xref: /openbmc/linux/drivers/usb/gadget/function/f_fs.c (revision 1f1517fafda598839a02e39968c5063ddcfa51fc)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * f_fs.c -- user mode file system API for USB composite function controllers
4  *
5  * Copyright (C) 2010 Samsung Electronics
6  * Author: Michal Nazarewicz <mina86@mina86.com>
7  *
8  * Based on inode.c (GadgetFS) which was:
9  * Copyright (C) 2003-2004 David Brownell
10  * Copyright (C) 2003 Agilent Technologies
11  */
12 
13 
14 /* #define DEBUG */
15 /* #define VERBOSE_DEBUG */
16 
17 #include <linux/blkdev.h>
18 #include <linux/pagemap.h>
19 #include <linux/export.h>
20 #include <linux/fs_parser.h>
21 #include <linux/hid.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/scatterlist.h>
25 #include <linux/sched/signal.h>
26 #include <linux/uio.h>
27 #include <linux/vmalloc.h>
28 #include <asm/unaligned.h>
29 
30 #include <linux/usb/ccid.h>
31 #include <linux/usb/composite.h>
32 #include <linux/usb/functionfs.h>
33 
34 #include <linux/aio.h>
35 #include <linux/kthread.h>
36 #include <linux/poll.h>
37 #include <linux/eventfd.h>
38 
39 #include "u_fs.h"
40 #include "u_f.h"
41 #include "u_os_desc.h"
42 #include "configfs.h"
43 
44 #define FUNCTIONFS_MAGIC	0xa647361 /* Chosen by a honest dice roll ;) */
45 
46 /* Reference counter handling */
47 static void ffs_data_get(struct ffs_data *ffs);
48 static void ffs_data_put(struct ffs_data *ffs);
49 /* Creates new ffs_data object. */
50 static struct ffs_data *__must_check ffs_data_new(const char *dev_name)
51 	__attribute__((malloc));
52 
53 /* Opened counter handling. */
54 static void ffs_data_opened(struct ffs_data *ffs);
55 static void ffs_data_closed(struct ffs_data *ffs);
56 
57 /* Called with ffs->mutex held; take over ownership of data. */
58 static int __must_check
59 __ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
60 static int __must_check
61 __ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
62 
63 
64 /* The function structure ***************************************************/
65 
66 struct ffs_ep;
67 
68 struct ffs_function {
69 	struct usb_configuration	*conf;
70 	struct usb_gadget		*gadget;
71 	struct ffs_data			*ffs;
72 
73 	struct ffs_ep			*eps;
74 	u8				eps_revmap[16];
75 	short				*interfaces_nums;
76 
77 	struct usb_function		function;
78 };
79 
80 
81 static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
82 {
83 	return container_of(f, struct ffs_function, function);
84 }
85 
86 
87 static inline enum ffs_setup_state
88 ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
89 {
90 	return (enum ffs_setup_state)
91 		cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
92 }
93 
94 
95 static void ffs_func_eps_disable(struct ffs_function *func);
96 static int __must_check ffs_func_eps_enable(struct ffs_function *func);
97 
98 static int ffs_func_bind(struct usb_configuration *,
99 			 struct usb_function *);
100 static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
101 static void ffs_func_disable(struct usb_function *);
102 static int ffs_func_setup(struct usb_function *,
103 			  const struct usb_ctrlrequest *);
104 static bool ffs_func_req_match(struct usb_function *,
105 			       const struct usb_ctrlrequest *,
106 			       bool config0);
107 static void ffs_func_suspend(struct usb_function *);
108 static void ffs_func_resume(struct usb_function *);
109 
110 
111 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
112 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
113 
114 
115 /* The endpoints structures *************************************************/
116 
117 struct ffs_ep {
118 	struct usb_ep			*ep;	/* P: ffs->eps_lock */
119 	struct usb_request		*req;	/* P: epfile->mutex */
120 
121 	/* [0]: full speed, [1]: high speed, [2]: super speed */
122 	struct usb_endpoint_descriptor	*descs[3];
123 
124 	u8				num;
125 
126 	int				status;	/* P: epfile->mutex */
127 };
128 
129 struct ffs_epfile {
130 	/* Protects ep->ep and ep->req. */
131 	struct mutex			mutex;
132 
133 	struct ffs_data			*ffs;
134 	struct ffs_ep			*ep;	/* P: ffs->eps_lock */
135 
136 	struct dentry			*dentry;
137 
138 	/*
139 	 * Buffer for holding data from partial reads which may happen since
140 	 * we’re rounding user read requests to a multiple of a max packet size.
141 	 *
142 	 * The pointer is initialised with NULL value and may be set by
143 	 * __ffs_epfile_read_data function to point to a temporary buffer.
144 	 *
145 	 * In normal operation, calls to __ffs_epfile_read_buffered will consume
146 	 * data from said buffer and eventually free it.  Importantly, while the
147 	 * function is using the buffer, it sets the pointer to NULL.  This is
148 	 * all right since __ffs_epfile_read_data and __ffs_epfile_read_buffered
149 	 * can never run concurrently (they are synchronised by epfile->mutex)
150 	 * so the latter will not assign a new value to the pointer.
151 	 *
152 	 * Meanwhile ffs_func_eps_disable frees the buffer (if the pointer is
153 	 * valid) and sets the pointer to READ_BUFFER_DROP value.  This special
154 	 * value is crux of the synchronisation between ffs_func_eps_disable and
155 	 * __ffs_epfile_read_data.
156 	 *
157 	 * Once __ffs_epfile_read_data is about to finish it will try to set the
158 	 * pointer back to its old value (as described above), but seeing as the
159 	 * pointer is not-NULL (namely READ_BUFFER_DROP) it will instead free
160 	 * the buffer.
161 	 *
162 	 * == State transitions ==
163 	 *
164 	 * • ptr == NULL:  (initial state)
165 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP
166 	 *   ◦ __ffs_epfile_read_buffered:    nop
167 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: go to ptr == buf
168 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
169 	 * • ptr == DROP:
170 	 *   ◦ __ffs_epfile_read_buffer_free: nop
171 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL
172 	 *   ◦ __ffs_epfile_read_data allocates temp buffer: free buf, nop
173 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
174 	 * • ptr == buf:
175 	 *   ◦ __ffs_epfile_read_buffer_free: free buf, go to ptr == DROP
176 	 *   ◦ __ffs_epfile_read_buffered:    go to ptr == NULL and reading
177 	 *   ◦ __ffs_epfile_read_data:        n/a, __ffs_epfile_read_buffered
178 	 *                                    is always called first
179 	 *   ◦ reading finishes:              n/a, not in ‘and reading’ state
180 	 * • ptr == NULL and reading:
181 	 *   ◦ __ffs_epfile_read_buffer_free: go to ptr == DROP and reading
182 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
183 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
184 	 *   ◦ reading finishes and …
185 	 *     … all data read:               free buf, go to ptr == NULL
186 	 *     … otherwise:                   go to ptr == buf and reading
187 	 * • ptr == DROP and reading:
188 	 *   ◦ __ffs_epfile_read_buffer_free: nop
189 	 *   ◦ __ffs_epfile_read_buffered:    n/a, mutex is held
190 	 *   ◦ __ffs_epfile_read_data:        n/a, mutex is held
191 	 *   ◦ reading finishes:              free buf, go to ptr == DROP
192 	 */
193 	struct ffs_buffer		*read_buffer;
194 #define READ_BUFFER_DROP ((struct ffs_buffer *)ERR_PTR(-ESHUTDOWN))
195 
196 	char				name[5];
197 
198 	unsigned char			in;	/* P: ffs->eps_lock */
199 	unsigned char			isoc;	/* P: ffs->eps_lock */
200 
201 	unsigned char			_pad;
202 };
203 
204 struct ffs_buffer {
205 	size_t length;
206 	char *data;
207 	char storage[];
208 };
209 
210 /*  ffs_io_data structure ***************************************************/
211 
212 struct ffs_io_data {
213 	bool aio;
214 	bool read;
215 
216 	struct kiocb *kiocb;
217 	struct iov_iter data;
218 	const void *to_free;
219 	char *buf;
220 
221 	struct mm_struct *mm;
222 	struct work_struct work;
223 
224 	struct usb_ep *ep;
225 	struct usb_request *req;
226 	struct sg_table sgt;
227 	bool use_sg;
228 
229 	struct ffs_data *ffs;
230 };
231 
232 struct ffs_desc_helper {
233 	struct ffs_data *ffs;
234 	unsigned interfaces_count;
235 	unsigned eps_count;
236 };
237 
238 static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
239 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
240 
241 static struct dentry *
242 ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
243 		   const struct file_operations *fops);
244 
245 /* Devices management *******************************************************/
246 
247 DEFINE_MUTEX(ffs_lock);
248 EXPORT_SYMBOL_GPL(ffs_lock);
249 
250 static struct ffs_dev *_ffs_find_dev(const char *name);
251 static struct ffs_dev *_ffs_alloc_dev(void);
252 static void _ffs_free_dev(struct ffs_dev *dev);
253 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data);
254 static void ffs_release_dev(struct ffs_dev *ffs_dev);
255 static int ffs_ready(struct ffs_data *ffs);
256 static void ffs_closed(struct ffs_data *ffs);
257 
258 /* Misc helper functions ****************************************************/
259 
260 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
261 	__attribute__((warn_unused_result, nonnull));
262 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
263 	__attribute__((warn_unused_result, nonnull));
264 
265 
266 /* Control file aka ep0 *****************************************************/
267 
268 static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
269 {
270 	struct ffs_data *ffs = req->context;
271 
272 	complete(&ffs->ep0req_completion);
273 }
274 
275 static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
276 	__releases(&ffs->ev.waitq.lock)
277 {
278 	struct usb_request *req = ffs->ep0req;
279 	int ret;
280 
281 	req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
282 
283 	spin_unlock_irq(&ffs->ev.waitq.lock);
284 
285 	req->buf      = data;
286 	req->length   = len;
287 
288 	/*
289 	 * UDC layer requires to provide a buffer even for ZLP, but should
290 	 * not use it at all. Let's provide some poisoned pointer to catch
291 	 * possible bug in the driver.
292 	 */
293 	if (req->buf == NULL)
294 		req->buf = (void *)0xDEADBABE;
295 
296 	reinit_completion(&ffs->ep0req_completion);
297 
298 	ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
299 	if (ret < 0)
300 		return ret;
301 
302 	ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
303 	if (ret) {
304 		usb_ep_dequeue(ffs->gadget->ep0, req);
305 		return -EINTR;
306 	}
307 
308 	ffs->setup_state = FFS_NO_SETUP;
309 	return req->status ? req->status : req->actual;
310 }
311 
312 static int __ffs_ep0_stall(struct ffs_data *ffs)
313 {
314 	if (ffs->ev.can_stall) {
315 		pr_vdebug("ep0 stall\n");
316 		usb_ep_set_halt(ffs->gadget->ep0);
317 		ffs->setup_state = FFS_NO_SETUP;
318 		return -EL2HLT;
319 	} else {
320 		pr_debug("bogus ep0 stall!\n");
321 		return -ESRCH;
322 	}
323 }
324 
325 static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
326 			     size_t len, loff_t *ptr)
327 {
328 	struct ffs_data *ffs = file->private_data;
329 	ssize_t ret;
330 	char *data;
331 
332 	ENTER();
333 
334 	/* Fast check if setup was canceled */
335 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
336 		return -EIDRM;
337 
338 	/* Acquire mutex */
339 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
340 	if (ret < 0)
341 		return ret;
342 
343 	/* Check state */
344 	switch (ffs->state) {
345 	case FFS_READ_DESCRIPTORS:
346 	case FFS_READ_STRINGS:
347 		/* Copy data */
348 		if (len < 16) {
349 			ret = -EINVAL;
350 			break;
351 		}
352 
353 		data = ffs_prepare_buffer(buf, len);
354 		if (IS_ERR(data)) {
355 			ret = PTR_ERR(data);
356 			break;
357 		}
358 
359 		/* Handle data */
360 		if (ffs->state == FFS_READ_DESCRIPTORS) {
361 			pr_info("read descriptors\n");
362 			ret = __ffs_data_got_descs(ffs, data, len);
363 			if (ret < 0)
364 				break;
365 
366 			ffs->state = FFS_READ_STRINGS;
367 			ret = len;
368 		} else {
369 			pr_info("read strings\n");
370 			ret = __ffs_data_got_strings(ffs, data, len);
371 			if (ret < 0)
372 				break;
373 
374 			ret = ffs_epfiles_create(ffs);
375 			if (ret) {
376 				ffs->state = FFS_CLOSING;
377 				break;
378 			}
379 
380 			ffs->state = FFS_ACTIVE;
381 			mutex_unlock(&ffs->mutex);
382 
383 			ret = ffs_ready(ffs);
384 			if (ret < 0) {
385 				ffs->state = FFS_CLOSING;
386 				return ret;
387 			}
388 
389 			return len;
390 		}
391 		break;
392 
393 	case FFS_ACTIVE:
394 		data = NULL;
395 		/*
396 		 * We're called from user space, we can use _irq
397 		 * rather then _irqsave
398 		 */
399 		spin_lock_irq(&ffs->ev.waitq.lock);
400 		switch (ffs_setup_state_clear_cancelled(ffs)) {
401 		case FFS_SETUP_CANCELLED:
402 			ret = -EIDRM;
403 			goto done_spin;
404 
405 		case FFS_NO_SETUP:
406 			ret = -ESRCH;
407 			goto done_spin;
408 
409 		case FFS_SETUP_PENDING:
410 			break;
411 		}
412 
413 		/* FFS_SETUP_PENDING */
414 		if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
415 			spin_unlock_irq(&ffs->ev.waitq.lock);
416 			ret = __ffs_ep0_stall(ffs);
417 			break;
418 		}
419 
420 		/* FFS_SETUP_PENDING and not stall */
421 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
422 
423 		spin_unlock_irq(&ffs->ev.waitq.lock);
424 
425 		data = ffs_prepare_buffer(buf, len);
426 		if (IS_ERR(data)) {
427 			ret = PTR_ERR(data);
428 			break;
429 		}
430 
431 		spin_lock_irq(&ffs->ev.waitq.lock);
432 
433 		/*
434 		 * We are guaranteed to be still in FFS_ACTIVE state
435 		 * but the state of setup could have changed from
436 		 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
437 		 * to check for that.  If that happened we copied data
438 		 * from user space in vain but it's unlikely.
