1 /* 2 * f_fs.c -- user mode file system API for USB composite function controllers 3 * 4 * Copyright (C) 2010 Samsung Electronics 5 * Author: Michal Nazarewicz <mina86@mina86.com> 6 * 7 * Based on inode.c (GadgetFS) which was: 8 * Copyright (C) 2003-2004 David Brownell 9 * Copyright (C) 2003 Agilent Technologies 10 * 11 * This program is free software; you can redistribute it and/or modify 12 * it under the terms of the GNU General Public License as published by 13 * the Free Software Foundation; either version 2 of the License, or 14 * (at your option) any later version. 15 */ 16 17 18 /* #define DEBUG */ 19 /* #define VERBOSE_DEBUG */ 20 21 #include <linux/blkdev.h> 22 #include <linux/pagemap.h> 23 #include <linux/export.h> 24 #include <linux/hid.h> 25 #include <linux/module.h> 26 #include <asm/unaligned.h> 27 28 #include <linux/usb/composite.h> 29 #include <linux/usb/functionfs.h> 30 31 #include <linux/aio.h> 32 #include <linux/mmu_context.h> 33 #include <linux/poll.h> 34 35 #include "u_fs.h" 36 #include "u_f.h" 37 #include "u_os_desc.h" 38 #include "configfs.h" 39 40 #define FUNCTIONFS_MAGIC 0xa647361 /* Chosen by a honest dice roll ;) */ 41 42 /* Reference counter handling */ 43 static void ffs_data_get(struct ffs_data *ffs); 44 static void ffs_data_put(struct ffs_data *ffs); 45 /* Creates new ffs_data object. */ 46 static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc)); 47 48 /* Opened counter handling. */ 49 static void ffs_data_opened(struct ffs_data *ffs); 50 static void ffs_data_closed(struct ffs_data *ffs); 51 52 /* Called with ffs->mutex held; take over ownership of data. */ 53 static int __must_check 54 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len); 55 static int __must_check 56 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len); 57 58 59 /* The function structure ***************************************************/ 60 61 struct ffs_ep; 62 63 struct ffs_function { 64 struct usb_configuration *conf; 65 struct usb_gadget *gadget; 66 struct ffs_data *ffs; 67 68 struct ffs_ep *eps; 69 u8 eps_revmap[16]; 70 short *interfaces_nums; 71 72 struct usb_function function; 73 }; 74 75 76 static struct ffs_function *ffs_func_from_usb(struct usb_function *f) 77 { 78 return container_of(f, struct ffs_function, function); 79 } 80 81 82 static inline enum ffs_setup_state 83 ffs_setup_state_clear_cancelled(struct ffs_data *ffs) 84 { 85 return (enum ffs_setup_state) 86 cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP); 87 } 88 89 90 static void ffs_func_eps_disable(struct ffs_function *func); 91 static int __must_check ffs_func_eps_enable(struct ffs_function *func); 92 93 static int ffs_func_bind(struct usb_configuration *, 94 struct usb_function *); 95 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned); 96 static void ffs_func_disable(struct usb_function *); 97 static int ffs_func_setup(struct usb_function *, 98 const struct usb_ctrlrequest *); 99 static void ffs_func_suspend(struct usb_function *); 100 static void ffs_func_resume(struct usb_function *); 101 102 103 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num); 104 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf); 105 106 107 /* The endpoints structures *************************************************/ 108 109 struct ffs_ep { 110 struct usb_ep *ep; /* P: ffs->eps_lock */ 111 struct usb_request *req; /* P: epfile->mutex */ 112 113 /* [0]: full speed, [1]: high speed, [2]: super speed */ 114 struct usb_endpoint_descriptor *descs[3]; 115 116 u8 num; 117 118 int status; /* P: epfile->mutex */ 119 }; 120 121 struct ffs_epfile { 122 /* Protects ep->ep and ep->req. */ 123 struct mutex mutex; 124 wait_queue_head_t wait; 125 126 struct ffs_data *ffs; 127 struct ffs_ep *ep; /* P: ffs->eps_lock */ 128 129 struct dentry *dentry; 130 131 char name[5]; 132 133 unsigned char in; /* P: ffs->eps_lock */ 134 unsigned char isoc; /* P: ffs->eps_lock */ 135 136 unsigned char _pad; 137 }; 138 139 /* ffs_io_data structure ***************************************************/ 140 141 struct ffs_io_data { 142 bool aio; 143 bool read; 144 145 struct kiocb *kiocb; 146 const struct iovec *iovec; 147 unsigned long nr_segs; 148 char __user *buf; 149 size_t len; 150 151 struct mm_struct *mm; 152 struct work_struct work; 153 154 struct usb_ep *ep; 155 struct usb_request *req; 156 }; 157 158 struct ffs_desc_helper { 159 struct ffs_data *ffs; 160 unsigned interfaces_count; 161 unsigned eps_count; 162 }; 163 164 static int __must_check ffs_epfiles_create(struct ffs_data *ffs); 165 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count); 166 167 static struct inode *__must_check 168 ffs_sb_create_file(struct super_block *sb, const char *name, void *data, 169 const struct file_operations *fops, 170 struct dentry **dentry_p); 171 172 /* Devices management *******************************************************/ 173 174 DEFINE_MUTEX(ffs_lock); 175 EXPORT_SYMBOL_GPL(ffs_lock); 176 177 static struct ffs_dev *_ffs_find_dev(const char *name); 178 static struct ffs_dev *_ffs_alloc_dev(void); 179 static int _ffs_name_dev(struct ffs_dev *dev, const char *name); 180 static void _ffs_free_dev(struct ffs_dev *dev); 181 static void *ffs_acquire_dev(const char *dev_name); 182 static void ffs_release_dev(struct ffs_data *ffs_data); 183 static int ffs_ready(struct ffs_data *ffs); 184 static void ffs_closed(struct ffs_data *ffs); 185 186 /* Misc helper functions ****************************************************/ 187 188 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 189 __attribute__((warn_unused_result, nonnull)); 190 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 191 __attribute__((warn_unused_result, nonnull)); 192 193 194 /* Control file aka ep0 *****************************************************/ 195 196 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req) 197 { 198 struct ffs_data *ffs = req->context; 199 200 complete_all(&ffs->ep0req_completion); 201 } 202 203 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len) 204 { 205 struct usb_request *req = ffs->ep0req; 206 int ret; 207 208 req->zero = len < le16_to_cpu(ffs->ev.setup.wLength); 209 210 spin_unlock_irq(&ffs->ev.waitq.lock); 211 212 req->buf = data; 213 req->length = len; 214 215 /* 216 * UDC layer requires to provide a buffer even for ZLP, but should 217 * not use it at all. Let's provide some poisoned pointer to catch 218 * possible bug in the driver. 219 */ 220 if (req->buf == NULL) 221 req->buf = (void *)0xDEADBABE; 222 223 reinit_completion(&ffs->ep0req_completion); 224 225 ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC); 226 if (unlikely(ret < 0)) 227 return ret; 228 229 ret = wait_for_completion_interruptible(&ffs->ep0req_completion); 230 if (unlikely(ret)) { 231 usb_ep_dequeue(ffs->gadget->ep0, req); 232 return -EINTR; 233 } 234 235 ffs->setup_state = FFS_NO_SETUP; 236 return req->status ? req->status : req->actual; 237 } 238 239 static int __ffs_ep0_stall(struct ffs_data *ffs) 240 { 241 if (ffs->ev.can_stall) { 242 pr_vdebug("ep0 stall\n"); 243 usb_ep_set_halt(ffs->gadget->ep0); 244 ffs->setup_state = FFS_NO_SETUP; 245 return -EL2HLT; 246 } else { 247 pr_debug("bogus ep0 stall!\n"); 248 return -ESRCH; 249 } 250 } 251 252 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf, 253 size_t len, loff_t *ptr) 254 { 255 struct ffs_data *ffs = file->private_data; 256 ssize_t ret; 257 char *data; 258 259 ENTER(); 260 261 /* Fast check if setup was canceled */ 262 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 263 return -EIDRM; 264 265 /* Acquire mutex */ 266 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 267 if (unlikely(ret < 0)) 268 return ret; 269 270 /* Check state */ 271 switch (ffs->state) { 272 case FFS_READ_DESCRIPTORS: 273 case FFS_READ_STRINGS: 274 /* Copy data */ 275 if (unlikely(len < 16)) { 276 ret = -EINVAL; 277 break; 278 } 279 280 data = ffs_prepare_buffer(buf, len); 281 if (IS_ERR(data)) { 282 ret = PTR_ERR(data); 283 break; 284 } 285 286 /* Handle data */ 287 if (ffs->state == FFS_READ_DESCRIPTORS) { 288 pr_info("read descriptors\n"); 289 ret = __ffs_data_got_descs(ffs, data, len); 290 if (unlikely(ret < 0)) 291 break; 292 293 ffs->state = FFS_READ_STRINGS; 294 ret = len; 295 } else { 296 pr_info("read strings\n"); 297 ret = __ffs_data_got_strings(ffs, data, len); 298 if (unlikely(ret < 0)) 299 break; 300 301 ret = ffs_epfiles_create(ffs); 302 if (unlikely(ret)) { 303 ffs->state = FFS_CLOSING; 304 break; 305 } 306 307 ffs->state = FFS_ACTIVE; 308 mutex_unlock(&ffs->mutex); 309 310 ret = ffs_ready(ffs); 311 if (unlikely(ret < 0)) { 312 ffs->state = FFS_CLOSING; 313 return ret; 314 } 315 316 set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags); 317 return len; 318 } 319 break; 320 321 case FFS_ACTIVE: 322 data = NULL; 323 /* 324 * We're called from user space, we can use _irq 325 * rather then _irqsave 326 */ 327 spin_lock_irq(&ffs->ev.waitq.lock); 328 switch (ffs_setup_state_clear_cancelled(ffs)) { 329 case FFS_SETUP_CANCELLED: 330 ret = -EIDRM; 331 goto done_spin; 332 333 case FFS_NO_SETUP: 334 ret = -ESRCH; 335 goto done_spin; 336 337 case FFS_SETUP_PENDING: 338 break; 339 } 340 341 /* FFS_SETUP_PENDING */ 342 if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) { 343 spin_unlock_irq(&ffs->ev.waitq.lock); 344 ret = __ffs_ep0_stall(ffs); 345 break; 346 } 347 348 /* FFS_SETUP_PENDING and not stall */ 349 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 350 351 spin_unlock_irq(&ffs->ev.waitq.lock); 352 353 data = ffs_prepare_buffer(buf, len); 354 if (IS_ERR(data)) { 355 ret = PTR_ERR(data); 356 break; 357 } 358 359 spin_lock_irq(&ffs->ev.waitq.lock); 360 361 /* 362 * We are guaranteed to be still in FFS_ACTIVE state 363 * but the state of setup could have changed from 364 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need 365 * to check for that. If that happened we copied data 366 * from user space in vain but it's unlikely. 367 * 368 * For sure we are not in FFS_NO_SETUP since this is 369 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP 370 * transition can be performed and it's protected by 371 * mutex. 