xref: /openbmc/linux/drivers/usb/host/xhci.c (revision 0edabdfe89581669609eaac5f6a8d0ae6fe95e7f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, usec);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 	xhci->xhc_state |= XHCI_STATE_HALTED;
124 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125 	return ret;
126 }
127 
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133 	u32 temp;
134 	int ret;
135 
136 	temp = readl(&xhci->op_regs->command);
137 	temp |= (CMD_RUN);
138 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 			temp);
140 	writel(temp, &xhci->op_regs->command);
141 
142 	/*
143 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
144 	 * running.
145 	 */
146 	ret = xhci_handshake(&xhci->op_regs->status,
147 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
148 	if (ret == -ETIMEDOUT)
149 		xhci_err(xhci, "Host took too long to start, "
150 				"waited %u microseconds.\n",
151 				XHCI_MAX_HALT_USEC);
152 	if (!ret)
153 		/* clear state flags. Including dying, halted or removing */
154 		xhci->xhc_state = 0;
155 
156 	return ret;
157 }
158 
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168 	u32 command;
169 	u32 state;
170 	int ret;
171 
172 	state = readl(&xhci->op_regs->status);
173 
174 	if (state == ~(u32)0) {
175 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
176 		return -ENODEV;
177 	}
178 
179 	if ((state & STS_HALT) == 0) {
180 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181 		return 0;
182 	}
183 
184 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185 	command = readl(&xhci->op_regs->command);
186 	command |= CMD_RESET;
187 	writel(command, &xhci->op_regs->command);
188 
189 	/* Existing Intel xHCI controllers require a delay of 1 mS,
190 	 * after setting the CMD_RESET bit, and before accessing any
191 	 * HC registers. This allows the HC to complete the
192 	 * reset operation and be ready for HC register access.
193 	 * Without this delay, the subsequent HC register access,
194 	 * may result in a system hang very rarely.
195 	 */
196 	if (xhci->quirks & XHCI_INTEL_HOST)
197 		udelay(1000);
198 
199 	ret = xhci_handshake(&xhci->op_regs->command,
200 			CMD_RESET, 0, 10 * 1000 * 1000);
201 	if (ret)
202 		return ret;
203 
204 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206 
207 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208 			 "Wait for controller to be ready for doorbell rings");
209 	/*
210 	 * xHCI cannot write to any doorbells or operational registers other
211 	 * than status until the "Controller Not Ready" flag is cleared.
212 	 */
213 	ret = xhci_handshake(&xhci->op_regs->status,
214 			STS_CNR, 0, 10 * 1000 * 1000);
215 
216 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
222 
223 	return ret;
224 }
225 
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 	int err, i;
230 	u64 val;
231 
232 	/*
233 	 * Some Renesas controllers get into a weird state if they are
234 	 * reset while programmed with 64bit addresses (they will preserve
235 	 * the top half of the address in internal, non visible
236 	 * registers). You end up with half the address coming from the
237 	 * kernel, and the other half coming from the firmware. Also,
238 	 * changing the programming leads to extra accesses even if the
239 	 * controller is supposed to be halted. The controller ends up with
240 	 * a fatal fault, and is then ripe for being properly reset.
241 	 *
242 	 * Special care is taken to only apply this if the device is behind
243 	 * an iommu. Doing anything when there is no iommu is definitely
244 	 * unsafe...
245 	 */
246 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 		return;
248 
249 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250 
251 	/* Clear HSEIE so that faults do not get signaled */
252 	val = readl(&xhci->op_regs->command);
253 	val &= ~CMD_HSEIE;
254 	writel(val, &xhci->op_regs->command);
255 
256 	/* Clear HSE (aka FATAL) */
257 	val = readl(&xhci->op_regs->status);
258 	val |= STS_FATAL;
259 	writel(val, &xhci->op_regs->status);
260 
261 	/* Now zero the registers, and brace for impact */
262 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 	if (upper_32_bits(val))
264 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 	if (upper_32_bits(val))
267 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268 
269 	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270 		struct xhci_intr_reg __iomem *ir;
271 
272 		ir = &xhci->run_regs->ir_set[i];
273 		val = xhci_read_64(xhci, &ir->erst_base);
274 		if (upper_32_bits(val))
275 			xhci_write_64(xhci, 0, &ir->erst_base);
276 		val= xhci_read_64(xhci, &ir->erst_dequeue);
277 		if (upper_32_bits(val))
278 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
279 	}
280 
281 	/* Wait for the fault to appear. It will be cleared on reset */
282 	err = xhci_handshake(&xhci->op_regs->status,
283 			     STS_FATAL, STS_FATAL,
284 			     XHCI_MAX_HALT_USEC);
285 	if (!err)
286 		xhci_info(xhci, "Fault detected\n");
287 }
288 
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295 	int ret;
296 	/*
297 	 * TODO:Check with MSI Soc for sysdev
298 	 */
299 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300 
301 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302 	if (ret < 0) {
303 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304 				"failed to allocate MSI entry");
305 		return ret;
306 	}
307 
308 	ret = request_irq(pdev->irq, xhci_msi_irq,
309 				0, "xhci_hcd", xhci_to_hcd(xhci));
310 	if (ret) {
311 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312 				"disable MSI interrupt");
313 		pci_free_irq_vectors(pdev);
314 	}
315 
316 	return ret;
317 }
318 
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324 	int i, ret = 0;
325 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 
328 	/*
329 	 * calculate number of msi-x vectors supported.
330 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
332 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
333 	 *   Add additional 1 vector to ensure always available interrupt.
334 	 */
335 	xhci->msix_count = min(num_online_cpus() + 1,
336 				HCS_MAX_INTRS(xhci->hcs_params1));
337 
338 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339 			PCI_IRQ_MSIX);
340 	if (ret < 0) {
341 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342 				"Failed to enable MSI-X");
343 		return ret;
344 	}
345 
346 	for (i = 0; i < xhci->msix_count; i++) {
347 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348 				"xhci_hcd", xhci_to_hcd(xhci));
349 		if (ret)
350 			goto disable_msix;
351 	}
352 
353 	hcd->msix_enabled = 1;
354 	return ret;
355 
356 disable_msix:
357 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358 	while (--i >= 0)
359 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360 	pci_free_irq_vectors(pdev);
361 	return ret;
362 }
363 
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
368 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369 
370 	if (xhci->quirks & XHCI_PLAT)
371 		return;
372 
373 	/* return if using legacy interrupt */
374 	if (hcd->irq > 0)
375 		return;
376 
377 	if (hcd->msix_enabled) {
378 		int i;
379 
380 		for (i = 0; i < xhci->msix_count; i++)
381 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382 	} else {
383 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384 	}
385 
386 	pci_free_irq_vectors(pdev);
387 	hcd->msix_enabled = 0;
388 }
389 
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
393 
394 	if (hcd->msix_enabled) {
395 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396 		int i;
397 
398 		for (i = 0; i < xhci->msix_count; i++)
399 			synchronize_irq(pci_irq_vector(pdev, i));
400 	}
401 }
402 
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406 	struct pci_dev  *pdev;
407 	int ret;
408 
409 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
410 	if (xhci->quirks & XHCI_PLAT)
411 		return 0;
412 
413 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414 	/*
415 	 * Some Fresco Logic host controllers advertise MSI, but fail to
416 	 * generate interrupts.  Don't even try to enable MSI.
417 	 */
418 	if (xhci->quirks & XHCI_BROKEN_MSI)
419 		goto legacy_irq;
420 
421 	/* unregister the legacy interrupt */
422 	if (hcd->irq)
423 		free_irq(hcd->irq, hcd);
424 	hcd->irq = 0;
425 
426 	ret = xhci_setup_msix(xhci);
427 	if (ret)
428 		/* fall back to msi*/
429 		ret = xhci_setup_msi(xhci);
430 
431 	if (!ret) {
432 		hcd->msi_enabled = 1;
433 		return 0;
434 	}
435 
436 	if (!pdev->irq) {
437 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438 		return -EINVAL;
439 	}
440 
441  legacy_irq:
442 	if (!strlen(hcd->irq_descr))
443 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444 			 hcd->driver->description, hcd->self.busnum);
445 
446 	/* fall back to legacy interrupt*/
447 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448 			hcd->irq_descr, hcd);
449 	if (ret) {
450 		xhci_err(xhci, "request interrupt %d failed\n",
451 				pdev->irq);
452 		return ret;
453 	}
454 	hcd->irq = pdev->irq;
455 	return 0;
456 }
457 
458 #else
459 
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462 	return 0;
463 }
464 
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468 
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472 
473 #endif
474 
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477 	struct xhci_hcd *xhci;
478 	struct usb_hcd *hcd;
479 	struct xhci_hub *rhub;
480 	u32 temp;
481 	int i;
482 
483 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484 	rhub = &xhci->usb3_rhub;
485 
486 	for (i = 0; i < rhub->num_ports; i++) {
487 		temp = readl(rhub->ports[i]->addr);
488 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489 			/*
490 			 * Compliance Mode Detected. Letting USB Core
491 			 * handle the Warm Reset
492 			 */
493 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494 					"Compliance mode detected->port %d",
495 					i + 1);
496 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 					"Attempting compliance mode recovery");
498 			hcd = xhci->shared_hcd;
499 
500 			if (hcd->state == HC_STATE_SUSPENDED)
501 				usb_hcd_resume_root_hub(hcd);
502 
503 			usb_hcd_poll_rh_status(hcd);
504 		}
505 	}
506 
507 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508 		mod_timer(&xhci->comp_mode_recovery_timer,
509 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511 
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524 	xhci->port_status_u0 = 0;
525 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526 		    0);
527 	xhci->comp_mode_recovery_timer.expires = jiffies +
528 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529 
530 	add_timer(&xhci->comp_mode_recovery_timer);
531 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532 			"Compliance mode recovery timer initialized");
533 }
534 
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543 	const char *dmi_product_name, *dmi_sys_vendor;
544 
545 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547 	if (!dmi_product_name || !dmi_sys_vendor)
548 		return false;
549 
550 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551 		return false;
552 
553 	if (strstr(dmi_product_name, "Z420") ||
554 			strstr(dmi_product_name, "Z620") ||
555 			strstr(dmi_product_name, "Z820") ||
556 			strstr(dmi_product_name, "Z1 Workstation"))
557 		return true;
558 
559 	return false;
560 }
561 
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566 
567 
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578 	int retval = 0;
579 
580 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581 	spin_lock_init(&xhci->lock);
582 	if (xhci->hci_version == 0x95 && link_quirk) {
583 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584 				"QUIRK: Not clearing Link TRB chain bits.");
585 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586 	} else {
587 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588 				"xHCI doesn't need link TRB QUIRK");
589 	}
590 	retval = xhci_mem_init(xhci, GFP_KERNEL);
591 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592 
593 	/* Initializing Compliance Mode Recovery Data If Needed */
594 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596 		compliance_mode_recovery_timer_init(xhci);
597 	}
598 
599 	return retval;
600 }
601 
602 /*-------------------------------------------------------------------------*/
603 
604 
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607 	if (xhci_start(xhci)) {
608 		xhci_halt(xhci);
609 		return -ENODEV;
610 	}
611 	xhci->shared_hcd->state = HC_STATE_RUNNING;
612 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613 
614 	if (xhci->quirks & XHCI_NEC_HOST)
615 		xhci_ring_cmd_db(xhci);
616 
617 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618 			"Finished xhci_run for USB3 roothub");
619 	return 0;
620 }
621 
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636 	u32 temp;
637 	u64 temp_64;
638 	int ret;
639 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640 
641 	/* Start the xHCI host controller running only after the USB 2.0 roothub
642 	 * is setup.
643 	 */
644 
645 	hcd->uses_new_polling = 1;
646 	if (!usb_hcd_is_primary_hcd(hcd))
647 		return xhci_run_finished(xhci);
648 
649 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650 
651 	ret = xhci_try_enable_msi(hcd);
652 	if (ret)
653 		return ret;
654 
655 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656 	temp_64 &= ~ERST_PTR_MASK;
657 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659 
660 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 			"// Set the interrupt modulation register");
662 	temp = readl(&xhci->ir_set->irq_control);
663 	temp &= ~ER_IRQ_INTERVAL_MASK;
664 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665 	writel(temp, &xhci->ir_set->irq_control);
666 
667 	/* Set the HCD state before we enable the irqs */
668 	temp = readl(&xhci->op_regs->command);
669 	temp |= (CMD_EIE);
670 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 			"// Enable interrupts, cmd = 0x%x.", temp);
672 	writel(temp, &xhci->op_regs->command);
673 
674 	temp = readl(&xhci->ir_set->irq_pending);
675 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679 
680 	if (xhci->quirks & XHCI_NEC_HOST) {
681 		struct xhci_command *command;
682 
683 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684 		if (!command)
685 			return -ENOMEM;
686 
687 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688 				TRB_TYPE(TRB_NEC_GET_FW));
689 		if (ret)
690 			xhci_free_command(xhci, command);
691 	}
692 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693 			"Finished xhci_run for USB2 roothub");
694 
695 	xhci_dbc_init(xhci);
696 
697 	xhci_debugfs_init(xhci);
698 
699 	return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702 
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714 	u32 temp;
715 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716 
717 	mutex_lock(&xhci->mutex);
718 
719 	/* Only halt host and free memory after both hcds are removed */
720 	if (!usb_hcd_is_primary_hcd(hcd)) {
721 		mutex_unlock(&xhci->mutex);
722 		return;
723 	}
724 
725 	xhci_dbc_exit(xhci);
726 
727 	spin_lock_irq(&xhci->lock);
728 	xhci->xhc_state |= XHCI_STATE_HALTED;
729 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730 	xhci_halt(xhci);
731 	xhci_reset(xhci);
732 	spin_unlock_irq(&xhci->lock);
733 
734 	xhci_cleanup_msix(xhci);
735 
736 	/* Deleting Compliance Mode Recovery Timer */
737 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738 			(!(xhci_all_ports_seen_u0(xhci)))) {
739 		del_timer_sync(&xhci->comp_mode_recovery_timer);
740 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741 				"%s: compliance mode recovery timer deleted",
742 				__func__);
743 	}
744 
745 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
746 		usb_amd_dev_put();
747 
748 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749 			"// Disabling event ring interrupts");
750 	temp = readl(&xhci->op_regs->status);
751 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752 	temp = readl(&xhci->ir_set->irq_pending);
753 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754 
755 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756 	xhci_mem_cleanup(xhci);
757 	xhci_debugfs_exit(xhci);
758 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759 			"xhci_stop completed - status = %x",
760 			readl(&xhci->op_regs->status));
761 	mutex_unlock(&xhci->mutex);
762 }
763 
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 void xhci_shutdown(struct usb_hcd *hcd)
774 {
775 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776 
777 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779 
780 	spin_lock_irq(&xhci->lock);
781 	xhci_halt(xhci);
782 	/* Workaround for spurious wakeups at shutdown with HSW */
783 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784 		xhci_reset(xhci);
785 	spin_unlock_irq(&xhci->lock);
786 
787 	xhci_cleanup_msix(xhci);
788 
789 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790 			"xhci_shutdown completed - status = %x",
791 			readl(&xhci->op_regs->status));
792 }
793 EXPORT_SYMBOL_GPL(xhci_shutdown);
794 
795 #ifdef CONFIG_PM
796 static void xhci_save_registers(struct xhci_hcd *xhci)
797 {
798 	xhci->s3.command = readl(&xhci->op_regs->command);
799 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
800 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
801 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
802 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
803 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
804 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
805 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
806 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
807 }
808 
809 static void xhci_restore_registers(struct xhci_hcd *xhci)
810 {
811 	writel(xhci->s3.command, &xhci->op_regs->command);
812 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
813 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
814 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
815 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
816 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
817 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
818 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
819 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
820 }
821 
822 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
823 {
824 	u64	val_64;
825 
826 	/* step 2: initialize command ring buffer */
827 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
828 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
829 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
830 				      xhci->cmd_ring->dequeue) &
831 		 (u64) ~CMD_RING_RSVD_BITS) |
832 		xhci->cmd_ring->cycle_state;
833 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
834 			"// Setting command ring address to 0x%llx",
835 			(long unsigned long) val_64);
836 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
837 }
838 
839 /*
840  * The whole command ring must be cleared to zero when we suspend the host.
841  *
842  * The host doesn't save the command ring pointer in the suspend well, so we
843  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
844  * aligned, because of the reserved bits in the command ring dequeue pointer
845  * register.  Therefore, we can't just set the dequeue pointer back in the
846  * middle of the ring (TRBs are 16-byte aligned).
847  */
848 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
849 {
850 	struct xhci_ring *ring;
851 	struct xhci_segment *seg;
852 
853 	ring = xhci->cmd_ring;
854 	seg = ring->deq_seg;
855 	do {
856 		memset(seg->trbs, 0,
857 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
858 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
859 			cpu_to_le32(~TRB_CYCLE);
860 		seg = seg->next;
861 	} while (seg != ring->deq_seg);
862 
863 	/* Reset the software enqueue and dequeue pointers */
864 	ring->deq_seg = ring->first_seg;
865 	ring->dequeue = ring->first_seg->trbs;
866 	ring->enq_seg = ring->deq_seg;
867 	ring->enqueue = ring->dequeue;
868 
869 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
870 	/*
871 	 * Ring is now zeroed, so the HW should look for change of ownership
872 	 * when the cycle bit is set to 1.
873 	 */
874 	ring->cycle_state = 1;
875 
876 	/*
877 	 * Reset the hardware dequeue pointer.
878 	 * Yes, this will need to be re-written after resume, but we're paranoid
879 	 * and want to make sure the hardware doesn't access bogus memory
880 	 * because, say, the BIOS or an SMI started the host without changing
881 	 * the command ring pointers.
882 	 */
883 	xhci_set_cmd_ring_deq(xhci);
884 }
885 
886 /*
887  * Disable port wake bits if do_wakeup is not set.
888  *
889  * Also clear a possible internal port wake state left hanging for ports that
890  * detected termination but never successfully enumerated (trained to 0U).
891  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
892  * at enumeration clears this wake, force one here as well for unconnected ports
893  */
894 
895 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
896 				       struct xhci_hub *rhub,
897 				       bool do_wakeup)
898 {
899 	unsigned long flags;
900 	u32 t1, t2, portsc;
901 	int i;
902 
903 	spin_lock_irqsave(&xhci->lock, flags);
904 
905 	for (i = 0; i < rhub->num_ports; i++) {
906 		portsc = readl(rhub->ports[i]->addr);
907 		t1 = xhci_port_state_to_neutral(portsc);
908 		t2 = t1;
909 
910 		/* clear wake bits if do_wake is not set */
911 		if (!do_wakeup)
912 			t2 &= ~PORT_WAKE_BITS;
913 
914 		/* Don't touch csc bit if connected or connect change is set */
915 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
916 			t2 |= PORT_CSC;
917 
918 		if (t1 != t2) {
919 			writel(t2, rhub->ports[i]->addr);
920 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
921 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
922 		}
923 	}
924 	spin_unlock_irqrestore(&xhci->lock, flags);
925 }
926 
927 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
928 {
929 	struct xhci_port	**ports;
930 	int			port_index;
931 	u32			status;
932 	u32			portsc;
933 
934 	status = readl(&xhci->op_regs->status);
935 	if (status & STS_EINT)
936 		return true;
937 	/*
938 	 * Checking STS_EINT is not enough as there is a lag between a change
939 	 * bit being set and the Port Status Change Event that it generated
940 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
941 	 */
942 
943 	port_index = xhci->usb2_rhub.num_ports;
944 	ports = xhci->usb2_rhub.ports;
945 	while (port_index--) {
946 		portsc = readl(ports[port_index]->addr);
947 		if (portsc & PORT_CHANGE_MASK ||
948 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
949 			return true;
950 	}
951 	port_index = xhci->usb3_rhub.num_ports;
952 	ports = xhci->usb3_rhub.ports;
953 	while (port_index--) {
954 		portsc = readl(ports[port_index]->addr);
955 		if (portsc & PORT_CHANGE_MASK ||
956 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
957 			return true;
958 	}
959 	return false;
960 }
961 
962 /*
963  * Stop HC (not bus-specific)
964  *
965  * This is called when the machine transition into S3/S4 mode.
