if (lsr & CP210X_LSR_OVERRUN) { 829 port->icount.overrun++; 830 tty_insert_flip_char(&port->port, 0, TTY_OVERRUN); 831 } 832 } 833 834 static bool cp210x_process_char(struct usb_serial_port *port, unsigned char *ch, char *flag) 835 { 836 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 837 838 switch (port_priv->event_state) { 839 case ES_DATA: 840 if (*ch == CP210X_ESCCHAR) { 841 port_priv->event_state = ES_ESCAPE; 842 break; 843 } 844 return false; 845 case ES_ESCAPE: 846 switch (*ch) { 847 case 0: 848 dev_dbg(&port->dev, "%s - escape char\n", __func__); 849 *ch = CP210X_ESCCHAR; 850 port_priv->event_state = ES_DATA; 851 return false; 852 case 1: 853 port_priv->event_state = ES_LSR_DATA_0; 854 break; 855 case 2: 856 port_priv->event_state = ES_LSR; 857 break; 858 case 3: 859 port_priv->event_state = ES_MSR; 860 break; 861 default: 862 dev_err(&port->dev, "malformed event 0x%02x\n", *ch); 863 port_priv->event_state = ES_DATA; 864 break; 865 } 866 break; 867 case ES_LSR_DATA_0: 868 port_priv->lsr = *ch; 869 port_priv->event_state = ES_LSR_DATA_1; 870 break; 871 case ES_LSR_DATA_1: 872 dev_dbg(&port->dev, "%s - lsr = 0x%02x, data = 0x%02x\n", 873 __func__, port_priv->lsr, *ch); 874 cp210x_process_lsr(port, port_priv->lsr, flag); 875 port_priv->event_state = ES_DATA; 876 return false; 877 case ES_LSR: 878 dev_dbg(&port->dev, "%s - lsr = 0x%02x\n", __func__, *ch); 879 port_priv->lsr = *ch; 880 cp210x_process_lsr(port, port_priv->lsr, flag); 881 port_priv->event_state = ES_DATA; 882 break; 883 case ES_MSR: 884 dev_dbg(&port->dev, "%s - msr = 0x%02x\n", __func__, *ch); 885 /* unimplemented */ 886 port_priv->event_state = ES_DATA; 887 break; 888 } 889 890 return true; 891 } 892 893 static void cp210x_process_read_urb(struct urb *urb) 894 { 895 struct usb_serial_port *port = urb->context; 896 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 897 unsigned char *ch = urb->transfer_buffer; 898 char flag; 899 int i; 900 901 if (!urb->actual_length) 902 return; 903 904 if (port_priv->event_mode) { 905 for (i = 0; i < urb->actual_length; i++, ch++) { 906 flag = TTY_NORMAL; 907 908 if (cp210x_process_char(port, ch, &flag)) 909 continue; 910 911 tty_insert_flip_char(&port->port, *ch, flag); 912 } 913 } else { 914 tty_insert_flip_string(&port->port, ch, urb->actual_length); 915 } 916 tty_flip_buffer_push(&port->port); 917 } 918 919 /* 920 * Read how many bytes are waiting in the TX queue. 921 */ 922 static int cp210x_get_tx_queue_byte_count(struct usb_serial_port *port, 923 u32 *count) 924 { 925 struct usb_serial *serial = port->serial; 926 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 927 struct cp210x_comm_status sts; 928 int result; 929 930 result = usb_control_msg_recv(serial->dev, 0, CP210X_GET_COMM_STATUS, 931 REQTYPE_INTERFACE_TO_HOST, 0, 932 port_priv->bInterfaceNumber, &sts, sizeof(sts), 933 USB_CTRL_GET_TIMEOUT, GFP_KERNEL); 934 if (result) { 935 dev_err(&port->dev, "failed to get comm status: %d\n", result); 936 return result; 937 } 938 939 *count = le32_to_cpu(sts.ulAmountInOutQueue); 940 941 return 0; 942 } 943 944 static bool cp210x_tx_empty(struct usb_serial_port *port) 945 { 946 int err; 947 u32 count; 948 949 err = cp210x_get_tx_queue_byte_count(port, &count); 950 if (err) 951 return true; 952 953 return !count; 954 } 955 956 struct cp210x_rate { 957 speed_t rate; 958 speed_t high; 959 }; 960 961 static const struct cp210x_rate cp210x_an205_table1[] = { 962 { 300, 300 }, 963 { 600, 600 }, 964 { 1200, 1200 }, 965 { 1800, 1800 }, 966 { 2400, 2400 }, 967 { 4000, 4000 }, 968 { 4800, 4803 }, 969 { 7200, 7207 }, 970 { 9600, 9612 }, 971 { 14400, 14428 }, 972 { 16000, 16062 }, 973 { 19200, 19250 }, 974 { 28800, 28912 }, 975 { 38400, 38601 }, 976 { 51200, 51558 }, 977 { 56000, 56280 }, 978 { 57600, 58053 }, 979 { 64000, 64111 }, 980 { 76800, 77608 }, 981 { 115200, 117028 }, 982 { 128000, 129347 }, 983 { 153600, 156868 }, 984 { 230400, 237832 }, 985 { 250000, 254234 }, 986 { 256000, 273066 }, 987 { 460800, 491520 }, 988 { 500000, 567138 }, 989 { 576000, 670254 }, 990 { 921600, UINT_MAX } 991 }; 992 993 /* 994 * Quantises the baud rate as per AN205 Table 1 995 */ 996 static speed_t cp210x_get_an205_rate(speed_t baud) 997 { 998 int i; 999 1000 for (i = 0; i < ARRAY_SIZE(cp210x_an205_table1); ++i) { 1001 if (baud <= cp210x_an205_table1[i].high) 1002 break; 1003 } 1004 1005 return cp210x_an205_table1[i].rate; 1006 } 1007 1008 static speed_t cp210x_get_actual_rate(speed_t baud) 1009 { 1010 unsigned int prescale = 1; 1011 unsigned int div; 1012 1013 if (baud <= 365) 1014 prescale = 4; 1015 1016 div = DIV_ROUND_CLOSEST(48000000, 2 * prescale * baud); 1017 baud = 48000000 / (2 * prescale * div); 1018 1019 return baud; 1020 } 1021 1022 /* 1023 * CP2101 supports the following baud rates: 1024 * 1025 * 300, 600, 1200, 1800, 2400, 4800, 7200, 9600, 14400, 19200, 28800, 1026 * 38400, 56000, 57600, 115200, 128000, 230400, 460800, 921600 1027 * 1028 * CP2102 and CP2103 support the following additional rates: 1029 * 1030 * 4000, 16000, 51200, 64000, 76800, 153600, 250000, 256000, 500000, 1031 * 576000 1032 * 1033 * The device will map a requested rate to a supported one, but the result 1034 * of requests for rates greater than 1053257 is undefined (see AN205). 