xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 7051924f771722c6dd235e693742cda6488ac700)
1 /*
2  * f_fs.c -- user mode file system API for USB composite function controllers
3  *
4  * Copyright (C) 2010 Samsung Electronics
5  * Author: Michal Nazarewicz <mina86@mina86.com>
6  *
7  * Based on inode.c (GadgetFS) which was:
8  * Copyright (C) 2003-2004 David Brownell
9  * Copyright (C) 2003 Agilent Technologies
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  */
16 
17 
18 /* #define DEBUG */
19 /* #define VERBOSE_DEBUG */
20 
21 #include <linux/blkdev.h>
22 #include <linux/pagemap.h>
23 #include <linux/export.h>
24 #include <linux/hid.h>
25 #include <linux/module.h>
26 #include <asm/unaligned.h>
27 
28 #include <linux/usb/composite.h>
29 #include <linux/usb/functionfs.h>
30 
31 #include <linux/aio.h>
32 #include <linux/mmu_context.h>
33 #include <linux/poll.h>
34 
35 #include "u_fs.h"
36 #include "u_f.h"
37 #include "u_os_desc.h"
38 #include "configfs.h"
39 
40 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
41 
42 /* Reference counter handling */
43 static void ffs_data_get(struct ffs_data *ffs);
44 static void ffs_data_put(struct ffs_data *ffs);
45 /* Creates new ffs_data object. */
46 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
47 
48 /* Opened counter handling. */
49 static void ffs_data_opened(struct ffs_data *ffs);
50 static void ffs_data_closed(struct ffs_data *ffs);
51 
52 /* Called with ffs->mutex held; take over ownership of data. */
53 static int __must_check
54 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
55 static int __must_check
56 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
57 
58 
59 /* The function structure ***************************************************/
60 
61 struct ffs_ep;
62 
63 struct ffs_function {
64 	struct usb_configuration	*conf;
65 	struct usb_gadget		*gadget;
66 	struct ffs_data			*ffs;
67 
68 	struct ffs_ep			*eps;
69 	u8				eps_revmap[16];
70 	short				*interfaces_nums;
71 
72 	struct usb_function		function;
73 };
74 
75 
76 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
77 {
78 	return container_of(f, struct ffs_function, function);
79 }
80 
81 
82 static inline enum ffs_setup_state
83 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
84 {
85 	return (enum ffs_setup_state)
86 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
87 }
88 
89 
90 static void ffs_func_eps_disable(struct ffs_function *func);
91 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
92 
93 static int ffs_func_bind(struct usb_configuration *,
94 			 struct usb_function *);
95 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
96 static void ffs_func_disable(struct usb_function *);
97 static int ffs_func_setup(struct usb_function *,
98 			  const struct usb_ctrlrequest *);
99 static void ffs_func_suspend(struct usb_function *);
100 static void ffs_func_resume(struct usb_function *);
101 
102 
103 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
104 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
105 
106 
107 /* The endpoints structures *************************************************/
108 
109 struct ffs_ep {
110 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
111 	struct usb_request		*req;	/* P: epfile->mutex */
112 
113 	/* [0]: full speed, [1]: high speed, [2]: super speed */
114 	struct usb_endpoint_descriptor	*descs[3];
115 
116 	u8				num;
117 
118 	int				status;	/* P: epfile->mutex */
119 };
120 
121 struct ffs_epfile {
122 	/* Protects ep->ep and ep->req. */
123 	struct mutex			mutex;
124 	wait_queue_head_t		wait;
125 
126 	struct ffs_data			*ffs;
127 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
128 
129 	struct dentry			*dentry;
130 
131 	char				name[5];
132 
133 	unsigned char			in;	/* P: ffs->eps_lock */
134 	unsigned char			isoc;	/* P: ffs->eps_lock */
135 
136 	unsigned char			_pad;
137 };
138 
139 /*  ffs_io_data structure ***************************************************/
140 
141 struct ffs_io_data {
142 	bool aio;
143 	bool read;
144 
145 	struct kiocb *kiocb;
146 	const struct iovec *iovec;
147 	unsigned long nr_segs;
148 	char __user *buf;
149 	size_t len;
150 
151 	struct mm_struct *mm;
152 	struct work_struct work;
153 
154 	struct usb_ep *ep;
155 	struct usb_request *req;
156 };
157 
158 struct ffs_desc_helper {
159 	struct ffs_data *ffs;
160 	unsigned interfaces_count;
161 	unsigned eps_count;
162 };
163 
164 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
165 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
166 
167 static struct inode *__must_check
168 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
169 		   const struct file_operations *fops,
170 		   struct dentry **dentry_p);
171 
172 /* Devices management *******************************************************/
173 
174 DEFINE_MUTEX(ffs_lock);
175 EXPORT_SYMBOL_GPL(ffs_lock);
176 
177 static struct ffs_dev *_ffs_find_dev(const char *name);
178 static struct ffs_dev *_ffs_alloc_dev(void);
179 static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
180 static void _ffs_free_dev(struct ffs_dev *dev);
181 static void *ffs_acquire_dev(const char *dev_name);
182 static void ffs_release_dev(struct ffs_data *ffs_data);
183 static int ffs_ready(struct ffs_data *ffs);
184 static void ffs_closed(struct ffs_data *ffs);
185 
186 /* Misc helper functions ****************************************************/
187 
188 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
189 	__attribute__((warn_unused_result, nonnull));
190 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
191 	__attribute__((warn_unused_result, nonnull));
192 
193 
194 /* Control file aka ep0 *****************************************************/
195 
196 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
197 {
198 	struct ffs_data *ffs = req->context;
199 
200 	complete_all(&ffs->ep0req_completion);
201 }
202 
203 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
204 {
205 	struct usb_request *req = ffs->ep0req;
206 	int ret;
207 
208 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
209 
210 	spin_unlock_irq(&ffs->ev.waitq.lock);
211 
212 	req->buf      = data;
213 	req->length   = len;
214 
215 	/*
216 	 * UDC layer requires to provide a buffer even for ZLP, but should
217 	 * not use it at all. Let's provide some poisoned pointer to catch
218 	 * possible bug in the driver.
219 	 */
220 	if (req->buf == NULL)
221 		req->buf = (void *)0xDEADBABE;
222 
223 	reinit_completion(&ffs->ep0req_completion);
224 
225 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
226 	if (unlikely(ret < 0))
227 		return ret;
228 
229 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
230 	if (unlikely(ret)) {
231 		usb_ep_dequeue(ffs->gadget->ep0, req);
232 		return -EINTR;
233 	}
234 
235 	ffs->setup_state = FFS_NO_SETUP;
236 	return req->status ? req->status : req->actual;
237 }
238 
239 static int __ffs_ep0_stall(struct ffs_data *ffs)
240 {
241 	if (ffs->ev.can_stall) {
242 		pr_vdebug("ep0 stall\n");
243 		usb_ep_set_halt(ffs->gadget->ep0);
244 		ffs->setup_state = FFS_NO_SETUP;
245 		return -EL2HLT;
246 	} else {
247 		pr_debug("bogus ep0 stall!\n");
248 		return -ESRCH;
249 	}
250 }
251 
252 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
253 			     size_t len, loff_t *ptr)
254 {
255 	struct ffs_data *ffs = file->private_data;
256 	ssize_t ret;
257 	char *data;
258 
259 	ENTER();
260 
261 	/* Fast check if setup was canceled */
262 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
263 		return -EIDRM;
264 
265 	/* Acquire mutex */
266 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
267 	if (unlikely(ret < 0))
268 		return ret;
269 
270 	/* Check state */
271 	switch (ffs->state) {
272 	case FFS_READ_DESCRIPTORS:
273 	case FFS_READ_STRINGS:
274 		/* Copy data */
275 		if (unlikely(len < 16)) {
276 			ret = -EINVAL;
277 			break;
278 		}
279 
280 		data = ffs_prepare_buffer(buf, len);
281 		if (IS_ERR(data)) {
282 			ret = PTR_ERR(data);
283 			break;
284 		}
285 
286 		/* Handle data */
287 		if (ffs->state == FFS_READ_DESCRIPTORS) {
288 			pr_info("read descriptors\n");
289 			ret = __ffs_data_got_descs(ffs, data, len);
290 			if (unlikely(ret < 0))
291 				break;
292 
293 			ffs->state = FFS_READ_STRINGS;
294 			ret = len;
295 		} else {
296 			pr_info("read strings\n");
297 			ret = __ffs_data_got_strings(ffs, data, len);
298 			if (unlikely(ret < 0))
299 				break;
300 
301 			ret = ffs_epfiles_create(ffs);
302 			if (unlikely(ret)) {
303 				ffs->state = FFS_CLOSING;
304 				break;
305 			}
306 
307 			ffs->state = FFS_ACTIVE;
308 			mutex_unlock(&ffs->mutex);
309 
310 			ret = ffs_ready(ffs);
311 			if (unlikely(ret < 0)) {
312 				ffs->state = FFS_CLOSING;
313 				return ret;
314 			}
315 
316 			set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
317 			return len;
318 		}
319 		break;
320 
321 	case FFS_ACTIVE:
322 		data = NULL;
323 		/*
324 		 * We're called from user space, we can use _irq
325 		 * rather then _irqsave
326 		 */
327 		spin_lock_irq(&ffs->ev.waitq.lock);
328 		switch (ffs_setup_state_clear_cancelled(ffs)) {
329 		case FFS_SETUP_CANCELLED:
330 			ret = -EIDRM;
331 			goto done_spin;
332 
333 		case FFS_NO_SETUP:
334 			ret = -ESRCH;
335 			goto done_spin;
336 
337 		case FFS_SETUP_PENDING:
338 			break;
339 		}
340 
341 		/* FFS_SETUP_PENDING */
342 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
343 			spin_unlock_irq(&ffs->ev.waitq.lock);
344 			ret = __ffs_ep0_stall(ffs);
345 			break;
346 		}
347 
348 		/* FFS_SETUP_PENDING and not stall */
349 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
350 
351 		spin_unlock_irq(&ffs->ev.waitq.lock);
352 
353 		data = ffs_prepare_buffer(buf, len);
354 		if (IS_ERR(data)) {
355 			ret = PTR_ERR(data);
356 			break;
357 		}
358 
359 		spin_lock_irq(&ffs->ev.waitq.lock);
360 
361 		/*
362 		 * We are guaranteed to be still in FFS_ACTIVE state
363 		 * but the state of setup could have changed from
364 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
365 		 * to check for that.  If that happened we copied data
366 		 * from user space in vain but it's unlikely.
367 		 *
368 		 * For sure we are not in FFS_NO_SETUP since this is
369 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
370 		 * transition can be performed and it's protected by
371 		 * mutex.
372 		 */
373 		if (ffs_setup_state_clear_cancelled(ffs) ==
374 		    FFS_SETUP_CANCELLED) {
375 			ret = -EIDRM;
376 done_spin:
377 			spin_unlock_irq(&ffs->ev.waitq.lock);
378 		} else {
379 			/* unlocks spinlock */
380 			ret = __ffs_ep0_queue_wait(ffs, data, len);
381 		}
382 		kfree(data);
383 		break;
384 
385 	default:
386 		ret = -EBADFD;
387 		break;
388 	}
389 
390 	mutex_unlock(&ffs->mutex);
391 	return ret;
392 }
393 
394 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
395 				     size_t n)
396 {
397 	/*
398 	 * We are holding ffs->ev.waitq.lock and ffs->mutex and we need
399 	 * to release them.
