1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * xHCI host controller driver 4 * 5 * Copyright (C) 2008 Intel Corp. 6 * 7 * Author: Sarah Sharp 8 * Some code borrowed from the Linux EHCI driver. 9 */ 10 11 #include <linux/usb.h> 12 #include <linux/overflow.h> 13 #include <linux/pci.h> 14 #include <linux/slab.h> 15 #include <linux/dmapool.h> 16 #include <linux/dma-mapping.h> 17 18 #include "xhci.h" 19 #include "xhci-trace.h" 20 #include "xhci-debugfs.h" 21 22 /* 23 * Allocates a generic ring segment from the ring pool, sets the dma address, 24 * initializes the segment to zero, and sets the private next pointer to NULL. 25 * 26 * Section 4.11.1.1: 27 * "All components of all Command and Transfer TRBs shall be initialized to '0'" 28 */ 29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, 30 unsigned int cycle_state, 31 unsigned int max_packet, 32 gfp_t flags) 33 { 34 struct xhci_segment *seg; 35 dma_addr_t dma; 36 int i; 37 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 38 39 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev)); 40 if (!seg) 41 return NULL; 42 43 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma); 44 if (!seg->trbs) { 45 kfree(seg); 46 return NULL; 47 } 48 49 if (max_packet) { 50 seg->bounce_buf = kzalloc_node(max_packet, flags, 51 dev_to_node(dev)); 52 if (!seg->bounce_buf) { 53 dma_pool_free(xhci->segment_pool, seg->trbs, dma); 54 kfree(seg); 55 return NULL; 56 } 57 } 58 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */ 59 if (cycle_state == 0) { 60 for (i = 0; i < TRBS_PER_SEGMENT; i++) 61 seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE); 62 } 63 seg->dma = dma; 64 seg->next = NULL; 65 66 return seg; 67 } 68 69 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg) 70 { 71 if (seg->trbs) { 72 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma); 73 seg->trbs = NULL; 74 } 75 kfree(seg->bounce_buf); 76 kfree(seg); 77 } 78 79 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci, 80 struct xhci_segment *first) 81 { 82 struct xhci_segment *seg; 83 84 seg = first->next; 85 while (seg != first) { 86 struct xhci_segment *next = seg->next; 87 xhci_segment_free(xhci, seg); 88 seg = next; 89 } 90 xhci_segment_free(xhci, first); 91 } 92 93 /* 94 * Make the prev segment point to the next segment. 95 * 96 * Change the last TRB in the prev segment to be a Link TRB which points to the 97 * DMA address of the next segment. The caller needs to set any Link TRB 98 * related flags, such as End TRB, Toggle Cycle, and no snoop. 99 */ 100 static void xhci_link_segments(struct xhci_segment *prev, 101 struct xhci_segment *next, 102 enum xhci_ring_type type, bool chain_links) 103 { 104 u32 val; 105 106 if (!prev || !next) 107 return; 108 prev->next = next; 109 if (type != TYPE_EVENT) { 110 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = 111 cpu_to_le64(next->dma); 112 113 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */ 114 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control); 115 val &= ~TRB_TYPE_BITMASK; 116 val |= TRB_TYPE(TRB_LINK); 117 if (chain_links) 118 val |= TRB_CHAIN; 119 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val); 120 } 121 } 122 123 /* 124 * Link the ring to the new segments. 125 * Set Toggle Cycle for the new ring if needed. 126 */ 127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring, 128 struct xhci_segment *first, struct xhci_segment *last, 129 unsigned int num_segs) 130 { 131 struct xhci_segment *next; 132 bool chain_links; 133 134 if (!ring || !first || !last) 135 return; 136 137 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ 138 chain_links = !!(xhci_link_trb_quirk(xhci) || 139 (ring->type == TYPE_ISOC && 140 (xhci->quirks & XHCI_AMD_0x96_HOST))); 141 142 next = ring->enq_seg->next; 143 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links); 144 xhci_link_segments(last, next, ring->type, chain_links); 145 ring->num_segs += num_segs; 146 ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs; 147 148 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) { 149 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control 150 &= ~cpu_to_le32(LINK_TOGGLE); 151 last->trbs[TRBS_PER_SEGMENT-1].link.control 152 |= cpu_to_le32(LINK_TOGGLE); 153 ring->last_seg = last; 154 } 155 } 156 157 /* 158 * We need a radix tree for mapping physical addresses of TRBs to which stream 159 * ID they belong to. We need to do this because the host controller won't tell 160 * us which stream ring the TRB came from. We could store the stream ID in an 161 * event data TRB, but that doesn't help us for the cancellation case, since the 162 * endpoint may stop before it reaches that event data TRB. 163 * 164 * The radix tree maps the upper portion of the TRB DMA address to a ring 165 * segment that has the same upper portion of DMA addresses. For example, say I 166 * have segments of size 1KB, that are always 1KB aligned. A segment may 167 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the 168 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to 169 * pass the radix tree a key to get the right stream ID: 170 * 171 * 0x10c90fff >> 10 = 0x43243 172 * 0x10c912c0 >> 10 = 0x43244 173 * 0x10c91400 >> 10 = 0x43245 174 * 175 * Obviously, only those TRBs with DMA addresses that are within the segment 176 * will make the radix tree return the stream ID for that ring. 177 * 178 * Caveats for the radix tree: 179 * 180 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an 181 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be 182 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the 183 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit 184 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit 185 * extended systems (where the DMA address can be bigger than 32-bits), 186 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that. 187 */ 188 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map, 189 struct xhci_ring *ring, 190 struct xhci_segment *seg, 191 gfp_t mem_flags) 192 { 193 unsigned long key; 194 int ret; 195 196 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 197 /* Skip any segments that were already added. */ 198 if (radix_tree_lookup(trb_address_map, key)) 199 return 0; 200 201 ret = radix_tree_maybe_preload(mem_flags); 202 if (ret) 203 return ret; 204 ret = radix_tree_insert(trb_address_map, 205 key, ring); 206 radix_tree_preload_end(); 207 return ret; 208 } 209 210 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map, 211 struct xhci_segment *seg) 212 { 213 unsigned long key; 214 215 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT); 216 if (radix_tree_lookup(trb_address_map, key)) 217 radix_tree_delete(trb_address_map, key); 218 } 219 220 static int xhci_update_stream_segment_mapping( 221 struct radix_tree_root *trb_address_map, 222 struct xhci_ring *ring, 223 struct xhci_segment *first_seg, 224 struct xhci_segment *last_seg, 225 gfp_t mem_flags) 226 { 227 struct xhci_segment *seg; 228 struct xhci_segment *failed_seg; 229 int ret; 230 231 if (WARN_ON_ONCE(trb_address_map == NULL)) 232 return 0; 233 234 seg = first_seg; 235 do { 236 ret = xhci_insert_segment_mapping(trb_address_map, 237 ring, seg, mem_flags); 238 if (ret) 239 goto remove_streams; 240 if (seg == last_seg) 241 return 0; 242 seg = seg->next; 243 } while (seg != first_seg); 244 245 return 0; 246 247 remove_streams: 248 failed_seg = seg; 249 seg = first_seg; 250 do { 251 xhci_remove_segment_mapping(trb_address_map, seg); 252 if (seg == failed_seg) 253 return ret; 254 seg = seg->next; 255 } while (seg != first_seg); 256 257 return ret; 258 } 259 260 static void xhci_remove_stream_mapping(struct xhci_ring *ring) 261 { 262 struct xhci_segment *seg; 263 264 if (WARN_ON_ONCE(ring->trb_address_map == NULL)) 265 return; 266 267 seg = ring->first_seg; 268 do { 269 xhci_remove_segment_mapping(ring->trb_address_map, seg); 270 seg = seg->next; 271 } while (seg != ring->first_seg); 272 } 273 274 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags) 275 { 276 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring, 277 ring->first_seg, ring->last_seg, mem_flags); 278 } 279 280 /* XXX: Do we need the hcd structure in all these functions? */ 281 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring) 282 { 283 if (!ring) 284 return; 285 286 trace_xhci_ring_free(ring); 287 288 if (ring->first_seg) { 289 if (ring->type == TYPE_STREAM) 290 xhci_remove_stream_mapping(ring); 291 xhci_free_segments_for_ring(xhci, ring->first_seg); 292 } 293 294 kfree(ring); 295 } 296 297 void xhci_initialize_ring_info(struct xhci_ring *ring, 298 unsigned int cycle_state) 299 { 300 /* The ring is empty, so the enqueue pointer == dequeue pointer */ 301 ring->enqueue = ring->first_seg->trbs; 302 ring->enq_seg = ring->first_seg; 303 ring->dequeue = ring->enqueue; 304 ring->deq_seg = ring->first_seg; 305 /* The ring is initialized to 0. The producer must write 1 to the cycle 306 * bit to handover ownership of the TRB, so PCS = 1. The consumer must 307 * compare CCS to the cycle bit to check ownership, so CCS = 1. 308 * 309 * New rings are initialized with cycle state equal to 1; if we are 310 * handling ring expansion, set the cycle state equal to the old ring. 311 */ 312 ring->cycle_state = cycle_state; 313 314 /* 315 * Each segment has a link TRB, and leave an extra TRB for SW 316 * accounting purpose 317 */ 318 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1; 319 } 320 321 /* Allocate segments and link them for a ring */ 322 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, 323 struct xhci_segment **first, struct xhci_segment **last, 324 unsigned int num_segs, unsigned int cycle_state, 325 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 326 { 327 struct xhci_segment *prev; 328 bool chain_links; 329 330 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */ 331 chain_links = !!