372 */ 373 if (ffs_setup_state_clear_cancelled(ffs) == 374 FFS_SETUP_CANCELLED) { 375 ret = -EIDRM; 376 done_spin: 377 spin_unlock_irq(&ffs->ev.waitq.lock); 378 } else { 379 /* unlocks spinlock */ 380 ret = __ffs_ep0_queue_wait(ffs, data, len); 381 } 382 kfree(data); 383 break; 384 385 default: 386 ret = -EBADFD; 387 break; 388 } 389 390 mutex_unlock(&ffs->mutex); 391 return ret; 392 } 393 394 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf, 395 size_t n) 396 { 397 /* 398 * We are holding ffs->ev.waitq.lock and ffs->mutex and we need 399 * to release them. 400 */ 401 struct usb_functionfs_event events[n]; 402 unsigned i = 0; 403 404 memset(events, 0, sizeof events); 405 406 do { 407 events[i].type = ffs->ev.types[i]; 408 if (events[i].type == FUNCTIONFS_SETUP) { 409 events[i].u.setup = ffs->ev.setup; 410 ffs->setup_state = FFS_SETUP_PENDING; 411 } 412 } while (++i < n); 413 414 if (n < ffs->ev.count) { 415 ffs->ev.count -= n; 416 memmove(ffs->ev.types, ffs->ev.types + n, 417 ffs->ev.count * sizeof *ffs->ev.types); 418 } else { 419 ffs->ev.count = 0; 420 } 421 422 spin_unlock_irq(&ffs->ev.waitq.lock); 423 mutex_unlock(&ffs->mutex); 424 425 return unlikely(__copy_to_user(buf, events, sizeof events)) 426 ? -EFAULT : sizeof events; 427 } 428 429 static ssize_t ffs_ep0_read(struct file *file, char __user *buf, 430 size_t len, loff_t *ptr) 431 { 432 struct ffs_data *ffs = file->private_data; 433 char *data = NULL; 434 size_t n; 435 int ret; 436 437 ENTER(); 438 439 /* Fast check if setup was canceled */ 440 if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED) 441 return -EIDRM; 442 443 /* Acquire mutex */ 444 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 445 if (unlikely(ret < 0)) 446 return ret; 447 448 /* Check state */ 449 if (ffs->state != FFS_ACTIVE) { 450 ret = -EBADFD; 451 goto done_mutex; 452 } 453 454 /* 455 * We're called from user space, we can use _irq rather then 456 * _irqsave 457 */ 458 spin_lock_irq(&ffs->ev.waitq.lock); 459 460 switch (ffs_setup_state_clear_cancelled(ffs)) { 461 case FFS_SETUP_CANCELLED: 462 ret = -EIDRM; 463 break; 464 465 case FFS_NO_SETUP: 466 n = len / sizeof(struct usb_functionfs_event); 467 if (unlikely(!n)) { 468 ret = -EINVAL; 469 break; 470 } 471 472 if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) { 473 ret = -EAGAIN; 474 break; 475 } 476 477 if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq, 478 ffs->ev.count)) { 479 ret = -EINTR; 480 break; 481 } 482 483 return __ffs_ep0_read_events(ffs, buf, 484 min(n, (size_t)ffs->ev.count)); 485 486 case FFS_SETUP_PENDING: 487 if (ffs->ev.setup.bRequestType & USB_DIR_IN) { 488 spin_unlock_irq(&ffs->ev.waitq.lock); 489 ret = __ffs_ep0_stall(ffs); 490 goto done_mutex; 491 } 492 493 len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength)); 494 495 spin_unlock_irq(&ffs->ev.waitq.lock); 496 497 if (likely(len)) { 498 data = kmalloc(len, GFP_KERNEL); 499 if (unlikely(!data)) { 500 ret = -ENOMEM; 501 goto done_mutex; 502 } 503 } 504 505 spin_lock_irq(&ffs->ev.waitq.lock); 506 507 /* See ffs_ep0_write() */ 508 if (ffs_setup_state_clear_cancelled(ffs) == 509 FFS_SETUP_CANCELLED) { 510 ret = -EIDRM; 511 break; 512 } 513 514 /* unlocks spinlock */ 515 ret = __ffs_ep0_queue_wait(ffs, data, len); 516 if (likely(ret > 0) && unlikely(__copy_to_user(buf, data, len))) 517 ret = -EFAULT; 518 goto done_mutex; 519 520 default: 521 ret = -EBADFD; 522 break; 523 } 524 525 spin_unlock_irq(&ffs->ev.waitq.lock); 526 done_mutex: 527 mutex_unlock(&ffs->mutex); 528 kfree(data); 529 return ret; 530 } 531 532 static int ffs_ep0_open(struct inode *inode, struct file *file) 533 { 534 struct ffs_data *ffs = inode->i_private; 535 536 ENTER(); 537 538 if (unlikely(ffs->state == FFS_CLOSING)) 539 return -EBUSY; 540 541 file->private_data = ffs; 542 ffs_data_opened(ffs); 543 544 return 0; 545 } 546 547 static int ffs_ep0_release(struct inode *inode, struct file *file) 548 { 549 struct ffs_data *ffs = file->private_data; 550 551 ENTER(); 552 553 ffs_data_closed(ffs); 554 555 return 0; 556 } 557 558 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value) 559 { 560 struct ffs_data *ffs = file->private_data; 561 struct usb_gadget *gadget = ffs->gadget; 562 long ret; 563 564 ENTER(); 565 566 if (code == FUNCTIONFS_INTERFACE_REVMAP) { 567 struct ffs_function *func = ffs->func; 568 ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV; 569 } else if (gadget && gadget->ops->ioctl) { 570 ret = gadget->ops->ioctl(gadget, code, value); 571 } else { 572 ret = -ENOTTY; 573 } 574 575 return ret; 576 } 577 578 static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait) 579 { 580 struct ffs_data *ffs = file->private_data; 581 unsigned int mask = POLLWRNORM; 582 int ret; 583 584 poll_wait(file, &ffs->ev.waitq, wait); 585 586 ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK); 587 if (unlikely(ret < 0)) 588 return mask; 589 590 switch (ffs->state) { 591 case FFS_READ_DESCRIPTORS: 592 case FFS_READ_STRINGS: 593 mask |= POLLOUT; 594 break; 595 596 case FFS_ACTIVE: 597 switch (ffs->setup_state) { 598 case FFS_NO_SETUP: 599 if (ffs->ev.count) 600 mask |= POLLIN; 601 break; 602 603 case FFS_SETUP_PENDING: 604 case FFS_SETUP_CANCELLED: 605 mask |= (POLLIN | POLLOUT); 606 break; 607 } 608 case FFS_CLOSING: 609 break; 610 } 611 612 mutex_unlock(&ffs->mutex); 613 614 return mask; 615 } 616 617 static const struct file_operations ffs_ep0_operations = { 618 .llseek = no_llseek, 619 620 .open = ffs_ep0_open, 621 .write = ffs_ep0_write, 622 .read = ffs_ep0_read, 623 .release = ffs_ep0_release, 624 .unlocked_ioctl = ffs_ep0_ioctl, 625 .poll = ffs_ep0_poll, 626 }; 627 628 629 /* "Normal" endpoints operations ********************************************/ 630 631 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req) 632 { 633 ENTER(); 634 if (likely(req->context)) { 635 struct ffs_ep *ep = _ep->driver_data; 636 ep->status = req->status ? req->status : req->actual; 637 complete(req->context); 638 } 639 } 640 641 static void ffs_user_copy_worker(struct work_struct *work) 642 { 643 struct ffs_io_data *io_data = container_of(work, struct ffs_io_data, 644 work); 645 int ret = io_data->req->status ? io_data->req->status : 646 io_data->req->actual; 647 648 if (io_data->read && ret > 0) { 649 int i; 650 size_t pos = 0; 651 use_mm(io_data->mm); 652 for (i = 0; i < io_data->nr_segs; i++) { 653 if (unlikely(copy_to_user(io_data->iovec[i].iov_base, 654 &io_data->buf[pos], 655 io_data->iovec[i].iov_len))) { 656 ret = -EFAULT; 657 break; 658 } 659 pos += io_data->iovec[i].iov_len; 660 } 661 unuse_mm(io_data->mm); 662 } 663 664 aio_complete(io_data->kiocb, ret, ret); 665 666 usb_ep_free_request(io_data->ep, io_data->req); 667 668 io_data->kiocb->private = NULL; 669 if (io_data->read) 670 kfree(io_data->iovec); 671 kfree(io_data->buf); 672 kfree(io_data); 673 } 674 675 static void ffs_epfile_async_io_complete(struct usb_ep *_ep, 676 struct usb_request *req) 677 { 678 struct ffs_io_data *io_data = req->context; 679 680 ENTER(); 681 682 INIT_WORK(&io_data->work, ffs_user_copy_worker); 683 schedule_work(&io_data->work); 684 } 685 686 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data) 687 { 688 struct ffs_epfile *epfile = file->private_data; 689 struct ffs_ep *ep; 690 char *data = NULL; 691 ssize_t ret, data_len; 692 int halt; 693 694 /* Are we still active? */ 695 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) { 696 ret = -ENODEV; 697 goto error; 698 } 699 700 /* Wait for endpoint to be enabled */ 701 ep = epfile->ep; 702 if (!ep) { 703 if (file->f_flags & O_NONBLOCK) { 704 ret = -EAGAIN; 705 goto error; 706 } 707 708 ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep)); 709 if (ret) { 710 ret = -EINTR; 711 goto error; 712 } 713 } 714 715 /* Do we halt? */ 716 halt = (!io_data->read == !epfile->in); 717 if (halt && epfile->isoc) { 718 ret = -EINVAL; 719 goto error; 720 } 721 722 /* Allocate & copy */ 723 if (!halt) { 724 /* 725 * if we _do_ wait above, the epfile->ffs->gadget might be NULL 726 * before the waiting completes, so do not assign to 'gadget' earlier 727 */ 728 struct usb_gadget *gadget = epfile->ffs->gadget; 729 730 spin_lock_irq(&epfile->ffs->eps_lock); 731 /* In the meantime, endpoint got disabled or changed. */ 732 if (epfile->ep != ep) { 733 spin_unlock_irq(&epfile->ffs->eps_lock); 734 return -ESHUTDOWN; 735 } 736 /* 737 * Controller may require buffer size to be aligned to 738 * maxpacketsize of an out endpoint. 739 */ 740 data_len = io_data->read ? 741 usb_ep_align_maybe(gadget, ep->ep, io_data->len) : 742 io_data->len; 743 spin_unlock_irq(&epfile->ffs->eps_lock); 744 745 data = kmalloc(data_len, GFP_KERNEL); 746 if (unlikely(!data)) 747 return -ENOMEM; 748 if (io_data->aio && !io_data->read) { 749 int i; 750 size_t pos = 0; 751 for (i = 0; i < io_data->nr_segs; i++) { 752 if (unlikely(copy_from_user(&data[pos], 753 io_data->iovec[i].iov_base, 754 io_data->iovec[i].iov_len))) { 755 ret = -EFAULT; 756 goto error; 757 } 758 pos += io_data->iovec[i].iov_len; 759 } 760 } else { 761 if (!io_data->read && 762 unlikely(__copy_from_user(data, io_data->buf, 763 io_data->len))) { 764 ret = -EFAULT; 765 goto error; 766 } 767 } 768 } 769 770 /* We will be using request */ 771 ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK); 772 if (unlikely(ret)) 773 goto error; 774 775 spin_lock_irq(&epfile->ffs->eps_lock); 776 777 if (epfile->ep != ep) { 778 /* In the meantime, endpoint got disabled or changed. */ 779 ret = -ESHUTDOWN; 780 spin_unlock_irq(&epfile->ffs->eps_lock); 781 } else if (halt) { 782 /* Halt */ 783 if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep)) 784 usb_ep_set_halt(ep->ep); 785 spin_unlock_irq(&epfile->ffs->eps_lock); 786 ret = -EBADMSG; 787 } else { 788 /* Fire the request */ 789 struct usb_request *req; 790 791 if (io_data->aio) { 792 req = usb_ep_alloc_request(ep->ep, GFP_KERNEL); 793 if (unlikely(!req)) 794 goto error_lock; 795 796 req->buf = data; 797 req->length = io_data->len; 798 799 io_data->buf = data; 800 io_data->ep = ep->ep; 801 io_data->req = req; 802 803 req->context = io_data; 804 req->complete = ffs_epfile_async_io_complete; 805 806 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 807 if (unlikely(ret)) { 808 usb_ep_free_request(ep->ep, req); 809 goto error_lock; 810 } 811 ret = -EIOCBQUEUED; 812 813 spin_unlock_irq(&epfile->ffs->eps_lock); 814 } else { 815 DECLARE_COMPLETION_ONSTACK(done); 816 817 req = ep->req; 818 req->buf = data; 819 req->length = io_data->len; 820 821 req->context = &done; 822 req->complete = ffs_epfile_io_complete; 823 824 ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC); 825 826 spin_unlock_irq(&epfile->ffs->eps_lock); 827 828 if (unlikely(ret < 0)) { 829 /* nop */ 830 } else if (unlikely( 831 wait_for_completion_interruptible(&done))) { 832 ret = -EINTR; 833 usb_ep_dequeue(ep->ep, req); 834 } else { 835 /* 836 * XXX We may end up silently droping data 837 * here. Since data_len (i.e. req->length) may 838 * be bigger than len (after being rounded up 839 * to maxpacketsize), we may end up with more 840 * data then user space has space for. 841 */ 842 ret = ep->status; 843 if (io_data->read && ret > 0) { 844 ret = min_t(size_t, ret, io_data->len); 845 846 if (unlikely(copy_to_user(io_data->buf, 847 data, ret))) 848 ret = -EFAULT; 849 } 850 } 851 kfree(data); 852 } 853 } 854 855 mutex_unlock(&epfile->mutex); 856 return ret; 857 858 error_lock: 859 spin_unlock_irq(&epfile->ffs->eps_lock); 860 mutex_unlock(&epfile->mutex); 861 error: 862 kfree(data); 863 return ret; 864 } 865 866 static ssize_t 867 ffs_epfile_write(struct file *file, const char __user *buf, size_t len, 868 loff_t *ptr) 869 { 870 struct ffs_io_data io_data; 871 872 ENTER(); 873 874 io_data.aio = false; 875 io_data.read = false; 876 io_data.buf = (char * __user)buf; 877 io_data.len = len; 878 879 return