966  *
967  */
968 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
969 {
970 	int			rc = 0;
971 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
972 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
973 	u32			command;
974 	u32			res;
975 
976 	if (!hcd->state)
977 		return 0;
978 
979 	if (hcd->state != HC_STATE_SUSPENDED ||
980 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
981 		return -EINVAL;
982 
983 	/* Clear root port wake on bits if wakeup not allowed. */
984 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
985 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
986 
987 	if (!HCD_HW_ACCESSIBLE(hcd))
988 		return 0;
989 
990 	xhci_dbc_suspend(xhci);
991 
992 	/* Don't poll the roothubs on bus suspend. */
993 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
994 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
995 	del_timer_sync(&hcd->rh_timer);
996 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
997 	del_timer_sync(&xhci->shared_hcd->rh_timer);
998 
999 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1000 		usleep_range(1000, 1500);
1001 
1002 	spin_lock_irq(&xhci->lock);
1003 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1004 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1005 	/* step 1: stop endpoint */
1006 	/* skipped assuming that port suspend has done */
1007 
1008 	/* step 2: clear Run/Stop bit */
1009 	command = readl(&xhci->op_regs->command);
1010 	command &= ~CMD_RUN;
1011 	writel(command, &xhci->op_regs->command);
1012 
1013 	/* Some chips from Fresco Logic need an extraordinary delay */
1014 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1015 
1016 	if (xhci_handshake(&xhci->op_regs->status,
1017 		      STS_HALT, STS_HALT, delay)) {
1018 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1019 		spin_unlock_irq(&xhci->lock);
1020 		return -ETIMEDOUT;
1021 	}
1022 	xhci_clear_command_ring(xhci);
1023 
1024 	/* step 3: save registers */
1025 	xhci_save_registers(xhci);
1026 
1027 	/* step 4: set CSS flag */
1028 	command = readl(&xhci->op_regs->command);
1029 	command |= CMD_CSS;
1030 	writel(command, &xhci->op_regs->command);
1031 	xhci->broken_suspend = 0;
1032 	if (xhci_handshake(&xhci->op_regs->status,
1033 				STS_SAVE, 0, 20 * 1000)) {
1034 	/*
1035 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1036 	 * SSS bit of USBSTS and when driver tries to poll
1037 	 * to see if the xHC clears BIT(8) which never happens
1038 	 * and driver assumes that controller is not responding
1039 	 * and times out. To workaround this, its good to check
1040 	 * if SRE and HCE bits are not set (as per xhci
1041 	 * Section 5.4.2) and bypass the timeout.
1042 	 */
1043 		res = readl(&xhci->op_regs->status);
1044 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1045 		    (((res & STS_SRE) == 0) &&
1046 				((res & STS_HCE) == 0))) {
1047 			xhci->broken_suspend = 1;
1048 		} else {
1049 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1050 			spin_unlock_irq(&xhci->lock);
1051 			return -ETIMEDOUT;
1052 		}
1053 	}
1054 	spin_unlock_irq(&xhci->lock);
1055 
1056 	/*
1057 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1058 	 * is about to be suspended.
1059 	 */
1060 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1061 			(!(xhci_all_ports_seen_u0(xhci)))) {
1062 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1063 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1064 				"%s: compliance mode recovery timer deleted",
1065 				__func__);
1066 	}
1067 
1068 	/* step 5: remove core well power */
1069 	/* synchronize irq when using MSI-X */
1070 	xhci_msix_sync_irqs(xhci);
1071 
1072 	return rc;
1073 }
1074 EXPORT_SYMBOL_GPL(xhci_suspend);
1075 
1076 /*
1077  * start xHC (not bus-specific)
1078  *
1079  * This is called when the machine transition from S3/S4 mode.
1080  *
1081  */
1082 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1083 {
1084 	u32			command, temp = 0;
1085 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1086 	struct usb_hcd		*secondary_hcd;
1087 	int			retval = 0;
1088 	bool			comp_timer_running = false;
1089 	bool			pending_portevent = false;
1090 
1091 	if (!hcd->state)
1092 		return 0;
1093 
1094 	/* Wait a bit if either of the roothubs need to settle from the
1095 	 * transition into bus suspend.
1096 	 */
1097 
1098 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1099 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1100 		msleep(100);
1101 
1102 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1103 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1104 
1105 	spin_lock_irq(&xhci->lock);
1106 	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1107 		hibernated = true;
1108 
1109 	if (!hibernated) {
1110 		/*
1111 		 * Some controllers might lose power during suspend, so wait
1112 		 * for controller not ready bit to clear, just as in xHC init.
1113 		 */
1114 		retval = xhci_handshake(&xhci->op_regs->status,
1115 					STS_CNR, 0, 10 * 1000 * 1000);
1116 		if (retval) {
1117 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1118 				  retval);
1119 			spin_unlock_irq(&xhci->lock);
1120 			return retval;
1121 		}
1122 		/* step 1: restore register */
1123 		xhci_restore_registers(xhci);
1124 		/* step 2: initialize command ring buffer */
1125 		xhci_set_cmd_ring_deq(xhci);
1126 		/* step 3: restore state and start state*/
1127 		/* step 3: set CRS flag */
1128 		command = readl(&xhci->op_regs->command);
1129 		command |= CMD_CRS;
1130 		writel(command, &xhci->op_regs->command);
1131 		/*
1132 		 * Some controllers take up to 55+ ms to complete the controller
1133 		 * restore so setting the timeout to 100ms. Xhci specification
1134 		 * doesn't mention any timeout value.
1135 		 */
1136 		if (xhci_handshake(&xhci->op_regs->status,
1137 			      STS_RESTORE, 0, 100 * 1000)) {
1138 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1139 			spin_unlock_irq(&xhci->lock);
1140 			return -ETIMEDOUT;
1141 		}
1142 		temp = readl(&xhci->op_regs->status);
1143 	}
1144 
1145 	/* If restore operation fails, re-initialize the HC during resume */
1146 	if ((temp & STS_SRE) || hibernated) {
1147 
1148 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1149 				!(xhci_all_ports_seen_u0(xhci))) {
1150 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1151 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1152 				"Compliance Mode Recovery Timer deleted!");
1153 		}
1154 
1155 		/* Let the USB core know _both_ roothubs lost power. */
1156 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1157 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1158 
1159 		xhci_dbg(xhci, "Stop HCD\n");
1160 		xhci_halt(xhci);
1161 		xhci_zero_64b_regs(xhci);
1162 		retval = xhci_reset(xhci);
1163 		spin_unlock_irq(&xhci->lock);
1164 		if (retval)
1165 			return retval;
1166 		xhci_cleanup_msix(xhci);
1167 
1168 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1169 		temp = readl(&xhci->op_regs->status);
1170 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1171 		temp = readl(&xhci->ir_set->irq_pending);
1172 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1173 
1174 		xhci_dbg(xhci, "cleaning up memory\n");
1175 		xhci_mem_cleanup(xhci);
1176 		xhci_debugfs_exit(xhci);
1177 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1178 			    readl(&xhci->op_regs->status));
1179 
1180 		/* USB core calls the PCI reinit and start functions twice:
1181 		 * first with the primary HCD, and then with the secondary HCD.
1182 		 * If we don't do the same, the host will never be started.
1183 		 */
1184 		if (!usb_hcd_is_primary_hcd(hcd))
1185 			secondary_hcd = hcd;
1186 		else
1187 			secondary_hcd = xhci->shared_hcd;
1188 
1189 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1190 		retval = xhci_init(hcd->primary_hcd);
1191 		if (retval)
1192 			return retval;
1193 		comp_timer_running = true;
1194 
1195 		xhci_dbg(xhci, "Start the primary HCD\n");
1196 		retval = xhci_run(hcd->primary_hcd);
1197 		if (!retval) {
1198 			xhci_dbg(xhci, "Start the secondary HCD\n");
1199 			retval = xhci_run(secondary_hcd);
1200 		}
1201 		hcd->state = HC_STATE_SUSPENDED;
1202 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1203 		goto done;
1204 	}
1205 
1206 	/* step 4: set Run/Stop bit */
1207 	command = readl(&xhci->op_regs->command);
1208 	command |= CMD_RUN;
1209 	writel(command, &xhci->op_regs->command);
1210 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1211 		  0, 250 * 1000);
1212 
1213 	/* step 5: walk topology and initialize portsc,
1214 	 * portpmsc and portli
1215 	 */
1216 	/* this is done in bus_resume */
1217 
1218 	/* step 6: restart each of the previously
1219 	 * Running endpoints by ringing their doorbells
1220 	 */
1221 
1222 	spin_unlock_irq(&xhci->lock);
1223 
1224 	xhci_dbc_resume(xhci);
1225 
1226  done:
1227 	if (retval == 0) {
1228 		/*
1229 		 * Resume roothubs only if there are pending events.
1230 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1231 		 * the first wake signalling failed, give it that chance.
1232 		 */
1233 		pending_portevent = xhci_pending_portevent(xhci);
1234 		if (!pending_portevent) {
1235 			msleep(120);
1236 			pending_portevent = xhci_pending_portevent(xhci);
1237 		}
1238 
1239 		if (pending_portevent) {
1240 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1241 			usb_hcd_resume_root_hub(hcd);
1242 		}
1243 	}
1244 	/*
1245 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1246 	 * be re-initialized Always after a system resume. Ports are subject
1247 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1248 	 * ports have entered previously to U0 before system's suspension.
1249 	 */
1250 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1251 		compliance_mode_recovery_timer_init(xhci);
1252 
1253 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1254 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1255 
1256 	/* Re-enable port polling. */
1257 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1258 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1259 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1260 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1261 	usb_hcd_poll_rh_status(hcd);
1262 
1263 	return retval;
1264 }
1265 EXPORT_SYMBOL_GPL(xhci_resume);
1266 #endif	/* CONFIG_PM */
1267 
1268 /*-------------------------------------------------------------------------*/
1269 
1270 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1271 {
1272 	void *temp;
1273 	int ret = 0;
1274 	unsigned int buf_len;
1275 	enum dma_data_direction dir;
1276 
1277 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1278 	buf_len = urb->transfer_buffer_length;
1279 
1280 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1281 			    dev_to_node(hcd->self.sysdev));
1282 
1283 	if (usb_urb_dir_out(urb))
1284 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1285 				   temp, buf_len, 0);
1286 
1287 	urb->transfer_buffer = temp;
1288 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1289 					   urb->transfer_buffer,
1290 					   urb->transfer_buffer_length,
1291 					   dir);
1292 
1293 	if (dma_mapping_error(hcd->self.sysdev,
1294 			      urb->transfer_dma)) {
1295 		ret = -EAGAIN;
1296 		kfree(temp);
1297 	} else {
1298 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1299 	}
1300 
1301 	return ret;
1302 }
1303 
1304 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1305 					  struct urb *urb)
1306 {
1307 	bool ret = false;
1308 	unsigned int i;
1309 	unsigned int len = 0;
1310 	unsigned int trb_size;
1311 	unsigned int max_pkt;
1312 	struct scatterlist *sg;
1313 	struct scatterlist *tail_sg;
1314 
1315 	tail_sg = urb->sg;
1316 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1317 
1318 	if (!urb->num_sgs)
1319 		return ret;
1320 
1321 	if (urb->dev->speed >= USB_SPEED_SUPER)
1322 		trb_size = TRB_CACHE_SIZE_SS;
1323 	else
1324 		trb_size = TRB_CACHE_SIZE_HS;
1325 
1326 	if (urb->transfer_buffer_length != 0 &&
1327 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1328 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1329 			len = len + sg->length;
1330 			if (i > trb_size - 2) {
1331 				len = len - tail_sg->length;
1332 				if (len < max_pkt) {
1333 					ret = true;
1334 					break;
1335 				}
1336 
1337 				tail_sg = sg_next(tail_sg);
1338 			}
1339 		}
1340 	}
1341 	return ret;
1342 }
1343 
1344 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1345 {
1346 	unsigned int len;
1347 	unsigned int buf_len;
1348 	enum dma_data_direction dir;
1349 
1350 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1351 
1352 	buf_len = urb->transfer_buffer_length;
1353 
1354 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1355 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1356 		dma_unmap_single(hcd->self.sysdev,
1357 				 urb->transfer_dma,
1358 				 urb->transfer_buffer_length,
1359 				 dir);
1360 
1361 	if (usb_urb_dir_in(urb))
1362 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1363 					   urb->transfer_buffer,
1364 					   buf_len,
1365 					   0);
1366 
1367 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1368 	kfree(urb->transfer_buffer);
1369 	urb->transfer_buffer = NULL;
1370 }
1371 
1372 /*
1373  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1374  * we'll copy the actual data into the TRB address register. This is limited to
1375  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1376  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1377  */
1378 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1379 				gfp_t mem_flags)
1380 {
1381 	struct xhci_hcd *xhci;
1382 
1383 	xhci = hcd_to_xhci(hcd);
1384 
1385 	if (xhci_urb_suitable_for_idt(urb))
1386 		return 0;
1387 
1388 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1389 		if (xhci_urb_temp_buffer_required(hcd, urb))
1390 			return xhci_map_temp_buffer(hcd, urb);
1391 	}
1392 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1393 }
1394 
1395 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1396 {
1397 	struct xhci_hcd *xhci;
1398 	bool unmap_temp_buf = false;
1399 
1400 	xhci = hcd_to_xhci(hcd);
1401 
1402 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1403 		unmap_temp_buf = true;
1404 
1405 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1406 		xhci_unmap_temp_buf(hcd, urb);
1407 	else
1408 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1409 }
1410 
1411 /**
1412  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1413  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1414  * value to right shift 1 for the bitmask.
1415  *
1416  * Index  = (epnum * 2) + direction - 1,
1417  * where direction = 0 for OUT, 1 for IN.
1418  * For control endpoints, the IN index is used (OUT index is unused), so
1419  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1420  */
1421 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1422 {
1423 	unsigned int index;
1424 	if (usb_endpoint_xfer_control(desc))
1425 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1426 	else
1427 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1428 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1429 	return index;
1430 }
1431 
1432 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1433  * address from the XHCI endpoint index.
1434  */
1435 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1436 {
1437 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1438 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1439 	return direction | number;
1440 }
1441 
1442 /* Find the flag for this endpoint (for use in the control context).  Use the
1443  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1444  * bit 1, etc.
1445  */
1446 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1447 {
1448 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1449 }
1450 
1451 /* Compute the last valid endpoint context index.  Basically, this is the
1452  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1453  * we find the most significant bit set in the added contexts flags.
1454  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1455  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1456  */
1457 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1458 {
1459 	return fls(added_ctxs) - 1;
1460 }
1461 
1462 /* Returns 1 if the arguments are OK;
1463  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1464  */
1465 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1466 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1467 		const char *func) {
1468 	struct xhci_hcd	*xhci;
1469 	struct xhci_virt_device	*virt_dev;
1470 
1471 	if (!hcd || (check_ep && !ep) || !udev) {
1472 		pr_debug("xHCI %s called with invalid args\n", func);
1473 		return -EINVAL;
1474 	}
1475 	if (!udev->parent) {
1476 		pr_debug("xHCI %s called for root hub\n", func);
1477 		return 0;
1478 	}
1479 
1480 	xhci = hcd_to_xhci(hcd);
1481 	if (check_virt_dev) {
1482 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1483 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1484 					func);
1485 			return -EINVAL;
1486 		}
1487 
1488 		virt_dev = xhci->devs[udev->slot_id];
1489 		if (virt_dev->udev != udev) {
1490 			xhci_dbg(xhci, "xHCI %s called with udev and "
1491 					  "virt_dev does not match\n", func);
1492 			return -EINVAL;
1493 		}
1494 	}
1495 
1496 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1497 		return -ENODEV;
1498 
1499 	return 1;
1500 }
1501 
1502 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1503 		struct usb_device *udev, struct xhci_command *command,
1504 		bool ctx_change, bool must_succeed);
1505 
1506 /*
1507  * Full speed devices may have a max packet size greater than 8 bytes, but the
1508  * USB core doesn't know that until it reads the first 8 bytes of the
1509  * descriptor.  If the usb_device's max packet size changes after that point,
1510  * we need to issue an evaluate context command and wait on it.
1511  */
1512 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1513 		unsigned int ep_index, struct urb *urb)
1514 {
1515 	struct xhci_container_ctx *out_ctx;
1516 	struct xhci_input_control_ctx *ctrl_ctx;
1517 	struct xhci_ep_ctx *ep_ctx;
1518 	struct xhci_command *command;
1519 	int max_packet_size;
1520 	int hw_max_packet_size;
1521 	int ret = 0;
1522 
1523 	out_ctx = xhci->devs[slot_id]->out_ctx;
1524 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1525 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1526 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1527 	if (hw_max_packet_size != max_packet_size) {
1528 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1529 				"Max Packet Size for ep 0 changed.");
1530 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1531 				"Max packet size in usb_device = %d",
1532 				max_packet_size);
1533 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1534 				"Max packet size in xHCI HW = %d",
1535 				hw_max_packet_size);
1536 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1537 				"Issuing evaluate context command.");
1538 
1539 		/* Set up the input context flags for the command */
1540 		/* FIXME: This won't work if a non-default control endpoint
1541 		 * changes max packet sizes.
1542 		 */
1543 
1544 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1545 		if (!command)
1546 			return -ENOMEM;
1547 
1548 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1549 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1550 		if (!ctrl_ctx) {
1551 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1552 					__func__);
1553 			ret = -ENOMEM;
1554 			goto command_cleanup;
1555 		}
1556 		/* Set up the modified control endpoint 0 */
1557 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1558 				xhci->devs[slot_id]->out_ctx, ep_index);
1559 
1560 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1561 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1562 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1563 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1564 
1565 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1566 		ctrl_ctx->drop_flags = 0;
1567 
1568 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1569 				true, false);
1570 
1571 		/* Clean up the input context for later use by bandwidth
1572 		 * functions.
1573 		 */
1574 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1575 command_cleanup:
1576 		kfree(command->completion);
1577 		kfree(command);
1578 	}
1579 	return ret;
1580 }
1581 
1582 /*
1583  * non-error returns are a promise to giveback() the urb later
1584  * we drop ownership so next owner (or urb unlink) can get it
1585  */
1586 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1587 {
1588 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1589 	unsigned long flags;
1590 	int ret = 0;
1591 	unsigned int slot_id, ep_index;
1592 	unsigned int *ep_state;
1593 	struct urb_priv	*urb_priv;
1594 	int num_tds;
1595 
1596 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1597 					true, true, __func__) <= 0)
1598 		return -EINVAL;
1599 
1600 	slot_id = urb->dev->slot_id;
1601 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1602 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1603 
1604 	if (!HCD_HW_ACCESSIBLE(hcd))
1605 		return -ESHUTDOWN;
1606 
1607 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1608 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1609 		return -ENODEV;
1610 	}
1611 
1612 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1613 		num_tds = urb->number_of_packets;
1614 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1615 	    urb->transfer_buffer_length > 0 &&
1616 	    urb->transfer_flags & URB_ZERO_PACKET &&
1617 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1618 		num_tds = 2;
1619 	else
1620 		num_tds = 1;
1621 
1622 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1623 	if (!urb_priv)
1624 		return -ENOMEM;
1625 
1626 	urb_priv->num_tds = num_tds;
1627 	urb_priv->num_tds_done = 0;
1628 	urb->hcpriv = urb_priv;
1629 
1630 	trace_xhci_urb_enqueue(urb);
1631 
1632 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1633 		/* Check to see if the max packet size for the default control
1634 		 * endpoint changed during FS device enumeration
1635 		 */
1636 		if (urb->dev->speed == USB_SPEED_FULL) {
1637 			ret = xhci_check_maxpacket(xhci, slot_id,
1638 					ep_index, urb);
1639 			if (ret < 0) {
1640 				xhci_urb_free_priv(urb_priv);
1641 				urb->hcpriv = NULL;
1642 				return ret;
1643 			}
1644 		}
1645 	}
1646 
1647 	spin_lock_irqsave(&xhci->lock, flags);
1648 
1649 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1650 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1651 			 urb->ep->desc.bEndpointAddress, urb);
1652 		ret = -ESHUTDOWN;
1653 		goto free_priv;
1654 	}
1655 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1656 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1657 			  *ep_state);
1658 		ret = -EINVAL;
1659 		goto free_priv;
1660 	}
1661 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1662 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1663 		ret = -EINVAL;
1664 		goto free_priv;
1665 	}
1666 
1667 	switch (usb_endpoint_type(&urb->ep->desc)) {
1668 
1669 	case USB_ENDPOINT_XFER_CONTROL:
1670 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1671 					 slot_id, ep_index);
1672 		break;
1673 	case USB_ENDPOINT_XFER_BULK:
1674 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1675 					 slot_id, ep_index);
1676 		break;
1677 	case USB_ENDPOINT_XFER_INT:
1678 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1679 				slot_id, ep_index);
1680 		break;
1681 	case USB_ENDPOINT_XFER_ISOC:
1682 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1683 				slot_id, ep_index);
1684 	}
1685 
1686 	if (ret) {
1687 free_priv:
1688 		xhci_urb_free_priv(urb_priv);
1689 		urb->hcpriv = NULL;
1690 	}
1691 	spin_unlock_irqrestore(&xhci->lock, flags);
1692 	return ret;
1693 }
1694 
1695 /*
1696  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1697  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1698  * should pick up where it left off in the TD, unless a Set Transfer Ring
1699  * Dequeue Pointer is issued.