(xhci_link_trb_quirk(xhci) || 332 (type == TYPE_ISOC && 333 (xhci->quirks & XHCI_AMD_0x96_HOST))); 334 335 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 336 if (!prev) 337 return -ENOMEM; 338 num_segs--; 339 340 *first = prev; 341 while (num_segs > 0) { 342 struct xhci_segment *next; 343 344 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags); 345 if (!next) { 346 prev = *first; 347 while (prev) { 348 next = prev->next; 349 xhci_segment_free(xhci, prev); 350 prev = next; 351 } 352 return -ENOMEM; 353 } 354 xhci_link_segments(prev, next, type, chain_links); 355 356 prev = next; 357 num_segs--; 358 } 359 xhci_link_segments(prev, *first, type, chain_links); 360 *last = prev; 361 362 return 0; 363 } 364 365 /* 366 * Create a new ring with zero or more segments. 367 * 368 * Link each segment together into a ring. 369 * Set the end flag and the cycle toggle bit on the last segment. 370 * See section 4.9.1 and figures 15 and 16. 371 */ 372 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, 373 unsigned int num_segs, unsigned int cycle_state, 374 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags) 375 { 376 struct xhci_ring *ring; 377 int ret; 378 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 379 380 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev)); 381 if (!ring) 382 return NULL; 383 384 ring->num_segs = num_segs; 385 ring->bounce_buf_len = max_packet; 386 INIT_LIST_HEAD(&ring->td_list); 387 ring->type = type; 388 if (num_segs == 0) 389 return ring; 390 391 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg, 392 &ring->last_seg, num_segs, cycle_state, type, 393 max_packet, flags); 394 if (ret) 395 goto fail; 396 397 /* Only event ring does not use link TRB */ 398 if (type != TYPE_EVENT) { 399 /* See section 4.9.2.1 and 6.4.4.1 */ 400 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= 401 cpu_to_le32(LINK_TOGGLE); 402 } 403 xhci_initialize_ring_info(ring, cycle_state); 404 trace_xhci_ring_alloc(ring); 405 return ring; 406 407 fail: 408 kfree(ring); 409 return NULL; 410 } 411 412 void xhci_free_endpoint_ring(struct xhci_hcd *xhci, 413 struct xhci_virt_device *virt_dev, 414 unsigned int ep_index) 415 { 416 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring); 417 virt_dev->eps[ep_index].ring = NULL; 418 } 419 420 /* 421 * Expand an existing ring. 422 * Allocate a new ring which has same segment numbers and link the two rings. 423 */ 424 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring, 425 unsigned int num_new_segs, gfp_t flags) 426 { 427 struct xhci_segment *first; 428 struct xhci_segment *last; 429 int ret; 430 431 ret = xhci_alloc_segments_for_ring(xhci, &first, &last, 432 num_new_segs, ring->cycle_state, ring->type, 433 ring->bounce_buf_len, flags); 434 if (ret) 435 return -ENOMEM; 436 437 if (ring->type == TYPE_STREAM) 438 ret = xhci_update_stream_segment_mapping(ring->trb_address_map, 439 ring, first, last, flags); 440 if (ret) { 441 struct xhci_segment *next; 442 do { 443 next = first->next; 444 xhci_segment_free(xhci, first); 445 if (first == last) 446 break; 447 first = next; 448 } while (true); 449 return ret; 450 } 451 452 xhci_link_rings(xhci, ring, first, last, num_new_segs); 453 trace_xhci_ring_expansion(ring); 454 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion, 455 "ring expansion succeed, now has %d segments", 456 ring->num_segs); 457 458 return 0; 459 } 460 461 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci, 462 int type, gfp_t flags) 463 { 464 struct xhci_container_ctx *ctx; 465 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 466 467 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT)) 468 return NULL; 469 470 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev)); 471 if (!ctx) 472 return NULL; 473 474 ctx->type = type; 475 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024; 476 if (type == XHCI_CTX_TYPE_INPUT) 477 ctx->size += CTX_SIZE(xhci->hcc_params); 478 479 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma); 480 if (!ctx->bytes) { 481 kfree(ctx); 482 return NULL; 483 } 484 return ctx; 485 } 486 487 void xhci_free_container_ctx(struct xhci_hcd *xhci, 488 struct xhci_container_ctx *ctx) 489 { 490 if (!ctx) 491 return; 492 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma); 493 kfree(ctx); 494 } 495 496 struct xhci_input_control_ctx *xhci_get_input_control_ctx( 497 struct xhci_container_ctx *ctx) 498 { 499 if (ctx->type != XHCI_CTX_TYPE_INPUT) 500 return NULL; 501 502 return (struct xhci_input_control_ctx *)ctx->bytes; 503 } 504 505 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci, 506 struct xhci_container_ctx *ctx) 507 { 508 if (ctx->type == XHCI_CTX_TYPE_DEVICE) 509 return (struct xhci_slot_ctx *)ctx->bytes; 510 511 return (struct xhci_slot_ctx *) 512 (ctx->bytes + CTX_SIZE(xhci->hcc_params)); 513 } 514 515 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci, 516 struct xhci_container_ctx *ctx, 517 unsigned int ep_index) 518 { 519 /* increment ep index by offset of start of ep ctx array */ 520 ep_index++; 521 if (ctx->type == XHCI_CTX_TYPE_INPUT) 522 ep_index++; 523 524 return (struct xhci_ep_ctx *) 525 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params))); 526 } 527 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx); 528 529 /***************** Streams structures manipulation *************************/ 530 531 static void xhci_free_stream_ctx(struct xhci_hcd *xhci, 532 unsigned int num_stream_ctxs, 533 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma) 534 { 535 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 536 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs; 537 538 if (size > MEDIUM_STREAM_ARRAY_SIZE) 539 dma_free_coherent(dev, size, stream_ctx, dma); 540 else if (size > SMALL_STREAM_ARRAY_SIZE) 541 dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma); 542 else 543 dma_pool_free(xhci->small_streams_pool, stream_ctx, dma); 544 } 545 546 /* 547 * The stream context array for each endpoint with bulk streams enabled can 548 * vary in size, based on: 549 * - how many streams the endpoint supports, 550 * - the maximum primary stream array size the host controller supports, 551 * - and how many streams the device driver asks for. 552 * 553 * The stream context array must be a power of 2, and can be as small as 554 * 64 bytes or as large as 1MB. 555 */ 556 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci, 557 unsigned int num_stream_ctxs, dma_addr_t *dma, 558 gfp_t mem_flags) 559 { 560 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 561 size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs); 562 563 if (size > MEDIUM_STREAM_ARRAY_SIZE) 564 return dma_alloc_coherent(dev, size, dma, mem_flags); 565 if (size > SMALL_STREAM_ARRAY_SIZE) 566 return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma); 567 else 568 return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma); 569 } 570 571 struct xhci_ring *xhci_dma_to_transfer_ring( 572 struct xhci_virt_ep *ep, 573 u64 address) 574 { 575 if (ep->ep_state & EP_HAS_STREAMS) 576 return radix_tree_lookup(&ep->stream_info->trb_address_map, 577 address >> TRB_SEGMENT_SHIFT); 578 return ep->ring; 579 } 580 581 /* 582 * Change an endpoint's internal structure so it supports stream IDs. The 583 * number of requested streams includes stream 0, which cannot be used by device 584 * drivers. 585 * 586 * The number of stream contexts in the stream context array may be bigger than 587 * the number of streams the driver wants to use. This is because the number of 588 * stream context array entries must be a power of two. 589 */ 590 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, 591 unsigned int num_stream_ctxs, 592 unsigned int num_streams, 593 unsigned int max_packet, gfp_t mem_flags) 594 { 595 struct xhci_stream_info *stream_info; 596 u32 cur_stream; 597 struct xhci_ring *cur_ring; 598 u64 addr; 599 int ret; 600 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 601 602 xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n", 603 num_streams, num_stream_ctxs); 604 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) { 605 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n"); 606 return NULL; 607 } 608 xhci->cmd_ring_reserved_trbs++; 609 610 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags, 611 dev_to_node(dev)); 612 if (!stream_info) 613 goto cleanup_trbs; 614 615 stream_info->num_streams = num_streams; 616 stream_info->num_stream_ctxs = num_stream_ctxs; 617 618 /* Initialize the array of virtual pointers to stream rings. */ 619 stream_info->stream_rings = kcalloc_node( 620 num_streams, sizeof(struct xhci_ring *), mem_flags, 621 dev_to_node(dev)); 622 if (!stream_info->stream_rings) 623 goto cleanup_info; 624 625 /* Initialize the array of DMA addresses for stream rings for the HW. */ 626 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci, 627 num_stream_ctxs, &stream_info->ctx_array_dma, 628 mem_flags); 629 if (!stream_info->stream_ctx_array) 630 goto cleanup_ring_array; 631 632 /* Allocate everything needed to free the stream rings later */ 633 stream_info->free_streams_command = 634 xhci_alloc_command_with_ctx(xhci, true, mem_flags); 635 if (!stream_info->free_streams_command) 636 goto cleanup_ctx; 637 638 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC); 639 640 /* Allocate rings for all the streams that the driver will use, 641 * and add their segment DMA addresses to the radix tree. 642 * Stream 0 is reserved. 