439 		 *
440 		 * For sure we are not in FFS_NO_SETUP since this is
441 		 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
442 		 * transition can be performed and it's protected by
443 		 * mutex.
444 		 */
445 		if (ffs_setup_state_clear_cancelled(ffs) ==
446 		    FFS_SETUP_CANCELLED) {
447 			ret = -EIDRM;
448 done_spin:
449 			spin_unlock_irq(&ffs->ev.waitq.lock);
450 		} else {
451 			/* unlocks spinlock */
452 			ret = __ffs_ep0_queue_wait(ffs, data, len);
453 		}
454 		kfree(data);
455 		break;
456 
457 	default:
458 		ret = -EBADFD;
459 		break;
460 	}
461 
462 	mutex_unlock(&ffs->mutex);
463 	return ret;
464 }
465 
466 /* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
467 static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
468 				     size_t n)
469 	__releases(&ffs->ev.waitq.lock)
470 {
471 	/*
472 	 * n cannot be bigger than ffs->ev.count, which cannot be bigger than
473 	 * size of ffs->ev.types array (which is four) so that's how much space
474 	 * we reserve.
475 	 */
476 	struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
477 	const size_t size = n * sizeof *events;
478 	unsigned i = 0;
479 
480 	memset(events, 0, size);
481 
482 	do {
483 		events[i].type = ffs->ev.types[i];
484 		if (events[i].type == FUNCTIONFS_SETUP) {
485 			events[i].u.setup = ffs->ev.setup;
486 			ffs->setup_state = FFS_SETUP_PENDING;
487 		}
488 	} while (++i < n);
489 
490 	ffs->ev.count -= n;
491 	if (ffs->ev.count)
492 		memmove(ffs->ev.types, ffs->ev.types + n,
493 			ffs->ev.count * sizeof *ffs->ev.types);
494 
495 	spin_unlock_irq(&ffs->ev.waitq.lock);
496 	mutex_unlock(&ffs->mutex);
497 
498 	return copy_to_user(buf, events, size) ? -EFAULT : size;
499 }
500 
501 static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
502 			    size_t len, loff_t *ptr)
503 {
504 	struct ffs_data *ffs = file->private_data;
505 	char *data = NULL;
506 	size_t n;
507 	int ret;
508 
509 	ENTER();
510 
511 	/* Fast check if setup was canceled */
512 	if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
513 		return -EIDRM;
514 
515 	/* Acquire mutex */
516 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
517 	if (ret < 0)
518 		return ret;
519 
520 	/* Check state */
521 	if (ffs->state != FFS_ACTIVE) {
522 		ret = -EBADFD;
523 		goto done_mutex;
524 	}
525 
526 	/*
527 	 * We're called from user space, we can use _irq rather then
528 	 * _irqsave
529 	 */
530 	spin_lock_irq(&ffs->ev.waitq.lock);
531 
532 	switch (ffs_setup_state_clear_cancelled(ffs)) {
533 	case FFS_SETUP_CANCELLED:
534 		ret = -EIDRM;
535 		break;
536 
537 	case FFS_NO_SETUP:
538 		n = len / sizeof(struct usb_functionfs_event);
539 		if (!n) {
540 			ret = -EINVAL;
541 			break;
542 		}
543 
544 		if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
545 			ret = -EAGAIN;
546 			break;
547 		}
548 
549 		if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
550 							ffs->ev.count)) {
551 			ret = -EINTR;
552 			break;
553 		}
554 
555 		/* unlocks spinlock */
556 		return __ffs_ep0_read_events(ffs, buf,
557 					     min(n, (size_t)ffs->ev.count));
558 
559 	case FFS_SETUP_PENDING:
560 		if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
561 			spin_unlock_irq(&ffs->ev.waitq.lock);
562 			ret = __ffs_ep0_stall(ffs);
563 			goto done_mutex;
564 		}
565 
566 		len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
567 
568 		spin_unlock_irq(&ffs->ev.waitq.lock);
569 
570 		if (len) {
571 			data = kmalloc(len, GFP_KERNEL);
572 			if (!data) {
573 				ret = -ENOMEM;
574 				goto done_mutex;
575 			}
576 		}
577 
578 		spin_lock_irq(&ffs->ev.waitq.lock);
579 
580 		/* See ffs_ep0_write() */
581 		if (ffs_setup_state_clear_cancelled(ffs) ==
582 		    FFS_SETUP_CANCELLED) {
583 			ret = -EIDRM;
584 			break;
585 		}
586 
587 		/* unlocks spinlock */
588 		ret = __ffs_ep0_queue_wait(ffs, data, len);
589 		if ((ret > 0) && (copy_to_user(buf, data, len)))
590 			ret = -EFAULT;
591 		goto done_mutex;
592 
593 	default:
594 		ret = -EBADFD;
595 		break;
596 	}
597 
598 	spin_unlock_irq(&ffs->ev.waitq.lock);
599 done_mutex:
600 	mutex_unlock(&ffs->mutex);
601 	kfree(data);
602 	return ret;
603 }
604 
605 static int ffs_ep0_open(struct inode *inode, struct file *file)
606 {
607 	struct ffs_data *ffs = inode->i_private;
608 
609 	ENTER();
610 
611 	if (ffs->state == FFS_CLOSING)
612 		return -EBUSY;
613 
614 	file->private_data = ffs;
615 	ffs_data_opened(ffs);
616 
617 	return 0;
618 }
619 
620 static int ffs_ep0_release(struct inode *inode, struct file *file)
621 {
622 	struct ffs_data *ffs = file->private_data;
623 
624 	ENTER();
625 
626 	ffs_data_closed(ffs);
627 
628 	return 0;
629 }
630 
631 static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
632 {
633 	struct ffs_data *ffs = file->private_data;
634 	struct usb_gadget *gadget = ffs->gadget;
635 	long ret;
636 
637 	ENTER();
638 
639 	if (code == FUNCTIONFS_INTERFACE_REVMAP) {
640 		struct ffs_function *func = ffs->func;
641 		ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
642 	} else if (gadget && gadget->ops->ioctl) {
643 		ret = gadget->ops->ioctl(gadget, code, value);
644 	} else {
645 		ret = -ENOTTY;
646 	}
647 
648 	return ret;
649 }
650 
651 static __poll_t ffs_ep0_poll(struct file *file, poll_table *wait)
652 {
653 	struct ffs_data *ffs = file->private_data;
654 	__poll_t mask = EPOLLWRNORM;
655 	int ret;
656 
657 	poll_wait(file, &ffs->ev.waitq, wait);
658 
659 	ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
660 	if (ret < 0)
661 		return mask;
662 
663 	switch (ffs->state) {
664 	case FFS_READ_DESCRIPTORS:
665 	case FFS_READ_STRINGS:
666 		mask |= EPOLLOUT;
667 		break;
668 
669 	case FFS_ACTIVE:
670 		switch (ffs->setup_state) {
671 		case FFS_NO_SETUP:
672 			if (ffs->ev.count)
673 				mask |= EPOLLIN;
674 			break;
675 
676 		case FFS_SETUP_PENDING:
677 		case FFS_SETUP_CANCELLED:
678 			mask |= (EPOLLIN | EPOLLOUT);
679 			break;
680 		}
681 		break;
682 
683 	case FFS_CLOSING:
684 		break;
685 	case FFS_DEACTIVATED:
686 		break;
687 	}
688 
689 	mutex_unlock(&ffs->mutex);
690 
691 	return mask;
692 }
693 
694 static const struct file_operations ffs_ep0_operations = {
695 	.llseek =	no_llseek,
696 
697 	.open =		ffs_ep0_open,
698 	.write =	ffs_ep0_write,
699 	.read =		ffs_ep0_read,
700 	.release =	ffs_ep0_release,
701 	.unlocked_ioctl =	ffs_ep0_ioctl,
702 	.poll =		ffs_ep0_poll,
703 };
704 
705 
706 /* "Normal" endpoints operations ********************************************/
707 
708 static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
709 {
710 	ENTER();
711 	if (req->context) {
712 		struct ffs_ep *ep = _ep->driver_data;
713 		ep->status = req->status ? req->status : req->actual;
714 		complete(req->context);
715 	}
716 }
717 
718 static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
719 {
720 	ssize_t ret = copy_to_iter(data, data_len, iter);
721 	if (ret == data_len)
722 		return ret;
723 
724 	if (iov_iter_count(iter))
725 		return -EFAULT;
726 
727 	/*
728 	 * Dear user space developer!
729 	 *
730 	 * TL;DR: To stop getting below error message in your kernel log, change
731 	 * user space code using functionfs to align read buffers to a max
732 	 * packet size.
733 	 *
734 	 * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
735 	 * packet size.  When unaligned buffer is passed to functionfs, it
736 	 * internally uses a larger, aligned buffer so that such UDCs are happy.
737 	 *
738 	 * Unfortunately, this means that host may send more data than was
739 	 * requested in read(2) system call.  f_fs doesn’t know what to do with
740 	 * that excess data so it simply drops it.
741 	 *
742 	 * Was the buffer aligned in the first place, no such problem would
743 	 * happen.
744 	 *
745 	 * Data may be dropped only in AIO reads.  Synchronous reads are handled
746 	 * by splitting a request into multiple parts.  This splitting may still
747 	 * be a problem though so it’s likely best to align the buffer
748 	 * regardless of it being AIO or not..
749 	 *
750 	 * This only affects OUT endpoints, i.e. reading data with a read(2),
751 	 * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
752 	 * affected.
753 	 */
754 	pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
755 	       "Align read buffer size to max packet size to avoid the problem.\n",
756 	       data_len, ret);
757 
758 	return ret;
759 }
760 
761 /*
762  * allocate a virtually contiguous buffer and create a scatterlist describing it
763  * @sg_table	- pointer to a place to be filled with sg_table contents
764  * @size	- required buffer size
765  */
766 static void *ffs_build_sg_list(struct sg_table *sgt, size_t sz)
767 {
768 	struct page **pages;
769 	void *vaddr, *ptr;
770 	unsigned int n_pages;
771 	int i;
772 
773 	vaddr = vmalloc(sz);
774 	if (!vaddr)
775 		return NULL;
776 
777 	n_pages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
778 	pages = kvmalloc_array(n_pages, sizeof(struct page *), GFP_KERNEL);
779 	if (!pages) {
780 		vfree(vaddr);
781 
782 		return NULL;
783 	}
784 	for (i = 0, ptr = vaddr; i < n_pages; ++i, ptr += PAGE_SIZE)
785 		pages[i] = vmalloc_to_page(ptr);
786 
787 	if (sg_alloc_table_from_pages(sgt, pages, n_pages, 0, sz, GFP_KERNEL)) {
788 		kvfree(pages);
789 		vfree(vaddr);
790 
791 		return NULL;
792 	}
793 	kvfree(pages);
794 
795 	return vaddr;
796 }
797 
798 static inline void *ffs_alloc_buffer(struct ffs_io_data *io_data,
799 	size_t data_len)
800 {
801 	if (io_data->use_sg)
802 		return ffs_build_sg_list(&io_data->sgt, data_len);
803 
804 	return kmalloc(data_len, GFP_KERNEL);
805 }
806 
807 static inline void ffs_free_buffer(struct ffs_io_data *io_data)
808 {
809 	if (!io_data->buf)
810 		return;
811 
812 	if (io_data->use_sg) {
813 		sg_free_table(&io_data->sgt);
814 		vfree(io_data->buf);
815 	} else {
816 		kfree(io_data->buf);
817 	}
818 }
819 
820 static void ffs_user_copy_worker(struct work_struct *work)
821 {
822 	struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
823 						   work);
824 	int ret = io_data->req->status ? io_data->req->status :
825 					 io_data->req->actual;
826 	bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
827 
828 	if (io_data->read && ret > 0) {
829 		kthread_use_mm(io_data->mm);
830 		ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
831 		kthread_unuse_mm(io_data->mm);
832 	}
833 
834 	io_data->kiocb->ki_complete(io_data->kiocb, ret);
835 
836 	if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
837 		eventfd_signal(io_data->ffs->ffs_eventfd, 1);
838 
839 	usb_ep_free_request(io_data->ep, io_data->req);
840 
841 	if (io_data->read)
842 		kfree(io_data->to_free);
843 	ffs_free_buffer(io_data);
844 	kfree(io_data);
845 }
846 
847 static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
848 					 struct usb_request *req)
849 {
850 	struct ffs_io_data *io_data = req->context;
851 	struct ffs_data *ffs = io_data->ffs;
852 
853 	ENTER();
854 
855 	INIT_WORK(&io_data->work, ffs_user_copy_worker);
856 	queue_work(ffs->io_completion_wq, &io_data->work);
857 }
858 
859 static void __ffs_epfile_read_buffer_free(struct ffs_epfile *epfile)
860 {
861 	/*
862 	 * See comment in struct ffs_epfile for full read_buffer pointer
863 	 * synchronisation story.
