1 /* 2 * Universal Host Controller Interface driver for USB. 3 * 4 * Maintainer: Alan Stern <stern@rowland.harvard.edu> 5 * 6 * (C) Copyright 1999 Linus Torvalds 7 * (C) Copyright 1999-2002 Johannes Erdfelt, johannes@erdfelt.com 8 * (C) Copyright 1999 Randy Dunlap 9 * (C) Copyright 1999 Georg Acher, acher@in.tum.de 10 * (C) Copyright 1999 Deti Fliegl, deti@fliegl.de 11 * (C) Copyright 1999 Thomas Sailer, sailer@ife.ee.ethz.ch 12 * (C) Copyright 1999 Roman Weissgaerber, weissg@vienna.at 13 * (C) Copyright 2000 Yggdrasil Computing, Inc. (port of new PCI interface 14 * support from usb-ohci.c by Adam Richter, adam@yggdrasil.com). 15 * (C) Copyright 1999 Gregory P. Smith (from usb-ohci.c) 16 * (C) Copyright 2004-2006 Alan Stern, stern@rowland.harvard.edu 17 */ 18 19 20 /* 21 * Technically, updating td->status here is a race, but it's not really a 22 * problem. The worst that can happen is that we set the IOC bit again 23 * generating a spurious interrupt. We could fix this by creating another 24 * QH and leaving the IOC bit always set, but then we would have to play 25 * games with the FSBR code to make sure we get the correct order in all 26 * the cases. I don't think it's worth the effort 27 */ 28 static void uhci_set_next_interrupt(struct uhci_hcd *uhci) 29 { 30 if (uhci->is_stopped) 31 mod_timer(&uhci_to_hcd(uhci)->rh_timer, jiffies); 32 uhci->term_td->status |= cpu_to_le32(TD_CTRL_IOC); 33 } 34 35 static inline void uhci_clear_next_interrupt(struct uhci_hcd *uhci) 36 { 37 uhci->term_td->status &= ~cpu_to_le32(TD_CTRL_IOC); 38 } 39 40 41 /* 42 * Full-Speed Bandwidth Reclamation (FSBR). 43 * We turn on FSBR whenever a queue that wants it is advancing, 44 * and leave it on for a short time thereafter. 45 */ 46 static void uhci_fsbr_on(struct uhci_hcd *uhci) 47 { 48 uhci->fsbr_is_on = 1; 49 uhci->skel_term_qh->link = cpu_to_le32( 50 uhci->skel_fs_control_qh->dma_handle) | UHCI_PTR_QH; 51 } 52 53 static void uhci_fsbr_off(struct uhci_hcd *uhci) 54 { 55 uhci->fsbr_is_on = 0; 56 uhci->skel_term_qh->link = UHCI_PTR_TERM; 57 } 58 59 static void uhci_add_fsbr(struct uhci_hcd *uhci, struct urb *urb) 60 { 61 struct urb_priv *urbp = urb->hcpriv; 62 63 if (!(urb->transfer_flags & URB_NO_FSBR)) 64 urbp->fsbr = 1; 65 } 66 67 static void uhci_urbp_wants_fsbr(struct uhci_hcd *uhci, struct urb_priv *urbp) 68 { 69 if (urbp->fsbr) { 70 uhci->fsbr_is_wanted = 1; 71 if (!uhci->fsbr_is_on) 72 uhci_fsbr_on(uhci); 73 else if (uhci->fsbr_expiring) { 74 uhci->fsbr_expiring = 0; 75 del_timer(&uhci->fsbr_timer); 76 } 77 } 78 } 79 80 static void uhci_fsbr_timeout(unsigned long _uhci) 81 { 82 struct uhci_hcd *uhci = (struct uhci_hcd *) _uhci; 83 unsigned long flags; 84 85 spin_lock_irqsave(&uhci->lock, flags); 86 if (uhci->fsbr_expiring) { 87 uhci->fsbr_expiring = 0; 88 uhci_fsbr_off(uhci); 89 } 90 spin_unlock_irqrestore(&uhci->lock, flags); 91 } 92 93 94 static struct uhci_td *uhci_alloc_td(struct uhci_hcd *uhci) 95 { 96 dma_addr_t dma_handle; 97 struct uhci_td *td; 98 99 td = dma_pool_alloc(uhci->td_pool, GFP_ATOMIC, &dma_handle); 100 if (!td) 101 return NULL; 102 103 td->dma_handle = dma_handle; 104 td->frame = -1; 105 106 INIT_LIST_HEAD(&td->list); 107 INIT_LIST_HEAD(&td->fl_list); 108 109 return td; 110 } 111 112 static void uhci_free_td(struct uhci_hcd *uhci, struct uhci_td *td) 113 { 114 if (!list_empty(&td->list)) 115 dev_warn(uhci_dev(uhci), "td %p still in list!\n", td); 116 if (!list_empty(&td->fl_list)) 117 dev_warn(uhci_dev(uhci), "td %p still in fl_list!\n", td); 118 119 dma_pool_free(uhci->td_pool, td, td->dma_handle); 120 } 121 122 static inline void uhci_fill_td(struct uhci_td *td, u32 status, 123 u32 token, u32 buffer) 124 { 125 td->status = cpu_to_le32(status); 126 td->token = cpu_to_le32(token); 127 td->buffer = cpu_to_le32(buffer); 128 } 129 130 static void uhci_add_td_to_urbp(struct uhci_td *td, struct urb_priv *urbp) 131 { 132 list_add_tail(&td->list, &urbp->td_list); 133 } 134 135 static void uhci_remove_td_from_urbp(struct uhci_td *td) 136 { 137 list_del_init(&td->list); 138 } 139 140 /* 141 * We insert Isochronous URBs directly into the frame list at the beginning 142 */ 143 static inline void uhci_insert_td_in_frame_list(struct uhci_hcd *uhci, 144 struct uhci_td *td, unsigned framenum) 145 { 146 framenum &= (UHCI_NUMFRAMES - 1); 147 148 td->frame = framenum; 149 150 /* Is there a TD already mapped there? */ 151 if (uhci->frame_cpu[framenum]) { 152 struct uhci_td *ftd, *ltd; 153 154 ftd = uhci->frame_cpu[framenum]; 155 ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list); 156 157 list_add_tail(&td->fl_list, &ftd->fl_list); 158 159 td->link = ltd->link; 160 wmb(); 161 ltd->link = cpu_to_le32(td->dma_handle); 162 } else { 163 td->link = uhci->frame[framenum]; 164 wmb(); 165 uhci->frame[framenum] = cpu_to_le32(td->dma_handle); 166 uhci->frame_cpu[framenum] = td; 167 } 168 } 169 170 static inline void uhci_remove_td_from_frame_list(struct uhci_hcd *uhci, 171 struct uhci_td *td) 172 { 173 /* If it's not inserted, don't remove it */ 174 if (td->frame == -1) { 175 WARN_ON(!list_empty(&td->fl_list)); 176 return; 177 } 178 179 if (uhci->frame_cpu[td->frame] == td) { 180 if (list_empty(&td->fl_list)) { 181 uhci->frame[td->frame] = td->link; 182 uhci->frame_cpu[td->frame] = NULL; 183 } else { 184 struct uhci_td *ntd; 185 186 ntd = list_entry(td->fl_list.next, struct uhci_td, fl_list); 187 uhci->frame[td->frame] = cpu_to_le32(ntd->dma_handle); 188 uhci->frame_cpu[td->frame] = ntd; 189 } 190 } else { 191 struct uhci_td *ptd; 192 193 ptd = list_entry(td->fl_list.prev, struct uhci_td, fl_list); 194 ptd->link = td->link; 195 } 196 197 list_del_init(&td->fl_list); 198 td->frame = -1; 199 } 200 201 static inline void uhci_remove_tds_from_frame(struct uhci_hcd *uhci, 202 unsigned int framenum) 203 { 204 struct uhci_td *ftd, *ltd; 205 206 framenum &= (UHCI_NUMFRAMES - 1); 207 208 ftd = uhci->frame_cpu[framenum]; 209 if (ftd) { 210 ltd = list_entry(ftd->fl_list.prev, struct uhci_td, fl_list); 211 uhci->frame[framenum] = ltd->link; 212 uhci->frame_cpu[framenum] = NULL; 