1700  *
1701  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1702  * the ring.  Since the ring is a contiguous structure, they can't be physically
1703  * removed.  Instead, there are two options:
1704  *
1705  *  1) If the HC is in the middle of processing the URB to be canceled, we
1706  *     simply move the ring's dequeue pointer past those TRBs using the Set
1707  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1708  *     when drivers timeout on the last submitted URB and attempt to cancel.
1709  *
1710  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1711  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1712  *     HC will need to invalidate the any TRBs it has cached after the stop
1713  *     endpoint command, as noted in the xHCI 0.95 errata.
1714  *
1715  *  3) The TD may have completed by the time the Stop Endpoint Command
1716  *     completes, so software needs to handle that case too.
1717  *
1718  * This function should protect against the TD enqueueing code ringing the
1719  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1720  * It also needs to account for multiple cancellations on happening at the same
1721  * time for the same endpoint.
1722  *
1723  * Note that this function can be called in any context, or so says
1724  * usb_hcd_unlink_urb()
1725  */
1726 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1727 {
1728 	unsigned long flags;
1729 	int ret, i;
1730 	u32 temp;
1731 	struct xhci_hcd *xhci;
1732 	struct urb_priv	*urb_priv;
1733 	struct xhci_td *td;
1734 	unsigned int ep_index;
1735 	struct xhci_ring *ep_ring;
1736 	struct xhci_virt_ep *ep;
1737 	struct xhci_command *command;
1738 	struct xhci_virt_device *vdev;
1739 
1740 	xhci = hcd_to_xhci(hcd);
1741 	spin_lock_irqsave(&xhci->lock, flags);
1742 
1743 	trace_xhci_urb_dequeue(urb);
1744 
1745 	/* Make sure the URB hasn't completed or been unlinked already */
1746 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1747 	if (ret)
1748 		goto done;
1749 
1750 	/* give back URB now if we can't queue it for cancel */
1751 	vdev = xhci->devs[urb->dev->slot_id];
1752 	urb_priv = urb->hcpriv;
1753 	if (!vdev || !urb_priv)
1754 		goto err_giveback;
1755 
1756 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1757 	ep = &vdev->eps[ep_index];
1758 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1759 	if (!ep || !ep_ring)
1760 		goto err_giveback;
1761 
1762 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1763 	temp = readl(&xhci->op_regs->status);
1764 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1765 		xhci_hc_died(xhci);
1766 		goto done;
1767 	}
1768 
1769 	/*
1770 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1771 	 * make sure none of the ring related pointers in this URB private data
1772 	 * are touched, such as td_list, otherwise we overwrite freed data
1773 	 */
1774 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1775 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1776 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1777 			td = &urb_priv->td[i];
1778 			if (!list_empty(&td->cancelled_td_list))
1779 				list_del_init(&td->cancelled_td_list);
1780 		}
1781 		goto err_giveback;
1782 	}
1783 
1784 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1785 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1786 				"HC halted, freeing TD manually.");
1787 		for (i = urb_priv->num_tds_done;
1788 		     i < urb_priv->num_tds;
1789 		     i++) {
1790 			td = &urb_priv->td[i];
1791 			if (!list_empty(&td->td_list))
1792 				list_del_init(&td->td_list);
1793 			if (!list_empty(&td->cancelled_td_list))
1794 				list_del_init(&td->cancelled_td_list);
1795 		}
1796 		goto err_giveback;
1797 	}
1798 
1799 	i = urb_priv->num_tds_done;
1800 	if (i < urb_priv->num_tds)
1801 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1802 				"Cancel URB %p, dev %s, ep 0x%x, "
1803 				"starting at offset 0x%llx",
1804 				urb, urb->dev->devpath,
1805 				urb->ep->desc.bEndpointAddress,
1806 				(unsigned long long) xhci_trb_virt_to_dma(
1807 					urb_priv->td[i].start_seg,
1808 					urb_priv->td[i].first_trb));
1809 
1810 	for (; i < urb_priv->num_tds; i++) {
1811 		td = &urb_priv->td[i];
1812 		/* TD can already be on cancelled list if ep halted on it */
1813 		if (list_empty(&td->cancelled_td_list)) {
1814 			td->cancel_status = TD_DIRTY;
1815 			list_add_tail(&td->cancelled_td_list,
1816 				      &ep->cancelled_td_list);
1817 		}
1818 	}
1819 
1820 	/* Queue a stop endpoint command, but only if this is
1821 	 * the first cancellation to be handled.
1822 	 */
1823 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1824 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1825 		if (!command) {
1826 			ret = -ENOMEM;
1827 			goto done;
1828 		}
1829 		ep->ep_state |= EP_STOP_CMD_PENDING;
1830 		ep->stop_cmd_timer.expires = jiffies +
1831 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1832 		add_timer(&ep->stop_cmd_timer);
1833 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1834 					 ep_index, 0);
1835 		xhci_ring_cmd_db(xhci);
1836 	}
1837 done:
1838 	spin_unlock_irqrestore(&xhci->lock, flags);
1839 	return ret;
1840 
1841 err_giveback:
1842 	if (urb_priv)
1843 		xhci_urb_free_priv(urb_priv);
1844 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1845 	spin_unlock_irqrestore(&xhci->lock, flags);
1846 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1847 	return ret;
1848 }
1849 
1850 /* Drop an endpoint from a new bandwidth configuration for this device.
1851  * Only one call to this function is allowed per endpoint before
1852  * check_bandwidth() or reset_bandwidth() must be called.
1853  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1854  * add the endpoint to the schedule with possibly new parameters denoted by a
1855  * different endpoint descriptor in usb_host_endpoint.
1856  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1857  * not allowed.
1858  *
1859  * The USB core will not allow URBs to be queued to an endpoint that is being
1860  * disabled, so there's no need for mutual exclusion to protect
1861  * the xhci->devs[slot_id] structure.
1862  */
1863 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1864 		struct usb_host_endpoint *ep)
1865 {
1866 	struct xhci_hcd *xhci;
1867 	struct xhci_container_ctx *in_ctx, *out_ctx;
1868 	struct xhci_input_control_ctx *ctrl_ctx;
1869 	unsigned int ep_index;
1870 	struct xhci_ep_ctx *ep_ctx;
1871 	u32 drop_flag;
1872 	u32 new_add_flags, new_drop_flags;
1873 	int ret;
1874 
1875 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1876 	if (ret <= 0)
1877 		return ret;
1878 	xhci = hcd_to_xhci(hcd);
1879 	if (xhci->xhc_state & XHCI_STATE_DYING)
1880 		return -ENODEV;
1881 
1882 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1883 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1884 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1885 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1886 				__func__, drop_flag);
1887 		return 0;
1888 	}
1889 
1890 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1891 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1892 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1893 	if (!ctrl_ctx) {
1894 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1895 				__func__);
1896 		return 0;
1897 	}
1898 
1899 	ep_index = xhci_get_endpoint_index(&ep->desc);
1900 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1901 	/* If the HC already knows the endpoint is disabled,
1902 	 * or the HCD has noted it is disabled, ignore this request
1903 	 */
1904 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1905 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1906 	    xhci_get_endpoint_flag(&ep->desc)) {
1907 		/* Do not warn when called after a usb_device_reset */
1908 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1909 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1910 				  __func__, ep);
1911 		return 0;
1912 	}
1913 
1914 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1915 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1916 
1917 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1918 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1919 
1920 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1921 
1922 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1923 
1924 	if (xhci->quirks & XHCI_MTK_HOST)
1925 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1926 
1927 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1928 			(unsigned int) ep->desc.bEndpointAddress,
1929 			udev->slot_id,
1930 			(unsigned int) new_drop_flags,
1931 			(unsigned int) new_add_flags);
1932 	return 0;
1933 }
1934 
1935 /* Add an endpoint to a new possible bandwidth configuration for this device.
1936  * Only one call to this function is allowed per endpoint before
1937  * check_bandwidth() or reset_bandwidth() must be called.
1938  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1939  * add the endpoint to the schedule with possibly new parameters denoted by a
1940  * different endpoint descriptor in usb_host_endpoint.
1941  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1942  * not allowed.
1943  *
1944  * The USB core will not allow URBs to be queued to an endpoint until the
1945  * configuration or alt setting is installed in the device, so there's no need
1946  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1947  */
1948 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1949 		struct usb_host_endpoint *ep)
1950 {
1951 	struct xhci_hcd *xhci;
1952 	struct xhci_container_ctx *in_ctx;
1953 	unsigned int ep_index;
1954 	struct xhci_input_control_ctx *ctrl_ctx;
1955 	struct xhci_ep_ctx *ep_ctx;
1956 	u32 added_ctxs;
1957 	u32 new_add_flags, new_drop_flags;
1958 	struct xhci_virt_device *virt_dev;
1959 	int ret = 0;
1960 
1961 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1962 	if (ret <= 0) {
1963 		/* So we won't queue a reset ep command for a root hub */
1964 		ep->hcpriv = NULL;
1965 		return ret;
1966 	}
1967 	xhci = hcd_to_xhci(hcd);
1968 	if (xhci->xhc_state & XHCI_STATE_DYING)
1969 		return -ENODEV;
1970 
1971 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1972 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1973 		/* FIXME when we have to issue an evaluate endpoint command to
1974 		 * deal with ep0 max packet size changing once we get the
1975 		 * descriptors
1976 		 */
1977 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1978 				__func__, added_ctxs);
1979 		return 0;
1980 	}
1981 
1982 	virt_dev = xhci->devs[udev->slot_id];
1983 	in_ctx = virt_dev->in_ctx;
1984 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1985 	if (!ctrl_ctx) {
1986 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1987 				__func__);
1988 		return 0;
1989 	}
1990 
1991 	ep_index = xhci_get_endpoint_index(&ep->desc);
1992 	/* If this endpoint is already in use, and the upper layers are trying
1993 	 * to add it again without dropping it, reject the addition.
1994 	 */
1995 	if (virt_dev->eps[ep_index].ring &&
1996 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1997 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1998 				"without dropping it.\n",
1999 				(unsigned int) ep->desc.bEndpointAddress);
2000 		return -EINVAL;
2001 	}
2002 
2003 	/* If the HCD has already noted the endpoint is enabled,
2004 	 * ignore this request.
2005 	 */
2006 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2007 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2008 				__func__, ep);
2009 		return 0;
2010 	}
2011 
2012 	/*
2013 	 * Configuration and alternate setting changes must be done in
2014 	 * process context, not interrupt context (or so documenation
2015 	 * for usb_set_interface() and usb_set_configuration() claim).
2016 	 */
2017 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2018 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2019 				__func__, ep->desc.bEndpointAddress);
2020 		return -ENOMEM;
2021 	}
2022 
2023 	if (xhci->quirks & XHCI_MTK_HOST) {
2024 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
2025 		if (ret < 0) {
2026 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
2027 			virt_dev->eps[ep_index].new_ring = NULL;
2028 			return ret;
2029 		}
2030 	}
2031 
2032 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2033 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2034 
2035 	/* If xhci_endpoint_disable() was called for this endpoint, but the
2036 	 * xHC hasn't been notified yet through the check_bandwidth() call,
2037 	 * this re-adds a new state for the endpoint from the new endpoint
2038 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2039 	 * drop flags alone.
2040 	 */
2041 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2042 
2043 	/* Store the usb_device pointer for later use */
2044 	ep->hcpriv = udev;
2045 
2046 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2047 	trace_xhci_add_endpoint(ep_ctx);
2048 
2049 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2050 			(unsigned int) ep->desc.bEndpointAddress,
2051 			udev->slot_id,
2052 			(unsigned int) new_drop_flags,
2053 			(unsigned int) new_add_flags);
2054 	return 0;
2055 }
2056 
2057 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2058 {
2059 	struct xhci_input_control_ctx *ctrl_ctx;
2060 	struct xhci_ep_ctx *ep_ctx;
2061 	struct xhci_slot_ctx *slot_ctx;
2062 	int i;
2063 
2064 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2065 	if (!ctrl_ctx) {
2066 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2067 				__func__);
2068 		return;
2069 	}
2070 
2071 	/* When a device's add flag and drop flag are zero, any subsequent
2072 	 * configure endpoint command will leave that endpoint's state
2073 	 * untouched.  Make sure we don't leave any old state in the input
2074 	 * endpoint contexts.
2075 	 */
2076 	ctrl_ctx->drop_flags = 0;
2077 	ctrl_ctx->add_flags = 0;
2078 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2079 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2080 	/* Endpoint 0 is always valid */
2081 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2082 	for (i = 1; i < 31; i++) {
2083 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2084 		ep_ctx->ep_info = 0;
2085 		ep_ctx->ep_info2 = 0;
2086 		ep_ctx->deq = 0;
2087 		ep_ctx->tx_info = 0;
2088 	}
2089 }
2090 
2091 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2092 		struct usb_device *udev, u32 *cmd_status)
2093 {
2094 	int ret;
2095 
2096 	switch (*cmd_status) {
2097 	case COMP_COMMAND_ABORTED:
2098 	case COMP_COMMAND_RING_STOPPED:
2099 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2100 		ret = -ETIME;
2101 		break;
2102 	case COMP_RESOURCE_ERROR:
2103 		dev_warn(&udev->dev,
2104 			 "Not enough host controller resources for new device state.\n");
2105 		ret = -ENOMEM;
2106 		/* FIXME: can we allocate more resources for the HC? */
2107 		break;
2108 	case COMP_BANDWIDTH_ERROR:
2109 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2110 		dev_warn(&udev->dev,
2111 			 "Not enough bandwidth for new device state.\n");
2112 		ret = -ENOSPC;
2113 		/* FIXME: can we go back to the old state? */
2114 		break;
2115 	case COMP_TRB_ERROR:
2116 		/* the HCD set up something wrong */
2117 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2118 				"add flag = 1, "
2119 				"and endpoint is not disabled.\n");
2120 		ret = -EINVAL;
2121 		break;
2122 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2123 		dev_warn(&udev->dev,
2124 			 "ERROR: Incompatible device for endpoint configure command.\n");
2125 		ret = -ENODEV;
2126 		break;
2127 	case COMP_SUCCESS:
2128 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2129 				"Successful Endpoint Configure command");
2130 		ret = 0;
2131 		break;
2132 	default:
2133 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2134 				*cmd_status);
2135 		ret = -EINVAL;
2136 		break;
2137 	}
2138 	return ret;
2139 }
2140 
2141 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2142 		struct usb_device *udev, u32 *cmd_status)
2143 {
2144 	int ret;
2145 
2146 	switch (*cmd_status) {
2147 	case COMP_COMMAND_ABORTED:
2148 	case COMP_COMMAND_RING_STOPPED:
2149 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2150 		ret = -ETIME;
2151 		break;
2152 	case COMP_PARAMETER_ERROR:
2153 		dev_warn(&udev->dev,
2154 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2155 		ret = -EINVAL;
2156 		break;
2157 	case COMP_SLOT_NOT_ENABLED_ERROR:
2158 		dev_warn(&udev->dev,
2159 			"WARN: slot not enabled for evaluate context command.\n");
2160 		ret = -EINVAL;
2161 		break;
2162 	case COMP_CONTEXT_STATE_ERROR:
2163 		dev_warn(&udev->dev,
2164 			"WARN: invalid context state for evaluate context command.\n");
2165 		ret = -EINVAL;
2166 		break;
2167 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2168 		dev_warn(&udev->dev,
2169 			"ERROR: Incompatible device for evaluate context command.\n");
2170 		ret = -ENODEV;
2171 		break;
2172 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2173 		/* Max Exit Latency too large error */
2174 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2175 		ret = -EINVAL;
2176 		break;
2177 	case COMP_SUCCESS:
2178 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2179 				"Successful evaluate context command");
2180 		ret = 0;
2181 		break;
2182 	default:
2183 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2184 			*cmd_status);
2185 		ret = -EINVAL;
2186 		break;
2187 	}
2188 	return ret;
2189 }
2190 
2191 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2192 		struct xhci_input_control_ctx *ctrl_ctx)
2193 {
2194 	u32 valid_add_flags;
2195 	u32 valid_drop_flags;
2196 
2197 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2198 	 * (bit 1).  The default control endpoint is added during the Address
2199 	 * Device command and is never removed until the slot is disabled.
2200 	 */
2201 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2202 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2203 
2204 	/* Use hweight32 to count the number of ones in the add flags, or
2205 	 * number of endpoints added.  Don't count endpoints that are changed
2206 	 * (both added and dropped).
2207 	 */
2208 	return hweight32(valid_add_flags) -
2209 		hweight32(valid_add_flags & valid_drop_flags);
2210 }
2211 
2212 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2213 		struct xhci_input_control_ctx *ctrl_ctx)
2214 {
2215 	u32 valid_add_flags;
2216 	u32 valid_drop_flags;
2217 
2218 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2219 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2220 
2221 	return hweight32(valid_drop_flags) -
2222 		hweight32(valid_add_flags & valid_drop_flags);
2223 }
2224 
2225 /*
2226  * We need to reserve the new number of endpoints before the configure endpoint
2227  * command completes.  We can't subtract the dropped endpoints from the number
2228  * of active endpoints until the command completes because we can oversubscribe
2229  * the host in this case:
2230  *
2231  *  - the first configure endpoint command drops more endpoints than it adds
2232  *  - a second configure endpoint command that adds more endpoints is queued
2233  *  - the first configure endpoint command fails, so the config is unchanged
2234  *  - the second command may succeed, even though there isn't enough resources
2235  *
2236  * Must be called with xhci->lock held.
2237  */
2238 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2239 		struct xhci_input_control_ctx *ctrl_ctx)
2240 {
2241 	u32 added_eps;
2242 
2243 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2244 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2245 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2246 				"Not enough ep ctxs: "
2247 				"%u active, need to add %u, limit is %u.",
2248 				xhci->num_active_eps, added_eps,
2249 				xhci->limit_active_eps);
2250 		return -ENOMEM;
2251 	}
2252 	xhci->num_active_eps += added_eps;
2253 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2254 			"Adding %u ep ctxs, %u now active.", added_eps,
2255 			xhci->num_active_eps);
2256 	return 0;
2257 }
2258 
2259 /*
2260  * The configure endpoint was failed by the xHC for some other reason, so we
2261  * need to revert the resources that failed configuration would have used.
2262  *
2263  * Must be called with xhci->lock held.
2264  */
2265 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2266 		struct xhci_input_control_ctx *ctrl_ctx)
2267 {
2268 	u32 num_failed_eps;
2269 
2270 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2271 	xhci->num_active_eps -= num_failed_eps;
2272 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2273 			"Removing %u failed ep ctxs, %u now active.",
2274 			num_failed_eps,
2275 			xhci->num_active_eps);
2276 }
2277 
2278 /*
2279  * Now that the command has completed, clean up the active endpoint count by
2280  * subtracting out the endpoints that were dropped (but not changed).
2281  *
2282  * Must be called with xhci->lock held.