1035 * 1036 * CP2104, CP2105 and CP2110 support most rates up to 2M, 921k and 1M baud, 1037 * respectively, with an error less than 1%. The actual rates are determined 1038 * by 1039 * 1040 * div = round(freq / (2 x prescale x request)) 1041 * actual = freq / (2 x prescale x div) 1042 * 1043 * For CP2104 and CP2105 freq is 48Mhz and prescale is 4 for request <= 365bps 1044 * or 1 otherwise. 1045 * For CP2110 freq is 24Mhz and prescale is 4 for request <= 300bps or 1 1046 * otherwise. 1047 */ 1048 static void cp210x_change_speed(struct tty_struct *tty, 1049 struct usb_serial_port *port, 1050 const struct ktermios *old_termios) 1051 { 1052 struct usb_serial *serial = port->serial; 1053 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1054 u32 baud; 1055 1056 if (tty->termios.c_ospeed == 0) 1057 return; 1058 1059 /* 1060 * This maps the requested rate to the actual rate, a valid rate on 1061 * cp2102 or cp2103, or to an arbitrary rate in [1M, max_speed]. 1062 */ 1063 baud = clamp(tty->termios.c_ospeed, priv->min_speed, priv->max_speed); 1064 1065 if (priv->use_actual_rate) 1066 baud = cp210x_get_actual_rate(baud); 1067 else if (baud < 1000000) 1068 baud = cp210x_get_an205_rate(baud); 1069 1070 dev_dbg(&port->dev, "%s - setting baud rate to %u\n", __func__, baud); 1071 if (cp210x_write_u32_reg(port, CP210X_SET_BAUDRATE, baud)) { 1072 dev_warn(&port->dev, "failed to set baud rate to %u\n", baud); 1073 if (old_termios) 1074 baud = old_termios->c_ospeed; 1075 else 1076 baud = 9600; 1077 } 1078 1079 tty_encode_baud_rate(tty, baud, baud); 1080 } 1081 1082 static void cp210x_enable_event_mode(struct usb_serial_port *port) 1083 { 1084 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1085 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1086 int ret; 1087 1088 if (port_priv->event_mode) 1089 return; 1090 1091 if (priv->no_event_mode) 1092 return; 1093 1094 port_priv->event_state = ES_DATA; 1095 port_priv->event_mode = true; 1096 1097 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, CP210X_ESCCHAR); 1098 if (ret) { 1099 dev_err(&port->dev, "failed to enable events: %d\n", ret); 1100 port_priv->event_mode = false; 1101 } 1102 } 1103 1104 static void cp210x_disable_event_mode(struct usb_serial_port *port) 1105 { 1106 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1107 int ret; 1108 1109 if (!port_priv->event_mode) 1110 return; 1111 1112 ret = cp210x_write_u16_reg(port, CP210X_EMBED_EVENTS, 0); 1113 if (ret) { 1114 dev_err(&port->dev, "failed to disable events: %d\n", ret); 1115 return; 1116 } 1117 1118 port_priv->event_mode = false; 1119 } 1120 1121 static bool cp210x_termios_change(const struct ktermios *a, const struct ktermios *b) 1122 { 1123 bool iflag_change, cc_change; 1124 1125 iflag_change = ((a->c_iflag ^ b->c_iflag) & (INPCK | IXON | IXOFF)); 1126 cc_change = a->c_cc[VSTART] != b->c_cc[VSTART] || 1127 a->c_cc[VSTOP] != b->c_cc[VSTOP]; 1128 1129 return tty_termios_hw_change(a, b) || iflag_change || cc_change; 1130 } 1131 1132 static void cp210x_set_flow_control(struct tty_struct *tty, 1133 struct usb_serial_port *port, 1134 const struct ktermios *old_termios) 1135 { 1136 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1137 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1138 struct cp210x_special_chars chars; 1139 struct cp210x_flow_ctl flow_ctl; 1140 u32 flow_repl; 1141 u32 ctl_hs; 1142 bool crtscts; 1143 int ret; 1144 1145 /* 1146 * Some CP2102N interpret ulXonLimit as ulFlowReplace (erratum 1147 * CP2102N_E104). Report back that flow control is not supported. 1148 */ 1149 if (priv->no_flow_control) { 1150 tty->termios.c_cflag &= ~CRTSCTS; 1151 tty->termios.c_iflag &= ~(IXON | IXOFF); 1152 } 1153 1154 if (tty->termios.c_ospeed != 0 && 1155 old_termios && old_termios->c_ospeed != 0 && 1156 C_CRTSCTS(tty) == (old_termios->c_cflag & CRTSCTS) && 1157 I_IXON(tty) == (old_termios->c_iflag & IXON) && 1158 I_IXOFF(tty) == (old_termios->c_iflag & IXOFF) && 1159 START_CHAR(tty) == old_termios->c_cc[VSTART] && 1160 STOP_CHAR(tty) == old_termios->c_cc[VSTOP]) { 1161 return; 1162 } 1163 1164 if (I_IXON(tty) || I_IXOFF(tty)) { 1165 memset(&chars, 0, sizeof(chars)); 1166 1167 chars.bXonChar = START_CHAR(tty); 1168 chars.bXoffChar = STOP_CHAR(tty); 1169 1170 ret = cp210x_write_reg_block(port, CP210X_SET_CHARS, &chars, 1171 sizeof(chars)); 1172 if (ret) { 1173 dev_err(&port->dev, "failed to set special chars: %d\n", 1174 ret); 1175 } 1176 } 1177 1178 mutex_lock(&port_priv->mutex); 1179 1180 if (tty->termios.c_ospeed == 0) { 1181 port_priv->dtr = false; 1182 port_priv->rts = false; 1183 } else