400 	 */
401 	struct usb_functionfs_event events[n];
402 	unsigned i = 0;
403 
404 	memset(events, 0, sizeof events);
405 
406 	do {
407 		events[i].type = ffs->ev.types[i];
408 		if (events[i].type == FUNCTIONFS_SETUP) {
409 			events[i].u.setup = ffs->ev.setup;
410 			ffs->setup_state = FFS_SETUP_PENDING;
411 		}
412 	} while (++i < n);
413 
414 	if (n < ffs->ev.count) {
415 		ffs->ev.count -= n;
416 		memmove(ffs->ev.types, ffs->ev.types + n,
417 			ffs->ev.count * sizeof *ffs->ev.types);
418 	} else {
419 		ffs->ev.count = 0;
420 	}
421 
422 	spin_unlock_irq(&ffs->ev.waitq.lock);
423 	mutex_unlock(&ffs->mutex);
424 
425 	return unlikely(__copy_to_user(buf, events, sizeof events))
426 		? -EFAULT : sizeof events;
427 }
428 
429 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
430 			    size_t len, loff_t *ptr)
431 {
432 	struct ffs_data *ffs = file->private_data;
433 	char *data = NULL;
434 	size_t n;
435 	int ret;
436 
437 	ENTER();
438 
439 	/* Fast check if setup was canceled */
440 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
441 		return -EIDRM;
442 
443 	/* Acquire mutex */
444 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
445 	if (unlikely(ret < 0))
446 		return ret;
447 
448 	/* Check state */
449 	if (ffs->state != FFS_ACTIVE) {
450 		ret = -EBADFD;
451 		goto done_mutex;
452 	}
453 
454 	/*
455 	 * We're called from user space, we can use _irq rather then
456 	 * _irqsave
457 	 */
458 	spin_lock_irq(&ffs->ev.waitq.lock);
459 
460 	switch (ffs_setup_state_clear_cancelled(ffs)) {
461 	case FFS_SETUP_CANCELLED:
462 		ret = -EIDRM;
463 		break;
464 
465 	case FFS_NO_SETUP:
466 		n = len / sizeof(struct usb_functionfs_event);
467 		if (unlikely(!n)) {
468 			ret = -EINVAL;
469 			break;
470 		}
471 
472 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
473 			ret = -EAGAIN;
474 			break;
475 		}
476 
477 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
478 							ffs->ev.count)) {
479 			ret = -EINTR;
480 			break;
481 		}
482 
483 		return __ffs_ep0_read_events(ffs, buf,
484 					     min(n, (size_t)ffs->ev.count));
485 
486 	case FFS_SETUP_PENDING:
487 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
488 			spin_unlock_irq(&ffs->ev.waitq.lock);
489 			ret = __ffs_ep0_stall(ffs);
490 			goto done_mutex;
491 		}
492 
493 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
494 
495 		spin_unlock_irq(&ffs->ev.waitq.lock);
496 
497 		if (likely(len)) {
498 			data = kmalloc(len, GFP_KERNEL);
499 			if (unlikely(!data)) {
500 				ret = -ENOMEM;
501 				goto done_mutex;
502 			}
503 		}
504 
505 		spin_lock_irq(&ffs->ev.waitq.lock);
506 
507 		/* See ffs_ep0_write() */
508 		if (ffs_setup_state_clear_cancelled(ffs) ==
509 		    FFS_SETUP_CANCELLED) {
510 			ret = -EIDRM;
511 			break;
512 		}
513 
514 		/* unlocks spinlock */
515 		ret = __ffs_ep0_queue_wait(ffs, data, len);
516 		if (likely(ret > 0) && unlikely(__copy_to_user(buf, data, len)))
517 			ret = -EFAULT;
518 		goto done_mutex;
519 
520 	default:
521 		ret = -EBADFD;
522 		break;
523 	}
524 
525 	spin_unlock_irq(&ffs->ev.waitq.lock);
526 done_mutex:
527 	mutex_unlock(&ffs->mutex);
528 	kfree(data);
529 	return ret;
530 }
531 
532 static int ffs_ep0_open(struct inode *inode, struct file *file)
533 {
534 	struct ffs_data *ffs = inode->i_private;
535 
536 	ENTER();
537 
538 	if (unlikely(ffs->state == FFS_CLOSING))
539 		return -EBUSY;
540 
541 	file->private_data = ffs;
542 	ffs_data_opened(ffs);
543 
544 	return 0;
545 }
546 
547 static int ffs_ep0_release(struct inode *inode, struct file *file)
548 {
549 	struct ffs_data *ffs = file->private_data;
550 
551 	ENTER();
552 
553 	ffs_data_closed(ffs);
554 
555 	return 0;
556 }
557 
558 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
559 {
560 	struct ffs_data *ffs = file->private_data;
561 	struct usb_gadget *gadget = ffs->gadget;
562 	long ret;
563 
564 	ENTER();
565 
566 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
567 		struct ffs_function *func = ffs->func;
568 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
569 	} else if (gadget && gadget->ops->ioctl) {
570 		ret = gadget->ops->ioctl(gadget, code, value);
571 	} else {
572 		ret = -ENOTTY;
573 	}
574 
575 	return ret;
576 }
577 
578 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
579 {
580 	struct ffs_data *ffs = file->private_data;
581 	unsigned int mask = POLLWRNORM;
582 	int ret;
583 
584 	poll_wait(file, &ffs->ev.waitq, wait);
585 
586 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
587 	if (unlikely(ret < 0))
588 		return mask;
589 
590 	switch (ffs->state) {
591 	case FFS_READ_DESCRIPTORS:
592 	case FFS_READ_STRINGS:
593 		mask |= POLLOUT;
594 		break;
595 
596 	case FFS_ACTIVE:
597 		switch (ffs->setup_state) {
598 		case FFS_NO_SETUP:
599 			if (ffs->ev.count)
600 				mask |= POLLIN;
601 			break;
602 
603 		case FFS_SETUP_PENDING:
604 		case FFS_SETUP_CANCELLED:
605 			mask |= (POLLIN | POLLOUT);
606 			break;
607 		}
608 	case FFS_CLOSING:
609 		break;
610 	}
611 
612 	mutex_unlock(&ffs->mutex);
613 
614 	return mask;
615 }
616 
617 static const struct file_operations ffs_ep0_operations = {
618 	.llseek =	no_llseek,
619 
620 	.open =		ffs_ep0_open,
621 	.write =	ffs_ep0_write,
622 	.read =		ffs_ep0_read,
623 	.release =	ffs_ep0_release,
624 	.unlocked_ioctl =	ffs_ep0_ioctl,
625 	.poll =		ffs_ep0_poll,
626 };
627 
628 
629 /* "Normal" endpoints operations ********************************************/
630 
631 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
632 {
633 	ENTER();
634 	if (likely(req->context)) {
635 		struct ffs_ep *ep = _ep->driver_data;
636 		ep->status = req->status ? req->status : req->actual;
637 		complete(req->context);
638 	}
639 }
640 
641 static void ffs_user_copy_worker(struct work_struct *work)
642 {
643 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
644 						   work);
645 	int ret = io_data->req->status ? io_data->req->status :
646 					 io_data->req->actual;
647 
648 	if (io_data->read && ret > 0) {
649 		int i;
650 		size_t pos = 0;
651 		use_mm(io_data->mm);
652 		for (i = 0; i < io_data->nr_segs; i++) {
653 			if (unlikely(copy_to_user(io_data->iovec[i].iov_base,
654 						 &io_data->buf[pos],
655 						 io_data->iovec[i].iov_len))) {
656 				ret = -EFAULT;
657 				break;
658 			}
659 			pos += io_data->iovec[i].iov_len;
660 		}
661 		unuse_mm(io_data->mm);
662 	}
663 
664 	aio_complete(io_data->kiocb, ret, ret);
665 
666 	usb_ep_free_request(io_data->ep, io_data->req);
667 
668 	io_data->kiocb->private = NULL;
669 	if (io_data->read)
670 		kfree(io_data->iovec);
671 	kfree(io_data->buf);
672 	kfree(io_data);
673 }
674 
675 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
676 					 struct usb_request *req)
677 {
678 	struct ffs_io_data *io_data = req->context;
679 
680 	ENTER();
681 
682 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
683 	schedule_work(&io_data->work);
684 }
685 
686 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
687 {
688 	struct ffs_epfile *epfile = file->private_data;
689 	struct ffs_ep *ep;
690 	char *data = NULL;
691 	ssize_t ret, data_len;
692 	int halt;
693 
694 	/* Are we still active? */
695 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) {
696 		ret = -ENODEV;
697 		goto error;
698 	}
699 
700 	/* Wait for endpoint to be enabled */
701 	ep = epfile->ep;
702 	if (!ep) {
703 		if (file->f_flags & O_NONBLOCK) {
704 			ret = -EAGAIN;
705 			goto error;
706 		}
707 
708 		ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
709 		if (ret) {
710 			ret = -EINTR;
711 			goto error;
712 		}
713 	}
714 
715 	/* Do we halt? */
716 	halt = (!io_data->read == !epfile->in);
717 	if (halt && epfile->isoc) {
718 		ret = -EINVAL;
719 		goto error;
720 	}
721 
722 	/* Allocate & copy */
723 	if (!halt) {
724 		/*
725 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
726 		 * before the waiting completes, so do not assign to 'gadget' earlier
727 		 */
728 		struct usb_gadget *gadget = epfile->ffs->gadget;
729 
730 		spin_lock_irq(&epfile->ffs->eps_lock);
731 		/* In the meantime, endpoint got disabled or changed. */
732 		if (epfile->ep != ep) {
733 			spin_unlock_irq(&epfile->ffs->eps_lock);
734 			return -ESHUTDOWN;
735 		}
736 		/*
737 		 * Controller may require buffer size to be aligned to
738 		 * maxpacketsize of an out endpoint.
739 		 */
740 		data_len = io_data->read ?
741 			   usb_ep_align_maybe(gadget, ep->ep, io_data->len) :
742 			   io_data->len;
743 		spin_unlock_irq(&epfile->ffs->eps_lock);
744 
745 		data = kmalloc(data_len, GFP_KERNEL);
746 		if (unlikely(!data))
747 			return -ENOMEM;
748 		if (io_data->aio && !io_data->read) {
749 			int i;
750 			size_t pos = 0;
751 			for (i = 0; i < io_data->nr_segs; i++) {
752 				if (unlikely(copy_from_user(&data[pos],
753 					     io_data->iovec[i].iov_base,
754 					     io_data->iovec[i].iov_len))) {
755 					ret = -EFAULT;
756 					goto error;
757 				}
758 				pos += io_data->iovec[i].iov_len;
759 			}
760 		} else {
761 			if (!io_data->read &&
762 			    unlikely(__copy_from_user(data, io_data->buf,
763 						      io_data->len))) {
764 				ret = -EFAULT;
765 				goto error;
766 			}
767 		}
768 	}
769 
770 	/* We will be using request */
771 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
772 	if (unlikely(ret))
773 		goto error;
774 
775 	spin_lock_irq(&epfile->ffs->eps_lock);
776 
777 	if (epfile->ep != ep) {
778 		/* In the meantime, endpoint got disabled or changed. */
779 		ret = -ESHUTDOWN;
780 		spin_unlock_irq(&epfile->ffs->eps_lock);
781 	} else if (halt) {
782 		/* Halt */
783 		if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
784 			usb_ep_set_halt(ep->ep);
785 		spin_unlock_irq(&epfile->ffs->eps_lock);
786 		ret = -EBADMSG;
787 	} else {
788 		/* Fire the request */
789 		struct usb_request *req;
790 
791 		if (io_data->aio) {
792 			req = usb_ep_alloc_request(ep->ep, GFP_KERNEL);
793 			if (unlikely(!req))
794 				goto error_lock;
795 
796 			req->buf      = data;
797 			req->length   = io_data->len;
798 
799 			io_data->buf = data;
800 			io_data->ep = ep->ep;
801 			io_data->req = req;
802 
803 			req->context  = io_data;
804 			req->complete = ffs_epfile_async_io_complete;
805 
806 			ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
807 			if (unlikely(ret)) {
808 				usb_ep_free_request(ep->ep, req);
809 				goto error_lock;
810 			}
811 			ret = -EIOCBQUEUED;
812 
813 			spin_unlock_irq(&epfile->ffs->eps_lock);
814 		} else {
815 			DECLARE_COMPLETION_ONSTACK(done);
816 
817 			req = ep->req;
818 			req->buf      = data;
819 			req->length   = io_data->len;
820 
821 			req->context  = &done;
822 			req->complete = ffs_epfile_io_complete;
823 
824 			ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
825 
826 			spin_unlock_irq(&epfile->ffs->eps_lock);
827 
828 			if (unlikely(ret < 0)) {
829 				/* nop */
830 			} else if (unlikely(
831 				   wait_for_completion_interruptible(&done))) {
832 				ret = -EINTR;
833 				usb_ep_dequeue(ep->ep, req);
834 			} else {
835 				/*
836 				 * XXX We may end up silently droping data
837 				 * here.  Since data_len (i.e. req->length) may
838 				 * be bigger than len (after being rounded up
839 				 * to maxpacketsize), we may end up with more
840 				 * data then user space has space for.