864 	 */
865 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, READ_BUFFER_DROP);
866 	if (buf && buf != READ_BUFFER_DROP)
867 		kfree(buf);
868 }
869 
870 /* Assumes epfile->mutex is held. */
871 static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
872 					  struct iov_iter *iter)
873 {
874 	/*
875 	 * Null out epfile->read_buffer so ffs_func_eps_disable does not free
876 	 * the buffer while we are using it.  See comment in struct ffs_epfile
877 	 * for full read_buffer pointer synchronisation story.
878 	 */
879 	struct ffs_buffer *buf = xchg(&epfile->read_buffer, NULL);
880 	ssize_t ret;
881 	if (!buf || buf == READ_BUFFER_DROP)
882 		return 0;
883 
884 	ret = copy_to_iter(buf->data, buf->length, iter);
885 	if (buf->length == ret) {
886 		kfree(buf);
887 		return ret;
888 	}
889 
890 	if (iov_iter_count(iter)) {
891 		ret = -EFAULT;
892 	} else {
893 		buf->length -= ret;
894 		buf->data += ret;
895 	}
896 
897 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
898 		kfree(buf);
899 
900 	return ret;
901 }
902 
903 /* Assumes epfile->mutex is held. */
904 static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
905 				      void *data, int data_len,
906 				      struct iov_iter *iter)
907 {
908 	struct ffs_buffer *buf;
909 
910 	ssize_t ret = copy_to_iter(data, data_len, iter);
911 	if (data_len == ret)
912 		return ret;
913 
914 	if (iov_iter_count(iter))
915 		return -EFAULT;
916 
917 	/* See ffs_copy_to_iter for more context. */
918 	pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
919 		data_len, ret);
920 
921 	data_len -= ret;
922 	buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
923 	if (!buf)
924 		return -ENOMEM;
925 	buf->length = data_len;
926 	buf->data = buf->storage;
927 	memcpy(buf->storage, data + ret, data_len);
928 
929 	/*
930 	 * At this point read_buffer is NULL or READ_BUFFER_DROP (if
931 	 * ffs_func_eps_disable has been called in the meanwhile).  See comment
932 	 * in struct ffs_epfile for full read_buffer pointer synchronisation
933 	 * story.
934 	 */
935 	if (cmpxchg(&epfile->read_buffer, NULL, buf))
936 		kfree(buf);
937 
938 	return ret;
939 }
940 
941 static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
942 {
943 	struct ffs_epfile *epfile = file->private_data;
944 	struct usb_request *req;
945 	struct ffs_ep *ep;
946 	char *data = NULL;
947 	ssize_t ret, data_len = -EINVAL;
948 	int halt;
949 
950 	/* Are we still active? */
951 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
952 		return -ENODEV;
953 
954 	/* Wait for endpoint to be enabled */
955 	ep = epfile->ep;
956 	if (!ep) {
957 		if (file->f_flags & O_NONBLOCK)
958 			return -EAGAIN;
959 
960 		ret = wait_event_interruptible(
961 				epfile->ffs->wait, (ep = epfile->ep));
962 		if (ret)
963 			return -EINTR;
964 	}
965 
966 	/* Do we halt? */
967 	halt = (!io_data->read == !epfile->in);
968 	if (halt && epfile->isoc)
969 		return -EINVAL;
970 
971 	/* We will be using request and read_buffer */
972 	ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
973 	if (ret)
974 		goto error;
975 
976 	/* Allocate & copy */
977 	if (!halt) {
978 		struct usb_gadget *gadget;
979 
980 		/*
981 		 * Do we have buffered data from previous partial read?  Check
982 		 * that for synchronous case only because we do not have
983 		 * facility to ‘wake up’ a pending asynchronous read and push
984 		 * buffered data to it which we would need to make things behave
985 		 * consistently.
986 		 */
987 		if (!io_data->aio && io_data->read) {
988 			ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
989 			if (ret)
990 				goto error_mutex;
991 		}
992 
993 		/*
994 		 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
995 		 * before the waiting completes, so do not assign to 'gadget'
996 		 * earlier
997 		 */
998 		gadget = epfile->ffs->gadget;
999 
1000 		spin_lock_irq(&epfile->ffs->eps_lock);
1001 		/* In the meantime, endpoint got disabled or changed. */
1002 		if (epfile->ep != ep) {
1003 			ret = -ESHUTDOWN;
1004 			goto error_lock;
1005 		}
1006 		data_len = iov_iter_count(&io_data->data);
1007 		/*
1008 		 * Controller may require buffer size to be aligned to
1009 		 * maxpacketsize of an out endpoint.
1010 		 */
1011 		if (io_data->read)
1012 			data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
1013 
1014 		io_data->use_sg = gadget->sg_supported && data_len > PAGE_SIZE;
1015 		spin_unlock_irq(&epfile->ffs->eps_lock);
1016 
1017 		data = ffs_alloc_buffer(io_data, data_len);
1018 		if (!data) {
1019 			ret = -ENOMEM;
1020 			goto error_mutex;
1021 		}
1022 		if (!io_data->read &&
1023 		    !copy_from_iter_full(data, data_len, &io_data->data)) {
1024 			ret = -EFAULT;
1025 			goto error_mutex;
1026 		}
1027 	}
1028 
1029 	spin_lock_irq(&epfile->ffs->eps_lock);
1030 
1031 	if (epfile->ep != ep) {
1032 		/* In the meantime, endpoint got disabled or changed. */
1033 		ret = -ESHUTDOWN;
1034 	} else if (halt) {
1035 		ret = usb_ep_set_halt(ep->ep);
1036 		if (!ret)
1037 			ret = -EBADMSG;
1038 	} else if (data_len == -EINVAL) {
1039 		/*
1040 		 * Sanity Check: even though data_len can't be used
1041 		 * uninitialized at the time I write this comment, some
1042 		 * compilers complain about this situation.
1043 		 * In order to keep the code clean from warnings, data_len is
1044 		 * being initialized to -EINVAL during its declaration, which
1045 		 * means we can't rely on compiler anymore to warn no future
1046 		 * changes won't result in data_len being used uninitialized.
1047 		 * For such reason, we're adding this redundant sanity check
1048 		 * here.
1049 		 */
1050 		WARN(1, "%s: data_len == -EINVAL\n", __func__);
1051 		ret = -EINVAL;
1052 	} else if (!io_data->aio) {
1053 		DECLARE_COMPLETION_ONSTACK(done);
1054 		bool interrupted = false;
1055 
1056 		req = ep->req;
1057 		if (io_data->use_sg) {
1058 			req->buf = NULL;
1059 			req->sg	= io_data->sgt.sgl;
1060 			req->num_sgs = io_data->sgt.nents;
1061 		} else {
1062 			req->buf = data;
1063 			req->num_sgs = 0;
1064 		}
1065 		req->length = data_len;
1066 
1067 		io_data->buf = data;
1068 
1069 		req->context  = &done;
1070 		req->complete = ffs_epfile_io_complete;
1071 
1072 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1073 		if (ret < 0)
1074 			goto error_lock;
1075 
1076 		spin_unlock_irq(&epfile->ffs->eps_lock);
1077 
1078 		if (wait_for_completion_interruptible(&done)) {
1079 			/*
1080 			 * To avoid race condition with ffs_epfile_io_complete,
1081 			 * dequeue the request first then check
1082 			 * status. usb_ep_dequeue API should guarantee no race
1083 			 * condition with req->complete callback.
1084 			 */
1085 			usb_ep_dequeue(ep->ep, req);
1086 			wait_for_completion(&done);
1087 			interrupted = ep->status < 0;
1088 		}
1089 
1090 		if (interrupted)
1091 			ret = -EINTR;
1092 		else if (io_data->read && ep->status > 0)
1093 			ret = __ffs_epfile_read_data(epfile, data, ep->status,
1094 						     &io_data->data);
1095 		else
1096 			ret = ep->status;
1097 		goto error_mutex;
1098 	} else if (!(req = usb_ep_alloc_request(ep->ep, GFP_ATOMIC))) {
1099 		ret = -ENOMEM;
1100 	} else {
1101 		if (io_data->use_sg) {
1102 			req->buf = NULL;
1103 			req->sg	= io_data->sgt.sgl;
1104 			req->num_sgs = io_data->sgt.nents;
1105 		} else {
1106 			req->buf = data;
1107 			req->num_sgs = 0;
1108 		}
1109 		req->length = data_len;
1110 
1111 		io_data->buf = data;
1112 		io_data->ep = ep->ep;
1113 		io_data->req = req;
1114 		io_data->ffs = epfile->ffs;
1115 
1116 		req->context  = io_data;
1117 		req->complete = ffs_epfile_async_io_complete;
1118 
1119 		ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
1120 		if (ret) {
1121 			io_data->req = NULL;
1122 			usb_ep_free_request(ep->ep, req);
1123 			goto error_lock;
1124 		}
1125 
1126 		ret = -EIOCBQUEUED;
1127 		/*
1128 		 * Do not kfree the buffer in this function.  It will be freed
1129 		 * by ffs_user_copy_worker.
1130 		 */
1131 		data = NULL;
1132 	}
1133 
1134 error_lock:
1135 	spin_unlock_irq(&epfile->ffs->eps_lock);
1136 error_mutex:
1137 	mutex_unlock(&epfile->mutex);
1138 error:
1139 	if (ret != -EIOCBQUEUED) /* don't free if there is iocb queued */
1140 		ffs_free_buffer(io_data);
1141 	return ret;
1142 }
1143 
1144 static int
1145 ffs_epfile_open(struct inode *inode, struct file *file)
1146 {
1147 	struct ffs_epfile *epfile = inode->i_private;
1148 
1149 	ENTER();
1150 
1151 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1152 		return -ENODEV;
1153 
1154 	file->private_data = epfile;
1155 	ffs_data_opened(epfile->ffs);
1156 
1157 	return 0;
1158 }
1159 
1160 static int ffs_aio_cancel(struct kiocb *kiocb)
1161 {
1162 	struct ffs_io_data *io_data = kiocb->private;
1163 	struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
1164 	unsigned long flags;
1165 	int value;
1166 
1167 	ENTER();
1168 
1169 	spin_lock_irqsave(&epfile->ffs->eps_lock, flags);
1170 
1171 	if (io_data && io_data->ep && io_data->req)
1172 		value = usb_ep_dequeue(io_data->ep, io_data->req);
1173 	else
1174 		value = -EINVAL;
1175 
1176 	spin_unlock_irqrestore(&epfile->ffs->eps_lock, flags);
1177 
1178 	return value;
1179 }
1180 
1181 static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1182 {
1183 	struct ffs_io_data io_data, *p = &io_data;
1184 	ssize_t res;
1185 
1186 	ENTER();
1187 
1188 	if (!is_sync_kiocb(kiocb)) {
1189 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1190 		if (!p)
1191 			return -ENOMEM;
1192 		p->aio = true;
1193 	} else {
1194 		memset(p, 0, sizeof(*p));
1195 		p->aio = false;
1196 	}
1197 
1198 	p->read = false;
1199 	p->kiocb = kiocb;
1200 	p->data = *from;
1201 	p->mm = current->mm;
1202 
1203 	kiocb->private = p;
1204 
1205 	if (p->aio)
1206 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1207 
1208 	res = ffs_epfile_io(kiocb->ki_filp, p);
1209 	if (res == -EIOCBQUEUED)
1210 		return res;
1211 	if (p->aio)
1212 		kfree(p);
1213 	else
1214 		*from = p->data;
1215 	return res;
1216 }
1217 
1218 static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1219 {
1220 	struct ffs_io_data io_data, *p = &io_data;
1221 	ssize_t res;
1222 
1223 	ENTER();
1224 
1225 	if (!is_sync_kiocb(kiocb)) {
1226 		p = kzalloc(sizeof(io_data), GFP_KERNEL);
1227 		if (!p)
1228 			return -ENOMEM;
1229 		p->aio = true;
1230 	} else {
1231 		memset(p, 0, sizeof(*p));
1232 		p->aio = false;
1233 	}
1234 
1235 	p->read = true;
1236 	p->kiocb = kiocb;
1237 	if (p->aio) {
1238 		p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1239 		if (!p->to_free) {
1240 			kfree(p);
1241 			return -ENOMEM;
1242 		}
1243 	} else {
1244 		p->data = *to;
1245 		p->to_free = NULL;
1246 	}
1247 	p->mm = current->mm;
1248 
1249 	kiocb->private = p;
1250 
1251 	if (p->aio)
1252 		kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1253 
1254 	res = ffs_epfile_io(kiocb->ki_filp, p);
1255 	if (res == -EIOCBQUEUED)
1256 		return res;
1257 
1258 	if (p->aio) {
1259 		kfree(p->to_free);
1260 		kfree(p);
1261 	} else {
1262 		*to = p->data;
1263 	}
1264 	return res;
1265 }
1266 
1267 static int
1268 ffs_epfile_release(struct inode *inode, struct file *file)
1269 {
1270 	struct ffs_epfile *epfile = inode->i_private;
1271 
1272 	ENTER();
1273 
1274 	__ffs_epfile_read_buffer_free(epfile);
1275 	ffs_data_closed(epfile->ffs);
1276 
1277 	return 0;
1278 }
1279 
1280 static long ffs_epfile_ioctl(struct file *file, unsigned code,
1281 			     unsigned long value)
1282 {
1283 	struct ffs_epfile *epfile = file->private_data;
1284 	struct ffs_ep *ep;
1285 	int ret;
1286 
1287 	ENTER();
1288 
1289 	if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1290 		return -ENODEV;
1291 
1292 	/* Wait for endpoint to be enabled */
1293 	ep = epfile->ep;
1294 	if (!ep) {
1295 		if (file->f_flags & O_NONBLOCK)
1296 			return -EAGAIN;
1297 
1298 		ret = wait_event_interruptible(
1299 				epfile->ffs->wait, (ep = epfile->ep));
1300 		if (ret)
1301 			return -EINTR;
1302 	}
1303 
1304 	spin_lock_irq(&epfile->ffs->eps_lock);
1305 
1306 	/* In the meantime, endpoint got disabled or changed. */
1307 	if (epfile->ep != ep) {
1308 		spin_unlock_irq(&epfile->ffs->eps_lock);
1309 		return -ESHUTDOWN;
1310 	}
1311 
1312 	switch (code) {
1313 	case FUNCTIONFS_FIFO_STATUS:
1314 		ret = usb_ep_fifo_status(epfile->ep->ep);
1315 		break;
1316 	case FUNCTIONFS_FIFO_FLUSH:
1317 		usb_ep_fifo_flush(epfile->ep->ep);
1318 		ret = 0;
1319 		break;
1320 	case FUNCTIONFS_CLEAR_HALT:
1321 		ret = usb_ep_clear_halt(epfile->ep->ep);
1322 		break;
1323 	case FUNCTIONFS_ENDPOINT_REVMAP:
1324 		ret = epfile->ep->num;
1325 		break;
1326 	case FUNCTIONFS_ENDPOINT_DESC:
1327 	{
1328 		int desc_idx;
1329 		struct usb_endpoint_descriptor desc1, *desc;
1330 
1331 		switch (epfile->ffs->gadget->speed) {
1332 		case USB_SPEED_SUPER:
1333 		case USB_SPEED_SUPER_PLUS:
1334 			desc_idx = 2;
1335 			break;
1336 		case USB_SPEED_HIGH:
1337 			desc_idx = 1;
1338 			break;
1339 		default:
1340 			desc_idx = 0;
1341 		}
1342 
1343 		desc = epfile->ep->descs[desc_idx];
1344 		memcpy(&desc1, desc, desc->bLength);
1345 
1346 		spin_unlock_irq(&epfile->ffs->eps_lock);
1347 		ret = copy_to_user((void __user *)value, &desc1, desc1.bLength);
1348 		if (ret)
1349 			ret = -EFAULT;
1350 		return ret;
1351 	}
1352 	default:
1353 		ret = -ENOTTY;
1354 	}
1355 	spin_unlock_irq(&epfile->ffs->eps_lock);
1356 
1357 	return ret;
1358 }
1359 
1360 static const struct file_operations ffs_epfile_operations = {
1361 	.llseek =	no_llseek,
1362 
1363 	.open =		ffs_epfile_open,
1364 	.write_iter =	ffs_epfile_write_iter,
1365 	.read_iter =	ffs_epfile_read_iter,
1366 	.release =	ffs_epfile_release,
1367 	.unlocked_ioctl =	ffs_epfile_ioctl,
1368 	.compat_ioctl = compat_ptr_ioctl,
1369 };
1370 
1371 
1372 /* File system and super block operations ***********************************/
1373 
1374 /*
1375  * Mounting the file system creates a controller file, used first for
1376  * function configuration then later for event monitoring.