2283  */
2284 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2285 		struct xhci_input_control_ctx *ctrl_ctx)
2286 {
2287 	u32 num_dropped_eps;
2288 
2289 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2290 	xhci->num_active_eps -= num_dropped_eps;
2291 	if (num_dropped_eps)
2292 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2293 				"Removing %u dropped ep ctxs, %u now active.",
2294 				num_dropped_eps,
2295 				xhci->num_active_eps);
2296 }
2297 
2298 static unsigned int xhci_get_block_size(struct usb_device *udev)
2299 {
2300 	switch (udev->speed) {
2301 	case USB_SPEED_LOW:
2302 	case USB_SPEED_FULL:
2303 		return FS_BLOCK;
2304 	case USB_SPEED_HIGH:
2305 		return HS_BLOCK;
2306 	case USB_SPEED_SUPER:
2307 	case USB_SPEED_SUPER_PLUS:
2308 		return SS_BLOCK;
2309 	case USB_SPEED_UNKNOWN:
2310 	case USB_SPEED_WIRELESS:
2311 	default:
2312 		/* Should never happen */
2313 		return 1;
2314 	}
2315 }
2316 
2317 static unsigned int
2318 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2319 {
2320 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2321 		return LS_OVERHEAD;
2322 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2323 		return FS_OVERHEAD;
2324 	return HS_OVERHEAD;
2325 }
2326 
2327 /* If we are changing a LS/FS device under a HS hub,
2328  * make sure (if we are activating a new TT) that the HS bus has enough
2329  * bandwidth for this new TT.
2330  */
2331 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2332 		struct xhci_virt_device *virt_dev,
2333 		int old_active_eps)
2334 {
2335 	struct xhci_interval_bw_table *bw_table;
2336 	struct xhci_tt_bw_info *tt_info;
2337 
2338 	/* Find the bandwidth table for the root port this TT is attached to. */
2339 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2340 	tt_info = virt_dev->tt_info;
2341 	/* If this TT already had active endpoints, the bandwidth for this TT
2342 	 * has already been added.  Removing all periodic endpoints (and thus
2343 	 * making the TT enactive) will only decrease the bandwidth used.
2344 	 */
2345 	if (old_active_eps)
2346 		return 0;
2347 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2348 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2349 			return -ENOMEM;
2350 		return 0;
2351 	}
2352 	/* Not sure why we would have no new active endpoints...
2353 	 *
2354 	 * Maybe because of an Evaluate Context change for a hub update or a
2355 	 * control endpoint 0 max packet size change?
2356 	 * FIXME: skip the bandwidth calculation in that case.
2357 	 */
2358 	return 0;
2359 }
2360 
2361 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2362 		struct xhci_virt_device *virt_dev)
2363 {
2364 	unsigned int bw_reserved;
2365 
2366 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2367 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2368 		return -ENOMEM;
2369 
2370 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2371 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2372 		return -ENOMEM;
2373 
2374 	return 0;
2375 }
2376 
2377 /*
2378  * This algorithm is a very conservative estimate of the worst-case scheduling
2379  * scenario for any one interval.  The hardware dynamically schedules the
2380  * packets, so we can't tell which microframe could be the limiting factor in
2381  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2382  *
2383  * Obviously, we can't solve an NP complete problem to find the minimum worst
2384  * case scenario.  Instead, we come up with an estimate that is no less than
2385  * the worst case bandwidth used for any one microframe, but may be an
2386  * over-estimate.
2387  *
2388  * We walk the requirements for each endpoint by interval, starting with the
2389  * smallest interval, and place packets in the schedule where there is only one
2390  * possible way to schedule packets for that interval.  In order to simplify
2391  * this algorithm, we record the largest max packet size for each interval, and
2392  * assume all packets will be that size.
2393  *
2394  * For interval 0, we obviously must schedule all packets for each interval.
2395  * The bandwidth for interval 0 is just the amount of data to be transmitted
2396  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2397  * the number of packets).
2398  *
2399  * For interval 1, we have two possible microframes to schedule those packets
2400  * in.  For this algorithm, if we can schedule the same number of packets for
2401  * each possible scheduling opportunity (each microframe), we will do so.  The
2402  * remaining number of packets will be saved to be transmitted in the gaps in
2403  * the next interval's scheduling sequence.
2404  *
2405  * As we move those remaining packets to be scheduled with interval 2 packets,
2406  * we have to double the number of remaining packets to transmit.  This is
2407  * because the intervals are actually powers of 2, and we would be transmitting
2408  * the previous interval's packets twice in this interval.  We also have to be
2409  * sure that when we look at the largest max packet size for this interval, we
2410  * also look at the largest max packet size for the remaining packets and take
2411  * the greater of the two.
2412  *
2413  * The algorithm continues to evenly distribute packets in each scheduling
2414  * opportunity, and push the remaining packets out, until we get to the last
2415  * interval.  Then those packets and their associated overhead are just added
2416  * to the bandwidth used.
2417  */
2418 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2419 		struct xhci_virt_device *virt_dev,
2420 		int old_active_eps)
2421 {
2422 	unsigned int bw_reserved;
2423 	unsigned int max_bandwidth;
2424 	unsigned int bw_used;
2425 	unsigned int block_size;
2426 	struct xhci_interval_bw_table *bw_table;
2427 	unsigned int packet_size = 0;
2428 	unsigned int overhead = 0;
2429 	unsigned int packets_transmitted = 0;
2430 	unsigned int packets_remaining = 0;
2431 	unsigned int i;
2432 
2433 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2434 		return xhci_check_ss_bw(xhci, virt_dev);
2435 
2436 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2437 		max_bandwidth = HS_BW_LIMIT;
2438 		/* Convert percent of bus BW reserved to blocks reserved */
2439 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2440 	} else {
2441 		max_bandwidth = FS_BW_LIMIT;
2442 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2443 	}
2444 
2445 	bw_table = virt_dev->bw_table;
2446 	/* We need to translate the max packet size and max ESIT payloads into
2447 	 * the units the hardware uses.
2448 	 */
2449 	block_size = xhci_get_block_size(virt_dev->udev);
2450 
2451 	/* If we are manipulating a LS/FS device under a HS hub, double check
2452 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2453 	 */
2454 	if (virt_dev->tt_info) {
2455 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2456 				"Recalculating BW for rootport %u",
2457 				virt_dev->real_port);
2458 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2459 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2460 					"newly activated TT.\n");
2461 			return -ENOMEM;
2462 		}
2463 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2464 				"Recalculating BW for TT slot %u port %u",
2465 				virt_dev->tt_info->slot_id,
2466 				virt_dev->tt_info->ttport);
2467 	} else {
2468 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2469 				"Recalculating BW for rootport %u",
2470 				virt_dev->real_port);
2471 	}
2472 
2473 	/* Add in how much bandwidth will be used for interval zero, or the
2474 	 * rounded max ESIT payload + number of packets * largest overhead.
2475 	 */
2476 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2477 		bw_table->interval_bw[0].num_packets *
2478 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2479 
2480 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2481 		unsigned int bw_added;
2482 		unsigned int largest_mps;
2483 		unsigned int interval_overhead;
2484 
2485 		/*
2486 		 * How many packets could we transmit in this interval?
2487 		 * If packets didn't fit in the previous interval, we will need
2488 		 * to transmit that many packets twice within this interval.
2489 		 */
2490 		packets_remaining = 2 * packets_remaining +
2491 			bw_table->interval_bw[i].num_packets;
2492 
2493 		/* Find the largest max packet size of this or the previous
2494 		 * interval.
2495 		 */
2496 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2497 			largest_mps = 0;
2498 		else {
2499 			struct xhci_virt_ep *virt_ep;
2500 			struct list_head *ep_entry;
2501 
2502 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2503 			virt_ep = list_entry(ep_entry,
2504 					struct xhci_virt_ep, bw_endpoint_list);
2505 			/* Convert to blocks, rounding up */
2506 			largest_mps = DIV_ROUND_UP(
2507 					virt_ep->bw_info.max_packet_size,
2508 					block_size);
2509 		}
2510 		if (largest_mps > packet_size)
2511 			packet_size = largest_mps;
2512 
2513 		/* Use the larger overhead of this or the previous interval. */
2514 		interval_overhead = xhci_get_largest_overhead(
2515 				&bw_table->interval_bw[i]);
2516 		if (interval_overhead > overhead)
2517 			overhead = interval_overhead;
2518 
2519 		/* How many packets can we evenly distribute across
2520 		 * (1 << (i + 1)) possible scheduling opportunities?
2521 		 */
2522 		packets_transmitted = packets_remaining >> (i + 1);
2523 
2524 		/* Add in the bandwidth used for those scheduled packets */
2525 		bw_added = packets_transmitted * (overhead + packet_size);
2526 
2527 		/* How many packets do we have remaining to transmit? */
2528 		packets_remaining = packets_remaining % (1 << (i + 1));
2529 
2530 		/* What largest max packet size should those packets have? */
2531 		/* If we've transmitted all packets, don't carry over the
2532 		 * largest packet size.
2533 		 */
2534 		if (packets_remaining == 0) {
2535 			packet_size = 0;
2536 			overhead = 0;
2537 		} else if (packets_transmitted > 0) {
2538 			/* Otherwise if we do have remaining packets, and we've
2539 			 * scheduled some packets in this interval, take the
2540 			 * largest max packet size from endpoints with this
2541 			 * interval.
2542 			 */
2543 			packet_size = largest_mps;
2544 			overhead = interval_overhead;
2545 		}
2546 		/* Otherwise carry over packet_size and overhead from the last
2547 		 * time we had a remainder.
2548 		 */
2549 		bw_used += bw_added;
2550 		if (bw_used > max_bandwidth) {
2551 			xhci_warn(xhci, "Not enough bandwidth. "
2552 					"Proposed: %u, Max: %u\n",
2553 				bw_used, max_bandwidth);
2554 			return -ENOMEM;
2555 		}
2556 	}
2557 	/*
2558 	 * Ok, we know we have some packets left over after even-handedly
2559 	 * scheduling interval 15.  We don't know which microframes they will
2560 	 * fit into, so we over-schedule and say they will be scheduled every
2561 	 * microframe.
2562 	 */
2563 	if (packets_remaining > 0)
2564 		bw_used += overhead + packet_size;
2565 
2566 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2567 		unsigned int port_index = virt_dev->real_port - 1;
2568 
2569 		/* OK, we're manipulating a HS device attached to a
2570 		 * root port bandwidth domain.  Include the number of active TTs
2571 		 * in the bandwidth used.
2572 		 */
2573 		bw_used += TT_HS_OVERHEAD *
2574 			xhci->rh_bw[port_index].num_active_tts;
2575 	}
2576 
2577 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2578 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2579 		"Available: %u " "percent",
2580 		bw_used, max_bandwidth, bw_reserved,
2581 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2582 		max_bandwidth);
2583 
2584 	bw_used += bw_reserved;
2585 	if (bw_used > max_bandwidth) {
2586 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2587 				bw_used, max_bandwidth);
2588 		return -ENOMEM;
2589 	}
2590 
2591 	bw_table->bw_used = bw_used;
2592 	return 0;
2593 }
2594 
2595 static bool xhci_is_async_ep(unsigned int ep_type)
2596 {
2597 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2598 					ep_type != ISOC_IN_EP &&
2599 					ep_type != INT_IN_EP);
2600 }
2601 
2602 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2603 {
2604 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2605 }
2606 
2607 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2608 {
2609 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2610 
2611 	if (ep_bw->ep_interval == 0)
2612 		return SS_OVERHEAD_BURST +
2613 			(ep_bw->mult * ep_bw->num_packets *
2614 					(SS_OVERHEAD + mps));
2615 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2616 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2617 				1 << ep_bw->ep_interval);
2618 
2619 }
2620 
2621 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2622 		struct xhci_bw_info *ep_bw,
2623 		struct xhci_interval_bw_table *bw_table,
2624 		struct usb_device *udev,
2625 		struct xhci_virt_ep *virt_ep,
2626 		struct xhci_tt_bw_info *tt_info)
2627 {
2628 	struct xhci_interval_bw	*interval_bw;
2629 	int normalized_interval;
2630 
2631 	if (xhci_is_async_ep(ep_bw->type))
2632 		return;
2633 
2634 	if (udev->speed >= USB_SPEED_SUPER) {
2635 		if (xhci_is_sync_in_ep(ep_bw->type))
2636 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2637 				xhci_get_ss_bw_consumed(ep_bw);
2638 		else
2639 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2640 				xhci_get_ss_bw_consumed(ep_bw);
2641 		return;
2642 	}
2643 
2644 	/* SuperSpeed endpoints never get added to intervals in the table, so
2645 	 * this check is only valid for HS/FS/LS devices.
2646 	 */
2647 	if (list_empty(&virt_ep->bw_endpoint_list))
2648 		return;
2649 	/* For LS/FS devices, we need to translate the interval expressed in
2650 	 * microframes to frames.
2651 	 */
2652 	if (udev->speed == USB_SPEED_HIGH)
2653 		normalized_interval = ep_bw->ep_interval;
2654 	else
2655 		normalized_interval = ep_bw->ep_interval - 3;
2656 
2657 	if (normalized_interval == 0)
2658 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2659 	interval_bw = &bw_table->interval_bw[normalized_interval];
2660 	interval_bw->num_packets -= ep_bw->num_packets;
2661 	switch (udev->speed) {
2662 	case USB_SPEED_LOW:
2663 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2664 		break;
2665 	case USB_SPEED_FULL:
2666 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2667 		break;
2668 	case USB_SPEED_HIGH:
2669 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2670 		break;
2671 	case USB_SPEED_SUPER:
2672 	case USB_SPEED_SUPER_PLUS:
2673 	case USB_SPEED_UNKNOWN:
2674 	case USB_SPEED_WIRELESS:
2675 		/* Should never happen because only LS/FS/HS endpoints will get
2676 		 * added to the endpoint list.
2677 		 */
2678 		return;
2679 	}
2680 	if (tt_info)
2681 		tt_info->active_eps -= 1;
2682 	list_del_init(&virt_ep->bw_endpoint_list);
2683 }
2684 
2685 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2686 		struct xhci_bw_info *ep_bw,
2687 		struct xhci_interval_bw_table *bw_table,
2688 		struct usb_device *udev,
2689 		struct xhci_virt_ep *virt_ep,
2690 		struct xhci_tt_bw_info *tt_info)
2691 {
2692 	struct xhci_interval_bw	*interval_bw;
2693 	struct xhci_virt_ep *smaller_ep;
2694 	int normalized_interval;
2695 
2696 	if (xhci_is_async_ep(ep_bw->type))
2697 		return;
2698 
2699 	if (udev->speed == USB_SPEED_SUPER) {
2700 		if (xhci_is_sync_in_ep(ep_bw->type))
2701 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2702 				xhci_get_ss_bw_consumed(ep_bw);
2703 		else
2704 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2705 				xhci_get_ss_bw_consumed(ep_bw);
2706 		return;
2707 	}
2708 
2709 	/* For LS/FS devices, we need to translate the interval expressed in
2710 	 * microframes to frames.
2711 	 */
2712 	if (udev->speed == USB_SPEED_HIGH)
2713 		normalized_interval = ep_bw->ep_interval;
2714 	else
2715 		normalized_interval = ep_bw->ep_interval - 3;
2716 
2717 	if (normalized_interval == 0)
2718 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2719 	interval_bw = &bw_table->interval_bw[normalized_interval];
2720 	interval_bw->num_packets += ep_bw->num_packets;
2721 	switch (udev->speed) {
2722 	case USB_SPEED_LOW:
2723 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2724 		break;
2725 	case USB_SPEED_FULL:
2726 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2727 		break;
2728 	case USB_SPEED_HIGH:
2729 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2730 		break;
2731 	case USB_SPEED_SUPER:
2732 	case USB_SPEED_SUPER_PLUS:
2733 	case USB_SPEED_UNKNOWN:
2734 	case USB_SPEED_WIRELESS:
2735 		/* Should never happen because only LS/FS/HS endpoints will get
2736 		 * added to the endpoint list.
2737 		 */
2738 		return;
2739 	}
2740 
2741 	if (tt_info)
2742 		tt_info->active_eps += 1;
2743 	/* Insert the endpoint into the list, largest max packet size first. */
2744 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2745 			bw_endpoint_list) {
2746 		if (ep_bw->max_packet_size >=
2747 				smaller_ep->bw_info.max_packet_size) {
2748 			/* Add the new ep before the smaller endpoint */
2749 			list_add_tail(&virt_ep->bw_endpoint_list,
2750 					&smaller_ep->bw_endpoint_list);
2751 			return;
2752 		}
2753 	}
2754 	/* Add the new endpoint at the end of the list. */
2755 	list_add_tail(&virt_ep->bw_endpoint_list,
2756 			&interval_bw->endpoints);
2757 }
2758 
2759 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2760 		struct xhci_virt_device *virt_dev,
2761 		int old_active_eps)
2762 {
2763 	struct xhci_root_port_bw_info *rh_bw_info;
2764 	if (!virt_dev->tt_info)
2765 		return;
2766 
2767 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2768 	if (old_active_eps == 0 &&
2769 				virt_dev->tt_info->active_eps != 0) {
2770 		rh_bw_info->num_active_tts += 1;
2771 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2772 	} else if (old_active_eps != 0 &&
2773 				virt_dev->tt_info->active_eps == 0) {
2774 		rh_bw_info->num_active_tts -= 1;
2775 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2776 	}
2777 }
2778 
2779 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2780 		struct xhci_virt_device *virt_dev,
2781 		struct xhci_container_ctx *in_ctx)
2782 {
2783 	struct xhci_bw_info ep_bw_info[31];
2784 	int i;
2785 	struct xhci_input_control_ctx *ctrl_ctx;
2786 	int old_active_eps = 0;
2787 
2788 	if (virt_dev->tt_info)
2789 		old_active_eps = virt_dev->tt_info->active_eps;
2790 
2791 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2792 	if (!ctrl_ctx) {
2793 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2794 				__func__);
2795 		return -ENOMEM;
2796 	}
2797 
2798 	for (i = 0; i < 31; i++) {
2799 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2800 			continue;
2801 
2802 		/* Make a copy of the BW info in case we need to revert this */
2803 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2804 				sizeof(ep_bw_info[i]));
2805 		/* Drop the endpoint from the interval table if the endpoint is
2806 		 * being dropped or changed.
2807 		 */
2808 		if (EP_IS_DROPPED(ctrl_ctx, i))
2809 			xhci_drop_ep_from_interval_table(xhci,
2810 					&virt_dev->eps[i].bw_info,
2811 					virt_dev->bw_table,
2812 					virt_dev->udev,
2813 					&virt_dev->eps[i],
2814 					virt_dev->tt_info);
2815 	}
2816 	/* Overwrite the information stored in the endpoints' bw_info */
2817 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2818 	for (i = 0; i < 31; i++) {
2819 		/* Add any changed or added endpoints to the interval table */
2820 		if (EP_IS_ADDED(ctrl_ctx, i))
2821 			xhci_add_ep_to_interval_table(xhci,
2822 					&virt_dev->eps[i].bw_info,
2823 					virt_dev->bw_table,
2824 					virt_dev->udev,
2825 					&virt_dev->eps[i],
2826 					virt_dev->tt_info);
2827 	}
2828 
2829 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2830 		/* Ok, this fits in the bandwidth we have.
2831 		 * Update the number of active TTs.
2832 		 */
2833 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2834 		return 0;
2835 	}
2836 
2837 	/* We don't have enough bandwidth for this, revert the stored info. */
2838 	for (i = 0; i < 31; i++) {
2839 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2840 			continue;
2841 
2842 		/* Drop the new copies of any added or changed endpoints from
2843 		 * the interval table.
2844 		 */
2845 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2846 			xhci_drop_ep_from_interval_table(xhci,
2847 					&virt_dev->eps[i].bw_info,
2848 					virt_dev->bw_table,
2849 					virt_dev->udev,
2850 					&virt_dev->eps[i],
2851 					virt_dev->tt_info);
2852 		}
2853 		/* Revert the endpoint back to its old information */
2854 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2855 				sizeof(ep_bw_info[i]));
2856 		/* Add any changed or dropped endpoints back into the table */
2857 		if (EP_IS_DROPPED(ctrl_ctx, i))
2858 			xhci_add_ep_to_interval_table(xhci,
2859 					&virt_dev->eps[i].bw_info,
2860 					virt_dev->bw_table,
2861 					virt_dev->udev,
2862 					&virt_dev->eps[i],
2863 					virt_dev->tt_info);
2864 	}
2865 	return -ENOMEM;
2866 }
2867 
2868 
2869 /* Issue a configure endpoint command or evaluate context command
2870  * and wait for it to finish.