841 				 */
842 				ret = ep->status;
843 				if (io_data->read && ret > 0) {
844 					ret = min_t(size_t, ret, io_data->len);
845 
846 					if (unlikely(copy_to_user(io_data->buf,
847 						data, ret)))
848 						ret = -EFAULT;
849 				}
850 			}
851 			kfree(data);
852 		}
853 	}
854 
855 	mutex_unlock(&epfile->mutex);
856 	return ret;
857 
858 error_lock:
859 	spin_unlock_irq(&epfile->ffs->eps_lock);
860 	mutex_unlock(&epfile->mutex);
861 error:
862 	kfree(data);
863 	return ret;
864 }
865 
866 static ssize_t
867 ffs_epfile_write(struct file *file, const char __user *buf, size_t len,
868 		 loff_t *ptr)
869 {
870 	struct ffs_io_data io_data;
871 
872 	ENTER();
873 
874 	io_data.aio = false;
875 	io_data.read = false;
876 	io_data.buf = (char * __user)buf;
877 	io_data.len = len;
878 
879 	return ffs_epfile_io(file, &io_data);
880 }
881 
882 static ssize_t
883 ffs_epfile_read(struct file *file, char __user *buf, size_t len, loff_t *ptr)
884 {
885 	struct ffs_io_data io_data;
886 
887 	ENTER();
888 
889 	io_data.aio = false;
890 	io_data.read = true;
891 	io_data.buf = buf;
892 	io_data.len = len;
893 
894 	return ffs_epfile_io(file, &io_data);
895 }
896 
897 static int
898 ffs_epfile_open(struct inode *inode, struct file *file)
899 {
900 	struct ffs_epfile *epfile = inode->i_private;
901 
902 	ENTER();
903 
904 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
905 		return -ENODEV;
906 
907 	file->private_data = epfile;
908 	ffs_data_opened(epfile->ffs);
909 
910 	return 0;
911 }
912 
913 static int ffs_aio_cancel(struct kiocb *kiocb)
914 {
915 	struct ffs_io_data *io_data = kiocb->private;
916 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
917 	int value;
918 
919 	ENTER();
920 
921 	spin_lock_irq(&epfile->ffs->eps_lock);
922 
923 	if (likely(io_data && io_data->ep && io_data->req))
924 		value = usb_ep_dequeue(io_data->ep, io_data->req);
925 	else
926 		value = -EINVAL;
927 
928 	spin_unlock_irq(&epfile->ffs->eps_lock);
929 
930 	return value;
931 }
932 
933 static ssize_t ffs_epfile_aio_write(struct kiocb *kiocb,
934 				    const struct iovec *iovec,
935 				    unsigned long nr_segs, loff_t loff)
936 {
937 	struct ffs_io_data *io_data;
938 
939 	ENTER();
940 
941 	io_data = kmalloc(sizeof(*io_data), GFP_KERNEL);
942 	if (unlikely(!io_data))
943 		return -ENOMEM;
944 
945 	io_data->aio = true;
946 	io_data->read = false;
947 	io_data->kiocb = kiocb;
948 	io_data->iovec = iovec;
949 	io_data->nr_segs = nr_segs;
950 	io_data->len = kiocb->ki_nbytes;
951 	io_data->mm = current->mm;
952 
953 	kiocb->private = io_data;
954 
955 	kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
956 
957 	return ffs_epfile_io(kiocb->ki_filp, io_data);
958 }
959 
960 static ssize_t ffs_epfile_aio_read(struct kiocb *kiocb,
961 				   const struct iovec *iovec,
962 				   unsigned long nr_segs, loff_t loff)
963 {
964 	struct ffs_io_data *io_data;
965 	struct iovec *iovec_copy;
966 
967 	ENTER();
968 
969 	iovec_copy = kmalloc_array(nr_segs, sizeof(*iovec_copy), GFP_KERNEL);
970 	if (unlikely(!iovec_copy))
971 		return -ENOMEM;
972 
973 	memcpy(iovec_copy, iovec, sizeof(struct iovec)*nr_segs);
974 
975 	io_data = kmalloc(sizeof(*io_data), GFP_KERNEL);
976 	if (unlikely(!io_data)) {
977 		kfree(iovec_copy);
978 		return -ENOMEM;
979 	}
980 
981 	io_data->aio = true;
982 	io_data->read = true;
983 	io_data->kiocb = kiocb;
984 	io_data->iovec = iovec_copy;
985 	io_data->nr_segs = nr_segs;
986 	io_data->len = kiocb->ki_nbytes;
987 	io_data->mm = current->mm;
988 
989 	kiocb->private = io_data;
990 
991 	kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
992 
993 	return ffs_epfile_io(kiocb->ki_filp, io_data);
994 }
995 
996 static int
997 ffs_epfile_release(struct inode *inode, struct file *file)
998 {
999 	struct ffs_epfile *epfile = inode->i_private;
1000 
1001 	ENTER();
1002 
1003 	ffs_data_closed(epfile->ffs);
1004 
1005 	return 0;
1006 }
1007 
1008 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1009 			     unsigned long value)
1010 {
1011 	struct ffs_epfile *epfile = file->private_data;
1012 	int ret;
1013 
1014 	ENTER();
1015 
1016 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1017 		return -ENODEV;
1018 
1019 	spin_lock_irq(&epfile->ffs->eps_lock);
1020 	if (likely(epfile->ep)) {
1021 		switch (code) {
1022 		case FUNCTIONFS_FIFO_STATUS:
1023 			ret = usb_ep_fifo_status(epfile->ep->ep);
1024 			break;
1025 		case FUNCTIONFS_FIFO_FLUSH:
1026 			usb_ep_fifo_flush(epfile->ep->ep);
1027 			ret = 0;
1028 			break;
1029 		case FUNCTIONFS_CLEAR_HALT:
1030 			ret = usb_ep_clear_halt(epfile->ep->ep);
1031 			break;
1032 		case FUNCTIONFS_ENDPOINT_REVMAP:
1033 			ret = epfile->ep->num;
1034 			break;
1035 		default:
1036 			ret = -ENOTTY;
1037 		}
1038 	} else {
1039 		ret = -ENODEV;
1040 	}
1041 	spin_unlock_irq(&epfile->ffs->eps_lock);
1042 
1043 	return ret;
1044 }
1045 
1046 static const struct file_operations ffs_epfile_operations = {
1047 	.llseek =	no_llseek,
1048 
1049 	.open =		ffs_epfile_open,
1050 	.write =	ffs_epfile_write,
1051 	.read =		ffs_epfile_read,
1052 	.aio_write =	ffs_epfile_aio_write,
1053 	.aio_read =	ffs_epfile_aio_read,
1054 	.release =	ffs_epfile_release,
1055 	.unlocked_ioctl =	ffs_epfile_ioctl,
1056 };
1057 
1058 
1059 /* File system and super block operations ***********************************/
1060 
1061 /*
1062  * Mounting the file system creates a controller file, used first for
1063  * function configuration then later for event monitoring.
1064  */
1065 
1066 static struct inode *__must_check
1067 ffs_sb_make_inode(struct super_block *sb, void *data,
1068 		  const struct file_operations *fops,
1069 		  const struct inode_operations *iops,
1070 		  struct ffs_file_perms *perms)
1071 {
1072 	struct inode *inode;
1073 
1074 	ENTER();
1075 
1076 	inode = new_inode(sb);
1077 
1078 	if (likely(inode)) {
1079 		struct timespec current_time = CURRENT_TIME;
1080 
1081 		inode->i_ino	 = get_next_ino();
1082 		inode->i_mode    = perms->mode;
1083 		inode->i_uid     = perms->uid;
1084 		inode->i_gid     = perms->gid;
1085 		inode->i_atime   = current_time;
1086 		inode->i_mtime   = current_time;
1087 		inode->i_ctime   = current_time;
1088 		inode->i_private = data;
1089 		if (fops)
1090 			inode->i_fop = fops;
1091 		if (iops)
1092 			inode->i_op  = iops;
1093 	}
1094 
1095 	return inode;
1096 }
1097 
1098 /* Create "regular" file */
1099 static struct inode *ffs_sb_create_file(struct super_block *sb,
1100 					const char *name, void *data,
1101 					const struct file_operations *fops,
1102 					struct dentry **dentry_p)
1103 {
1104 	struct ffs_data	*ffs = sb->s_fs_info;
1105 	struct dentry	*dentry;
1106 	struct inode	*inode;
1107 
1108 	ENTER();
1109 
1110 	dentry = d_alloc_name(sb->s_root, name);
1111 	if (unlikely(!dentry))
1112 		return NULL;
1113 
1114 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1115 	if (unlikely(!inode)) {
1116 		dput(dentry);
1117 		return NULL;
1118 	}
1119 
1120 	d_add(dentry, inode);
1121 	if (dentry_p)
1122 		*dentry_p = dentry;
1123 
1124 	return inode;
1125 }
1126 
1127 /* Super block */
1128 static const struct super_operations ffs_sb_operations = {
1129 	.statfs =	simple_statfs,
1130 	.drop_inode =	generic_delete_inode,
1131 };
1132 
1133 struct ffs_sb_fill_data {
1134 	struct ffs_file_perms perms;
1135 	umode_t root_mode;
1136 	const char *dev_name;
1137 	struct ffs_data *ffs_data;
1138 };
1139 
1140 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1141 {
1142 	struct ffs_sb_fill_data *data = _data;
1143 	struct inode	*inode;
1144 	struct ffs_data	*ffs = data->ffs_data;
1145 
1146 	ENTER();
1147 
1148 	ffs->sb              = sb;
1149 	data->ffs_data       = NULL;
1150 	sb->s_fs_info        = ffs;
1151 	sb->s_blocksize      = PAGE_CACHE_SIZE;
1152 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1153 	sb->s_magic          = FUNCTIONFS_MAGIC;
1154 	sb->s_op             = &ffs_sb_operations;
1155 	sb->s_time_gran      = 1;
1156 
1157 	/* Root inode */
1158 	data->perms.mode = data->root_mode;
1159 	inode = ffs_sb_make_inode(sb, NULL,
1160 				  &simple_dir_operations,
1161 				  &simple_dir_inode_operations,
1162 				  &data->perms);
1163 	sb->s_root = d_make_root(inode);
1164 	if (unlikely(!sb->s_root))
1165 		return -ENOMEM;
1166 
1167 	/* EP0 file */
1168 	if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1169 					 &ffs_ep0_operations, NULL)))
1170 		return -ENOMEM;
1171 
1172 	return 0;
1173 }
1174 
1175 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1176 {
1177 	ENTER();
1178 
1179 	if (!opts || !*opts)
1180 		return 0;
1181 
1182 	for (;;) {
1183 		unsigned long value;
1184 		char *eq, *comma;
1185 
1186 		/* Option limit */
1187 		comma = strchr(opts, ',');
1188 		if (comma)
1189 			*comma = 0;
1190 
1191 		/* Value limit */
1192 		eq = strchr(opts, '=');
1193 		if (unlikely(!eq)) {
1194 			pr_err("'=' missing in %s\n", opts);
1195 			return -EINVAL;
1196 		}
1197 		*eq = 0;
1198 
1199 		/* Parse value */
1200 		if (kstrtoul(eq + 1, 0, &value)) {
1201 			pr_err("%s: invalid value: %s\n", opts, eq + 1);
1202 			return -EINVAL;
1203 		}
1204 
1205 		/* Interpret option */
1206 		switch (eq - opts) {
1207 		case 5:
1208 			if (!memcmp(opts, "rmode", 5))
1209 				data->root_mode  = (value & 0555) | S_IFDIR;
1210 			else if (!memcmp(opts, "fmode", 5))
1211 				data->perms.mode = (value & 0666) | S_IFREG;
1212 			else
1213 				goto invalid;
1214 			break;
1215 
1216 		case 4:
1217 			if (!memcmp(opts, "mode", 4)) {
1218 				data->root_mode  = (value & 0555) | S_IFDIR;
1219 				data->perms.mode = (value & 0666) | S_IFREG;
1220 			} else {
1221 				goto invalid;
1222 			}
1223 			break;
1224 
1225 		case 3:
1226 			if (!memcmp(opts, "uid", 3)) {
1227 				data->perms.uid = make_kuid(current_user_ns(), value);
1228 				if (!uid_valid(data->perms.uid)) {
1229 					pr_err("%s: unmapped value: %lu\n", opts, value);
1230 					return -EINVAL;
1231 				}
1232 			} else if (!memcmp(opts, "gid", 3)) {
1233 				data->perms.gid = make_kgid(current_user_ns(), value);
1234 				if (!gid_valid(data->perms.gid)) {
1235 					pr_err("%s: unmapped value: %lu\n", opts, value);
1236 					return -EINVAL;
1237 				}
1238 			} else {
1239 				goto invalid;
1240 			}
1241 			break;
1242 