1377  */
1378 
1379 static struct inode *__must_check
1380 ffs_sb_make_inode(struct super_block *sb, void *data,
1381 		  const struct file_operations *fops,
1382 		  const struct inode_operations *iops,
1383 		  struct ffs_file_perms *perms)
1384 {
1385 	struct inode *inode;
1386 
1387 	ENTER();
1388 
1389 	inode = new_inode(sb);
1390 
1391 	if (inode) {
1392 		struct timespec64 ts = current_time(inode);
1393 
1394 		inode->i_ino	 = get_next_ino();
1395 		inode->i_mode    = perms->mode;
1396 		inode->i_uid     = perms->uid;
1397 		inode->i_gid     = perms->gid;
1398 		inode->i_atime   = ts;
1399 		inode->i_mtime   = ts;
1400 		inode->i_ctime   = ts;
1401 		inode->i_private = data;
1402 		if (fops)
1403 			inode->i_fop = fops;
1404 		if (iops)
1405 			inode->i_op  = iops;
1406 	}
1407 
1408 	return inode;
1409 }
1410 
1411 /* Create "regular" file */
1412 static struct dentry *ffs_sb_create_file(struct super_block *sb,
1413 					const char *name, void *data,
1414 					const struct file_operations *fops)
1415 {
1416 	struct ffs_data	*ffs = sb->s_fs_info;
1417 	struct dentry	*dentry;
1418 	struct inode	*inode;
1419 
1420 	ENTER();
1421 
1422 	dentry = d_alloc_name(sb->s_root, name);
1423 	if (!dentry)
1424 		return NULL;
1425 
1426 	inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1427 	if (!inode) {
1428 		dput(dentry);
1429 		return NULL;
1430 	}
1431 
1432 	d_add(dentry, inode);
1433 	return dentry;
1434 }
1435 
1436 /* Super block */
1437 static const struct super_operations ffs_sb_operations = {
1438 	.statfs =	simple_statfs,
1439 	.drop_inode =	generic_delete_inode,
1440 };
1441 
1442 struct ffs_sb_fill_data {
1443 	struct ffs_file_perms perms;
1444 	umode_t root_mode;
1445 	const char *dev_name;
1446 	bool no_disconnect;
1447 	struct ffs_data *ffs_data;
1448 };
1449 
1450 static int ffs_sb_fill(struct super_block *sb, struct fs_context *fc)
1451 {
1452 	struct ffs_sb_fill_data *data = fc->fs_private;
1453 	struct inode	*inode;
1454 	struct ffs_data	*ffs = data->ffs_data;
1455 
1456 	ENTER();
1457 
1458 	ffs->sb              = sb;
1459 	data->ffs_data       = NULL;
1460 	sb->s_fs_info        = ffs;
1461 	sb->s_blocksize      = PAGE_SIZE;
1462 	sb->s_blocksize_bits = PAGE_SHIFT;
1463 	sb->s_magic          = FUNCTIONFS_MAGIC;
1464 	sb->s_op             = &ffs_sb_operations;
1465 	sb->s_time_gran      = 1;
1466 
1467 	/* Root inode */
1468 	data->perms.mode = data->root_mode;
1469 	inode = ffs_sb_make_inode(sb, NULL,
1470 				  &simple_dir_operations,
1471 				  &simple_dir_inode_operations,
1472 				  &data->perms);
1473 	sb->s_root = d_make_root(inode);
1474 	if (!sb->s_root)
1475 		return -ENOMEM;
1476 
1477 	/* EP0 file */
1478 	if (!ffs_sb_create_file(sb, "ep0", ffs, &ffs_ep0_operations))
1479 		return -ENOMEM;
1480 
1481 	return 0;
1482 }
1483 
1484 enum {
1485 	Opt_no_disconnect,
1486 	Opt_rmode,
1487 	Opt_fmode,
1488 	Opt_mode,
1489 	Opt_uid,
1490 	Opt_gid,
1491 };
1492 
1493 static const struct fs_parameter_spec ffs_fs_fs_parameters[] = {
1494 	fsparam_bool	("no_disconnect",	Opt_no_disconnect),
1495 	fsparam_u32	("rmode",		Opt_rmode),
1496 	fsparam_u32	("fmode",		Opt_fmode),
1497 	fsparam_u32	("mode",		Opt_mode),
1498 	fsparam_u32	("uid",			Opt_uid),
1499 	fsparam_u32	("gid",			Opt_gid),
1500 	{}
1501 };
1502 
1503 static int ffs_fs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1504 {
1505 	struct ffs_sb_fill_data *data = fc->fs_private;
1506 	struct fs_parse_result result;
1507 	int opt;
1508 
1509 	ENTER();
1510 
1511 	opt = fs_parse(fc, ffs_fs_fs_parameters, param, &result);
1512 	if (opt < 0)
1513 		return opt;
1514 
1515 	switch (opt) {
1516 	case Opt_no_disconnect:
1517 		data->no_disconnect = result.boolean;
1518 		break;
1519 	case Opt_rmode:
1520 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1521 		break;
1522 	case Opt_fmode:
1523 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1524 		break;
1525 	case Opt_mode:
1526 		data->root_mode  = (result.uint_32 & 0555) | S_IFDIR;
1527 		data->perms.mode = (result.uint_32 & 0666) | S_IFREG;
1528 		break;
1529 
1530 	case Opt_uid:
1531 		data->perms.uid = make_kuid(current_user_ns(), result.uint_32);
1532 		if (!uid_valid(data->perms.uid))
1533 			goto unmapped_value;
1534 		break;
1535 	case Opt_gid:
1536 		data->perms.gid = make_kgid(current_user_ns(), result.uint_32);
1537 		if (!gid_valid(data->perms.gid))
1538 			goto unmapped_value;
1539 		break;
1540 
1541 	default:
1542 		return -ENOPARAM;
1543 	}
1544 
1545 	return 0;
1546 
1547 unmapped_value:
1548 	return invalf(fc, "%s: unmapped value: %u", param->key, result.uint_32);
1549 }
1550 
1551 /*
1552  * Set up the superblock for a mount.