213 214 while (!list_empty(&ftd->fl_list)) 215 list_del_init(ftd->fl_list.prev); 216 } 217 } 218 219 /* 220 * Remove all the TDs for an Isochronous URB from the frame list 221 */ 222 static void uhci_unlink_isochronous_tds(struct uhci_hcd *uhci, struct urb *urb) 223 { 224 struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; 225 struct uhci_td *td; 226 227 list_for_each_entry(td, &urbp->td_list, list) 228 uhci_remove_td_from_frame_list(uhci, td); 229 } 230 231 static struct uhci_qh *uhci_alloc_qh(struct uhci_hcd *uhci, 232 struct usb_device *udev, struct usb_host_endpoint *hep) 233 { 234 dma_addr_t dma_handle; 235 struct uhci_qh *qh; 236 237 qh = dma_pool_alloc(uhci->qh_pool, GFP_ATOMIC, &dma_handle); 238 if (!qh) 239 return NULL; 240 241 memset(qh, 0, sizeof(*qh)); 242 qh->dma_handle = dma_handle; 243 244 qh->element = UHCI_PTR_TERM; 245 qh->link = UHCI_PTR_TERM; 246 247 INIT_LIST_HEAD(&qh->queue); 248 INIT_LIST_HEAD(&qh->node); 249 250 if (udev) { /* Normal QH */ 251 qh->type = hep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; 252 if (qh->type != USB_ENDPOINT_XFER_ISOC) { 253 qh->dummy_td = uhci_alloc_td(uhci); 254 if (!qh->dummy_td) { 255 dma_pool_free(uhci->qh_pool, qh, dma_handle); 256 return NULL; 257 } 258 } 259 qh->state = QH_STATE_IDLE; 260 qh->hep = hep; 261 qh->udev = udev; 262 hep->hcpriv = qh; 263 264 if (qh->type == USB_ENDPOINT_XFER_INT || 265 qh->type == USB_ENDPOINT_XFER_ISOC) 266 qh->load = usb_calc_bus_time(udev->speed, 267 usb_endpoint_dir_in(&hep->desc), 268 qh->type == USB_ENDPOINT_XFER_ISOC, 269 le16_to_cpu(hep->desc.wMaxPacketSize)) 270 / 1000 + 1; 271 272 } else { /* Skeleton QH */ 273 qh->state = QH_STATE_ACTIVE; 274 qh->type = -1; 275 } 276 return qh; 277 } 278 279 static void uhci_free_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) 280 { 281 WARN_ON(qh->state != QH_STATE_IDLE && qh->udev); 282 if (!list_empty(&qh->queue)) 283 dev_warn(uhci_dev(uhci), "qh %p list not empty!\n", qh); 284 285 list_del(&qh->node); 286 if (qh->udev) { 287 qh->hep->hcpriv = NULL; 288 if (qh->dummy_td) 289 uhci_free_td(uhci, qh->dummy_td); 290 } 291 dma_pool_free(uhci->qh_pool, qh, qh->dma_handle); 292 } 293 294 /* 295 * When a queue is stopped and a dequeued URB is given back, adjust 296 * the previous TD link (if the URB isn't first on the queue) or 297 * save its toggle value (if it is first and is currently executing). 298 * 299 * Returns 0 if the URB should not yet be given back, 1 otherwise. 300 */ 301 static int uhci_cleanup_queue(struct uhci_hcd *uhci, struct uhci_qh *qh, 302 struct urb *urb) 303 { 304 struct urb_priv *urbp = urb->hcpriv; 305 struct uhci_td *td; 306 int ret = 1; 307 308 /* Isochronous pipes don't use toggles and their TD link pointers 309 * get adjusted during uhci_urb_dequeue(). But since their queues 310 * cannot truly be stopped, we have to watch out for dequeues 311 * occurring after the nominal unlink frame. */ 312 if (qh->type == USB_ENDPOINT_XFER_ISOC) { 313 ret = (uhci->frame_number + uhci->is_stopped != 314 qh->unlink_frame); 315 goto done; 316 } 317 318 /* If the URB isn't first on its queue, adjust the link pointer 319 * of the last TD in the previous URB. The toggle doesn't need 320 * to be saved since this URB can't be executing yet. */ 321 if (qh->queue.next != &urbp->node) { 322 struct urb_priv *purbp; 323 struct uhci_td *ptd; 324 325 purbp = list_entry(urbp->node.prev, struct urb_priv, node); 326 WARN_ON(list_empty(&purbp->td_list)); 327 ptd = list_entry(purbp->td_list.prev, struct uhci_td, 328 list); 329 td = list_entry(urbp->td_list.prev, struct uhci_td, 330 list); 331 ptd->link = td->link; 332 goto done; 333 } 334 335 /* If the QH element pointer is UHCI_PTR_TERM then then currently 336 * executing URB has already been unlinked, so this one isn't it. */ 337 if (qh_element(qh) == UHCI_PTR_TERM) 338 goto done; 339 qh->element = UHCI_PTR_TERM; 340 341 /* Control pipes don't have to worry about toggles */ 342 if (qh->type == USB_ENDPOINT_XFER_CONTROL) 343 goto done; 344 345 /* Save the next toggle value */ 346 WARN_ON(list_empty(&urbp->td_list)); 347 td = list_entry(urbp->td_list.next, struct uhci_td, list); 348 qh->needs_fixup = 1; 349 qh->initial_toggle = uhci_toggle(td_token(td)); 350 351 done: 352 return ret; 353 } 354 355 /* 356 * Fix up the data toggles for URBs in a queue, when one of them 357 * terminates early (short transfer, error, or dequeued). 358 */ 359 static void uhci_fixup_toggles(struct uhci_qh *qh, int skip_first) 360 { 361 struct urb_priv *urbp = NULL; 362 struct uhci_td *td; 363 unsigned int toggle = qh->initial_toggle; 364 unsigned int pipe; 365 366 /* Fixups for a short transfer start with the second URB in the 367 * queue (the short URB is the first). */ 368 if (skip_first) 369 urbp = list_entry(qh->queue.next, struct urb_priv, node); 370 371 /* When starting with the first URB, if the QH element pointer is 372 * still valid then we know the URB's toggles are okay. */ 373 else if (qh_element(qh) != UHCI_PTR_TERM) 374 toggle = 2; 375 376 /* Fix up the toggle for the URBs in the queue. Normally this 377 * loop won't run more than once: When an error or short transfer 378 * occurs, the queue usually gets emptied. */ 379 urbp = list_prepare_entry(urbp, &qh->queue, node); 380 list_for_each_entry_continue(urbp, &qh->queue, node) { 381 382 /* If the first TD has the right toggle value, we don't 383 * need to change any toggles in this URB */ 384 td = list_entry(urbp->td_list.next, struct uhci_td, list); 385 if (toggle > 1 || uhci_toggle(td_token(td)) == toggle) { 386 td = list_entry(urbp->td_list.prev, struct uhci_td, 387 list); 388 toggle = uhci_toggle(td_token(td)) ^ 1; 389 390 /* Otherwise all the toggles in the URB have to be switched */ 391 } else { 392 list_for_each_entry(td, &urbp->td_list, list) { 393 td->token ^= __constant_cpu_to_le32( 394 TD_TOKEN_TOGGLE); 395 toggle ^= 1; 396 } 397 } 398 } 399 400 wmb(); 401 pipe = list_entry(qh->queue.next, struct urb_priv, node)->urb->pipe; 402 usb_settoggle(qh->udev, usb_pipeendpoint(pipe), 403 usb_pipeout(pipe), toggle); 404 qh->needs_fixup = 0; 405 } 406 407 /* 408 * Put a QH on the schedule in both hardware and software 409 */ 410 static void uhci_activate_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) 411 { 412 struct uhci_qh *pqh; 413 414 WARN_ON(list_empty(&qh->queue)); 415 416 /* Set the element pointer if it isn't set already. 