if (old_termios && old_termios->c_ospeed == 0) { 1184 port_priv->dtr = true; 1185 port_priv->rts = true; 1186 } 1187 1188 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1189 sizeof(flow_ctl)); 1190 if (ret) 1191 goto out_unlock; 1192 1193 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1194 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1195 1196 ctl_hs &= ~CP210X_SERIAL_DSR_HANDSHAKE; 1197 ctl_hs &= ~CP210X_SERIAL_DCD_HANDSHAKE; 1198 ctl_hs &= ~CP210X_SERIAL_DSR_SENSITIVITY; 1199 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1200 if (port_priv->dtr) 1201 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1202 else 1203 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1204 1205 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1206 if (C_CRTSCTS(tty)) { 1207 ctl_hs |= CP210X_SERIAL_CTS_HANDSHAKE; 1208 if (port_priv->rts) 1209 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1210 else 1211 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1212 crtscts = true; 1213 } else { 1214 ctl_hs &= ~CP210X_SERIAL_CTS_HANDSHAKE; 1215 if (port_priv->rts) 1216 flow_repl |= CP210X_SERIAL_RTS_ACTIVE; 1217 else 1218 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1219 crtscts = false; 1220 } 1221 1222 if (I_IXOFF(tty)) { 1223 flow_repl |= CP210X_SERIAL_AUTO_RECEIVE; 1224 1225 flow_ctl.ulXonLimit = cpu_to_le32(128); 1226 flow_ctl.ulXoffLimit = cpu_to_le32(128); 1227 } else { 1228 flow_repl &= ~CP210X_SERIAL_AUTO_RECEIVE; 1229 } 1230 1231 if (I_IXON(tty)) 1232 flow_repl |= CP210X_SERIAL_AUTO_TRANSMIT; 1233 else 1234 flow_repl &= ~CP210X_SERIAL_AUTO_TRANSMIT; 1235 1236 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", __func__, 1237 ctl_hs, flow_repl); 1238 1239 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1240 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1241 1242 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1243 sizeof(flow_ctl)); 1244 if (ret) 1245 goto out_unlock; 1246 1247 port_priv->crtscts = crtscts; 1248 out_unlock: 1249 mutex_unlock(&port_priv->mutex); 1250 } 1251 1252 static void cp210x_set_termios(struct tty_struct *tty, 1253 struct usb_serial_port *port, 1254 const struct ktermios *old_termios) 1255 { 1256 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1257 u16 bits; 1258 int ret; 1259 1260 if (old_termios && !cp210x_termios_change(&tty->termios, old_termios) && 1261 tty->termios.c_ospeed != 0) 1262 return; 1263 1264 if (!old_termios || tty->termios.c_ospeed != old_termios->c_ospeed) 1265 cp210x_change_speed(tty, port, old_termios); 1266 1267 /* CP2101 only supports CS8, 1 stop bit and non-stick parity. */ 1268 if (priv->partnum == CP210X_PARTNUM_CP2101) { 1269 tty->termios.c_cflag &= ~(CSIZE | CSTOPB | CMSPAR); 1270 tty->termios.c_cflag |= CS8; 1271 } 1272 1273 bits = 0; 1274 1275 switch (C_CSIZE(tty)) { 1276 case CS5: 1277 bits |= BITS_DATA_5; 1278 break; 1279 case CS6: 1280 bits |= BITS_DATA_6; 1281 break; 1282 case CS7: 1283 bits |= BITS_DATA_7; 1284 break; 1285 case CS8: 1286 default: 1287 bits |= BITS_DATA_8; 1288 break; 1289 } 1290 1291 if (C_PARENB(tty)) { 1292 if (C_CMSPAR(tty)) { 1293 if (C_PARODD(tty)) 1294 bits |= BITS_PARITY_MARK; 1295 else 1296 bits |= BITS_PARITY_SPACE; 1297 } else { 1298 if (C_PARODD(tty)) 1299 bits |= BITS_PARITY_ODD; 1300 else 1301 bits |= BITS_PARITY_EVEN; 1302 } 1303 } 1304 1305 if (C_CSTOPB(tty)) 1306 bits |= BITS_STOP_2; 1307 else 1308 bits |= BITS_STOP_1; 1309 1310 ret = cp210x_write_u16_reg(port, CP210X_SET_LINE_CTL, bits); 1311 if (ret) 1312 dev_err(&port->dev, "failed to set line control: %d\n", ret); 1313 1314 cp210x_set_flow_control(tty, port, old_termios); 1315 1316 /* 1317 * Enable event-insertion mode only if input parity checking is 1318 * enabled for now. 1319 */ 1320 if (I_INPCK(tty)) 1321 cp210x_enable_event_mode(port); 1322 else 1323 cp210x_disable_event_mode(port); 1324 } 1325 1326 static int cp210x_tiocmset(struct tty_struct *tty, 1327 unsigned int set, unsigned int clear) 1328 { 1329 struct usb_serial_port *port = tty->driver_data; 1330 return cp210x_tiocmset_port(port, set, clear); 1331 } 1332 1333 static int cp210x_tiocmset_port(struct usb_serial_port *port, 1334 unsigned int set, unsigned int clear) 1335 { 1336 struct cp210x_port_private *port_priv = usb_get_serial_port_data(port); 1337 struct cp210x_flow_ctl flow_ctl; 1338 u32 ctl_hs, flow_repl; 1339 u16 control = 0; 1340 int ret; 1341 1342 mutex_lock(&port_priv->mutex); 1343 1344 if (set & TIOCM_RTS) { 1345 port_priv->rts = true; 1346 control |= CONTROL_RTS; 1347 control |= CONTROL_WRITE_RTS; 1348 } 1349 if (set & TIOCM_DTR) { 1350 port_priv->dtr = true; 1351 control |= CONTROL_DTR; 1352 control |= CONTROL_WRITE_DTR; 1353 } 1354 if (clear & TIOCM_RTS) { 1355 port_priv->rts = false; 1356 control &= ~CONTROL_RTS; 1357 control |= CONTROL_WRITE_RTS; 1358 } 1359 if (clear & TIOCM_DTR) { 1360 port_priv->dtr = false; 1361 control &= ~CONTROL_DTR; 1362 control |= CONTROL_WRITE_DTR; 1363 } 1364 1365 /* 1366 * Use SET_FLOW to set DTR and enable/disable auto-RTS when hardware 1367 * flow control is enabled. 