1243 		default:
1244 invalid:
1245 			pr_err("%s: invalid option\n", opts);
1246 			return -EINVAL;
1247 		}
1248 
1249 		/* Next iteration */
1250 		if (!comma)
1251 			break;
1252 		opts = comma + 1;
1253 	}
1254 
1255 	return 0;
1256 }
1257 
1258 /* "mount -t functionfs dev_name /dev/function" ends up here */
1259 
1260 static struct dentry *
1261 ffs_fs_mount(struct file_system_type *t, int flags,
1262 	      const char *dev_name, void *opts)
1263 {
1264 	struct ffs_sb_fill_data data = {
1265 		.perms = {
1266 			.mode = S_IFREG | 0600,
1267 			.uid = GLOBAL_ROOT_UID,
1268 			.gid = GLOBAL_ROOT_GID,
1269 		},
1270 		.root_mode = S_IFDIR | 0500,
1271 	};
1272 	struct dentry *rv;
1273 	int ret;
1274 	void *ffs_dev;
1275 	struct ffs_data	*ffs;
1276 
1277 	ENTER();
1278 
1279 	ret = ffs_fs_parse_opts(&data, opts);
1280 	if (unlikely(ret < 0))
1281 		return ERR_PTR(ret);
1282 
1283 	ffs = ffs_data_new();
1284 	if (unlikely(!ffs))
1285 		return ERR_PTR(-ENOMEM);
1286 	ffs->file_perms = data.perms;
1287 
1288 	ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1289 	if (unlikely(!ffs->dev_name)) {
1290 		ffs_data_put(ffs);
1291 		return ERR_PTR(-ENOMEM);
1292 	}
1293 
1294 	ffs_dev = ffs_acquire_dev(dev_name);
1295 	if (IS_ERR(ffs_dev)) {
1296 		ffs_data_put(ffs);
1297 		return ERR_CAST(ffs_dev);
1298 	}
1299 	ffs->private_data = ffs_dev;
1300 	data.ffs_data = ffs;
1301 
1302 	rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1303 	if (IS_ERR(rv) && data.ffs_data) {
1304 		ffs_release_dev(data.ffs_data);
1305 		ffs_data_put(data.ffs_data);
1306 	}
1307 	return rv;
1308 }
1309 
1310 static void
1311 ffs_fs_kill_sb(struct super_block *sb)
1312 {
1313 	ENTER();
1314 
1315 	kill_litter_super(sb);
1316 	if (sb->s_fs_info) {
1317 		ffs_release_dev(sb->s_fs_info);
1318 		ffs_data_put(sb->s_fs_info);
1319 	}
1320 }
1321 
1322 static struct file_system_type ffs_fs_type = {
1323 	.owner		= THIS_MODULE,
1324 	.name		= "functionfs",
1325 	.mount		= ffs_fs_mount,
1326 	.kill_sb	= ffs_fs_kill_sb,
1327 };
1328 MODULE_ALIAS_FS("functionfs");
1329 
1330 
1331 /* Driver's main init/cleanup functions *************************************/
1332 
1333 static int functionfs_init(void)
1334 {
1335 	int ret;
1336 
1337 	ENTER();
1338 
1339 	ret = register_filesystem(&ffs_fs_type);
1340 	if (likely(!ret))
1341 		pr_info("file system registered\n");
1342 	else
1343 		pr_err("failed registering file system (%d)\n", ret);
1344 
1345 	return ret;
1346 }
1347 
1348 static void functionfs_cleanup(void)
1349 {
1350 	ENTER();
1351 
1352 	pr_info("unloading\n");
1353 	unregister_filesystem(&ffs_fs_type);
1354 }
1355 
1356 
1357 /* ffs_data and ffs_function construction and destruction code **************/
1358 
1359 static void ffs_data_clear(struct ffs_data *ffs);
1360 static void ffs_data_reset(struct ffs_data *ffs);
1361 
1362 static void ffs_data_get(struct ffs_data *ffs)
1363 {
1364 	ENTER();
1365 
1366 	atomic_inc(&ffs->ref);
1367 }
1368 
1369 static void ffs_data_opened(struct ffs_data *ffs)
1370 {
1371 	ENTER();
1372 
1373 	atomic_inc(&ffs->ref);
1374 	atomic_inc(&ffs->opened);
1375 }
1376 
1377 static void ffs_data_put(struct ffs_data *ffs)
1378 {
1379 	ENTER();
1380 
1381 	if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1382 		pr_info("%s(): freeing\n", __func__);
1383 		ffs_data_clear(ffs);
1384 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1385 		       waitqueue_active(&ffs->ep0req_completion.wait));
1386 		kfree(ffs->dev_name);
1387 		kfree(ffs);
1388 	}
1389 }
1390 
1391 static void ffs_data_closed(struct ffs_data *ffs)
1392 {
1393 	ENTER();
1394 
1395 	if (atomic_dec_and_test(&ffs->opened)) {
1396 		ffs->state = FFS_CLOSING;
1397 		ffs_data_reset(ffs);
1398 	}
1399 
1400 	ffs_data_put(ffs);
1401 }
1402 
1403 static struct ffs_data *ffs_data_new(void)
1404 {
1405 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1406 	if (unlikely(!ffs))
1407 		return NULL;
1408 
1409 	ENTER();
1410 
1411 	atomic_set(&ffs->ref, 1);
1412 	atomic_set(&ffs->opened, 0);
1413 	ffs->state = FFS_READ_DESCRIPTORS;
1414 	mutex_init(&ffs->mutex);
1415 	spin_lock_init(&ffs->eps_lock);
1416 	init_waitqueue_head(&ffs->ev.waitq);
1417 	init_completion(&ffs->ep0req_completion);
1418 
1419 	/* XXX REVISIT need to update it in some places, or do we? */
1420 	ffs->ev.can_stall = 1;
1421 
1422 	return ffs;
1423 }
1424 
1425 static void ffs_data_clear(struct ffs_data *ffs)
1426 {
1427 	ENTER();
1428 
1429 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags))
1430 		ffs_closed(ffs);
1431 
1432 	BUG_ON(ffs->gadget);
1433 
1434 	if (ffs->epfiles)
1435 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1436 
1437 	kfree(ffs->raw_descs_data);
1438 	kfree(ffs->raw_strings);
1439 	kfree(ffs->stringtabs);
1440 }
1441 
1442 static void ffs_data_reset(struct ffs_data *ffs)
1443 {
1444 	ENTER();
1445 
1446 	ffs_data_clear(ffs);
1447 
1448 	ffs->epfiles = NULL;
1449 	ffs->raw_descs_data = NULL;
1450 	ffs->raw_descs = NULL;
1451 	ffs->raw_strings = NULL;
1452 	ffs->stringtabs = NULL;
1453 
1454 	ffs->raw_descs_length = 0;
1455 	ffs->fs_descs_count = 0;
1456 	ffs->hs_descs_count = 0;
1457 	ffs->ss_descs_count = 0;
1458 
1459 	ffs->strings_count = 0;
1460 	ffs->interfaces_count = 0;
1461 	ffs->eps_count = 0;
1462 
1463 	ffs->ev.count = 0;
1464 
1465 	ffs->state = FFS_READ_DESCRIPTORS;
1466 	ffs->setup_state = FFS_NO_SETUP;
1467 	ffs->flags = 0;
1468 }
1469 
1470 
1471 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1472 {
1473 	struct usb_gadget_strings **lang;
1474 	int first_id;
1475 
1476 	ENTER();
1477 
1478 	if (WARN_ON(ffs->state != FFS_ACTIVE
1479 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1480 		return -EBADFD;
1481 
1482 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1483 	if (unlikely(first_id < 0))
1484 		return first_id;
1485 
1486 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1487 	if (unlikely(!ffs->ep0req))
1488 		return -ENOMEM;
1489 	ffs->ep0req->complete = ffs_ep0_complete;
1490 	ffs->ep0req->context = ffs;
1491 
1492 	lang = ffs->stringtabs;
1493 	if (lang) {
1494 		for (; *lang; ++lang) {
1495 			struct usb_string *str = (*lang)->strings;
1496 			int id = first_id;
1497 			for (; str->s; ++id, ++str)
1498 				str->id = id;
1499 		}
1500 	}
1501 
1502 	ffs->gadget = cdev->gadget;
1503 	ffs_data_get(ffs);
1504 	return 0;
1505 }
1506 
1507 static void functionfs_unbind(struct ffs_data *ffs)
1508 {
1509 	ENTER();
1510 
1511 	if (!WARN_ON(!ffs->gadget)) {
1512 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1513 		ffs->ep0req = NULL;
1514 		ffs->gadget = NULL;
1515 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1516 		ffs_data_put(ffs);
1517 	}
1518 }
1519 
1520 static int ffs_epfiles_create(struct ffs_data *ffs)
1521 {
1522 	struct ffs_epfile *epfile, *epfiles;
1523 	unsigned i, count;
1524 
1525 	ENTER();
1526 
1527 	count = ffs->eps_count;
1528 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1529 	if (!epfiles)
1530 		return -ENOMEM;
1531 
1532 	epfile = epfiles;
1533 	for (i = 1; i <= count; ++i, ++epfile) {
1534 		epfile->ffs = ffs;
1535 		mutex_init(&epfile->mutex);
1536 		init_waitqueue_head(&epfile->wait);
1537 		sprintf(epfiles->name, "ep%u",  i);
1538 		if (!unlikely(ffs_sb_create_file(ffs->sb, epfiles->name, epfile,
1539 						 &ffs_epfile_operations,
1540 						 &epfile->dentry))) {
1541 			ffs_epfiles_destroy(epfiles, i - 1);
1542 			return -ENOMEM;
1543 		}
1544 	}
1545 
1546 	ffs->epfiles = epfiles;
1547 	return 0;
1548 }
1549 
1550 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1551 {
1552 	struct ffs_epfile *epfile = epfiles;
1553 
1554 	ENTER();
1555 
1556 	for (; count; --count, ++epfile) {
1557 		BUG_ON(mutex_is_locked(&epfile->mutex) ||
1558 		       waitqueue_active(&epfile->wait));
1559 		if (epfile->dentry) {
1560 			d_delete(epfile->dentry);
1561 			dput(epfile->dentry);
1562 			epfile->dentry = NULL;
1563 		}
1564 	}
1565 
1566 	kfree(epfiles);
1567 }
1568 
1569 
1570 static void ffs_func_eps_disable(struct ffs_function *func)
1571 {
1572 	struct ffs_ep *ep         = func->eps;
1573 	struct ffs_epfile *epfile = func->ffs->epfiles;
1574 	unsigned count            = func->ffs->eps_count;
1575 	unsigned long flags;
1576 
1577 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1578 	do {
1579 		/* pending requests get nuked */
1580 		if (likely(ep->ep))
1581 			usb_ep_disable(ep->ep);
1582 		epfile->ep = NULL;
1583 
1584 		++ep;
1585 		++epfile;
1586 	} while (--count);
1587 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1588 }
1589 
1590 static int ffs_func_eps_enable(struct ffs_function *func)
1591 {
1592 	struct ffs_data *ffs      = func->ffs;
1593 	struct ffs_ep *ep         = func->eps;
1594 	struct ffs_epfile *epfile = ffs->epfiles;
1595 	unsigned count            = ffs->eps_count;
1596 	unsigned long flags;
1597 	int ret = 0;
1598 
1599 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1600 	do {
1601 		struct usb_endpoint_descriptor *ds;
1602 		int desc_idx;
1603 
1604 		if (ffs->gadget->speed == USB_SPEED_SUPER)
1605 			desc_idx = 2;
1606 		else if (ffs->gadget->speed == USB_SPEED_HIGH)
1607 			desc_idx = 1;
1608 		else
1609 			desc_idx = 0;
1610 
1611 		/* fall-back to lower speed if desc missing for current speed */
1612 		do {
1613 			ds = ep->descs[desc_idx];
1614 		} while (!ds && --desc_idx >= 0);
1615 
1616 		if (!ds) {
1617 			ret = -EINVAL;
1618 			break;
1619 		}
1620 
1621 		ep->ep->driver_data = ep;
1622 		ep->ep->desc = ds;
1623 		ret = usb_ep_enable(ep->ep);
1624 		if (likely(!ret)) {
1625 			epfile->ep = ep;
1626 			epfile->in = usb_endpoint_dir_in(ds);
1627 			epfile->isoc = usb_endpoint_xfer_isoc(ds);
1628 		} else {
1629 			break;
1630 		}
1631 
1632 		wake_up(&epfile->wait);
1633 
1634 		++ep;
1635 		++epfile;
1636 	} while (--count);
1637 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1638 
1639 	return ret;
1640 }
1641 
1642 
1643 /* Parsing and building descriptors and strings *****************************/
1644 
1645 /*
1646  * This validates if data pointed by data is a valid USB descriptor as
1647  * well as record how many interfaces, endpoints and strings are
1648  * required by given configuration.  Returns address after the
1649  * descriptor or NULL if data is invalid.