ffs_epfile_io(file, &io_data); 880 } 881 882 static ssize_t 883 ffs_epfile_read(struct file *file, char __user *buf, size_t len, loff_t *ptr) 884 { 885 struct ffs_io_data io_data; 886 887 ENTER(); 888 889 io_data.aio = false; 890 io_data.read = true; 891 io_data.buf = buf; 892 io_data.len = len; 893 894 return ffs_epfile_io(file, &io_data); 895 } 896 897 static int 898 ffs_epfile_open(struct inode *inode, struct file *file) 899 { 900 struct ffs_epfile *epfile = inode->i_private; 901 902 ENTER(); 903 904 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 905 return -ENODEV; 906 907 file->private_data = epfile; 908 ffs_data_opened(epfile->ffs); 909 910 return 0; 911 } 912 913 static int ffs_aio_cancel(struct kiocb *kiocb) 914 { 915 struct ffs_io_data *io_data = kiocb->private; 916 struct ffs_epfile *epfile = kiocb->ki_filp->private_data; 917 int value; 918 919 ENTER(); 920 921 spin_lock_irq(&epfile->ffs->eps_lock); 922 923 if (likely(io_data && io_data->ep && io_data->req)) 924 value = usb_ep_dequeue(io_data->ep, io_data->req); 925 else 926 value = -EINVAL; 927 928 spin_unlock_irq(&epfile->ffs->eps_lock); 929 930 return value; 931 } 932 933 static ssize_t ffs_epfile_aio_write(struct kiocb *kiocb, 934 const struct iovec *iovec, 935 unsigned long nr_segs, loff_t loff) 936 { 937 struct ffs_io_data *io_data; 938 939 ENTER(); 940 941 io_data = kmalloc(sizeof(*io_data), GFP_KERNEL); 942 if (unlikely(!io_data)) 943 return -ENOMEM; 944 945 io_data->aio = true; 946 io_data->read = false; 947 io_data->kiocb = kiocb; 948 io_data->iovec = iovec; 949 io_data->nr_segs = nr_segs; 950 io_data->len = kiocb->ki_nbytes; 951 io_data->mm = current->mm; 952 953 kiocb->private = io_data; 954 955 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 956 957 return ffs_epfile_io(kiocb->ki_filp, io_data); 958 } 959 960 static ssize_t ffs_epfile_aio_read(struct kiocb *kiocb, 961 const struct iovec *iovec, 962 unsigned long nr_segs, loff_t loff) 963 { 964 struct ffs_io_data *io_data; 965 struct iovec *iovec_copy; 966 967 ENTER(); 968 969 iovec_copy = kmalloc_array(nr_segs, sizeof(*iovec_copy), GFP_KERNEL); 970 if (unlikely(!iovec_copy)) 971 return -ENOMEM; 972 973 memcpy(iovec_copy, iovec, sizeof(struct iovec)*nr_segs); 974 975 io_data = kmalloc(sizeof(*io_data), GFP_KERNEL); 976 if (unlikely(!io_data)) { 977 kfree(iovec_copy); 978 return -ENOMEM; 979 } 980 981 io_data->aio = true; 982 io_data->read = true; 983 io_data->kiocb = kiocb; 984 io_data->iovec = iovec_copy; 985 io_data->nr_segs = nr_segs; 986 io_data->len = kiocb->ki_nbytes; 987 io_data->mm = current->mm; 988 989 kiocb->private = io_data; 990 991 kiocb_set_cancel_fn(kiocb, ffs_aio_cancel); 992 993 return ffs_epfile_io(kiocb->ki_filp, io_data); 994 } 995 996 static int 997 ffs_epfile_release(struct inode *inode, struct file *file) 998 { 999 struct ffs_epfile *epfile = inode->i_private; 1000 1001 ENTER(); 1002 1003 ffs_data_closed(epfile->ffs); 1004 1005 return 0; 1006 } 1007 1008 static long ffs_epfile_ioctl(struct file *file, unsigned code, 1009 unsigned long value) 1010 { 1011 struct ffs_epfile *epfile = file->private_data; 1012 int ret; 1013 1014 ENTER(); 1015 1016 if (WARN_ON(epfile->ffs->state != FFS_ACTIVE)) 1017 return -ENODEV; 1018 1019 spin_lock_irq(&epfile->ffs->eps_lock); 1020 if (likely(epfile->ep)) { 1021 switch (code) { 1022 case FUNCTIONFS_FIFO_STATUS: 1023 ret = usb_ep_fifo_status(epfile->ep->ep); 1024 break; 1025 case FUNCTIONFS_FIFO_FLUSH: 1026 usb_ep_fifo_flush(epfile->ep->ep); 1027 ret = 0; 1028 break; 1029 case FUNCTIONFS_CLEAR_HALT: 1030 ret = usb_ep_clear_halt(epfile->ep->ep); 1031 break; 1032 case FUNCTIONFS_ENDPOINT_REVMAP: 1033 ret = epfile->ep->num; 1034 break; 1035 default: 1036 ret = -ENOTTY; 1037 } 1038 } else { 1039 ret = -ENODEV; 1040 } 1041 spin_unlock_irq(&epfile->ffs->eps_lock); 1042 1043 return ret; 1044 } 1045 1046 static const struct file_operations ffs_epfile_operations = { 1047 .llseek = no_llseek, 1048 1049 .open = ffs_epfile_open, 1050 .write = ffs_epfile_write, 1051 .read = ffs_epfile_read, 1052 .aio_write = ffs_epfile_aio_write, 1053 .aio_read = ffs_epfile_aio_read, 1054 .release = ffs_epfile_release, 1055 .unlocked_ioctl = ffs_epfile_ioctl, 1056 }; 1057 1058 1059 /* File system and super block operations ***********************************/ 1060 1061 /* 1062 * Mounting the file system creates a controller file, used first for 1063 * function configuration then later for event monitoring. 1064 */ 1065 1066 static struct inode *__must_check 1067 ffs_sb_make_inode(struct super_block *sb, void *data, 1068 const struct file_operations *fops, 1069 const struct inode_operations *iops, 1070 struct ffs_file_perms *perms) 1071 { 1072 struct inode *inode; 1073 1074 ENTER(); 1075 1076 inode = new_inode(sb); 1077 1078 if (likely(inode)) { 1079 struct timespec current_time = CURRENT_TIME; 1080 1081 inode->i_ino = get_next_ino(); 1082 inode->i_mode = perms->mode; 1083 inode->i_uid = perms->uid; 1084 inode->i_gid = perms->gid; 1085 inode->i_atime = current_time; 1086 inode->i_mtime = current_time; 1087 inode->i_ctime = current_time; 1088 inode->i_private = data; 1089 if (fops) 1090 inode->i_fop = fops; 1091 if (iops) 1092 inode->i_op = iops; 1093 } 1094 1095 return inode; 1096 } 1097 1098 /* Create "regular" file */ 1099 static struct inode *ffs_sb_create_file(struct super_block *sb, 1100 const char *name, void *data, 1101 const struct file_operations *fops, 1102 struct dentry **dentry_p) 1103 { 1104 struct ffs_data *ffs = sb->s_fs_info; 1105 struct dentry *dentry; 1106 struct inode *inode; 1107 1108 ENTER(); 1109 1110 dentry = d_alloc_name(sb->s_root, name); 1111 if (unlikely(!dentry)) 1112 return NULL; 1113 1114 inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms); 1115 if (unlikely(!inode)) { 1116 dput(dentry); 1117 return NULL; 1118 } 1119 1120 d_add(dentry, inode); 1121 if (dentry_p) 1122 *dentry_p = dentry; 1123 1124 return inode; 1125 } 1126 1127 /* Super block */ 1128 static const struct super_operations ffs_sb_operations = { 1129 .statfs = simple_statfs, 1130 .drop_inode = generic_delete_inode, 1131 }; 1132 1133 struct ffs_sb_fill_data { 1134 struct ffs_file_perms perms; 1135 umode_t root_mode; 1136 const char *dev_name; 1137 struct ffs_data *ffs_data; 1138 }; 1139 1140 static int ffs_sb_fill(struct super_block *sb, void *_data, int silent) 1141 { 1142 struct ffs_sb_fill_data *data = _data; 1143 struct inode *inode; 1144 struct ffs_data *ffs = data->ffs_data; 1145 1146 ENTER(); 1147 1148 ffs->sb = sb; 1149 data->ffs_data = NULL; 1150 sb->s_fs_info = ffs; 1151 sb->s_blocksize = PAGE_CACHE_SIZE; 1152 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 1153 sb->s_magic = FUNCTIONFS_MAGIC; 1154 sb->s_op = &ffs_sb_operations; 1155 sb->s_time_gran = 1; 1156 1157 /* Root inode */ 1158 data->perms.mode = data->root_mode; 1159 inode = ffs_sb_make_inode(sb, NULL, 1160 &simple_dir_operations, 1161 &simple_dir_inode_operations, 1162 &data->perms); 1163 sb->s_root = d_make_root(inode); 1164 if (unlikely(!sb->s_root)) 1165 return -ENOMEM; 1166 1167 /* EP0 file */ 1168 if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs, 1169 &ffs_ep0_operations, NULL))) 1170 return -ENOMEM; 1171 1172 return 0; 1173 } 1174 1175 static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts) 1176 { 1177 ENTER(); 1178 1179 if (!opts || !*opts) 1180 return 0; 1181 1182 for (;;) { 1183 unsigned long value; 1184 char *eq, *comma; 1185 1186 /* Option limit */ 1187 comma = strchr(opts, ','); 1188 if (comma) 1189 *comma = 0; 1190 1191 /* Value limit */ 1192 eq = strchr(opts, '='); 1193 if (unlikely(!eq)) { 1194 pr_err("'=' missing in %s\n", opts); 1195 return -EINVAL; 1196 } 1197 *eq = 0; 1198 1199 /* Parse value */ 1200 if (kstrtoul(eq + 1, 0, &value)) { 1201 pr_err("%s: invalid value: %s\n", opts, eq + 1); 1202 return -EINVAL; 1203 } 1204 1205 /* Interpret option */ 1206 switch (eq - opts) { 1207 case 5: 1208 if (!memcmp(opts, "rmode", 5)) 1209 data->root_mode = (value & 0555) | S_IFDIR; 1210 else if (!memcmp(opts, "fmode", 5)) 1211 data->perms.mode = (value & 0666) | S_IFREG; 1212 else 1213 goto invalid; 1214 break; 1215 1216 case 4: 1217 if (!memcmp(opts, "mode", 4)) { 1218 data->root_mode = (value & 0555) | S_IFDIR; 1219 data->perms.mode = (value & 0666) | S_IFREG; 1220 } else { 1221 goto invalid; 1222 } 1223 break; 1224 1225 case 3: 1226 if (!memcmp(opts, "uid", 3)) { 1227 data->perms.uid = make_kuid(current_user_ns(), value); 1228 if (!uid_valid(data->perms.uid)) { 1229 pr_err("%s: unmapped value: %lu\n", opts, value); 1230 return -EINVAL; 1231 } 1232 } else if (!memcmp(opts, "gid", 3)) { 1233 data->perms.gid = make_kgid(current_user_ns(), value); 1234 if (!gid_valid(data->perms.gid)) { 1235 pr_err("%s: unmapped value: %lu\n", opts, value); 1236 return -EINVAL; 1237 } 1238 } else { 1239 goto invalid; 1240 } 1241 break; 1242 1243 default: 1244 invalid: 1245 pr_err("%s: invalid option\n", opts); 1246 return -EINVAL; 1247 } 1248 1249 /* Next iteration */ 1250 if (!comma) 1251 break; 1252 opts = comma + 1; 1253 } 1254 1255 return 0; 1256 } 1257 1258 /* "mount -t functionfs dev_name /dev/function" ends up here */ 1259 1260 static struct dentry * 1261 ffs_fs_mount(struct file_system_type *t, int flags, 1262 const char *dev_name, void *opts) 1263 { 1264 struct ffs_sb_fill_data data = { 1265 .perms = { 1266 .mode = S_IFREG | 0600, 1267 .uid = GLOBAL_ROOT_UID, 1268 .gid = GLOBAL_ROOT_GID, 1269 }, 1270 .root_mode = S_IFDIR | 0500, 1271 }; 1272 struct dentry *rv; 1273 int ret; 1274 void *ffs_dev; 1275 struct ffs_data *ffs; 1276 1277 ENTER(); 1278 1279 ret = ffs_fs_parse_opts(&data, opts); 1280 if (unlikely(ret < 0)) 1281 return ERR_PTR(ret); 1282 1283 ffs = ffs_data_new(); 1284 if (unlikely(!ffs)) 1285 return ERR_PTR(-ENOMEM); 1286 ffs->file_perms = data.perms; 1287 1288 ffs->dev_name = kstrdup(dev_name, GFP_KERNEL); 1289 if (unlikely(!ffs->dev_name)) { 1290 ffs_data_put(ffs); 1291 return ERR_PTR(-ENOMEM); 1292 } 1293 1294 ffs_dev = ffs_acquire_dev(dev_name); 1295 if (IS_ERR(ffs_dev)) { 1296 ffs_data_put(ffs); 1297 return ERR_CAST(ffs_dev); 1298 } 1299 ffs->private_data = ffs_dev; 1300 data.ffs_data = ffs; 1301 1302 rv = mount_nodev(t, flags, &data, ffs_sb_fill); 1303 if (IS_ERR(rv) && data.ffs_data) { 1304 ffs_release_dev(data.ffs_data); 1305 ffs_data_put(data.ffs_data); 1306 } 1307 return rv; 1308 } 1309 1310 static void 1311 ffs_fs_kill_sb(struct super_block *sb) 1312 { 1313 ENTER(); 1314 1315 kill_litter_super(sb); 1316 if (sb->s_fs_info) { 1317 ffs_release_dev(sb->s_fs_info); 1318 ffs_data_put(sb->s_fs_info); 1319 } 1320 } 1321 1322 static struct file_system_type ffs_fs_type = { 1323 .owner = THIS_MODULE, 1324 .name = "functionfs", 1325 .mount = ffs_fs_mount, 1326 .kill_sb = ffs_fs_kill_sb, 1327 }; 1328 MODULE_ALIAS_FS("functionfs"); 1329 1330 1331 /* Driver's main init/cleanup functions *************************************/ 1332 1333 static int functionfs_init(void) 1334 { 1335 int ret; 1336 1337 ENTER(); 1338 1339 ret = register_filesystem(&ffs_fs_type); 1340 if (likely(!ret)) 1341 pr_info("file system registered\n"); 1342 else 1343 pr_err("failed registering file system (%d)\n", ret); 1344 1345 return ret; 1346 } 1347 1348 static void functionfs_cleanup(void) 1349 { 1350 ENTER(); 1351 1352 pr_info("unloading\n"); 1353 unregister_filesystem(&ffs_fs_type); 1354 } 1355 1356 1357 /* ffs_data and ffs_function construction and destruction code **************/ 1358 1359 static void ffs_data_clear(struct ffs_data *ffs); 1360 static void ffs_data_reset(struct ffs_data *ffs); 1361 1362 static void ffs_data_get(struct ffs_data *ffs) 1363 { 1364 ENTER(); 1365 1366 atomic_inc(&ffs->ref); 1367 } 1368 1369 static void ffs_data_opened(struct ffs_data *ffs) 1370 { 1371 ENTER(); 1372 1373 atomic_inc(&ffs->ref); 1374 atomic_inc(&ffs->opened); 1375 } 1376 1377 static void ffs_data_put(struct ffs_data *ffs) 1378 { 1379 ENTER(); 1380 1381 if (unlikely(atomic_dec_and_test(&ffs->ref))) { 1382 pr_info("%s(): freeing\n", __func__); 1383 ffs_data_clear(ffs); 1384 BUG_ON(waitqueue_active(&ffs->ev.waitq) || 1385 waitqueue_active(&ffs->ep0req_completion.wait)); 1386 kfree(ffs->dev_name); 1387 kfree(ffs); 1388 } 1389 } 1390 1391 static void ffs_data_closed(struct ffs_data *ffs) 1392 { 1393 ENTER(); 1394 1395 if (atomic_dec_and_test(&ffs->opened)) { 1396 ffs->state = FFS_CLOSING; 1397 ffs_data_reset(ffs); 1398 } 1399 1400 ffs_data_put(ffs); 1401 } 1402 1403 static struct ffs_data *ffs_data_new(void) 1404 { 1405 struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL); 1406 if (unlikely(!ffs)) 1407 return NULL; 1408 1409 ENTER(); 1410 1411 atomic_set(&ffs->ref, 1); 1412 atomic_set(&ffs->opened, 0); 1413 ffs->state = FFS_READ_DESCRIPTORS; 1414 mutex_init(&ffs->mutex); 1415 spin_lock_init(&ffs->eps_lock); 1416 init_waitqueue_head(&ffs->ev.waitq); 1417 init_completion(&ffs->ep0req_completion); 1418 1419 /* XXX REVISIT need to update it in some places, or do we? */ 1420 ffs->ev.can_stall = 1; 1421 1422 return ffs; 1423 } 1424 1425 static void ffs_data_clear(struct ffs_data *ffs) 1426 { 1427 ENTER(); 1428 1429 if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags)) 1430 ffs_closed(ffs); 1431 1432 BUG_ON(ffs->gadget); 1433 1434 if (ffs->epfiles) 1435 ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count); 1436 1437 kfree(ffs->raw_descs_data); 1438 kfree(ffs->raw_strings); 1439 kfree(ffs->stringtabs); 1440 } 1441 1442 static void ffs_data_reset(struct ffs_data *ffs) 1443 { 1444 ENTER(); 1445 1446 ffs_data_clear(ffs); 1447 1448 ffs->epfiles = NULL; 1449 ffs->raw_descs_data = NULL; 1450 ffs->raw_descs = NULL; 1451 ffs->raw_strings = NULL; 1452 ffs->stringtabs = NULL; 1453 1454 ffs->raw_descs_length = 0; 1455 ffs->fs_descs_count = 0; 1456 ffs->hs_descs_count = 0; 1457 ffs->ss_descs_count = 0; 1458 1459 ffs->strings_count = 0; 1460 ffs->interfaces_count = 0; 1461 ffs->eps_count = 0; 1462 1463 ffs->ev.count = 0; 1464 1465 ffs->state = FFS_READ_DESCRIPTORS; 1466 ffs->setup_state = FFS_NO_SETUP; 1467 ffs->flags = 0; 1468 } 1469 1470 1471 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev) 1472 { 1473 struct usb_gadget_strings **lang; 1474 int first_id; 1475 1476 ENTER(); 1477 1478 if (WARN_ON(ffs->state != FFS_ACTIVE 1479 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags))) 1480 return -EBADFD; 1481 1482 first_id = usb_string_ids_n(cdev, ffs->strings_count); 1483 if (unlikely(first_id < 0)) 1484 return first_id; 1485 1486 ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL); 1487 if (unlikely(!ffs->ep0req)) 1488 return -ENOMEM; 1489 ffs->ep0req->complete = ffs_ep0_complete; 1490 ffs->ep0req->context = ffs; 1491 1492 lang = ffs->stringtabs; 1493 if (lang) { 1494 for (; *lang; ++lang) { 1495 struct usb_string *str = (*lang)->strings; 1496 int id = first_id; 1497 for (; str->s; ++id, ++str) 1498 str->id = id; 1499 } 1500 } 1501 1502 ffs->gadget = cdev->gadget; 1503 ffs_data_get(ffs); 1504 return 0; 1505 } 1506 1507 static void functionfs_unbind(struct ffs_data *ffs) 1508 { 1509 ENTER(); 1510 1511 if (!WARN_ON(!ffs->gadget)) { 1512 usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req); 1513 ffs->ep0req = NULL; 1514 ffs->gadget = NULL; 1515 clear_bit(FFS_FL_BOUND, &ffs->flags); 1516 ffs_data_put(ffs); 1517 } 1518 } 1519 1520 static int ffs_epfiles_create(struct ffs_data *ffs) 1521 { 1522 struct ffs_epfile *epfile, *epfiles; 1523 unsigned i, count; 1524 1525 ENTER(); 1526 1527 count = ffs->eps_count; 1528 epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL); 1529 if (!epfiles) 1530 return -ENOMEM; 1531 1532 epfile = epfiles; 1533 for (i = 1; i <= count; ++i, ++epfile) { 1534 epfile->ffs = ffs; 1535 mutex_init(&epfile->mutex); 1536 init_waitqueue_head(&epfile->wait); 1537 sprintf(epfiles->name, "ep%u", i); 1538 if (!unlikely(ffs_sb_create_file(ffs->sb, epfiles->name, epfile, 1539 &ffs_epfile_operations, 1540 &epfile->dentry))) { 1541 ffs_epfiles_destroy(epfiles, i - 1); 1542 return -ENOMEM; 1543 } 1544 } 1545 1546 ffs->epfiles = epfiles; 1547 return 0; 1548 } 1549 1550 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count) 1551 { 1552 struct ffs_epfile *epfile = epfiles; 1553 1554 ENTER(); 1555 1556 for (; count; --count, ++epfile) { 1557 BUG_ON(mutex_is_locked(&epfile->mutex) || 1558 waitqueue_active(&epfile->wait)); 1559 if (epfile->dentry) { 1560 d_delete(epfile->dentry); 1561 dput(epfile->dentry); 1562 epfile->dentry = NULL; 1563 } 1564 } 1565 1566 kfree(epfiles); 1567 } 1568 1569 1570 static void ffs_func_eps_disable(struct ffs_function *func) 1571 { 1572 struct ffs_ep *ep = func->eps; 1573 struct ffs_epfile *epfile = func->ffs->epfiles; 1574 unsigned count = func->ffs->eps_count; 1575 unsigned long flags; 1576 1577 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1578 do { 1579 /* pending requests get nuked */ 1580 if (likely(ep->ep)) 1581 usb_ep_disable(ep->ep); 1582 epfile->ep = NULL; 1583 1584 ++ep; 1585 ++epfile; 1586 } while (--count); 1587 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1588 } 1589 1590 static int ffs_func_eps_enable(struct ffs_function *func) 1591 { 1592 struct ffs_data *ffs = func->ffs; 1593 struct ffs_ep *ep = func->eps; 1594 struct ffs_epfile *epfile = ffs->epfiles; 1595 unsigned count = ffs->eps_count; 1596 unsigned long flags; 1597 int ret = 0; 1598 1599 spin_lock_irqsave(&func->ffs->eps_lock, flags); 1600 do { 1601 struct usb_endpoint_descriptor *ds; 1602 int desc_idx; 1603 1604 if (ffs->gadget->speed == USB_SPEED_SUPER) 1605 desc_idx = 2; 1606 else if (ffs->gadget->speed == USB_SPEED_HIGH) 1607 desc_idx = 1; 1608 else 1609 desc_idx = 0; 1610 1611 /* fall-back to lower speed if desc missing for current speed */ 1612 do { 1613 ds = ep->descs[desc_idx]; 1614 } while (!ds && --desc_idx >= 0); 1615 1616 if (!ds) { 1617 ret = -EINVAL; 1618 break; 1619 } 1620 1621 ep->ep->driver_data = ep; 1622 ep->ep->desc = ds; 1623 ret = usb_ep_enable(ep->ep); 1624 if (likely(!ret)) { 1625 epfile->ep = ep; 1626 epfile->in = usb_endpoint_dir_in(ds); 1627 epfile->isoc = usb_endpoint_xfer_isoc(ds); 1628 } else { 1629 break; 1630 } 1631 1632 wake_up(&epfile->wait); 1633 1634 ++ep; 1635 ++epfile; 1636 } while (--count); 1637 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 1638 1639 return ret; 1640 } 1641 1642 1643 /* Parsing and building descriptors and strings *****************************/ 1644 1645 /* 1646 * This validates if data pointed by data is a valid USB descriptor as 1647 * well as record how many interfaces, endpoints and strings are 1648 * required by given configuration. Returns address after the 1649 * descriptor or NULL if data is invalid. 1650 */ 1651 1652 enum ffs_entity_type { 1653 FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT 1654 }; 1655 1656 enum ffs_os_desc_type { 1657 FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP 1658 }; 1659 1660 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity, 1661 u8 *valuep, 1662 struct usb_descriptor_header *desc, 1663 void *priv); 1664 1665 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity, 1666 struct usb_os_desc_header *h, void *data, 1667 unsigned len, void *priv); 1668 1669 static int __must_check ffs_do_single_desc(char *data, unsigned len, 1670 ffs_entity_callback entity, 1671 void *priv) 1672 { 1673 struct usb_descriptor_header *_ds = (void *)data; 1674 u8 length; 1675 int ret; 1676 1677 ENTER(); 1678 1679 /* At least two bytes are required: length and type */ 1680 if (len < 2) { 1681 pr_vdebug("descriptor too short\n"); 1682 return -EINVAL; 1683 } 1684 1685 /* If we have at least as many bytes as the descriptor takes? */ 1686 length = _ds->bLength; 1687 if (len < length) { 1688 pr_vdebug("descriptor longer then available data\n"); 1689 return -EINVAL; 1690 } 1691 1692 #define __entity_check_INTERFACE(val) 1 1693 #define __entity_check_STRING(val) (val) 1694 #define __entity_check_ENDPOINT(val) ((val) & USB_ENDPOINT_NUMBER_MASK) 1695 #define __entity(type, val) do { \ 1696 pr_vdebug("entity " #type "(%02x)\n", (val)); \ 1697 if (unlikely(!__entity_check_ ##type(val))) { \ 1698 pr_vdebug("invalid entity's value\n"); \ 1699 return -EINVAL; \ 1700 } \ 1701 ret = entity(FFS_ ##type, &val, _ds, priv); \ 1702 if (unlikely(ret < 0)) { \ 1703 pr_debug("entity " #type "(%02x); ret = %d\n", \ 1704 (val), ret); \ 1705 return ret; \ 1706 } \ 1707 } while (0) 1708 1709 /* Parse descriptor depending on type. */ 1710 switch (_ds->bDescriptorType) { 1711 case USB_DT_DEVICE: 1712 case USB_DT_CONFIG: 1713 case USB_DT_STRING: 1714 case USB_DT_DEVICE_QUALIFIER: 1715 /* function can't have any of those */ 1716 pr_vdebug("descriptor reserved for gadget: %d\n", 1717 _ds->bDescriptorType); 1718 return -EINVAL; 1719 1720 case USB_DT_INTERFACE: { 1721 struct usb_interface_descriptor *ds = (void *)_ds; 1722 pr_vdebug("interface descriptor\n"); 1723 if (length != sizeof *ds) 1724 goto inv_length; 1725 1726 __entity(INTERFACE, ds->bInterfaceNumber); 1727 if (ds->iInterface) 1728 __entity(STRING, ds->iInterface); 1729 } 1730 break; 1731 1732 case USB_DT_ENDPOINT: { 1733 struct usb_endpoint_descriptor *ds = (void *)_ds; 1734 pr_vdebug("endpoint descriptor\n"); 1735 if (length != USB_DT_ENDPOINT_SIZE && 1736 length != USB_DT_ENDPOINT_AUDIO_SIZE) 1737 goto inv_length; 1738 __entity(ENDPOINT, ds->bEndpointAddress); 1739 } 1740 break; 1741 1742 case HID_DT_HID: 1743 pr_vdebug("hid descriptor\n"); 1744 if (length != sizeof(struct hid_descriptor)) 1745 goto inv_length; 1746 break; 1747 1748 case USB_DT_OTG: 1749 if (length != sizeof(struct usb_otg_descriptor)) 1750 goto inv_length; 1751 break; 1752 1753 case USB_DT_INTERFACE_ASSOCIATION: { 1754 struct usb_interface_assoc_descriptor *ds = (void *)_ds; 1755 pr_vdebug("interface association descriptor\n"); 1756 if (length != sizeof *ds) 1757 goto inv_length; 1758 if (ds->iFunction) 1759 __entity(STRING, ds->iFunction); 1760 } 1761 break; 1762 1763 case USB_DT_SS_ENDPOINT_COMP: 1764 pr_vdebug("EP SS companion descriptor\n"); 1765 if (length != sizeof(struct usb_ss_ep_comp_descriptor)) 