xref: /openbmc/linux/drivers/usb/gadget/legacy/inode.c (revision 1a4e39c2e5ca2eb494a53ecd73055562f690bca0)
1 /*
2  * inode.c -- user mode filesystem api for usb gadget controllers
3  *
4  * Copyright (C) 2003-2004 David Brownell
5  * Copyright (C) 2003 Agilent Technologies
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  */
12 
13 
14 /* #define VERBOSE_DEBUG */
15 
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/fs.h>
19 #include <linux/pagemap.h>
20 #include <linux/uts.h>
21 #include <linux/wait.h>
22 #include <linux/compiler.h>
23 #include <asm/uaccess.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/poll.h>
27 #include <linux/mmu_context.h>
28 #include <linux/aio.h>
29 
30 #include <linux/device.h>
31 #include <linux/moduleparam.h>
32 
33 #include <linux/usb/gadgetfs.h>
34 #include <linux/usb/gadget.h>
35 
36 
37 /*
38  * The gadgetfs API maps each endpoint to a file descriptor so that you
39  * can use standard synchronous read/write calls for I/O.  There's some
40  * O_NONBLOCK and O_ASYNC/FASYNC style i/o support.  Example usermode
41  * drivers show how this works in practice.  You can also use AIO to
42  * eliminate I/O gaps between requests, to help when streaming data.
43  *
44  * Key parts that must be USB-specific are protocols defining how the
45  * read/write operations relate to the hardware state machines.  There
46  * are two types of files.  One type is for the device, implementing ep0.
47  * The other type is for each IN or OUT endpoint.  In both cases, the
48  * user mode driver must configure the hardware before using it.
49  *
50  * - First, dev_config() is called when /dev/gadget/$CHIP is configured
51  *   (by writing configuration and device descriptors).  Afterwards it
52  *   may serve as a source of device events, used to handle all control
53  *   requests other than basic enumeration.
54  *
55  * - Then, after a SET_CONFIGURATION control request, ep_config() is
56  *   called when each /dev/gadget/ep* file is configured (by writing
57  *   endpoint descriptors).  Afterwards these files are used to write()
58  *   IN data or to read() OUT data.  To halt the endpoint, a "wrong
59  *   direction" request is issued (like reading an IN endpoint).
60  *
61  * Unlike "usbfs" the only ioctl()s are for things that are rare, and maybe
62  * not possible on all hardware.  For example, precise fault handling with
63  * respect to data left in endpoint fifos after aborted operations; or
64  * selective clearing of endpoint halts, to implement SET_INTERFACE.
65  */
66 
67 #define	DRIVER_DESC	"USB Gadget filesystem"
68 #define	DRIVER_VERSION	"24 Aug 2004"
69 
70 static const char driver_desc [] = DRIVER_DESC;
71 static const char shortname [] = "gadgetfs";
72 
73 MODULE_DESCRIPTION (DRIVER_DESC);
74 MODULE_AUTHOR ("David Brownell");
75 MODULE_LICENSE ("GPL");
76 
77 
78 /*----------------------------------------------------------------------*/
79 
80 #define GADGETFS_MAGIC		0xaee71ee7
81 
82 /* /dev/gadget/$CHIP represents ep0 and the whole device */
83 enum ep0_state {
84 	/* DISBLED is the initial state.
85 	 */
86 	STATE_DEV_DISABLED = 0,
87 
88 	/* Only one open() of /dev/gadget/$CHIP; only one file tracks
89 	 * ep0/device i/o modes and binding to the controller.  Driver
90 	 * must always write descriptors to initialize the device, then
91 	 * the device becomes UNCONNECTED until enumeration.
92 	 */
93 	STATE_DEV_OPENED,
94 
95 	/* From then on, ep0 fd is in either of two basic modes:
96 	 * - (UN)CONNECTED: read usb_gadgetfs_event(s) from it
97 	 * - SETUP: read/write will transfer control data and succeed;
98 	 *   or if "wrong direction", performs protocol stall
99 	 */
100 	STATE_DEV_UNCONNECTED,
101 	STATE_DEV_CONNECTED,
102 	STATE_DEV_SETUP,
103 
104 	/* UNBOUND means the driver closed ep0, so the device won't be
105 	 * accessible again (DEV_DISABLED) until all fds are closed.
106 	 */
107 	STATE_DEV_UNBOUND,
108 };
109 
110 /* enough for the whole queue: most events invalidate others */
111 #define	N_EVENT			5
112 
113 struct dev_data {
114 	spinlock_t			lock;
115 	atomic_t			count;
116 	enum ep0_state			state;		/* P: lock */
117 	struct usb_gadgetfs_event	event [N_EVENT];
118 	unsigned			ev_next;
119 	struct fasync_struct		*fasync;
120 	u8				current_config;
121 
122 	/* drivers reading ep0 MUST handle control requests (SETUP)
123 	 * reported that way; else the host will time out.
124 	 */
125 	unsigned			usermode_setup : 1,
126 					setup_in : 1,
127 					setup_can_stall : 1,
128 					setup_out_ready : 1,
129 					setup_out_error : 1,
130 					setup_abort : 1;
131 	unsigned			setup_wLength;
132 
133 	/* the rest is basically write-once */
134 	struct usb_config_descriptor	*config, *hs_config;
135 	struct usb_device_descriptor	*dev;
136 	struct usb_request		*req;
137 	struct usb_gadget		*gadget;
138 	struct list_head		epfiles;
139 	void				*buf;
140 	wait_queue_head_t		wait;
141 	struct super_block		*sb;
142 	struct dentry			*dentry;
143 
144 	/* except this scratch i/o buffer for ep0 */
145 	u8				rbuf [256];
146 };
147 
148 static inline void get_dev (struct dev_data *data)
149 {
150 	atomic_inc (&data->count);
151 }
152 
153 static void put_dev (struct dev_data *data)
154 {
155 	if (likely (!atomic_dec_and_test (&data->count)))
156 		return;
157 	/* needs no more cleanup */
158 	BUG_ON (waitqueue_active (&data->wait));
159 	kfree (data);
160 }
161 
162 static struct dev_data *dev_new (void)
163 {
164 	struct dev_data		*dev;
165 
166 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
167 	if (!dev)
168 		return NULL;
169 	dev->state = STATE_DEV_DISABLED;
170 	atomic_set (&dev->count, 1);
171 	spin_lock_init (&dev->lock);
172 	INIT_LIST_HEAD (&dev->epfiles);
173 	init_waitqueue_head (&dev->wait);
174 	return dev;
175 }
176 
177 /*----------------------------------------------------------------------*/
178 
179 /* other /dev/gadget/$ENDPOINT files represent endpoints */
180 enum ep_state {
181 	STATE_EP_DISABLED = 0,
182 	STATE_EP_READY,
183 	STATE_EP_ENABLED,
184 	STATE_EP_UNBOUND,
185 };
186 
187 struct ep_data {
188 	struct mutex			lock;
189 	enum ep_state			state;
190 	atomic_t			count;
191 	struct dev_data			*dev;
192 	/* must hold dev->lock before accessing ep or req */
193 	struct usb_ep			*ep;
194 	struct usb_request		*req;
195 	ssize_t				status;
196 	char				name [16];
197 	struct usb_endpoint_descriptor	desc, hs_desc;
198 	struct list_head		epfiles;
199 	wait_queue_head_t		wait;
200 	struct dentry			*dentry;
201 };
202 
203 static inline void get_ep (struct ep_data *data)
204 {
205 	atomic_inc (&data->count);
206 }
207 
208 static void put_ep (struct ep_data *data)
209 {
210 	if (likely (!atomic_dec_and_test (&data->count)))
211 		return;
212 	put_dev (data->dev);
213 	/* needs no more cleanup */
214 	BUG_ON (!list_empty (&data->epfiles));
215 	BUG_ON (waitqueue_active (&data->wait));
216 	kfree (data);
217 }
218 
219 /*----------------------------------------------------------------------*/
220 
221 /* most "how to use the hardware" policy choices are in userspace:
222  * mapping endpoint roles (which the driver needs) to the capabilities
223  * which the usb controller has.  most of those capabilities are exposed
224  * implicitly, starting with the driver name and then endpoint names.
225  */
226 
227 static const char *CHIP;
228 
229 /*----------------------------------------------------------------------*/
230 
231 /* NOTE:  don't use dev_printk calls before binding to the gadget
232  * at the end of ep0 configuration, or after unbind.
233  */
234 
235 /* too wordy: dev_printk(level , &(d)->gadget->dev , fmt , ## args) */
236 #define xprintk(d,level,fmt,args...) \
237 	printk(level "%s: " fmt , shortname , ## args)
238 
239 #ifdef DEBUG
240 #define DBG(dev,fmt,args...) \
241 	xprintk(dev , KERN_DEBUG , fmt , ## args)
242 #else
243 #define DBG(dev,fmt,args...) \
244 	do { } while (0)
245 #endif /* DEBUG */
246 
247 #ifdef VERBOSE_DEBUG
248 #define VDEBUG	DBG
249 #else
250 #define VDEBUG(dev,fmt,args...) \
251 	do { } while (0)
252 #endif /* DEBUG */
253 
254 #define ERROR(dev,fmt,args...) \
255 	xprintk(dev , KERN_ERR , fmt , ## args)
256 #define INFO(dev,fmt,args...) \
257 	xprintk(dev , KERN_INFO , fmt , ## args)
258 
259 
260 /*----------------------------------------------------------------------*/
261 
262 /* SYNCHRONOUS ENDPOINT OPERATIONS (bulk/intr/iso)
263  *
264  * After opening, configure non-control endpoints.  Then use normal
265  * stream read() and write() requests; and maybe ioctl() to get more
266  * precise FIFO status when recovering from cancellation.