643 */ 644 645 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 646 stream_info->stream_rings[cur_stream] = 647 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet, 648 mem_flags); 649 cur_ring = stream_info->stream_rings[cur_stream]; 650 if (!cur_ring) 651 goto cleanup_rings; 652 cur_ring->stream_id = cur_stream; 653 cur_ring->trb_address_map = &stream_info->trb_address_map; 654 /* Set deq ptr, cycle bit, and stream context type */ 655 addr = cur_ring->first_seg->dma | 656 SCT_FOR_CTX(SCT_PRI_TR) | 657 cur_ring->cycle_state; 658 stream_info->stream_ctx_array[cur_stream].stream_ring = 659 cpu_to_le64(addr); 660 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr); 661 662 ret = xhci_update_stream_mapping(cur_ring, mem_flags); 663 if (ret) { 664 xhci_ring_free(xhci, cur_ring); 665 stream_info->stream_rings[cur_stream] = NULL; 666 goto cleanup_rings; 667 } 668 } 669 /* Leave the other unused stream ring pointers in the stream context 670 * array initialized to zero. This will cause the xHC to give us an 671 * error if the device asks for a stream ID we don't have setup (if it 672 * was any other way, the host controller would assume the ring is 673 * "empty" and wait forever for data to be queued to that stream ID). 674 */ 675 676 return stream_info; 677 678 cleanup_rings: 679 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) { 680 cur_ring = stream_info->stream_rings[cur_stream]; 681 if (cur_ring) { 682 xhci_ring_free(xhci, cur_ring); 683 stream_info->stream_rings[cur_stream] = NULL; 684 } 685 } 686 xhci_free_command(xhci, stream_info->free_streams_command); 687 cleanup_ctx: 688 xhci_free_stream_ctx(xhci, 689 stream_info->num_stream_ctxs, 690 stream_info->stream_ctx_array, 691 stream_info->ctx_array_dma); 692 cleanup_ring_array: 693 kfree(stream_info->stream_rings); 694 cleanup_info: 695 kfree(stream_info); 696 cleanup_trbs: 697 xhci->cmd_ring_reserved_trbs--; 698 return NULL; 699 } 700 /* 701 * Sets the MaxPStreams field and the Linear Stream Array field. 702 * Sets the dequeue pointer to the stream context array. 703 */ 704 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, 705 struct xhci_ep_ctx *ep_ctx, 706 struct xhci_stream_info *stream_info) 707 { 708 u32 max_primary_streams; 709 /* MaxPStreams is the number of stream context array entries, not the 710 * number we're actually using. Must be in 2^(MaxPstreams + 1) format. 711 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc. 712 */ 713 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; 714 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change, 715 "Setting number of stream ctx array entries to %u", 716 1 << (max_primary_streams + 1)); 717 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK); 718 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams) 719 | EP_HAS_LSA); 720 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma); 721 } 722 723 /* 724 * Sets the MaxPStreams field and the Linear Stream Array field to 0. 725 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark, 726 * not at the beginning of the ring). 727 */ 728 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx, 729 struct xhci_virt_ep *ep) 730 { 731 dma_addr_t addr; 732 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA)); 733 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); 734 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state); 735 } 736 737 /* Frees all stream contexts associated with the endpoint, 738 * 739 * Caller should fix the endpoint context streams fields. 740 */ 741 void xhci_free_stream_info(struct xhci_hcd *xhci, 742 struct xhci_stream_info *stream_info) 743 { 744 int cur_stream; 745 struct xhci_ring *cur_ring; 746 747 if (!stream_info) 748 return; 749 750 for (cur_stream = 1; cur_stream < stream_info->num_streams; 751 cur_stream++) { 752 cur_ring = stream_info->stream_rings[cur_stream]; 753 if (cur_ring) { 754 xhci_ring_free(xhci, cur_ring); 755 stream_info->stream_rings[cur_stream] = NULL; 756 } 757 } 758 xhci_free_command(xhci, stream_info->free_streams_command); 759 xhci->cmd_ring_reserved_trbs--; 760 if (stream_info->stream_ctx_array) 761 xhci_free_stream_ctx(xhci, 762 stream_info->num_stream_ctxs, 763 stream_info->stream_ctx_array, 764 stream_info->ctx_array_dma); 765 766 kfree(stream_info->stream_rings); 767 kfree(stream_info); 768 } 769 770 771 /***************** Device context manipulation *************************/ 772 773 static void xhci_free_tt_info(struct xhci_hcd *xhci, 774 struct xhci_virt_device *virt_dev, 775 int slot_id) 776 { 777 struct list_head *tt_list_head; 778 struct xhci_tt_bw_info *tt_info, *next; 779 bool slot_found = false; 780 781 /* If the device never made it past the Set Address stage, 782 * it may not have the real_port set correctly. 783 */ 784 if (virt_dev->real_port == 0 || 785 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 786 xhci_dbg(xhci, "Bad real port.\n"); 787 return; 788 } 789 790 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts); 791 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 792 /* Multi-TT hubs will have more than one entry */ 793 if (tt_info->slot_id == slot_id) { 794 slot_found = true; 795 list_del(&tt_info->tt_list); 796 kfree(tt_info); 797 } else if (slot_found) { 798 break; 799 } 800 } 801 } 802 803 int xhci_alloc_tt_info(struct xhci_hcd *xhci, 804 struct xhci_virt_device *virt_dev, 805 struct usb_device *hdev, 806 struct usb_tt *tt, gfp_t mem_flags) 807 { 808 struct xhci_tt_bw_info *tt_info; 809 unsigned int num_ports; 810 int i, j; 811 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 812 813 if (!tt->multi) 814 num_ports = 1; 815 else 816 num_ports = hdev->maxchild; 817 818 for (i = 0; i < num_ports; i++, tt_info++) { 819 struct xhci_interval_bw_table *bw_table; 820 821 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags, 822 dev_to_node(dev)); 823 if (!tt_info) 824 goto free_tts; 825 INIT_LIST_HEAD(&tt_info->tt_list); 826 list_add(&tt_info->tt_list, 827 &xhci->rh_bw[virt_dev->real_port - 1].tts); 828 tt_info->slot_id = virt_dev->udev->slot_id; 829 if (tt->multi) 830 tt_info->ttport = i+1; 831 bw_table = &tt_info->bw_table; 832 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 833 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 834 } 835 return 0; 836 837 free_tts: 838 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id); 839 return -ENOMEM; 840 } 841 842 843 /* All the xhci_tds in the ring's TD list should be freed at this point. 844 * Should be called with xhci->lock held if there is any chance the TT lists 845 * will be manipulated by the configure endpoint, allocate device, or update 846 * hub functions while this function is removing the TT entries from the list. 847 */ 848 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id) 849 { 850 struct xhci_virt_device *dev; 851 int i; 852 int old_active_eps = 0; 853 854 /* Slot ID 0 is reserved */ 855 if (slot_id == 0 || !xhci->devs[slot_id]) 856 return; 857 858 dev = xhci->devs[slot_id]; 859 860 xhci->dcbaa->dev_context_ptrs[slot_id] = 0; 861 if (!dev) 862 return; 863 864 trace_xhci_free_virt_device(dev); 865 866 if (dev->tt_info) 867 old_active_eps = dev->tt_info->active_eps; 868 869 for (i = 0; i < 31; i++) { 870 if (dev->eps[i].ring) 871 xhci_ring_free(xhci, dev->eps[i].ring); 872 if (dev->eps[i].stream_info) 873 xhci_free_stream_info(xhci, 874 dev->eps[i].stream_info); 875 /* 876 * Endpoints are normally deleted from the bandwidth list when 877 * endpoints are dropped, before device is freed. 878 * If host is dying or being removed then endpoints aren't 879 * dropped cleanly, so delete the endpoint from list here. 880 * Only applicable for hosts with software bandwidth checking. 881 */ 882 883 if (!list_empty(&dev->eps[i].bw_endpoint_list)) { 884 list_del_init(&dev->eps[i].bw_endpoint_list); 885 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n", 886 slot_id, i); 887 } 888 } 889 /* If this is a hub, free the TT(s) from the TT list */ 890 xhci_free_tt_info(xhci, dev, slot_id); 891 /* If necessary, update the number of active TTs on this root port */ 892 xhci_update_tt_active_eps(xhci, dev, old_active_eps); 893 894 if (dev->in_ctx) 895 xhci_free_container_ctx(xhci, dev->in_ctx); 896 if (dev->out_ctx) 897 xhci_free_container_ctx(xhci, dev->out_ctx); 898 899 if (dev->udev && dev->udev->slot_id) 900 dev->udev->slot_id = 0; 901 kfree(xhci->devs[slot_id]); 902 xhci->devs[slot_id] = NULL; 903 } 904 905 /* 906 * Free a virt_device structure. 907 * If the virt_device added a tt_info (a hub) and has children pointing to 908 * that tt_info, then free the child first. Recursive. 909 * We can't rely on udev at this point to find child-parent relationships. 910 */ 911 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id) 912 { 913 struct xhci_virt_device *vdev; 914 struct list_head *tt_list_head; 915 struct xhci_tt_bw_info *tt_info, *next; 916 int i; 917 918 vdev = xhci->devs[slot_id]; 919 if (!vdev) 920 return; 921 922 if (vdev->real_port == 0 || 923 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) { 924 xhci_dbg(xhci, "Bad vdev->real_port.