1766 goto inv_length; 1767 break; 1768 1769 case USB_DT_OTHER_SPEED_CONFIG: 1770 case USB_DT_INTERFACE_POWER: 1771 case USB_DT_DEBUG: 1772 case USB_DT_SECURITY: 1773 case USB_DT_CS_RADIO_CONTROL: 1774 /* TODO */ 1775 pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType); 1776 return -EINVAL; 1777 1778 default: 1779 /* We should never be here */ 1780 pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType); 1781 return -EINVAL; 1782 1783 inv_length: 1784 pr_vdebug("invalid length: %d (descriptor %d)\n", 1785 _ds->bLength, _ds->bDescriptorType); 1786 return -EINVAL; 1787 } 1788 1789 #undef __entity 1790 #undef __entity_check_DESCRIPTOR 1791 #undef __entity_check_INTERFACE 1792 #undef __entity_check_STRING 1793 #undef __entity_check_ENDPOINT 1794 1795 return length; 1796 } 1797 1798 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len, 1799 ffs_entity_callback entity, void *priv) 1800 { 1801 const unsigned _len = len; 1802 unsigned long num = 0; 1803 1804 ENTER(); 1805 1806 for (;;) { 1807 int ret; 1808 1809 if (num == count) 1810 data = NULL; 1811 1812 /* Record "descriptor" entity */ 1813 ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv); 1814 if (unlikely(ret < 0)) { 1815 pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n", 1816 num, ret); 1817 return ret; 1818 } 1819 1820 if (!data) 1821 return _len - len; 1822 1823 ret = ffs_do_single_desc(data, len, entity, priv); 1824 if (unlikely(ret < 0)) { 1825 pr_debug("%s returns %d\n", __func__, ret); 1826 return ret; 1827 } 1828 1829 len -= ret; 1830 data += ret; 1831 ++num; 1832 } 1833 } 1834 1835 static int __ffs_data_do_entity(enum ffs_entity_type type, 1836 u8 *valuep, struct usb_descriptor_header *desc, 1837 void *priv) 1838 { 1839 struct ffs_desc_helper *helper = priv; 1840 struct usb_endpoint_descriptor *d; 1841 1842 ENTER(); 1843 1844 switch (type) { 1845 case FFS_DESCRIPTOR: 1846 break; 1847 1848 case FFS_INTERFACE: 1849 /* 1850 * Interfaces are indexed from zero so if we 1851 * encountered interface "n" then there are at least 1852 * "n+1" interfaces. 1853 */ 1854 if (*valuep >= helper->interfaces_count) 1855 helper->interfaces_count = *valuep + 1; 1856 break; 1857 1858 case FFS_STRING: 1859 /* 1860 * Strings are indexed from 1 (0 is magic ;) reserved 1861 * for languages list or some such) 1862 */ 1863 if (*valuep > helper->ffs->strings_count) 1864 helper->ffs->strings_count = *valuep; 1865 break; 1866 1867 case FFS_ENDPOINT: 1868 d = (void *)desc; 1869 helper->eps_count++; 1870 if (helper->eps_count >= 15) 1871 return -EINVAL; 1872 /* Check if descriptors for any speed were already parsed */ 1873 if (!helper->ffs->eps_count && !helper->ffs->interfaces_count) 1874 helper->ffs->eps_addrmap[helper->eps_count] = 1875 d->bEndpointAddress; 1876 else if (helper->ffs->eps_addrmap[helper->eps_count] != 1877 d->bEndpointAddress) 1878 return -EINVAL; 1879 break; 1880 } 1881 1882 return 0; 1883 } 1884 1885 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type, 1886 struct usb_os_desc_header *desc) 1887 { 1888 u16 bcd_version = le16_to_cpu(desc->bcdVersion); 1889 u16 w_index = le16_to_cpu(desc->wIndex); 1890 1891 if (bcd_version != 1) { 1892 pr_vdebug("unsupported os descriptors version: %d", 1893 bcd_version); 1894 return -EINVAL; 1895 } 1896 switch (w_index) { 1897 case 0x4: 1898 *next_type = FFS_OS_DESC_EXT_COMPAT; 1899 break; 1900 case 0x5: 1901 *next_type = FFS_OS_DESC_EXT_PROP; 1902 break; 1903 default: 1904 pr_vdebug("unsupported os descriptor type: %d", w_index); 1905 return -EINVAL; 1906 } 1907 1908 return sizeof(*desc); 1909 } 1910 1911 /* 1912 * Process all extended compatibility/extended property descriptors 1913 * of a feature descriptor 1914 */ 1915 static int __must_check ffs_do_single_os_desc(char *data, unsigned len, 1916 enum ffs_os_desc_type type, 1917 u16 feature_count, 1918 ffs_os_desc_callback entity, 1919 void *priv, 1920 struct usb_os_desc_header *h) 1921 { 1922 int ret; 1923 const unsigned _len = len; 1924 1925 ENTER(); 1926 1927 /* loop over all ext compat/ext prop descriptors */ 1928 while (feature_count--) { 1929 ret = entity(type, h, data, len, priv); 1930 if (unlikely(ret < 0)) { 1931 pr_debug("bad OS descriptor, type: %d\n", type); 1932 return ret; 1933 } 1934 data += ret; 1935 len -= ret; 1936 } 1937 return _len - len; 1938 } 1939 1940 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */ 1941 static int __must_check ffs_do_os_descs(unsigned count, 1942 char *data, unsigned len, 1943 ffs_os_desc_callback entity, void *priv) 1944 { 1945 const unsigned _len = len; 1946 unsigned long num = 0; 1947 1948 ENTER(); 1949 1950 for (num = 0; num < count; ++num) { 1951 int ret; 1952 enum ffs_os_desc_type type; 1953 u16 feature_count; 1954 struct usb_os_desc_header *desc = (void *)data; 1955 1956 if (len < sizeof(*desc)) 1957 return -EINVAL; 1958 1959 /* 1960 * Record "descriptor" entity. 1961 * Process dwLength, bcdVersion, wIndex, get b/wCount. 1962 * Move the data pointer to the beginning of extended 1963 * compatibilities proper or extended properties proper 1964 * portions of the data 1965 */ 1966 if (le32_to_cpu(desc->dwLength) > len) 1967 return -EINVAL; 1968 1969 ret = __ffs_do_os_desc_header(&type, desc); 1970 if (unlikely(ret < 0)) { 1971 pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n", 1972 num, ret); 1973 return ret; 1974 } 1975 /* 1976 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??" 1977 */ 1978 feature_count = le16_to_cpu(desc->wCount); 1979 if (type == FFS_OS_DESC_EXT_COMPAT && 1980 (feature_count > 255 || desc->Reserved)) 1981 return -EINVAL; 1982 len -= ret; 1983 data += ret; 1984 1985 /* 1986 * Process all function/property descriptors 1987 * of this Feature Descriptor 1988 */ 1989 ret = ffs_do_single_os_desc(data, len, type, 1990 feature_count, entity, priv, desc); 1991 if (unlikely(ret < 0)) { 1992 pr_debug("%s returns %d\n", __func__, ret); 1993 return ret; 1994 } 1995 1996 len -= ret; 1997 data += ret; 1998 } 1999 return _len - len; 2000 } 2001 2002 /** 2003 * Validate contents of the buffer from userspace related to OS descriptors. 2004 */ 2005 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type, 2006 struct usb_os_desc_header *h, void *data, 2007 unsigned len, void *priv) 2008 { 2009 struct ffs_data *ffs = priv; 2010 u8 length; 2011 2012 ENTER(); 2013 2014 switch (type) { 2015 case FFS_OS_DESC_EXT_COMPAT: { 2016 struct usb_ext_compat_desc *d = data; 2017 int i; 2018 2019 if (len < sizeof(*d) || 2020 d->bFirstInterfaceNumber >= ffs->interfaces_count || 2021 d->Reserved1) 2022 return -EINVAL; 2023 for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i) 2024 if (d->Reserved2[i]) 2025 return -EINVAL; 2026 2027 length = sizeof(struct usb_ext_compat_desc); 2028 } 2029 break; 2030 case FFS_OS_DESC_EXT_PROP: { 2031 struct usb_ext_prop_desc *d = data; 2032 u32 type, pdl; 2033 u16 pnl; 2034 2035 if (len < sizeof(*d) || h->interface >= ffs->interfaces_count) 2036 return -EINVAL; 2037 length = le32_to_cpu(d->dwSize); 2038 type = le32_to_cpu(d->dwPropertyDataType); 2039 if (type < USB_EXT_PROP_UNICODE || 2040 type > USB_EXT_PROP_UNICODE_MULTI) { 2041 pr_vdebug("unsupported os descriptor property type: %d", 2042 type); 2043 return -EINVAL; 2044 } 2045 pnl = le16_to_cpu(d->wPropertyNameLength); 2046 pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl)); 2047 if (length != 14 + pnl + pdl) { 2048 pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n", 2049 length, pnl, pdl, type); 2050 return -EINVAL; 2051 } 2052 ++ffs->ms_os_descs_ext_prop_count; 2053 /* property name reported to the host as "WCHAR"s */ 2054 ffs->ms_os_descs_ext_prop_name_len += pnl * 2; 2055 ffs->ms_os_descs_ext_prop_data_len += pdl; 2056 } 2057 break; 2058 default: 2059 pr_vdebug("unknown descriptor: %d\n", type); 2060 return -EINVAL; 2061 } 2062 return length; 2063 } 2064 2065 static int __ffs_data_got_descs(struct ffs_data *ffs, 2066 char *const _data, size_t len) 2067 { 2068 char *data = _data, *raw_descs; 2069 unsigned os_descs_count = 0, counts[3], flags; 2070 int ret = -EINVAL, i; 2071 struct ffs_desc_helper helper; 2072 2073 ENTER(); 2074 2075 if (get_unaligned_le32(data + 4) != len) 2076 goto error; 2077 2078 switch (get_unaligned_le32(data)) { 2079 case FUNCTIONFS_DESCRIPTORS_MAGIC: 2080 flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC; 2081 data += 8; 2082 len -= 8; 2083 break; 2084 case FUNCTIONFS_DESCRIPTORS_MAGIC_V2: 2085 flags = get_unaligned_le32(data + 8); 2086 if (flags & ~(FUNCTIONFS_HAS_FS_DESC | 2087 FUNCTIONFS_HAS_HS_DESC | 2088 FUNCTIONFS_HAS_SS_DESC | 2089 FUNCTIONFS_HAS_MS_OS_DESC)) { 2090 ret = -ENOSYS; 2091 goto error; 2092 } 2093 data += 12; 2094 len -= 12; 2095 break; 2096 default: 2097 goto error; 2098 } 2099 2100 /* Read fs_count, hs_count and ss_count (if present) */ 2101 for (i = 0; i < 3; ++i) { 2102 if (!(flags & (1 << i))) { 2103 counts[i] = 0; 2104 } else if (len < 4) { 2105 goto error; 2106 } else { 2107 counts[i] = get_unaligned_le32(data); 2108 data += 4; 2109 len -= 4; 2110 } 2111 } 2112 if (flags & (1 << i)) { 2113 os_descs_count = get_unaligned_le32(data); 2114 data += 4; 2115 len -= 4; 2116 }; 2117 2118 /* Read descriptors */ 2119 raw_descs = data; 2120 helper.ffs = ffs; 2121 for (i = 0; i < 3; ++i) { 2122 if (!counts[i]) 2123 continue; 2124 helper.interfaces_count = 0; 2125 helper.eps_count = 0; 2126 ret = ffs_do_descs(counts[i], data, len, 2127 __ffs_data_do_entity, &helper); 2128 if (ret < 0) 2129 goto error; 2130 if (!ffs->eps_count && !ffs->interfaces_count) { 2131 ffs->eps_count = helper.eps_count; 2132 ffs->interfaces_count = helper.interfaces_count; 2133 } else { 2134 if (ffs->eps_count != helper.eps_count) { 2135 ret = -EINVAL; 2136 goto error; 2137 } 2138 if (ffs->interfaces_count != helper.interfaces_count) { 2139 ret = -EINVAL; 2140 goto error; 2141 } 2142 } 2143 data += ret; 2144 len -= ret; 2145 } 2146 if (os_descs_count) { 2147 ret = ffs_do_os_descs(os_descs_count, data, len, 2148 __ffs_data_do_os_desc, ffs); 2149 if (ret < 0) 2150 goto error; 2151 data += ret; 2152 len -= ret; 2153 } 2154 2155 if (raw_descs == data || len) { 2156 ret = -EINVAL; 2157 goto error; 2158 } 2159 2160 ffs->raw_descs_data = _data; 2161 ffs->raw_descs = raw_descs; 2162 ffs->raw_descs_length = data - raw_descs; 2163 ffs->fs_descs_count = counts[0]; 2164 ffs->hs_descs_count = counts[1]; 2165 ffs->ss_descs_count = counts[2]; 2166 ffs->ms_os_descs_count = os_descs_count; 2167 2168 return 0; 2169 2170 error: 2171 kfree(_data); 2172 return ret; 2173 } 2174 2175 static int __ffs_data_got_strings(struct ffs_data *ffs, 2176 char *const _data, size_t len) 2177 { 2178 u32 str_count, needed_count, lang_count; 2179 struct usb_gadget_strings **stringtabs, *t; 2180 struct usb_string *strings, *s; 2181 const char *data = _data; 2182 2183 ENTER(); 2184 2185 if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC || 2186 get_unaligned_le32(data + 4) != len)) 2187 goto error; 2188 str_count = get_unaligned_le32(data + 8); 2189 lang_count = get_unaligned_le32(data + 12); 2190 2191 /* if one is zero the other must be zero */ 2192 if (unlikely(!str_count != !lang_count)) 2193 goto error; 2194 2195 /* Do we have at least as many strings as descriptors need? */ 2196 needed_count = ffs->strings_count; 2197 if (unlikely(str_count < needed_count)) 2198 goto error; 2199 2200 /* 2201 * If we don't need any strings just return and free all 2202 * memory. 