1368 */ 1369 if (port_priv->crtscts && control & CONTROL_WRITE_RTS) { 1370 ret = cp210x_read_reg_block(port, CP210X_GET_FLOW, &flow_ctl, 1371 sizeof(flow_ctl)); 1372 if (ret) 1373 goto out_unlock; 1374 1375 ctl_hs = le32_to_cpu(flow_ctl.ulControlHandshake); 1376 flow_repl = le32_to_cpu(flow_ctl.ulFlowReplace); 1377 1378 ctl_hs &= ~CP210X_SERIAL_DTR_MASK; 1379 if (port_priv->dtr) 1380 ctl_hs |= CP210X_SERIAL_DTR_ACTIVE; 1381 else 1382 ctl_hs |= CP210X_SERIAL_DTR_INACTIVE; 1383 1384 flow_repl &= ~CP210X_SERIAL_RTS_MASK; 1385 if (port_priv->rts) 1386 flow_repl |= CP210X_SERIAL_RTS_FLOW_CTL; 1387 else 1388 flow_repl |= CP210X_SERIAL_RTS_INACTIVE; 1389 1390 flow_ctl.ulControlHandshake = cpu_to_le32(ctl_hs); 1391 flow_ctl.ulFlowReplace = cpu_to_le32(flow_repl); 1392 1393 dev_dbg(&port->dev, "%s - ctrl = 0x%02x, flow = 0x%02x\n", 1394 __func__, ctl_hs, flow_repl); 1395 1396 ret = cp210x_write_reg_block(port, CP210X_SET_FLOW, &flow_ctl, 1397 sizeof(flow_ctl)); 1398 } else { 1399 dev_dbg(&port->dev, "%s - control = 0x%04x\n", __func__, control); 1400 1401 ret = cp210x_write_u16_reg(port, CP210X_SET_MHS, control); 1402 } 1403 out_unlock: 1404 mutex_unlock(&port_priv->mutex); 1405 1406 return ret; 1407 } 1408 1409 static void cp210x_dtr_rts(struct usb_serial_port *port, int on) 1410 { 1411 if (on) 1412 cp210x_tiocmset_port(port, TIOCM_DTR | TIOCM_RTS, 0); 1413 else 1414 cp210x_tiocmset_port(port, 0, TIOCM_DTR | TIOCM_RTS); 1415 } 1416 1417 static int cp210x_tiocmget(struct tty_struct *tty) 1418 { 1419 struct usb_serial_port *port = tty->driver_data; 1420 u8 control; 1421 int result; 1422 1423 result = cp210x_read_u8_reg(port, CP210X_GET_MDMSTS, &control); 1424 if (result) 1425 return result; 1426 1427 result = ((control & CONTROL_DTR) ? TIOCM_DTR : 0) 1428 |((control & CONTROL_RTS) ? TIOCM_RTS : 0) 1429 |((control & CONTROL_CTS) ? TIOCM_CTS : 0) 1430 |((control & CONTROL_DSR) ? TIOCM_DSR : 0) 1431 |((control & CONTROL_RING)? TIOCM_RI : 0) 1432 |((control & CONTROL_DCD) ? TIOCM_CD : 0); 1433 1434 dev_dbg(&port->dev, "%s - control = 0x%02x\n", __func__, control); 1435 1436 return result; 1437 } 1438 1439 static int cp210x_break_ctl(struct tty_struct *tty, int break_state) 1440 { 1441 struct usb_serial_port *port = tty->driver_data; 1442 struct cp210x_serial_private *priv = usb_get_serial_data(port->serial); 1443 u16 state; 1444 1445 if (priv->partnum == CP210X_PARTNUM_CP2105) { 1446 if (cp210x_interface_num(port->serial) == 1) 1447 return -ENOTTY; 1448 } 1449 1450 if (break_state == 0) 1451 state = BREAK_OFF; 1452 else 1453 state = BREAK_ON; 1454 1455 dev_dbg(&port->dev, "%s - turning break %s\n", __func__, 1456 state == BREAK_OFF ? "off" : "on"); 1457 1458 return cp210x_write_u16_reg(port, CP210X_SET_BREAK, state); 1459 } 1460 1461 #ifdef CONFIG_GPIOLIB 1462 static int cp210x_gpio_get(struct gpio_chip *gc, unsigned int gpio) 1463 { 1464 struct usb_serial *serial = gpiochip_get_data(gc); 1465 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1466 u8 req_type; 1467 u16 mask; 1468 int result; 1469 int len; 1470 1471 result = usb_autopm_get_interface(serial->interface); 1472 if (result) 1473 return result; 1474 1475 switch (priv->partnum) { 1476 case CP210X_PARTNUM_CP2105: 1477 req_type = REQTYPE_INTERFACE_TO_HOST; 1478 len = 1; 1479 break; 1480 case CP210X_PARTNUM_CP2108: 1481 req_type = REQTYPE_INTERFACE_TO_HOST; 1482 len = 2; 1483 break; 1484 default: 1485 req_type = REQTYPE_DEVICE_TO_HOST; 1486 len = 1; 1487 break; 1488 } 1489 1490 mask = 0; 1491 result = cp210x_read_vendor_block(serial, req_type, CP210X_READ_LATCH, 1492 &mask, len); 1493 1494 usb_autopm_put_interface(serial->interface); 1495 1496 if (result < 0) 1497 return result; 1498 1499 le16_to_cpus(&mask); 1500 1501 return !!(mask & BIT(gpio)); 1502 } 1503 1504 static void cp210x_gpio_set(struct gpio_chip *gc, unsigned int gpio, int value) 1505 { 1506 struct usb_serial *serial = gpiochip_get_data(gc); 1507 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1508 struct cp210x_gpio_write16 buf16; 1509 struct cp210x_gpio_write buf; 1510 u16 mask, state; 1511 u16 wIndex; 1512 int result; 1513 1514 if (value == 1) 1515 state = BIT(gpio); 1516 else 1517 state = 0; 1518 1519 mask = BIT(gpio); 1520 1521 result = usb_autopm_get_interface(serial->interface); 1522 if (result) 1523 goto out; 1524 1525 switch (priv->partnum) { 1526 case CP210X_PARTNUM_CP2105: 1527 buf.mask = (u8)mask; 1528 buf.state = (u8)state; 1529 result = cp210x_write_vendor_block(serial, 1530 REQTYPE_HOST_TO_INTERFACE, 1531 CP210X_WRITE_LATCH, &buf, 1532 sizeof(buf)); 1533 break; 1534 case CP210X_PARTNUM_CP2108: 1535 buf16.mask = cpu_to_le16(mask); 1536 buf16.state = cpu_to_le16(state); 1537 result = cp210x_write_vendor_block(serial, 1538 REQTYPE_HOST_TO_INTERFACE, 1539 