267  */
268 
269 static void epio_complete (struct usb_ep *ep, struct usb_request *req)
270 {
271 	struct ep_data	*epdata = ep->driver_data;
272 
273 	if (!req->context)
274 		return;
275 	if (req->status)
276 		epdata->status = req->status;
277 	else
278 		epdata->status = req->actual;
279 	complete ((struct completion *)req->context);
280 }
281 
282 /* tasklock endpoint, returning when it's connected.
283  * still need dev->lock to use epdata->ep.
284  */
285 static int
286 get_ready_ep (unsigned f_flags, struct ep_data *epdata)
287 {
288 	int	val;
289 
290 	if (f_flags & O_NONBLOCK) {
291 		if (!mutex_trylock(&epdata->lock))
292 			goto nonblock;
293 		if (epdata->state != STATE_EP_ENABLED) {
294 			mutex_unlock(&epdata->lock);
295 nonblock:
296 			val = -EAGAIN;
297 		} else
298 			val = 0;
299 		return val;
300 	}
301 
302 	val = mutex_lock_interruptible(&epdata->lock);
303 	if (val < 0)
304 		return val;
305 
306 	switch (epdata->state) {
307 	case STATE_EP_ENABLED:
308 		break;
309 	// case STATE_EP_DISABLED:		/* "can't happen" */
310 	// case STATE_EP_READY:			/* "can't happen" */
311 	default:				/* error! */
312 		pr_debug ("%s: ep %p not available, state %d\n",
313 				shortname, epdata, epdata->state);
314 		// FALLTHROUGH
315 	case STATE_EP_UNBOUND:			/* clean disconnect */
316 		val = -ENODEV;
317 		mutex_unlock(&epdata->lock);
318 	}
319 	return val;
320 }
321 
322 static ssize_t
323 ep_io (struct ep_data *epdata, void *buf, unsigned len)
324 {
325 	DECLARE_COMPLETION_ONSTACK (done);
326 	int value;
327 
328 	spin_lock_irq (&epdata->dev->lock);
329 	if (likely (epdata->ep != NULL)) {
330 		struct usb_request	*req = epdata->req;
331 
332 		req->context = &done;
333 		req->complete = epio_complete;
334 		req->buf = buf;
335 		req->length = len;
336 		value = usb_ep_queue (epdata->ep, req, GFP_ATOMIC);
337 	} else
338 		value = -ENODEV;
339 	spin_unlock_irq (&epdata->dev->lock);
340 
341 	if (likely (value == 0)) {
342 		value = wait_event_interruptible (done.wait, done.done);
343 		if (value != 0) {
344 			spin_lock_irq (&epdata->dev->lock);
345 			if (likely (epdata->ep != NULL)) {
346 				DBG (epdata->dev, "%s i/o interrupted\n",
347 						epdata->name);
348 				usb_ep_dequeue (epdata->ep, epdata->req);
349 				spin_unlock_irq (&epdata->dev->lock);
350 
351 				wait_event (done.wait, done.done);
352 				if (epdata->status == -ECONNRESET)
353 					epdata->status = -EINTR;
354 			} else {
355 				spin_unlock_irq (&epdata->dev->lock);
356 
357 				DBG (epdata->dev, "endpoint gone\n");
358 				epdata->status = -ENODEV;
359 			}
360 		}
361 		return epdata->status;
362 	}
363 	return value;
364 }
365 
366 
367 /* handle a synchronous OUT bulk/intr/iso transfer */
368 static ssize_t
369 ep_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
370 {
371 	struct ep_data		*data = fd->private_data;
372 	void			*kbuf;
373 	ssize_t			value;
374 
375 	if ((value = get_ready_ep (fd->f_flags, data)) < 0)
376 		return value;
377 
378 	/* halt any endpoint by doing a "wrong direction" i/o call */
379 	if (usb_endpoint_dir_in(&data->desc)) {
380 		if (usb_endpoint_xfer_isoc(&data->desc)) {
381 			mutex_unlock(&data->lock);
382 			return -EINVAL;
383 		}
384 		DBG (data->dev, "%s halt\n", data->name);
385 		spin_lock_irq (&data->dev->lock);
386 		if (likely (data->ep != NULL))
387 			usb_ep_set_halt (data->ep);
388 		spin_unlock_irq (&data->dev->lock);
389 		mutex_unlock(&data->lock);
390 		return -EBADMSG;
391 	}
392 
393 	/* FIXME readahead for O_NONBLOCK and poll(); careful with ZLPs */
394 
395 	value = -ENOMEM;
396 	kbuf = kmalloc (len, GFP_KERNEL);
397 	if (unlikely (!kbuf))
398 		goto free1;
399 
400 	value = ep_io (data, kbuf, len);
401 	VDEBUG (data->dev, "%s read %zu OUT, status %d\n",
402 		data->name, len, (int) value);
403 	if (value >= 0 && copy_to_user (buf, kbuf, value))
404 		value = -EFAULT;
405 
406 free1:
407 	mutex_unlock(&data->lock);
408 	kfree (kbuf);
409 	return value;
410 }
411 
412 /* handle a synchronous IN bulk/intr/iso transfer */
413 static ssize_t
414 ep_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
415 {
416 	struct ep_data		*data = fd->private_data;
417 	void			*kbuf;
418 	ssize_t			value;
419 
420 	if ((value = get_ready_ep (fd->f_flags, data)) < 0)
421 		return value;
422 
423 	/* halt any endpoint by doing a "wrong direction" i/o call */
424 	if (!usb_endpoint_dir_in(&data->desc)) {
425 		if (usb_endpoint_xfer_isoc(&data->desc)) {
426 			mutex_unlock(&data->lock);
427 			return -EINVAL;
428 		}
429 		DBG (data->dev, "%s halt\n", data->name);
430 		spin_lock_irq (&data->dev->lock);
431 		if (likely (data->ep != NULL))
432 			usb_ep_set_halt (data->ep);
433 		spin_unlock_irq (&data->dev->lock);
434 		mutex_unlock(&data->lock);
435 		return -EBADMSG;
436 	}
437 
438 	/* FIXME writebehind for O_NONBLOCK and poll(), qlen = 1 */
439 
440 	value = -ENOMEM;
441 	kbuf = memdup_user(buf, len);
442 	if (IS_ERR(kbuf)) {
443 		value = PTR_ERR(kbuf);
444 		goto free1;
445 	}
446 
447 	value = ep_io (data, kbuf, len);
448 	VDEBUG (data->dev, "%s write %zu IN, status %d\n",
449 		data->name, len, (int) value);
450 free1:
451 	mutex_unlock(&data->lock);
452 	return value;
453 }
454 
455 static int
456 ep_release (struct inode *inode, struct file *fd)
457 {
458 	struct ep_data		*data = fd->private_data;
459 	int value;
460 
461 	value = mutex_lock_interruptible(&data->lock);
462 	if (value < 0)
463 		return value;
464 
465 	/* clean up if this can be reopened */
466 	if (data->state != STATE_EP_UNBOUND) {
467 		data->state = STATE_EP_DISABLED;
468 		data->desc.bDescriptorType = 0;
469 		data->hs_desc.bDescriptorType = 0;
470 		usb_ep_disable(data->ep);
471 	}
472 	mutex_unlock(&data->lock);
473 	put_ep (data);
474 	return 0;
475 }
476 
477 static long ep_ioctl(struct file *fd, unsigned code, unsigned long value)
478 {
479 	struct ep_data		*data = fd->private_data;
480 	int			status;
481 
482 	if ((status = get_ready_ep (fd->f_flags, data)) < 0)
483 		return status;
484 
485 	spin_lock_irq (&data->dev->lock);
486 	if (likely (data->ep != NULL)) {
487 		switch (code) {
488 		case GADGETFS_FIFO_STATUS:
489 			status = usb_ep_fifo_status (data->ep);
490 			break;
491 		case GADGETFS_FIFO_FLUSH:
492 			usb_ep_fifo_flush (data->ep);
493 			break;
494 		case GADGETFS_CLEAR_HALT:
495 			status = usb_ep_clear_halt (data->ep);
496 			break;
497 		default:
498 			status = -ENOTTY;
499 		}
500 	} else
501 		status = -ENODEV;
502 	spin_unlock_irq (&data->dev->lock);
503 	mutex_unlock(&data->lock);
504 	return status;
505 }
506 
507 /*----------------------------------------------------------------------*/
508 
509 /* ASYNCHRONOUS ENDPOINT I/O OPERATIONS (bulk/intr/iso) */
510 
511 struct kiocb_priv {
512 	struct usb_request	*req;
513 	struct ep_data		*epdata;
514 	struct kiocb		*iocb;
515 	struct mm_struct	*mm;
516 	struct work_struct	work;
517 	void			*buf;
518 	const struct iovec	*iv;
519 	unsigned long		nr_segs;
520 	unsigned		actual;
521 };
522 
523 static int ep_aio_cancel(struct kiocb *iocb)
524 {
525 	struct kiocb_priv	*priv = iocb->private;
526 	struct ep_data		*epdata;
527 	int			value;
528 
529 	local_irq_disable();
530 	epdata = priv->epdata;
531 	// spin_lock(&epdata->dev->lock);
532 	if (likely(epdata && epdata->ep && priv->req))
533 		value = usb_ep_dequeue (epdata->ep, priv->req);
534 	else
535 		value = -EINVAL;
536 	// spin_unlock(&epdata->dev->lock);
537 	local_irq_enable();
538 
539 	return value;
540 }
541 
542 static ssize_t ep_copy_to_user(struct kiocb_priv *priv)
543 {
544 	ssize_t			len, total;
545 	void			*to_copy;
546 	int			i;
547 
548 	/* copy stuff into user buffers */
549 	total = priv->actual;
550 	len = 0;
551 	to_copy = priv->buf;
552 	for (i=0; i < priv->nr_segs; i++) {
553 		ssize_t this = min((ssize_t)(priv->iv[i].iov_len), total);
554 
555 		if (copy_to_user(priv->iv[i].iov_base, to_copy, this)) {
556 			if (len == 0)
557 				len = -EFAULT;
558 			break;
559 		}
560 
561 		total -= this;
562 		len += this;
563 		to_copy += this;
564 		if (total == 0)
565 			break;
566 	}
567 
568 	return len;
569 }
570 
571 static void ep_user_copy_worker(struct work_struct *work)
572 {
573 	struct kiocb_priv *priv = container_of(work, struct kiocb_priv, work);
574 	struct mm_struct *mm = priv->mm;
575 	struct kiocb *iocb = priv->iocb;
576 	size_t ret;
577 
578 	use_mm(mm);
579 	ret = ep_copy_to_user(priv);
580 	unuse_mm(mm);
581 
582 	/* completing the iocb can drop the ctx and mm, don't touch mm after */
583 	aio_complete(iocb, ret, ret);
584 
585 	kfree(priv->buf);
586 	kfree(priv);
587 }
588 
589 static void ep_aio_complete(struct usb_ep *ep, struct usb_request *req)
590 {
591 	struct kiocb		*iocb = req->context;
592 	struct kiocb_priv	*priv = iocb->private;
593 	struct ep_data		*epdata = priv->epdata;
594 
595 	/* lock against disconnect (and ideally, cancel) */
596 	spin_lock(&epdata->dev->lock);
597 	priv->req = NULL;
598 	priv->epdata = NULL;
599 
600 	/* if this was a write or a read returning no data then we
601 	 * don't need to copy anything to userspace, so we can
602 	 * complete the aio request immediately.