2871  */
2872 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2873 		struct usb_device *udev,
2874 		struct xhci_command *command,
2875 		bool ctx_change, bool must_succeed)
2876 {
2877 	int ret;
2878 	unsigned long flags;
2879 	struct xhci_input_control_ctx *ctrl_ctx;
2880 	struct xhci_virt_device *virt_dev;
2881 	struct xhci_slot_ctx *slot_ctx;
2882 
2883 	if (!command)
2884 		return -EINVAL;
2885 
2886 	spin_lock_irqsave(&xhci->lock, flags);
2887 
2888 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2889 		spin_unlock_irqrestore(&xhci->lock, flags);
2890 		return -ESHUTDOWN;
2891 	}
2892 
2893 	virt_dev = xhci->devs[udev->slot_id];
2894 
2895 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2896 	if (!ctrl_ctx) {
2897 		spin_unlock_irqrestore(&xhci->lock, flags);
2898 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2899 				__func__);
2900 		return -ENOMEM;
2901 	}
2902 
2903 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2904 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2905 		spin_unlock_irqrestore(&xhci->lock, flags);
2906 		xhci_warn(xhci, "Not enough host resources, "
2907 				"active endpoint contexts = %u\n",
2908 				xhci->num_active_eps);
2909 		return -ENOMEM;
2910 	}
2911 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2912 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2913 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2914 			xhci_free_host_resources(xhci, ctrl_ctx);
2915 		spin_unlock_irqrestore(&xhci->lock, flags);
2916 		xhci_warn(xhci, "Not enough bandwidth\n");
2917 		return -ENOMEM;
2918 	}
2919 
2920 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2921 
2922 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2923 	trace_xhci_configure_endpoint(slot_ctx);
2924 
2925 	if (!ctx_change)
2926 		ret = xhci_queue_configure_endpoint(xhci, command,
2927 				command->in_ctx->dma,
2928 				udev->slot_id, must_succeed);
2929 	else
2930 		ret = xhci_queue_evaluate_context(xhci, command,
2931 				command->in_ctx->dma,
2932 				udev->slot_id, must_succeed);
2933 	if (ret < 0) {
2934 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2935 			xhci_free_host_resources(xhci, ctrl_ctx);
2936 		spin_unlock_irqrestore(&xhci->lock, flags);
2937 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2938 				"FIXME allocate a new ring segment");
2939 		return -ENOMEM;
2940 	}
2941 	xhci_ring_cmd_db(xhci);
2942 	spin_unlock_irqrestore(&xhci->lock, flags);
2943 
2944 	/* Wait for the configure endpoint command to complete */
2945 	wait_for_completion(command->completion);
2946 
2947 	if (!ctx_change)
2948 		ret = xhci_configure_endpoint_result(xhci, udev,
2949 						     &command->status);
2950 	else
2951 		ret = xhci_evaluate_context_result(xhci, udev,
2952 						   &command->status);
2953 
2954 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2955 		spin_lock_irqsave(&xhci->lock, flags);
2956 		/* If the command failed, remove the reserved resources.
2957 		 * Otherwise, clean up the estimate to include dropped eps.
2958 		 */
2959 		if (ret)
2960 			xhci_free_host_resources(xhci, ctrl_ctx);
2961 		else
2962 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2963 		spin_unlock_irqrestore(&xhci->lock, flags);
2964 	}
2965 	return ret;
2966 }
2967 
2968 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2969 	struct xhci_virt_device *vdev, int i)
2970 {
2971 	struct xhci_virt_ep *ep = &vdev->eps[i];
2972 
2973 	if (ep->ep_state & EP_HAS_STREAMS) {
2974 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2975 				xhci_get_endpoint_address(i));
2976 		xhci_free_stream_info(xhci, ep->stream_info);
2977 		ep->stream_info = NULL;
2978 		ep->ep_state &= ~EP_HAS_STREAMS;
2979 	}
2980 }
2981 
2982 /* Called after one or more calls to xhci_add_endpoint() or
2983  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2984  * to call xhci_reset_bandwidth().
2985  *
2986  * Since we are in the middle of changing either configuration or
2987  * installing a new alt setting, the USB core won't allow URBs to be
2988  * enqueued for any endpoint on the old config or interface.  Nothing
2989  * else should be touching the xhci->devs[slot_id] structure, so we
2990  * don't need to take the xhci->lock for manipulating that.
2991  */
2992 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2993 {
2994 	int i;
2995 	int ret = 0;
2996 	struct xhci_hcd *xhci;
2997 	struct xhci_virt_device	*virt_dev;
2998 	struct xhci_input_control_ctx *ctrl_ctx;
2999 	struct xhci_slot_ctx *slot_ctx;
3000 	struct xhci_command *command;
3001 
3002 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3003 	if (ret <= 0)
3004 		return ret;
3005 	xhci = hcd_to_xhci(hcd);
3006 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3007 		(xhci->xhc_state & XHCI_STATE_REMOVING))
3008 		return -ENODEV;
3009 
3010 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3011 	virt_dev = xhci->devs[udev->slot_id];
3012 
3013 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3014 	if (!command)
3015 		return -ENOMEM;
3016 
3017 	command->in_ctx = virt_dev->in_ctx;
3018 
3019 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3020 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3021 	if (!ctrl_ctx) {
3022 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3023 				__func__);
3024 		ret = -ENOMEM;
3025 		goto command_cleanup;
3026 	}
3027 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3028 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3029 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3030 
3031 	/* Don't issue the command if there's no endpoints to update. */
3032 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3033 	    ctrl_ctx->drop_flags == 0) {
3034 		ret = 0;
3035 		goto command_cleanup;
3036 	}
3037 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3038 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3039 	for (i = 31; i >= 1; i--) {
3040 		__le32 le32 = cpu_to_le32(BIT(i));
3041 
3042 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3043 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3044 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3045 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3046 			break;
3047 		}
3048 	}
3049 
3050 	ret = xhci_configure_endpoint(xhci, udev, command,
3051 			false, false);
3052 	if (ret)
3053 		/* Callee should call reset_bandwidth() */
3054 		goto command_cleanup;
3055 
3056 	/* Free any rings that were dropped, but not changed. */
3057 	for (i = 1; i < 31; i++) {
3058 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3059 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3060 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3061 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3062 		}
3063 	}
3064 	xhci_zero_in_ctx(xhci, virt_dev);
3065 	/*
3066 	 * Install any rings for completely new endpoints or changed endpoints,
3067 	 * and free any old rings from changed endpoints.
3068 	 */
3069 	for (i = 1; i < 31; i++) {
3070 		if (!virt_dev->eps[i].new_ring)
3071 			continue;
3072 		/* Only free the old ring if it exists.
3073 		 * It may not if this is the first add of an endpoint.
3074 		 */
3075 		if (virt_dev->eps[i].ring) {
3076 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3077 		}
3078 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3079 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3080 		virt_dev->eps[i].new_ring = NULL;
3081 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3082 	}
3083 command_cleanup:
3084 	kfree(command->completion);
3085 	kfree(command);
3086 
3087 	return ret;
3088 }
3089 
3090 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3091 {
3092 	struct xhci_hcd *xhci;
3093 	struct xhci_virt_device	*virt_dev;
3094 	int i, ret;
3095 
3096 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3097 	if (ret <= 0)
3098 		return;
3099 	xhci = hcd_to_xhci(hcd);
3100 
3101 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3102 	virt_dev = xhci->devs[udev->slot_id];
3103 	/* Free any rings allocated for added endpoints */
3104 	for (i = 0; i < 31; i++) {
3105 		if (virt_dev->eps[i].new_ring) {
3106 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3107 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3108 			virt_dev->eps[i].new_ring = NULL;
3109 		}
3110 	}
3111 	xhci_zero_in_ctx(xhci, virt_dev);
3112 }
3113 
3114 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3115 		struct xhci_container_ctx *in_ctx,
3116 		struct xhci_container_ctx *out_ctx,
3117 		struct xhci_input_control_ctx *ctrl_ctx,
3118 		u32 add_flags, u32 drop_flags)
3119 {
3120 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3121 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3122 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3123 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3124 }
3125 
3126 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3127 				  struct usb_host_endpoint *host_ep)
3128 {
3129 	struct xhci_hcd		*xhci;
3130 	struct xhci_virt_device	*vdev;
3131 	struct xhci_virt_ep	*ep;
3132 	struct usb_device	*udev;
3133 	unsigned long		flags;
3134 	unsigned int		ep_index;
3135 
3136 	xhci = hcd_to_xhci(hcd);
3137 rescan:
3138 	spin_lock_irqsave(&xhci->lock, flags);
3139 
3140 	udev = (struct usb_device *)host_ep->hcpriv;
3141 	if (!udev || !udev->slot_id)
3142 		goto done;
3143 
3144 	vdev = xhci->devs[udev->slot_id];
3145 	if (!vdev)
3146 		goto done;
3147 
3148 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3149 	ep = &vdev->eps[ep_index];
3150 	if (!ep)
3151 		goto done;
3152 
3153 	/* wait for hub_tt_work to finish clearing hub TT */
3154 	if (ep->ep_state & EP_CLEARING_TT) {
3155 		spin_unlock_irqrestore(&xhci->lock, flags);
3156 		schedule_timeout_uninterruptible(1);
3157 		goto rescan;
3158 	}
3159 
3160 	if (ep->ep_state)
3161 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3162 			 ep->ep_state);
3163 done:
3164 	host_ep->hcpriv = NULL;
3165 	spin_unlock_irqrestore(&xhci->lock, flags);
3166 }
3167 
3168 /*
3169  * Called after usb core issues a clear halt control message.
3170  * The host side of the halt should already be cleared by a reset endpoint
3171  * command issued when the STALL event was received.
3172  *
3173  * The reset endpoint command may only be issued to endpoints in the halted
3174  * state. For software that wishes to reset the data toggle or sequence number
3175  * of an endpoint that isn't in the halted state this function will issue a
3176  * configure endpoint command with the Drop and Add bits set for the target
3177  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3178  */
3179 
3180 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3181 		struct usb_host_endpoint *host_ep)
3182 {
3183 	struct xhci_hcd *xhci;
3184 	struct usb_device *udev;
3185 	struct xhci_virt_device *vdev;
3186 	struct xhci_virt_ep *ep;
3187 	struct xhci_input_control_ctx *ctrl_ctx;
3188 	struct xhci_command *stop_cmd, *cfg_cmd;
3189 	unsigned int ep_index;
3190 	unsigned long flags;
3191 	u32 ep_flag;
3192 	int err;
3193 
3194 	xhci = hcd_to_xhci(hcd);
3195 	if (!host_ep->hcpriv)
3196 		return;
3197 	udev = (struct usb_device *) host_ep->hcpriv;
3198 	vdev = xhci->devs[udev->slot_id];
3199 
3200 	/*
3201 	 * vdev may be lost due to xHC restore error and re-initialization
3202 	 * during S3/S4 resume. A new vdev will be allocated later by
3203 	 * xhci_discover_or_reset_device()
3204 	 */
3205 	if (!udev->slot_id || !vdev)
3206 		return;
3207 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3208 	ep = &vdev->eps[ep_index];
3209 	if (!ep)
3210 		return;
3211 
3212 	/* Bail out if toggle is already being cleared by a endpoint reset */
3213 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3214 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3215 		return;
3216 	}
3217 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3218 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3219 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3220 		return;
3221 
3222 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3223 
3224 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3225 		return;
3226 
3227 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3228 	if (!stop_cmd)
3229 		return;
3230 
3231 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3232 	if (!cfg_cmd)
3233 		goto cleanup;
3234 
3235 	spin_lock_irqsave(&xhci->lock, flags);
3236 
3237 	/* block queuing new trbs and ringing ep doorbell */
3238 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3239 
3240 	/*
3241 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3242 	 * Driver is required to synchronously cancel all transfer request.
3243 	 * Stop the endpoint to force xHC to update the output context
3244 	 */
3245 
3246 	if (!list_empty(&ep->ring->td_list)) {
3247 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3248 		spin_unlock_irqrestore(&xhci->lock, flags);
3249 		xhci_free_command(xhci, cfg_cmd);
3250 		goto cleanup;
3251 	}
3252 
3253 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3254 					ep_index, 0);
3255 	if (err < 0) {
3256 		spin_unlock_irqrestore(&xhci->lock, flags);
3257 		xhci_free_command(xhci, cfg_cmd);
3258 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3259 				__func__, err);
3260 		goto cleanup;
3261 	}
3262 
3263 	xhci_ring_cmd_db(xhci);
3264 	spin_unlock_irqrestore(&xhci->lock, flags);
3265 
3266 	wait_for_completion(stop_cmd->completion);
3267 
3268 	spin_lock_irqsave(&xhci->lock, flags);
3269 
3270 	/* config ep command clears toggle if add and drop ep flags are set */
3271 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3272 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3273 					   ctrl_ctx, ep_flag, ep_flag);
3274 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3275 
3276 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3277 				      udev->slot_id, false);
3278 	if (err < 0) {
3279 		spin_unlock_irqrestore(&xhci->lock, flags);
3280 		xhci_free_command(xhci, cfg_cmd);
3281 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3282 				__func__, err);
3283 		goto cleanup;
3284 	}
3285 
3286 	xhci_ring_cmd_db(xhci);
3287 	spin_unlock_irqrestore(&xhci->lock, flags);
3288 
3289 	wait_for_completion(cfg_cmd->completion);
3290 
3291 	xhci_free_command(xhci, cfg_cmd);
3292 cleanup:
3293 	xhci_free_command(xhci, stop_cmd);
3294 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3295 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3296 }
3297 
3298 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3299 		struct usb_device *udev, struct usb_host_endpoint *ep,
3300 		unsigned int slot_id)
3301 {
3302 	int ret;
3303 	unsigned int ep_index;
3304 	unsigned int ep_state;
3305 
3306 	if (!ep)
3307 		return -EINVAL;
3308 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3309 	if (ret <= 0)
3310 		return -EINVAL;
3311 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3312 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3313 				" descriptor for ep 0x%x does not support streams\n",
3314 				ep->desc.bEndpointAddress);
3315 		return -EINVAL;
3316 	}
3317 
3318 	ep_index = xhci_get_endpoint_index(&ep->desc);
3319 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3320 	if (ep_state & EP_HAS_STREAMS ||
3321 			ep_state & EP_GETTING_STREAMS) {
3322 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3323 				"already has streams set up.\n",
3324 				ep->desc.bEndpointAddress);
3325 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3326 				"dynamic stream context array reallocation.\n");
3327 		return -EINVAL;
3328 	}
3329 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3330 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3331 				"endpoint 0x%x; URBs are pending.\n",
3332 				ep->desc.bEndpointAddress);
3333 		return -EINVAL;
3334 	}
3335 	return 0;
3336 }
3337 
3338 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3339 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3340 {
3341 	unsigned int max_streams;
3342 
3343 	/* The stream context array size must be a power of two */
3344 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3345 	/*
3346 	 * Find out how many primary stream array entries the host controller
3347 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3348 	 * level page entries), but that's an optional feature for xHCI host
3349 	 * controllers. xHCs must support at least 4 stream IDs.
3350 	 */
3351 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3352 	if (*num_stream_ctxs > max_streams) {
3353 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3354 				max_streams);
3355 		*num_stream_ctxs = max_streams;
3356 		*num_streams = max_streams;
3357 	}
3358 }
3359 
3360 /* Returns an error code if one of the endpoint already has streams.
3361  * This does not change any data structures, it only checks and gathers
3362  * information.
3363  */
3364 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3365 		struct usb_device *udev,
3366 		struct usb_host_endpoint **eps, unsigned int num_eps,
3367 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3368 {
3369 	unsigned int max_streams;
3370 	unsigned int endpoint_flag;
3371 	int i;
3372 	int ret;
3373 
3374 	for (i = 0; i < num_eps; i++) {
3375 		ret = xhci_check_streams_endpoint(xhci, udev,
3376 				eps[i], udev->slot_id);
3377 		if (ret < 0)
3378 			return ret;
3379 
3380 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3381 		if (max_streams < (*num_streams - 1)) {
3382 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3383 					eps[i]->desc.bEndpointAddress,
3384 					max_streams);
3385 			*num_streams = max_streams+1;
3386 		}
3387 
3388 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3389 		if (*changed_ep_bitmask & endpoint_flag)
3390 			return -EINVAL;
3391 		*changed_ep_bitmask |= endpoint_flag;
3392 	}
3393 	return 0;
3394 }
3395 
3396 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3397 		struct usb_device *udev,
3398 		struct usb_host_endpoint **eps, unsigned int num_eps)
3399 {
3400 	u32 changed_ep_bitmask = 0;
3401 	unsigned int slot_id;
3402 	unsigned int ep_index;
3403 	unsigned int ep_state;
3404 	int i;
3405 
3406 	slot_id = udev->slot_id;
3407 	if (!xhci->devs[slot_id])
3408 		return 0;
3409 
3410 	for (i = 0; i < num_eps; i++) {
3411 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3412 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3413 		/* Are streams already being freed for the endpoint? */
3414 		if (ep_state & EP_GETTING_NO_STREAMS) {
3415 			xhci_warn(xhci, "WARN Can't disable streams for "
3416 					"endpoint 0x%x, "
3417 					"streams are being disabled already\n",
3418 					eps[i]->desc.bEndpointAddress);
3419 			return 0;
3420 		}
3421 		/* Are there actually any streams to free? */
3422 		if (!(ep_state & EP_HAS_STREAMS) &&
3423 				!(ep_state & EP_GETTING_STREAMS)) {
3424 			xhci_warn(xhci, "WARN Can't disable streams for "
3425 					"endpoint 0x%x, "
3426 					"streams are already disabled!\n",
3427 					eps[i]->desc.bEndpointAddress);
3428 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3429 					"with non-streams endpoint\n");
3430 			return 0;
3431 		}
3432 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3433 	}
3434 	return changed_ep_bitmask;
3435 }
3436 
3437 /*
3438  * The USB device drivers use this function (through the HCD interface in USB
3439  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3440  * coordinate mass storage command queueing across multiple endpoints (basically
3441  * a stream ID == a task ID).
3442  *
3443  * Setting up streams involves allocating the same size stream context array
3444  * for each endpoint and issuing a configure endpoint command for all endpoints.
3445  *
3446  * Don't allow the call to succeed if one endpoint only supports one stream
3447  * (which means it doesn't support streams at all).
3448  *
3449  * Drivers may get less stream IDs than they asked for, if the host controller
3450  * hardware or endpoints claim they can't support the number of requested
3451  * stream IDs.
3452  */
3453 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3454 		struct usb_host_endpoint **eps, unsigned int num_eps,
3455 		unsigned int num_streams, gfp_t mem_flags)
3456 {
3457 	int i, ret;
3458 	struct xhci_hcd *xhci;
3459 	struct xhci_virt_device *vdev;
3460 	struct xhci_command *config_cmd;
3461 	struct xhci_input_control_ctx *ctrl_ctx;
3462 	unsigned int ep_index;
3463 	unsigned int num_stream_ctxs;
3464 	unsigned int max_packet;
3465 	unsigned long flags;
3466 	u32 changed_ep_bitmask = 0;
3467 
3468 	if (!eps)
3469 		return -EINVAL;
3470 
3471 	/* Add one to the number of streams requested to account for
3472 	 * stream 0 that is reserved for xHCI usage.
3473 	 */
3474 	num_streams += 1;
3475 	xhci = hcd_to_xhci(hcd);
3476 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3477 			num_streams);
3478 
3479 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3480 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3481 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3482 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3483 		return -ENOSYS;
3484 	}
3485 
3486 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3487 	if (!config_cmd)
3488 		return -ENOMEM;
3489 
3490 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3491 	if (!ctrl_ctx) {
3492 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3493 				__func__);
3494 		xhci_free_command(xhci, config_cmd);
3495 		return -ENOMEM;
3496 	}
3497 
3498 	/* Check to make sure all endpoints are not already configured for
3499 	 * streams.  While we're at it, find the maximum number of streams that
3500 	 * all the endpoints will support and check for duplicate endpoints.
3501 	 */
3502 	spin_lock_irqsave(&xhci->lock, flags);
3503 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3504 			num_eps, &num_streams, &changed_ep_bitmask);
3505 	if (ret < 0) {
3506 		xhci_free_command(xhci, config_cmd);
3507 		spin_unlock_irqrestore(&xhci->lock, flags);
3508 		return ret;
3509 	}
3510 	if (num_streams <= 1) {
3511 		xhci_warn(xhci, "WARN: endpoints can't handle "
3512 				"more than one stream.\n");
3513 		xhci_free_command(xhci, config_cmd);
3514 		spin_unlock_irqrestore(&xhci->lock, flags);
3515 		return -EINVAL;
3516 	}
3517 	vdev = xhci->devs[udev->slot_id];
3518 	/* Mark each endpoint as being in transition, so
3519 	 * xhci_urb_enqueue() will reject all URBs.