417 * This isn't needed for Isochronous queues, but it doesn't hurt. */ 418 if (qh_element(qh) == UHCI_PTR_TERM) { 419 struct urb_priv *urbp = list_entry(qh->queue.next, 420 struct urb_priv, node); 421 struct uhci_td *td = list_entry(urbp->td_list.next, 422 struct uhci_td, list); 423 424 qh->element = cpu_to_le32(td->dma_handle); 425 } 426 427 /* Treat the queue as if it has just advanced */ 428 qh->wait_expired = 0; 429 qh->advance_jiffies = jiffies; 430 431 if (qh->state == QH_STATE_ACTIVE) 432 return; 433 qh->state = QH_STATE_ACTIVE; 434 435 /* Move the QH from its old list to the end of the appropriate 436 * skeleton's list */ 437 if (qh == uhci->next_qh) 438 uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, 439 node); 440 list_move_tail(&qh->node, &qh->skel->node); 441 442 /* Link it into the schedule */ 443 pqh = list_entry(qh->node.prev, struct uhci_qh, node); 444 qh->link = pqh->link; 445 wmb(); 446 pqh->link = UHCI_PTR_QH | cpu_to_le32(qh->dma_handle); 447 } 448 449 /* 450 * Take a QH off the hardware schedule 451 */ 452 static void uhci_unlink_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) 453 { 454 struct uhci_qh *pqh; 455 456 if (qh->state == QH_STATE_UNLINKING) 457 return; 458 WARN_ON(qh->state != QH_STATE_ACTIVE || !qh->udev); 459 qh->state = QH_STATE_UNLINKING; 460 461 /* Unlink the QH from the schedule and record when we did it */ 462 pqh = list_entry(qh->node.prev, struct uhci_qh, node); 463 pqh->link = qh->link; 464 mb(); 465 466 uhci_get_current_frame_number(uhci); 467 qh->unlink_frame = uhci->frame_number; 468 469 /* Force an interrupt so we know when the QH is fully unlinked */ 470 if (list_empty(&uhci->skel_unlink_qh->node)) 471 uhci_set_next_interrupt(uhci); 472 473 /* Move the QH from its old list to the end of the unlinking list */ 474 if (qh == uhci->next_qh) 475 uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, 476 node); 477 list_move_tail(&qh->node, &uhci->skel_unlink_qh->node); 478 } 479 480 /* 481 * When we and the controller are through with a QH, it becomes IDLE. 482 * This happens when a QH has been off the schedule (on the unlinking 483 * list) for more than one frame, or when an error occurs while adding 484 * the first URB onto a new QH. 485 */ 486 static void uhci_make_qh_idle(struct uhci_hcd *uhci, struct uhci_qh *qh) 487 { 488 WARN_ON(qh->state == QH_STATE_ACTIVE); 489 490 if (qh == uhci->next_qh) 491 uhci->next_qh = list_entry(qh->node.next, struct uhci_qh, 492 node); 493 list_move(&qh->node, &uhci->idle_qh_list); 494 qh->state = QH_STATE_IDLE; 495 496 /* Now that the QH is idle, its post_td isn't being used */ 497 if (qh->post_td) { 498 uhci_free_td(uhci, qh->post_td); 499 qh->post_td = NULL; 500 } 501 502 /* If anyone is waiting for a QH to become idle, wake them up */ 503 if (uhci->num_waiting) 504 wake_up_all(&uhci->waitqh); 505 } 506 507 /* 508 * Find the highest existing bandwidth load for a given phase and period. 509 */ 510 static int uhci_highest_load(struct uhci_hcd *uhci, int phase, int period) 511 { 512 int highest_load = uhci->load[phase]; 513 514 for (phase += period; phase < MAX_PHASE; phase += period) 515 highest_load = max_t(int, highest_load, uhci->load[phase]); 516 return highest_load; 517 } 518 519 /* 520 * Set qh->phase to the optimal phase for a periodic transfer and 521 * check whether the bandwidth requirement is acceptable. 522 */ 523 static int uhci_check_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) 524 { 525 int minimax_load; 526 527 /* Find the optimal phase (unless it is already set) and get 528 * its load value. */ 529 if (qh->phase >= 0) 530 minimax_load = uhci_highest_load(uhci, qh->phase, qh->period); 531 else { 532 int phase, load; 533 int max_phase = min_t(int, MAX_PHASE, qh->period); 534 535 qh->phase = 0; 536 minimax_load = uhci_highest_load(uhci, qh->phase, qh->period); 537 for (phase = 1; phase < max_phase; ++phase) { 538 load = uhci_highest_load(uhci, phase, qh->period); 539 if (load < minimax_load) { 540 minimax_load = load; 541 qh->phase = phase; 542 } 543 } 544 } 545 546 /* Maximum allowable periodic bandwidth is 90%, or 900 us per frame */ 547 if (minimax_load + qh->load > 900) { 548 dev_dbg(uhci_dev(uhci), "bandwidth allocation failed: " 549 "period %d, phase %d, %d + %d us\n", 550 qh->period, qh->phase, minimax_load, qh->load); 551 return -ENOSPC; 552 } 553 return 0; 554 } 555 556 /* 557 * Reserve a periodic QH's bandwidth in the schedule 558 */ 559 static void uhci_reserve_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) 560 { 561 int i; 562 int load = qh->load; 563 char *p = "??"; 564 565 for (i = qh->phase; i < MAX_PHASE; i += qh->period) { 566 uhci->load[i] += load; 567 uhci->total_load += load; 568 } 569 uhci_to_hcd(uhci)->self.bandwidth_allocated = 570 uhci->total_load / MAX_PHASE; 571 switch (qh->type) { 572 case USB_ENDPOINT_XFER_INT: 573 ++uhci_to_hcd(uhci)->self.bandwidth_int_reqs; 574 p = "INT"; 575 break; 576 case USB_ENDPOINT_XFER_ISOC: 577 ++uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs; 578 p = "ISO"; 579 break; 580 } 581 qh->bandwidth_reserved = 1; 582 dev_dbg(uhci_dev(uhci), 583 "%s dev %d ep%02x-%s, period %d, phase %d, %d us\n", 584 "reserve", qh->udev->devnum, 585 qh->hep->desc.bEndpointAddress, p, 586 qh->period, qh->phase, load); 587 } 588 589 /* 590 * Release a periodic QH's bandwidth reservation 591 */ 592 static void uhci_release_bandwidth(struct uhci_hcd *uhci, struct uhci_qh *qh) 593 { 594 int i; 595 int load = qh->load; 596 char *p = "??"; 597 598 for (i = qh->phase; i < MAX_PHASE; i += qh->period) { 599 uhci->load[i] -= load; 600 uhci->total_load -= load; 601 } 602 uhci_to_hcd(uhci)->self.bandwidth_allocated = 603 uhci->total_load / MAX_PHASE; 