603 	 */
604 	if (priv->iv == NULL || unlikely(req->actual == 0)) {
605 		kfree(req->buf);
606 		kfree(priv);
607 		iocb->private = NULL;
608 		/* aio_complete() reports bytes-transferred _and_ faults */
609 		aio_complete(iocb, req->actual ? req->actual : req->status,
610 				req->status);
611 	} else {
612 		/* ep_copy_to_user() won't report both; we hide some faults */
613 		if (unlikely(0 != req->status))
614 			DBG(epdata->dev, "%s fault %d len %d\n",
615 				ep->name, req->status, req->actual);
616 
617 		priv->buf = req->buf;
618 		priv->actual = req->actual;
619 		schedule_work(&priv->work);
620 	}
621 	spin_unlock(&epdata->dev->lock);
622 
623 	usb_ep_free_request(ep, req);
624 	put_ep(epdata);
625 }
626 
627 static ssize_t
628 ep_aio_rwtail(
629 	struct kiocb	*iocb,
630 	char		*buf,
631 	size_t		len,
632 	struct ep_data	*epdata,
633 	const struct iovec *iv,
634 	unsigned long	nr_segs
635 )
636 {
637 	struct kiocb_priv	*priv;
638 	struct usb_request	*req;
639 	ssize_t			value;
640 
641 	priv = kmalloc(sizeof *priv, GFP_KERNEL);
642 	if (!priv) {
643 		value = -ENOMEM;
644 fail:
645 		kfree(buf);
646 		return value;
647 	}
648 	iocb->private = priv;
649 	priv->iocb = iocb;
650 	priv->iv = iv;
651 	priv->nr_segs = nr_segs;
652 	INIT_WORK(&priv->work, ep_user_copy_worker);
653 
654 	value = get_ready_ep(iocb->ki_filp->f_flags, epdata);
655 	if (unlikely(value < 0)) {
656 		kfree(priv);
657 		goto fail;
658 	}
659 
660 	kiocb_set_cancel_fn(iocb, ep_aio_cancel);
661 	get_ep(epdata);
662 	priv->epdata = epdata;
663 	priv->actual = 0;
664 	priv->mm = current->mm; /* mm teardown waits for iocbs in exit_aio() */
665 
666 	/* each kiocb is coupled to one usb_request, but we can't
667 	 * allocate or submit those if the host disconnected.
668 	 */
669 	spin_lock_irq(&epdata->dev->lock);
670 	if (likely(epdata->ep)) {
671 		req = usb_ep_alloc_request(epdata->ep, GFP_ATOMIC);
672 		if (likely(req)) {
673 			priv->req = req;
674 			req->buf = buf;
675 			req->length = len;
676 			req->complete = ep_aio_complete;
677 			req->context = iocb;
678 			value = usb_ep_queue(epdata->ep, req, GFP_ATOMIC);
679 			if (unlikely(0 != value))
680 				usb_ep_free_request(epdata->ep, req);
681 		} else
682 			value = -EAGAIN;
683 	} else
684 		value = -ENODEV;
685 	spin_unlock_irq(&epdata->dev->lock);
686 
687 	mutex_unlock(&epdata->lock);
688 
689 	if (unlikely(value)) {
690 		kfree(priv);
691 		put_ep(epdata);
692 	} else
693 		value = -EIOCBQUEUED;
694 	return value;
695 }
696 
697 static ssize_t
698 ep_aio_read(struct kiocb *iocb, const struct iovec *iov,
699 		unsigned long nr_segs, loff_t o)
700 {
701 	struct ep_data		*epdata = iocb->ki_filp->private_data;
702 	char			*buf;
703 
704 	if (unlikely(usb_endpoint_dir_in(&epdata->desc)))
705 		return -EINVAL;
706 
707 	buf = kmalloc(iocb->ki_nbytes, GFP_KERNEL);
708 	if (unlikely(!buf))
709 		return -ENOMEM;
710 
711 	return ep_aio_rwtail(iocb, buf, iocb->ki_nbytes, epdata, iov, nr_segs);
712 }
713 
714 static ssize_t
715 ep_aio_write(struct kiocb *iocb, const struct iovec *iov,
716 		unsigned long nr_segs, loff_t o)
717 {
718 	struct ep_data		*epdata = iocb->ki_filp->private_data;
719 	char			*buf;
720 	size_t			len = 0;
721 	int			i = 0;
722 
723 	if (unlikely(!usb_endpoint_dir_in(&epdata->desc)))
724 		return -EINVAL;
725 
726 	buf = kmalloc(iocb->ki_nbytes, GFP_KERNEL);
727 	if (unlikely(!buf))
728 		return -ENOMEM;
729 
730 	for (i=0; i < nr_segs; i++) {
731 		if (unlikely(copy_from_user(&buf[len], iov[i].iov_base,
732 				iov[i].iov_len) != 0)) {
733 			kfree(buf);
734 			return -EFAULT;
735 		}
736 		len += iov[i].iov_len;
737 	}
738 	return ep_aio_rwtail(iocb, buf, len, epdata, NULL, 0);
739 }
740 
741 /*----------------------------------------------------------------------*/
742 
743 /* used after endpoint configuration */
744 static const struct file_operations ep_io_operations = {
745 	.owner =	THIS_MODULE,
746 	.llseek =	no_llseek,
747 
748 	.read =		ep_read,
749 	.write =	ep_write,
750 	.unlocked_ioctl = ep_ioctl,
751 	.release =	ep_release,
752 
753 	.aio_read =	ep_aio_read,
754 	.aio_write =	ep_aio_write,
755 };
756 
757 /* ENDPOINT INITIALIZATION
758  *
759  *     fd = open ("/dev/gadget/$ENDPOINT", O_RDWR)
760  *     status = write (fd, descriptors, sizeof descriptors)
761  *
762  * That write establishes the endpoint configuration, configuring
763  * the controller to process bulk, interrupt, or isochronous transfers
764  * at the right maxpacket size, and so on.
765  *
766  * The descriptors are message type 1, identified by a host order u32
767  * at the beginning of what's written.  Descriptor order is: full/low
768  * speed descriptor, then optional high speed descriptor.
769  */
770 static ssize_t
771 ep_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
772 {
773 	struct ep_data		*data = fd->private_data;
774 	struct usb_ep		*ep;
775 	u32			tag;
776 	int			value, length = len;
777 
778 	value = mutex_lock_interruptible(&data->lock);
779 	if (value < 0)
780 		return value;
781 
782 	if (data->state != STATE_EP_READY) {
783 		value = -EL2HLT;
784 		goto fail;
785 	}
786 
787 	value = len;
788 	if (len < USB_DT_ENDPOINT_SIZE + 4)
789 		goto fail0;
790 
791 	/* we might need to change message format someday */
792 	if (copy_from_user (&tag, buf, 4)) {
793 		goto fail1;
794 	}
795 	if (tag != 1) {
796 		DBG(data->dev, "config %s, bad tag %d\n", data->name, tag);
797 		goto fail0;
798 	}
799 	buf += 4;
800 	len -= 4;
801 
802 	/* NOTE:  audio endpoint extensions not accepted here;
803 	 * just don't include the extra bytes.