3520 	 */
3521 	for (i = 0; i < num_eps; i++) {
3522 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3523 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3524 	}
3525 	spin_unlock_irqrestore(&xhci->lock, flags);
3526 
3527 	/* Setup internal data structures and allocate HW data structures for
3528 	 * streams (but don't install the HW structures in the input context
3529 	 * until we're sure all memory allocation succeeded).
3530 	 */
3531 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3532 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3533 			num_stream_ctxs, num_streams);
3534 
3535 	for (i = 0; i < num_eps; i++) {
3536 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3537 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3538 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3539 				num_stream_ctxs,
3540 				num_streams,
3541 				max_packet, mem_flags);
3542 		if (!vdev->eps[ep_index].stream_info)
3543 			goto cleanup;
3544 		/* Set maxPstreams in endpoint context and update deq ptr to
3545 		 * point to stream context array. FIXME
3546 		 */
3547 	}
3548 
3549 	/* Set up the input context for a configure endpoint command. */
3550 	for (i = 0; i < num_eps; i++) {
3551 		struct xhci_ep_ctx *ep_ctx;
3552 
3553 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3554 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3555 
3556 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3557 				vdev->out_ctx, ep_index);
3558 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3559 				vdev->eps[ep_index].stream_info);
3560 	}
3561 	/* Tell the HW to drop its old copy of the endpoint context info
3562 	 * and add the updated copy from the input context.
3563 	 */
3564 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3565 			vdev->out_ctx, ctrl_ctx,
3566 			changed_ep_bitmask, changed_ep_bitmask);
3567 
3568 	/* Issue and wait for the configure endpoint command */
3569 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3570 			false, false);
3571 
3572 	/* xHC rejected the configure endpoint command for some reason, so we
3573 	 * leave the old ring intact and free our internal streams data
3574 	 * structure.
3575 	 */
3576 	if (ret < 0)
3577 		goto cleanup;
3578 
3579 	spin_lock_irqsave(&xhci->lock, flags);
3580 	for (i = 0; i < num_eps; i++) {
3581 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3582 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3583 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3584 			 udev->slot_id, ep_index);
3585 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3586 	}
3587 	xhci_free_command(xhci, config_cmd);
3588 	spin_unlock_irqrestore(&xhci->lock, flags);
3589 
3590 	for (i = 0; i < num_eps; i++) {
3591 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3592 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3593 	}
3594 	/* Subtract 1 for stream 0, which drivers can't use */
3595 	return num_streams - 1;
3596 
3597 cleanup:
3598 	/* If it didn't work, free the streams! */
3599 	for (i = 0; i < num_eps; i++) {
3600 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3601 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3602 		vdev->eps[ep_index].stream_info = NULL;
3603 		/* FIXME Unset maxPstreams in endpoint context and
3604 		 * update deq ptr to point to normal string ring.
3605 		 */
3606 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3607 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3608 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3609 	}
3610 	xhci_free_command(xhci, config_cmd);
3611 	return -ENOMEM;
3612 }
3613 
3614 /* Transition the endpoint from using streams to being a "normal" endpoint
3615  * without streams.
3616  *
3617  * Modify the endpoint context state, submit a configure endpoint command,
3618  * and free all endpoint rings for streams if that completes successfully.
3619  */
3620 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3621 		struct usb_host_endpoint **eps, unsigned int num_eps,
3622 		gfp_t mem_flags)
3623 {
3624 	int i, ret;
3625 	struct xhci_hcd *xhci;
3626 	struct xhci_virt_device *vdev;
3627 	struct xhci_command *command;
3628 	struct xhci_input_control_ctx *ctrl_ctx;
3629 	unsigned int ep_index;
3630 	unsigned long flags;
3631 	u32 changed_ep_bitmask;
3632 
3633 	xhci = hcd_to_xhci(hcd);
3634 	vdev = xhci->devs[udev->slot_id];
3635 
3636 	/* Set up a configure endpoint command to remove the streams rings */
3637 	spin_lock_irqsave(&xhci->lock, flags);
3638 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3639 			udev, eps, num_eps);
3640 	if (changed_ep_bitmask == 0) {
3641 		spin_unlock_irqrestore(&xhci->lock, flags);
3642 		return -EINVAL;
3643 	}
3644 
3645 	/* Use the xhci_command structure from the first endpoint.  We may have
3646 	 * allocated too many, but the driver may call xhci_free_streams() for
3647 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3648 	 */
3649 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3650 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3651 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3652 	if (!ctrl_ctx) {
3653 		spin_unlock_irqrestore(&xhci->lock, flags);
3654 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3655 				__func__);
3656 		return -EINVAL;
3657 	}
3658 
3659 	for (i = 0; i < num_eps; i++) {
3660 		struct xhci_ep_ctx *ep_ctx;
3661 
3662 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3663 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3664 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3665 			EP_GETTING_NO_STREAMS;
3666 
3667 		xhci_endpoint_copy(xhci, command->in_ctx,
3668 				vdev->out_ctx, ep_index);
3669 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3670 				&vdev->eps[ep_index]);
3671 	}
3672 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3673 			vdev->out_ctx, ctrl_ctx,
3674 			changed_ep_bitmask, changed_ep_bitmask);
3675 	spin_unlock_irqrestore(&xhci->lock, flags);
3676 
3677 	/* Issue and wait for the configure endpoint command,
3678 	 * which must succeed.
3679 	 */
3680 	ret = xhci_configure_endpoint(xhci, udev, command,
3681 			false, true);
3682 
3683 	/* xHC rejected the configure endpoint command for some reason, so we
3684 	 * leave the streams rings intact.
3685 	 */
3686 	if (ret < 0)
3687 		return ret;
3688 
3689 	spin_lock_irqsave(&xhci->lock, flags);
3690 	for (i = 0; i < num_eps; i++) {
3691 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3692 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3693 		vdev->eps[ep_index].stream_info = NULL;
3694 		/* FIXME Unset maxPstreams in endpoint context and
3695 		 * update deq ptr to point to normal string ring.
3696 		 */
3697 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3698 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3699 	}
3700 	spin_unlock_irqrestore(&xhci->lock, flags);
3701 
3702 	return 0;
3703 }
3704 
3705 /*
3706  * Deletes endpoint resources for endpoints that were active before a Reset
3707  * Device command, or a Disable Slot command.  The Reset Device command leaves
3708  * the control endpoint intact, whereas the Disable Slot command deletes it.
3709  *
3710  * Must be called with xhci->lock held.
3711  */
3712 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3713 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3714 {
3715 	int i;
3716 	unsigned int num_dropped_eps = 0;
3717 	unsigned int drop_flags = 0;
3718 
3719 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3720 		if (virt_dev->eps[i].ring) {
3721 			drop_flags |= 1 << i;
3722 			num_dropped_eps++;
3723 		}
3724 	}
3725 	xhci->num_active_eps -= num_dropped_eps;
3726 	if (num_dropped_eps)
3727 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3728 				"Dropped %u ep ctxs, flags = 0x%x, "
3729 				"%u now active.",
3730 				num_dropped_eps, drop_flags,
3731 				xhci->num_active_eps);
3732 }
3733 
3734 /*
3735  * This submits a Reset Device Command, which will set the device state to 0,
3736  * set the device address to 0, and disable all the endpoints except the default
3737  * control endpoint.  The USB core should come back and call
3738  * xhci_address_device(), and then re-set up the configuration.  If this is
3739  * called because of a usb_reset_and_verify_device(), then the old alternate
3740  * settings will be re-installed through the normal bandwidth allocation
3741  * functions.
3742  *
3743  * Wait for the Reset Device command to finish.  Remove all structures
3744  * associated with the endpoints that were disabled.  Clear the input device
3745  * structure? Reset the control endpoint 0 max packet size?
3746  *
3747  * If the virt_dev to be reset does not exist or does not match the udev,
3748  * it means the device is lost, possibly due to the xHC restore error and
3749  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3750  * re-allocate the device.
3751  */
3752 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3753 		struct usb_device *udev)
3754 {
3755 	int ret, i;
3756 	unsigned long flags;
3757 	struct xhci_hcd *xhci;
3758 	unsigned int slot_id;
3759 	struct xhci_virt_device *virt_dev;
3760 	struct xhci_command *reset_device_cmd;
3761 	struct xhci_slot_ctx *slot_ctx;
3762 	int old_active_eps = 0;
3763 
3764 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3765 	if (ret <= 0)
3766 		return ret;
3767 	xhci = hcd_to_xhci(hcd);
3768 	slot_id = udev->slot_id;
3769 	virt_dev = xhci->devs[slot_id];
3770 	if (!virt_dev) {
3771 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3772 				"not exist. Re-allocate the device\n", slot_id);
3773 		ret = xhci_alloc_dev(hcd, udev);
3774 		if (ret == 1)
3775 			return 0;
3776 		else
3777 			return -EINVAL;
3778 	}
3779 
3780 	if (virt_dev->tt_info)
3781 		old_active_eps = virt_dev->tt_info->active_eps;
3782 
3783 	if (virt_dev->udev != udev) {
3784 		/* If the virt_dev and the udev does not match, this virt_dev
3785 		 * may belong to another udev.
3786 		 * Re-allocate the device.
3787 		 */
3788 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3789 				"not match the udev. Re-allocate the device\n",
3790 				slot_id);
3791 		ret = xhci_alloc_dev(hcd, udev);
3792 		if (ret == 1)
3793 			return 0;
3794 		else
3795 			return -EINVAL;
3796 	}
3797 
3798 	/* If device is not setup, there is no point in resetting it */
3799 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3800 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3801 						SLOT_STATE_DISABLED)
3802 		return 0;
3803 
3804 	trace_xhci_discover_or_reset_device(slot_ctx);
3805 
3806 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3807 	/* Allocate the command structure that holds the struct completion.
3808 	 * Assume we're in process context, since the normal device reset
3809 	 * process has to wait for the device anyway.  Storage devices are
3810 	 * reset as part of error handling, so use GFP_NOIO instead of
3811 	 * GFP_KERNEL.
3812 	 */
3813 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3814 	if (!reset_device_cmd) {
3815 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3816 		return -ENOMEM;
3817 	}
3818 
3819 	/* Attempt to submit the Reset Device command to the command ring */
3820 	spin_lock_irqsave(&xhci->lock, flags);
3821 
3822 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3823 	if (ret) {
3824 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3825 		spin_unlock_irqrestore(&xhci->lock, flags);
3826 		goto command_cleanup;
3827 	}
3828 	xhci_ring_cmd_db(xhci);
3829 	spin_unlock_irqrestore(&xhci->lock, flags);
3830 
3831 	/* Wait for the Reset Device command to finish */
3832 	wait_for_completion(reset_device_cmd->completion);
3833 
3834 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3835 	 * unless we tried to reset a slot ID that wasn't enabled,
3836 	 * or the device wasn't in the addressed or configured state.
3837 	 */
3838 	ret = reset_device_cmd->status;
3839 	switch (ret) {
3840 	case COMP_COMMAND_ABORTED:
3841 	case COMP_COMMAND_RING_STOPPED:
3842 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3843 		ret = -ETIME;
3844 		goto command_cleanup;
3845 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3846 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3847 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3848 				slot_id,
3849 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3850 		xhci_dbg(xhci, "Not freeing device rings.\n");
3851 		/* Don't treat this as an error.  May change my mind later. */
3852 		ret = 0;
3853 		goto command_cleanup;
3854 	case COMP_SUCCESS:
3855 		xhci_dbg(xhci, "Successful reset device command.\n");
3856 		break;
3857 	default:
3858 		if (xhci_is_vendor_info_code(xhci, ret))
3859 			break;
3860 		xhci_warn(xhci, "Unknown completion code %u for "
3861 				"reset device command.\n", ret);
3862 		ret = -EINVAL;
3863 		goto command_cleanup;
3864 	}
3865 
3866 	/* Free up host controller endpoint resources */
3867 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3868 		spin_lock_irqsave(&xhci->lock, flags);
3869 		/* Don't delete the default control endpoint resources */
3870 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3871 		spin_unlock_irqrestore(&xhci->lock, flags);
3872 	}
3873 
3874 	/* Everything but endpoint 0 is disabled, so free the rings. */
3875 	for (i = 1; i < 31; i++) {
3876 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3877 
3878 		if (ep->ep_state & EP_HAS_STREAMS) {
3879 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3880 					xhci_get_endpoint_address(i));
3881 			xhci_free_stream_info(xhci, ep->stream_info);
3882 			ep->stream_info = NULL;
3883 			ep->ep_state &= ~EP_HAS_STREAMS;
3884 		}
3885 
3886 		if (ep->ring) {
3887 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3888 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3889 		}
3890 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3891 			xhci_drop_ep_from_interval_table(xhci,
3892 					&virt_dev->eps[i].bw_info,
3893 					virt_dev->bw_table,
3894 					udev,
3895 					&virt_dev->eps[i],
3896 					virt_dev->tt_info);
3897 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3898 	}
3899 	/* If necessary, update the number of active TTs on this root port */
3900 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3901 	virt_dev->flags = 0;
3902 	ret = 0;
3903 
3904 command_cleanup:
3905 	xhci_free_command(xhci, reset_device_cmd);
3906 	return ret;
3907 }
3908 
3909 /*
3910  * At this point, the struct usb_device is about to go away, the device has
3911  * disconnected, and all traffic has been stopped and the endpoints have been
3912  * disabled.  Free any HC data structures associated with that device.
3913  */
3914 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3915 {
3916 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3917 	struct xhci_virt_device *virt_dev;
3918 	struct xhci_slot_ctx *slot_ctx;
3919 	int i, ret;
3920 
3921 #ifndef CONFIG_USB_DEFAULT_PERSIST
3922 	/*
3923 	 * We called pm_runtime_get_noresume when the device was attached.
3924 	 * Decrement the counter here to allow controller to runtime suspend
3925 	 * if no devices remain.
3926 	 */
3927 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3928 		pm_runtime_put_noidle(hcd->self.controller);
3929 #endif
3930 
3931 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3932 	/* If the host is halted due to driver unload, we still need to free the
3933 	 * device.
3934 	 */
3935 	if (ret <= 0 && ret != -ENODEV)
3936 		return;
3937 
3938 	virt_dev = xhci->devs[udev->slot_id];
3939 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3940 	trace_xhci_free_dev(slot_ctx);
3941 
3942 	/* Stop any wayward timer functions (which may grab the lock) */
3943 	for (i = 0; i < 31; i++) {
3944 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3945 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3946 	}
3947 	virt_dev->udev = NULL;
3948 	ret = xhci_disable_slot(xhci, udev->slot_id);
3949 	if (ret)
3950 		xhci_free_virt_device(xhci, udev->slot_id);
3951 }
3952 
3953 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3954 {
3955 	struct xhci_command *command;
3956 	unsigned long flags;
3957 	u32 state;
3958 	int ret = 0;
3959 
3960 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3961 	if (!command)
3962 		return -ENOMEM;
3963 
3964 	xhci_debugfs_remove_slot(xhci, slot_id);
3965 
3966 	spin_lock_irqsave(&xhci->lock, flags);
3967 	/* Don't disable the slot if the host controller is dead. */
3968 	state = readl(&xhci->op_regs->status);
3969 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3970 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3971 		spin_unlock_irqrestore(&xhci->lock, flags);
3972 		kfree(command);
3973 		return -ENODEV;
3974 	}
3975 
3976 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3977 				slot_id);
3978 	if (ret) {
3979 		spin_unlock_irqrestore(&xhci->lock, flags);
3980 		kfree(command);
3981 		return ret;
3982 	}
3983 	xhci_ring_cmd_db(xhci);
3984 	spin_unlock_irqrestore(&xhci->lock, flags);
3985 	return ret;
3986 }
3987 
3988 /*
3989  * Checks if we have enough host controller resources for the default control
3990  * endpoint.
3991  *
3992  * Must be called with xhci->lock held.
3993  */
3994 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3995 {
3996 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3997 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3998 				"Not enough ep ctxs: "
3999 				"%u active, need to add 1, limit is %u.",
4000 				xhci->num_active_eps, xhci->limit_active_eps);
4001 		return -ENOMEM;
4002 	}
4003 	xhci->num_active_eps += 1;
4004 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4005 			"Adding 1 ep ctx, %u now active.",
4006 			xhci->num_active_eps);
4007 	return 0;
4008 }
4009 
4010 
4011 /*
4012  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4013  * timed out, or allocating memory failed.  Returns 1 on success.
4014  */
4015 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4016 {
4017 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4018 	struct xhci_virt_device *vdev;
4019 	struct xhci_slot_ctx *slot_ctx;
4020 	unsigned long flags;
4021 	int ret, slot_id;
4022 	struct xhci_command *command;
4023 
4024 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4025 	if (!command)
4026 		return 0;
4027 
4028 	spin_lock_irqsave(&xhci->lock, flags);
4029 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4030 	if (ret) {
4031 		spin_unlock_irqrestore(&xhci->lock, flags);
4032 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4033 		xhci_free_command(xhci, command);
4034 		return 0;
4035 	}
4036 	xhci_ring_cmd_db(xhci);
4037 	spin_unlock_irqrestore(&xhci->lock, flags);
4038 
4039 	wait_for_completion(command->completion);
4040 	slot_id = command->slot_id;
4041 
4042 	if (!slot_id || command->status != COMP_SUCCESS) {
4043 		xhci_err(xhci, "Error while assigning device slot ID\n");
4044 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4045 				HCS_MAX_SLOTS(
4046 					readl(&xhci->cap_regs->hcs_params1)));
4047 		xhci_free_command(xhci, command);
4048 		return 0;
4049 	}
4050 
4051 	xhci_free_command(xhci, command);
4052 
4053 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4054 		spin_lock_irqsave(&xhci->lock, flags);
4055 		ret = xhci_reserve_host_control_ep_resources(xhci);
4056 		if (ret) {
4057 			spin_unlock_irqrestore(&xhci->lock, flags);
4058 			xhci_warn(xhci, "Not enough host resources, "
4059 					"active endpoint contexts = %u\n",
4060 					xhci->num_active_eps);
4061 			goto disable_slot;
4062 		}
4063 		spin_unlock_irqrestore(&xhci->lock, flags);
4064 	}
4065 	/* Use GFP_NOIO, since this function can be called from
4066 	 * xhci_discover_or_reset_device(), which may be called as part of
4067 	 * mass storage driver error handling.
4068 	 */
4069 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4070 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4071 		goto disable_slot;
4072 	}
4073 	vdev = xhci->devs[slot_id];
4074 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4075 	trace_xhci_alloc_dev(slot_ctx);
4076 
4077 	udev->slot_id = slot_id;
4078 
4079 	xhci_debugfs_create_slot(xhci, slot_id);
4080 
4081 #ifndef CONFIG_USB_DEFAULT_PERSIST
4082 	/*
4083 	 * If resetting upon resume, we can't put the controller into runtime
4084 	 * suspend if there is a device attached.
4085 	 */
4086 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4087 		pm_runtime_get_noresume(hcd->self.controller);
4088 #endif
4089 
4090 	/* Is this a LS or FS device under a HS hub? */
4091 	/* Hub or peripherial? */
4092 	return 1;
4093 
4094 disable_slot:
4095 	ret = xhci_disable_slot(xhci, udev->slot_id);
4096 	if (ret)
4097 		xhci_free_virt_device(xhci, udev->slot_id);
4098 
4099 	return 0;
4100 }
4101 
4102 /*
4103  * Issue an Address Device command and optionally send a corresponding
4104  * SetAddress request to the device.
4105  */
4106 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4107 			     enum xhci_setup_dev setup)
4108 {
4109 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4110 	unsigned long flags;
4111 	struct xhci_virt_device *virt_dev;
4112 	int ret = 0;
4113 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4114 	struct xhci_slot_ctx *slot_ctx;
4115 	struct xhci_input_control_ctx *ctrl_ctx;
4116 	u64 temp_64;
4117 	struct xhci_command *command = NULL;
4118 
4119 	mutex_lock(&xhci->mutex);
4120 
4121 	if (xhci->xhc_state) {	/* dying, removing or halted */
4122 		ret = -ESHUTDOWN;
4123 		goto out;
4124 	}
4125 
4126 	if (!udev->slot_id) {
4127 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4128 				"Bad Slot ID %d", udev->slot_id);
4129 		ret = -EINVAL;
4130 		goto out;
4131 	}
4132 
4133 	virt_dev = xhci->devs[udev->slot_id];
4134 
4135 	if (WARN_ON(!virt_dev)) {
4136 		/*
4137 		 * In plug/unplug torture test with an NEC controller,
4138 		 * a zero-dereference was observed once due to virt_dev = 0.