1553  */
1554 static int ffs_fs_get_tree(struct fs_context *fc)
1555 {
1556 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1557 	struct ffs_data	*ffs;
1558 	int ret;
1559 
1560 	ENTER();
1561 
1562 	if (!fc->source)
1563 		return invalf(fc, "No source specified");
1564 
1565 	ffs = ffs_data_new(fc->source);
1566 	if (!ffs)
1567 		return -ENOMEM;
1568 	ffs->file_perms = ctx->perms;
1569 	ffs->no_disconnect = ctx->no_disconnect;
1570 
1571 	ffs->dev_name = kstrdup(fc->source, GFP_KERNEL);
1572 	if (!ffs->dev_name) {
1573 		ffs_data_put(ffs);
1574 		return -ENOMEM;
1575 	}
1576 
1577 	ret = ffs_acquire_dev(ffs->dev_name, ffs);
1578 	if (ret) {
1579 		ffs_data_put(ffs);
1580 		return ret;
1581 	}
1582 
1583 	ctx->ffs_data = ffs;
1584 	return get_tree_nodev(fc, ffs_sb_fill);
1585 }
1586 
1587 static void ffs_fs_free_fc(struct fs_context *fc)
1588 {
1589 	struct ffs_sb_fill_data *ctx = fc->fs_private;
1590 
1591 	if (ctx) {
1592 		if (ctx->ffs_data) {
1593 			ffs_data_put(ctx->ffs_data);
1594 		}
1595 
1596 		kfree(ctx);
1597 	}
1598 }
1599 
1600 static const struct fs_context_operations ffs_fs_context_ops = {
1601 	.free		= ffs_fs_free_fc,
1602 	.parse_param	= ffs_fs_parse_param,
1603 	.get_tree	= ffs_fs_get_tree,
1604 };
1605 
1606 static int ffs_fs_init_fs_context(struct fs_context *fc)
1607 {
1608 	struct ffs_sb_fill_data *ctx;
1609 
1610 	ctx = kzalloc(sizeof(struct ffs_sb_fill_data), GFP_KERNEL);
1611 	if (!ctx)
1612 		return -ENOMEM;
1613 
1614 	ctx->perms.mode = S_IFREG | 0600;
1615 	ctx->perms.uid = GLOBAL_ROOT_UID;
1616 	ctx->perms.gid = GLOBAL_ROOT_GID;
1617 	ctx->root_mode = S_IFDIR | 0500;
1618 	ctx->no_disconnect = false;
1619 
1620 	fc->fs_private = ctx;
1621 	fc->ops = &ffs_fs_context_ops;
1622 	return 0;
1623 }
1624 
1625 static void
1626 ffs_fs_kill_sb(struct super_block *sb)
1627 {
1628 	ENTER();
1629 
1630 	kill_litter_super(sb);
1631 	if (sb->s_fs_info)
1632 		ffs_data_closed(sb->s_fs_info);
1633 }
1634 
1635 static struct file_system_type ffs_fs_type = {
1636 	.owner		= THIS_MODULE,
1637 	.name		= "functionfs",
1638 	.init_fs_context = ffs_fs_init_fs_context,
1639 	.parameters	= ffs_fs_fs_parameters,
1640 	.kill_sb	= ffs_fs_kill_sb,
1641 };
1642 MODULE_ALIAS_FS("functionfs");
1643 
1644 
1645 /* Driver's main init/cleanup functions *************************************/
1646 
1647 static int functionfs_init(void)
1648 {
1649 	int ret;
1650 
1651 	ENTER();
1652 
1653 	ret = register_filesystem(&ffs_fs_type);
1654 	if (!ret)
1655 		pr_info("file system registered\n");
1656 	else
1657 		pr_err("failed registering file system (%d)\n", ret);
1658 
1659 	return ret;
1660 }
1661 
1662 static void functionfs_cleanup(void)
1663 {
1664 	ENTER();
1665 
1666 	pr_info("unloading\n");
1667 	unregister_filesystem(&ffs_fs_type);
1668 }
1669 
1670 
1671 /* ffs_data and ffs_function construction and destruction code **************/
1672 
1673 static void ffs_data_clear(struct ffs_data *ffs);
1674 static void ffs_data_reset(struct ffs_data *ffs);
1675 
1676 static void ffs_data_get(struct ffs_data *ffs)
1677 {
1678 	ENTER();
1679 
1680 	refcount_inc(&ffs->ref);
1681 }
1682 
1683 static void ffs_data_opened(struct ffs_data *ffs)
1684 {
1685 	ENTER();
1686 
1687 	refcount_inc(&ffs->ref);
1688 	if (atomic_add_return(1, &ffs->opened) == 1 &&
1689 			ffs->state == FFS_DEACTIVATED) {
1690 		ffs->state = FFS_CLOSING;
1691 		ffs_data_reset(ffs);
1692 	}
1693 }
1694 
1695 static void ffs_data_put(struct ffs_data *ffs)
1696 {
1697 	ENTER();
1698 
1699 	if (refcount_dec_and_test(&ffs->ref)) {
1700 		pr_info("%s(): freeing\n", __func__);
1701 		ffs_data_clear(ffs);
1702 		ffs_release_dev(ffs->private_data);
1703 		BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1704 		       swait_active(&ffs->ep0req_completion.wait) ||
1705 		       waitqueue_active(&ffs->wait));
1706 		destroy_workqueue(ffs->io_completion_wq);
1707 		kfree(ffs->dev_name);
1708 		kfree(ffs);
1709 	}
1710 }
1711 
1712 static void ffs_data_closed(struct ffs_data *ffs)
1713 {
1714 	ENTER();
1715 
1716 	if (atomic_dec_and_test(&ffs->opened)) {
1717 		if (ffs->no_disconnect) {
1718 			ffs->state = FFS_DEACTIVATED;
1719 			if (ffs->epfiles) {
1720 				ffs_epfiles_destroy(ffs->epfiles,
1721 						   ffs->eps_count);
1722 				ffs->epfiles = NULL;
1723 			}
1724 			if (ffs->setup_state == FFS_SETUP_PENDING)
1725 				__ffs_ep0_stall(ffs);
1726 		} else {
1727 			ffs->state = FFS_CLOSING;
1728 			ffs_data_reset(ffs);
1729 		}
1730 	}
1731 	if (atomic_read(&ffs->opened) < 0) {
1732 		ffs->state = FFS_CLOSING;
1733 		ffs_data_reset(ffs);
1734 	}
1735 
1736 	ffs_data_put(ffs);
1737 }
1738 
1739 static struct ffs_data *ffs_data_new(const char *dev_name)
1740 {
1741 	struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1742 	if (!ffs)
1743 		return NULL;
1744 
1745 	ENTER();
1746 
1747 	ffs->io_completion_wq = alloc_ordered_workqueue("%s", 0, dev_name);
1748 	if (!ffs->io_completion_wq) {
1749 		kfree(ffs);
1750 		return NULL;
1751 	}
1752 
1753 	refcount_set(&ffs->ref, 1);
1754 	atomic_set(&ffs->opened, 0);
1755 	ffs->state = FFS_READ_DESCRIPTORS;
1756 	mutex_init(&ffs->mutex);
1757 	spin_lock_init(&ffs->eps_lock);
1758 	init_waitqueue_head(&ffs->ev.waitq);
1759 	init_waitqueue_head(&ffs->wait);
1760 	init_completion(&ffs->ep0req_completion);
1761 
1762 	/* XXX REVISIT need to update it in some places, or do we? */
1763 	ffs->ev.can_stall = 1;
1764 
1765 	return ffs;
1766 }
1767 
1768 static void ffs_data_clear(struct ffs_data *ffs)
1769 {
1770 	ENTER();
1771 
1772 	ffs_closed(ffs);
1773 
1774 	BUG_ON(ffs->gadget);
1775 
1776 	if (ffs->epfiles)
1777 		ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1778 
1779 	if (ffs->ffs_eventfd)
1780 		eventfd_ctx_put(ffs->ffs_eventfd);
1781 
1782 	kfree(ffs->raw_descs_data);
1783 	kfree(ffs->raw_strings);
1784 	kfree(ffs->stringtabs);
1785 }
1786 
1787 static void ffs_data_reset(struct ffs_data *ffs)
1788 {
1789 	ENTER();
1790 
1791 	ffs_data_clear(ffs);
1792 
1793 	ffs->epfiles = NULL;
1794 	ffs->raw_descs_data = NULL;
1795 	ffs->raw_descs = NULL;
1796 	ffs->raw_strings = NULL;
1797 	ffs->stringtabs = NULL;
1798 
1799 	ffs->raw_descs_length = 0;
1800 	ffs->fs_descs_count = 0;
1801 	ffs->hs_descs_count = 0;
1802 	ffs->ss_descs_count = 0;
1803 
1804 	ffs->strings_count = 0;
1805 	ffs->interfaces_count = 0;
1806 	ffs->eps_count = 0;
1807 
1808 	ffs->ev.count = 0;
1809 
1810 	ffs->state = FFS_READ_DESCRIPTORS;
1811 	ffs->setup_state = FFS_NO_SETUP;
1812 	ffs->flags = 0;
1813 
1814 	ffs->ms_os_descs_ext_prop_count = 0;
1815 	ffs->ms_os_descs_ext_prop_name_len = 0;
1816 	ffs->ms_os_descs_ext_prop_data_len = 0;
1817 }
1818 
1819 
1820 static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1821 {
1822 	struct usb_gadget_strings **lang;
1823 	int first_id;
1824 
1825 	ENTER();
1826 
1827 	if (WARN_ON(ffs->state != FFS_ACTIVE
1828 		 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1829 		return -EBADFD;
1830 
1831 	first_id = usb_string_ids_n(cdev, ffs->strings_count);
1832 	if (first_id < 0)
1833 		return first_id;
1834 
1835 	ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1836 	if (!ffs->ep0req)
1837 		return -ENOMEM;
1838 	ffs->ep0req->complete = ffs_ep0_complete;
1839 	ffs->ep0req->context = ffs;
1840 
1841 	lang = ffs->stringtabs;
1842 	if (lang) {
1843 		for (; *lang; ++lang) {
1844 			struct usb_string *str = (*lang)->strings;
1845 			int id = first_id;
1846 			for (; str->s; ++id, ++str)
1847 				str->id = id;
1848 		}
1849 	}
1850 
1851 	ffs->gadget = cdev->gadget;
1852 	ffs_data_get(ffs);
1853 	return 0;
1854 }
1855 
1856 static void functionfs_unbind(struct ffs_data *ffs)
1857 {
1858 	ENTER();
1859 
1860 	if (!WARN_ON(!ffs->gadget)) {
1861 		usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1862 		ffs->ep0req = NULL;
1863 		ffs->gadget = NULL;
1864 		clear_bit(FFS_FL_BOUND, &ffs->flags);
1865 		ffs_data_put(ffs);
1866 	}
1867 }
1868 
1869 static int ffs_epfiles_create(struct ffs_data *ffs)
1870 {
1871 	struct ffs_epfile *epfile, *epfiles;
1872 	unsigned i, count;
1873 
1874 	ENTER();
1875 
1876 	count = ffs->eps_count;
1877 	epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1878 	if (!epfiles)
1879 		return -ENOMEM;
1880 
1881 	epfile = epfiles;
1882 	for (i = 1; i <= count; ++i, ++epfile) {
1883 		epfile->ffs = ffs;
1884 		mutex_init(&epfile->mutex);
1885 		if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1886 			sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1887 		else
1888 			sprintf(epfile->name, "ep%u", i);
1889 		epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1890 						 epfile,
1891 						 &ffs_epfile_operations);
1892 		if (!epfile->dentry) {
1893 			ffs_epfiles_destroy(epfiles, i - 1);
1894 			return -ENOMEM;
1895 		}
1896 	}
1897 
1898 	ffs->epfiles = epfiles;
1899 	return 0;
1900 }
1901 
1902 static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1903 {
1904 	struct ffs_epfile *epfile = epfiles;
1905 
1906 	ENTER();
1907 
1908 	for (; count; --count, ++epfile) {
1909 		BUG_ON(mutex_is_locked(&epfile->mutex));
1910 		if (epfile->dentry) {
1911 			d_delete(epfile->dentry);
1912 			dput(epfile->dentry);
1913 			epfile->dentry = NULL;
1914 		}
1915 	}
1916 
1917 	kfree(epfiles);
1918 }
1919 
1920 static void ffs_func_eps_disable(struct ffs_function *func)
1921 {
1922 	struct ffs_ep *ep         = func->eps;
1923 	struct ffs_epfile *epfile = func->ffs->epfiles;
1924 	unsigned count            = func->ffs->eps_count;
1925 	unsigned long flags;
1926 
1927 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1928 	while (count--) {
1929 		/* pending requests get nuked */
1930 		if (ep->ep)
1931 			usb_ep_disable(ep->ep);
1932 		++ep;
1933 
1934 		if (epfile) {
1935 			epfile->ep = NULL;
1936 			__ffs_epfile_read_buffer_free(epfile);
1937 			++epfile;
1938 		}
1939 	}
1940 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1941 }
1942 
1943 static int ffs_func_eps_enable(struct ffs_function *func)
1944 {
1945 	struct ffs_data *ffs      = func->ffs;
1946 	struct ffs_ep *ep         = func->eps;
1947 	struct ffs_epfile *epfile = ffs->epfiles;
1948 	unsigned count            = ffs->eps_count;
1949 	unsigned long flags;
1950 	int ret = 0;
1951 
1952 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
1953 	while(count--) {
1954 		ep->ep->driver_data = ep;
1955 
1956 		ret = config_ep_by_speed(func->gadget, &func->function, ep->ep);
1957 		if (ret) {
1958 			pr_err("%s: config_ep_by_speed(%s) returned %d\n",
1959 					__func__, ep->ep->name, ret);
1960 			break;
1961 		}
1962 
1963 		ret = usb_ep_enable(ep->ep);
1964 		if (!ret) {
1965 			epfile->ep = ep;
1966 			epfile->in = usb_endpoint_dir_in(ep->ep->desc);
1967 			epfile->isoc = usb_endpoint_xfer_isoc(ep->ep->desc);
1968 		} else {
1969 			break;
1970 		}
1971 
1972 		++ep;
1973 		++epfile;
1974 	}
1975 
1976 	wake_up_interruptible(&ffs->wait);
1977 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1978 
1979 	return ret;
1980 }
1981 
1982 
1983 /* Parsing and building descriptors and strings *****************************/
1984 
1985 /*
1986  * This validates if data pointed by data is a valid USB descriptor as
1987  * well as record how many interfaces, endpoints and strings are
1988  * required by given configuration.  Returns address after the
1989  * descriptor or NULL if data is invalid.