\n"); 925 goto out; 926 } 927 928 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts); 929 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) { 930 /* is this a hub device that added a tt_info to the tts list */ 931 if (tt_info->slot_id == slot_id) { 932 /* are any devices using this tt_info? */ 933 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) { 934 vdev = xhci->devs[i]; 935 if (vdev && (vdev->tt_info == tt_info)) 936 xhci_free_virt_devices_depth_first( 937 xhci, i); 938 } 939 } 940 } 941 out: 942 /* we are now at a leaf device */ 943 xhci_debugfs_remove_slot(xhci, slot_id); 944 xhci_free_virt_device(xhci, slot_id); 945 } 946 947 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, 948 struct usb_device *udev, gfp_t flags) 949 { 950 struct xhci_virt_device *dev; 951 int i; 952 953 /* Slot ID 0 is reserved */ 954 if (slot_id == 0 || xhci->devs[slot_id]) { 955 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id); 956 return 0; 957 } 958 959 dev = kzalloc(sizeof(*dev), flags); 960 if (!dev) 961 return 0; 962 963 dev->slot_id = slot_id; 964 965 /* Allocate the (output) device context that will be used in the HC. */ 966 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags); 967 if (!dev->out_ctx) 968 goto fail; 969 970 xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma); 971 972 /* Allocate the (input) device context for address device command */ 973 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags); 974 if (!dev->in_ctx) 975 goto fail; 976 977 xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma); 978 979 /* Initialize the cancellation and bandwidth list for each ep */ 980 for (i = 0; i < 31; i++) { 981 dev->eps[i].ep_index = i; 982 dev->eps[i].vdev = dev; 983 dev->eps[i].xhci = xhci; 984 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list); 985 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list); 986 } 987 988 /* Allocate endpoint 0 ring */ 989 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags); 990 if (!dev->eps[0].ring) 991 goto fail; 992 993 dev->udev = udev; 994 995 /* Point to output device context in dcbaa. */ 996 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma); 997 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", 998 slot_id, 999 &xhci->dcbaa->dev_context_ptrs[slot_id], 1000 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id])); 1001 1002 trace_xhci_alloc_virt_device(dev); 1003 1004 xhci->devs[slot_id] = dev; 1005 1006 return 1; 1007 fail: 1008 1009 if (dev->in_ctx) 1010 xhci_free_container_ctx(xhci, dev->in_ctx); 1011 if (dev->out_ctx) 1012 xhci_free_container_ctx(xhci, dev->out_ctx); 1013 kfree(dev); 1014 1015 return 0; 1016 } 1017 1018 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, 1019 struct usb_device *udev) 1020 { 1021 struct xhci_virt_device *virt_dev; 1022 struct xhci_ep_ctx *ep0_ctx; 1023 struct xhci_ring *ep_ring; 1024 1025 virt_dev = xhci->devs[udev->slot_id]; 1026 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0); 1027 ep_ring = virt_dev->eps[0].ring; 1028 /* 1029 * FIXME we don't keep track of the dequeue pointer very well after a 1030 * Set TR dequeue pointer, so we're setting the dequeue pointer of the 1031 * host to our enqueue pointer. This should only be called after a 1032 * configured device has reset, so all control transfers should have 1033 * been completed or cancelled before the reset. 1034 */ 1035 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg, 1036 ep_ring->enqueue) 1037 | ep_ring->cycle_state); 1038 } 1039 1040 /* 1041 * The xHCI roothub may have ports of differing speeds in any order in the port 1042 * status registers. 1043 * 1044 * The xHCI hardware wants to know the roothub port number that the USB device 1045 * is attached to (or the roothub port its ancestor hub is attached to). All we 1046 * know is the index of that port under either the USB 2.0 or the USB 3.0 1047 * roothub, but that doesn't give us the real index into the HW port status 1048 * registers. Call xhci_find_raw_port_number() to get real index. 1049 */ 1050 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci, 1051 struct usb_device *udev) 1052 { 1053 struct usb_device *top_dev; 1054 struct usb_hcd *hcd; 1055 1056 if (udev->speed >= USB_SPEED_SUPER) 1057 hcd = xhci_get_usb3_hcd(xhci); 1058 else 1059 hcd = xhci->main_hcd; 1060 1061 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1062 top_dev = top_dev->parent) 1063 /* Found device below root hub */; 1064 1065 return xhci_find_raw_port_number(hcd, top_dev->portnum); 1066 } 1067 1068 /* Setup an xHCI virtual device for a Set Address command */ 1069 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev) 1070 { 1071 struct xhci_virt_device *dev; 1072 struct xhci_ep_ctx *ep0_ctx; 1073 struct xhci_slot_ctx *slot_ctx; 1074 u32 port_num; 1075 u32 max_packets; 1076 struct usb_device *top_dev; 1077 1078 dev = xhci->devs[udev->slot_id]; 1079 /* Slot ID 0 is reserved */ 1080 if (udev->slot_id == 0 || !dev) { 1081 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n", 1082 udev->slot_id); 1083 return -EINVAL; 1084 } 1085 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0); 1086 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); 1087 1088 /* 3) Only the control endpoint is valid - one endpoint context */ 1089 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route); 1090 switch (udev->speed) { 1091 case USB_SPEED_SUPER_PLUS: 1092 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP); 1093 max_packets = MAX_PACKET(512); 1094 break; 1095 case USB_SPEED_SUPER: 1096 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS); 1097 max_packets = MAX_PACKET(512); 1098 break; 1099 case USB_SPEED_HIGH: 1100 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS); 1101 max_packets = MAX_PACKET(64); 1102 break; 1103 /* USB core guesses at a 64-byte max packet first for FS devices */ 1104 case USB_SPEED_FULL: 1105 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS); 1106 max_packets = MAX_PACKET(64); 1107 break; 1108 case USB_SPEED_LOW: 1109 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS); 1110 max_packets = MAX_PACKET(8); 1111 break; 1112 case USB_SPEED_WIRELESS: 1113 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); 1114 return -EINVAL; 1115 default: 1116 /* Speed was set earlier, this shouldn't happen. */ 1117 return -EINVAL; 1118 } 1119 /* Find the root hub port this device is under */ 1120 port_num = xhci_find_real_port_number(xhci, udev); 1121 if (!port_num) 1122 return -EINVAL; 1123 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num)); 1124 /* Set the port number in the virtual_device to the faked port number */ 1125 for (top_dev = udev; top_dev->parent && top_dev->parent->parent; 1126 top_dev = top_dev->parent) 1127 /* Found device below root hub */; 1128 dev->fake_port = top_dev->portnum; 1129 dev->real_port = port_num; 1130 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num); 1131 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port); 1132 1133 /* Find the right bandwidth table that this device will be a part of. 1134 * If this is a full speed device attached directly to a root port (or a 1135 * decendent of one), it counts as a primary bandwidth domain, not a 1136 * secondary bandwidth domain under a TT. An xhci_tt_info structure 1137 * will never be created for the HS root hub. 1138 */ 1139 if (!udev->tt || !udev->tt->hub->parent) { 1140 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table; 1141 } else { 1142 struct xhci_root_port_bw_info *rh_bw; 1143 struct xhci_tt_bw_info *tt_bw; 1144 1145 rh_bw = &xhci->rh_bw[port_num - 1]; 1146 /* Find the right TT. */ 1147 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) { 1148 if (tt_bw->slot_id != udev->tt->hub->slot_id) 1149 continue; 1150 1151 if (!dev->udev->tt->multi || 1152 (udev->tt->multi && 1153 tt_bw->ttport == dev->udev->ttport)) { 1154 dev->bw_table = &tt_bw->bw_table; 1155 dev->tt_info = tt_bw; 1156 break; 1157 } 1158 } 1159 if (!dev->tt_info) 1160 xhci_warn(xhci, "WARN: Didn't find a matching TT\n"); 1161 } 1162 1163 /* Is this a LS/FS device under an external HS hub? */ 1164 if (udev->tt && udev->tt->hub->parent) { 1165 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id | 1166 (udev->ttport << 8)); 1167 if (udev->tt->multi) 1168 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT); 1169 } 1170 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); 1171 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); 1172 1173 /* Step 4 - ring already allocated */ 1174 /* Step 5 */ 1175 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP)); 1176 1177 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ 1178 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) | 1179 max_packets); 1180 1181 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma | 1182 dev->eps[0].ring->cycle_state); 1183 1184 trace_xhci_setup_addressable_virt_device(dev); 1185 1186 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */ 1187 1188 return 0; 1189 } 1190 1191 /* 1192 * Convert interval expressed as 2^(bInterval - 1) == interval into 1193 * straight exponent value 2^n == interval. 1194 * 1195 */ 1196 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev, 1197 struct usb_host_endpoint *ep) 1198 { 1199 unsigned int interval; 1200 1201 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1; 1202 if (interval != ep->desc.bInterval - 1) 1203 dev_warn(&udev->dev, 1204 "ep %#x - rounding interval to %d %sframes\n", 1205 ep->desc.bEndpointAddress, 1206 1 << interval, 1207 udev->speed == USB_SPEED_FULL ? "" : "micro"); 1208 1209 if (udev->speed == USB_SPEED_FULL) { 1210 /* 1211 * Full speed isoc endpoints specify interval in frames, 1212 * not microframes. We are using microframes everywhere, 1213 * so adjust accordingly. 1214 */ 1215 interval += 3; /* 1 frame = 2^3 uframes */ 1216 } 1217 1218 return interval; 1219 } 1220 1221 /* 1222 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of 1223 * microframes, rounded down to nearest power of 2. 1224 */ 1225 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev, 1226 struct usb_host_endpoint *ep, unsigned int desc_interval, 1227 unsigned int min_exponent, unsigned int max_exponent) 1228 { 1229 unsigned int interval; 1230 1231 interval = fls(desc_interval) - 1; 1232 interval = clamp_val(interval, min_exponent, max_exponent); 1233 if ((1 << interval) != desc_interval) 1234 dev_dbg(&udev->dev, 1235 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n", 1236 ep->desc.bEndpointAddress, 1237 1 << interval, 1238 desc_interval); 1239 1240 return interval; 1241 } 1242 1243 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev, 1244 struct usb_host_endpoint *ep) 1245 { 1246 if (ep->desc.bInterval == 0) 1247 return 0; 1248 return xhci_microframes_to_exponent(udev, ep, 1249 ep->desc.bInterval, 0, 15); 1250 } 1251 1252 1253 static unsigned int xhci_parse_frame_interval(struct usb_device *udev, 1254 struct usb_host_endpoint *ep) 1255 { 1256 return xhci_microframes_to_exponent(udev, ep, 1257 ep->desc.bInterval * 8, 3, 10); 1258 } 1259 1260 /* Return the polling or NAK interval. 