2203 */ 2204 if (!needed_count) { 2205 kfree(_data); 2206 return 0; 2207 } 2208 2209 /* Allocate everything in one chunk so there's less maintenance. */ 2210 { 2211 unsigned i = 0; 2212 vla_group(d); 2213 vla_item(d, struct usb_gadget_strings *, stringtabs, 2214 lang_count + 1); 2215 vla_item(d, struct usb_gadget_strings, stringtab, lang_count); 2216 vla_item(d, struct usb_string, strings, 2217 lang_count*(needed_count+1)); 2218 2219 char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL); 2220 2221 if (unlikely(!vlabuf)) { 2222 kfree(_data); 2223 return -ENOMEM; 2224 } 2225 2226 /* Initialize the VLA pointers */ 2227 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2228 t = vla_ptr(vlabuf, d, stringtab); 2229 i = lang_count; 2230 do { 2231 *stringtabs++ = t++; 2232 } while (--i); 2233 *stringtabs = NULL; 2234 2235 /* stringtabs = vlabuf = d_stringtabs for later kfree */ 2236 stringtabs = vla_ptr(vlabuf, d, stringtabs); 2237 t = vla_ptr(vlabuf, d, stringtab); 2238 s = vla_ptr(vlabuf, d, strings); 2239 strings = s; 2240 } 2241 2242 /* For each language */ 2243 data += 16; 2244 len -= 16; 2245 2246 do { /* lang_count > 0 so we can use do-while */ 2247 unsigned needed = needed_count; 2248 2249 if (unlikely(len < 3)) 2250 goto error_free; 2251 t->language = get_unaligned_le16(data); 2252 t->strings = s; 2253 ++t; 2254 2255 data += 2; 2256 len -= 2; 2257 2258 /* For each string */ 2259 do { /* str_count > 0 so we can use do-while */ 2260 size_t length = strnlen(data, len); 2261 2262 if (unlikely(length == len)) 2263 goto error_free; 2264 2265 /* 2266 * User may provide more strings then we need, 2267 * if that's the case we simply ignore the 2268 * rest 2269 */ 2270 if (likely(needed)) { 2271 /* 2272 * s->id will be set while adding 2273 * function to configuration so for 2274 * now just leave garbage here. 2275 */ 2276 s->s = data; 2277 --needed; 2278 ++s; 2279 } 2280 2281 data += length + 1; 2282 len -= length + 1; 2283 } while (--str_count); 2284 2285 s->id = 0; /* terminator */ 2286 s->s = NULL; 2287 ++s; 2288 2289 } while (--lang_count); 2290 2291 /* Some garbage left? */ 2292 if (unlikely(len)) 2293 goto error_free; 2294 2295 /* Done! */ 2296 ffs->stringtabs = stringtabs; 2297 ffs->raw_strings = _data; 2298 2299 return 0; 2300 2301 error_free: 2302 kfree(stringtabs); 2303 error: 2304 kfree(_data); 2305 return -EINVAL; 2306 } 2307 2308 2309 /* Events handling and management *******************************************/ 2310 2311 static void __ffs_event_add(struct ffs_data *ffs, 2312 enum usb_functionfs_event_type type) 2313 { 2314 enum usb_functionfs_event_type rem_type1, rem_type2 = type; 2315 int neg = 0; 2316 2317 /* 2318 * Abort any unhandled setup 2319 * 2320 * We do not need to worry about some cmpxchg() changing value 2321 * of ffs->setup_state without holding the lock because when 2322 * state is FFS_SETUP_PENDING cmpxchg() in several places in 2323 * the source does nothing. 2324 */ 2325 if (ffs->setup_state == FFS_SETUP_PENDING) 2326 ffs->setup_state = FFS_SETUP_CANCELLED; 2327 2328 switch (type) { 2329 case FUNCTIONFS_RESUME: 2330 rem_type2 = FUNCTIONFS_SUSPEND; 2331 /* FALL THROUGH */ 2332 case FUNCTIONFS_SUSPEND: 2333 case FUNCTIONFS_SETUP: 2334 rem_type1 = type; 2335 /* Discard all similar events */ 2336 break; 2337 2338 case FUNCTIONFS_BIND: 2339 case FUNCTIONFS_UNBIND: 2340 case FUNCTIONFS_DISABLE: 2341 case FUNCTIONFS_ENABLE: 2342 /* Discard everything other then power management. */ 2343 rem_type1 = FUNCTIONFS_SUSPEND; 2344 rem_type2 = FUNCTIONFS_RESUME; 2345 neg = 1; 2346 break; 2347 2348 default: 2349 BUG(); 2350 } 2351 2352 { 2353 u8 *ev = ffs->ev.types, *out = ev; 2354 unsigned n = ffs->ev.count; 2355 for (; n; --n, ++ev) 2356 if ((*ev == rem_type1 || *ev == rem_type2) == neg) 2357 *out++ = *ev; 2358 else 2359 pr_vdebug("purging event %d\n", *ev); 2360 ffs->ev.count = out - ffs->ev.types; 2361 } 2362 2363 pr_vdebug("adding event %d\n", type); 2364 ffs->ev.types[ffs->ev.count++] = type; 2365 wake_up_locked(&ffs->ev.waitq); 2366 } 2367 2368 static void ffs_event_add(struct ffs_data *ffs, 2369 enum usb_functionfs_event_type type) 2370 { 2371 unsigned long flags; 2372 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2373 __ffs_event_add(ffs, type); 2374 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2375 } 2376 2377 /* Bind/unbind USB function hooks *******************************************/ 2378 2379 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address) 2380 { 2381 int i; 2382 2383 for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i) 2384 if (ffs->eps_addrmap[i] == endpoint_address) 2385 return i; 2386 return -ENOENT; 2387 } 2388 2389 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep, 2390 struct usb_descriptor_header *desc, 2391 void *priv) 2392 { 2393 struct usb_endpoint_descriptor *ds = (void *)desc; 2394 struct ffs_function *func = priv; 2395 struct ffs_ep *ffs_ep; 2396 unsigned ep_desc_id, idx; 2397 static const char *speed_names[] = { "full", "high", "super" }; 2398 2399 if (type != FFS_DESCRIPTOR) 2400 return 0; 2401 2402 /* 2403 * If ss_descriptors is not NULL, we are reading super speed 2404 * descriptors; if hs_descriptors is not NULL, we are reading high 2405 * speed descriptors; otherwise, we are reading full speed 2406 * descriptors. 2407 */ 2408 if (func->function.ss_descriptors) { 2409 ep_desc_id = 2; 2410 func->function.ss_descriptors[(long)valuep] = desc; 2411 } else if (func->function.hs_descriptors) { 2412 ep_desc_id = 1; 2413 func->function.hs_descriptors[(long)valuep] = desc; 2414 } else { 2415 ep_desc_id = 0; 2416 func->function.fs_descriptors[(long)valuep] = desc; 2417 } 2418 2419 if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT) 2420 return 0; 2421 2422 idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1; 2423 if (idx < 0) 2424 return idx; 2425 2426 ffs_ep = func->eps + idx; 2427 2428 if (unlikely(ffs_ep->descs[ep_desc_id])) { 2429 pr_err("two %sspeed descriptors for EP %d\n", 2430 speed_names[ep_desc_id], 2431 ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); 2432 return -EINVAL; 2433 } 2434 ffs_ep->descs[ep_desc_id] = ds; 2435 2436 ffs_dump_mem(": Original ep desc", ds, ds->bLength); 2437 if (ffs_ep->ep) { 2438 ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress; 2439 if (!ds->wMaxPacketSize) 2440 ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize; 2441 } else { 2442 struct usb_request *req; 2443 struct usb_ep *ep; 2444 2445 pr_vdebug("autoconfig\n"); 2446 ep = usb_ep_autoconfig(func->gadget, ds); 2447 if (unlikely(!ep)) 2448 return -ENOTSUPP; 2449 ep->driver_data = func->eps + idx; 2450 2451 req = usb_ep_alloc_request(ep, GFP_KERNEL); 2452 if (unlikely(!req)) 2453 return -ENOMEM; 2454 2455 ffs_ep->ep = ep; 2456 ffs_ep->req = req; 2457 func->eps_revmap[ds->bEndpointAddress & 2458 USB_ENDPOINT_NUMBER_MASK] = idx + 1; 2459 } 2460 ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength); 2461 2462 return 0; 2463 } 2464 2465 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep, 2466 struct usb_descriptor_header *desc, 2467 void *priv) 2468 { 2469 struct ffs_function *func = priv; 2470 unsigned idx; 2471 u8 newValue; 2472 2473 switch (type) { 2474 default: 2475 case FFS_DESCRIPTOR: 2476 /* Handled in previous pass by __ffs_func_bind_do_descs() */ 2477 return 0; 2478 2479 case FFS_INTERFACE: 2480 idx = *valuep; 2481 if (func->interfaces_nums[idx] < 0) { 2482 int id = usb_interface_id(func->conf, &func->function); 2483 if (unlikely(id < 0)) 2484 return id; 2485 func->interfaces_nums[idx] = id; 2486 } 2487 newValue = func->interfaces_nums[idx]; 2488 break; 2489 2490 case FFS_STRING: 2491 /* String' IDs are allocated when fsf_data is bound to cdev */ 2492 newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id; 2493 break; 2494 2495 case FFS_ENDPOINT: 2496 /* 2497 * USB_DT_ENDPOINT are handled in 2498 * __ffs_func_bind_do_descs(). 2499 */ 2500 if (desc->bDescriptorType == USB_DT_ENDPOINT) 2501 return 0; 2502 2503 idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1; 2504 if (unlikely(!func->eps[idx].ep)) 2505 return -EINVAL; 2506 2507 { 2508 struct usb_endpoint_descriptor **descs; 2509 descs = func->eps[idx].descs; 2510 newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress; 2511 } 2512 break; 2513 } 2514 2515 pr_vdebug("%02x -> %02x\n", *valuep, newValue); 2516 *valuep = newValue; 2517 return 0; 2518 } 2519 2520 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type, 2521 struct usb_os_desc_header *h, void *data, 2522 unsigned len, void *priv) 2523 { 2524 struct ffs_function *func = priv; 2525 u8 length = 0; 2526 2527 switch (type) { 2528 case FFS_OS_DESC_EXT_COMPAT: { 2529 struct usb_ext_compat_desc *desc = data; 2530 struct usb_os_desc_table *t; 2531 2532 t = &func->function.os_desc_table[desc->bFirstInterfaceNumber]; 2533 t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber]; 2534 memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID, 2535 ARRAY_SIZE(desc->CompatibleID) + 2536 ARRAY_SIZE(desc->SubCompatibleID)); 2537 length = sizeof(*desc); 2538 } 2539 break; 2540 case FFS_OS_DESC_EXT_PROP: { 2541 struct usb_ext_prop_desc *desc = data; 2542 struct usb_os_desc_table *t; 2543 struct usb_os_desc_ext_prop *ext_prop; 2544 char *ext_prop_name; 2545 char *ext_prop_data; 2546 2547 t = &func->function.os_desc_table[h->interface]; 2548 t->if_id = func->interfaces_nums[h->interface]; 2549 2550 ext_prop = func->ffs->ms_os_descs_ext_prop_avail; 2551 func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop); 2552 2553 ext_prop->type = le32_to_cpu(desc->dwPropertyDataType); 2554 ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength); 2555 ext_prop->data_len = le32_to_cpu(*(u32 *) 2556 usb_ext_prop_data_len_ptr(data, ext_prop->name_len)); 2557 length = ext_prop->name_len + ext_prop->data_len + 14; 2558 2559 ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail; 2560 func->ffs->ms_os_descs_ext_prop_name_avail += 2561 ext_prop->name_len; 2562 2563 ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail; 2564 func->ffs->ms_os_descs_ext_prop_data_avail += 2565 ext_prop->data_len; 2566 memcpy(ext_prop_data, 2567 usb_ext_prop_data_ptr(data, ext_prop->name_len), 2568 ext_prop->data_len); 2569 /* unicode data reported to the host as "WCHAR"s */ 2570 switch (ext_prop->type) { 2571 case USB_EXT_PROP_UNICODE: 2572 case USB_EXT_PROP_UNICODE_ENV: 2573 case USB_EXT_PROP_UNICODE_LINK: 2574 case USB_EXT_PROP_UNICODE_MULTI: 2575 ext_prop->data_len *= 2; 2576 break; 2577 } 2578 ext_prop->data = ext_prop_data; 2579 2580 memcpy(ext_prop_name, usb_ext_prop_name_ptr(data), 2581 ext_prop->name_len); 2582 /* property name reported to the host as "WCHAR"s */ 2583 ext_prop->name_len *= 2; 2584 ext_prop->name = ext_prop_name; 2585 2586 t->os_desc->ext_prop_len += 2587 ext_prop->name_len + ext_prop->data_len + 14; 2588 ++t->os_desc->ext_prop_count; 2589 list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop); 2590 } 2591 break; 2592 default: 2593 pr_vdebug("unknown descriptor: %d\n", type); 2594 } 2595 2596 return length; 2597 } 2598 2599 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f, 2600 struct usb_configuration *c) 2601 { 2602 struct ffs_function *func = ffs_func_from_usb(f); 2603 struct f_fs_opts *ffs_opts = 2604 container_of(f->fi, struct f_fs_opts, func_inst); 2605 int ret; 2606 2607 ENTER(); 2608 2609 /* 2610 * Legacy gadget triggers binding in functionfs_ready_callback, 2611 * which already uses locking; taking the same lock here would 2612 * cause a deadlock. 