CP210X_WRITE_LATCH, &buf16, 1540 sizeof(buf16)); 1541 break; 1542 default: 1543 wIndex = state << 8 | mask; 1544 result = usb_control_msg(serial->dev, 1545 usb_sndctrlpipe(serial->dev, 0), 1546 CP210X_VENDOR_SPECIFIC, 1547 REQTYPE_HOST_TO_DEVICE, 1548 CP210X_WRITE_LATCH, 1549 wIndex, 1550 NULL, 0, USB_CTRL_SET_TIMEOUT); 1551 break; 1552 } 1553 1554 usb_autopm_put_interface(serial->interface); 1555 out: 1556 if (result < 0) { 1557 dev_err(&serial->interface->dev, "failed to set GPIO value: %d\n", 1558 result); 1559 } 1560 } 1561 1562 static int cp210x_gpio_direction_get(struct gpio_chip *gc, unsigned int gpio) 1563 { 1564 struct usb_serial *serial = gpiochip_get_data(gc); 1565 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1566 1567 return priv->gpio_input & BIT(gpio); 1568 } 1569 1570 static int cp210x_gpio_direction_input(struct gpio_chip *gc, unsigned int gpio) 1571 { 1572 struct usb_serial *serial = gpiochip_get_data(gc); 1573 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1574 1575 if (priv->partnum == CP210X_PARTNUM_CP2105) { 1576 /* hardware does not support an input mode */ 1577 return -ENOTSUPP; 1578 } 1579 1580 /* push-pull pins cannot be changed to be inputs */ 1581 if (priv->gpio_pushpull & BIT(gpio)) 1582 return -EINVAL; 1583 1584 /* make sure to release pin if it is being driven low */ 1585 cp210x_gpio_set(gc, gpio, 1); 1586 1587 priv->gpio_input |= BIT(gpio); 1588 1589 return 0; 1590 } 1591 1592 static int cp210x_gpio_direction_output(struct gpio_chip *gc, unsigned int gpio, 1593 int value) 1594 { 1595 struct usb_serial *serial = gpiochip_get_data(gc); 1596 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1597 1598 priv->gpio_input &= ~BIT(gpio); 1599 cp210x_gpio_set(gc, gpio, value); 1600 1601 return 0; 1602 } 1603 1604 static int cp210x_gpio_set_config(struct gpio_chip *gc, unsigned int gpio, 1605 unsigned long config) 1606 { 1607 struct usb_serial *serial = gpiochip_get_data(gc); 1608 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1609 enum pin_config_param param = pinconf_to_config_param(config); 1610 1611 /* Succeed only if in correct mode (this can't be set at runtime) */ 1612 if ((param == PIN_CONFIG_DRIVE_PUSH_PULL) && 1613 (priv->gpio_pushpull & BIT(gpio))) 1614 return 0; 1615 1616 if ((param == PIN_CONFIG_DRIVE_OPEN_DRAIN) && 1617 !(priv->gpio_pushpull & BIT(gpio))) 1618 return 0; 1619 1620 return -ENOTSUPP; 1621 } 1622 1623 static int cp210x_gpio_init_valid_mask(struct gpio_chip *gc, 1624 unsigned long *valid_mask, unsigned int ngpios) 1625 { 1626 struct usb_serial *serial = gpiochip_get_data(gc); 1627 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1628 struct device *dev = &serial->interface->dev; 1629 unsigned long altfunc_mask = priv->gpio_altfunc; 1630 1631 bitmap_complement(valid_mask, &altfunc_mask, ngpios); 1632 1633 if (bitmap_empty(valid_mask, ngpios)) 1634 dev_dbg(dev, "no pin configured for GPIO\n"); 1635 else 1636 dev_dbg(dev, "GPIO.%*pbl configured for GPIO\n", ngpios, 1637 valid_mask); 1638 return 0; 1639 } 1640 1641 /* 1642 * This function is for configuring GPIO using shared pins, where other signals 1643 * are made unavailable by configuring the use of GPIO. This is believed to be 1644 * only applicable to the cp2105 at this point, the other devices supported by 1645 * this driver that provide GPIO do so in a way that does not impact other 1646 * signals and are thus expected to have very different initialisation. 1647 */ 1648 static int cp2105_gpioconf_init(struct usb_serial *serial) 1649 { 1650 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1651 struct cp210x_pin_mode mode; 1652 struct cp210x_dual_port_config config; 1653 u8 intf_num = cp210x_interface_num(serial); 1654 u8 iface_config; 1655 int result; 1656 1657 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1658 CP210X_GET_DEVICEMODE, &mode, 1659 sizeof(mode)); 1660 if (result < 0) 1661 return result; 1662 1663 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1664 CP210X_GET_PORTCONFIG, &config, 1665 sizeof(config)); 1666 if (result < 0) 1667 return result; 1668 1669 /* 2 banks of GPIO - One for the pins taken from each serial port */ 1670 if (intf_num == 0) { 1671 priv->gc.ngpio = 2; 1672 1673 if (mode.eci == CP210X_PIN_MODE_MODEM) { 1674 /* mark all GPIOs of this interface as reserved */ 1675 priv->gpio_altfunc = 0xff; 1676 return 0; 1677 } 1678 1679 iface_config = config.eci_cfg; 1680 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1681 CP210X_ECI_GPIO_MODE_MASK) >> 1682 CP210X_ECI_GPIO_MODE_OFFSET); 1683 } else if (intf_num == 1) { 1684 priv->gc.ngpio = 3; 1685 1686 if (mode.sci == CP210X_PIN_MODE_MODEM) { 1687 /* mark all GPIOs of this interface as reserved */ 1688 priv->gpio_altfunc = 0xff; 1689 return 0; 1690 } 1691 1692 iface_config = config.sci_cfg; 1693 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1694 CP210X_SCI_GPIO_MODE_MASK) >> 1695 CP210X_SCI_GPIO_MODE_OFFSET); 1696 } else { 1697 return -ENODEV; 1698 } 1699 1700 /* mark all pins which are not in GPIO mode */ 1701 if (iface_config & CP2105_GPIO0_TXLED_MODE) /* GPIO 0 */ 1702 priv->gpio_altfunc |= BIT(0); 1703 if (iface_config & (CP2105_GPIO1_RXLED_MODE | /* GPIO 1 */ 1704 CP2105_GPIO1_RS485_MODE)) 1705 priv->gpio_altfunc |= BIT(1); 1706 1707 /* driver implementation for CP2105 only supports outputs */ 1708 priv->gpio_input = 0; 1709 1710 return 0; 1711 } 1712 1713 static int cp2104_gpioconf_init(struct usb_serial *serial) 1714 { 1715 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1716 struct cp210x_single_port_config config; 1717 u8 iface_config; 1718 u8 gpio_latch; 1719 int result; 1720 u8 i; 1721 1722 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1723 CP210X_GET_PORTCONFIG, &config, 1724 sizeof(config)); 1725 if (result < 0) 1726 return result; 1727 1728 priv->gc.ngpio = 4; 1729 1730 iface_config = config.device_cfg; 1731 priv->gpio_pushpull = (u8)((le16_to_cpu(config.gpio_mode) & 1732 CP210X_GPIO_MODE_MASK) >> 1733 CP210X_GPIO_MODE_OFFSET); 1734 gpio_latch = (u8)((le16_to_cpu(config.reset_state) & 1735 CP210X_GPIO_MODE_MASK) >> 1736 CP210X_GPIO_MODE_OFFSET); 1737 1738 /* mark all pins which are not in GPIO mode */ 1739 if (iface_config & CP2104_GPIO0_TXLED_MODE) /* GPIO 0 */ 1740 priv->gpio_altfunc |= BIT(0); 1741 if (iface_config & CP2104_GPIO1_RXLED_MODE) /* GPIO 1 */ 1742 priv->gpio_altfunc |= BIT(1); 1743 if (iface_config & CP2104_GPIO2_RS485_MODE) /* GPIO 2 */ 1744 priv->gpio_altfunc |= BIT(2); 1745 1746 /* 1747 * Like CP2102N, CP2104 has also no strict input and output pin 1748 * modes. 1749 * Do the same input mode emulation as CP2102N. 1750 */ 1751 for (i = 0; i < priv->gc.ngpio; ++i) { 1752 /* 1753 * Set direction to "input" iff pin is open-drain and reset 1754 * value is 1. 1755 */ 1756 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1757 priv->gpio_input |= BIT(i); 1758 } 1759 1760 return 0; 1761 } 1762 1763 static int cp2108_gpio_init(struct usb_serial *serial) 1764 { 1765 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1766 struct cp210x_quad_port_config config; 1767 u16 gpio_latch; 1768 int result; 1769 u8 i; 1770 1771 result = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 1772 CP210X_GET_PORTCONFIG, &config, 1773 sizeof(config)); 1774 if (result < 0) 1775 return result; 1776 1777 priv->gc.ngpio = 16; 1778 priv->gpio_pushpull = le16_to_cpu(config.reset_state.gpio_mode_pb1); 1779 gpio_latch = le16_to_cpu(config.reset_state.gpio_latch_pb1); 1780 1781 /* 1782 * Mark all pins which are not in GPIO mode. 1783 * 1784 * Refer to table 9.1 "GPIO Mode alternate Functions" in the datasheet: 1785 * https://www.silabs.com/documents/public/data-sheets/cp2108-datasheet.pdf 1786 * 1787 * Alternate functions of GPIO0 to GPIO3 are determine by enhancedfxn_ifc[0] 1788 * and the similarly for the other pins; enhancedfxn_ifc[1]: GPIO4 to GPIO7, 1789 * enhancedfxn_ifc[2]: GPIO8 to GPIO11, enhancedfxn_ifc[3]: GPIO12 to GPIO15. 1790 */ 1791 for (i = 0; i < 4; i++) { 1792 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_TXLED) 1793 priv->gpio_altfunc |= BIT(i * 4); 1794 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RXLED) 1795 priv->gpio_altfunc |= BIT((i * 4) + 1); 1796 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_RS485) 1797 priv->gpio_altfunc |= BIT((i * 4) + 2); 1798 if (config.enhancedfxn_ifc[i] & CP2108_EF_IFC_GPIO_CLOCK) 1799 priv->gpio_altfunc |= BIT((i * 4) + 3); 1800 } 1801 1802 /* 1803 * Like CP2102N, CP2108 has also no strict input and output pin 1804 * modes. Do the same input mode emulation as CP2102N. 1805 */ 1806 for (i = 0; i < priv->gc.ngpio; ++i) { 1807 /* 1808 * Set direction to "input" iff pin is open-drain and reset 1809 * value is 1. 1810 */ 1811 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1812 priv->gpio_input |= BIT(i); 1813 } 1814 1815 return 0; 1816 } 1817 1818 static int cp2102n_gpioconf_init(struct usb_serial *serial) 1819 { 1820 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1821 const u16 config_size = 0x02a6; 1822 u8 gpio_rst_latch; 1823 u8 config_version; 1824 u8 gpio_pushpull; 1825 u8 *config_buf; 1826 u8 gpio_latch; 1827 u8 gpio_ctrl; 1828 int result; 1829 u8 i; 1830 1831 /* 1832 * Retrieve device configuration from the device. 