1261 * 1262 * The polling interval is expressed in "microframes". If xHCI's Interval field 1263 * is set to N, it will service the endpoint every 2^(Interval)*125us. 1264 * 1265 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval 1266 * is set to 0. 1267 */ 1268 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev, 1269 struct usb_host_endpoint *ep) 1270 { 1271 unsigned int interval = 0; 1272 1273 switch (udev->speed) { 1274 case USB_SPEED_HIGH: 1275 /* Max NAK rate */ 1276 if (usb_endpoint_xfer_control(&ep->desc) || 1277 usb_endpoint_xfer_bulk(&ep->desc)) { 1278 interval = xhci_parse_microframe_interval(udev, ep); 1279 break; 1280 } 1281 fallthrough; /* SS and HS isoc/int have same decoding */ 1282 1283 case USB_SPEED_SUPER_PLUS: 1284 case USB_SPEED_SUPER: 1285 if (usb_endpoint_xfer_int(&ep->desc) || 1286 usb_endpoint_xfer_isoc(&ep->desc)) { 1287 interval = xhci_parse_exponent_interval(udev, ep); 1288 } 1289 break; 1290 1291 case USB_SPEED_FULL: 1292 if (usb_endpoint_xfer_isoc(&ep->desc)) { 1293 interval = xhci_parse_exponent_interval(udev, ep); 1294 break; 1295 } 1296 /* 1297 * Fall through for interrupt endpoint interval decoding 1298 * since it uses the same rules as low speed interrupt 1299 * endpoints. 1300 */ 1301 fallthrough; 1302 1303 case USB_SPEED_LOW: 1304 if (usb_endpoint_xfer_int(&ep->desc) || 1305 usb_endpoint_xfer_isoc(&ep->desc)) { 1306 1307 interval = xhci_parse_frame_interval(udev, ep); 1308 } 1309 break; 1310 1311 default: 1312 BUG(); 1313 } 1314 return interval; 1315 } 1316 1317 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps. 1318 * High speed endpoint descriptors can define "the number of additional 1319 * transaction opportunities per microframe", but that goes in the Max Burst 1320 * endpoint context field. 1321 */ 1322 static u32 xhci_get_endpoint_mult(struct usb_device *udev, 1323 struct usb_host_endpoint *ep) 1324 { 1325 if (udev->speed < USB_SPEED_SUPER || 1326 !usb_endpoint_xfer_isoc(&ep->desc)) 1327 return 0; 1328 return ep->ss_ep_comp.bmAttributes; 1329 } 1330 1331 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev, 1332 struct usb_host_endpoint *ep) 1333 { 1334 /* Super speed and Plus have max burst in ep companion desc */ 1335 if (udev->speed >= USB_SPEED_SUPER) 1336 return ep->ss_ep_comp.bMaxBurst; 1337 1338 if (udev->speed == USB_SPEED_HIGH && 1339 (usb_endpoint_xfer_isoc(&ep->desc) || 1340 usb_endpoint_xfer_int(&ep->desc))) 1341 return usb_endpoint_maxp_mult(&ep->desc) - 1; 1342 1343 return 0; 1344 } 1345 1346 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep) 1347 { 1348 int in; 1349 1350 in = usb_endpoint_dir_in(&ep->desc); 1351 1352 switch (usb_endpoint_type(&ep->desc)) { 1353 case USB_ENDPOINT_XFER_CONTROL: 1354 return CTRL_EP; 1355 case USB_ENDPOINT_XFER_BULK: 1356 return in ? BULK_IN_EP : BULK_OUT_EP; 1357 case USB_ENDPOINT_XFER_ISOC: 1358 return in ? ISOC_IN_EP : ISOC_OUT_EP; 1359 case USB_ENDPOINT_XFER_INT: 1360 return in ? INT_IN_EP : INT_OUT_EP; 1361 } 1362 return 0; 1363 } 1364 1365 /* Return the maximum endpoint service interval time (ESIT) payload. 1366 * Basically, this is the maxpacket size, multiplied by the burst size 1367 * and mult size. 1368 */ 1369 static u32 xhci_get_max_esit_payload(struct usb_device *udev, 1370 struct usb_host_endpoint *ep) 1371 { 1372 int max_burst; 1373 int max_packet; 1374 1375 /* Only applies for interrupt or isochronous endpoints */ 1376 if (usb_endpoint_xfer_control(&ep->desc) || 1377 usb_endpoint_xfer_bulk(&ep->desc)) 1378 return 0; 1379 1380 /* SuperSpeedPlus Isoc ep sending over 48k per esit */ 1381 if ((udev->speed >= USB_SPEED_SUPER_PLUS) && 1382 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes)) 1383 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval); 1384 1385 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */ 1386 if (udev->speed >= USB_SPEED_SUPER) 1387 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval); 1388 1389 max_packet = usb_endpoint_maxp(&ep->desc); 1390 max_burst = usb_endpoint_maxp_mult(&ep->desc); 1391 /* A 0 in max burst means 1 transfer per ESIT */ 1392 return max_packet * max_burst; 1393 } 1394 1395 /* Set up an endpoint with one ring segment. Do not allocate stream rings. 1396 * Drivers will have to call usb_alloc_streams() to do that. 1397 */ 1398 int xhci_endpoint_init(struct xhci_hcd *xhci, 1399 struct xhci_virt_device *virt_dev, 1400 struct usb_device *udev, 1401 struct usb_host_endpoint *ep, 1402 gfp_t mem_flags) 1403 { 1404 unsigned int ep_index; 1405 struct xhci_ep_ctx *ep_ctx; 1406 struct xhci_ring *ep_ring; 1407 unsigned int max_packet; 1408 enum xhci_ring_type ring_type; 1409 u32 max_esit_payload; 1410 u32 endpoint_type; 1411 unsigned int max_burst; 1412 unsigned int interval; 1413 unsigned int mult; 1414 unsigned int avg_trb_len; 1415 unsigned int err_count = 0; 1416 1417 ep_index = xhci_get_endpoint_index(&ep->desc); 1418 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1419 1420 endpoint_type = xhci_get_endpoint_type(ep); 1421 if (!endpoint_type) 1422 return -EINVAL; 1423 1424 ring_type = usb_endpoint_type(&ep->desc); 1425 1426 /* 1427 * Get values to fill the endpoint context, mostly from ep descriptor. 1428 * The average TRB buffer lengt for bulk endpoints is unclear as we 1429 * have no clue on scatter gather list entry size. For Isoc and Int, 1430 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details. 1431 */ 1432 max_esit_payload = xhci_get_max_esit_payload(udev, ep); 1433 interval = xhci_get_endpoint_interval(udev, ep); 1434 1435 /* Periodic endpoint bInterval limit quirk */ 1436 if (usb_endpoint_xfer_int(&ep->desc) || 1437 usb_endpoint_xfer_isoc(&ep->desc)) { 1438 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) && 1439 udev->speed >= USB_SPEED_HIGH && 1440 interval >= 7) { 1441 interval = 6; 1442 } 1443 } 1444 1445 mult = xhci_get_endpoint_mult(udev, ep); 1446 max_packet = usb_endpoint_maxp(&ep->desc); 1447 max_burst = xhci_get_endpoint_max_burst(udev, ep); 1448 avg_trb_len = max_esit_payload; 1449 1450 /* FIXME dig Mult and streams info out of ep companion desc */ 1451 1452 /* Allow 3 retries for everything but isoc, set CErr = 3 */ 1453 if (!usb_endpoint_xfer_isoc(&ep->desc)) 1454 err_count = 3; 1455 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */ 1456 if (usb_endpoint_xfer_bulk(&ep->desc)) { 1457 if (udev->speed == USB_SPEED_HIGH) 1458 max_packet = 512; 1459 if (udev->speed == USB_SPEED_FULL) { 1460 max_packet = rounddown_pow_of_two(max_packet); 1461 max_packet = clamp_val(max_packet, 8, 64); 1462 } 1463 } 1464 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */ 1465 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100) 1466 avg_trb_len = 8; 1467 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */ 1468 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2)) 1469 mult = 0; 1470 1471 /* Set up the endpoint ring */ 1472 virt_dev->eps[ep_index].new_ring = 1473 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags); 1474 if (!virt_dev->eps[ep_index].new_ring) 1475 return -ENOMEM; 1476 1477 virt_dev->eps[ep_index].skip = false; 1478 ep_ring = virt_dev->eps[ep_index].new_ring; 1479 1480 /* Fill the endpoint context */ 1481 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) | 1482 EP_INTERVAL(interval) | 1483 EP_MULT(mult)); 1484 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) | 1485 MAX_PACKET(max_packet) | 1486 MAX_BURST(max_burst) | 1487 ERROR_COUNT(err_count)); 1488 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | 1489 ep_ring->cycle_state); 1490 1491 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) | 1492 EP_AVG_TRB_LENGTH(avg_trb_len)); 1493 1494 return 0; 1495 } 1496 1497 void xhci_endpoint_zero(struct xhci_hcd *xhci, 1498 struct xhci_virt_device *virt_dev, 1499 struct usb_host_endpoint *ep) 1500 { 1501 unsigned int ep_index; 1502 struct xhci_ep_ctx *ep_ctx; 1503 1504 ep_index = xhci_get_endpoint_index(&ep->desc); 1505 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index); 1506 1507 ep_ctx->ep_info = 0; 1508 ep_ctx->ep_info2 = 0; 1509 ep_ctx->deq = 0; 1510 ep_ctx->tx_info = 0; 1511 /* Don't free the endpoint ring until the set interface or configuration 1512 * request succeeds. 1513 */ 1514 } 1515 1516 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info) 1517 { 1518 bw_info->ep_interval = 0; 1519 bw_info->mult = 0; 1520 bw_info->num_packets = 0; 1521 bw_info->max_packet_size = 0; 1522 bw_info->type = 0; 1523 bw_info->max_esit_payload = 0; 1524 } 1525 1526 void xhci_update_bw_info(struct xhci_hcd *xhci, 1527 struct xhci_container_ctx *in_ctx, 1528 struct xhci_input_control_ctx *ctrl_ctx, 1529 struct xhci_virt_device *virt_dev) 1530 { 1531 struct xhci_bw_info *bw_info; 1532 struct xhci_ep_ctx *ep_ctx; 1533 unsigned int ep_type; 1534 int i; 1535 1536 for (i = 1; i < 31; i++) { 1537 bw_info = &virt_dev->eps[i].bw_info; 1538 1539 /* We can't tell what endpoint type is being dropped, but 1540 * unconditionally clearing the bandwidth info for non-periodic 1541 * endpoints should be harmless because the info will never be 1542 * set in the first place. 1543 */ 1544 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) { 1545 /* Dropped endpoint */ 1546 xhci_clear_endpoint_bw_info(bw_info); 1547 continue; 1548 } 1549 1550 if (EP_IS_ADDED(ctrl_ctx, i)) { 1551 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i); 1552 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2)); 1553 1554 /* Ignore non-periodic endpoints */ 1555 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP && 1556 ep_type != ISOC_IN_EP && 1557 ep_type != INT_IN_EP) 1558 continue; 1559 1560 /* Added or changed endpoint */ 1561 bw_info->ep_interval = CTX_TO_EP_INTERVAL( 1562 le32_to_cpu(ep_ctx->ep_info)); 1563 /* Number of packets and mult are zero-based in the 1564 * input context, but we want one-based for the 1565 * interval table. 