604 switch (qh->type) { 605 case USB_ENDPOINT_XFER_INT: 606 --uhci_to_hcd(uhci)->self.bandwidth_int_reqs; 607 p = "INT"; 608 break; 609 case USB_ENDPOINT_XFER_ISOC: 610 --uhci_to_hcd(uhci)->self.bandwidth_isoc_reqs; 611 p = "ISO"; 612 break; 613 } 614 qh->bandwidth_reserved = 0; 615 dev_dbg(uhci_dev(uhci), 616 "%s dev %d ep%02x-%s, period %d, phase %d, %d us\n", 617 "release", qh->udev->devnum, 618 qh->hep->desc.bEndpointAddress, p, 619 qh->period, qh->phase, load); 620 } 621 622 static inline struct urb_priv *uhci_alloc_urb_priv(struct uhci_hcd *uhci, 623 struct urb *urb) 624 { 625 struct urb_priv *urbp; 626 627 urbp = kmem_cache_alloc(uhci_up_cachep, GFP_ATOMIC); 628 if (!urbp) 629 return NULL; 630 631 memset((void *)urbp, 0, sizeof(*urbp)); 632 633 urbp->urb = urb; 634 urb->hcpriv = urbp; 635 636 INIT_LIST_HEAD(&urbp->node); 637 INIT_LIST_HEAD(&urbp->td_list); 638 639 return urbp; 640 } 641 642 static void uhci_free_urb_priv(struct uhci_hcd *uhci, 643 struct urb_priv *urbp) 644 { 645 struct uhci_td *td, *tmp; 646 647 if (!list_empty(&urbp->node)) 648 dev_warn(uhci_dev(uhci), "urb %p still on QH's list!\n", 649 urbp->urb); 650 651 list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { 652 uhci_remove_td_from_urbp(td); 653 uhci_free_td(uhci, td); 654 } 655 656 urbp->urb->hcpriv = NULL; 657 kmem_cache_free(uhci_up_cachep, urbp); 658 } 659 660 /* 661 * Map status to standard result codes 662 * 663 * <status> is (td_status(td) & 0xF60000), a.k.a. 664 * uhci_status_bits(td_status(td)). 665 * Note: <status> does not include the TD_CTRL_NAK bit. 666 * <dir_out> is True for output TDs and False for input TDs. 667 */ 668 static int uhci_map_status(int status, int dir_out) 669 { 670 if (!status) 671 return 0; 672 if (status & TD_CTRL_BITSTUFF) /* Bitstuff error */ 673 return -EPROTO; 674 if (status & TD_CTRL_CRCTIMEO) { /* CRC/Timeout */ 675 if (dir_out) 676 return -EPROTO; 677 else 678 return -EILSEQ; 679 } 680 if (status & TD_CTRL_BABBLE) /* Babble */ 681 return -EOVERFLOW; 682 if (status & TD_CTRL_DBUFERR) /* Buffer error */ 683 return -ENOSR; 684 if (status & TD_CTRL_STALLED) /* Stalled */ 685 return -EPIPE; 686 return 0; 687 } 688 689 /* 690 * Control transfers 691 */ 692 static int uhci_submit_control(struct uhci_hcd *uhci, struct urb *urb, 693 struct uhci_qh *qh) 694 { 695 struct uhci_td *td; 696 unsigned long destination, status; 697 int maxsze = le16_to_cpu(qh->hep->desc.wMaxPacketSize); 698 int len = urb->transfer_buffer_length; 699 dma_addr_t data = urb->transfer_dma; 700 __le32 *plink; 701 struct urb_priv *urbp = urb->hcpriv; 702 703 /* The "pipe" thing contains the destination in bits 8--18 */ 704 destination = (urb->pipe & PIPE_DEVEP_MASK) | USB_PID_SETUP; 705 706 /* 3 errors, dummy TD remains inactive */ 707 status = uhci_maxerr(3); 708 if (urb->dev->speed == USB_SPEED_LOW) 709 status |= TD_CTRL_LS; 710 711 /* 712 * Build the TD for the control request setup packet 713 */ 714 td = qh->dummy_td; 715 uhci_add_td_to_urbp(td, urbp); 716 uhci_fill_td(td, status, destination | uhci_explen(8), 717 urb->setup_dma); 718 plink = &td->link; 719 status |= TD_CTRL_ACTIVE; 720 721 /* 722 * If direction is "send", change the packet ID from SETUP (0x2D) 723 * to OUT (0xE1). Else change it from SETUP to IN (0x69) and 724 * set Short Packet Detect (SPD) for all data packets. 725 */ 726 if (usb_pipeout(urb->pipe)) 727 destination ^= (USB_PID_SETUP ^ USB_PID_OUT); 728 else { 729 destination ^= (USB_PID_SETUP ^ USB_PID_IN); 730 status |= TD_CTRL_SPD; 731 } 732 733 /* 734 * Build the DATA TDs 735 */ 736 while (len > 0) { 737 int pktsze = min(len, maxsze); 738 739 td = uhci_alloc_td(uhci); 740 if (!td) 741 goto nomem; 742 *plink = cpu_to_le32(td->dma_handle); 743 744 /* Alternate Data0/1 (start with Data1) */ 745 destination ^= TD_TOKEN_TOGGLE; 746 747 uhci_add_td_to_urbp(td, urbp); 748 uhci_fill_td(td, status, destination | uhci_explen(pktsze), 749 data); 750 plink = &td->link; 751 752 data += pktsze; 753 len -= pktsze; 754 } 755 756 /* 757 * Build the final TD for control status 758 */ 759 td = uhci_alloc_td(uhci); 760 if (!td) 761 goto nomem; 762 *plink = cpu_to_le32(td->dma_handle); 763 764 /* 765 * It's IN if the pipe is an output pipe or we're not expecting 766 * data back. 767 */ 768 destination &= ~TD_TOKEN_PID_MASK; 769 if (usb_pipeout(urb->pipe) || !urb->transfer_buffer_length) 770 destination |= USB_PID_IN; 771 else 772 destination |= USB_PID_OUT; 773 774 destination |= TD_TOKEN_TOGGLE; /* End in Data1 */ 775 776 status &= ~TD_CTRL_SPD; 777 778 uhci_add_td_to_urbp(td, urbp); 779 uhci_fill_td(td, status | TD_CTRL_IOC, 780 destination | uhci_explen(0), 0); 781 plink = &td->link; 782 783 /* 784 * Build the new dummy TD and activate the old one 785 */ 786 td = uhci_alloc_td(uhci); 787 if (!td) 788 goto nomem; 789 *plink = cpu_to_le32(td->dma_handle); 790 791 uhci_fill_td(td, 0, USB_PID_OUT | uhci_explen(0), 0); 792 wmb(); 793 qh->dummy_td->status |= __constant_cpu_to_le32(TD_CTRL_ACTIVE); 794 qh->dummy_td = td; 795 796 /* Low-speed transfers get a different queue, and won't hog the bus. 797 * Also, some devices enumerate better without FSBR; the easiest way 798 * to do that is to put URBs on the low-speed queue while the device 799 * isn't in the CONFIGURED state. */ 800 if (urb->dev->speed == USB_SPEED_LOW || 801 urb->dev->state != USB_STATE_CONFIGURED) 802 qh->skel = uhci->skel_ls_control_qh; 803 else { 804 qh->skel = uhci->skel_fs_control_qh; 805 uhci_add_fsbr(uhci, urb); 806 } 807 808 urb->actual_length = -8; /* Account for the SETUP packet */ 809 return 0; 810 811 nomem: 812 /* Remove the dummy TD from the td_list so it doesn't get freed */ 813 uhci_remove_td_from_urbp(qh->dummy_td); 814 return -ENOMEM; 815 } 816 817 /* 818 * Common submit for bulk and interrupt 819 */ 820 static int uhci_submit_common(struct uhci_hcd *uhci, struct urb *urb, 821 struct uhci_qh *qh) 822 { 823 struct uhci_td *td; 824 unsigned long destination, status; 825 int maxsze = le16_to_cpu(qh->hep->desc.wMaxPacketSize); 826 int len = urb->transfer_buffer_length; 827 dma_addr_t data = urb->transfer_dma; 828 __le32 *plink; 829 struct urb_priv *urbp = urb->hcpriv; 830 unsigned int toggle; 831 832 if (len < 0) 833 return -EINVAL; 834 835 /* The "pipe" thing contains the destination in bits 8--18 */ 836 destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe); 837 toggle = usb_gettoggle(urb->dev, usb_pipeendpoint(urb->pipe), 838 usb_pipeout(urb->pipe)); 839 840 /* 3 errors, dummy TD remains inactive */ 841 status = uhci_maxerr(3); 842 if (urb->dev->speed == USB_SPEED_LOW) 843 status |= TD_CTRL_LS; 844 if (usb_pipein(urb->pipe)) 845 status |= TD_CTRL_SPD; 846 847 /* 848 * Build the DATA TDs 849 */ 850 plink = NULL; 851 td = qh->dummy_td; 852 do { /* Allow zero length packets */ 853 int pktsze = maxsze; 854 855 if (len <= pktsze) { /* The last packet */ 856 pktsze = len; 857 if (!