2613 * 2614 * Configfs-enabled gadgets however do need ffs_dev_lock. 2615 */ 2616 if (!ffs_opts->no_configfs) 2617 ffs_dev_lock(); 2618 ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV; 2619 func->ffs = ffs_opts->dev->ffs_data; 2620 if (!ffs_opts->no_configfs) 2621 ffs_dev_unlock(); 2622 if (ret) 2623 return ERR_PTR(ret); 2624 2625 func->conf = c; 2626 func->gadget = c->cdev->gadget; 2627 2628 ffs_data_get(func->ffs); 2629 2630 /* 2631 * in drivers/usb/gadget/configfs.c:configfs_composite_bind() 2632 * configurations are bound in sequence with list_for_each_entry, 2633 * in each configuration its functions are bound in sequence 2634 * with list_for_each_entry, so we assume no race condition 2635 * with regard to ffs_opts->bound access 2636 */ 2637 if (!ffs_opts->refcnt) { 2638 ret = functionfs_bind(func->ffs, c->cdev); 2639 if (ret) 2640 return ERR_PTR(ret); 2641 } 2642 ffs_opts->refcnt++; 2643 func->function.strings = func->ffs->stringtabs; 2644 2645 return ffs_opts; 2646 } 2647 2648 static int _ffs_func_bind(struct usb_configuration *c, 2649 struct usb_function *f) 2650 { 2651 struct ffs_function *func = ffs_func_from_usb(f); 2652 struct ffs_data *ffs = func->ffs; 2653 2654 const int full = !!func->ffs->fs_descs_count; 2655 const int high = gadget_is_dualspeed(func->gadget) && 2656 func->ffs->hs_descs_count; 2657 const int super = gadget_is_superspeed(func->gadget) && 2658 func->ffs->ss_descs_count; 2659 2660 int fs_len, hs_len, ss_len, ret, i; 2661 2662 /* Make it a single chunk, less management later on */ 2663 vla_group(d); 2664 vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count); 2665 vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs, 2666 full ? ffs->fs_descs_count + 1 : 0); 2667 vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs, 2668 high ? ffs->hs_descs_count + 1 : 0); 2669 vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs, 2670 super ? ffs->ss_descs_count + 1 : 0); 2671 vla_item_with_sz(d, short, inums, ffs->interfaces_count); 2672 vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table, 2673 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2674 vla_item_with_sz(d, char[16], ext_compat, 2675 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2676 vla_item_with_sz(d, struct usb_os_desc, os_desc, 2677 c->cdev->use_os_string ? ffs->interfaces_count : 0); 2678 vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop, 2679 ffs->ms_os_descs_ext_prop_count); 2680 vla_item_with_sz(d, char, ext_prop_name, 2681 ffs->ms_os_descs_ext_prop_name_len); 2682 vla_item_with_sz(d, char, ext_prop_data, 2683 ffs->ms_os_descs_ext_prop_data_len); 2684 vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length); 2685 char *vlabuf; 2686 2687 ENTER(); 2688 2689 /* Has descriptors only for speeds gadget does not support */ 2690 if (unlikely(!(full | high | super))) 2691 return -ENOTSUPP; 2692 2693 /* Allocate a single chunk, less management later on */ 2694 vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL); 2695 if (unlikely(!vlabuf)) 2696 return -ENOMEM; 2697 2698 ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop); 2699 ffs->ms_os_descs_ext_prop_name_avail = 2700 vla_ptr(vlabuf, d, ext_prop_name); 2701 ffs->ms_os_descs_ext_prop_data_avail = 2702 vla_ptr(vlabuf, d, ext_prop_data); 2703 2704 /* Copy descriptors */ 2705 memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs, 2706 ffs->raw_descs_length); 2707 2708 memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz); 2709 for (ret = ffs->eps_count; ret; --ret) { 2710 struct ffs_ep *ptr; 2711 2712 ptr = vla_ptr(vlabuf, d, eps); 2713 ptr[ret].num = -1; 2714 } 2715 2716 /* Save pointers 2717 * d_eps == vlabuf, func->eps used to kfree vlabuf later 2718 */ 2719 func->eps = vla_ptr(vlabuf, d, eps); 2720 func->interfaces_nums = vla_ptr(vlabuf, d, inums); 2721 2722 /* 2723 * Go through all the endpoint descriptors and allocate 2724 * endpoints first, so that later we can rewrite the endpoint 2725 * numbers without worrying that it may be described later on. 2726 */ 2727 if (likely(full)) { 2728 func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs); 2729 fs_len = ffs_do_descs(ffs->fs_descs_count, 2730 vla_ptr(vlabuf, d, raw_descs), 2731 d_raw_descs__sz, 2732 __ffs_func_bind_do_descs, func); 2733 if (unlikely(fs_len < 0)) { 2734 ret = fs_len; 2735 goto error; 2736 } 2737 } else { 2738 fs_len = 0; 2739 } 2740 2741 if (likely(high)) { 2742 func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs); 2743 hs_len = ffs_do_descs(ffs->hs_descs_count, 2744 vla_ptr(vlabuf, d, raw_descs) + fs_len, 2745 d_raw_descs__sz - fs_len, 2746 __ffs_func_bind_do_descs, func); 2747 if (unlikely(hs_len < 0)) { 2748 ret = hs_len; 2749 goto error; 2750 } 2751 } else { 2752 hs_len = 0; 2753 } 2754 2755 if (likely(super)) { 2756 func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs); 2757 ss_len = ffs_do_descs(ffs->ss_descs_count, 2758 vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len, 2759 d_raw_descs__sz - fs_len - hs_len, 2760 __ffs_func_bind_do_descs, func); 2761 if (unlikely(ss_len < 0)) { 2762 ret = ss_len; 2763 goto error; 2764 } 2765 } else { 2766 ss_len = 0; 2767 } 2768 2769 /* 2770 * Now handle interface numbers allocation and interface and 2771 * endpoint numbers rewriting. We can do that in one go 2772 * now. 2773 */ 2774 ret = ffs_do_descs(ffs->fs_descs_count + 2775 (high ? ffs->hs_descs_count : 0) + 2776 (super ? ffs->ss_descs_count : 0), 2777 vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz, 2778 __ffs_func_bind_do_nums, func); 2779 if (unlikely(ret < 0)) 2780 goto error; 2781 2782 func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table); 2783 if (c->cdev->use_os_string) 2784 for (i = 0; i < ffs->interfaces_count; ++i) { 2785 struct usb_os_desc *desc; 2786 2787 desc = func->function.os_desc_table[i].os_desc = 2788 vla_ptr(vlabuf, d, os_desc) + 2789 i * sizeof(struct usb_os_desc); 2790 desc->ext_compat_id = 2791 vla_ptr(vlabuf, d, ext_compat) + i * 16; 2792 INIT_LIST_HEAD(&desc->ext_prop); 2793 } 2794 ret = ffs_do_os_descs(ffs->ms_os_descs_count, 2795 vla_ptr(vlabuf, d, raw_descs) + 2796 fs_len + hs_len + ss_len, 2797 d_raw_descs__sz - fs_len - hs_len - ss_len, 2798 __ffs_func_bind_do_os_desc, func); 2799 if (unlikely(ret < 0)) 2800 goto error; 2801 func->function.os_desc_n = 2802 c->cdev->use_os_string ? ffs->interfaces_count : 0; 2803 2804 /* And we're done */ 2805 ffs_event_add(ffs, FUNCTIONFS_BIND); 2806 return 0; 2807 2808 error: 2809 /* XXX Do we need to release all claimed endpoints here? */ 2810 return ret; 2811 } 2812 2813 static int ffs_func_bind(struct usb_configuration *c, 2814 struct usb_function *f) 2815 { 2816 struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c); 2817 2818 if (IS_ERR(ffs_opts)) 2819 return PTR_ERR(ffs_opts); 2820 2821 return _ffs_func_bind(c, f); 2822 } 2823 2824 2825 /* Other USB function hooks *************************************************/ 2826 2827 static int ffs_func_set_alt(struct usb_function *f, 2828 unsigned interface, unsigned alt) 2829 { 2830 struct ffs_function *func = ffs_func_from_usb(f); 2831 struct ffs_data *ffs = func->ffs; 2832 int ret = 0, intf; 2833 2834 if (alt != (unsigned)-1) { 2835 intf = ffs_func_revmap_intf(func, interface); 2836 if (unlikely(intf < 0)) 2837 return intf; 2838 } 2839 2840 if (ffs->func) 2841 ffs_func_eps_disable(ffs->func); 2842 2843 if (ffs->state != FFS_ACTIVE) 2844 return -ENODEV; 2845 2846 if (alt == (unsigned)-1) { 2847 ffs->func = NULL; 2848 ffs_event_add(ffs, FUNCTIONFS_DISABLE); 2849 return 0; 2850 } 2851 2852 ffs->func = func; 2853 ret = ffs_func_eps_enable(func); 2854 if (likely(ret >= 0)) 2855 ffs_event_add(ffs, FUNCTIONFS_ENABLE); 2856 return ret; 2857 } 2858 2859 static void ffs_func_disable(struct usb_function *f) 2860 { 2861 ffs_func_set_alt(f, 0, (unsigned)-1); 2862 } 2863 2864 static int ffs_func_setup(struct usb_function *f, 2865 const struct usb_ctrlrequest *creq) 2866 { 2867 struct ffs_function *func = ffs_func_from_usb(f); 2868 struct ffs_data *ffs = func->ffs; 2869 unsigned long flags; 2870 int ret; 2871 2872 ENTER(); 2873 2874 pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType); 2875 pr_vdebug("creq->bRequest = %02x\n", creq->bRequest); 2876 pr_vdebug("creq->wValue = %04x\n", le16_to_cpu(creq->wValue)); 2877 pr_vdebug("creq->wIndex = %04x\n", le16_to_cpu(creq->wIndex)); 2878 pr_vdebug("creq->wLength = %04x\n", le16_to_cpu(creq->wLength)); 2879 2880 /* 2881 * Most requests directed to interface go through here 2882 * (notable exceptions are set/get interface) so we need to 2883 * handle them. All other either handled by composite or 2884 * passed to usb_configuration->setup() (if one is set). No 2885 * matter, we will handle requests directed to endpoint here 2886 * as well (as it's straightforward) but what to do with any 2887 * other request? 