1650  */
1651 
1652 enum ffs_entity_type {
1653 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1654 };
1655 
1656 enum ffs_os_desc_type {
1657 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1658 };
1659 
1660 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1661 				   u8 *valuep,
1662 				   struct usb_descriptor_header *desc,
1663 				   void *priv);
1664 
1665 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1666 				    struct usb_os_desc_header *h, void *data,
1667 				    unsigned len, void *priv);
1668 
1669 static int __must_check ffs_do_single_desc(char *data, unsigned len,
1670 					   ffs_entity_callback entity,
1671 					   void *priv)
1672 {
1673 	struct usb_descriptor_header *_ds = (void *)data;
1674 	u8 length;
1675 	int ret;
1676 
1677 	ENTER();
1678 
1679 	/* At least two bytes are required: length and type */
1680 	if (len < 2) {
1681 		pr_vdebug("descriptor too short\n");
1682 		return -EINVAL;
1683 	}
1684 
1685 	/* If we have at least as many bytes as the descriptor takes? */
1686 	length = _ds->bLength;
1687 	if (len < length) {
1688 		pr_vdebug("descriptor longer then available data\n");
1689 		return -EINVAL;
1690 	}
1691 
1692 #define __entity_check_INTERFACE(val)  1
1693 #define __entity_check_STRING(val)     (val)
1694 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1695 #define __entity(type, val) do {					\
1696 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
1697 		if (unlikely(!__entity_check_ ##type(val))) {		\
1698 			pr_vdebug("invalid entity's value\n");		\
1699 			return -EINVAL;					\
1700 		}							\
1701 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
1702 		if (unlikely(ret < 0)) {				\
1703 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
1704 				 (val), ret);				\
1705 			return ret;					\
1706 		}							\
1707 	} while (0)
1708 
1709 	/* Parse descriptor depending on type. */
1710 	switch (_ds->bDescriptorType) {
1711 	case USB_DT_DEVICE:
1712 	case USB_DT_CONFIG:
1713 	case USB_DT_STRING:
1714 	case USB_DT_DEVICE_QUALIFIER:
1715 		/* function can't have any of those */
1716 		pr_vdebug("descriptor reserved for gadget: %d\n",
1717 		      _ds->bDescriptorType);
1718 		return -EINVAL;
1719 
1720 	case USB_DT_INTERFACE: {
1721 		struct usb_interface_descriptor *ds = (void *)_ds;
1722 		pr_vdebug("interface descriptor\n");
1723 		if (length != sizeof *ds)
1724 			goto inv_length;
1725 
1726 		__entity(INTERFACE, ds->bInterfaceNumber);
1727 		if (ds->iInterface)
1728 			__entity(STRING, ds->iInterface);
1729 	}
1730 		break;
1731 
1732 	case USB_DT_ENDPOINT: {
1733 		struct usb_endpoint_descriptor *ds = (void *)_ds;
1734 		pr_vdebug("endpoint descriptor\n");
1735 		if (length != USB_DT_ENDPOINT_SIZE &&
1736 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1737 			goto inv_length;
1738 		__entity(ENDPOINT, ds->bEndpointAddress);
1739 	}
1740 		break;
1741 
1742 	case HID_DT_HID:
1743 		pr_vdebug("hid descriptor\n");
1744 		if (length != sizeof(struct hid_descriptor))
1745 			goto inv_length;
1746 		break;
1747 
1748 	case USB_DT_OTG:
1749 		if (length != sizeof(struct usb_otg_descriptor))
1750 			goto inv_length;
1751 		break;
1752 
1753 	case USB_DT_INTERFACE_ASSOCIATION: {
1754 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1755 		pr_vdebug("interface association descriptor\n");
1756 		if (length != sizeof *ds)
1757 			goto inv_length;
1758 		if (ds->iFunction)
1759 			__entity(STRING, ds->iFunction);
1760 	}
1761 		break;
1762 
1763 	case USB_DT_SS_ENDPOINT_COMP:
1764 		pr_vdebug("EP SS companion descriptor\n");
1765 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
1766 			goto inv_length;
1767 		break;
1768 
1769 	case USB_DT_OTHER_SPEED_CONFIG:
1770 	case USB_DT_INTERFACE_POWER:
1771 	case USB_DT_DEBUG:
1772 	case USB_DT_SECURITY:
1773 	case USB_DT_CS_RADIO_CONTROL:
1774 		/* TODO */
1775 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
1776 		return -EINVAL;
1777 
1778 	default:
1779 		/* We should never be here */
1780 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
1781 		return -EINVAL;
1782 
1783 inv_length:
1784 		pr_vdebug("invalid length: %d (descriptor %d)\n",
1785 			  _ds->bLength, _ds->bDescriptorType);
1786 		return -EINVAL;
1787 	}
1788 
1789 #undef __entity
1790 #undef __entity_check_DESCRIPTOR
1791 #undef __entity_check_INTERFACE
1792 #undef __entity_check_STRING
1793 #undef __entity_check_ENDPOINT
1794 
1795 	return length;
1796 }
1797 
1798 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
1799 				     ffs_entity_callback entity, void *priv)
1800 {
1801 	const unsigned _len = len;
1802 	unsigned long num = 0;
1803 
1804 	ENTER();
1805 
1806 	for (;;) {
1807 		int ret;
1808 
1809 		if (num == count)
1810 			data = NULL;
1811 
1812 		/* Record "descriptor" entity */
1813 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
1814 		if (unlikely(ret < 0)) {
1815 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
1816 				 num, ret);
1817 			return ret;
1818 		}
1819 
1820 		if (!data)
1821 			return _len - len;
1822 
1823 		ret = ffs_do_single_desc(data, len, entity, priv);
1824 		if (unlikely(ret < 0)) {
1825 			pr_debug("%s returns %d\n", __func__, ret);
1826 			return ret;
1827 		}
1828 
1829 		len -= ret;
1830 		data += ret;
1831 		++num;
1832 	}
1833 }
1834 
1835 static int __ffs_data_do_entity(enum ffs_entity_type type,
1836 				u8 *valuep, struct usb_descriptor_header *desc,
1837 				void *priv)
1838 {
1839 	struct ffs_desc_helper *helper = priv;
1840 	struct usb_endpoint_descriptor *d;
1841 
1842 	ENTER();
1843 
1844 	switch (type) {
1845 	case FFS_DESCRIPTOR:
1846 		break;
1847 
1848 	case FFS_INTERFACE:
1849 		/*
1850 		 * Interfaces are indexed from zero so if we
1851 		 * encountered interface "n" then there are at least
1852 		 * "n+1" interfaces.
1853 		 */
1854 		if (*valuep >= helper->interfaces_count)
1855 			helper->interfaces_count = *valuep + 1;
1856 		break;
1857 
1858 	case FFS_STRING:
1859 		/*
1860 		 * Strings are indexed from 1 (0 is magic ;) reserved
1861 		 * for languages list or some such)
1862 		 */
1863 		if (*valuep > helper->ffs->strings_count)
1864 			helper->ffs->strings_count = *valuep;
1865 		break;
1866 
1867 	case FFS_ENDPOINT:
1868 		d = (void *)desc;
1869 		helper->eps_count++;
1870 		if (helper->eps_count >= 15)
1871 			return -EINVAL;
1872 		/* Check if descriptors for any speed were already parsed */
1873 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
1874 			helper->ffs->eps_addrmap[helper->eps_count] =
1875 				d->bEndpointAddress;
1876 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
1877 				d->bEndpointAddress)
1878 			return -EINVAL;
1879 		break;
1880 	}
1881 
1882 	return 0;
1883 }
1884 
1885 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
1886 				   struct usb_os_desc_header *desc)
1887 {
1888 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
1889 	u16 w_index = le16_to_cpu(desc->wIndex);
1890 
1891 	if (bcd_version != 1) {
1892 		pr_vdebug("unsupported os descriptors version: %d",
1893 			  bcd_version);
1894 		return -EINVAL;
1895 	}
1896 	switch (w_index) {
1897 	case 0x4:
1898 		*next_type = FFS_OS_DESC_EXT_COMPAT;
1899 		break;
1900 	case 0x5:
1901 		*next_type = FFS_OS_DESC_EXT_PROP;
1902 		break;
1903 	default:
1904 		pr_vdebug("unsupported os descriptor type: %d", w_index);
1905 		return -EINVAL;
1906 	}
1907 
1908 	return sizeof(*desc);
1909 }
1910 
1911 /*
1912  * Process all extended compatibility/extended property descriptors
1913  * of a feature descriptor
1914  */
1915 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
1916 					      enum ffs_os_desc_type type,
1917 					      u16 feature_count,
1918 					      ffs_os_desc_callback entity,
1919 					      void *priv,
1920 					      struct usb_os_desc_header *h)
1921 {
1922 	int ret;
1923 	const unsigned _len = len;
1924 
1925 	ENTER();
1926 
1927 	/* loop over all ext compat/ext prop descriptors */
1928 	while (feature_count--) {
1929 		ret = entity(type, h, data, len, priv);
1930 		if (unlikely(ret < 0)) {
1931 			pr_debug("bad OS descriptor, type: %d\n", type);
1932 			return ret;
1933 		}
1934 		data += ret;
1935 		len -= ret;
1936 	}
1937 	return _len - len;
1938 }
1939 
1940 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
1941 static int __must_check ffs_do_os_descs(unsigned count,
1942 					char *data, unsigned len,
1943 					ffs_os_desc_callback entity, void *priv)
1944 {
1945 	const unsigned _len = len;
1946 	unsigned long num = 0;
1947 
1948 	ENTER();
1949 
1950 	for (num = 0; num < count; ++num) {
1951 		int ret;
1952 		enum ffs_os_desc_type type;
1953 		u16 feature_count;
1954 		struct usb_os_desc_header *desc = (void *)data;
1955 
1956 		if (len < sizeof(*desc))
1957 			return -EINVAL;
1958 
1959 		/*
1960 		 * Record "descriptor" entity.
1961 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
1962 		 * Move the data pointer to the beginning of extended
1963 		 * compatibilities proper or extended properties proper
1964 		 * portions of the data
1965 		 */
1966 		if (le32_to_cpu(desc->dwLength) > len)
1967 			return -EINVAL;
1968 
1969 		ret = __ffs_do_os_desc_header(&type, desc);
1970 		if (unlikely(ret < 0)) {
1971 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
1972 				 num, ret);
1973 			return ret;
1974 		}
1975 		/*
1976 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
1977 		 */
1978 		feature_count = le16_to_cpu(desc->wCount);
1979 		if (type == FFS_OS_DESC_EXT_COMPAT &&
1980 		    (feature_count > 255 || desc->Reserved))
1981 				return -EINVAL;
1982 		len -= ret;
1983 		data += ret;
1984 
1985 		/*
1986 		 * Process all function/property descriptors
1987 		 * of this Feature Descriptor
1988 		 */
1989 		ret = ffs_do_single_os_desc(data, len, type,
1990 					    feature_count, entity, priv, desc);
1991 		if (unlikely(ret < 0)) {
1992 			pr_debug("%s returns %d\n", __func__, ret);
1993 			return ret;
1994 		}
1995 
1996 		len -= ret;
1997 		data += ret;
1998 	}
1999 	return _len - len;
2000 }
2001 
2002 /**
2003  * Validate contents of the buffer from userspace related to OS descriptors.
2004  */
2005 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2006 				 struct usb_os_desc_header *h, void *data,
2007 				 unsigned len, void *priv)
2008 {
2009 	struct ffs_data *ffs = priv;
2010 	u8 length;
2011 
2012 	ENTER();
2013 
2014 	switch (type) {
2015 	case FFS_OS_DESC_EXT_COMPAT: {
2016 		struct usb_ext_compat_desc *d = data;
2017 		int i;
2018 
2019 		if (len < sizeof(*d) ||
2020 		    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2021 		    d->Reserved1)
2022 			return -EINVAL;
2023 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2024 			if (d->Reserved2[i])
2025 				return -EINVAL;
2026 
2027 		length = sizeof(struct usb_ext_compat_desc);
2028 	}
2029 		break;
2030 	case FFS_OS_DESC_EXT_PROP: {
2031 		struct usb_ext_prop_desc *d = data;
2032 		u32 type, pdl;
2033 		u16 pnl;
2034 
2035 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2036 			return -EINVAL;
2037 		length = le32_to_cpu(d->dwSize);
2038 		type = le32_to_cpu(d->dwPropertyDataType);
2039 		if (type < USB_EXT_PROP_UNICODE ||
2040 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2041 			pr_vdebug("unsupported os descriptor property type: %d",
2042 				  type);
2043 			return -EINVAL;
2044 		}
2045 		pnl = le16_to_cpu(d->wPropertyNameLength);
2046 		pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2047 		if (length != 14 + pnl + pdl) {
2048 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2049 				  length, pnl, pdl, type);
2050 			return -EINVAL;
2051 		}
2052 		++ffs->ms_os_descs_ext_prop_count;
2053 		/* property name reported to the host as "WCHAR"s */
2054 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2055 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2056 	}
2057 		break;
2058 	default:
2059 		pr_vdebug("unknown descriptor: %d\n", type);
2060 		return -EINVAL;
2061 	}
2062 	return length;
2063 }
2064 
2065 static int __ffs_data_got_descs(struct ffs_data *ffs,
2066 				char *const _data, size_t len)
2067 {
2068 	char *data = _data, *raw_descs;
2069 	unsigned os_descs_count = 0, counts[3], flags;
2070 	int ret = -EINVAL, i;
2071 	struct ffs_desc_helper helper;
2072 
2073 	ENTER();
2074 
2075 	if (get_unaligned_le32(data + 4) != len)
2076 		goto error;
2077 
2078 	switch (get_unaligned_le32(data)) {
2079 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2080 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2081 		data += 8;
2082 		len  -= 8;
2083 		break;
2084 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2085 		flags = get_unaligned_le32(data + 8);
2086 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2087 			      FUNCTIONFS_HAS_HS_DESC |
2088 			      FUNCTIONFS_HAS_SS_DESC |
2089 			      FUNCTIONFS_HAS_MS_OS_DESC)) {
2090 			ret = -ENOSYS;
2091 			goto error;
2092 		}
2093 		data += 12;
2094 		len  -= 12;
2095 		break;
2096 	default:
2097 		goto error;
2098 	}
2099 
2100 	/* Read fs_count, hs_count and ss_count (if present) */
2101 	for (i = 0; i < 3; ++i) {
2102 		if (!(flags & (1 << i))) {
2103 			counts[i] = 0;
2104 		} else if (len < 4) {
2105 			goto error;
2106 		} else {
2107 			counts[i] = get_unaligned_le32(data);
2108 			data += 4;
2109 			len  -= 4;
2110 		}
2111 	}
2112 	if (flags & (1 << i)) {
2113 		os_descs_count = get_unaligned_le32(data);
2114 		data += 4;
2115 		len -= 4;
2116 	};
2117 
2118 	/* Read descriptors */
2119 	raw_descs = data;
2120 	helper.ffs = ffs;
2121 	for (i = 0; i < 3; ++i) {
2122 		if (!counts[i])
2123 			continue;
2124 		helper.interfaces_count = 0;
2125 		helper.eps_count = 0;
2126 		ret = ffs_do_descs(counts[i], data, len,
2127 				   __ffs_data_do_entity, &helper);
2128 		if (ret < 0)
2129 			goto error;
2130 		if (!ffs->eps_count && !ffs->interfaces_count) {
2131 			ffs->eps_count = helper.eps_count;
2132 			ffs->interfaces_count = helper.interfaces_count;
2133 		} else {
2134 			if (ffs->eps_count != helper.eps_count) {
2135 				ret = -EINVAL;
2136 				goto error;
2137 			}
2138 			if (ffs->interfaces_count != helper.interfaces_count) {
2139 				ret = -EINVAL;
2140 				goto error;
2141 			}
2142 		}
2143 		data += ret;
2144 		len  -= ret;
2145 	}
2146 	if (os_descs_count) {
2147 		ret = ffs_do_os_descs(os_descs_count, data, len,
2148 				      __ffs_data_do_os_desc, ffs);
2149 		if (ret < 0)
2150 			goto error;
2151 		data += ret;
2152 		len -= ret;
2153 	}
2154 
2155 	if (raw_descs == data || len) {
2156 		ret = -EINVAL;
2157 		goto error;
2158 	}
2159 
2160 	ffs->raw_descs_data	= _data;
2161 	ffs->raw_descs		= raw_descs;
2162 	ffs->raw_descs_length	= data - raw_descs;
2163 	ffs->fs_descs_count	= counts[0];
2164 	ffs->hs_descs_count	= counts[1];
2165 	ffs->ss_descs_count	= counts[2];
2166 	ffs->ms_os_descs_count	= os_descs_count;
2167 
2168 	return 0;
2169 
2170 error:
2171 	kfree(_data);
2172 	return ret;
2173 }
2174 
2175 static int __ffs_data_got_strings(struct ffs_data *ffs,
2176 				  char *const _data, size_t len)
2177 {
2178 	u32 str_count, needed_count, lang_count;
2179 	struct usb_gadget_strings **stringtabs, *t;
2180 	struct usb_string *strings, *s;
2181 	const char *data = _data;
2182 
2183 	ENTER();
2184 
2185 	if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2186 		     get_unaligned_le32(data + 4) != len))
2187 		goto error;
2188 	str_count  = get_unaligned_le32(data + 8);
2189 	lang_count = get_unaligned_le32(data + 12);
2190 
2191 	/* if one is zero the other must be zero */
2192 	if (unlikely(!str_count != !lang_count))
2193 		goto error;
2194 
2195 	/* Do we have at least as many strings as descriptors need? */
2196 	needed_count = ffs->strings_count;
2197 	if (unlikely(str_count < needed_count))
2198 		goto error;
2199 
2200 	/*
2201 	 * If we don't need any strings just return and free all
2202 	 * memory.