1566 */ 1567 bw_info->mult = CTX_TO_EP_MULT( 1568 le32_to_cpu(ep_ctx->ep_info)) + 1; 1569 bw_info->num_packets = CTX_TO_MAX_BURST( 1570 le32_to_cpu(ep_ctx->ep_info2)) + 1; 1571 bw_info->max_packet_size = MAX_PACKET_DECODED( 1572 le32_to_cpu(ep_ctx->ep_info2)); 1573 bw_info->type = ep_type; 1574 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD( 1575 le32_to_cpu(ep_ctx->tx_info)); 1576 } 1577 } 1578 } 1579 1580 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy. 1581 * Useful when you want to change one particular aspect of the endpoint and then 1582 * issue a configure endpoint command. 1583 */ 1584 void xhci_endpoint_copy(struct xhci_hcd *xhci, 1585 struct xhci_container_ctx *in_ctx, 1586 struct xhci_container_ctx *out_ctx, 1587 unsigned int ep_index) 1588 { 1589 struct xhci_ep_ctx *out_ep_ctx; 1590 struct xhci_ep_ctx *in_ep_ctx; 1591 1592 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); 1593 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); 1594 1595 in_ep_ctx->ep_info = out_ep_ctx->ep_info; 1596 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2; 1597 in_ep_ctx->deq = out_ep_ctx->deq; 1598 in_ep_ctx->tx_info = out_ep_ctx->tx_info; 1599 if (xhci->quirks & XHCI_MTK_HOST) { 1600 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0]; 1601 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1]; 1602 } 1603 } 1604 1605 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx. 1606 * Useful when you want to change one particular aspect of the endpoint and then 1607 * issue a configure endpoint command. Only the context entries field matters, 1608 * but we'll copy the whole thing anyway. 1609 */ 1610 void xhci_slot_copy(struct xhci_hcd *xhci, 1611 struct xhci_container_ctx *in_ctx, 1612 struct xhci_container_ctx *out_ctx) 1613 { 1614 struct xhci_slot_ctx *in_slot_ctx; 1615 struct xhci_slot_ctx *out_slot_ctx; 1616 1617 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); 1618 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx); 1619 1620 in_slot_ctx->dev_info = out_slot_ctx->dev_info; 1621 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2; 1622 in_slot_ctx->tt_info = out_slot_ctx->tt_info; 1623 in_slot_ctx->dev_state = out_slot_ctx->dev_state; 1624 } 1625 1626 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */ 1627 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) 1628 { 1629 int i; 1630 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1631 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1632 1633 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1634 "Allocating %d scratchpad buffers", num_sp); 1635 1636 if (!num_sp) 1637 return 0; 1638 1639 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags, 1640 dev_to_node(dev)); 1641 if (!xhci->scratchpad) 1642 goto fail_sp; 1643 1644 xhci->scratchpad->sp_array = dma_alloc_coherent(dev, 1645 size_mul(sizeof(u64), num_sp), 1646 &xhci->scratchpad->sp_dma, flags); 1647 if (!xhci->scratchpad->sp_array) 1648 goto fail_sp2; 1649 1650 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *), 1651 flags, dev_to_node(dev)); 1652 if (!xhci->scratchpad->sp_buffers) 1653 goto fail_sp3; 1654 1655 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma); 1656 for (i = 0; i < num_sp; i++) { 1657 dma_addr_t dma; 1658 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma, 1659 flags); 1660 if (!buf) 1661 goto fail_sp4; 1662 1663 xhci->scratchpad->sp_array[i] = dma; 1664 xhci->scratchpad->sp_buffers[i] = buf; 1665 } 1666 1667 return 0; 1668 1669 fail_sp4: 1670 while (i--) 1671 dma_free_coherent(dev, xhci->page_size, 1672 xhci->scratchpad->sp_buffers[i], 1673 xhci->scratchpad->sp_array[i]); 1674 1675 kfree(xhci->scratchpad->sp_buffers); 1676 1677 fail_sp3: 1678 dma_free_coherent(dev, num_sp * sizeof(u64), 1679 xhci->scratchpad->sp_array, 1680 xhci->scratchpad->sp_dma); 1681 1682 fail_sp2: 1683 kfree(xhci->scratchpad); 1684 xhci->scratchpad = NULL; 1685 1686 fail_sp: 1687 return -ENOMEM; 1688 } 1689 1690 static void scratchpad_free(struct xhci_hcd *xhci) 1691 { 1692 int num_sp; 1693 int i; 1694 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1695 1696 if (!xhci->scratchpad) 1697 return; 1698 1699 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2); 1700 1701 for (i = 0; i < num_sp; i++) { 1702 dma_free_coherent(dev, xhci->page_size, 1703 xhci->scratchpad->sp_buffers[i], 1704 xhci->scratchpad->sp_array[i]); 1705 } 1706 kfree(xhci->scratchpad->sp_buffers); 1707 dma_free_coherent(dev, num_sp * sizeof(u64), 1708 xhci->scratchpad->sp_array, 1709 xhci->scratchpad->sp_dma); 1710 kfree(xhci->scratchpad); 1711 xhci->scratchpad = NULL; 1712 } 1713 1714 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci, 1715 bool allocate_completion, gfp_t mem_flags) 1716 { 1717 struct xhci_command *command; 1718 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1719 1720 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev)); 1721 if (!command) 1722 return NULL; 1723 1724 if (allocate_completion) { 1725 command->completion = 1726 kzalloc_node(sizeof(struct completion), mem_flags, 1727 dev_to_node(dev)); 1728 if (!command->completion) { 1729 kfree(command); 1730 return NULL; 1731 } 1732 init_completion(command->completion); 1733 } 1734 1735 command->status = 0; 1736 INIT_LIST_HEAD(&command->cmd_list); 1737 return command; 1738 } 1739 1740 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci, 1741 bool allocate_completion, gfp_t mem_flags) 1742 { 1743 struct xhci_command *command; 1744 1745 command = xhci_alloc_command(xhci, allocate_completion, mem_flags); 1746 if (!command) 1747 return NULL; 1748 1749 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, 1750 mem_flags); 1751 if (!command->in_ctx) { 1752 kfree(command->completion); 1753 kfree(command); 1754 return NULL; 1755 } 1756 return command; 1757 } 1758 1759 void xhci_urb_free_priv(struct urb_priv *urb_priv) 1760 { 1761 kfree(urb_priv); 1762 } 1763 1764 void xhci_free_command(struct xhci_hcd *xhci, 1765 struct xhci_command *command) 1766 { 1767 xhci_free_container_ctx(xhci, 1768 command->in_ctx); 1769 kfree(command->completion); 1770 kfree(command); 1771 } 1772 1773 int xhci_alloc_erst(struct xhci_hcd *xhci, 1774 struct xhci_ring *evt_ring, 1775 struct xhci_erst *erst, 1776 gfp_t flags) 1777 { 1778 size_t size; 1779 unsigned int val; 1780 struct xhci_segment *seg; 1781 struct xhci_erst_entry *entry; 1782 1783 size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs); 1784 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev, 1785 size, &erst->erst_dma_addr, flags); 1786 if (!erst->entries) 1787 return -ENOMEM; 1788 1789 erst->num_entries = evt_ring->num_segs; 1790 1791 seg = evt_ring->first_seg; 1792 for (val = 0; val < evt_ring->num_segs; val++) { 1793 entry = &erst->entries[val]; 1794 entry->seg_addr = cpu_to_le64(seg->dma); 1795 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT); 1796 entry->rsvd = 0; 1797 seg = seg->next; 1798 } 1799 1800 return 0; 1801 } 1802 1803 static void 1804 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 1805 { 1806 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1807 size_t erst_size; 1808 u64 tmp64; 1809 u32 tmp; 1810 1811 if (!ir) 1812 return; 1813 1814 erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries; 1815 if (ir->erst.entries) 1816 dma_free_coherent(dev, erst_size, 1817 ir->erst.entries, 1818 ir->erst.erst_dma_addr); 1819 ir->erst.entries = NULL; 1820 1821 /* 1822 * Clean out interrupter registers except ERSTBA. Clearing either the 1823 * low or high 32 bits of ERSTBA immediately causes the controller to 1824 * dereference the partially cleared 64 bit address, causing IOMMU error. 1825 */ 1826 if (ir->ir_set) { 1827 tmp = readl(&ir->ir_set->erst_size); 1828 tmp &= ERST_SIZE_MASK; 1829 writel(tmp, &ir->ir_set->erst_size); 1830 1831 tmp64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 1832 tmp64 &= (u64) ERST_PTR_MASK; 1833 xhci_write_64(xhci, tmp64, &ir->ir_set->erst_dequeue); 1834 } 1835 1836 /* free interrrupter event ring */ 1837 if (ir->event_ring) 1838 xhci_ring_free(xhci, ir->event_ring); 1839 ir->event_ring = NULL; 1840 1841 kfree(ir); 1842 } 1843 1844 void xhci_mem_cleanup(struct xhci_hcd *xhci) 1845 { 1846 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1847 int i, j, num_ports; 1848 1849 cancel_delayed_work_sync(&xhci->cmd_timer); 1850 1851 xhci_free_interrupter(xhci, xhci->interrupter); 1852 xhci->interrupter = NULL; 1853 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed primary event ring"); 1854 1855 if (xhci->cmd_ring) 1856 xhci_ring_free(xhci, xhci->cmd_ring); 1857 xhci->cmd_ring = NULL; 1858 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring"); 1859 xhci_cleanup_command_queue(xhci); 1860 1861 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 1862 for (i = 0; i < num_ports && xhci->rh_bw; i++) { 1863 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table; 1864 for (j = 0; j < XHCI_MAX_INTERVAL; j++) { 1865 struct list_head *ep = &bwt->interval_bw[j].endpoints; 1866 while (!list_empty(ep)) 1867 list_del_init(ep->next); 1868 } 1869 } 1870 1871 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--) 1872 xhci_free_virt_devices_depth_first(xhci, i); 1873 1874 dma_pool_destroy(xhci->segment_pool); 1875 xhci->segment_pool = NULL; 1876 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool"); 1877 1878 dma_pool_destroy(xhci->device_pool); 1879 xhci->device_pool = NULL; 1880 