1990  */
1991 
1992 enum ffs_entity_type {
1993 	FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1994 };
1995 
1996 enum ffs_os_desc_type {
1997 	FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1998 };
1999 
2000 typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
2001 				   u8 *valuep,
2002 				   struct usb_descriptor_header *desc,
2003 				   void *priv);
2004 
2005 typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
2006 				    struct usb_os_desc_header *h, void *data,
2007 				    unsigned len, void *priv);
2008 
2009 static int __must_check ffs_do_single_desc(char *data, unsigned len,
2010 					   ffs_entity_callback entity,
2011 					   void *priv, int *current_class)
2012 {
2013 	struct usb_descriptor_header *_ds = (void *)data;
2014 	u8 length;
2015 	int ret;
2016 
2017 	ENTER();
2018 
2019 	/* At least two bytes are required: length and type */
2020 	if (len < 2) {
2021 		pr_vdebug("descriptor too short\n");
2022 		return -EINVAL;
2023 	}
2024 
2025 	/* If we have at least as many bytes as the descriptor takes? */
2026 	length = _ds->bLength;
2027 	if (len < length) {
2028 		pr_vdebug("descriptor longer then available data\n");
2029 		return -EINVAL;
2030 	}
2031 
2032 #define __entity_check_INTERFACE(val)  1
2033 #define __entity_check_STRING(val)     (val)
2034 #define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
2035 #define __entity(type, val) do {					\
2036 		pr_vdebug("entity " #type "(%02x)\n", (val));		\
2037 		if (!__entity_check_ ##type(val)) {			\
2038 			pr_vdebug("invalid entity's value\n");		\
2039 			return -EINVAL;					\
2040 		}							\
2041 		ret = entity(FFS_ ##type, &val, _ds, priv);		\
2042 		if (ret < 0) {						\
2043 			pr_debug("entity " #type "(%02x); ret = %d\n",	\
2044 				 (val), ret);				\
2045 			return ret;					\
2046 		}							\
2047 	} while (0)
2048 
2049 	/* Parse descriptor depending on type. */
2050 	switch (_ds->bDescriptorType) {
2051 	case USB_DT_DEVICE:
2052 	case USB_DT_CONFIG:
2053 	case USB_DT_STRING:
2054 	case USB_DT_DEVICE_QUALIFIER:
2055 		/* function can't have any of those */
2056 		pr_vdebug("descriptor reserved for gadget: %d\n",
2057 		      _ds->bDescriptorType);
2058 		return -EINVAL;
2059 
2060 	case USB_DT_INTERFACE: {
2061 		struct usb_interface_descriptor *ds = (void *)_ds;
2062 		pr_vdebug("interface descriptor\n");
2063 		if (length != sizeof *ds)
2064 			goto inv_length;
2065 
2066 		__entity(INTERFACE, ds->bInterfaceNumber);
2067 		if (ds->iInterface)
2068 			__entity(STRING, ds->iInterface);
2069 		*current_class = ds->bInterfaceClass;
2070 	}
2071 		break;
2072 
2073 	case USB_DT_ENDPOINT: {
2074 		struct usb_endpoint_descriptor *ds = (void *)_ds;
2075 		pr_vdebug("endpoint descriptor\n");
2076 		if (length != USB_DT_ENDPOINT_SIZE &&
2077 		    length != USB_DT_ENDPOINT_AUDIO_SIZE)
2078 			goto inv_length;
2079 		__entity(ENDPOINT, ds->bEndpointAddress);
2080 	}
2081 		break;
2082 
2083 	case USB_TYPE_CLASS | 0x01:
2084 		if (*current_class == USB_INTERFACE_CLASS_HID) {
2085 			pr_vdebug("hid descriptor\n");
2086 			if (length != sizeof(struct hid_descriptor))
2087 				goto inv_length;
2088 			break;
2089 		} else if (*current_class == USB_INTERFACE_CLASS_CCID) {
2090 			pr_vdebug("ccid descriptor\n");
2091 			if (length != sizeof(struct ccid_descriptor))
2092 				goto inv_length;
2093 			break;
2094 		} else {
2095 			pr_vdebug("unknown descriptor: %d for class %d\n",
2096 			      _ds->bDescriptorType, *current_class);
2097 			return -EINVAL;
2098 		}
2099 
2100 	case USB_DT_OTG:
2101 		if (length != sizeof(struct usb_otg_descriptor))
2102 			goto inv_length;
2103 		break;
2104 
2105 	case USB_DT_INTERFACE_ASSOCIATION: {
2106 		struct usb_interface_assoc_descriptor *ds = (void *)_ds;
2107 		pr_vdebug("interface association descriptor\n");
2108 		if (length != sizeof *ds)
2109 			goto inv_length;
2110 		if (ds->iFunction)
2111 			__entity(STRING, ds->iFunction);
2112 	}
2113 		break;
2114 
2115 	case USB_DT_SS_ENDPOINT_COMP:
2116 		pr_vdebug("EP SS companion descriptor\n");
2117 		if (length != sizeof(struct usb_ss_ep_comp_descriptor))
2118 			goto inv_length;
2119 		break;
2120 
2121 	case USB_DT_OTHER_SPEED_CONFIG:
2122 	case USB_DT_INTERFACE_POWER:
2123 	case USB_DT_DEBUG:
2124 	case USB_DT_SECURITY:
2125 	case USB_DT_CS_RADIO_CONTROL:
2126 		/* TODO */
2127 		pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
2128 		return -EINVAL;
2129 
2130 	default:
2131 		/* We should never be here */
2132 		pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
2133 		return -EINVAL;
2134 
2135 inv_length:
2136 		pr_vdebug("invalid length: %d (descriptor %d)\n",
2137 			  _ds->bLength, _ds->bDescriptorType);
2138 		return -EINVAL;
2139 	}
2140 
2141 #undef __entity
2142 #undef __entity_check_DESCRIPTOR
2143 #undef __entity_check_INTERFACE
2144 #undef __entity_check_STRING
2145 #undef __entity_check_ENDPOINT
2146 
2147 	return length;
2148 }
2149 
2150 static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
2151 				     ffs_entity_callback entity, void *priv)
2152 {
2153 	const unsigned _len = len;
2154 	unsigned long num = 0;
2155 	int current_class = -1;
2156 
2157 	ENTER();
2158 
2159 	for (;;) {
2160 		int ret;
2161 
2162 		if (num == count)
2163 			data = NULL;
2164 
2165 		/* Record "descriptor" entity */
2166 		ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
2167 		if (ret < 0) {
2168 			pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
2169 				 num, ret);
2170 			return ret;
2171 		}
2172 
2173 		if (!data)
2174 			return _len - len;
2175 
2176 		ret = ffs_do_single_desc(data, len, entity, priv,
2177 			&current_class);
2178 		if (ret < 0) {
2179 			pr_debug("%s returns %d\n", __func__, ret);
2180 			return ret;
2181 		}
2182 
2183 		len -= ret;
2184 		data += ret;
2185 		++num;
2186 	}
2187 }
2188 
2189 static int __ffs_data_do_entity(enum ffs_entity_type type,
2190 				u8 *valuep, struct usb_descriptor_header *desc,
2191 				void *priv)
2192 {
2193 	struct ffs_desc_helper *helper = priv;
2194 	struct usb_endpoint_descriptor *d;
2195 
2196 	ENTER();
2197 
2198 	switch (type) {
2199 	case FFS_DESCRIPTOR:
2200 		break;
2201 
2202 	case FFS_INTERFACE:
2203 		/*
2204 		 * Interfaces are indexed from zero so if we
2205 		 * encountered interface "n" then there are at least
2206 		 * "n+1" interfaces.
2207 		 */
2208 		if (*valuep >= helper->interfaces_count)
2209 			helper->interfaces_count = *valuep + 1;
2210 		break;
2211 
2212 	case FFS_STRING:
2213 		/*
2214 		 * Strings are indexed from 1 (0 is reserved
2215 		 * for languages list)
2216 		 */
2217 		if (*valuep > helper->ffs->strings_count)
2218 			helper->ffs->strings_count = *valuep;
2219 		break;
2220 
2221 	case FFS_ENDPOINT:
2222 		d = (void *)desc;
2223 		helper->eps_count++;
2224 		if (helper->eps_count >= FFS_MAX_EPS_COUNT)
2225 			return -EINVAL;
2226 		/* Check if descriptors for any speed were already parsed */
2227 		if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2228 			helper->ffs->eps_addrmap[helper->eps_count] =
2229 				d->bEndpointAddress;
2230 		else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2231 				d->bEndpointAddress)
2232 			return -EINVAL;
2233 		break;
2234 	}
2235 
2236 	return 0;
2237 }
2238 
2239 static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2240 				   struct usb_os_desc_header *desc)
2241 {
2242 	u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2243 	u16 w_index = le16_to_cpu(desc->wIndex);
2244 
2245 	if (bcd_version != 1) {
2246 		pr_vdebug("unsupported os descriptors version: %d",
2247 			  bcd_version);
2248 		return -EINVAL;
2249 	}
2250 	switch (w_index) {
2251 	case 0x4:
2252 		*next_type = FFS_OS_DESC_EXT_COMPAT;
2253 		break;
2254 	case 0x5:
2255 		*next_type = FFS_OS_DESC_EXT_PROP;
2256 		break;
2257 	default:
2258 		pr_vdebug("unsupported os descriptor type: %d", w_index);
2259 		return -EINVAL;
2260 	}
2261 
2262 	return sizeof(*desc);
2263 }
2264 
2265 /*
2266  * Process all extended compatibility/extended property descriptors
2267  * of a feature descriptor
2268  */
2269 static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2270 					      enum ffs_os_desc_type type,
2271 					      u16 feature_count,
2272 					      ffs_os_desc_callback entity,
2273 					      void *priv,
2274 					      struct usb_os_desc_header *h)
2275 {
2276 	int ret;
2277 	const unsigned _len = len;
2278 
2279 	ENTER();
2280 
2281 	/* loop over all ext compat/ext prop descriptors */
2282 	while (feature_count--) {
2283 		ret = entity(type, h, data, len, priv);
2284 		if (ret < 0) {
2285 			pr_debug("bad OS descriptor, type: %d\n", type);
2286 			return ret;
2287 		}
2288 		data += ret;
2289 		len -= ret;
2290 	}
2291 	return _len - len;
2292 }
2293 
2294 /* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2295 static int __must_check ffs_do_os_descs(unsigned count,
2296 					char *data, unsigned len,
2297 					ffs_os_desc_callback entity, void *priv)
2298 {
2299 	const unsigned _len = len;
2300 	unsigned long num = 0;
2301 
2302 	ENTER();
2303 
2304 	for (num = 0; num < count; ++num) {
2305 		int ret;
2306 		enum ffs_os_desc_type type;
2307 		u16 feature_count;
2308 		struct usb_os_desc_header *desc = (void *)data;
2309 
2310 		if (len < sizeof(*desc))
2311 			return -EINVAL;
2312 
2313 		/*
2314 		 * Record "descriptor" entity.
2315 		 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2316 		 * Move the data pointer to the beginning of extended
2317 		 * compatibilities proper or extended properties proper
2318 		 * portions of the data
2319 		 */
2320 		if (le32_to_cpu(desc->dwLength) > len)
2321 			return -EINVAL;
2322 
2323 		ret = __ffs_do_os_desc_header(&type, desc);
2324 		if (ret < 0) {
2325 			pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2326 				 num, ret);
2327 			return ret;
2328 		}
2329 		/*
2330 		 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2331 		 */
2332 		feature_count = le16_to_cpu(desc->wCount);
2333 		if (type == FFS_OS_DESC_EXT_COMPAT &&
2334 		    (feature_count > 255 || desc->Reserved))
2335 				return -EINVAL;
2336 		len -= ret;
2337 		data += ret;
2338 
2339 		/*
2340 		 * Process all function/property descriptors
2341 		 * of this Feature Descriptor
2342 		 */
2343 		ret = ffs_do_single_os_desc(data, len, type,
2344 					    feature_count, entity, priv, desc);
2345 		if (ret < 0) {
2346 			pr_debug("%s returns %d\n", __func__, ret);
2347 			return ret;
2348 		}
2349 
2350 		len -= ret;
2351 		data += ret;
2352 	}
2353 	return _len - len;
2354 }
2355 
2356 /*
2357  * Validate contents of the buffer from userspace related to OS descriptors.
2358  */
2359 static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2360 				 struct usb_os_desc_header *h, void *data,
2361 				 unsigned len, void *priv)
2362 {
2363 	struct ffs_data *ffs = priv;
2364 	u8 length;
2365 
2366 	ENTER();
2367 
2368 	switch (type) {
2369 	case FFS_OS_DESC_EXT_COMPAT: {
2370 		struct usb_ext_compat_desc *d = data;
2371 		int i;
2372 
2373 		if (len < sizeof(*d) ||
2374 		    d->bFirstInterfaceNumber >= ffs->interfaces_count)
2375 			return -EINVAL;
2376 		if (d->Reserved1 != 1) {
2377 			/*
2378 			 * According to the spec, Reserved1 must be set to 1
2379 			 * but older kernels incorrectly rejected non-zero
2380 			 * values.  We fix it here to avoid returning EINVAL
2381 			 * in response to values we used to accept.