1833 * The array received contains all customization settings done at the 1834 * factory/manufacturer. Format of the array is documented at the 1835 * time of writing at: 1836 * https://www.silabs.com/community/interface/knowledge-base.entry.html/2017/03/31/cp2102n_setconfig-xsfa 1837 */ 1838 config_buf = kmalloc(config_size, GFP_KERNEL); 1839 if (!config_buf) 1840 return -ENOMEM; 1841 1842 result = cp210x_read_vendor_block(serial, 1843 REQTYPE_DEVICE_TO_HOST, 1844 CP210X_READ_2NCONFIG, 1845 config_buf, 1846 config_size); 1847 if (result < 0) { 1848 kfree(config_buf); 1849 return result; 1850 } 1851 1852 config_version = config_buf[CP210X_2NCONFIG_CONFIG_VERSION_IDX]; 1853 gpio_pushpull = config_buf[CP210X_2NCONFIG_GPIO_MODE_IDX]; 1854 gpio_ctrl = config_buf[CP210X_2NCONFIG_GPIO_CONTROL_IDX]; 1855 gpio_rst_latch = config_buf[CP210X_2NCONFIG_GPIO_RSTLATCH_IDX]; 1856 1857 kfree(config_buf); 1858 1859 /* Make sure this is a config format we understand. */ 1860 if (config_version != 0x01) 1861 return -ENOTSUPP; 1862 1863 priv->gc.ngpio = 4; 1864 1865 /* 1866 * Get default pin states after reset. Needed so we can determine 1867 * the direction of an open-drain pin. 1868 */ 1869 gpio_latch = (gpio_rst_latch >> 3) & 0x0f; 1870 1871 /* 0 indicates open-drain mode, 1 is push-pull */ 1872 priv->gpio_pushpull = (gpio_pushpull >> 3) & 0x0f; 1873 1874 /* 0 indicates GPIO mode, 1 is alternate function */ 1875 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN20) { 1876 /* QFN20 is special... */ 1877 if (gpio_ctrl & CP2102N_QFN20_GPIO0_CLK_MODE) /* GPIO 0 */ 1878 priv->gpio_altfunc |= BIT(0); 1879 if (gpio_ctrl & CP2102N_QFN20_GPIO1_RS485_MODE) /* GPIO 1 */ 1880 priv->gpio_altfunc |= BIT(1); 1881 if (gpio_ctrl & CP2102N_QFN20_GPIO2_TXLED_MODE) /* GPIO 2 */ 1882 priv->gpio_altfunc |= BIT(2); 1883 if (gpio_ctrl & CP2102N_QFN20_GPIO3_RXLED_MODE) /* GPIO 3 */ 1884 priv->gpio_altfunc |= BIT(3); 1885 } else { 1886 priv->gpio_altfunc = (gpio_ctrl >> 2) & 0x0f; 1887 } 1888 1889 if (priv->partnum == CP210X_PARTNUM_CP2102N_QFN28) { 1890 /* 1891 * For the QFN28 package, GPIO4-6 are controlled by 1892 * the low three bits of the mode/latch fields. 1893 * Contrary to the document linked above, the bits for 1894 * the SUSPEND pins are elsewhere. No alternate 1895 * function is available for these pins. 1896 */ 1897 priv->gc.ngpio = 7; 1898 gpio_latch |= (gpio_rst_latch & 7) << 4; 1899 priv->gpio_pushpull |= (gpio_pushpull & 7) << 4; 1900 } 1901 1902 /* 1903 * The CP2102N does not strictly has input and output pin modes, 1904 * it only knows open-drain and push-pull modes which is set at 1905 * factory. An open-drain pin can function both as an 1906 * input or an output. We emulate input mode for open-drain pins 1907 * by making sure they are not driven low, and we do not allow 1908 * push-pull pins to be set as an input. 1909 */ 1910 for (i = 0; i < priv->gc.ngpio; ++i) { 1911 /* 1912 * Set direction to "input" iff pin is open-drain and reset 1913 * value is 1. 1914 */ 1915 if (!(priv->gpio_pushpull & BIT(i)) && (gpio_latch & BIT(i))) 1916 priv->gpio_input |= BIT(i); 1917 } 1918 1919 return 0; 1920 } 1921 1922 static int cp210x_gpio_init(struct usb_serial *serial) 1923 { 1924 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1925 int result; 1926 1927 switch (priv->partnum) { 1928 case CP210X_PARTNUM_CP2104: 1929 result = cp2104_gpioconf_init(serial); 1930 break; 1931 case CP210X_PARTNUM_CP2105: 1932 result = cp2105_gpioconf_init(serial); 1933 break; 1934 case CP210X_PARTNUM_CP2108: 1935 /* 1936 * The GPIOs are not tied to any specific port so only register 1937 * once for interface 0. 1938 */ 1939 if (cp210x_interface_num(serial) != 0) 1940 return 0; 1941 result = cp2108_gpio_init(serial); 1942 break; 1943 case CP210X_PARTNUM_CP2102N_QFN28: 1944 case CP210X_PARTNUM_CP2102N_QFN24: 1945 case CP210X_PARTNUM_CP2102N_QFN20: 1946 result = cp2102n_gpioconf_init(serial); 1947 break; 1948 default: 1949 return 0; 1950 } 1951 1952 if (result < 0) 1953 return result; 1954 1955 priv->gc.label = "cp210x"; 1956 priv->gc.get_direction = cp210x_gpio_direction_get; 1957 priv->gc.direction_input = cp210x_gpio_direction_input; 1958 priv->gc.direction_output = cp210x_gpio_direction_output; 1959 priv->gc.get = cp210x_gpio_get; 1960 priv->gc.set = cp210x_gpio_set; 1961 priv->gc.set_config = cp210x_gpio_set_config; 1962 priv->gc.init_valid_mask = cp210x_gpio_init_valid_mask; 1963 priv->gc.owner = THIS_MODULE; 1964 priv->gc.parent = &serial->interface->dev; 1965 priv->gc.base = -1; 1966 priv->gc.can_sleep = true; 1967 1968 result = gpiochip_add_data(&priv->gc, serial); 1969 if (!result) 1970 priv->gpio_registered = true; 1971 1972 return result; 1973 } 1974 1975 static void cp210x_gpio_remove(struct usb_serial *serial) 1976 { 1977 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 1978 1979 if (priv->gpio_registered) { 1980 gpiochip_remove(&priv->gc); 1981 priv->gpio_registered = false; 1982 } 1983 } 1984 1985 #else 1986 1987 static int cp210x_gpio_init(struct usb_serial *serial) 1988 { 1989 return 0; 1990 } 1991 1992 static void cp210x_gpio_remove(struct usb_serial *serial) 1993 { 1994 /* Nothing to do */ 1995 } 1996 1997 #endif 1998 1999 static int cp210x_port_probe(struct usb_serial_port *port) 2000 { 2001 struct usb_serial *serial = port->serial; 2002 struct cp210x_port_private *port_priv; 2003 2004 port_priv = kzalloc(sizeof(*port_priv), GFP_KERNEL); 2005 if (!port_priv) 2006 return -ENOMEM; 2007 2008 port_priv->bInterfaceNumber = cp210x_interface_num(serial); 2009 mutex_init(&port_priv->mutex); 