2203 	 */
2204 	if (!needed_count) {
2205 		kfree(_data);
2206 		return 0;
2207 	}
2208 
2209 	/* Allocate everything in one chunk so there's less maintenance. */
2210 	{
2211 		unsigned i = 0;
2212 		vla_group(d);
2213 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2214 			lang_count + 1);
2215 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2216 		vla_item(d, struct usb_string, strings,
2217 			lang_count*(needed_count+1));
2218 
2219 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2220 
2221 		if (unlikely(!vlabuf)) {
2222 			kfree(_data);
2223 			return -ENOMEM;
2224 		}
2225 
2226 		/* Initialize the VLA pointers */
2227 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2228 		t = vla_ptr(vlabuf, d, stringtab);
2229 		i = lang_count;
2230 		do {
2231 			*stringtabs++ = t++;
2232 		} while (--i);
2233 		*stringtabs = NULL;
2234 
2235 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2236 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2237 		t = vla_ptr(vlabuf, d, stringtab);
2238 		s = vla_ptr(vlabuf, d, strings);
2239 		strings = s;
2240 	}
2241 
2242 	/* For each language */
2243 	data += 16;
2244 	len -= 16;
2245 
2246 	do { /* lang_count > 0 so we can use do-while */
2247 		unsigned needed = needed_count;
2248 
2249 		if (unlikely(len < 3))
2250 			goto error_free;
2251 		t->language = get_unaligned_le16(data);
2252 		t->strings  = s;
2253 		++t;
2254 
2255 		data += 2;
2256 		len -= 2;
2257 
2258 		/* For each string */
2259 		do { /* str_count > 0 so we can use do-while */
2260 			size_t length = strnlen(data, len);
2261 
2262 			if (unlikely(length == len))
2263 				goto error_free;
2264 
2265 			/*
2266 			 * User may provide more strings then we need,
2267 			 * if that's the case we simply ignore the
2268 			 * rest
2269 			 */
2270 			if (likely(needed)) {
2271 				/*
2272 				 * s->id will be set while adding
2273 				 * function to configuration so for
2274 				 * now just leave garbage here.
2275 				 */
2276 				s->s = data;
2277 				--needed;
2278 				++s;
2279 			}
2280 
2281 			data += length + 1;
2282 			len -= length + 1;
2283 		} while (--str_count);
2284 
2285 		s->id = 0;   /* terminator */
2286 		s->s = NULL;
2287 		++s;
2288 
2289 	} while (--lang_count);
2290 
2291 	/* Some garbage left? */
2292 	if (unlikely(len))
2293 		goto error_free;
2294 
2295 	/* Done! */
2296 	ffs->stringtabs = stringtabs;
2297 	ffs->raw_strings = _data;
2298 
2299 	return 0;
2300 
2301 error_free:
2302 	kfree(stringtabs);
2303 error:
2304 	kfree(_data);
2305 	return -EINVAL;
2306 }
2307 
2308 
2309 /* Events handling and management *******************************************/
2310 
2311 static void __ffs_event_add(struct ffs_data *ffs,
2312 			    enum usb_functionfs_event_type type)
2313 {
2314 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2315 	int neg = 0;
2316 
2317 	/*
2318 	 * Abort any unhandled setup
2319 	 *
2320 	 * We do not need to worry about some cmpxchg() changing value
2321 	 * of ffs->setup_state without holding the lock because when
2322 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2323 	 * the source does nothing.
2324 	 */
2325 	if (ffs->setup_state == FFS_SETUP_PENDING)
2326 		ffs->setup_state = FFS_SETUP_CANCELLED;
2327 
2328 	switch (type) {
2329 	case FUNCTIONFS_RESUME:
2330 		rem_type2 = FUNCTIONFS_SUSPEND;
2331 		/* FALL THROUGH */
2332 	case FUNCTIONFS_SUSPEND:
2333 	case FUNCTIONFS_SETUP:
2334 		rem_type1 = type;
2335 		/* Discard all similar events */
2336 		break;
2337 
2338 	case FUNCTIONFS_BIND:
2339 	case FUNCTIONFS_UNBIND:
2340 	case FUNCTIONFS_DISABLE:
2341 	case FUNCTIONFS_ENABLE:
2342 		/* Discard everything other then power management. */
2343 		rem_type1 = FUNCTIONFS_SUSPEND;
2344 		rem_type2 = FUNCTIONFS_RESUME;
2345 		neg = 1;
2346 		break;
2347 
2348 	default:
2349 		BUG();
2350 	}
2351 
2352 	{
2353 		u8 *ev  = ffs->ev.types, *out = ev;
2354 		unsigned n = ffs->ev.count;
2355 		for (; n; --n, ++ev)
2356 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2357 				*out++ = *ev;
2358 			else
2359 				pr_vdebug("purging event %d\n", *ev);
2360 		ffs->ev.count = out - ffs->ev.types;
2361 	}
2362 
2363 	pr_vdebug("adding event %d\n", type);
2364 	ffs->ev.types[ffs->ev.count++] = type;
2365 	wake_up_locked(&ffs->ev.waitq);
2366 }
2367 
2368 static void ffs_event_add(struct ffs_data *ffs,
2369 			  enum usb_functionfs_event_type type)
2370 {
2371 	unsigned long flags;
2372 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2373 	__ffs_event_add(ffs, type);
2374 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2375 }
2376 
2377 /* Bind/unbind USB function hooks *******************************************/
2378 
2379 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2380 {
2381 	int i;
2382 
2383 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2384 		if (ffs->eps_addrmap[i] == endpoint_address)
2385 			return i;
2386 	return -ENOENT;
2387 }
2388 
2389 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2390 				    struct usb_descriptor_header *desc,
2391 				    void *priv)
2392 {
2393 	struct usb_endpoint_descriptor *ds = (void *)desc;
2394 	struct ffs_function *func = priv;
2395 	struct ffs_ep *ffs_ep;
2396 	unsigned ep_desc_id, idx;
2397 	static const char *speed_names[] = { "full", "high", "super" };
2398 
2399 	if (type != FFS_DESCRIPTOR)
2400 		return 0;
2401 
2402 	/*
2403 	 * If ss_descriptors is not NULL, we are reading super speed
2404 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2405 	 * speed descriptors; otherwise, we are reading full speed
2406 	 * descriptors.
2407 	 */
2408 	if (func->function.ss_descriptors) {
2409 		ep_desc_id = 2;
2410 		func->function.ss_descriptors[(long)valuep] = desc;
2411 	} else if (func->function.hs_descriptors) {
2412 		ep_desc_id = 1;
2413 		func->function.hs_descriptors[(long)valuep] = desc;
2414 	} else {
2415 		ep_desc_id = 0;
2416 		func->function.fs_descriptors[(long)valuep]    = desc;
2417 	}
2418 
2419 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2420 		return 0;
2421 
2422 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2423 	if (idx < 0)
2424 		return idx;
2425 
2426 	ffs_ep = func->eps + idx;
2427 
2428 	if (unlikely(ffs_ep->descs[ep_desc_id])) {
2429 		pr_err("two %sspeed descriptors for EP %d\n",
2430 			  speed_names[ep_desc_id],
2431 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2432 		return -EINVAL;
2433 	}
2434 	ffs_ep->descs[ep_desc_id] = ds;
2435 
2436 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2437 	if (ffs_ep->ep) {
2438 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2439 		if (!ds->wMaxPacketSize)
2440 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2441 	} else {
2442 		struct usb_request *req;
2443 		struct usb_ep *ep;
2444 
2445 		pr_vdebug("autoconfig\n");
2446 		ep = usb_ep_autoconfig(func->gadget, ds);
2447 		if (unlikely(!ep))
2448 			return -ENOTSUPP;
2449 		ep->driver_data = func->eps + idx;
2450 
2451 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2452 		if (unlikely(!req))
2453 			return -ENOMEM;
2454 
2455 		ffs_ep->ep  = ep;
2456 		ffs_ep->req = req;
2457 		func->eps_revmap[ds->bEndpointAddress &
2458 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2459 	}
2460 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2461 
2462 	return 0;
2463 }
2464 
2465 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2466 				   struct usb_descriptor_header *desc,
2467 				   void *priv)
2468 {
2469 	struct ffs_function *func = priv;
2470 	unsigned idx;
2471 	u8 newValue;
2472 
2473 	switch (type) {
2474 	default:
2475 	case FFS_DESCRIPTOR:
2476 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2477 		return 0;
2478 
2479 	case FFS_INTERFACE:
2480 		idx = *valuep;
2481 		if (func->interfaces_nums[idx] < 0) {
2482 			int id = usb_interface_id(func->conf, &func->function);
2483 			if (unlikely(id < 0))
2484 				return id;
2485 			func->interfaces_nums[idx] = id;
2486 		}
2487 		newValue = func->interfaces_nums[idx];
2488 		break;
2489 
2490 	case FFS_STRING:
2491 		/* String' IDs are allocated when fsf_data is bound to cdev */
2492 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2493 		break;
2494 
2495 	case FFS_ENDPOINT:
2496 		/*
2497 		 * USB_DT_ENDPOINT are handled in
2498 		 * __ffs_func_bind_do_descs().