804 	 */
805 
806 	/* full/low speed descriptor, then high speed */
807 	if (copy_from_user (&data->desc, buf, USB_DT_ENDPOINT_SIZE)) {
808 		goto fail1;
809 	}
810 	if (data->desc.bLength != USB_DT_ENDPOINT_SIZE
811 			|| data->desc.bDescriptorType != USB_DT_ENDPOINT)
812 		goto fail0;
813 	if (len != USB_DT_ENDPOINT_SIZE) {
814 		if (len != 2 * USB_DT_ENDPOINT_SIZE)
815 			goto fail0;
816 		if (copy_from_user (&data->hs_desc, buf + USB_DT_ENDPOINT_SIZE,
817 					USB_DT_ENDPOINT_SIZE)) {
818 			goto fail1;
819 		}
820 		if (data->hs_desc.bLength != USB_DT_ENDPOINT_SIZE
821 				|| data->hs_desc.bDescriptorType
822 					!= USB_DT_ENDPOINT) {
823 			DBG(data->dev, "config %s, bad hs length or type\n",
824 					data->name);
825 			goto fail0;
826 		}
827 	}
828 
829 	spin_lock_irq (&data->dev->lock);
830 	if (data->dev->state == STATE_DEV_UNBOUND) {
831 		value = -ENOENT;
832 		goto gone;
833 	} else if ((ep = data->ep) == NULL) {
834 		value = -ENODEV;
835 		goto gone;
836 	}
837 	switch (data->dev->gadget->speed) {
838 	case USB_SPEED_LOW:
839 	case USB_SPEED_FULL:
840 		ep->desc = &data->desc;
841 		value = usb_ep_enable(ep);
842 		if (value == 0)
843 			data->state = STATE_EP_ENABLED;
844 		break;
845 	case USB_SPEED_HIGH:
846 		/* fails if caller didn't provide that descriptor... */
847 		ep->desc = &data->hs_desc;
848 		value = usb_ep_enable(ep);
849 		if (value == 0)
850 			data->state = STATE_EP_ENABLED;
851 		break;
852 	default:
853 		DBG(data->dev, "unconnected, %s init abandoned\n",
854 				data->name);
855 		value = -EINVAL;
856 	}
857 	if (value == 0) {
858 		fd->f_op = &ep_io_operations;
859 		value = length;
860 	}
861 gone:
862 	spin_unlock_irq (&data->dev->lock);
863 	if (value < 0) {
864 fail:
865 		data->desc.bDescriptorType = 0;
866 		data->hs_desc.bDescriptorType = 0;
867 	}
868 	mutex_unlock(&data->lock);
869 	return value;
870 fail0:
871 	value = -EINVAL;
872 	goto fail;
873 fail1:
874 	value = -EFAULT;
875 	goto fail;
876 }
877 
878 static int
879 ep_open (struct inode *inode, struct file *fd)
880 {
881 	struct ep_data		*data = inode->i_private;
882 	int			value = -EBUSY;
883 
884 	if (mutex_lock_interruptible(&data->lock) != 0)
885 		return -EINTR;
886 	spin_lock_irq (&data->dev->lock);
887 	if (data->dev->state == STATE_DEV_UNBOUND)
888 		value = -ENOENT;
889 	else if (data->state == STATE_EP_DISABLED) {
890 		value = 0;
891 		data->state = STATE_EP_READY;
892 		get_ep (data);
893 		fd->private_data = data;
894 		VDEBUG (data->dev, "%s ready\n", data->name);
895 	} else
896 		DBG (data->dev, "%s state %d\n",
897 			data->name, data->state);
898 	spin_unlock_irq (&data->dev->lock);
899 	mutex_unlock(&data->lock);
900 	return value;
901 }
902 
903 /* used before endpoint configuration */
904 static const struct file_operations ep_config_operations = {
905 	.llseek =	no_llseek,
906 
907 	.open =		ep_open,
908 	.write =	ep_config,
909 	.release =	ep_release,
910 };
911 
912 /*----------------------------------------------------------------------*/
913 
914 /* EP0 IMPLEMENTATION can be partly in userspace.
915  *
916  * Drivers that use this facility receive various events, including
917  * control requests the kernel doesn't handle.  Drivers that don't
918  * use this facility may be too simple-minded for real applications.
919  */
920 
921 static inline void ep0_readable (struct dev_data *dev)
922 {
923 	wake_up (&dev->wait);
924 	kill_fasync (&dev->fasync, SIGIO, POLL_IN);
925 }
926 
927 static void clean_req (struct usb_ep *ep, struct usb_request *req)
928 {
929 	struct dev_data		*dev = ep->driver_data;
930 
931 	if (req->buf != dev->rbuf) {
932 		kfree(req->buf);
933 		req->buf = dev->rbuf;
934 	}
935 	req->complete = epio_complete;
936 	dev->setup_out_ready = 0;
937 }
938 
939 static void ep0_complete (struct usb_ep *ep, struct usb_request *req)
940 {
941 	struct dev_data		*dev = ep->driver_data;
942 	unsigned long		flags;
943 	int			free = 1;
944 
945 	/* for control OUT, data must still get to userspace */
946 	spin_lock_irqsave(&dev->lock, flags);
947 	if (!dev->setup_in) {
948 		dev->setup_out_error = (req->status != 0);
949 		if (!dev->setup_out_error)
950 			free = 0;
951 		dev->setup_out_ready = 1;
952 		ep0_readable (dev);
953 	}
954 
955 	/* clean up as appropriate */
956 	if (free && req->buf != &dev->rbuf)
957 		clean_req (ep, req);
958 	req->complete = epio_complete;
959 	spin_unlock_irqrestore(&dev->lock, flags);
960 }
961 
962 static int setup_req (struct usb_ep *ep, struct usb_request *req, u16 len)
963 {
964 	struct dev_data	*dev = ep->driver_data;
965 
966 	if (dev->setup_out_ready) {
967 		DBG (dev, "ep0 request busy!\n");
968 		return -EBUSY;
969 	}
970 	if (len > sizeof (dev->rbuf))
971 		req->buf = kmalloc(len, GFP_ATOMIC);
972 	if (req->buf == NULL) {
973 		req->buf = dev->rbuf;
974 		return -ENOMEM;
975 	}
976 	req->complete = ep0_complete;
977 	req->length = len;
978 	req->zero = 0;
979 	return 0;
980 }
981 
982 static ssize_t
983 ep0_read (struct file *fd, char __user *buf, size_t len, loff_t *ptr)
984 {
985 	struct dev_data			*dev = fd->private_data;
986 	ssize_t				retval;
987 	enum ep0_state			state;
988 
989 	spin_lock_irq (&dev->lock);
990 
991 	/* report fd mode change before acting on it */
992 	if (dev->setup_abort) {
993 		dev->setup_abort = 0;
994 		retval = -EIDRM;
995 		goto done;
996 	}
997 
998 	/* control DATA stage */
999 	if ((state = dev->state) == STATE_DEV_SETUP) {
1000 
1001 		if (dev->setup_in) {		/* stall IN */
1002 			VDEBUG(dev, "ep0in stall\n");
1003 			(void) usb_ep_set_halt (dev->gadget->ep0);
1004 			retval = -EL2HLT;
1005 			dev->state = STATE_DEV_CONNECTED;
1006 
1007 		} else if (len == 0) {		/* ack SET_CONFIGURATION etc */
1008 			struct usb_ep		*ep = dev->gadget->ep0;
1009 			struct usb_request	*req = dev->req;
1010 
1011 			if ((retval = setup_req (ep, req, 0)) == 0)
1012 				retval = usb_ep_queue (ep, req, GFP_ATOMIC);
1013 			dev->state = STATE_DEV_CONNECTED;
1014 
1015 			/* assume that was SET_CONFIGURATION */
1016 			if (dev->current_config) {
1017 				unsigned power;
1018 
1019 				if (gadget_is_dualspeed(dev->gadget)
1020 						&& (dev->gadget->speed
1021 							== USB_SPEED_HIGH))
1022 					power = dev->hs_config->bMaxPower;
1023 				else
1024 					power = dev->config->bMaxPower;
1025 				usb_gadget_vbus_draw(dev->gadget, 2 * power);
1026 			}
1027 
1028 		} else {			/* collect OUT data */
1029 			if ((fd->f_flags & O_NONBLOCK) != 0
1030 					&& !dev->setup_out_ready) {
1031 				retval = -EAGAIN;
1032 				goto done;
1033 			}
1034 			spin_unlock_irq (&dev->lock);
1035 			retval = wait_event_interruptible (dev->wait,
1036 					dev->setup_out_ready != 0);
1037 
1038 			/* FIXME state could change from under us */
1039 			spin_lock_irq (&dev->lock);
1040 			if (retval)
1041 				goto done;
1042 
1043 			if (dev->state != STATE_DEV_SETUP) {
1044 				retval = -ECANCELED;
1045 				goto done;
1046 			}
1047 			dev->state = STATE_DEV_CONNECTED;
1048 
1049 			if (dev->setup_out_error)
1050 				retval = -EIO;
1051 			else {
1052 				len = min (len, (size_t)dev->req->actual);
1053 // FIXME don't call this with the spinlock held ...
1054 				if (copy_to_user (buf, dev->req->buf, len))
1055 					retval = -EFAULT;
1056 				else
1057 					retval = len;
1058 				clean_req (dev->gadget->ep0, dev->req);
1059 				/* NOTE userspace can't yet choose to stall */
1060 			}
1061 		}
1062 		goto done;
1063 	}
1064 
1065 	/* else normal: return event data */
1066 	if (len < sizeof dev->event [0]) {
1067 		retval = -EINVAL;
1068 		goto done;
1069 	}
1070 	len -= len % sizeof (struct usb_gadgetfs_event);
1071 	dev->usermode_setup = 1;
1072 
1073 scan:
1074 	/* return queued events right away */
1075 	if (dev->ev_next != 0) {
1076 		unsigned		i, n;
1077 
1078 		n = len / sizeof (struct usb_gadgetfs_event);
1079 		if (dev->ev_next < n)
1080 			n = dev->ev_next;
1081 
1082 		/* ep0 i/o has special semantics during STATE_DEV_SETUP */
1083 		for (i = 0; i < n; i++) {
1084 			if (dev->event [i].type == GADGETFS_SETUP) {
1085 				dev->state = STATE_DEV_SETUP;
1086 				n = i + 1;
1087 				break;
1088 			}
1089 		}
1090 		spin_unlock_irq (&dev->lock);
1091 		len = n * sizeof (struct usb_gadgetfs_event);
1092 		if (copy_to_user (buf, &dev->event, len))
1093 			retval = -EFAULT;
1094 		else
1095 			retval = len;
1096 		if (len > 0) {
1097 			/* NOTE this doesn't guard against broken drivers;
1098 			 * concurrent ep0 readers may lose events.