(urb->transfer_flags & URB_SHORT_NOT_OK)) 858 status &= ~TD_CTRL_SPD; 859 } 860 861 if (plink) { 862 td = uhci_alloc_td(uhci); 863 if (!td) 864 goto nomem; 865 *plink = cpu_to_le32(td->dma_handle); 866 } 867 uhci_add_td_to_urbp(td, urbp); 868 uhci_fill_td(td, status, 869 destination | uhci_explen(pktsze) | 870 (toggle << TD_TOKEN_TOGGLE_SHIFT), 871 data); 872 plink = &td->link; 873 status |= TD_CTRL_ACTIVE; 874 875 data += pktsze; 876 len -= maxsze; 877 toggle ^= 1; 878 } while (len > 0); 879 880 /* 881 * URB_ZERO_PACKET means adding a 0-length packet, if direction 882 * is OUT and the transfer_length was an exact multiple of maxsze, 883 * hence (len = transfer_length - N * maxsze) == 0 884 * however, if transfer_length == 0, the zero packet was already 885 * prepared above. 886 */ 887 if ((urb->transfer_flags & URB_ZERO_PACKET) && 888 usb_pipeout(urb->pipe) && len == 0 && 889 urb->transfer_buffer_length > 0) { 890 td = uhci_alloc_td(uhci); 891 if (!td) 892 goto nomem; 893 *plink = cpu_to_le32(td->dma_handle); 894 895 uhci_add_td_to_urbp(td, urbp); 896 uhci_fill_td(td, status, 897 destination | uhci_explen(0) | 898 (toggle << TD_TOKEN_TOGGLE_SHIFT), 899 data); 900 plink = &td->link; 901 902 toggle ^= 1; 903 } 904 905 /* Set the interrupt-on-completion flag on the last packet. 906 * A more-or-less typical 4 KB URB (= size of one memory page) 907 * will require about 3 ms to transfer; that's a little on the 908 * fast side but not enough to justify delaying an interrupt 909 * more than 2 or 3 URBs, so we will ignore the URB_NO_INTERRUPT 910 * flag setting. */ 911 td->status |= __constant_cpu_to_le32(TD_CTRL_IOC); 912 913 /* 914 * Build the new dummy TD and activate the old one 915 */ 916 td = uhci_alloc_td(uhci); 917 if (!td) 918 goto nomem; 919 *plink = cpu_to_le32(td->dma_handle); 920 921 uhci_fill_td(td, 0, USB_PID_OUT | uhci_explen(0), 0); 922 wmb(); 923 qh->dummy_td->status |= __constant_cpu_to_le32(TD_CTRL_ACTIVE); 924 qh->dummy_td = td; 925 926 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), 927 usb_pipeout(urb->pipe), toggle); 928 return 0; 929 930 nomem: 931 /* Remove the dummy TD from the td_list so it doesn't get freed */ 932 uhci_remove_td_from_urbp(qh->dummy_td); 933 return -ENOMEM; 934 } 935 936 static inline int uhci_submit_bulk(struct uhci_hcd *uhci, struct urb *urb, 937 struct uhci_qh *qh) 938 { 939 int ret; 940 941 /* Can't have low-speed bulk transfers */ 942 if (urb->dev->speed == USB_SPEED_LOW) 943 return -EINVAL; 944 945 qh->skel = uhci->skel_bulk_qh; 946 ret = uhci_submit_common(uhci, urb, qh); 947 if (ret == 0) 948 uhci_add_fsbr(uhci, urb); 949 return ret; 950 } 951 952 static int uhci_submit_interrupt(struct uhci_hcd *uhci, struct urb *urb, 953 struct uhci_qh *qh) 954 { 955 int ret; 956 957 /* USB 1.1 interrupt transfers only involve one packet per interval. 958 * Drivers can submit URBs of any length, but longer ones will need 959 * multiple intervals to complete. 960 */ 961 962 if (!qh->bandwidth_reserved) { 963 int exponent; 964 965 /* Figure out which power-of-two queue to use */ 966 for (exponent = 7; exponent >= 0; --exponent) { 967 if ((1 << exponent) <= urb->interval) 968 break; 969 } 970 if (exponent < 0) 971 return -EINVAL; 972 qh->period = 1 << exponent; 973 qh->skel = uhci->skelqh[UHCI_SKEL_INDEX(exponent)]; 974 975 /* For now, interrupt phase is fixed by the layout 976 * of the QH lists. */ 977 qh->phase = (qh->period / 2) & (MAX_PHASE - 1); 978 ret = uhci_check_bandwidth(uhci, qh); 979 if (ret) 980 return ret; 981 } else if (qh->period > urb->interval) 982 return -EINVAL; /* Can't decrease the period */ 983 984 ret = uhci_submit_common(uhci, urb, qh); 985 if (ret == 0) { 986 urb->interval = qh->period; 987 if (!qh->bandwidth_reserved) 988 uhci_reserve_bandwidth(uhci, qh); 989 } 990 return ret; 991 } 992 993 /* 994 * Fix up the data structures following a short transfer 995 */ 996 static int uhci_fixup_short_transfer(struct uhci_hcd *uhci, 997 struct uhci_qh *qh, struct urb_priv *urbp) 998 { 999 struct uhci_td *td; 1000 struct list_head *tmp; 1001 int ret; 1002 1003 td = list_entry(urbp->td_list.prev, struct uhci_td, list); 1004 if (qh->type == USB_ENDPOINT_XFER_CONTROL) { 1005 1006 /* When a control transfer is short, we have to restart 1007 * the queue at the status stage transaction, which is 1008 * the last TD. */ 1009 WARN_ON(list_empty(&urbp->td_list)); 1010 qh->element = cpu_to_le32(td->dma_handle); 1011 tmp = td->list.prev; 1012 ret = -EINPROGRESS; 1013 1014 } else { 1015 1016 /* When a bulk/interrupt transfer is short, we have to 1017 * fix up the toggles of the following URBs on the queue 1018 * before restarting the queue at the next URB. */ 1019 qh->initial_toggle = uhci_toggle(td_token(qh->post_td)) ^ 1; 1020 uhci_fixup_toggles(qh, 1); 1021 1022 if (list_empty(&urbp->td_list)) 1023 td = qh->post_td; 1024 qh->element = td->link; 1025 tmp = urbp->td_list.prev; 1026 ret = 0; 1027 } 1028 1029 /* Remove all the TDs we skipped over, from tmp back to the start */ 1030 while (tmp != &urbp->td_list) { 1031 td = list_entry(tmp, struct uhci_td, list); 1032 tmp = tmp->prev; 1033 1034 uhci_remove_td_from_urbp(td); 1035 uhci_free_td(uhci, td); 1036 } 1037 return ret; 1038 } 1039 1040 /* 