4139 		 * Print useful debug rather than crash if it is observed again!
4140 		 */
4141 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4142 			udev->slot_id);
4143 		ret = -EINVAL;
4144 		goto out;
4145 	}
4146 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4147 	trace_xhci_setup_device_slot(slot_ctx);
4148 
4149 	if (setup == SETUP_CONTEXT_ONLY) {
4150 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4151 		    SLOT_STATE_DEFAULT) {
4152 			xhci_dbg(xhci, "Slot already in default state\n");
4153 			goto out;
4154 		}
4155 	}
4156 
4157 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4158 	if (!command) {
4159 		ret = -ENOMEM;
4160 		goto out;
4161 	}
4162 
4163 	command->in_ctx = virt_dev->in_ctx;
4164 
4165 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4166 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4167 	if (!ctrl_ctx) {
4168 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4169 				__func__);
4170 		ret = -EINVAL;
4171 		goto out;
4172 	}
4173 	/*
4174 	 * If this is the first Set Address since device plug-in or
4175 	 * virt_device realloaction after a resume with an xHCI power loss,
4176 	 * then set up the slot context.
4177 	 */
4178 	if (!slot_ctx->dev_info)
4179 		xhci_setup_addressable_virt_dev(xhci, udev);
4180 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4181 	else
4182 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4183 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4184 	ctrl_ctx->drop_flags = 0;
4185 
4186 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4187 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4188 
4189 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4190 	spin_lock_irqsave(&xhci->lock, flags);
4191 	trace_xhci_setup_device(virt_dev);
4192 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4193 					udev->slot_id, setup);
4194 	if (ret) {
4195 		spin_unlock_irqrestore(&xhci->lock, flags);
4196 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4197 				"FIXME: allocate a command ring segment");
4198 		goto out;
4199 	}
4200 	xhci_ring_cmd_db(xhci);
4201 	spin_unlock_irqrestore(&xhci->lock, flags);
4202 
4203 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4204 	wait_for_completion(command->completion);
4205 
4206 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4207 	 * the SetAddress() "recovery interval" required by USB and aborting the
4208 	 * command on a timeout.
4209 	 */
4210 	switch (command->status) {
4211 	case COMP_COMMAND_ABORTED:
4212 	case COMP_COMMAND_RING_STOPPED:
4213 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4214 		ret = -ETIME;
4215 		break;
4216 	case COMP_CONTEXT_STATE_ERROR:
4217 	case COMP_SLOT_NOT_ENABLED_ERROR:
4218 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4219 			 act, udev->slot_id);
4220 		ret = -EINVAL;
4221 		break;
4222 	case COMP_USB_TRANSACTION_ERROR:
4223 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4224 
4225 		mutex_unlock(&xhci->mutex);
4226 		ret = xhci_disable_slot(xhci, udev->slot_id);
4227 		if (!ret)
4228 			xhci_alloc_dev(hcd, udev);
4229 		kfree(command->completion);
4230 		kfree(command);
4231 		return -EPROTO;
4232 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4233 		dev_warn(&udev->dev,
4234 			 "ERROR: Incompatible device for setup %s command\n", act);
4235 		ret = -ENODEV;
4236 		break;
4237 	case COMP_SUCCESS:
4238 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4239 			       "Successful setup %s command", act);
4240 		break;
4241 	default:
4242 		xhci_err(xhci,
4243 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4244 			 act, command->status);
4245 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4246 		ret = -EINVAL;
4247 		break;
4248 	}
4249 	if (ret)
4250 		goto out;
4251 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4252 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4253 			"Op regs DCBAA ptr = %#016llx", temp_64);
4254 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4255 		"Slot ID %d dcbaa entry @%p = %#016llx",
4256 		udev->slot_id,
4257 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4258 		(unsigned long long)
4259 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4260 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4261 			"Output Context DMA address = %#08llx",
4262 			(unsigned long long)virt_dev->out_ctx->dma);
4263 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4264 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4265 	/*
4266 	 * USB core uses address 1 for the roothubs, so we add one to the
4267 	 * address given back to us by the HC.
4268 	 */
4269 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4270 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4271 	/* Zero the input context control for later use */
4272 	ctrl_ctx->add_flags = 0;
4273 	ctrl_ctx->drop_flags = 0;
4274 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4275 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4276 
4277 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4278 		       "Internal device address = %d",
4279 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4280 out:
4281 	mutex_unlock(&xhci->mutex);
4282 	if (command) {
4283 		kfree(command->completion);
4284 		kfree(command);
4285 	}
4286 	return ret;
4287 }
4288 
4289 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4290 {
4291 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4292 }
4293 
4294 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4295 {
4296 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4297 }
4298 
4299 /*
4300  * Transfer the port index into real index in the HW port status
4301  * registers. Caculate offset between the port's PORTSC register
4302  * and port status base. Divide the number of per port register
4303  * to get the real index. The raw port number bases 1.
4304  */
4305 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4306 {
4307 	struct xhci_hub *rhub;
4308 
4309 	rhub = xhci_get_rhub(hcd);
4310 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4311 }
4312 
4313 /*
4314  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4315  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4316  */
4317 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4318 			struct usb_device *udev, u16 max_exit_latency)
4319 {
4320 	struct xhci_virt_device *virt_dev;
4321 	struct xhci_command *command;
4322 	struct xhci_input_control_ctx *ctrl_ctx;
4323 	struct xhci_slot_ctx *slot_ctx;
4324 	unsigned long flags;
4325 	int ret;
4326 
4327 	spin_lock_irqsave(&xhci->lock, flags);
4328 
4329 	virt_dev = xhci->devs[udev->slot_id];
4330 
4331 	/*
4332 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4333 	 * xHC was re-initialized. Exit latency will be set later after
4334 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4335 	 */
4336 
4337 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4338 		spin_unlock_irqrestore(&xhci->lock, flags);
4339 		return 0;
4340 	}
4341 
4342 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4343 	command = xhci->lpm_command;
4344 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4345 	if (!ctrl_ctx) {
4346 		spin_unlock_irqrestore(&xhci->lock, flags);
4347 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4348 				__func__);
4349 		return -ENOMEM;
4350 	}
4351 
4352 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4353 	spin_unlock_irqrestore(&xhci->lock, flags);
4354 
4355 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4356 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4357 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4358 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4359 	slot_ctx->dev_state = 0;
4360 
4361 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4362 			"Set up evaluate context for LPM MEL change.");
4363 
4364 	/* Issue and wait for the evaluate context command. */
4365 	ret = xhci_configure_endpoint(xhci, udev, command,
4366 			true, true);
4367 
4368 	if (!ret) {
4369 		spin_lock_irqsave(&xhci->lock, flags);
4370 		virt_dev->current_mel = max_exit_latency;
4371 		spin_unlock_irqrestore(&xhci->lock, flags);
4372 	}
4373 	return ret;
4374 }
4375 
4376 #ifdef CONFIG_PM
4377 
4378 /* BESL to HIRD Encoding array for USB2 LPM */
4379 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4380 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4381 
4382 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4383 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4384 					struct usb_device *udev)
4385 {
4386 	int u2del, besl, besl_host;
4387 	int besl_device = 0;
4388 	u32 field;
4389 
4390 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4391 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4392 
4393 	if (field & USB_BESL_SUPPORT) {
4394 		for (besl_host = 0; besl_host < 16; besl_host++) {
4395 			if (xhci_besl_encoding[besl_host] >= u2del)
4396 				break;
4397 		}
4398 		/* Use baseline BESL value as default */
4399 		if (field & USB_BESL_BASELINE_VALID)
4400 			besl_device = USB_GET_BESL_BASELINE(field);
4401 		else if (field & USB_BESL_DEEP_VALID)
4402 			besl_device = USB_GET_BESL_DEEP(field);
4403 	} else {
4404 		if (u2del <= 50)
4405 			besl_host = 0;
4406 		else
4407 			besl_host = (u2del - 51) / 75 + 1;
4408 	}
4409 
4410 	besl = besl_host + besl_device;
4411 	if (besl > 15)
4412 		besl = 15;
4413 
4414 	return besl;
4415 }
4416 
4417 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4418 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4419 {
4420 	u32 field;
4421 	int l1;
4422 	int besld = 0;
4423 	int hirdm = 0;
4424 
4425 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4426 
4427 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4428 	l1 = udev->l1_params.timeout / 256;
4429 
4430 	/* device has preferred BESLD */
4431 	if (field & USB_BESL_DEEP_VALID) {
4432 		besld = USB_GET_BESL_DEEP(field);
4433 		hirdm = 1;
4434 	}
4435 
4436 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4437 }
4438 
4439 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4440 			struct usb_device *udev, int enable)
4441 {
4442 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4443 	struct xhci_port **ports;
4444 	__le32 __iomem	*pm_addr, *hlpm_addr;
4445 	u32		pm_val, hlpm_val, field;
4446 	unsigned int	port_num;
4447 	unsigned long	flags;
4448 	int		hird, exit_latency;
4449 	int		ret;
4450 
4451 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4452 		return -EPERM;
4453 
4454 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4455 			!udev->lpm_capable)
4456 		return -EPERM;
4457 
4458 	if (!udev->parent || udev->parent->parent ||
4459 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4460 		return -EPERM;
4461 
4462 	if (udev->usb2_hw_lpm_capable != 1)
4463 		return -EPERM;
4464 
4465 	spin_lock_irqsave(&xhci->lock, flags);
4466 
4467 	ports = xhci->usb2_rhub.ports;
4468 	port_num = udev->portnum - 1;
4469 	pm_addr = ports[port_num]->addr + PORTPMSC;
4470 	pm_val = readl(pm_addr);
4471 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4472 
4473 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4474 			enable ? "enable" : "disable", port_num + 1);
4475 
4476 	if (enable) {
4477 		/* Host supports BESL timeout instead of HIRD */
4478 		if (udev->usb2_hw_lpm_besl_capable) {
4479 			/* if device doesn't have a preferred BESL value use a
4480 			 * default one which works with mixed HIRD and BESL
4481 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4482 			 */
4483 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4484 			if ((field & USB_BESL_SUPPORT) &&
4485 			    (field & USB_BESL_BASELINE_VALID))
4486 				hird = USB_GET_BESL_BASELINE(field);
4487 			else
4488 				hird = udev->l1_params.besl;
4489 
4490 			exit_latency = xhci_besl_encoding[hird];
4491 			spin_unlock_irqrestore(&xhci->lock, flags);
4492 
4493 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4494 			 * input context for link powermanagement evaluate
4495 			 * context commands. It is protected by hcd->bandwidth
4496 			 * mutex and is shared by all devices. We need to set
4497 			 * the max ext latency in USB 2 BESL LPM as well, so
4498 			 * use the same mutex and xhci_change_max_exit_latency()
4499 			 */
4500 			mutex_lock(hcd->bandwidth_mutex);
4501 			ret = xhci_change_max_exit_latency(xhci, udev,
4502 							   exit_latency);
4503 			mutex_unlock(hcd->bandwidth_mutex);
4504 
4505 			if (ret < 0)
4506 				return ret;
4507 			spin_lock_irqsave(&xhci->lock, flags);
4508 
4509 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4510 			writel(hlpm_val, hlpm_addr);
4511 			/* flush write */
4512 			readl(hlpm_addr);
4513 		} else {
4514 			hird = xhci_calculate_hird_besl(xhci, udev);
4515 		}
4516 
4517 		pm_val &= ~PORT_HIRD_MASK;
4518 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4519 		writel(pm_val, pm_addr);
4520 		pm_val = readl(pm_addr);
4521 		pm_val |= PORT_HLE;
4522 		writel(pm_val, pm_addr);
4523 		/* flush write */
4524 		readl(pm_addr);
4525 	} else {
4526 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4527 		writel(pm_val, pm_addr);
4528 		/* flush write */
4529 		readl(pm_addr);
4530 		if (udev->usb2_hw_lpm_besl_capable) {
4531 			spin_unlock_irqrestore(&xhci->lock, flags);
4532 			mutex_lock(hcd->bandwidth_mutex);
4533 			xhci_change_max_exit_latency(xhci, udev, 0);
4534 			mutex_unlock(hcd->bandwidth_mutex);
4535 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4536 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4537 					   100, 10000);
4538 			return 0;
4539 		}
4540 	}
4541 
4542 	spin_unlock_irqrestore(&xhci->lock, flags);
4543 	return 0;
4544 }
4545 
4546 /* check if a usb2 port supports a given extened capability protocol
4547  * only USB2 ports extended protocol capability values are cached.
4548  * Return 1 if capability is supported
4549  */
4550 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4551 					   unsigned capability)
4552 {
4553 	u32 port_offset, port_count;
4554 	int i;
4555 
4556 	for (i = 0; i < xhci->num_ext_caps; i++) {
4557 		if (xhci->ext_caps[i] & capability) {
4558 			/* port offsets starts at 1 */
4559 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4560 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4561 			if (port >= port_offset &&
4562 			    port < port_offset + port_count)
4563 				return 1;
4564 		}
4565 	}
4566 	return 0;
4567 }
4568 
4569 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4570 {
4571 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4572 	int		portnum = udev->portnum - 1;
4573 
4574 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4575 		return 0;
4576 
4577 	/* we only support lpm for non-hub device connected to root hub yet */
4578 	if (!udev->parent || udev->parent->parent ||
4579 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4580 		return 0;
4581 
4582 	if (xhci->hw_lpm_support == 1 &&
4583 			xhci_check_usb2_port_capability(
4584 				xhci, portnum, XHCI_HLC)) {
4585 		udev->usb2_hw_lpm_capable = 1;
4586 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4587 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4588 		if (xhci_check_usb2_port_capability(xhci, portnum,
4589 					XHCI_BLC))
4590 			udev->usb2_hw_lpm_besl_capable = 1;
4591 	}
4592 
4593 	return 0;
4594 }
4595 
4596 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4597 
4598 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4599 static unsigned long long xhci_service_interval_to_ns(
4600 		struct usb_endpoint_descriptor *desc)
4601 {
4602 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4603 }
4604 
4605 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4606 		enum usb3_link_state state)
4607 {
4608 	unsigned long long sel;
4609 	unsigned long long pel;
4610 	unsigned int max_sel_pel;
4611 	char *state_name;
4612 
4613 	switch (state) {
4614 	case USB3_LPM_U1:
4615 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4616 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4617 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4618 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4619 		state_name = "U1";
4620 		break;
4621 	case USB3_LPM_U2:
4622 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4623 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4624 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4625 		state_name = "U2";
4626 		break;
4627 	default:
4628 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4629 				__func__);
4630 		return USB3_LPM_DISABLED;
4631 	}
4632 
4633 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4634 		return USB3_LPM_DEVICE_INITIATED;
4635 
4636 	if (sel > max_sel_pel)
4637 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4638 				"due to long SEL %llu ms\n",
4639 				state_name, sel);
4640 	else
4641 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4642 				"due to long PEL %llu ms\n",
4643 				state_name, pel);
4644 	return USB3_LPM_DISABLED;
4645 }
4646 
4647 /* The U1 timeout should be the maximum of the following values:
4648  *  - For control endpoints, U1 system exit latency (SEL) * 3
4649  *  - For bulk endpoints, U1 SEL * 5
4650  *  - For interrupt endpoints:
4651  *    - Notification EPs, U1 SEL * 3
4652  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4653  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4654  */
4655 static unsigned long long xhci_calculate_intel_u1_timeout(
4656 		struct usb_device *udev,
4657 		struct usb_endpoint_descriptor *desc)
4658 {
4659 	unsigned long long timeout_ns;
4660 	int ep_type;
4661 	int intr_type;
4662 
4663 	ep_type = usb_endpoint_type(desc);
4664 	switch (ep_type) {
4665 	case USB_ENDPOINT_XFER_CONTROL:
4666 		timeout_ns = udev->u1_params.sel * 3;
4667 		break;
4668 	case USB_ENDPOINT_XFER_BULK:
4669 		timeout_ns = udev->u1_params.sel * 5;
4670 		break;
4671 	case USB_ENDPOINT_XFER_INT:
4672 		intr_type = usb_endpoint_interrupt_type(desc);
4673 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4674 			timeout_ns = udev->u1_params.sel * 3;
4675 			break;
4676 		}
4677 		/* Otherwise the calculation is the same as isoc eps */
4678 		fallthrough;
4679 	case USB_ENDPOINT_XFER_ISOC:
4680 		timeout_ns = xhci_service_interval_to_ns(desc);
4681 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4682 		if (timeout_ns < udev->u1_params.sel * 2)
4683 			timeout_ns = udev->u1_params.sel * 2;
4684 		break;
4685 	default:
4686 		return 0;
4687 	}
4688 
4689 	return timeout_ns;
4690 }
4691 
4692 /* Returns the hub-encoded U1 timeout value. */
4693 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4694 		struct usb_device *udev,
4695 		struct usb_endpoint_descriptor *desc)
4696 {
4697 	unsigned long long timeout_ns;
4698 
4699 	if (xhci->quirks & XHCI_INTEL_HOST)
4700 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4701 	else
4702 		timeout_ns = udev->u1_params.sel;
4703 
4704 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4705 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4706 		if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4707 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4708 			return USB3_LPM_DISABLED;
4709 		}
4710 	}
4711 
4712 	/* The U1 timeout is encoded in 1us intervals.
4713 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4714 	 */
4715 	if (timeout_ns == USB3_LPM_DISABLED)
4716 		timeout_ns = 1;
4717 	else
4718 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4719 
4720 	/* If the necessary timeout value is bigger than what we can set in the
4721 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4722 	 */
4723 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4724 		return timeout_ns;
4725 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4726 			"due to long timeout %llu ms\n", timeout_ns);
4727 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4728 }
4729 
4730 /* The U2 timeout should be the maximum of:
4731  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4732  *  - largest bInterval of any active periodic endpoint (to avoid going
4733  *    into lower power link states between intervals).
4734  *  - the U2 Exit Latency of the device
4735  */
4736 static unsigned long long xhci_calculate_intel_u2_timeout(
4737 		struct usb_device *udev,
4738 		struct usb_endpoint_descriptor *desc)
4739 {
4740 	unsigned long long timeout_ns;
4741 	unsigned long long u2_del_ns;
4742 
4743 	timeout_ns = 10 * 1000 * 1000;
4744 
4745 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4746 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4747 		timeout_ns = xhci_service_interval_to_ns(desc);
4748 
4749 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4750 	if (u2_del_ns > timeout_ns)
4751 		timeout_ns = u2_del_ns;
4752 
4753 	return timeout_ns;
4754 }
4755 
4756 /* Returns the hub-encoded U2 timeout value. */
4757 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4758 		struct usb_device *udev,
4759 		struct usb_endpoint_descriptor *desc)
4760 {
4761 	unsigned long long timeout_ns;
4762 
4763 	if (xhci->quirks & XHCI_INTEL_HOST)
4764 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4765 	else
4766 		timeout_ns = udev->u2_params.sel;
4767 
4768 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4769 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4770 		if (xhci_service_interval_to_ns(desc) <= timeout_ns) {
4771 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4772 			return USB3_LPM_DISABLED;
4773 		}
4774 	}
4775 
4776 	/* The U2 timeout is encoded in 256us intervals */
4777 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4778 	/* If the necessary timeout value is bigger than what we can set in the
4779 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4780 	 */
4781 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4782 		return timeout_ns;
4783 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4784 			"due to long timeout %llu ms\n", timeout_ns);
4785 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4786 }
4787 
4788 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4789 		struct usb_device *udev,
4790 		struct usb_endpoint_descriptor *desc,
4791 		enum usb3_link_state state,
4792 		u16 *timeout)
4793 {
4794 	if (state == USB3_LPM_U1)
4795 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4796 	else if (state == USB3_LPM_U2)
4797 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4798 
4799 	return USB3_LPM_DISABLED;
4800 }
4801 
4802 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4803 		struct usb_device *udev,
4804 		struct usb_endpoint_descriptor *desc,
4805 		enum usb3_link_state state,
4806 		u16 *timeout)
4807 {
4808 	u16 alt_timeout;
4809 
4810 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4811 		desc, state, timeout);
4812 
4813 	/* If we found we can't enable hub-initiated LPM, and
4814 	 * the U1 or U2 exit latency was too high to allow
4815 	 * device-initiated LPM as well, then we will disable LPM
4816 	 * for this device, so stop searching any further.