1099 			 */
1100 			spin_lock_irq (&dev->lock);
1101 			if (dev->ev_next > n) {
1102 				memmove(&dev->event[0], &dev->event[n],
1103 					sizeof (struct usb_gadgetfs_event)
1104 						* (dev->ev_next - n));
1105 			}
1106 			dev->ev_next -= n;
1107 			spin_unlock_irq (&dev->lock);
1108 		}
1109 		return retval;
1110 	}
1111 	if (fd->f_flags & O_NONBLOCK) {
1112 		retval = -EAGAIN;
1113 		goto done;
1114 	}
1115 
1116 	switch (state) {
1117 	default:
1118 		DBG (dev, "fail %s, state %d\n", __func__, state);
1119 		retval = -ESRCH;
1120 		break;
1121 	case STATE_DEV_UNCONNECTED:
1122 	case STATE_DEV_CONNECTED:
1123 		spin_unlock_irq (&dev->lock);
1124 		DBG (dev, "%s wait\n", __func__);
1125 
1126 		/* wait for events */
1127 		retval = wait_event_interruptible (dev->wait,
1128 				dev->ev_next != 0);
1129 		if (retval < 0)
1130 			return retval;
1131 		spin_lock_irq (&dev->lock);
1132 		goto scan;
1133 	}
1134 
1135 done:
1136 	spin_unlock_irq (&dev->lock);
1137 	return retval;
1138 }
1139 
1140 static struct usb_gadgetfs_event *
1141 next_event (struct dev_data *dev, enum usb_gadgetfs_event_type type)
1142 {
1143 	struct usb_gadgetfs_event	*event;
1144 	unsigned			i;
1145 
1146 	switch (type) {
1147 	/* these events purge the queue */
1148 	case GADGETFS_DISCONNECT:
1149 		if (dev->state == STATE_DEV_SETUP)
1150 			dev->setup_abort = 1;
1151 		// FALL THROUGH
1152 	case GADGETFS_CONNECT:
1153 		dev->ev_next = 0;
1154 		break;
1155 	case GADGETFS_SETUP:		/* previous request timed out */
1156 	case GADGETFS_SUSPEND:		/* same effect */
1157 		/* these events can't be repeated */
1158 		for (i = 0; i != dev->ev_next; i++) {
1159 			if (dev->event [i].type != type)
1160 				continue;
1161 			DBG(dev, "discard old event[%d] %d\n", i, type);
1162 			dev->ev_next--;
1163 			if (i == dev->ev_next)
1164 				break;
1165 			/* indices start at zero, for simplicity */
1166 			memmove (&dev->event [i], &dev->event [i + 1],
1167 				sizeof (struct usb_gadgetfs_event)
1168 					* (dev->ev_next - i));
1169 		}
1170 		break;
1171 	default:
1172 		BUG ();
1173 	}
1174 	VDEBUG(dev, "event[%d] = %d\n", dev->ev_next, type);
1175 	event = &dev->event [dev->ev_next++];
1176 	BUG_ON (dev->ev_next > N_EVENT);
1177 	memset (event, 0, sizeof *event);
1178 	event->type = type;
1179 	return event;
1180 }
1181 
1182 static ssize_t
1183 ep0_write (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1184 {
1185 	struct dev_data		*dev = fd->private_data;
1186 	ssize_t			retval = -ESRCH;
1187 
1188 	spin_lock_irq (&dev->lock);
1189 
1190 	/* report fd mode change before acting on it */
1191 	if (dev->setup_abort) {
1192 		dev->setup_abort = 0;
1193 		retval = -EIDRM;
1194 
1195 	/* data and/or status stage for control request */
1196 	} else if (dev->state == STATE_DEV_SETUP) {
1197 
1198 		/* IN DATA+STATUS caller makes len <= wLength */
1199 		if (dev->setup_in) {
1200 			retval = setup_req (dev->gadget->ep0, dev->req, len);
1201 			if (retval == 0) {
1202 				dev->state = STATE_DEV_CONNECTED;
1203 				spin_unlock_irq (&dev->lock);
1204 				if (copy_from_user (dev->req->buf, buf, len))
1205 					retval = -EFAULT;
1206 				else {
1207 					if (len < dev->setup_wLength)
1208 						dev->req->zero = 1;
1209 					retval = usb_ep_queue (
1210 						dev->gadget->ep0, dev->req,
1211 						GFP_KERNEL);
1212 				}
1213 				if (retval < 0) {
1214 					spin_lock_irq (&dev->lock);
1215 					clean_req (dev->gadget->ep0, dev->req);
1216 					spin_unlock_irq (&dev->lock);
1217 				} else
1218 					retval = len;
1219 
1220 				return retval;
1221 			}
1222 
1223 		/* can stall some OUT transfers */
1224 		} else if (dev->setup_can_stall) {
1225 			VDEBUG(dev, "ep0out stall\n");
1226 			(void) usb_ep_set_halt (dev->gadget->ep0);
1227 			retval = -EL2HLT;
1228 			dev->state = STATE_DEV_CONNECTED;
1229 		} else {
1230 			DBG(dev, "bogus ep0out stall!\n");
1231 		}
1232 	} else
1233 		DBG (dev, "fail %s, state %d\n", __func__, dev->state);
1234 
1235 	spin_unlock_irq (&dev->lock);
1236 	return retval;
1237 }
1238 
1239 static int
1240 ep0_fasync (int f, struct file *fd, int on)
1241 {
1242 	struct dev_data		*dev = fd->private_data;
1243 	// caller must F_SETOWN before signal delivery happens
1244 	VDEBUG (dev, "%s %s\n", __func__, on ? "on" : "off");
1245 	return fasync_helper (f, fd, on, &dev->fasync);
1246 }
1247 
1248 static struct usb_gadget_driver gadgetfs_driver;
1249 
1250 static int
1251 dev_release (struct inode *inode, struct file *fd)
1252 {
1253 	struct dev_data		*dev = fd->private_data;
1254 
1255 	/* closing ep0 === shutdown all */
1256 
1257 	usb_gadget_unregister_driver (&gadgetfs_driver);
1258 
1259 	/* at this point "good" hardware has disconnected the
1260 	 * device from USB; the host won't see it any more.
1261 	 * alternatively, all host requests will time out.
1262 	 */
1263 
1264 	kfree (dev->buf);
1265 	dev->buf = NULL;
1266 
1267 	/* other endpoints were all decoupled from this device */
1268 	spin_lock_irq(&dev->lock);
1269 	dev->state = STATE_DEV_DISABLED;
1270 	spin_unlock_irq(&dev->lock);
1271 
1272 	put_dev (dev);
1273 	return 0;
1274 }
1275 
1276 static unsigned int
1277 ep0_poll (struct file *fd, poll_table *wait)
1278 {
1279        struct dev_data         *dev = fd->private_data;
1280        int                     mask = 0;
1281 
1282        poll_wait(fd, &dev->wait, wait);
1283 
1284        spin_lock_irq (&dev->lock);
1285 
1286        /* report fd mode change before acting on it */
1287        if (dev->setup_abort) {
1288                dev->setup_abort = 0;
1289                mask = POLLHUP;
1290                goto out;
1291        }
1292 
1293        if (dev->state == STATE_DEV_SETUP) {
1294                if (dev->setup_in || dev->setup_can_stall)
1295                        mask = POLLOUT;
1296        } else {
1297                if (dev->ev_next != 0)
1298                        mask = POLLIN;
1299        }
1300 out:
1301        spin_unlock_irq(&dev->lock);
1302        return mask;
1303 }
1304 
1305 static long dev_ioctl (struct file *fd, unsigned code, unsigned long value)
1306 {
1307 	struct dev_data		*dev = fd->private_data;
1308 	struct usb_gadget	*gadget = dev->gadget;
1309 	long ret = -ENOTTY;
1310 
1311 	if (gadget->ops->ioctl)
1312 		ret = gadget->ops->ioctl (gadget, code, value);
1313 
1314 	return ret;
1315 }
1316 
1317 /* used after device configuration */
1318 static const struct file_operations ep0_io_operations = {
1319 	.owner =	THIS_MODULE,
1320 	.llseek =	no_llseek,
1321 
1322 	.read =		ep0_read,
1323 	.write =	ep0_write,
1324 	.fasync =	ep0_fasync,
1325 	.poll =		ep0_poll,
1326 	.unlocked_ioctl =	dev_ioctl,
1327 	.release =	dev_release,
1328 };
1329 
1330 /*----------------------------------------------------------------------*/
1331 
1332 /* The in-kernel gadget driver handles most ep0 issues, in particular
1333  * enumerating the single configuration (as provided from user space).
1334  *
1335  * Unrecognized ep0 requests may be handled in user space.