1041 * Common result for control, bulk, and interrupt 1042 */ 1043 static int uhci_result_common(struct uhci_hcd *uhci, struct urb *urb) 1044 { 1045 struct urb_priv *urbp = urb->hcpriv; 1046 struct uhci_qh *qh = urbp->qh; 1047 struct uhci_td *td, *tmp; 1048 unsigned status; 1049 int ret = 0; 1050 1051 list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { 1052 unsigned int ctrlstat; 1053 int len; 1054 1055 ctrlstat = td_status(td); 1056 status = uhci_status_bits(ctrlstat); 1057 if (status & TD_CTRL_ACTIVE) 1058 return -EINPROGRESS; 1059 1060 len = uhci_actual_length(ctrlstat); 1061 urb->actual_length += len; 1062 1063 if (status) { 1064 ret = uhci_map_status(status, 1065 uhci_packetout(td_token(td))); 1066 if ((debug == 1 && ret != -EPIPE) || debug > 1) { 1067 /* Some debugging code */ 1068 dev_dbg(&urb->dev->dev, 1069 "%s: failed with status %x\n", 1070 __FUNCTION__, status); 1071 1072 if (debug > 1 && errbuf) { 1073 /* Print the chain for debugging */ 1074 uhci_show_qh(urbp->qh, errbuf, 1075 ERRBUF_LEN, 0); 1076 lprintk(errbuf); 1077 } 1078 } 1079 1080 } else if (len < uhci_expected_length(td_token(td))) { 1081 1082 /* We received a short packet */ 1083 if (urb->transfer_flags & URB_SHORT_NOT_OK) 1084 ret = -EREMOTEIO; 1085 1086 /* Fixup needed only if this isn't the URB's last TD */ 1087 else if (&td->list != urbp->td_list.prev) 1088 ret = 1; 1089 } 1090 1091 uhci_remove_td_from_urbp(td); 1092 if (qh->post_td) 1093 uhci_free_td(uhci, qh->post_td); 1094 qh->post_td = td; 1095 1096 if (ret != 0) 1097 goto err; 1098 } 1099 return ret; 1100 1101 err: 1102 if (ret < 0) { 1103 /* In case a control transfer gets an error 1104 * during the setup stage */ 1105 urb->actual_length = max(urb->actual_length, 0); 1106 1107 /* Note that the queue has stopped and save 1108 * the next toggle value */ 1109 qh->element = UHCI_PTR_TERM; 1110 qh->is_stopped = 1; 1111 qh->needs_fixup = (qh->type != USB_ENDPOINT_XFER_CONTROL); 1112 qh->initial_toggle = uhci_toggle(td_token(td)) ^ 1113 (ret == -EREMOTEIO); 1114 1115 } else /* Short packet received */ 1116 ret = uhci_fixup_short_transfer(uhci, qh, urbp); 1117 return ret; 1118 } 1119 1120 /* 1121 * Isochronous transfers 1122 */ 1123 static int uhci_submit_isochronous(struct uhci_hcd *uhci, struct urb *urb, 1124 struct uhci_qh *qh) 1125 { 1126 struct uhci_td *td = NULL; /* Since urb->number_of_packets > 0 */ 1127 int i, frame; 1128 unsigned long destination, status; 1129 struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; 1130 1131 /* Values must not be too big (could overflow below) */ 1132 if (urb->interval >= UHCI_NUMFRAMES || 1133 urb->number_of_packets >= UHCI_NUMFRAMES) 1134 return -EFBIG; 1135 1136 /* Check the period and figure out the starting frame number */ 1137 if (!qh->bandwidth_reserved) { 1138 qh->period = urb->interval; 1139 if (urb->transfer_flags & URB_ISO_ASAP) { 1140 qh->phase = -1; /* Find the best phase */ 1141 i = uhci_check_bandwidth(uhci, qh); 1142 if (i) 1143 return i; 1144 1145 /* Allow a little time to allocate the TDs */ 1146 uhci_get_current_frame_number(uhci); 1147 frame = uhci->frame_number + 10; 1148 1149 /* Move forward to the first frame having the 1150 * correct phase */ 1151 urb->start_frame = frame + ((qh->phase - frame) & 1152 (qh->period - 1)); 1153 } else { 1154 i = urb->start_frame - uhci->last_iso_frame; 1155 if (i <= 0 || i >= UHCI_NUMFRAMES) 1156 return -EINVAL; 1157 qh->phase = urb->start_frame & (qh->period - 1); 1158 i = uhci_check_bandwidth(uhci, qh); 1159 if (i) 1160 return i; 1161 } 1162 1163 } else if (qh->period != urb->interval) { 1164 return -EINVAL; /* Can't change the period */ 1165 1166 } else { /* Pick up where the last URB leaves off */ 1167 if (list_empty(&qh->queue)) { 1168 frame = qh->iso_frame; 1169 } else { 1170 struct urb *lurb; 1171 1172 lurb = list_entry(qh->queue.prev, 1173 struct urb_priv, node)->urb; 1174 frame = lurb->start_frame + 1175 lurb->number_of_packets * 1176 lurb->interval; 1177 } 1178 if (urb->transfer_flags & URB_ISO_ASAP) 1179 urb->start_frame = frame; 1180 else if (urb->start_frame != frame) 1181 return -EINVAL; 1182 } 1183 1184 /* Make sure we won't have to go too far into the future */ 1185 if (uhci_frame_before_eq(uhci->last_iso_frame + UHCI_NUMFRAMES, 1186 urb->start_frame + urb->number_of_packets * 1187 urb->interval)) 1188 return -EFBIG; 1189 1190 status = TD_CTRL_ACTIVE | TD_CTRL_IOS; 1191 destination = (urb->pipe & PIPE_DEVEP_MASK) | usb_packetid(urb->pipe); 1192 1193 for (i = 0; i < urb->number_of_packets; i++) { 1194 td = uhci_alloc_td(uhci); 1195 if (!td) 1196 return -ENOMEM; 1197 1198 uhci_add_td_to_urbp(td, urbp); 1199 uhci_fill_td(td, status, destination | 1200 uhci_explen(urb->iso_frame_desc[i].length), 1201 urb->transfer_dma + 1202 urb->iso_frame_desc[i].offset); 1203 } 1204 1205 /* Set the interrupt-on-completion flag on the last packet. */ 1206 td->status |= __constant_cpu_to_le32(TD_CTRL_IOC); 1207 1208 /* Add the TDs to the frame list */ 1209 frame = urb->start_frame; 1210 list_for_each_entry(td, &urbp->td_list, list) { 1211 uhci_insert_td_in_frame_list(uhci, td, frame); 1212 frame += qh->period; 1213 } 1214 1215 if (list_empty(&qh->queue)) { 1216 qh->iso_packet_desc = &urb->iso_frame_desc[0]; 1217 qh->iso_frame = urb->start_frame; 1218 qh->iso_status = 0; 1219 } 1220 1221 qh->skel = uhci->skel_iso_qh; 1222 if (!qh->bandwidth_reserved) 1223 uhci_reserve_bandwidth(uhci, qh); 1224 return 0; 1225 } 1226 1227 static int uhci_result_isochronous(struct uhci_hcd *uhci, struct urb *urb) 1228 { 1229 struct uhci_td *td, *tmp; 1230 struct urb_priv *urbp = urb->hcpriv; 1231 struct uhci_qh *qh = urbp->qh; 1232 1233 list_for_each_entry_safe(td, tmp, &urbp->td_list, list) { 1234 unsigned int ctrlstat; 1235 int status; 1236 int actlength; 1237 1238 if (uhci_frame_before_eq(uhci->cur_iso_frame, qh->iso_frame)) 1239 return -EINPROGRESS; 1240 1241 uhci_remove_tds_from_frame(uhci, qh->iso_frame); 1242 1243 ctrlstat = td_status(td); 1244 if (ctrlstat & TD_CTRL_ACTIVE) { 1245 status = -EXDEV; /* TD was added too late? */ 