2499 		 */
2500 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2501 			return 0;
2502 
2503 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2504 		if (unlikely(!func->eps[idx].ep))
2505 			return -EINVAL;
2506 
2507 		{
2508 			struct usb_endpoint_descriptor **descs;
2509 			descs = func->eps[idx].descs;
2510 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2511 		}
2512 		break;
2513 	}
2514 
2515 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2516 	*valuep = newValue;
2517 	return 0;
2518 }
2519 
2520 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2521 				      struct usb_os_desc_header *h, void *data,
2522 				      unsigned len, void *priv)
2523 {
2524 	struct ffs_function *func = priv;
2525 	u8 length = 0;
2526 
2527 	switch (type) {
2528 	case FFS_OS_DESC_EXT_COMPAT: {
2529 		struct usb_ext_compat_desc *desc = data;
2530 		struct usb_os_desc_table *t;
2531 
2532 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2533 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2534 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2535 		       ARRAY_SIZE(desc->CompatibleID) +
2536 		       ARRAY_SIZE(desc->SubCompatibleID));
2537 		length = sizeof(*desc);
2538 	}
2539 		break;
2540 	case FFS_OS_DESC_EXT_PROP: {
2541 		struct usb_ext_prop_desc *desc = data;
2542 		struct usb_os_desc_table *t;
2543 		struct usb_os_desc_ext_prop *ext_prop;
2544 		char *ext_prop_name;
2545 		char *ext_prop_data;
2546 
2547 		t = &func->function.os_desc_table[h->interface];
2548 		t->if_id = func->interfaces_nums[h->interface];
2549 
2550 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2551 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2552 
2553 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2554 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2555 		ext_prop->data_len = le32_to_cpu(*(u32 *)
2556 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2557 		length = ext_prop->name_len + ext_prop->data_len + 14;
2558 
2559 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2560 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2561 			ext_prop->name_len;
2562 
2563 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2564 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2565 			ext_prop->data_len;
2566 		memcpy(ext_prop_data,
2567 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2568 		       ext_prop->data_len);
2569 		/* unicode data reported to the host as "WCHAR"s */
2570 		switch (ext_prop->type) {
2571 		case USB_EXT_PROP_UNICODE:
2572 		case USB_EXT_PROP_UNICODE_ENV:
2573 		case USB_EXT_PROP_UNICODE_LINK:
2574 		case USB_EXT_PROP_UNICODE_MULTI:
2575 			ext_prop->data_len *= 2;
2576 			break;
2577 		}
2578 		ext_prop->data = ext_prop_data;
2579 
2580 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2581 		       ext_prop->name_len);
2582 		/* property name reported to the host as "WCHAR"s */
2583 		ext_prop->name_len *= 2;
2584 		ext_prop->name = ext_prop_name;
2585 
2586 		t->os_desc->ext_prop_len +=
2587 			ext_prop->name_len + ext_prop->data_len + 14;
2588 		++t->os_desc->ext_prop_count;
2589 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2590 	}
2591 		break;
2592 	default:
2593 		pr_vdebug("unknown descriptor: %d\n", type);
2594 	}
2595 
2596 	return length;
2597 }
2598 
2599 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2600 						struct usb_configuration *c)
2601 {
2602 	struct ffs_function *func = ffs_func_from_usb(f);
2603 	struct f_fs_opts *ffs_opts =
2604 		container_of(f->fi, struct f_fs_opts, func_inst);
2605 	int ret;
2606 
2607 	ENTER();
2608 
2609 	/*
2610 	 * Legacy gadget triggers binding in functionfs_ready_callback,
2611 	 * which already uses locking; taking the same lock here would
2612 	 * cause a deadlock.
2613 	 *
2614 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
2615 	 */
2616 	if (!ffs_opts->no_configfs)
2617 		ffs_dev_lock();
2618 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2619 	func->ffs = ffs_opts->dev->ffs_data;
2620 	if (!ffs_opts->no_configfs)
2621 		ffs_dev_unlock();
2622 	if (ret)
2623 		return ERR_PTR(ret);
2624 
2625 	func->conf = c;
2626 	func->gadget = c->cdev->gadget;
2627 
2628 	ffs_data_get(func->ffs);
2629 
2630 	/*
2631 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2632 	 * configurations are bound in sequence with list_for_each_entry,
2633 	 * in each configuration its functions are bound in sequence
2634 	 * with list_for_each_entry, so we assume no race condition
2635 	 * with regard to ffs_opts->bound access
2636 	 */
2637 	if (!ffs_opts->refcnt) {
2638 		ret = functionfs_bind(func->ffs, c->cdev);
2639 		if (ret)
2640 			return ERR_PTR(ret);
2641 	}
2642 	ffs_opts->refcnt++;
2643 	func->function.strings = func->ffs->stringtabs;
2644 
2645 	return ffs_opts;
2646 }
2647 
2648 static int _ffs_func_bind(struct usb_configuration *c,
2649 			  struct usb_function *f)
2650 {
2651 	struct ffs_function *func = ffs_func_from_usb(f);
2652 	struct ffs_data *ffs = func->ffs;
2653 
2654 	const int full = !!func->ffs->fs_descs_count;
2655 	const int high = gadget_is_dualspeed(func->gadget) &&
2656 		func->ffs->hs_descs_count;
2657 	const int super = gadget_is_superspeed(func->gadget) &&
2658 		func->ffs->ss_descs_count;
2659 
2660 	int fs_len, hs_len, ss_len, ret, i;
2661 
2662 	/* Make it a single chunk, less management later on */
2663 	vla_group(d);
2664 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2665 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2666 		full ? ffs->fs_descs_count + 1 : 0);
2667 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2668 		high ? ffs->hs_descs_count + 1 : 0);
2669 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2670 		super ? ffs->ss_descs_count + 1 : 0);
2671 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2672 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2673 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2674 	vla_item_with_sz(d, char[16], ext_compat,
2675 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2676 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
2677 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
2678 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2679 			 ffs->ms_os_descs_ext_prop_count);
2680 	vla_item_with_sz(d, char, ext_prop_name,
2681 			 ffs->ms_os_descs_ext_prop_name_len);
2682 	vla_item_with_sz(d, char, ext_prop_data,
2683 			 ffs->ms_os_descs_ext_prop_data_len);
2684 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2685 	char *vlabuf;
2686 
2687 	ENTER();
2688 
2689 	/* Has descriptors only for speeds gadget does not support */
2690 	if (unlikely(!(full | high | super)))
2691 		return -ENOTSUPP;
2692 
2693 	/* Allocate a single chunk, less management later on */
2694 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2695 	if (unlikely(!vlabuf))
2696 		return -ENOMEM;
2697 
2698 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2699 	ffs->ms_os_descs_ext_prop_name_avail =
2700 		vla_ptr(vlabuf, d, ext_prop_name);
2701 	ffs->ms_os_descs_ext_prop_data_avail =
2702 		vla_ptr(vlabuf, d, ext_prop_data);
2703 
2704 	/* Copy descriptors  */
2705 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2706 	       ffs->raw_descs_length);
2707 
2708 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2709 	for (ret = ffs->eps_count; ret; --ret) {
2710 		struct ffs_ep *ptr;
2711 
2712 		ptr = vla_ptr(vlabuf, d, eps);
2713 		ptr[ret].num = -1;
2714 	}
2715 
2716 	/* Save pointers
2717 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
2718 	*/
2719 	func->eps             = vla_ptr(vlabuf, d, eps);
2720 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2721 
2722 	/*
2723 	 * Go through all the endpoint descriptors and allocate
2724 	 * endpoints first, so that later we can rewrite the endpoint
2725 	 * numbers without worrying that it may be described later on.
2726 	 */
2727 	if (likely(full)) {
2728 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
2729 		fs_len = ffs_do_descs(ffs->fs_descs_count,
2730 				      vla_ptr(vlabuf, d, raw_descs),
2731 				      d_raw_descs__sz,
2732 				      __ffs_func_bind_do_descs, func);
2733 		if (unlikely(fs_len < 0)) {
2734 			ret = fs_len;
2735 			goto error;
2736 		}
2737 	} else {
2738 		fs_len = 0;
2739 	}
2740 
2741 	if (likely(high)) {
2742 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
2743 		hs_len = ffs_do_descs(ffs->hs_descs_count,
2744 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
2745 				      d_raw_descs__sz - fs_len,
2746 				      __ffs_func_bind_do_descs, func);
2747 		if (unlikely(hs_len < 0)) {
2748 			ret = hs_len;
2749 			goto error;
2750 		}
2751 	} else {
2752 		hs_len = 0;
2753 	}
2754 
2755 	if (likely(super)) {
2756 		func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
2757 		ss_len = ffs_do_descs(ffs->ss_descs_count,
2758 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
2759 				d_raw_descs__sz - fs_len - hs_len,
2760 				__ffs_func_bind_do_descs, func);
2761 		if (unlikely(ss_len < 0)) {
2762 			ret = ss_len;
2763 			goto error;
2764 		}
2765 	} else {
2766 		ss_len = 0;
2767 	}
2768 
2769 	/*
2770 	 * Now handle interface numbers allocation and interface and
2771 	 * endpoint numbers rewriting.  We can do that in one go
2772 	 * now.
2773 	 */
2774 	ret = ffs_do_descs(ffs->fs_descs_count +
2775 			   (high ? ffs->hs_descs_count : 0) +
2776 			   (super ? ffs->ss_descs_count : 0),
2777 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
2778 			   __ffs_func_bind_do_nums, func);
2779 	if (unlikely(ret < 0))
2780 		goto error;
2781 
2782 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
2783 	if (c->cdev->use_os_string)
2784 		for (i = 0; i < ffs->interfaces_count; ++i) {
2785 			struct usb_os_desc *desc;
2786 
2787 			desc = func->function.os_desc_table[i].os_desc =
2788 				vla_ptr(vlabuf, d, os_desc) +
2789 				i * sizeof(struct usb_os_desc);
2790 			desc->ext_compat_id =
2791 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
2792 			INIT_LIST_HEAD(&desc->ext_prop);
2793 		}
2794 	ret = ffs_do_os_descs(ffs->ms_os_descs_count,
2795 			      vla_ptr(vlabuf, d, raw_descs) +
2796 			      fs_len + hs_len + ss_len,
2797 			      d_raw_descs__sz - fs_len - hs_len - ss_len,
2798 			      __ffs_func_bind_do_os_desc, func);
2799 	if (unlikely(ret < 0))
2800 		goto error;
2801 	func->function.os_desc_n =
2802 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
2803 
2804 	/* And we're done */
2805 	ffs_event_add(ffs, FUNCTIONFS_BIND);
2806 	return 0;
2807 
2808 error:
2809 	/* XXX Do we need to release all claimed endpoints here? */
2810 	return ret;
2811 }
2812 
2813 static int ffs_func_bind(struct usb_configuration *c,
2814 			 struct usb_function *f)
2815 {
2816 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
2817 
2818 	if (IS_ERR(ffs_opts))
2819 		return PTR_ERR(ffs_opts);
2820 
2821 	return _ffs_func_bind(c, f);
2822 }
2823 
2824 
2825 /* Other USB function hooks *************************************************/
2826 
2827 static int ffs_func_set_alt(struct usb_function *f,
2828 			    unsigned interface, unsigned alt)
2829 {
2830 	struct ffs_function *func = ffs_func_from_usb(f);
2831 	struct ffs_data *ffs = func->ffs;
2832 	int ret = 0, intf;
2833 
2834 	if (alt != (unsigned)-1) {
2835 		intf = ffs_func_revmap_intf(func, interface);
2836 		if (unlikely(intf < 0))
2837 			return intf;
2838 	}
2839 
2840 	if (ffs->func)
2841 		ffs_func_eps_disable(ffs->func);
2842 
2843 	if (ffs->state != FFS_ACTIVE)
2844 		return -ENODEV;
2845 
2846 	if (alt == (unsigned)-1) {
2847 		ffs->func = NULL;
2848 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
2849 		return 0;
2850 	}
2851 
2852 	ffs->func = func;
2853 	ret = ffs_func_eps_enable(func);
2854 	if (likely(ret >= 0))
2855 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
2856 	return ret;
2857 }
2858 
2859 static void ffs_func_disable(struct usb_function *f)
2860 {
2861 	ffs_func_set_alt(f, 0, (unsigned)-1);
2862 }
2863 
2864 static int ffs_func_setup(struct usb_function *f,
2865 			  const struct usb_ctrlrequest *creq)
2866 {
2867 	struct ffs_function *func = ffs_func_from_usb(f);
2868 	struct ffs_data *ffs = func->ffs;
2869 	unsigned long flags;
2870 	int ret;
2871 
2872 	ENTER();
2873 
2874 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
2875 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
2876 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
2877 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
2878 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
2879 
2880 	/*
2881 	 * Most requests directed to interface go through here
2882 	 * (notable exceptions are set/get interface) so we need to
2883 	 * handle them.  All other either handled by composite or
2884 	 * passed to usb_configuration->setup() (if one is set).  No
2885 	 * matter, we will handle requests directed to endpoint here
2886 	 * as well (as it's straightforward) but what to do with any
2887 	 * other request?