1336  */
1337 
1338 static void make_qualifier (struct dev_data *dev)
1339 {
1340 	struct usb_qualifier_descriptor		qual;
1341 	struct usb_device_descriptor		*desc;
1342 
1343 	qual.bLength = sizeof qual;
1344 	qual.bDescriptorType = USB_DT_DEVICE_QUALIFIER;
1345 	qual.bcdUSB = cpu_to_le16 (0x0200);
1346 
1347 	desc = dev->dev;
1348 	qual.bDeviceClass = desc->bDeviceClass;
1349 	qual.bDeviceSubClass = desc->bDeviceSubClass;
1350 	qual.bDeviceProtocol = desc->bDeviceProtocol;
1351 
1352 	/* assumes ep0 uses the same value for both speeds ... */
1353 	qual.bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1354 
1355 	qual.bNumConfigurations = 1;
1356 	qual.bRESERVED = 0;
1357 
1358 	memcpy (dev->rbuf, &qual, sizeof qual);
1359 }
1360 
1361 static int
1362 config_buf (struct dev_data *dev, u8 type, unsigned index)
1363 {
1364 	int		len;
1365 	int		hs = 0;
1366 
1367 	/* only one configuration */
1368 	if (index > 0)
1369 		return -EINVAL;
1370 
1371 	if (gadget_is_dualspeed(dev->gadget)) {
1372 		hs = (dev->gadget->speed == USB_SPEED_HIGH);
1373 		if (type == USB_DT_OTHER_SPEED_CONFIG)
1374 			hs = !hs;
1375 	}
1376 	if (hs) {
1377 		dev->req->buf = dev->hs_config;
1378 		len = le16_to_cpu(dev->hs_config->wTotalLength);
1379 	} else {
1380 		dev->req->buf = dev->config;
1381 		len = le16_to_cpu(dev->config->wTotalLength);
1382 	}
1383 	((u8 *)dev->req->buf) [1] = type;
1384 	return len;
1385 }
1386 
1387 static int
1388 gadgetfs_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
1389 {
1390 	struct dev_data			*dev = get_gadget_data (gadget);
1391 	struct usb_request		*req = dev->req;
1392 	int				value = -EOPNOTSUPP;
1393 	struct usb_gadgetfs_event	*event;
1394 	u16				w_value = le16_to_cpu(ctrl->wValue);
1395 	u16				w_length = le16_to_cpu(ctrl->wLength);
1396 
1397 	spin_lock (&dev->lock);
1398 	dev->setup_abort = 0;
1399 	if (dev->state == STATE_DEV_UNCONNECTED) {
1400 		if (gadget_is_dualspeed(gadget)
1401 				&& gadget->speed == USB_SPEED_HIGH
1402 				&& dev->hs_config == NULL) {
1403 			spin_unlock(&dev->lock);
1404 			ERROR (dev, "no high speed config??\n");
1405 			return -EINVAL;
1406 		}
1407 
1408 		dev->state = STATE_DEV_CONNECTED;
1409 
1410 		INFO (dev, "connected\n");
1411 		event = next_event (dev, GADGETFS_CONNECT);
1412 		event->u.speed = gadget->speed;
1413 		ep0_readable (dev);
1414 
1415 	/* host may have given up waiting for response.  we can miss control
1416 	 * requests handled lower down (device/endpoint status and features);
1417 	 * then ep0_{read,write} will report the wrong status. controller
1418 	 * driver will have aborted pending i/o.
1419 	 */
1420 	} else if (dev->state == STATE_DEV_SETUP)
1421 		dev->setup_abort = 1;
1422 
1423 	req->buf = dev->rbuf;
1424 	req->context = NULL;
1425 	value = -EOPNOTSUPP;
1426 	switch (ctrl->bRequest) {
1427 
1428 	case USB_REQ_GET_DESCRIPTOR:
1429 		if (ctrl->bRequestType != USB_DIR_IN)
1430 			goto unrecognized;
1431 		switch (w_value >> 8) {
1432 
1433 		case USB_DT_DEVICE:
1434 			value = min (w_length, (u16) sizeof *dev->dev);
1435 			dev->dev->bMaxPacketSize0 = dev->gadget->ep0->maxpacket;
1436 			req->buf = dev->dev;
1437 			break;
1438 		case USB_DT_DEVICE_QUALIFIER:
1439 			if (!dev->hs_config)
1440 				break;
1441 			value = min (w_length, (u16)
1442 				sizeof (struct usb_qualifier_descriptor));
1443 			make_qualifier (dev);
1444 			break;
1445 		case USB_DT_OTHER_SPEED_CONFIG:
1446 			// FALLTHROUGH
1447 		case USB_DT_CONFIG:
1448 			value = config_buf (dev,
1449 					w_value >> 8,
1450 					w_value & 0xff);
1451 			if (value >= 0)
1452 				value = min (w_length, (u16) value);
1453 			break;
1454 		case USB_DT_STRING:
1455 			goto unrecognized;
1456 
1457 		default:		// all others are errors
1458 			break;
1459 		}
1460 		break;
1461 
1462 	/* currently one config, two speeds */
1463 	case USB_REQ_SET_CONFIGURATION:
1464 		if (ctrl->bRequestType != 0)
1465 			goto unrecognized;
1466 		if (0 == (u8) w_value) {
1467 			value = 0;
1468 			dev->current_config = 0;
1469 			usb_gadget_vbus_draw(gadget, 8 /* mA */ );
1470 			// user mode expected to disable endpoints
1471 		} else {
1472 			u8	config, power;
1473 
1474 			if (gadget_is_dualspeed(gadget)
1475 					&& gadget->speed == USB_SPEED_HIGH) {
1476 				config = dev->hs_config->bConfigurationValue;
1477 				power = dev->hs_config->bMaxPower;
1478 			} else {
1479 				config = dev->config->bConfigurationValue;
1480 				power = dev->config->bMaxPower;
1481 			}
1482 
1483 			if (config == (u8) w_value) {
1484 				value = 0;
1485 				dev->current_config = config;
1486 				usb_gadget_vbus_draw(gadget, 2 * power);
1487 			}
1488 		}
1489 
1490 		/* report SET_CONFIGURATION like any other control request,
1491 		 * except that usermode may not stall this.  the next
1492 		 * request mustn't be allowed start until this finishes:
1493 		 * endpoints and threads set up, etc.
1494 		 *
1495 		 * NOTE:  older PXA hardware (before PXA 255: without UDCCFR)
1496 		 * has bad/racey automagic that prevents synchronizing here.
1497 		 * even kernel mode drivers often miss them.
1498 		 */
1499 		if (value == 0) {
1500 			INFO (dev, "configuration #%d\n", dev->current_config);
1501 			usb_gadget_set_state(gadget, USB_STATE_CONFIGURED);
1502 			if (dev->usermode_setup) {
1503 				dev->setup_can_stall = 0;
1504 				goto delegate;
1505 			}
1506 		}
1507 		break;
1508 
1509 #ifndef	CONFIG_USB_PXA25X
1510 	/* PXA automagically handles this request too */
1511 	case USB_REQ_GET_CONFIGURATION:
1512 		if (ctrl->bRequestType != 0x80)
1513 			goto unrecognized;
1514 		*(u8 *)req->buf = dev->current_config;
1515 		value = min (w_length, (u16) 1);
1516 		break;
1517 #endif
1518 
1519 	default:
1520 unrecognized:
1521 		VDEBUG (dev, "%s req%02x.%02x v%04x i%04x l%d\n",
1522 			dev->usermode_setup ? "delegate" : "fail",
1523 			ctrl->bRequestType, ctrl->bRequest,
1524 			w_value, le16_to_cpu(ctrl->wIndex), w_length);
1525 
1526 		/* if there's an ep0 reader, don't stall */
1527 		if (dev->usermode_setup) {
1528 			dev->setup_can_stall = 1;
1529 delegate:
1530 			dev->setup_in = (ctrl->bRequestType & USB_DIR_IN)
1531 						? 1 : 0;
1532 			dev->setup_wLength = w_length;
1533 			dev->setup_out_ready = 0;
1534 			dev->setup_out_error = 0;
1535 			value = 0;
1536 
1537 			/* read DATA stage for OUT right away */
1538 			if (unlikely (!dev->setup_in && w_length)) {
1539 				value = setup_req (gadget->ep0, dev->req,
1540 							w_length);
1541 				if (value < 0)
1542 					break;
1543 				value = usb_ep_queue (gadget->ep0, dev->req,
1544 							GFP_ATOMIC);
1545 				if (value < 0) {
1546 					clean_req (gadget->ep0, dev->req);
1547 					break;
1548 				}
1549 
1550 				/* we can't currently stall these */
1551 				dev->setup_can_stall = 0;
1552 			}
1553 
1554 			/* state changes when reader collects event */
1555 			event = next_event (dev, GADGETFS_SETUP);
1556 			event->u.setup = *ctrl;
1557 			ep0_readable (dev);
1558 			spin_unlock (&dev->lock);
1559 			return 0;
1560 		}
1561 	}
1562 
1563 	/* proceed with data transfer and status phases? */
1564 	if (value >= 0 && dev->state != STATE_DEV_SETUP) {
1565 		req->length = value;
1566 		req->zero = value < w_length;
1567 		value = usb_ep_queue (gadget->ep0, req, GFP_ATOMIC);
1568 		if (value < 0) {
1569 			DBG (dev, "ep_queue --> %d\n", value);
1570 			req->status = 0;
1571 		}
1572 	}
1573 
1574 	/* device stalls when value < 0 */
1575 	spin_unlock (&dev->lock);
1576 	return value;
1577 }
1578 