2382 			 */
2383 			pr_debug("usb_ext_compat_desc::Reserved1 forced to 1\n");
2384 			d->Reserved1 = 1;
2385 		}
2386 		for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2387 			if (d->Reserved2[i])
2388 				return -EINVAL;
2389 
2390 		length = sizeof(struct usb_ext_compat_desc);
2391 	}
2392 		break;
2393 	case FFS_OS_DESC_EXT_PROP: {
2394 		struct usb_ext_prop_desc *d = data;
2395 		u32 type, pdl;
2396 		u16 pnl;
2397 
2398 		if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2399 			return -EINVAL;
2400 		length = le32_to_cpu(d->dwSize);
2401 		if (len < length)
2402 			return -EINVAL;
2403 		type = le32_to_cpu(d->dwPropertyDataType);
2404 		if (type < USB_EXT_PROP_UNICODE ||
2405 		    type > USB_EXT_PROP_UNICODE_MULTI) {
2406 			pr_vdebug("unsupported os descriptor property type: %d",
2407 				  type);
2408 			return -EINVAL;
2409 		}
2410 		pnl = le16_to_cpu(d->wPropertyNameLength);
2411 		if (length < 14 + pnl) {
2412 			pr_vdebug("invalid os descriptor length: %d pnl:%d (descriptor %d)\n",
2413 				  length, pnl, type);
2414 			return -EINVAL;
2415 		}
2416 		pdl = le32_to_cpu(*(__le32 *)((u8 *)data + 10 + pnl));
2417 		if (length != 14 + pnl + pdl) {
2418 			pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2419 				  length, pnl, pdl, type);
2420 			return -EINVAL;
2421 		}
2422 		++ffs->ms_os_descs_ext_prop_count;
2423 		/* property name reported to the host as "WCHAR"s */
2424 		ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2425 		ffs->ms_os_descs_ext_prop_data_len += pdl;
2426 	}
2427 		break;
2428 	default:
2429 		pr_vdebug("unknown descriptor: %d\n", type);
2430 		return -EINVAL;
2431 	}
2432 	return length;
2433 }
2434 
2435 static int __ffs_data_got_descs(struct ffs_data *ffs,
2436 				char *const _data, size_t len)
2437 {
2438 	char *data = _data, *raw_descs;
2439 	unsigned os_descs_count = 0, counts[3], flags;
2440 	int ret = -EINVAL, i;
2441 	struct ffs_desc_helper helper;
2442 
2443 	ENTER();
2444 
2445 	if (get_unaligned_le32(data + 4) != len)
2446 		goto error;
2447 
2448 	switch (get_unaligned_le32(data)) {
2449 	case FUNCTIONFS_DESCRIPTORS_MAGIC:
2450 		flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2451 		data += 8;
2452 		len  -= 8;
2453 		break;
2454 	case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2455 		flags = get_unaligned_le32(data + 8);
2456 		ffs->user_flags = flags;
2457 		if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2458 			      FUNCTIONFS_HAS_HS_DESC |
2459 			      FUNCTIONFS_HAS_SS_DESC |
2460 			      FUNCTIONFS_HAS_MS_OS_DESC |
2461 			      FUNCTIONFS_VIRTUAL_ADDR |
2462 			      FUNCTIONFS_EVENTFD |
2463 			      FUNCTIONFS_ALL_CTRL_RECIP |
2464 			      FUNCTIONFS_CONFIG0_SETUP)) {
2465 			ret = -ENOSYS;
2466 			goto error;
2467 		}
2468 		data += 12;
2469 		len  -= 12;
2470 		break;
2471 	default:
2472 		goto error;
2473 	}
2474 
2475 	if (flags & FUNCTIONFS_EVENTFD) {
2476 		if (len < 4)
2477 			goto error;
2478 		ffs->ffs_eventfd =
2479 			eventfd_ctx_fdget((int)get_unaligned_le32(data));
2480 		if (IS_ERR(ffs->ffs_eventfd)) {
2481 			ret = PTR_ERR(ffs->ffs_eventfd);
2482 			ffs->ffs_eventfd = NULL;
2483 			goto error;
2484 		}
2485 		data += 4;
2486 		len  -= 4;
2487 	}
2488 
2489 	/* Read fs_count, hs_count and ss_count (if present) */
2490 	for (i = 0; i < 3; ++i) {
2491 		if (!(flags & (1 << i))) {
2492 			counts[i] = 0;
2493 		} else if (len < 4) {
2494 			goto error;
2495 		} else {
2496 			counts[i] = get_unaligned_le32(data);
2497 			data += 4;
2498 			len  -= 4;
2499 		}
2500 	}
2501 	if (flags & (1 << i)) {
2502 		if (len < 4) {
2503 			goto error;
2504 		}
2505 		os_descs_count = get_unaligned_le32(data);
2506 		data += 4;
2507 		len -= 4;
2508 	}
2509 
2510 	/* Read descriptors */
2511 	raw_descs = data;
2512 	helper.ffs = ffs;
2513 	for (i = 0; i < 3; ++i) {
2514 		if (!counts[i])
2515 			continue;
2516 		helper.interfaces_count = 0;
2517 		helper.eps_count = 0;
2518 		ret = ffs_do_descs(counts[i], data, len,
2519 				   __ffs_data_do_entity, &helper);
2520 		if (ret < 0)
2521 			goto error;
2522 		if (!ffs->eps_count && !ffs->interfaces_count) {
2523 			ffs->eps_count = helper.eps_count;
2524 			ffs->interfaces_count = helper.interfaces_count;
2525 		} else {
2526 			if (ffs->eps_count != helper.eps_count) {
2527 				ret = -EINVAL;
2528 				goto error;
2529 			}
2530 			if (ffs->interfaces_count != helper.interfaces_count) {
2531 				ret = -EINVAL;
2532 				goto error;
2533 			}
2534 		}
2535 		data += ret;
2536 		len  -= ret;
2537 	}
2538 	if (os_descs_count) {
2539 		ret = ffs_do_os_descs(os_descs_count, data, len,
2540 				      __ffs_data_do_os_desc, ffs);
2541 		if (ret < 0)
2542 			goto error;
2543 		data += ret;
2544 		len -= ret;
2545 	}
2546 
2547 	if (raw_descs == data || len) {
2548 		ret = -EINVAL;
2549 		goto error;
2550 	}
2551 
2552 	ffs->raw_descs_data	= _data;
2553 	ffs->raw_descs		= raw_descs;
2554 	ffs->raw_descs_length	= data - raw_descs;
2555 	ffs->fs_descs_count	= counts[0];
2556 	ffs->hs_descs_count	= counts[1];
2557 	ffs->ss_descs_count	= counts[2];
2558 	ffs->ms_os_descs_count	= os_descs_count;
2559 
2560 	return 0;
2561 
2562 error:
2563 	kfree(_data);
2564 	return ret;
2565 }
2566 
2567 static int __ffs_data_got_strings(struct ffs_data *ffs,
2568 				  char *const _data, size_t len)
2569 {
2570 	u32 str_count, needed_count, lang_count;
2571 	struct usb_gadget_strings **stringtabs, *t;
2572 	const char *data = _data;
2573 	struct usb_string *s;
2574 
2575 	ENTER();
2576 
2577 	if (len < 16 ||
2578 	    get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2579 	    get_unaligned_le32(data + 4) != len)
2580 		goto error;
2581 	str_count  = get_unaligned_le32(data + 8);
2582 	lang_count = get_unaligned_le32(data + 12);
2583 
2584 	/* if one is zero the other must be zero */
2585 	if (!str_count != !lang_count)
2586 		goto error;
2587 
2588 	/* Do we have at least as many strings as descriptors need? */
2589 	needed_count = ffs->strings_count;
2590 	if (str_count < needed_count)
2591 		goto error;
2592 
2593 	/*
2594 	 * If we don't need any strings just return and free all
2595 	 * memory.
2596 	 */
2597 	if (!needed_count) {
2598 		kfree(_data);
2599 		return 0;
2600 	}
2601 
2602 	/* Allocate everything in one chunk so there's less maintenance. */
2603 	{
2604 		unsigned i = 0;
2605 		vla_group(d);
2606 		vla_item(d, struct usb_gadget_strings *, stringtabs,
2607 			lang_count + 1);
2608 		vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2609 		vla_item(d, struct usb_string, strings,
2610 			lang_count*(needed_count+1));
2611 
2612 		char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2613 
2614 		if (!vlabuf) {
2615 			kfree(_data);
2616 			return -ENOMEM;
2617 		}
2618 
2619 		/* Initialize the VLA pointers */
2620 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2621 		t = vla_ptr(vlabuf, d, stringtab);
2622 		i = lang_count;
2623 		do {
2624 			*stringtabs++ = t++;
2625 		} while (--i);
2626 		*stringtabs = NULL;
2627 
2628 		/* stringtabs = vlabuf = d_stringtabs for later kfree */
2629 		stringtabs = vla_ptr(vlabuf, d, stringtabs);
2630 		t = vla_ptr(vlabuf, d, stringtab);
2631 		s = vla_ptr(vlabuf, d, strings);
2632 	}
2633 
2634 	/* For each language */
2635 	data += 16;
2636 	len -= 16;
2637 
2638 	do { /* lang_count > 0 so we can use do-while */
2639 		unsigned needed = needed_count;
2640 		u32 str_per_lang = str_count;
2641 
2642 		if (len < 3)
2643 			goto error_free;
2644 		t->language = get_unaligned_le16(data);
2645 		t->strings  = s;
2646 		++t;
2647 
2648 		data += 2;
2649 		len -= 2;
2650 
2651 		/* For each string */
2652 		do { /* str_count > 0 so we can use do-while */
2653 			size_t length = strnlen(data, len);
2654 
2655 			if (length == len)
2656 				goto error_free;
2657 
2658 			/*
2659 			 * User may provide more strings then we need,
2660 			 * if that's the case we simply ignore the
2661 			 * rest
2662 			 */
2663 			if (needed) {
2664 				/*
2665 				 * s->id will be set while adding
2666 				 * function to configuration so for
2667 				 * now just leave garbage here.
2668 				 */
2669 				s->s = data;
2670 				--needed;
2671 				++s;
2672 			}
2673 
2674 			data += length + 1;
2675 			len -= length + 1;
2676 		} while (--str_per_lang);
2677 
2678 		s->id = 0;   /* terminator */
2679 		s->s = NULL;
2680 		++s;
2681 
2682 	} while (--lang_count);
2683 
2684 	/* Some garbage left? */
2685 	if (len)
2686 		goto error_free;
2687 
2688 	/* Done! */
2689 	ffs->stringtabs = stringtabs;
2690 	ffs->raw_strings = _data;
2691 
2692 	return 0;
2693 
2694 error_free:
2695 	kfree(stringtabs);
2696 error:
2697 	kfree(_data);
2698 	return -EINVAL;
2699 }
2700 
2701 
2702 /* Events handling and management *******************************************/
2703 
2704 static void __ffs_event_add(struct ffs_data *ffs,
2705 			    enum usb_functionfs_event_type type)
2706 {
2707 	enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2708 	int neg = 0;
2709 
2710 	/*
2711 	 * Abort any unhandled setup
2712 	 *
2713 	 * We do not need to worry about some cmpxchg() changing value
2714 	 * of ffs->setup_state without holding the lock because when
2715 	 * state is FFS_SETUP_PENDING cmpxchg() in several places in
2716 	 * the source does nothing.
2717 	 */
2718 	if (ffs->setup_state == FFS_SETUP_PENDING)
2719 		ffs->setup_state = FFS_SETUP_CANCELLED;
2720 
2721 	/*
2722 	 * Logic of this function guarantees that there are at most four pending
2723 	 * evens on ffs->ev.types queue.  This is important because the queue
2724 	 * has space for four elements only and __ffs_ep0_read_events function
2725 	 * depends on that limit as well.  If more event types are added, those
2726 	 * limits have to be revisited or guaranteed to still hold.
2727 	 */
2728 	switch (type) {
2729 	case FUNCTIONFS_RESUME:
2730 		rem_type2 = FUNCTIONFS_SUSPEND;
2731 		fallthrough;
2732 	case FUNCTIONFS_SUSPEND:
2733 	case FUNCTIONFS_SETUP:
2734 		rem_type1 = type;
2735 		/* Discard all similar events */
2736 		break;
2737 
2738 	case FUNCTIONFS_BIND:
2739 	case FUNCTIONFS_UNBIND:
2740 	case FUNCTIONFS_DISABLE:
2741 	case FUNCTIONFS_ENABLE:
2742 		/* Discard everything other then power management. */
2743 		rem_type1 = FUNCTIONFS_SUSPEND;
2744 		rem_type2 = FUNCTIONFS_RESUME;
2745 		neg = 1;
2746 		break;
2747 
2748 	default:
2749 		WARN(1, "%d: unknown event, this should not happen\n", type);
2750 		return;
2751 	}
2752 
2753 	{
2754 		u8 *ev  = ffs->ev.types, *out = ev;
2755 		unsigned n = ffs->ev.count;
2756 		for (; n; --n, ++ev)
2757 			if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2758 				*out++ = *ev;
2759 			else
2760 				pr_vdebug("purging event %d\n", *ev);
2761 		ffs->ev.count = out - ffs->ev.types;
2762 	}
2763 
2764 	pr_vdebug("adding event %d\n", type);
2765 	ffs->ev.types[ffs->ev.count++] = type;
2766 	wake_up_locked(&ffs->ev.waitq);
2767 	if (ffs->ffs_eventfd)
2768 		eventfd_signal(ffs->ffs_eventfd, 1);
2769 }
2770 
2771 static void ffs_event_add(struct ffs_data *ffs,
2772 			  enum usb_functionfs_event_type type)
2773 {
2774 	unsigned long flags;
2775 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2776 	__ffs_event_add(ffs, type);
2777 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2778 }
2779 
2780 /* Bind/unbind USB function hooks *******************************************/
2781 
2782 static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2783 {
2784 	int i;
2785 
2786 	for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2787 		if (ffs->eps_addrmap[i] == endpoint_address)
2788 			return i;
2789 	return -ENOENT;
2790 }
2791 
2792 static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2793 				    struct usb_descriptor_header *desc,
2794 				    void *priv)
2795 {
2796 	struct usb_endpoint_descriptor *ds = (void *)desc;
2797 	struct ffs_function *func = priv;
2798 	struct ffs_ep *ffs_ep;
2799 	unsigned ep_desc_id;
2800 	int idx;
2801 	static const char *speed_names[] = { "full", "high", "super" };
2802 
2803 	if (type != FFS_DESCRIPTOR)
2804 		return 0;
2805 
2806 	/*
2807 	 * If ss_descriptors is not NULL, we are reading super speed
2808 	 * descriptors; if hs_descriptors is not NULL, we are reading high
2809 	 * speed descriptors; otherwise, we are reading full speed
2810 	 * descriptors.
2811 	 */
2812 	if (func->function.ss_descriptors) {
2813 		ep_desc_id = 2;
2814 		func->function.ss_descriptors[(long)valuep] = desc;
2815 	} else if (func->function.hs_descriptors) {
2816 		ep_desc_id = 1;
2817 		func->function.hs_descriptors[(long)valuep] = desc;
2818 	} else {
2819 		ep_desc_id = 0;
2820 		func->function.fs_descriptors[(long)valuep]    = desc;
2821 	}
2822 
2823 	if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2824 		return 0;
2825 
2826 	idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2827 	if (idx < 0)
2828 		return idx;
2829 
2830 	ffs_ep = func->eps + idx;
2831 
2832 	if (ffs_ep->descs[ep_desc_id]) {
2833 		pr_err("two %sspeed descriptors for EP %d\n",
2834 			  speed_names[ep_desc_id],
2835 			  ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2836 		return -EINVAL;
2837 	}
2838 	ffs_ep->descs[ep_desc_id] = ds;
2839 
2840 	ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2841 	if (ffs_ep->ep) {
2842 		ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2843 		if (!ds->wMaxPacketSize)
2844 			ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2845 	} else {
2846 		struct usb_request *req;
2847 		struct usb_ep *ep;
2848 		u8 bEndpointAddress;
2849 		u16 wMaxPacketSize;
2850 
2851 		/*
2852 		 * We back up bEndpointAddress because autoconfig overwrites
2853 		 * it with physical endpoint address.