1246 } else { 1247 status = uhci_map_status(uhci_status_bits(ctrlstat), 1248 usb_pipeout(urb->pipe)); 1249 actlength = uhci_actual_length(ctrlstat); 1250 1251 urb->actual_length += actlength; 1252 qh->iso_packet_desc->actual_length = actlength; 1253 qh->iso_packet_desc->status = status; 1254 } 1255 1256 if (status) { 1257 urb->error_count++; 1258 qh->iso_status = status; 1259 } 1260 1261 uhci_remove_td_from_urbp(td); 1262 uhci_free_td(uhci, td); 1263 qh->iso_frame += qh->period; 1264 ++qh->iso_packet_desc; 1265 } 1266 return qh->iso_status; 1267 } 1268 1269 static int uhci_urb_enqueue(struct usb_hcd *hcd, 1270 struct usb_host_endpoint *hep, 1271 struct urb *urb, gfp_t mem_flags) 1272 { 1273 int ret; 1274 struct uhci_hcd *uhci = hcd_to_uhci(hcd); 1275 unsigned long flags; 1276 struct urb_priv *urbp; 1277 struct uhci_qh *qh; 1278 1279 spin_lock_irqsave(&uhci->lock, flags); 1280 1281 ret = urb->status; 1282 if (ret != -EINPROGRESS) /* URB already unlinked! */ 1283 goto done; 1284 1285 ret = -ENOMEM; 1286 urbp = uhci_alloc_urb_priv(uhci, urb); 1287 if (!urbp) 1288 goto done; 1289 1290 if (hep->hcpriv) 1291 qh = (struct uhci_qh *) hep->hcpriv; 1292 else { 1293 qh = uhci_alloc_qh(uhci, urb->dev, hep); 1294 if (!qh) 1295 goto err_no_qh; 1296 } 1297 urbp->qh = qh; 1298 1299 switch (qh->type) { 1300 case USB_ENDPOINT_XFER_CONTROL: 1301 ret = uhci_submit_control(uhci, urb, qh); 1302 break; 1303 case USB_ENDPOINT_XFER_BULK: 1304 ret = uhci_submit_bulk(uhci, urb, qh); 1305 break; 1306 case USB_ENDPOINT_XFER_INT: 1307 ret = uhci_submit_interrupt(uhci, urb, qh); 1308 break; 1309 case USB_ENDPOINT_XFER_ISOC: 1310 urb->error_count = 0; 1311 ret = uhci_submit_isochronous(uhci, urb, qh); 1312 break; 1313 } 1314 if (ret != 0) 1315 goto err_submit_failed; 1316 1317 /* Add this URB to the QH */ 1318 urbp->qh = qh; 1319 list_add_tail(&urbp->node, &qh->queue); 1320 1321 /* If the new URB is the first and only one on this QH then either 1322 * the QH is new and idle or else it's unlinked and waiting to 1323 * become idle, so we can activate it right away. But only if the 1324 * queue isn't stopped. */ 1325 if (qh->queue.next == &urbp->node && !qh->is_stopped) { 1326 uhci_activate_qh(uhci, qh); 1327 uhci_urbp_wants_fsbr(uhci, urbp); 1328 } 1329 goto done; 1330 1331 err_submit_failed: 1332 if (qh->state == QH_STATE_IDLE) 1333 uhci_make_qh_idle(uhci, qh); /* Reclaim unused QH */ 1334 1335 err_no_qh: 1336 uhci_free_urb_priv(uhci, urbp); 1337 1338 done: 1339 spin_unlock_irqrestore(&uhci->lock, flags); 1340 return ret; 1341 } 1342 1343 static int uhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb) 1344 { 1345 struct uhci_hcd *uhci = hcd_to_uhci(hcd); 1346 unsigned long flags; 1347 struct urb_priv *urbp; 1348 struct uhci_qh *qh; 1349 1350 spin_lock_irqsave(&uhci->lock, flags); 1351 urbp = urb->hcpriv; 1352 if (!urbp) /* URB was never linked! */ 1353 goto done; 1354 qh = urbp->qh; 1355 1356 /* Remove Isochronous TDs from the frame list ASAP */ 1357 if (qh->type == USB_ENDPOINT_XFER_ISOC) { 1358 uhci_unlink_isochronous_tds(uhci, urb); 1359 mb(); 1360 1361 /* If the URB has already started, update the QH unlink time */ 1362 uhci_get_current_frame_number(uhci); 1363 if (uhci_frame_before_eq(urb->start_frame, uhci->frame_number)) 1364 qh->unlink_frame = uhci->frame_number; 1365 } 1366 1367 uhci_unlink_qh(uhci, qh); 1368 1369 done: 1370 spin_unlock_irqrestore(&uhci->lock, flags); 1371 return 0; 1372 } 1373 1374 /* 1375 * Finish unlinking an URB and give it back 1376 */ 1377 static void uhci_giveback_urb(struct uhci_hcd *uhci, struct uhci_qh *qh, 1378 struct urb *urb) 1379 __releases(uhci->lock) 1380 __acquires(uhci->lock) 1381 { 1382 struct urb_priv *urbp = (struct urb_priv *) urb->hcpriv; 1383 1384 /* When giving back the first URB in an Isochronous queue, 1385 * reinitialize the QH's iso-related members for the next URB. */ 1386 if (qh->type == USB_ENDPOINT_XFER_ISOC && 1387 urbp->node.prev == &qh->queue && 1388 urbp->node.next != &qh->queue) { 1389 struct urb *nurb = list_entry(urbp->node.next, 1390 struct urb_priv, node)->urb; 1391 1392 qh->iso_packet_desc = &nurb->iso_frame_desc[0]; 1393 qh->iso_frame = nurb->start_frame; 1394 qh->iso_status = 0; 1395 } 1396 1397 /* Take the URB off the QH's queue. If the queue is now empty, 1398 * this is a perfect time for a toggle fixup. */ 1399 list_del_init(&urbp->node); 1400 if (list_empty(&qh->queue) && qh->needs_fixup) { 1401 usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), 1402 usb_pipeout(urb->pipe), qh->initial_toggle); 1403 qh->needs_fixup = 0; 1404 } 1405 1406 uhci_free_urb_priv(uhci, urbp); 1407 1408 spin_unlock(&uhci->lock); 1409 usb_hcd_giveback_urb(uhci_to_hcd(uhci), urb); 1410 spin_lock(&uhci->lock); 1411 1412 /* If the queue is now empty, we can unlink the QH and give up its 1413 * reserved bandwidth. */ 1414 if (list_empty(&qh->queue)) { 1415 uhci_unlink_qh(uhci, qh); 1416 if (qh->bandwidth_reserved) 1417 uhci_release_bandwidth(uhci, qh); 1418 } 1419 } 1420 1421 /* 1422 * Scan the URBs in a QH's queue 1423 */ 1424 #define QH_FINISHED_UNLINKING(qh) \ 1425 (qh->state == QH_STATE_UNLINKING && \ 1426 uhci->frame_number + uhci->is_stopped != qh->unlink_frame) 1427 1428 static void uhci_scan_qh(struct uhci_hcd *uhci, struct uhci_qh *qh) 1429 { 1430 struct urb_priv *urbp; 1431 struct urb *urb; 1432 int status; 1433 1434 while (!list_empty(&qh->queue)) { 1435 urbp = list_entry(qh->queue.next, struct urb_priv, node); 1436 urb = urbp->urb; 1437 1438 if (qh->type == USB_ENDPOINT_XFER_ISOC) 1439 status = uhci_result_isochronous(uhci, urb); 1440 else 1441 status = uhci_result_common(uhci, urb); 1442 if (status == -EINPROGRESS) 1443 break; 1444 1445 spin_lock(&urb->lock); 1446 if (urb->status == -EINPROGRESS) /* Not dequeued */ 1447 urb->status = status; 1448 else 1449 status = ECONNRESET; /* Not -ECONNRESET */ 1450 spin_unlock(&urb->lock); 1451 1452 /* Dequeued but completed URBs can't be given back unless 1453 * the QH is stopped or has finished unlinking. */ 1454 if (status == ECONNRESET) { 1455 if (QH_FINISHED_UNLINKING(qh)) 