1579 static void destroy_ep_files (struct dev_data *dev)
1580 {
1581 	DBG (dev, "%s %d\n", __func__, dev->state);
1582 
1583 	/* dev->state must prevent interference */
1584 	spin_lock_irq (&dev->lock);
1585 	while (!list_empty(&dev->epfiles)) {
1586 		struct ep_data	*ep;
1587 		struct inode	*parent;
1588 		struct dentry	*dentry;
1589 
1590 		/* break link to FS */
1591 		ep = list_first_entry (&dev->epfiles, struct ep_data, epfiles);
1592 		list_del_init (&ep->epfiles);
1593 		dentry = ep->dentry;
1594 		ep->dentry = NULL;
1595 		parent = dentry->d_parent->d_inode;
1596 
1597 		/* break link to controller */
1598 		if (ep->state == STATE_EP_ENABLED)
1599 			(void) usb_ep_disable (ep->ep);
1600 		ep->state = STATE_EP_UNBOUND;
1601 		usb_ep_free_request (ep->ep, ep->req);
1602 		ep->ep = NULL;
1603 		wake_up (&ep->wait);
1604 		put_ep (ep);
1605 
1606 		spin_unlock_irq (&dev->lock);
1607 
1608 		/* break link to dcache */
1609 		mutex_lock (&parent->i_mutex);
1610 		d_delete (dentry);
1611 		dput (dentry);
1612 		mutex_unlock (&parent->i_mutex);
1613 
1614 		spin_lock_irq (&dev->lock);
1615 	}
1616 	spin_unlock_irq (&dev->lock);
1617 }
1618 
1619 
1620 static struct dentry *
1621 gadgetfs_create_file (struct super_block *sb, char const *name,
1622 		void *data, const struct file_operations *fops);
1623 
1624 static int activate_ep_files (struct dev_data *dev)
1625 {
1626 	struct usb_ep	*ep;
1627 	struct ep_data	*data;
1628 
1629 	gadget_for_each_ep (ep, dev->gadget) {
1630 
1631 		data = kzalloc(sizeof(*data), GFP_KERNEL);
1632 		if (!data)
1633 			goto enomem0;
1634 		data->state = STATE_EP_DISABLED;
1635 		mutex_init(&data->lock);
1636 		init_waitqueue_head (&data->wait);
1637 
1638 		strncpy (data->name, ep->name, sizeof (data->name) - 1);
1639 		atomic_set (&data->count, 1);
1640 		data->dev = dev;
1641 		get_dev (dev);
1642 
1643 		data->ep = ep;
1644 		ep->driver_data = data;
1645 
1646 		data->req = usb_ep_alloc_request (ep, GFP_KERNEL);
1647 		if (!data->req)
1648 			goto enomem1;
1649 
1650 		data->dentry = gadgetfs_create_file (dev->sb, data->name,
1651 				data, &ep_config_operations);
1652 		if (!data->dentry)
1653 			goto enomem2;
1654 		list_add_tail (&data->epfiles, &dev->epfiles);
1655 	}
1656 	return 0;
1657 
1658 enomem2:
1659 	usb_ep_free_request (ep, data->req);
1660 enomem1:
1661 	put_dev (dev);
1662 	kfree (data);
1663 enomem0:
1664 	DBG (dev, "%s enomem\n", __func__);
1665 	destroy_ep_files (dev);
1666 	return -ENOMEM;
1667 }
1668 
1669 static void
1670 gadgetfs_unbind (struct usb_gadget *gadget)
1671 {
1672 	struct dev_data		*dev = get_gadget_data (gadget);
1673 
1674 	DBG (dev, "%s\n", __func__);
1675 
1676 	spin_lock_irq (&dev->lock);
1677 	dev->state = STATE_DEV_UNBOUND;
1678 	spin_unlock_irq (&dev->lock);
1679 
1680 	destroy_ep_files (dev);
1681 	gadget->ep0->driver_data = NULL;
1682 	set_gadget_data (gadget, NULL);
1683 
1684 	/* we've already been disconnected ... no i/o is active */
1685 	if (dev->req)
1686 		usb_ep_free_request (gadget->ep0, dev->req);
1687 	DBG (dev, "%s done\n", __func__);
1688 	put_dev (dev);
1689 }
1690 
1691 static struct dev_data		*the_device;
1692 
1693 static int gadgetfs_bind(struct usb_gadget *gadget,
1694 		struct usb_gadget_driver *driver)
1695 {
1696 	struct dev_data		*dev = the_device;
1697 
1698 	if (!dev)
1699 		return -ESRCH;
1700 	if (0 != strcmp (CHIP, gadget->name)) {
1701 		pr_err("%s expected %s controller not %s\n",
1702 			shortname, CHIP, gadget->name);
1703 		return -ENODEV;
1704 	}
1705 
1706 	set_gadget_data (gadget, dev);
1707 	dev->gadget = gadget;
1708 	gadget->ep0->driver_data = dev;
1709 
1710 	/* preallocate control response and buffer */
1711 	dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
1712 	if (!dev->req)
1713 		goto enomem;
1714 	dev->req->context = NULL;
1715 	dev->req->complete = epio_complete;
1716 
1717 	if (activate_ep_files (dev) < 0)
1718 		goto enomem;
1719 
1720 	INFO (dev, "bound to %s driver\n", gadget->name);
1721 	spin_lock_irq(&dev->lock);
1722 	dev->state = STATE_DEV_UNCONNECTED;
1723 	spin_unlock_irq(&dev->lock);
1724 	get_dev (dev);
1725 	return 0;
1726 
1727 enomem:
1728 	gadgetfs_unbind (gadget);
1729 	return -ENOMEM;
1730 }
1731 
1732 static void
1733 gadgetfs_disconnect (struct usb_gadget *gadget)
1734 {
1735 	struct dev_data		*dev = get_gadget_data (gadget);
1736 	unsigned long		flags;
1737 
1738 	spin_lock_irqsave (&dev->lock, flags);
1739 	if (dev->state == STATE_DEV_UNCONNECTED)
1740 		goto exit;
1741 	dev->state = STATE_DEV_UNCONNECTED;
1742 
1743 	INFO (dev, "disconnected\n");
1744 	next_event (dev, GADGETFS_DISCONNECT);
1745 	ep0_readable (dev);
1746 exit:
1747 	spin_unlock_irqrestore (&dev->lock, flags);
1748 }
1749 
1750 static void
1751 gadgetfs_suspend (struct usb_gadget *gadget)
1752 {
1753 	struct dev_data		*dev = get_gadget_data (gadget);
1754 
1755 	INFO (dev, "suspended from state %d\n", dev->state);
1756 	spin_lock (&dev->lock);
1757 	switch (dev->state) {
1758 	case STATE_DEV_SETUP:		// VERY odd... host died??
1759 	case STATE_DEV_CONNECTED:
1760 	case STATE_DEV_UNCONNECTED:
1761 		next_event (dev, GADGETFS_SUSPEND);
1762 		ep0_readable (dev);
1763 		/* FALLTHROUGH */
1764 	default:
1765 		break;
1766 	}
1767 	spin_unlock (&dev->lock);
1768 }
1769 
1770 static struct usb_gadget_driver gadgetfs_driver = {
1771 	.function	= (char *) driver_desc,
1772 	.bind		= gadgetfs_bind,
1773 	.unbind		= gadgetfs_unbind,
1774 	.setup		= gadgetfs_setup,
1775 	.reset		= gadgetfs_disconnect,
1776 	.disconnect	= gadgetfs_disconnect,
1777 	.suspend	= gadgetfs_suspend,
1778 
1779 	.driver	= {
1780 		.name		= (char *) shortname,
1781 	},
1782 };
1783 
1784 /*----------------------------------------------------------------------*/
1785 
1786 static void gadgetfs_nop(struct usb_gadget *arg) { }
1787 
1788 static int gadgetfs_probe(struct usb_gadget *gadget,
1789 		struct usb_gadget_driver *driver)
1790 {
1791 	CHIP = gadget->name;
1792 	return -EISNAM;
1793 }
1794 
1795 static struct usb_gadget_driver probe_driver = {
1796 	.max_speed	= USB_SPEED_HIGH,
1797 	.bind		= gadgetfs_probe,
1798 	.unbind		= gadgetfs_nop,
1799 	.setup		= (void *)gadgetfs_nop,
1800 	.disconnect	= gadgetfs_nop,
1801 	.driver	= {
1802 		.name		= "nop",
1803 	},
1804 };
1805 
1806 
1807 /* DEVICE INITIALIZATION
1808  *
1809  *     fd = open ("/dev/gadget/$CHIP", O_RDWR)
1810  *     status = write (fd, descriptors, sizeof descriptors)
1811  *
1812  * That write establishes the device configuration, so the kernel can
1813  * bind to the controller ... guaranteeing it can handle enumeration
1814  * at all necessary speeds.  Descriptor order is:
1815  *
1816  * . message tag (u32, host order) ... for now, must be zero; it
1817  *	would change to support features like multi-config devices
1818  * . full/low speed config ... all wTotalLength bytes (with interface,
1819  *	class, altsetting, endpoint, and other descriptors)
1820  * . high speed config ... all descriptors, for high speed operation;
1821  *	this one's optional except for high-speed hardware
1822  * . device descriptor
1823  *
1824  * Endpoints are not yet enabled. Drivers must wait until device
1825  * configuration and interface altsetting changes create
1826  * the need to configure (or unconfigure) them.
1827  *
1828  * After initialization, the device stays active for as long as that
1829  * $CHIP file is open.  Events must then be read from that descriptor,
1830  * such as configuration notifications.