2888 */ 2889 if (ffs->state != FFS_ACTIVE) 2890 return -ENODEV; 2891 2892 switch (creq->bRequestType & USB_RECIP_MASK) { 2893 case USB_RECIP_INTERFACE: 2894 ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex)); 2895 if (unlikely(ret < 0)) 2896 return ret; 2897 break; 2898 2899 case USB_RECIP_ENDPOINT: 2900 ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex)); 2901 if (unlikely(ret < 0)) 2902 return ret; 2903 break; 2904 2905 default: 2906 return -EOPNOTSUPP; 2907 } 2908 2909 spin_lock_irqsave(&ffs->ev.waitq.lock, flags); 2910 ffs->ev.setup = *creq; 2911 ffs->ev.setup.wIndex = cpu_to_le16(ret); 2912 __ffs_event_add(ffs, FUNCTIONFS_SETUP); 2913 spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags); 2914 2915 return 0; 2916 } 2917 2918 static void ffs_func_suspend(struct usb_function *f) 2919 { 2920 ENTER(); 2921 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND); 2922 } 2923 2924 static void ffs_func_resume(struct usb_function *f) 2925 { 2926 ENTER(); 2927 ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME); 2928 } 2929 2930 2931 /* Endpoint and interface numbers reverse mapping ***************************/ 2932 2933 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num) 2934 { 2935 num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK]; 2936 return num ? num : -EDOM; 2937 } 2938 2939 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf) 2940 { 2941 short *nums = func->interfaces_nums; 2942 unsigned count = func->ffs->interfaces_count; 2943 2944 for (; count; --count, ++nums) { 2945 if (*nums >= 0 && *nums == intf) 2946 return nums - func->interfaces_nums; 2947 } 2948 2949 return -EDOM; 2950 } 2951 2952 2953 /* Devices management *******************************************************/ 2954 2955 static LIST_HEAD(ffs_devices); 2956 2957 static struct ffs_dev *_ffs_do_find_dev(const char *name) 2958 { 2959 struct ffs_dev *dev; 2960 2961 list_for_each_entry(dev, &ffs_devices, entry) { 2962 if (!dev->name || !name) 2963 continue; 2964 if (strcmp(dev->name, name) == 0) 2965 return dev; 2966 } 2967 2968 return NULL; 2969 } 2970 2971 /* 2972 * ffs_lock must be taken by the caller of this function 2973 */ 2974 static struct ffs_dev *_ffs_get_single_dev(void) 2975 { 2976 struct ffs_dev *dev; 2977 2978 if (list_is_singular(&ffs_devices)) { 2979 dev = list_first_entry(&ffs_devices, struct ffs_dev, entry); 2980 if (dev->single) 2981 return dev; 2982 } 2983 2984 return NULL; 2985 } 2986 2987 /* 2988 * ffs_lock must be taken by the caller of this function 2989 */ 2990 static struct ffs_dev *_ffs_find_dev(const char *name) 2991 { 2992 struct ffs_dev *dev; 2993 2994 dev = _ffs_get_single_dev(); 2995 if (dev) 2996 return dev; 2997 2998 return _ffs_do_find_dev(name); 2999 } 3000 3001 /* Configfs support *********************************************************/ 3002 3003 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item) 3004 { 3005 return container_of(to_config_group(item), struct f_fs_opts, 3006 func_inst.group); 3007 } 3008 3009 static void ffs_attr_release(struct config_item *item) 3010 { 3011 struct f_fs_opts *opts = to_ffs_opts(item); 3012 3013 usb_put_function_instance(&opts->func_inst); 3014 } 3015 3016 static struct configfs_item_operations ffs_item_ops = { 3017 .release = ffs_attr_release, 3018 }; 3019 3020 static struct config_item_type ffs_func_type = { 3021 .ct_item_ops = &ffs_item_ops, 3022 .ct_owner = THIS_MODULE, 3023 }; 3024 3025 3026 /* Function registration interface ******************************************/ 3027 3028 static void ffs_free_inst(struct usb_function_instance *f) 3029 { 3030 struct f_fs_opts *opts; 3031 3032 opts = to_f_fs_opts(f); 3033 ffs_dev_lock(); 3034 _ffs_free_dev(opts->dev); 3035 ffs_dev_unlock(); 3036 kfree(opts); 3037 } 3038 3039 #define MAX_INST_NAME_LEN 40 3040 3041 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name) 3042 { 3043 struct f_fs_opts *opts; 3044 char *ptr; 3045 const char *tmp; 3046 int name_len, ret; 3047 3048 name_len = strlen(name) + 1; 3049 if (name_len > MAX_INST_NAME_LEN) 3050 return -ENAMETOOLONG; 3051 3052 ptr = kstrndup(name, name_len, GFP_KERNEL); 3053 if (!ptr) 3054 return -ENOMEM; 3055 3056 opts = to_f_fs_opts(fi); 3057 tmp = NULL; 3058 3059 ffs_dev_lock(); 3060 3061 tmp = opts->dev->name_allocated ? opts->dev->name : NULL; 3062 ret = _ffs_name_dev(opts->dev, ptr); 3063 if (ret) { 3064 kfree(ptr); 3065 ffs_dev_unlock(); 3066 return ret; 3067 } 3068 opts->dev->name_allocated = true; 3069 3070 ffs_dev_unlock(); 3071 3072 kfree(tmp); 3073 3074 return 0; 3075 } 3076 3077 static struct usb_function_instance *ffs_alloc_inst(void) 3078 { 3079 struct f_fs_opts *opts; 3080 struct ffs_dev *dev; 3081 3082 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 3083 if (!opts) 3084 return ERR_PTR(-ENOMEM); 3085 3086 opts->func_inst.set_inst_name = ffs_set_inst_name; 3087 opts->func_inst.free_func_inst = ffs_free_inst; 3088 ffs_dev_lock(); 3089 dev = _ffs_alloc_dev(); 3090 ffs_dev_unlock(); 3091 if (IS_ERR(dev)) { 3092 kfree(opts); 3093 return ERR_CAST(dev); 3094 } 3095 opts->dev = dev; 3096 dev->opts = opts; 3097 3098 config_group_init_type_name(&opts->func_inst.group, "", 3099 &ffs_func_type); 3100 return &opts->func_inst; 3101 } 3102 3103 static void ffs_free(struct usb_function *f) 3104 { 3105 kfree(ffs_func_from_usb(f)); 3106 } 3107 3108 static void ffs_func_unbind(struct usb_configuration *c, 3109 struct usb_function *f) 3110 { 3111 struct ffs_function *func = ffs_func_from_usb(f); 3112 struct ffs_data *ffs = func->ffs; 3113 struct f_fs_opts *opts = 3114 container_of(f->fi, struct f_fs_opts, func_inst); 3115 struct ffs_ep *ep = func->eps; 3116 unsigned count = ffs->eps_count; 3117 unsigned long flags; 3118 3119 ENTER(); 3120 if (ffs->func == func) { 3121 ffs_func_eps_disable(func); 3122 ffs->func = NULL; 3123 } 3124 3125 if (!--opts->refcnt) 3126 functionfs_unbind(ffs); 3127 3128 /* cleanup after autoconfig */ 3129 spin_lock_irqsave(&func->ffs->eps_lock, flags); 3130 do { 3131 if (ep->ep && ep->req) 3132 usb_ep_free_request(ep->ep, ep->req); 3133 ep->req = NULL; 3134 ++ep; 3135 } while (--count); 3136 spin_unlock_irqrestore(&func->ffs->eps_lock, flags); 3137 kfree(func->eps); 3138 func->eps = NULL; 3139 /* 3140 * eps, descriptors and interfaces_nums are allocated in the 3141 * same chunk so only one free is required. 3142 */ 3143 func->function.fs_descriptors = NULL; 3144 func->function.hs_descriptors = NULL; 3145 func->function.ss_descriptors = NULL; 3146 func->interfaces_nums = NULL; 3147 3148 ffs_event_add(ffs, FUNCTIONFS_UNBIND); 3149 } 3150 3151 static struct usb_function *ffs_alloc(struct usb_function_instance *fi) 3152 { 3153 struct ffs_function *func; 3154 3155 ENTER(); 3156 3157 func = kzalloc(sizeof(*func), GFP_KERNEL); 3158 if (unlikely(!func)) 3159 return ERR_PTR(-ENOMEM); 3160 3161 func->function.name = "Function FS Gadget"; 3162 3163 func->function.bind = ffs_func_bind; 3164 func->function.unbind = ffs_func_unbind; 3165 func->function.set_alt = ffs_func_set_alt; 3166 func->function.disable = ffs_func_disable; 3167 func->function.setup = ffs_func_setup; 3168 func->function.suspend = ffs_func_suspend; 3169 func->function.resume = ffs_func_resume; 3170 func->function.free_func = ffs_free; 3171 3172 return &func->function; 3173 } 3174 3175 /* 3176 * ffs_lock must be taken by the caller of this function 3177 */ 3178 static struct ffs_dev *_ffs_alloc_dev(void) 3179 { 3180 struct ffs_dev *dev; 3181 int ret; 3182 3183 if (_ffs_get_single_dev()) 3184 return ERR_PTR(-EBUSY); 3185 3186 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3187 if (!dev) 3188 return ERR_PTR(-ENOMEM); 3189 3190 if (list_empty(&ffs_devices)) { 3191 ret = functionfs_init(); 3192 if (ret) { 3193 kfree(dev); 3194 return ERR_PTR(ret); 3195 } 3196 } 3197 3198 list_add(&dev->entry, &ffs_devices); 3199 3200 return dev; 3201 } 3202 3203 /* 3204 * ffs_lock must be taken by the caller of this function 3205 * The caller is responsible for "name" being available whenever f_fs needs it 3206 */ 3207 static int _ffs_name_dev(struct ffs_dev *dev, const char *name) 3208 { 3209 struct ffs_dev *existing; 3210 3211 existing = _ffs_do_find_dev(name); 3212 if (existing) 3213 return -EBUSY; 3214 3215 dev->name = name; 3216 3217 return 0; 3218 } 3219 3220 /* 3221 * The caller is responsible for "name" being available whenever f_fs needs it 3222 */ 3223 int ffs_name_dev(struct ffs_dev *dev, const char *name) 3224 { 3225 int ret; 3226 3227 ffs_dev_lock(); 3228 ret = _ffs_name_dev(dev, name); 3229 ffs_dev_unlock(); 3230 3231 return ret; 3232 } 3233 EXPORT_SYMBOL_GPL(ffs_name_dev); 3234 3235 int ffs_single_dev(struct ffs_dev *dev) 3236 { 3237 int ret; 3238 3239 ret = 0; 3240 ffs_dev_lock(); 3241 3242 if (!list_is_singular(&ffs_devices)) 3243 ret = -EBUSY; 3244 else 3245 dev->single = true; 3246 3247 ffs_dev_unlock(); 3248 return ret; 3249 } 3250 EXPORT_SYMBOL_GPL(ffs_single_dev); 3251 3252 /* 3253 * ffs_lock must be taken by the caller of this function 3254 */ 3255 static void _ffs_free_dev(struct ffs_dev *dev) 3256 { 3257 list_del(&dev->entry); 3258 if (dev->name_allocated) 3259 kfree(dev->name); 3260 kfree(dev); 3261 if (list_empty(&ffs_devices)) 3262 functionfs_cleanup(); 3263 } 3264 3265 static void *ffs_acquire_dev(const char *dev_name) 3266 { 3267 struct ffs_dev *ffs_dev; 3268 3269 ENTER(); 3270 ffs_dev_lock(); 3271 3272 ffs_dev = _ffs_find_dev(dev_name); 3273 if (!ffs_dev) 3274 ffs_dev = ERR_PTR(-ENOENT); 3275 else if (ffs_dev->mounted) 3276 ffs_dev = ERR_PTR(-EBUSY); 3277 else if (ffs_dev->ffs_acquire_dev_callback && 3278 ffs_dev->ffs_acquire_dev_callback(ffs_dev)) 3279 ffs_dev = ERR_PTR(-ENOENT); 3280 else 3281 ffs_dev->mounted = true; 3282 3283 ffs_dev_unlock(); 3284 return ffs_dev; 3285 } 3286 3287 static void ffs_release_dev(struct ffs_data *ffs_data) 3288 { 3289 struct ffs_dev *ffs_dev; 3290 3291 ENTER(); 3292 ffs_dev_lock(); 3293 3294 ffs_dev = ffs_data->private_data; 3295 if (ffs_dev) { 3296 ffs_dev->mounted = false; 3297 3298 if (ffs_dev->ffs_release_dev_callback) 3299 ffs_dev->ffs_release_dev_callback(ffs_dev); 3300 } 3301 3302 ffs_dev_unlock(); 3303 } 3304 3305 static int ffs_ready(struct ffs_data *ffs) 3306 { 3307 struct ffs_dev *ffs_obj; 3308 int ret = 0; 3309 3310 ENTER(); 3311 ffs_dev_lock(); 3312 3313 ffs_obj = ffs->private_data; 3314 if (!ffs_obj) { 3315 ret = -EINVAL; 3316 goto done; 3317 } 3318 if (WARN_ON(ffs_obj->desc_ready)) { 3319 ret = -EBUSY; 3320 goto done; 3321 } 3322 3323 ffs_obj->desc_ready = true; 3324 ffs_obj->ffs_data = ffs; 3325 3326 if (ffs_obj->ffs_ready_callback) 3327 ret = ffs_obj->ffs_ready_callback(ffs); 3328 3329 done: 3330 ffs_dev_unlock(); 3331 return ret; 3332 } 3333 3334 static void ffs_closed(struct ffs_data *ffs) 3335 { 3336 struct ffs_dev *ffs_obj; 3337 3338 ENTER(); 3339 ffs_dev_lock(); 3340 3341 ffs_obj = ffs->private_data; 3342 if (!ffs_obj) 3343 goto done; 3344 3345 ffs_obj->desc_ready = false; 3346 3347 if (ffs_obj->ffs_closed_callback) 3348 ffs_obj->ffs_closed_callback(ffs); 3349 3350 if (!ffs_obj->opts || ffs_obj->opts->no_configfs 3351 || !ffs_obj->opts->func_inst.group.cg_item.ci_parent) 3352 goto done; 3353 3354 unregister_gadget_item(ffs_obj->opts-> 3355 func_inst.group.cg_item.ci_parent->ci_parent); 3356 done: 3357 ffs_dev_unlock(); 3358 } 3359 3360 /* Misc helper functions ****************************************************/ 3361 3362 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock) 3363 { 3364 return nonblock 3365 ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN 3366 : mutex_lock_interruptible(mutex); 3367 } 3368 3369 static char *ffs_prepare_buffer(const char __user *buf, size_t len) 3370 { 3371 char *data; 3372 3373 if (unlikely(!len)) 3374 return NULL; 3375 3376 data = kmalloc(len, GFP_KERNEL); 3377 if (unlikely(!data)) 3378 return ERR_PTR(-ENOMEM); 3379 3380 if (unlikely(__copy_from_user(data, buf, len))) { 3381 kfree(data); 3382 return ERR_PTR(-EFAULT); 3383 } 3384 3385 pr_vdebug("Buffer from user space:\n"); 3386 ffs_dump_mem("", data, len); 3387 3388 return data; 3389 } 3390 3391 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc); 3392 MODULE_LICENSE("GPL"); 3393 MODULE_AUTHOR("Michal Nazarewicz"); 3394