1456 qh->is_stopped = 1; 1457 else if (!qh->is_stopped) 1458 return; 1459 } 1460 1461 uhci_giveback_urb(uhci, qh, urb); 1462 if (status < 0 && qh->type != USB_ENDPOINT_XFER_ISOC) 1463 break; 1464 } 1465 1466 /* If the QH is neither stopped nor finished unlinking (normal case), 1467 * our work here is done. */ 1468 if (QH_FINISHED_UNLINKING(qh)) 1469 qh->is_stopped = 1; 1470 else if (!qh->is_stopped) 1471 return; 1472 1473 /* Otherwise give back each of the dequeued URBs */ 1474 restart: 1475 list_for_each_entry(urbp, &qh->queue, node) { 1476 urb = urbp->urb; 1477 if (urb->status != -EINPROGRESS) { 1478 1479 /* Fix up the TD links and save the toggles for 1480 * non-Isochronous queues. For Isochronous queues, 1481 * test for too-recent dequeues. */ 1482 if (!uhci_cleanup_queue(uhci, qh, urb)) { 1483 qh->is_stopped = 0; 1484 return; 1485 } 1486 uhci_giveback_urb(uhci, qh, urb); 1487 goto restart; 1488 } 1489 } 1490 qh->is_stopped = 0; 1491 1492 /* There are no more dequeued URBs. If there are still URBs on the 1493 * queue, the QH can now be re-activated. */ 1494 if (!list_empty(&qh->queue)) { 1495 if (qh->needs_fixup) 1496 uhci_fixup_toggles(qh, 0); 1497 1498 /* If the first URB on the queue wants FSBR but its time 1499 * limit has expired, set the next TD to interrupt on 1500 * completion before reactivating the QH. */ 1501 urbp = list_entry(qh->queue.next, struct urb_priv, node); 1502 if (urbp->fsbr && qh->wait_expired) { 1503 struct uhci_td *td = list_entry(urbp->td_list.next, 1504 struct uhci_td, list); 1505 1506 td->status |= __cpu_to_le32(TD_CTRL_IOC); 1507 } 1508 1509 uhci_activate_qh(uhci, qh); 1510 } 1511 1512 /* The queue is empty. The QH can become idle if it is fully 1513 * unlinked. */ 1514 else if (QH_FINISHED_UNLINKING(qh)) 1515 uhci_make_qh_idle(uhci, qh); 1516 } 1517 1518 /* 1519 * Check for queues that have made some forward progress. 1520 * Returns 0 if the queue is not Isochronous, is ACTIVE, and 1521 * has not advanced since last examined; 1 otherwise. 1522 * 1523 * Early Intel controllers have a bug which causes qh->element sometimes 1524 * not to advance when a TD completes successfully. The queue remains 1525 * stuck on the inactive completed TD. We detect such cases and advance 1526 * the element pointer by hand. 1527 */ 1528 static int uhci_advance_check(struct uhci_hcd *uhci, struct uhci_qh *qh) 1529 { 1530 struct urb_priv *urbp = NULL; 1531 struct uhci_td *td; 1532 int ret = 1; 1533 unsigned status; 1534 1535 if (qh->type == USB_ENDPOINT_XFER_ISOC) 1536 goto done; 1537 1538 /* Treat an UNLINKING queue as though it hasn't advanced. 1539 * This is okay because reactivation will treat it as though 1540 * it has advanced, and if it is going to become IDLE then 1541 * this doesn't matter anyway. Furthermore it's possible 1542 * for an UNLINKING queue not to have any URBs at all, or 1543 * for its first URB not to have any TDs (if it was dequeued 1544 * just as it completed). So it's not easy in any case to 1545 * test whether such queues have advanced. */ 1546 if (qh->state != QH_STATE_ACTIVE) { 1547 urbp = NULL; 1548 status = 0; 1549 1550 } else { 1551 urbp = list_entry(qh->queue.next, struct urb_priv, node); 1552 td = list_entry(urbp->td_list.next, struct uhci_td, list); 1553 status = td_status(td); 1554 if (!(status & TD_CTRL_ACTIVE)) { 1555 1556 /* We're okay, the queue has advanced */ 1557 qh->wait_expired = 0; 1558 qh->advance_jiffies = jiffies; 1559 goto done; 1560 } 1561 ret = 0; 1562 } 1563 1564 /* The queue hasn't advanced; check for timeout */ 1565 if (qh->wait_expired) 1566 goto done; 1567 1568 if (time_after(jiffies, qh->advance_jiffies + QH_WAIT_TIMEOUT)) { 1569 1570 /* Detect the Intel bug and work around it */ 1571 if (qh->post_td && qh_element(qh) == 1572 cpu_to_le32(qh->post_td->dma_handle)) { 1573 qh->element = qh->post_td->link; 1574 qh->advance_jiffies = jiffies; 1575 ret = 1; 1576 goto done; 1577 } 1578 1579 qh->wait_expired = 1; 1580 1581 /* If the current URB wants FSBR, unlink it temporarily 1582 * so that we can safely set the next TD to interrupt on 1583 * completion. That way we'll know as soon as the queue 1584 * starts moving again. */ 1585 if (urbp && urbp->fsbr && !(status & TD_CTRL_IOC)) 1586 uhci_unlink_qh(uhci, qh); 1587 1588 } else { 1589 /* Unmoving but not-yet-expired queues keep FSBR alive */ 1590 if (urbp) 1591 uhci_urbp_wants_fsbr(uhci, urbp); 1592 } 1593 1594 done: 1595 return ret; 1596 } 1597 1598 /* 1599 * Process events in the schedule, but only in one thread at a time 1600 */ 1601 static void uhci_scan_schedule(struct uhci_hcd *uhci) 1602 { 1603 int i; 1604 struct uhci_qh *qh; 1605 1606 /* Don't allow re-entrant calls */ 1607 if (uhci->scan_in_progress) { 1608 uhci->need_rescan = 1; 1609 return; 1610 } 1611 uhci->scan_in_progress = 1; 1612 rescan: 1613 uhci->need_rescan = 0; 1614 uhci->fsbr_is_wanted = 0; 1615 1616 uhci_clear_next_interrupt(uhci); 1617 uhci_get_current_frame_number(uhci); 1618 uhci->cur_iso_frame = uhci->frame_number; 1619 1620 /* Go through all the QH queues and process the URBs in each one */ 1621 for (i = 0; i < UHCI_NUM_SKELQH - 1; ++i) { 1622 uhci->next_qh = list_entry(uhci->skelqh[i]->node.next, 1623 struct uhci_qh, node); 1624 while ((qh = uhci->next_qh) != uhci->skelqh[i]) { 1625 uhci->next_qh = list_entry(qh->node.next, 1626 struct uhci_qh, node); 1627 1628 if (uhci_advance_check(uhci, qh)) { 1629 uhci_scan_qh(uhci, qh); 1630 if (qh->state == QH_STATE_ACTIVE) { 1631 uhci_urbp_wants_fsbr(uhci, 1632 list_entry(qh->queue.next, struct urb_priv, node)); 1633 } 1634 } 1635 } 1636 } 1637 1638 uhci->last_iso_frame = uhci->cur_iso_frame; 1639 if (uhci->need_rescan) 1640 goto rescan; 1641 uhci->scan_in_progress = 0; 1642 1643 if (uhci->fsbr_is_on && !uhci->fsbr_is_wanted && 1644 !uhci->fsbr_expiring) { 1645 uhci->fsbr_expiring = 1; 1646 mod_timer(&uhci->fsbr_timer, jiffies + FSBR_OFF_DELAY); 1647 } 1648 1649 if (list_empty(&uhci->skel_unlink_qh->node)) 1650 uhci_clear_next_interrupt(uhci); 1651 else 1652 uhci_set_next_interrupt(uhci); 1653 } 1654