4817 	 */
4818 	if (alt_timeout == USB3_LPM_DISABLED) {
4819 		*timeout = alt_timeout;
4820 		return -E2BIG;
4821 	}
4822 	if (alt_timeout > *timeout)
4823 		*timeout = alt_timeout;
4824 	return 0;
4825 }
4826 
4827 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4828 		struct usb_device *udev,
4829 		struct usb_host_interface *alt,
4830 		enum usb3_link_state state,
4831 		u16 *timeout)
4832 {
4833 	int j;
4834 
4835 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4836 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4837 					&alt->endpoint[j].desc, state, timeout))
4838 			return -E2BIG;
4839 		continue;
4840 	}
4841 	return 0;
4842 }
4843 
4844 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4845 		enum usb3_link_state state)
4846 {
4847 	struct usb_device *parent;
4848 	unsigned int num_hubs;
4849 
4850 	if (state == USB3_LPM_U2)
4851 		return 0;
4852 
4853 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4854 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4855 			parent = parent->parent)
4856 		num_hubs++;
4857 
4858 	if (num_hubs < 2)
4859 		return 0;
4860 
4861 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4862 			" below second-tier hub.\n");
4863 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4864 			"to decrease power consumption.\n");
4865 	return -E2BIG;
4866 }
4867 
4868 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4869 		struct usb_device *udev,
4870 		enum usb3_link_state state)
4871 {
4872 	if (xhci->quirks & XHCI_INTEL_HOST)
4873 		return xhci_check_intel_tier_policy(udev, state);
4874 	else
4875 		return 0;
4876 }
4877 
4878 /* Returns the U1 or U2 timeout that should be enabled.
4879  * If the tier check or timeout setting functions return with a non-zero exit
4880  * code, that means the timeout value has been finalized and we shouldn't look
4881  * at any more endpoints.
4882  */
4883 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4884 			struct usb_device *udev, enum usb3_link_state state)
4885 {
4886 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4887 	struct usb_host_config *config;
4888 	char *state_name;
4889 	int i;
4890 	u16 timeout = USB3_LPM_DISABLED;
4891 
4892 	if (state == USB3_LPM_U1)
4893 		state_name = "U1";
4894 	else if (state == USB3_LPM_U2)
4895 		state_name = "U2";
4896 	else {
4897 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4898 				state);
4899 		return timeout;
4900 	}
4901 
4902 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4903 		return timeout;
4904 
4905 	/* Gather some information about the currently installed configuration
4906 	 * and alternate interface settings.
4907 	 */
4908 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4909 			state, &timeout))
4910 		return timeout;
4911 
4912 	config = udev->actconfig;
4913 	if (!config)
4914 		return timeout;
4915 
4916 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4917 		struct usb_driver *driver;
4918 		struct usb_interface *intf = config->interface[i];
4919 
4920 		if (!intf)
4921 			continue;
4922 
4923 		/* Check if any currently bound drivers want hub-initiated LPM
4924 		 * disabled.
4925 		 */
4926 		if (intf->dev.driver) {
4927 			driver = to_usb_driver(intf->dev.driver);
4928 			if (driver && driver->disable_hub_initiated_lpm) {
4929 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4930 					state_name, driver->name);
4931 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4932 								      state);
4933 				if (timeout == USB3_LPM_DISABLED)
4934 					return timeout;
4935 			}
4936 		}
4937 
4938 		/* Not sure how this could happen... */
4939 		if (!intf->cur_altsetting)
4940 			continue;
4941 
4942 		if (xhci_update_timeout_for_interface(xhci, udev,
4943 					intf->cur_altsetting,
4944 					state, &timeout))
4945 			return timeout;
4946 	}
4947 	return timeout;
4948 }
4949 
4950 static int calculate_max_exit_latency(struct usb_device *udev,
4951 		enum usb3_link_state state_changed,
4952 		u16 hub_encoded_timeout)
4953 {
4954 	unsigned long long u1_mel_us = 0;
4955 	unsigned long long u2_mel_us = 0;
4956 	unsigned long long mel_us = 0;
4957 	bool disabling_u1;
4958 	bool disabling_u2;
4959 	bool enabling_u1;
4960 	bool enabling_u2;
4961 
4962 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4963 			hub_encoded_timeout == USB3_LPM_DISABLED);
4964 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4965 			hub_encoded_timeout == USB3_LPM_DISABLED);
4966 
4967 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4968 			hub_encoded_timeout != USB3_LPM_DISABLED);
4969 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4970 			hub_encoded_timeout != USB3_LPM_DISABLED);
4971 
4972 	/* If U1 was already enabled and we're not disabling it,
4973 	 * or we're going to enable U1, account for the U1 max exit latency.
4974 	 */
4975 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4976 			enabling_u1)
4977 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4978 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4979 			enabling_u2)
4980 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4981 
4982 	if (u1_mel_us > u2_mel_us)
4983 		mel_us = u1_mel_us;
4984 	else
4985 		mel_us = u2_mel_us;
4986 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4987 	if (mel_us > MAX_EXIT) {
4988 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4989 				"is too big.\n", mel_us);
4990 		return -E2BIG;
4991 	}
4992 	return mel_us;
4993 }
4994 
4995 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4996 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4997 			struct usb_device *udev, enum usb3_link_state state)
4998 {
4999 	struct xhci_hcd	*xhci;
5000 	u16 hub_encoded_timeout;
5001 	int mel;
5002 	int ret;
5003 
5004 	xhci = hcd_to_xhci(hcd);
5005 	/* The LPM timeout values are pretty host-controller specific, so don't
5006 	 * enable hub-initiated timeouts unless the vendor has provided
5007 	 * information about their timeout algorithm.
5008 	 */
5009 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5010 			!xhci->devs[udev->slot_id])
5011 		return USB3_LPM_DISABLED;
5012 
5013 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5014 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5015 	if (mel < 0) {
5016 		/* Max Exit Latency is too big, disable LPM. */
5017 		hub_encoded_timeout = USB3_LPM_DISABLED;
5018 		mel = 0;
5019 	}
5020 
5021 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5022 	if (ret)
5023 		return ret;
5024 	return hub_encoded_timeout;
5025 }
5026 
5027 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5028 			struct usb_device *udev, enum usb3_link_state state)
5029 {
5030 	struct xhci_hcd	*xhci;
5031 	u16 mel;
5032 
5033 	xhci = hcd_to_xhci(hcd);
5034 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5035 			!xhci->devs[udev->slot_id])
5036 		return 0;
5037 
5038 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5039 	return xhci_change_max_exit_latency(xhci, udev, mel);
5040 }
5041 #else /* CONFIG_PM */
5042 
5043 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5044 				struct usb_device *udev, int enable)
5045 {
5046 	return 0;
5047 }
5048 
5049 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5050 {
5051 	return 0;
5052 }
5053 
5054 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5055 			struct usb_device *udev, enum usb3_link_state state)
5056 {
5057 	return USB3_LPM_DISABLED;
5058 }
5059 
5060 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5061 			struct usb_device *udev, enum usb3_link_state state)
5062 {
5063 	return 0;
5064 }
5065 #endif	/* CONFIG_PM */
5066 
5067 /*-------------------------------------------------------------------------*/
5068 
5069 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5070  * internal data structures for the device.
5071  */
5072 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5073 			struct usb_tt *tt, gfp_t mem_flags)
5074 {
5075 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5076 	struct xhci_virt_device *vdev;
5077 	struct xhci_command *config_cmd;
5078 	struct xhci_input_control_ctx *ctrl_ctx;
5079 	struct xhci_slot_ctx *slot_ctx;
5080 	unsigned long flags;
5081 	unsigned think_time;
5082 	int ret;
5083 
5084 	/* Ignore root hubs */
5085 	if (!hdev->parent)
5086 		return 0;
5087 
5088 	vdev = xhci->devs[hdev->slot_id];
5089 	if (!vdev) {
5090 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5091 		return -EINVAL;
5092 	}
5093 
5094 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5095 	if (!config_cmd)
5096 		return -ENOMEM;
5097 
5098 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5099 	if (!ctrl_ctx) {
5100 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5101 				__func__);
5102 		xhci_free_command(xhci, config_cmd);
5103 		return -ENOMEM;
5104 	}
5105 
5106 	spin_lock_irqsave(&xhci->lock, flags);
5107 	if (hdev->speed == USB_SPEED_HIGH &&
5108 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5109 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5110 		xhci_free_command(xhci, config_cmd);
5111 		spin_unlock_irqrestore(&xhci->lock, flags);
5112 		return -ENOMEM;
5113 	}
5114 
5115 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5116 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5117 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5118 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5119 	/*
5120 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5121 	 * but it may be already set to 1 when setup an xHCI virtual
5122 	 * device, so clear it anyway.
5123 	 */
5124 	if (tt->multi)
5125 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5126 	else if (hdev->speed == USB_SPEED_FULL)
5127 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5128 
5129 	if (xhci->hci_version > 0x95) {
5130 		xhci_dbg(xhci, "xHCI version %x needs hub "
5131 				"TT think time and number of ports\n",
5132 				(unsigned int) xhci->hci_version);
5133 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5134 		/* Set TT think time - convert from ns to FS bit times.
5135 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5136 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5137 		 *
5138 		 * xHCI 1.0: this field shall be 0 if the device is not a
5139 		 * High-spped hub.
5140 		 */
5141 		think_time = tt->think_time;
5142 		if (think_time != 0)
5143 			think_time = (think_time / 666) - 1;
5144 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5145 			slot_ctx->tt_info |=
5146 				cpu_to_le32(TT_THINK_TIME(think_time));
5147 	} else {
5148 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5149 				"TT think time or number of ports\n",
5150 				(unsigned int) xhci->hci_version);
5151 	}
5152 	slot_ctx->dev_state = 0;
5153 	spin_unlock_irqrestore(&xhci->lock, flags);
5154 
5155 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5156 			(xhci->hci_version > 0x95) ?
5157 			"configure endpoint" : "evaluate context");
5158 
5159 	/* Issue and wait for the configure endpoint or
5160 	 * evaluate context command.
5161 	 */
5162 	if (xhci->hci_version > 0x95)
5163 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5164 				false, false);
5165 	else
5166 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5167 				true, false);
5168 
5169 	xhci_free_command(xhci, config_cmd);
5170 	return ret;
5171 }
5172 
5173 static int xhci_get_frame(struct usb_hcd *hcd)
5174 {
5175 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5176 	/* EHCI mods by the periodic size.  Why? */
5177 	return readl(&xhci->run_regs->microframe_index) >> 3;
5178 }
5179 
5180 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5181 {
5182 	struct xhci_hcd		*xhci;
5183 	/*
5184 	 * TODO: Check with DWC3 clients for sysdev according to
5185 	 * quirks
5186 	 */
5187 	struct device		*dev = hcd->self.sysdev;
5188 	unsigned int		minor_rev;
5189 	int			retval;
5190 
5191 	/* Accept arbitrarily long scatter-gather lists */
5192 	hcd->self.sg_tablesize = ~0;
5193 
5194 	/* support to build packet from discontinuous buffers */
5195 	hcd->self.no_sg_constraint = 1;
5196 
5197 	/* XHCI controllers don't stop the ep queue on short packets :| */
5198 	hcd->self.no_stop_on_short = 1;
5199 
5200 	xhci = hcd_to_xhci(hcd);
5201 
5202 	if (usb_hcd_is_primary_hcd(hcd)) {
5203 		xhci->main_hcd = hcd;
5204 		xhci->usb2_rhub.hcd = hcd;
5205 		/* Mark the first roothub as being USB 2.0.
5206 		 * The xHCI driver will register the USB 3.0 roothub.
5207 		 */
5208 		hcd->speed = HCD_USB2;
5209 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5210 		/*
5211 		 * USB 2.0 roothub under xHCI has an integrated TT,
5212 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5213 		 * companion controller.
5214 		 */
5215 		hcd->has_tt = 1;
5216 	} else {
5217 		/*
5218 		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5219 		 * should return 0x31 for sbrn, or that the minor revision
5220 		 * is a two digit BCD containig minor and sub-minor numbers.
5221 		 * This was later clarified in xHCI 1.2.
5222 		 *
5223 		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5224 		 * minor revision set to 0x1 instead of 0x10.
5225 		 */
5226 		if (xhci->usb3_rhub.min_rev == 0x1)
5227 			minor_rev = 1;
5228 		else
5229 			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5230 
5231 		switch (minor_rev) {
5232 		case 2:
5233 			hcd->speed = HCD_USB32;
5234 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5235 			hcd->self.root_hub->rx_lanes = 2;
5236 			hcd->self.root_hub->tx_lanes = 2;
5237 			break;
5238 		case 1:
5239 			hcd->speed = HCD_USB31;
5240 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5241 			break;
5242 		}
5243 		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5244 			  minor_rev,
5245 			  minor_rev ? "Enhanced " : "");
5246 
5247 		xhci->usb3_rhub.hcd = hcd;
5248 		/* xHCI private pointer was set in xhci_pci_probe for the second
5249 		 * registered roothub.
5250 		 */
5251 		return 0;
5252 	}
5253 
5254 	mutex_init(&xhci->mutex);
5255 	xhci->cap_regs = hcd->regs;
5256 	xhci->op_regs = hcd->regs +
5257 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5258 	xhci->run_regs = hcd->regs +
5259 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5260 	/* Cache read-only capability registers */
5261 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5262 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5263 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5264 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5265 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5266 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5267 	if (xhci->hci_version > 0x100)
5268 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5269 
5270 	xhci->quirks |= quirks;
5271 
5272 	get_quirks(dev, xhci);
5273 
5274 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5275 	 * success event after a short transfer. This quirk will ignore such
5276 	 * spurious event.
5277 	 */
5278 	if (xhci->hci_version > 0x96)
5279 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5280 
5281 	/* Make sure the HC is halted. */
5282 	retval = xhci_halt(xhci);
5283 	if (retval)
5284 		return retval;
5285 
5286 	xhci_zero_64b_regs(xhci);
5287 
5288 	xhci_dbg(xhci, "Resetting HCD\n");
5289 	/* Reset the internal HC memory state and registers. */
5290 	retval = xhci_reset(xhci);
5291 	if (retval)
5292 		return retval;
5293 	xhci_dbg(xhci, "Reset complete\n");
5294 
5295 	/*
5296 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5297 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5298 	 * address memory pointers actually. So, this driver clears the AC64
5299 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5300 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5301 	 */
5302 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5303 		xhci->hcc_params &= ~BIT(0);
5304 
5305 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5306 	 * if xHC supports 64-bit addressing */
5307 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5308 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5309 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5310 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5311 	} else {
5312 		/*
5313 		 * This is to avoid error in cases where a 32-bit USB
5314 		 * controller is used on a 64-bit capable system.
5315 		 */
5316 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5317 		if (retval)
5318 			return retval;
5319 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5320 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5321 	}
5322 
5323 	xhci_dbg(xhci, "Calling HCD init\n");
5324 	/* Initialize HCD and host controller data structures. */
5325 	retval = xhci_init(hcd);
5326 	if (retval)
5327 		return retval;
5328 	xhci_dbg(xhci, "Called HCD init\n");
5329 
5330 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5331 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5332 
5333 	return 0;
5334 }
5335 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5336 
5337 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5338 		struct usb_host_endpoint *ep)
5339 {
5340 	struct xhci_hcd *xhci;
5341 	struct usb_device *udev;
5342 	unsigned int slot_id;
5343 	unsigned int ep_index;
5344 	unsigned long flags;
5345 
5346 	xhci = hcd_to_xhci(hcd);
5347 
5348 	spin_lock_irqsave(&xhci->lock, flags);
5349 	udev = (struct usb_device *)ep->hcpriv;
5350 	slot_id = udev->slot_id;
5351 	ep_index = xhci_get_endpoint_index(&ep->desc);
5352 
5353 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5354 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5355 	spin_unlock_irqrestore(&xhci->lock, flags);
5356 }
5357 
5358 static const struct hc_driver xhci_hc_driver = {
5359 	.description =		"xhci-hcd",
5360 	.product_desc =		"xHCI Host Controller",
5361 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5362 
5363 	/*
5364 	 * generic hardware linkage
5365 	 */
5366 	.irq =			xhci_irq,
5367 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5368 				HCD_BH,
5369 
5370 	/*
5371 	 * basic lifecycle operations
5372 	 */
5373 	.reset =		NULL, /* set in xhci_init_driver() */
5374 	.start =		xhci_run,
5375 	.stop =			xhci_stop,
5376 	.shutdown =		xhci_shutdown,
5377 
5378 	/*
5379 	 * managing i/o requests and associated device resources
5380 	 */
5381 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5382 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5383 	.urb_enqueue =		xhci_urb_enqueue,
5384 	.urb_dequeue =		xhci_urb_dequeue,
5385 	.alloc_dev =		xhci_alloc_dev,
5386 	.free_dev =		xhci_free_dev,
5387 	.alloc_streams =	xhci_alloc_streams,
5388 	.free_streams =		xhci_free_streams,
5389 	.add_endpoint =		xhci_add_endpoint,
5390 	.drop_endpoint =	xhci_drop_endpoint,
5391 	.endpoint_disable =	xhci_endpoint_disable,
5392 	.endpoint_reset =	xhci_endpoint_reset,
5393 	.check_bandwidth =	xhci_check_bandwidth,
5394 	.reset_bandwidth =	xhci_reset_bandwidth,
5395 	.address_device =	xhci_address_device,
5396 	.enable_device =	xhci_enable_device,
5397 	.update_hub_device =	xhci_update_hub_device,
5398 	.reset_device =		xhci_discover_or_reset_device,
5399 
5400 	/*
5401 	 * scheduling support
5402 	 */
5403 	.get_frame_number =	xhci_get_frame,
5404 
5405 	/*
5406 	 * root hub support
5407 	 */
5408 	.hub_control =		xhci_hub_control,
5409 	.hub_status_data =	xhci_hub_status_data,
5410 	.bus_suspend =		xhci_bus_suspend,
5411 	.bus_resume =		xhci_bus_resume,
5412 	.get_resuming_ports =	xhci_get_resuming_ports,
5413 
5414 	/*
5415 	 * call back when device connected and addressed
5416 	 */
5417 	.update_device =        xhci_update_device,
5418 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5419 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5420 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5421 	.find_raw_port_number =	xhci_find_raw_port_number,
5422 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5423 };
5424 
5425 void xhci_init_driver(struct hc_driver *drv,
5426 		      const struct xhci_driver_overrides *over)
5427 {
5428 	BUG_ON(!over);
5429 
5430 	/* Copy the generic table to drv then apply the overrides */
5431 	*drv = xhci_hc_driver;
5432 
5433 	if (over) {
5434 		drv->hcd_priv_size += over->extra_priv_size;
5435 		if (over->reset)
5436 			drv->reset = over->reset;
5437 		if (over->start)
5438 			drv->start = over->start;
5439 		if (over->check_bandwidth)
5440 			drv->check_bandwidth = over->check_bandwidth;
5441 		if (over->reset_bandwidth)
5442 			drv->reset_bandwidth = over->reset_bandwidth;
5443 	}
5444 }
5445 EXPORT_SYMBOL_GPL(xhci_init_driver);
5446 
5447 MODULE_DESCRIPTION(DRIVER_DESC);
5448 MODULE_AUTHOR(DRIVER_AUTHOR);
5449 MODULE_LICENSE("GPL");
5450 
5451 static int __init xhci_hcd_init(void)
5452 {
5453 	/*
5454 	 * Check the compiler generated sizes of structures that must be laid
5455 	 * out in specific ways for hardware access.
5456 	 */
5457 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5458 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5459 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5460 	/* xhci_device_control has eight fields, and also
5461 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5462 	 */
5463 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5464 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5465 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5466 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5467 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5468 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5469 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5470 
5471 	if (usb_disabled())
5472 		return -ENODEV;
5473 
5474 	xhci_debugfs_create_root();
5475 
5476 	return 0;
5477 }
5478 
5479 /*
5480  * If an init function is provided, an exit function must also be provided
5481  * to allow module unload.
5482  */
5483 static void __exit xhci_hcd_fini(void)
5484 {
5485 	xhci_debugfs_remove_root();
5486 }
5487 
5488 module_init(xhci_hcd_init);
5489 module_exit(xhci_hcd_fini);
5490