1831  */
1832 
1833 static int is_valid_config (struct usb_config_descriptor *config)
1834 {
1835 	return config->bDescriptorType == USB_DT_CONFIG
1836 		&& config->bLength == USB_DT_CONFIG_SIZE
1837 		&& config->bConfigurationValue != 0
1838 		&& (config->bmAttributes & USB_CONFIG_ATT_ONE) != 0
1839 		&& (config->bmAttributes & USB_CONFIG_ATT_WAKEUP) == 0;
1840 	/* FIXME if gadget->is_otg, _must_ include an otg descriptor */
1841 	/* FIXME check lengths: walk to end */
1842 }
1843 
1844 static ssize_t
1845 dev_config (struct file *fd, const char __user *buf, size_t len, loff_t *ptr)
1846 {
1847 	struct dev_data		*dev = fd->private_data;
1848 	ssize_t			value = len, length = len;
1849 	unsigned		total;
1850 	u32			tag;
1851 	char			*kbuf;
1852 
1853 	if (len < (USB_DT_CONFIG_SIZE + USB_DT_DEVICE_SIZE + 4))
1854 		return -EINVAL;
1855 
1856 	/* we might need to change message format someday */
1857 	if (copy_from_user (&tag, buf, 4))
1858 		return -EFAULT;
1859 	if (tag != 0)
1860 		return -EINVAL;
1861 	buf += 4;
1862 	length -= 4;
1863 
1864 	kbuf = memdup_user(buf, length);
1865 	if (IS_ERR(kbuf))
1866 		return PTR_ERR(kbuf);
1867 
1868 	spin_lock_irq (&dev->lock);
1869 	value = -EINVAL;
1870 	if (dev->buf)
1871 		goto fail;
1872 	dev->buf = kbuf;
1873 
1874 	/* full or low speed config */
1875 	dev->config = (void *) kbuf;
1876 	total = le16_to_cpu(dev->config->wTotalLength);
1877 	if (!is_valid_config (dev->config) || total >= length)
1878 		goto fail;
1879 	kbuf += total;
1880 	length -= total;
1881 
1882 	/* optional high speed config */
1883 	if (kbuf [1] == USB_DT_CONFIG) {
1884 		dev->hs_config = (void *) kbuf;
1885 		total = le16_to_cpu(dev->hs_config->wTotalLength);
1886 		if (!is_valid_config (dev->hs_config) || total >= length)
1887 			goto fail;
1888 		kbuf += total;
1889 		length -= total;
1890 	}
1891 
1892 	/* could support multiple configs, using another encoding! */
1893 
1894 	/* device descriptor (tweaked for paranoia) */
1895 	if (length != USB_DT_DEVICE_SIZE)
1896 		goto fail;
1897 	dev->dev = (void *)kbuf;
1898 	if (dev->dev->bLength != USB_DT_DEVICE_SIZE
1899 			|| dev->dev->bDescriptorType != USB_DT_DEVICE
1900 			|| dev->dev->bNumConfigurations != 1)
1901 		goto fail;
1902 	dev->dev->bNumConfigurations = 1;
1903 	dev->dev->bcdUSB = cpu_to_le16 (0x0200);
1904 
1905 	/* triggers gadgetfs_bind(); then we can enumerate. */
1906 	spin_unlock_irq (&dev->lock);
1907 	if (dev->hs_config)
1908 		gadgetfs_driver.max_speed = USB_SPEED_HIGH;
1909 	else
1910 		gadgetfs_driver.max_speed = USB_SPEED_FULL;
1911 
1912 	value = usb_gadget_probe_driver(&gadgetfs_driver);
1913 	if (value != 0) {
1914 		kfree (dev->buf);
1915 		dev->buf = NULL;
1916 	} else {
1917 		/* at this point "good" hardware has for the first time
1918 		 * let the USB the host see us.  alternatively, if users
1919 		 * unplug/replug that will clear all the error state.
1920 		 *
1921 		 * note:  everything running before here was guaranteed
1922 		 * to choke driver model style diagnostics.  from here
1923 		 * on, they can work ... except in cleanup paths that
1924 		 * kick in after the ep0 descriptor is closed.
1925 		 */
1926 		fd->f_op = &ep0_io_operations;
1927 		value = len;
1928 	}
1929 	return value;
1930 
1931 fail:
1932 	spin_unlock_irq (&dev->lock);
1933 	pr_debug ("%s: %s fail %Zd, %p\n", shortname, __func__, value, dev);
1934 	kfree (dev->buf);
1935 	dev->buf = NULL;
1936 	return value;
1937 }
1938 
1939 static int
1940 dev_open (struct inode *inode, struct file *fd)
1941 {
1942 	struct dev_data		*dev = inode->i_private;
1943 	int			value = -EBUSY;
1944 
1945 	spin_lock_irq(&dev->lock);
1946 	if (dev->state == STATE_DEV_DISABLED) {
1947 		dev->ev_next = 0;
1948 		dev->state = STATE_DEV_OPENED;
1949 		fd->private_data = dev;
1950 		get_dev (dev);
1951 		value = 0;
1952 	}
1953 	spin_unlock_irq(&dev->lock);
1954 	return value;
1955 }
1956 
1957 static const struct file_operations dev_init_operations = {
1958 	.llseek =	no_llseek,
1959 
1960 	.open =		dev_open,
1961 	.write =	dev_config,
1962 	.fasync =	ep0_fasync,
1963 	.unlocked_ioctl = dev_ioctl,
1964 	.release =	dev_release,
1965 };
1966 
1967 /*----------------------------------------------------------------------*/
1968 
1969 /* FILESYSTEM AND SUPERBLOCK OPERATIONS
1970  *
1971  * Mounting the filesystem creates a controller file, used first for
1972  * device configuration then later for event monitoring.
1973  */
1974 
1975 
1976 /* FIXME PAM etc could set this security policy without mount options
1977  * if epfiles inherited ownership and permissons from ep0 ...
1978  */
1979 
1980 static unsigned default_uid;
1981 static unsigned default_gid;
1982 static unsigned default_perm = S_IRUSR | S_IWUSR;
1983 
1984 module_param (default_uid, uint, 0644);
1985 module_param (default_gid, uint, 0644);
1986 module_param (default_perm, uint, 0644);
1987 
1988 
1989 static struct inode *
1990 gadgetfs_make_inode (struct super_block *sb,
1991 		void *data, const struct file_operations *fops,
1992 		int mode)
1993 {
1994 	struct inode *inode = new_inode (sb);
1995 
1996 	if (inode) {
1997 		inode->i_ino = get_next_ino();
1998 		inode->i_mode = mode;
1999 		inode->i_uid = make_kuid(&init_user_ns, default_uid);
2000 		inode->i_gid = make_kgid(&init_user_ns, default_gid);
2001 		inode->i_atime = inode->i_mtime = inode->i_ctime
2002 				= CURRENT_TIME;
2003 		inode->i_private = data;
2004 		inode->i_fop = fops;
2005 	}
2006 	return inode;
2007 }
2008 
2009 /* creates in fs root directory, so non-renamable and non-linkable.
2010  * so inode and dentry are paired, until device reconfig.
2011  */
2012 static struct dentry *
2013 gadgetfs_create_file (struct super_block *sb, char const *name,
2014 		void *data, const struct file_operations *fops)
2015 {
2016 	struct dentry	*dentry;
2017 	struct inode	*inode;
2018 
2019 	dentry = d_alloc_name(sb->s_root, name);
2020 	if (!dentry)
2021 		return NULL;
2022 
2023 	inode = gadgetfs_make_inode (sb, data, fops,
2024 			S_IFREG | (default_perm & S_IRWXUGO));
2025 	if (!inode) {
2026 		dput(dentry);
2027 		return NULL;
2028 	}
2029 	d_add (dentry, inode);
2030 	return dentry;
2031 }
2032 
2033 static const struct super_operations gadget_fs_operations = {
2034 	.statfs =	simple_statfs,
2035 	.drop_inode =	generic_delete_inode,
2036 };
2037 
2038 static int
2039 gadgetfs_fill_super (struct super_block *sb, void *opts, int silent)
2040 {
2041 	struct inode	*inode;
2042 	struct dev_data	*dev;
2043 
2044 	if (the_device)
2045 		return -ESRCH;
2046 
2047 	/* fake probe to determine $CHIP */
2048 	CHIP = NULL;
2049 	usb_gadget_probe_driver(&probe_driver);
2050 	if (!CHIP)
2051 		return -ENODEV;
2052 
2053 	/* superblock */
2054 	sb->s_blocksize = PAGE_CACHE_SIZE;
2055 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
2056 	sb->s_magic = GADGETFS_MAGIC;
2057 	sb->s_op = &gadget_fs_operations;
2058 	sb->s_time_gran = 1;
2059 
2060 	/* root inode */
2061 	inode = gadgetfs_make_inode (sb,
2062 			NULL, &simple_dir_operations,
2063 			S_IFDIR | S_IRUGO | S_IXUGO);
2064 	if (!inode)
2065 		goto Enomem;
2066 	inode->i_op = &simple_dir_inode_operations;
2067 	if (!(sb->s_root = d_make_root (inode)))
2068 		goto Enomem;
2069 
2070 	/* the ep0 file is named after the controller we expect;
2071 	 * user mode code can use it for sanity checks, like we do.
2072 	 */
2073 	dev = dev_new ();
2074 	if (!dev)
2075 		goto Enomem;
2076 
2077 	dev->sb = sb;
2078 	dev->dentry = gadgetfs_create_file(sb, CHIP, dev, &dev_init_operations);
2079 	if (!dev->dentry) {
2080 		put_dev(dev);
2081 		goto Enomem;
2082 	}
2083 
2084 	/* other endpoint files are available after hardware setup,
2085 	 * from binding to a controller.
2086 	 */
2087 	the_device = dev;
2088 	return 0;
2089 
2090 Enomem:
2091 	return -ENOMEM;
2092 }
2093 
2094 /* "mount -t gadgetfs path /dev/gadget" ends up here */
2095 static struct dentry *
2096 gadgetfs_mount (struct file_system_type *t, int flags,
2097 		const char *path, void *opts)
2098 {
2099 	return mount_single (t, flags, opts, gadgetfs_fill_super);
2100 }
2101 
2102 static void
2103 gadgetfs_kill_sb (struct super_block *sb)
2104 {
2105 	kill_litter_super (sb);
2106 	if (the_device) {
2107 		put_dev (the_device);
2108 		the_device = NULL;
2109 	}
2110 }
2111 
2112 /*----------------------------------------------------------------------*/
2113 
2114 static struct file_system_type gadgetfs_type = {
2115 	.owner		= THIS_MODULE,
2116 	.name		= shortname,
2117 	.mount		= gadgetfs_mount,
2118 	.kill_sb	= gadgetfs_kill_sb,
2119 };
2120 MODULE_ALIAS_FS("gadgetfs");
2121 
2122 /*----------------------------------------------------------------------*/
2123 
2124 static int __init init (void)
2125 {
2126 	int status;
2127 
2128 	status = register_filesystem (&gadgetfs_type);
2129 	if (status == 0)
2130 		pr_info ("%s: %s, version " DRIVER_VERSION "\n",
2131 			shortname, driver_desc);
2132 	return status;
2133 }
2134 module_init (init);
2135 
2136 static void __exit cleanup (void)
2137 {
2138 	pr_debug ("unregister %s\n", shortname);
2139 	unregister_filesystem (&gadgetfs_type);
2140 }
2141 module_exit (cleanup);
2142 
2143