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool"); 1881 1882 dma_pool_destroy(xhci->small_streams_pool); 1883 xhci->small_streams_pool = NULL; 1884 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1885 "Freed small stream array pool"); 1886 1887 dma_pool_destroy(xhci->medium_streams_pool); 1888 xhci->medium_streams_pool = NULL; 1889 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1890 "Freed medium stream array pool"); 1891 1892 if (xhci->dcbaa) 1893 dma_free_coherent(dev, sizeof(*xhci->dcbaa), 1894 xhci->dcbaa, xhci->dcbaa->dma); 1895 xhci->dcbaa = NULL; 1896 1897 scratchpad_free(xhci); 1898 1899 if (!xhci->rh_bw) 1900 goto no_bw; 1901 1902 for (i = 0; i < num_ports; i++) { 1903 struct xhci_tt_bw_info *tt, *n; 1904 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) { 1905 list_del(&tt->tt_list); 1906 kfree(tt); 1907 } 1908 } 1909 1910 no_bw: 1911 xhci->cmd_ring_reserved_trbs = 0; 1912 xhci->usb2_rhub.num_ports = 0; 1913 xhci->usb3_rhub.num_ports = 0; 1914 xhci->num_active_eps = 0; 1915 kfree(xhci->usb2_rhub.ports); 1916 kfree(xhci->usb3_rhub.ports); 1917 kfree(xhci->hw_ports); 1918 kfree(xhci->rh_bw); 1919 kfree(xhci->ext_caps); 1920 for (i = 0; i < xhci->num_port_caps; i++) 1921 kfree(xhci->port_caps[i].psi); 1922 kfree(xhci->port_caps); 1923 xhci->num_port_caps = 0; 1924 1925 xhci->usb2_rhub.ports = NULL; 1926 xhci->usb3_rhub.ports = NULL; 1927 xhci->hw_ports = NULL; 1928 xhci->rh_bw = NULL; 1929 xhci->ext_caps = NULL; 1930 xhci->port_caps = NULL; 1931 1932 xhci->page_size = 0; 1933 xhci->page_shift = 0; 1934 xhci->usb2_rhub.bus_state.bus_suspended = 0; 1935 xhci->usb3_rhub.bus_state.bus_suspended = 0; 1936 } 1937 1938 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir) 1939 { 1940 u64 temp; 1941 dma_addr_t deq; 1942 1943 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg, 1944 ir->event_ring->dequeue); 1945 if (!deq) 1946 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n"); 1947 /* Update HC event ring dequeue pointer */ 1948 temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue); 1949 temp &= ERST_PTR_MASK; 1950 /* Don't clear the EHB bit (which is RW1C) because 1951 * there might be more events to service. 1952 */ 1953 temp &= ~ERST_EHB; 1954 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 1955 "// Write event ring dequeue pointer, preserving EHB bit"); 1956 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp, 1957 &ir->ir_set->erst_dequeue); 1958 } 1959 1960 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, 1961 __le32 __iomem *addr, int max_caps) 1962 { 1963 u32 temp, port_offset, port_count; 1964 int i; 1965 u8 major_revision, minor_revision; 1966 struct xhci_hub *rhub; 1967 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 1968 struct xhci_port_cap *port_cap; 1969 1970 temp = readl(addr); 1971 major_revision = XHCI_EXT_PORT_MAJOR(temp); 1972 minor_revision = XHCI_EXT_PORT_MINOR(temp); 1973 1974 if (major_revision == 0x03) { 1975 rhub = &xhci->usb3_rhub; 1976 /* 1977 * Some hosts incorrectly use sub-minor version for minor 1978 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01 1979 * for bcdUSB 0x310). Since there is no USB release with sub 1980 * minor version 0x301 to 0x309, we can assume that they are 1981 * incorrect and fix it here. 1982 */ 1983 if (minor_revision > 0x00 && minor_revision < 0x10) 1984 minor_revision <<= 4; 1985 } else if (major_revision <= 0x02) { 1986 rhub = &xhci->usb2_rhub; 1987 } else { 1988 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n", 1989 addr, major_revision); 1990 /* Ignoring port protocol we can't understand. FIXME */ 1991 return; 1992 } 1993 rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp); 1994 1995 if (rhub->min_rev < minor_revision) 1996 rhub->min_rev = minor_revision; 1997 1998 /* Port offset and count in the third dword, see section 7.2 */ 1999 temp = readl(addr + 2); 2000 port_offset = XHCI_EXT_PORT_OFF(temp); 2001 port_count = XHCI_EXT_PORT_COUNT(temp); 2002 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2003 "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x", 2004 addr, port_offset, port_count, major_revision); 2005 /* Port count includes the current port offset */ 2006 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports) 2007 /* WTF? "Valid values are ‘1’ to MaxPorts" */ 2008 return; 2009 2010 port_cap = &xhci->port_caps[xhci->num_port_caps++]; 2011 if (xhci->num_port_caps > max_caps) 2012 return; 2013 2014 port_cap->maj_rev = major_revision; 2015 port_cap->min_rev = minor_revision; 2016 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp); 2017 2018 if (port_cap->psi_count) { 2019 port_cap->psi = kcalloc_node(port_cap->psi_count, 2020 sizeof(*port_cap->psi), 2021 GFP_KERNEL, dev_to_node(dev)); 2022 if (!port_cap->psi) 2023 port_cap->psi_count = 0; 2024 2025 port_cap->psi_uid_count++; 2026 for (i = 0; i < port_cap->psi_count; i++) { 2027 port_cap->psi[i] = readl(addr + 4 + i); 2028 2029 /* count unique ID values, two consecutive entries can 2030 * have the same ID if link is assymetric 2031 */ 2032 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) != 2033 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1]))) 2034 port_cap->psi_uid_count++; 2035 2036 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n", 2037 XHCI_EXT_PORT_PSIV(port_cap->psi[i]), 2038 XHCI_EXT_PORT_PSIE(port_cap->psi[i]), 2039 XHCI_EXT_PORT_PLT(port_cap->psi[i]), 2040 XHCI_EXT_PORT_PFD(port_cap->psi[i]), 2041 XHCI_EXT_PORT_LP(port_cap->psi[i]), 2042 XHCI_EXT_PORT_PSIM(port_cap->psi[i])); 2043 } 2044 } 2045 /* cache usb2 port capabilities */ 2046 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps) 2047 xhci->ext_caps[xhci->num_ext_caps++] = temp; 2048 2049 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) && 2050 (temp & XHCI_HLC)) { 2051 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2052 "xHCI 1.0: support USB2 hardware lpm"); 2053 xhci->hw_lpm_support = 1; 2054 } 2055 2056 port_offset--; 2057 for (i = port_offset; i < (port_offset + port_count); i++) { 2058 struct xhci_port *hw_port = &xhci->hw_ports[i]; 2059 /* Duplicate entry. Ignore the port if the revisions differ. */ 2060 if (hw_port->rhub) { 2061 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i); 2062 xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n", 2063 hw_port->rhub->maj_rev, major_revision); 2064 /* Only adjust the roothub port counts if we haven't 2065 * found a similar duplicate. 2066 */ 2067 if (hw_port->rhub != rhub && 2068 hw_port->hcd_portnum != DUPLICATE_ENTRY) { 2069 hw_port->rhub->num_ports--; 2070 hw_port->hcd_portnum = DUPLICATE_ENTRY; 2071 } 2072 continue; 2073 } 2074 hw_port->rhub = rhub; 2075 hw_port->port_cap = port_cap; 2076 rhub->num_ports++; 2077 } 2078 /* FIXME: Should we disable ports not in the Extended Capabilities? */ 2079 } 2080 2081 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci, 2082 struct xhci_hub *rhub, gfp_t flags) 2083 { 2084 int port_index = 0; 2085 int i; 2086 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2087 2088 if (!rhub->num_ports) 2089 return; 2090 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports), 2091 flags, dev_to_node(dev)); 2092 if (!rhub->ports) 2093 return; 2094 2095 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) { 2096 if (xhci->hw_ports[i].rhub != rhub || 2097 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY) 2098 continue; 2099 xhci->hw_ports[i].hcd_portnum = port_index; 2100 rhub->ports[port_index] = &xhci->hw_ports[i]; 2101 port_index++; 2102 if (port_index == rhub->num_ports) 2103 break; 2104 } 2105 } 2106 2107 /* 2108 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that 2109 * specify what speeds each port is supposed to be. We can't count on the port 2110 * speed bits in the PORTSC register being correct until a device is connected, 2111 * but we need to set up the two fake roothubs with the correct number of USB 2112 * 3.0 and USB 2.0 ports at host controller initialization time. 2113 */ 2114 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) 2115 { 2116 void __iomem *base; 2117 u32 offset; 2118 unsigned int num_ports; 2119 int i, j; 2120 int cap_count = 0; 2121 u32 cap_start; 2122 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2123 2124 num_ports = HCS_MAX_PORTS(xhci->hcs_params1); 2125 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports), 2126 flags, dev_to_node(dev)); 2127 if (!xhci->hw_ports) 2128 return -ENOMEM; 2129 2130 for (i = 0; i < num_ports; i++) { 2131 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base + 2132 NUM_PORT_REGS * i; 2133 xhci->hw_ports[i].hw_portnum = i; 2134 2135 init_completion(&xhci->hw_ports[i].rexit_done); 2136 init_completion(&xhci->hw_ports[i].u3exit_done); 2137 } 2138 2139 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags, 2140 dev_to_node(dev)); 2141 if (!xhci->rh_bw) 2142 return -ENOMEM; 2143 for (i = 0; i < num_ports; i++) { 2144 struct xhci_interval_bw_table *bw_table; 2145 2146 INIT_LIST_HEAD(&xhci->rh_bw[i].tts); 2147 bw_table = &xhci->rh_bw[i].bw_table; 2148 for (j = 0; j < XHCI_MAX_INTERVAL; j++) 2149 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints); 2150 } 2151 base = &xhci->cap_regs->hc_capbase; 2152 2153 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL); 2154 if (!cap_start) { 2155 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n"); 2156 return -ENODEV; 2157 } 2158 2159 offset = cap_start; 2160 /* count extended protocol capability entries for later caching */ 2161 while (offset) { 2162 cap_count++; 2163 offset = xhci_find_next_ext_cap(base, offset, 2164 XHCI_EXT_CAPS_PROTOCOL); 2165 } 2166 2167 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps), 2168 flags, dev_to_node(dev)); 2169 if (!xhci->ext_caps) 2170 return -ENOMEM; 2171 2172 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps), 2173 flags, dev_to_node(dev)); 2174 if (!xhci->port_caps) 2175 return -ENOMEM; 2176 2177 offset = cap_start; 2178 2179 while (offset) { 2180 xhci_add_in_port(xhci, num_ports, base + offset, cap_count); 2181 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports == 2182 num_ports) 2183 break; 2184 offset = xhci_find_next_ext_cap(base, offset, 2185 XHCI_EXT_CAPS_PROTOCOL); 2186 } 2187 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) { 2188 xhci_warn(xhci, "No ports on the roothubs?