2010 2011 usb_set_serial_port_data(port, port_priv); 2012 2013 return 0; 2014 } 2015 2016 static void cp210x_port_remove(struct usb_serial_port *port) 2017 { 2018 struct cp210x_port_private *port_priv; 2019 2020 port_priv = usb_get_serial_port_data(port); 2021 kfree(port_priv); 2022 } 2023 2024 static void cp210x_init_max_speed(struct usb_serial *serial) 2025 { 2026 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2027 bool use_actual_rate = false; 2028 speed_t min = 300; 2029 speed_t max; 2030 2031 switch (priv->partnum) { 2032 case CP210X_PARTNUM_CP2101: 2033 max = 921600; 2034 break; 2035 case CP210X_PARTNUM_CP2102: 2036 case CP210X_PARTNUM_CP2103: 2037 max = 1000000; 2038 break; 2039 case CP210X_PARTNUM_CP2104: 2040 use_actual_rate = true; 2041 max = 2000000; 2042 break; 2043 case CP210X_PARTNUM_CP2108: 2044 max = 2000000; 2045 break; 2046 case CP210X_PARTNUM_CP2105: 2047 if (cp210x_interface_num(serial) == 0) { 2048 use_actual_rate = true; 2049 max = 2000000; /* ECI */ 2050 } else { 2051 min = 2400; 2052 max = 921600; /* SCI */ 2053 } 2054 break; 2055 case CP210X_PARTNUM_CP2102N_QFN28: 2056 case CP210X_PARTNUM_CP2102N_QFN24: 2057 case CP210X_PARTNUM_CP2102N_QFN20: 2058 use_actual_rate = true; 2059 max = 3000000; 2060 break; 2061 default: 2062 max = 2000000; 2063 break; 2064 } 2065 2066 priv->min_speed = min; 2067 priv->max_speed = max; 2068 priv->use_actual_rate = use_actual_rate; 2069 } 2070 2071 static void cp2102_determine_quirks(struct usb_serial *serial) 2072 { 2073 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2074 u8 *buf; 2075 int ret; 2076 2077 buf = kmalloc(2, GFP_KERNEL); 2078 if (!buf) 2079 return; 2080 /* 2081 * Some (possibly counterfeit) CP2102 do not support event-insertion 2082 * mode and respond differently to malformed vendor requests. 2083 * Specifically, they return one instead of two bytes when sent a 2084 * two-byte part-number request. 2085 */ 2086 ret = usb_control_msg(serial->dev, usb_rcvctrlpipe(serial->dev, 0), 2087 CP210X_VENDOR_SPECIFIC, REQTYPE_DEVICE_TO_HOST, 2088 CP210X_GET_PARTNUM, 0, buf, 2, USB_CTRL_GET_TIMEOUT); 2089 if (ret == 1) { 2090 dev_dbg(&serial->interface->dev, 2091 "device does not support event-insertion mode\n"); 2092 priv->no_event_mode = true; 2093 } 2094 2095 kfree(buf); 2096 } 2097 2098 static int cp210x_get_fw_version(struct usb_serial *serial, u16 value) 2099 { 2100 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2101 u8 ver[3]; 2102 int ret; 2103 2104 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, value, 2105 ver, sizeof(ver)); 2106 if (ret) 2107 return ret; 2108 2109 dev_dbg(&serial->interface->dev, "%s - %d.%d.%d\n", __func__, 2110 ver[0], ver[1], ver[2]); 2111 2112 priv->fw_version = ver[0] << 16 | ver[1] << 8 | ver[2]; 2113 2114 return 0; 2115 } 2116 2117 static void cp210x_determine_type(struct usb_serial *serial) 2118 { 2119 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2120 int ret; 2121 2122 ret = cp210x_read_vendor_block(serial, REQTYPE_DEVICE_TO_HOST, 2123 CP210X_GET_PARTNUM, &priv->partnum, 2124 sizeof(priv->partnum)); 2125 if (ret < 0) { 2126 dev_warn(&serial->interface->dev, 2127 "querying part number failed\n"); 2128 priv->partnum = CP210X_PARTNUM_UNKNOWN; 2129 return; 2130 } 2131 2132 dev_dbg(&serial->interface->dev, "partnum = 0x%02x\n", priv->partnum); 2133 2134 switch (priv->partnum) { 2135 case CP210X_PARTNUM_CP2102: 2136 cp2102_determine_quirks(serial); 2137 break; 2138 case CP210X_PARTNUM_CP2105: 2139 case CP210X_PARTNUM_CP2108: 2140 cp210x_get_fw_version(serial, CP210X_GET_FW_VER); 2141 break; 2142 case CP210X_PARTNUM_CP2102N_QFN28: 2143 case CP210X_PARTNUM_CP2102N_QFN24: 2144 case CP210X_PARTNUM_CP2102N_QFN20: 2145 ret = cp210x_get_fw_version(serial, CP210X_GET_FW_VER_2N); 2146 if (ret) 2147 break; 2148 if (priv->fw_version <= 0x10004) 2149 priv->no_flow_control = true; 2150 break; 2151 default: 2152 break; 2153 } 2154 } 2155 2156 static int cp210x_attach(struct usb_serial *serial) 2157 { 2158 int result; 2159 struct cp210x_serial_private *priv; 2160 2161 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 2162 if (!priv) 2163 return -ENOMEM; 2164 2165 usb_set_serial_data(serial, priv); 2166 2167 cp210x_determine_type(serial); 2168 cp210x_init_max_speed(serial); 2169 2170 result = cp210x_gpio_init(serial); 2171 if (result < 0) { 2172 dev_err(&serial->interface->dev, "GPIO initialisation failed: %d\n", 2173 result); 2174 } 2175 2176 return 0; 2177 } 2178 2179 static void cp210x_disconnect(struct usb_serial *serial) 2180 { 2181 cp210x_gpio_remove(serial); 2182 } 2183 2184 static void cp210x_release(struct usb_serial *serial) 2185 { 2186 struct cp210x_serial_private *priv = usb_get_serial_data(serial); 2187 2188 cp210x_gpio_remove(serial); 2189 2190 kfree(priv); 2191 } 2192 2193 module_usb_serial_driver(serial_drivers, id_table); 2194 2195 MODULE_DESCRIPTION(DRIVER_DESC); 2196 MODULE_LICENSE("GPL v2"); 2197