2888 	 */
2889 	if (ffs->state != FFS_ACTIVE)
2890 		return -ENODEV;
2891 
2892 	switch (creq->bRequestType & USB_RECIP_MASK) {
2893 	case USB_RECIP_INTERFACE:
2894 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
2895 		if (unlikely(ret < 0))
2896 			return ret;
2897 		break;
2898 
2899 	case USB_RECIP_ENDPOINT:
2900 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
2901 		if (unlikely(ret < 0))
2902 			return ret;
2903 		break;
2904 
2905 	default:
2906 		return -EOPNOTSUPP;
2907 	}
2908 
2909 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2910 	ffs->ev.setup = *creq;
2911 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
2912 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
2913 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2914 
2915 	return 0;
2916 }
2917 
2918 static void ffs_func_suspend(struct usb_function *f)
2919 {
2920 	ENTER();
2921 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
2922 }
2923 
2924 static void ffs_func_resume(struct usb_function *f)
2925 {
2926 	ENTER();
2927 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
2928 }
2929 
2930 
2931 /* Endpoint and interface numbers reverse mapping ***************************/
2932 
2933 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
2934 {
2935 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
2936 	return num ? num : -EDOM;
2937 }
2938 
2939 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
2940 {
2941 	short *nums = func->interfaces_nums;
2942 	unsigned count = func->ffs->interfaces_count;
2943 
2944 	for (; count; --count, ++nums) {
2945 		if (*nums >= 0 && *nums == intf)
2946 			return nums - func->interfaces_nums;
2947 	}
2948 
2949 	return -EDOM;
2950 }
2951 
2952 
2953 /* Devices management *******************************************************/
2954 
2955 static LIST_HEAD(ffs_devices);
2956 
2957 static struct ffs_dev *_ffs_do_find_dev(const char *name)
2958 {
2959 	struct ffs_dev *dev;
2960 
2961 	list_for_each_entry(dev, &ffs_devices, entry) {
2962 		if (!dev->name || !name)
2963 			continue;
2964 		if (strcmp(dev->name, name) == 0)
2965 			return dev;
2966 	}
2967 
2968 	return NULL;
2969 }
2970 
2971 /*
2972  * ffs_lock must be taken by the caller of this function
2973  */
2974 static struct ffs_dev *_ffs_get_single_dev(void)
2975 {
2976 	struct ffs_dev *dev;
2977 
2978 	if (list_is_singular(&ffs_devices)) {
2979 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
2980 		if (dev->single)
2981 			return dev;
2982 	}
2983 
2984 	return NULL;
2985 }
2986 
2987 /*
2988  * ffs_lock must be taken by the caller of this function
2989  */
2990 static struct ffs_dev *_ffs_find_dev(const char *name)
2991 {
2992 	struct ffs_dev *dev;
2993 
2994 	dev = _ffs_get_single_dev();
2995 	if (dev)
2996 		return dev;
2997 
2998 	return _ffs_do_find_dev(name);
2999 }
3000 
3001 /* Configfs support *********************************************************/
3002 
3003 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3004 {
3005 	return container_of(to_config_group(item), struct f_fs_opts,
3006 			    func_inst.group);
3007 }
3008 
3009 static void ffs_attr_release(struct config_item *item)
3010 {
3011 	struct f_fs_opts *opts = to_ffs_opts(item);
3012 
3013 	usb_put_function_instance(&opts->func_inst);
3014 }
3015 
3016 static struct configfs_item_operations ffs_item_ops = {
3017 	.release	= ffs_attr_release,
3018 };
3019 
3020 static struct config_item_type ffs_func_type = {
3021 	.ct_item_ops	= &ffs_item_ops,
3022 	.ct_owner	= THIS_MODULE,
3023 };
3024 
3025 
3026 /* Function registration interface ******************************************/
3027 
3028 static void ffs_free_inst(struct usb_function_instance *f)
3029 {
3030 	struct f_fs_opts *opts;
3031 
3032 	opts = to_f_fs_opts(f);
3033 	ffs_dev_lock();
3034 	_ffs_free_dev(opts->dev);
3035 	ffs_dev_unlock();
3036 	kfree(opts);
3037 }
3038 
3039 #define MAX_INST_NAME_LEN	40
3040 
3041 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3042 {
3043 	struct f_fs_opts *opts;
3044 	char *ptr;
3045 	const char *tmp;
3046 	int name_len, ret;
3047 
3048 	name_len = strlen(name) + 1;
3049 	if (name_len > MAX_INST_NAME_LEN)
3050 		return -ENAMETOOLONG;
3051 
3052 	ptr = kstrndup(name, name_len, GFP_KERNEL);
3053 	if (!ptr)
3054 		return -ENOMEM;
3055 
3056 	opts = to_f_fs_opts(fi);
3057 	tmp = NULL;
3058 
3059 	ffs_dev_lock();
3060 
3061 	tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3062 	ret = _ffs_name_dev(opts->dev, ptr);
3063 	if (ret) {
3064 		kfree(ptr);
3065 		ffs_dev_unlock();
3066 		return ret;
3067 	}
3068 	opts->dev->name_allocated = true;
3069 
3070 	ffs_dev_unlock();
3071 
3072 	kfree(tmp);
3073 
3074 	return 0;
3075 }
3076 
3077 static struct usb_function_instance *ffs_alloc_inst(void)
3078 {
3079 	struct f_fs_opts *opts;
3080 	struct ffs_dev *dev;
3081 
3082 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3083 	if (!opts)
3084 		return ERR_PTR(-ENOMEM);
3085 
3086 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3087 	opts->func_inst.free_func_inst = ffs_free_inst;
3088 	ffs_dev_lock();
3089 	dev = _ffs_alloc_dev();
3090 	ffs_dev_unlock();
3091 	if (IS_ERR(dev)) {
3092 		kfree(opts);
3093 		return ERR_CAST(dev);
3094 	}
3095 	opts->dev = dev;
3096 	dev->opts = opts;
3097 
3098 	config_group_init_type_name(&opts->func_inst.group, "",
3099 				    &ffs_func_type);
3100 	return &opts->func_inst;
3101 }
3102 
3103 static void ffs_free(struct usb_function *f)
3104 {
3105 	kfree(ffs_func_from_usb(f));
3106 }
3107 
3108 static void ffs_func_unbind(struct usb_configuration *c,
3109 			    struct usb_function *f)
3110 {
3111 	struct ffs_function *func = ffs_func_from_usb(f);
3112 	struct ffs_data *ffs = func->ffs;
3113 	struct f_fs_opts *opts =
3114 		container_of(f->fi, struct f_fs_opts, func_inst);
3115 	struct ffs_ep *ep = func->eps;
3116 	unsigned count = ffs->eps_count;
3117 	unsigned long flags;
3118 
3119 	ENTER();
3120 	if (ffs->func == func) {
3121 		ffs_func_eps_disable(func);
3122 		ffs->func = NULL;
3123 	}
3124 
3125 	if (!--opts->refcnt)
3126 		functionfs_unbind(ffs);
3127 
3128 	/* cleanup after autoconfig */
3129 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3130 	do {
3131 		if (ep->ep && ep->req)
3132 			usb_ep_free_request(ep->ep, ep->req);
3133 		ep->req = NULL;
3134 		++ep;
3135 	} while (--count);
3136 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3137 	kfree(func->eps);
3138 	func->eps = NULL;
3139 	/*
3140 	 * eps, descriptors and interfaces_nums are allocated in the
3141 	 * same chunk so only one free is required.
3142 	 */
3143 	func->function.fs_descriptors = NULL;
3144 	func->function.hs_descriptors = NULL;
3145 	func->function.ss_descriptors = NULL;
3146 	func->interfaces_nums = NULL;
3147 
3148 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3149 }
3150 
3151 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3152 {
3153 	struct ffs_function *func;
3154 
3155 	ENTER();
3156 
3157 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3158 	if (unlikely(!func))
3159 		return ERR_PTR(-ENOMEM);
3160 
3161 	func->function.name    = "Function FS Gadget";
3162 
3163 	func->function.bind    = ffs_func_bind;
3164 	func->function.unbind  = ffs_func_unbind;
3165 	func->function.set_alt = ffs_func_set_alt;
3166 	func->function.disable = ffs_func_disable;
3167 	func->function.setup   = ffs_func_setup;
3168 	func->function.suspend = ffs_func_suspend;
3169 	func->function.resume  = ffs_func_resume;
3170 	func->function.free_func = ffs_free;
3171 
3172 	return &func->function;
3173 }
3174 
3175 /*
3176  * ffs_lock must be taken by the caller of this function
3177  */
3178 static struct ffs_dev *_ffs_alloc_dev(void)
3179 {
3180 	struct ffs_dev *dev;
3181 	int ret;
3182 
3183 	if (_ffs_get_single_dev())
3184 			return ERR_PTR(-EBUSY);
3185 
3186 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3187 	if (!dev)
3188 		return ERR_PTR(-ENOMEM);
3189 
3190 	if (list_empty(&ffs_devices)) {
3191 		ret = functionfs_init();
3192 		if (ret) {
3193 			kfree(dev);
3194 			return ERR_PTR(ret);
3195 		}
3196 	}
3197 
3198 	list_add(&dev->entry, &ffs_devices);
3199 
3200 	return dev;
3201 }
3202 
3203 /*
3204  * ffs_lock must be taken by the caller of this function
3205  * The caller is responsible for "name" being available whenever f_fs needs it
3206  */
3207 static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3208 {
3209 	struct ffs_dev *existing;
3210 
3211 	existing = _ffs_do_find_dev(name);
3212 	if (existing)
3213 		return -EBUSY;
3214 
3215 	dev->name = name;
3216 
3217 	return 0;
3218 }
3219 
3220 /*
3221  * The caller is responsible for "name" being available whenever f_fs needs it
3222  */
3223 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3224 {
3225 	int ret;
3226 
3227 	ffs_dev_lock();
3228 	ret = _ffs_name_dev(dev, name);
3229 	ffs_dev_unlock();
3230 
3231 	return ret;
3232 }
3233 EXPORT_SYMBOL_GPL(ffs_name_dev);
3234 
3235 int ffs_single_dev(struct ffs_dev *dev)
3236 {
3237 	int ret;
3238 
3239 	ret = 0;
3240 	ffs_dev_lock();
3241 
3242 	if (!list_is_singular(&ffs_devices))
3243 		ret = -EBUSY;
3244 	else
3245 		dev->single = true;
3246 
3247 	ffs_dev_unlock();
3248 	return ret;
3249 }
3250 EXPORT_SYMBOL_GPL(ffs_single_dev);
3251 
3252 /*
3253  * ffs_lock must be taken by the caller of this function
3254  */
3255 static void _ffs_free_dev(struct ffs_dev *dev)
3256 {
3257 	list_del(&dev->entry);
3258 	if (dev->name_allocated)
3259 		kfree(dev->name);
3260 	kfree(dev);
3261 	if (list_empty(&ffs_devices))
3262 		functionfs_cleanup();
3263 }
3264 
3265 static void *ffs_acquire_dev(const char *dev_name)
3266 {
3267 	struct ffs_dev *ffs_dev;
3268 
3269 	ENTER();
3270 	ffs_dev_lock();
3271 
3272 	ffs_dev = _ffs_find_dev(dev_name);
3273 	if (!ffs_dev)
3274 		ffs_dev = ERR_PTR(-ENOENT);
3275 	else if (ffs_dev->mounted)
3276 		ffs_dev = ERR_PTR(-EBUSY);
3277 	else if (ffs_dev->ffs_acquire_dev_callback &&
3278 	    ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3279 		ffs_dev = ERR_PTR(-ENOENT);
3280 	else
3281 		ffs_dev->mounted = true;
3282 
3283 	ffs_dev_unlock();
3284 	return ffs_dev;
3285 }
3286 
3287 static void ffs_release_dev(struct ffs_data *ffs_data)
3288 {
3289 	struct ffs_dev *ffs_dev;
3290 
3291 	ENTER();
3292 	ffs_dev_lock();
3293 
3294 	ffs_dev = ffs_data->private_data;
3295 	if (ffs_dev) {
3296 		ffs_dev->mounted = false;
3297 
3298 		if (ffs_dev->ffs_release_dev_callback)
3299 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3300 	}
3301 
3302 	ffs_dev_unlock();
3303 }
3304 
3305 static int ffs_ready(struct ffs_data *ffs)
3306 {
3307 	struct ffs_dev *ffs_obj;
3308 	int ret = 0;
3309 
3310 	ENTER();
3311 	ffs_dev_lock();
3312 
3313 	ffs_obj = ffs->private_data;
3314 	if (!ffs_obj) {
3315 		ret = -EINVAL;
3316 		goto done;
3317 	}
3318 	if (WARN_ON(ffs_obj->desc_ready)) {
3319 		ret = -EBUSY;
3320 		goto done;
3321 	}
3322 
3323 	ffs_obj->desc_ready = true;
3324 	ffs_obj->ffs_data = ffs;
3325 
3326 	if (ffs_obj->ffs_ready_callback)
3327 		ret = ffs_obj->ffs_ready_callback(ffs);
3328 
3329 done:
3330 	ffs_dev_unlock();
3331 	return ret;
3332 }
3333 
3334 static void ffs_closed(struct ffs_data *ffs)
3335 {
3336 	struct ffs_dev *ffs_obj;
3337 
3338 	ENTER();
3339 	ffs_dev_lock();
3340 
3341 	ffs_obj = ffs->private_data;
3342 	if (!ffs_obj)
3343 		goto done;
3344 
3345 	ffs_obj->desc_ready = false;
3346 
3347 	if (ffs_obj->ffs_closed_callback)
3348 		ffs_obj->ffs_closed_callback(ffs);
3349 
3350 	if (!ffs_obj->opts || ffs_obj->opts->no_configfs
3351 	    || !ffs_obj->opts->func_inst.group.cg_item.ci_parent)
3352 		goto done;
3353 
3354 	unregister_gadget_item(ffs_obj->opts->
3355 			       func_inst.group.cg_item.ci_parent->ci_parent);
3356 done:
3357 	ffs_dev_unlock();
3358 }
3359 
3360 /* Misc helper functions ****************************************************/
3361 
3362 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3363 {
3364 	return nonblock
3365 		? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3366 		: mutex_lock_interruptible(mutex);
3367 }
3368 
3369 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3370 {
3371 	char *data;
3372 
3373 	if (unlikely(!len))
3374 		return NULL;
3375 
3376 	data = kmalloc(len, GFP_KERNEL);
3377 	if (unlikely(!data))
3378 		return ERR_PTR(-ENOMEM);
3379 
3380 	if (unlikely(__copy_from_user(data, buf, len))) {
3381 		kfree(data);
3382 		return ERR_PTR(-EFAULT);
3383 	}
3384 
3385 	pr_vdebug("Buffer from user space:\n");
3386 	ffs_dump_mem("", data, len);
3387 
3388 	return data;
3389 }
3390 
3391 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3392 MODULE_LICENSE("GPL");
3393 MODULE_AUTHOR("Michal Nazarewicz");
3394