\n"); 2189 return -ENODEV; 2190 } 2191 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2192 "Found %u USB 2.0 ports and %u USB 3.0 ports.", 2193 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports); 2194 2195 /* Place limits on the number of roothub ports so that the hub 2196 * descriptors aren't longer than the USB core will allocate. 2197 */ 2198 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) { 2199 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2200 "Limiting USB 3.0 roothub ports to %u.", 2201 USB_SS_MAXPORTS); 2202 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS; 2203 } 2204 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) { 2205 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2206 "Limiting USB 2.0 roothub ports to %u.", 2207 USB_MAXCHILDREN); 2208 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN; 2209 } 2210 2211 if (!xhci->usb2_rhub.num_ports) 2212 xhci_info(xhci, "USB2 root hub has no ports\n"); 2213 2214 if (!xhci->usb3_rhub.num_ports) 2215 xhci_info(xhci, "USB3 root hub has no ports\n"); 2216 2217 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags); 2218 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags); 2219 2220 return 0; 2221 } 2222 2223 static struct xhci_interrupter * 2224 xhci_alloc_interrupter(struct xhci_hcd *xhci, gfp_t flags) 2225 { 2226 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2227 struct xhci_interrupter *ir; 2228 int ret; 2229 2230 ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev)); 2231 if (!ir) 2232 return NULL; 2233 2234 ir->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT, 2235 0, flags); 2236 if (!ir->event_ring) { 2237 xhci_warn(xhci, "Failed to allocate interrupter event ring\n"); 2238 kfree(ir); 2239 return NULL; 2240 } 2241 2242 ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags); 2243 if (ret) { 2244 xhci_warn(xhci, "Failed to allocate interrupter erst\n"); 2245 xhci_ring_free(xhci, ir->event_ring); 2246 kfree(ir); 2247 return NULL; 2248 } 2249 2250 return ir; 2251 } 2252 2253 static int 2254 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir, 2255 unsigned int intr_num) 2256 { 2257 u64 erst_base; 2258 u32 erst_size; 2259 2260 if (intr_num > xhci->max_interrupters) { 2261 xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n", 2262 intr_num, xhci->max_interrupters); 2263 return -EINVAL; 2264 } 2265 2266 ir->ir_set = &xhci->run_regs->ir_set[intr_num]; 2267 2268 /* set ERST count with the number of entries in the segment table */ 2269 erst_size = readl(&ir->ir_set->erst_size); 2270 erst_size &= ERST_SIZE_MASK; 2271 erst_size |= ERST_NUM_SEGS; 2272 writel(erst_size, &ir->ir_set->erst_size); 2273 2274 erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base); 2275 erst_base &= ERST_PTR_MASK; 2276 erst_base |= (ir->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK); 2277 xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base); 2278 2279 /* Set the event ring dequeue address of this interrupter */ 2280 xhci_set_hc_event_deq(xhci, ir); 2281 2282 return 0; 2283 } 2284 2285 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) 2286 { 2287 dma_addr_t dma; 2288 struct device *dev = xhci_to_hcd(xhci)->self.sysdev; 2289 unsigned int val, val2; 2290 u64 val_64; 2291 u32 page_size, temp; 2292 int i; 2293 2294 INIT_LIST_HEAD(&xhci->cmd_list); 2295 2296 /* init command timeout work */ 2297 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout); 2298 init_completion(&xhci->cmd_ring_stop_completion); 2299 2300 page_size = readl(&xhci->op_regs->page_size); 2301 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2302 "Supported page size register = 0x%x", page_size); 2303 i = ffs(page_size); 2304 if (i < 16) 2305 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2306 "Supported page size of %iK", (1 << (i+12)) / 1024); 2307 else 2308 xhci_warn(xhci, "WARN: no supported page size\n"); 2309 /* Use 4K pages, since that's common and the minimum the HC supports */ 2310 xhci->page_shift = 12; 2311 xhci->page_size = 1 << xhci->page_shift; 2312 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2313 "HCD page size set to %iK", xhci->page_size / 1024); 2314 2315 /* 2316 * Program the Number of Device Slots Enabled field in the CONFIG 2317 * register with the max value of slots the HC can handle. 2318 */ 2319 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1)); 2320 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2321 "// xHC can handle at most %d device slots.", val); 2322 val2 = readl(&xhci->op_regs->config_reg); 2323 val |= (val2 & ~HCS_SLOTS_MASK); 2324 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2325 "// Setting Max device slots reg = 0x%x.", val); 2326 writel(val, &xhci->op_regs->config_reg); 2327 2328 /* 2329 * xHCI section 5.4.6 - Device Context array must be 2330 * "physically contiguous and 64-byte (cache line) aligned". 2331 */ 2332 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma, 2333 flags); 2334 if (!xhci->dcbaa) 2335 goto fail; 2336 xhci->dcbaa->dma = dma; 2337 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2338 "// Device context base array address = 0x%pad (DMA), %p (virt)", 2339 &xhci->dcbaa->dma, xhci->dcbaa); 2340 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr); 2341 2342 /* 2343 * Initialize the ring segment pool. The ring must be a contiguous 2344 * structure comprised of TRBs. The TRBs must be 16 byte aligned, 2345 * however, the command ring segment needs 64-byte aligned segments 2346 * and our use of dma addresses in the trb_address_map radix tree needs 2347 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need. 2348 */ 2349 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev, 2350 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size); 2351 2352 /* See Table 46 and Note on Figure 55 */ 2353 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev, 2354 2112, 64, xhci->page_size); 2355 if (!xhci->segment_pool || !xhci->device_pool) 2356 goto fail; 2357 2358 /* Linear stream context arrays don't have any boundary restrictions, 2359 * and only need to be 16-byte aligned. 2360 */ 2361 xhci->small_streams_pool = 2362 dma_pool_create("xHCI 256 byte stream ctx arrays", 2363 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0); 2364 xhci->medium_streams_pool = 2365 dma_pool_create("xHCI 1KB stream ctx arrays", 2366 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0); 2367 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE 2368 * will be allocated with dma_alloc_coherent() 2369 */ 2370 2371 if (!xhci->small_streams_pool || !xhci->medium_streams_pool) 2372 goto fail; 2373 2374 /* Set up the command ring to have one segments for now. */ 2375 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags); 2376 if (!xhci->cmd_ring) 2377 goto fail; 2378 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2379 "Allocated command ring at %p", xhci->cmd_ring); 2380 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad", 2381 &xhci->cmd_ring->first_seg->dma); 2382 2383 /* Set the address in the Command Ring Control register */ 2384 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring); 2385 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) | 2386 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) | 2387 xhci->cmd_ring->cycle_state; 2388 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2389 "// Setting command ring address to 0x%016llx", val_64); 2390 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring); 2391 2392 /* Reserve one command ring TRB for disabling LPM. 2393 * Since the USB core grabs the shared usb_bus bandwidth mutex before 2394 * disabling LPM, we only need to reserve one TRB for all devices. 2395 */ 2396 xhci->cmd_ring_reserved_trbs++; 2397 2398 val = readl(&xhci->cap_regs->db_off); 2399 val &= DBOFF_MASK; 2400 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2401 "// Doorbell array is located at offset 0x%x from cap regs base addr", 2402 val); 2403 xhci->dba = (void __iomem *) xhci->cap_regs + val; 2404 2405 /* Allocate and set up primary interrupter 0 with an event ring. */ 2406 xhci_dbg_trace(xhci, trace_xhci_dbg_init, 2407 "Allocating primary event ring"); 2408 xhci->interrupter = xhci_alloc_interrupter(xhci, flags); 2409 if (!xhci->interrupter) 2410 goto fail; 2411 2412 if (xhci_add_interrupter(xhci, xhci->interrupter, 0)) 2413 goto fail; 2414 2415 xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX; 2416 2417 /* 2418 * XXX: Might need to set the Interrupter Moderation Register to 2419 * something other than the default (~1ms minimum between interrupts). 2420 * See section 5.5.1.2. 2421 */ 2422 for (i = 0; i < MAX_HC_SLOTS; i++) 2423 xhci->devs[i] = NULL; 2424 2425 if (scratchpad_alloc(xhci, flags)) 2426 goto fail; 2427 if (xhci_setup_port_arrays(xhci, flags)) 2428 goto fail; 2429 2430 /* Enable USB 3.0 device notifications for function remote wake, which 2431 * is necessary for allowing USB 3.0 devices to do remote wakeup from 2432 * U3 (device suspend). 2433 */ 2434 temp = readl(&xhci->op_regs->dev_notification); 2435 temp &= ~DEV_NOTE_MASK; 2436 temp |= DEV_NOTE_FWAKE; 2437 writel(temp, &xhci->op_regs->dev_notification); 2438 2439 return 0; 2440 2441 fail: 2442 xhci_halt(xhci); 2443 xhci_reset(xhci, XHCI_RESET_SHORT_USEC); 2444 xhci_mem_cleanup(xhci); 2445 return -ENOMEM; 2446 } 2447