2854 		 */
2855 		bEndpointAddress = ds->bEndpointAddress;
2856 		/*
2857 		 * We back up wMaxPacketSize because autoconfig treats
2858 		 * endpoint descriptors as if they were full speed.
2859 		 */
2860 		wMaxPacketSize = ds->wMaxPacketSize;
2861 		pr_vdebug("autoconfig\n");
2862 		ep = usb_ep_autoconfig(func->gadget, ds);
2863 		if (!ep)
2864 			return -ENOTSUPP;
2865 		ep->driver_data = func->eps + idx;
2866 
2867 		req = usb_ep_alloc_request(ep, GFP_KERNEL);
2868 		if (!req)
2869 			return -ENOMEM;
2870 
2871 		ffs_ep->ep  = ep;
2872 		ffs_ep->req = req;
2873 		func->eps_revmap[ds->bEndpointAddress &
2874 				 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2875 		/*
2876 		 * If we use virtual address mapping, we restore
2877 		 * original bEndpointAddress value.
2878 		 */
2879 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2880 			ds->bEndpointAddress = bEndpointAddress;
2881 		/*
2882 		 * Restore wMaxPacketSize which was potentially
2883 		 * overwritten by autoconfig.
2884 		 */
2885 		ds->wMaxPacketSize = wMaxPacketSize;
2886 	}
2887 	ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2888 
2889 	return 0;
2890 }
2891 
2892 static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2893 				   struct usb_descriptor_header *desc,
2894 				   void *priv)
2895 {
2896 	struct ffs_function *func = priv;
2897 	unsigned idx;
2898 	u8 newValue;
2899 
2900 	switch (type) {
2901 	default:
2902 	case FFS_DESCRIPTOR:
2903 		/* Handled in previous pass by __ffs_func_bind_do_descs() */
2904 		return 0;
2905 
2906 	case FFS_INTERFACE:
2907 		idx = *valuep;
2908 		if (func->interfaces_nums[idx] < 0) {
2909 			int id = usb_interface_id(func->conf, &func->function);
2910 			if (id < 0)
2911 				return id;
2912 			func->interfaces_nums[idx] = id;
2913 		}
2914 		newValue = func->interfaces_nums[idx];
2915 		break;
2916 
2917 	case FFS_STRING:
2918 		/* String' IDs are allocated when fsf_data is bound to cdev */
2919 		newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2920 		break;
2921 
2922 	case FFS_ENDPOINT:
2923 		/*
2924 		 * USB_DT_ENDPOINT are handled in
2925 		 * __ffs_func_bind_do_descs().
2926 		 */
2927 		if (desc->bDescriptorType == USB_DT_ENDPOINT)
2928 			return 0;
2929 
2930 		idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2931 		if (!func->eps[idx].ep)
2932 			return -EINVAL;
2933 
2934 		{
2935 			struct usb_endpoint_descriptor **descs;
2936 			descs = func->eps[idx].descs;
2937 			newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2938 		}
2939 		break;
2940 	}
2941 
2942 	pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2943 	*valuep = newValue;
2944 	return 0;
2945 }
2946 
2947 static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2948 				      struct usb_os_desc_header *h, void *data,
2949 				      unsigned len, void *priv)
2950 {
2951 	struct ffs_function *func = priv;
2952 	u8 length = 0;
2953 
2954 	switch (type) {
2955 	case FFS_OS_DESC_EXT_COMPAT: {
2956 		struct usb_ext_compat_desc *desc = data;
2957 		struct usb_os_desc_table *t;
2958 
2959 		t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2960 		t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2961 		memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2962 		       ARRAY_SIZE(desc->CompatibleID) +
2963 		       ARRAY_SIZE(desc->SubCompatibleID));
2964 		length = sizeof(*desc);
2965 	}
2966 		break;
2967 	case FFS_OS_DESC_EXT_PROP: {
2968 		struct usb_ext_prop_desc *desc = data;
2969 		struct usb_os_desc_table *t;
2970 		struct usb_os_desc_ext_prop *ext_prop;
2971 		char *ext_prop_name;
2972 		char *ext_prop_data;
2973 
2974 		t = &func->function.os_desc_table[h->interface];
2975 		t->if_id = func->interfaces_nums[h->interface];
2976 
2977 		ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2978 		func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2979 
2980 		ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2981 		ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2982 		ext_prop->data_len = le32_to_cpu(*(__le32 *)
2983 			usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2984 		length = ext_prop->name_len + ext_prop->data_len + 14;
2985 
2986 		ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2987 		func->ffs->ms_os_descs_ext_prop_name_avail +=
2988 			ext_prop->name_len;
2989 
2990 		ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2991 		func->ffs->ms_os_descs_ext_prop_data_avail +=
2992 			ext_prop->data_len;
2993 		memcpy(ext_prop_data,
2994 		       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2995 		       ext_prop->data_len);
2996 		/* unicode data reported to the host as "WCHAR"s */
2997 		switch (ext_prop->type) {
2998 		case USB_EXT_PROP_UNICODE:
2999 		case USB_EXT_PROP_UNICODE_ENV:
3000 		case USB_EXT_PROP_UNICODE_LINK:
3001 		case USB_EXT_PROP_UNICODE_MULTI:
3002 			ext_prop->data_len *= 2;
3003 			break;
3004 		}
3005 		ext_prop->data = ext_prop_data;
3006 
3007 		memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
3008 		       ext_prop->name_len);
3009 		/* property name reported to the host as "WCHAR"s */
3010 		ext_prop->name_len *= 2;
3011 		ext_prop->name = ext_prop_name;
3012 
3013 		t->os_desc->ext_prop_len +=
3014 			ext_prop->name_len + ext_prop->data_len + 14;
3015 		++t->os_desc->ext_prop_count;
3016 		list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
3017 	}
3018 		break;
3019 	default:
3020 		pr_vdebug("unknown descriptor: %d\n", type);
3021 	}
3022 
3023 	return length;
3024 }
3025 
3026 static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
3027 						struct usb_configuration *c)
3028 {
3029 	struct ffs_function *func = ffs_func_from_usb(f);
3030 	struct f_fs_opts *ffs_opts =
3031 		container_of(f->fi, struct f_fs_opts, func_inst);
3032 	struct ffs_data *ffs_data;
3033 	int ret;
3034 
3035 	ENTER();
3036 
3037 	/*
3038 	 * Legacy gadget triggers binding in functionfs_ready_callback,
3039 	 * which already uses locking; taking the same lock here would
3040 	 * cause a deadlock.
3041 	 *
3042 	 * Configfs-enabled gadgets however do need ffs_dev_lock.
3043 	 */
3044 	if (!ffs_opts->no_configfs)
3045 		ffs_dev_lock();
3046 	ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
3047 	ffs_data = ffs_opts->dev->ffs_data;
3048 	if (!ffs_opts->no_configfs)
3049 		ffs_dev_unlock();
3050 	if (ret)
3051 		return ERR_PTR(ret);
3052 
3053 	func->ffs = ffs_data;
3054 	func->conf = c;
3055 	func->gadget = c->cdev->gadget;
3056 
3057 	/*
3058 	 * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
3059 	 * configurations are bound in sequence with list_for_each_entry,
3060 	 * in each configuration its functions are bound in sequence
3061 	 * with list_for_each_entry, so we assume no race condition
3062 	 * with regard to ffs_opts->bound access
3063 	 */
3064 	if (!ffs_opts->refcnt) {
3065 		ret = functionfs_bind(func->ffs, c->cdev);
3066 		if (ret)
3067 			return ERR_PTR(ret);
3068 	}
3069 	ffs_opts->refcnt++;
3070 	func->function.strings = func->ffs->stringtabs;
3071 
3072 	return ffs_opts;
3073 }
3074 
3075 static int _ffs_func_bind(struct usb_configuration *c,
3076 			  struct usb_function *f)
3077 {
3078 	struct ffs_function *func = ffs_func_from_usb(f);
3079 	struct ffs_data *ffs = func->ffs;
3080 
3081 	const int full = !!func->ffs->fs_descs_count;
3082 	const int high = !!func->ffs->hs_descs_count;
3083 	const int super = !!func->ffs->ss_descs_count;
3084 
3085 	int fs_len, hs_len, ss_len, ret, i;
3086 	struct ffs_ep *eps_ptr;
3087 
3088 	/* Make it a single chunk, less management later on */
3089 	vla_group(d);
3090 	vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
3091 	vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
3092 		full ? ffs->fs_descs_count + 1 : 0);
3093 	vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
3094 		high ? ffs->hs_descs_count + 1 : 0);
3095 	vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
3096 		super ? ffs->ss_descs_count + 1 : 0);
3097 	vla_item_with_sz(d, short, inums, ffs->interfaces_count);
3098 	vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
3099 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3100 	vla_item_with_sz(d, char[16], ext_compat,
3101 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3102 	vla_item_with_sz(d, struct usb_os_desc, os_desc,
3103 			 c->cdev->use_os_string ? ffs->interfaces_count : 0);
3104 	vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
3105 			 ffs->ms_os_descs_ext_prop_count);
3106 	vla_item_with_sz(d, char, ext_prop_name,
3107 			 ffs->ms_os_descs_ext_prop_name_len);
3108 	vla_item_with_sz(d, char, ext_prop_data,
3109 			 ffs->ms_os_descs_ext_prop_data_len);
3110 	vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
3111 	char *vlabuf;
3112 
3113 	ENTER();
3114 
3115 	/* Has descriptors only for speeds gadget does not support */
3116 	if (!(full | high | super))
3117 		return -ENOTSUPP;
3118 
3119 	/* Allocate a single chunk, less management later on */
3120 	vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
3121 	if (!vlabuf)
3122 		return -ENOMEM;
3123 
3124 	ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
3125 	ffs->ms_os_descs_ext_prop_name_avail =
3126 		vla_ptr(vlabuf, d, ext_prop_name);
3127 	ffs->ms_os_descs_ext_prop_data_avail =
3128 		vla_ptr(vlabuf, d, ext_prop_data);
3129 
3130 	/* Copy descriptors  */
3131 	memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
3132 	       ffs->raw_descs_length);
3133 
3134 	memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
3135 	eps_ptr = vla_ptr(vlabuf, d, eps);
3136 	for (i = 0; i < ffs->eps_count; i++)
3137 		eps_ptr[i].num = -1;
3138 
3139 	/* Save pointers
3140 	 * d_eps == vlabuf, func->eps used to kfree vlabuf later
3141 	*/
3142 	func->eps             = vla_ptr(vlabuf, d, eps);
3143 	func->interfaces_nums = vla_ptr(vlabuf, d, inums);
3144 
3145 	/*
3146 	 * Go through all the endpoint descriptors and allocate
3147 	 * endpoints first, so that later we can rewrite the endpoint
3148 	 * numbers without worrying that it may be described later on.
3149 	 */
3150 	if (full) {
3151 		func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
3152 		fs_len = ffs_do_descs(ffs->fs_descs_count,
3153 				      vla_ptr(vlabuf, d, raw_descs),
3154 				      d_raw_descs__sz,
3155 				      __ffs_func_bind_do_descs, func);
3156 		if (fs_len < 0) {
3157 			ret = fs_len;
3158 			goto error;
3159 		}
3160 	} else {
3161 		fs_len = 0;
3162 	}
3163 
3164 	if (high) {
3165 		func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
3166 		hs_len = ffs_do_descs(ffs->hs_descs_count,
3167 				      vla_ptr(vlabuf, d, raw_descs) + fs_len,
3168 				      d_raw_descs__sz - fs_len,
3169 				      __ffs_func_bind_do_descs, func);
3170 		if (hs_len < 0) {
3171 			ret = hs_len;
3172 			goto error;
3173 		}
3174 	} else {
3175 		hs_len = 0;
3176 	}
3177 
3178 	if (super) {
3179 		func->function.ss_descriptors = func->function.ssp_descriptors =
3180 			vla_ptr(vlabuf, d, ss_descs);
3181 		ss_len = ffs_do_descs(ffs->ss_descs_count,
3182 				vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
3183 				d_raw_descs__sz - fs_len - hs_len,
3184 				__ffs_func_bind_do_descs, func);
3185 		if (ss_len < 0) {
3186 			ret = ss_len;
3187 			goto error;
3188 		}
3189 	} else {
3190 		ss_len = 0;
3191 	}
3192 
3193 	/*
3194 	 * Now handle interface numbers allocation and interface and
3195 	 * endpoint numbers rewriting.  We can do that in one go
3196 	 * now.
3197 	 */
3198 	ret = ffs_do_descs(ffs->fs_descs_count +
3199 			   (high ? ffs->hs_descs_count : 0) +
3200 			   (super ? ffs->ss_descs_count : 0),
3201 			   vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
3202 			   __ffs_func_bind_do_nums, func);
3203 	if (ret < 0)
3204 		goto error;
3205 
3206 	func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
3207 	if (c->cdev->use_os_string) {
3208 		for (i = 0; i < ffs->interfaces_count; ++i) {
3209 			struct usb_os_desc *desc;
3210 
3211 			desc = func->function.os_desc_table[i].os_desc =
3212 				vla_ptr(vlabuf, d, os_desc) +
3213 				i * sizeof(struct usb_os_desc);
3214 			desc->ext_compat_id =
3215 				vla_ptr(vlabuf, d, ext_compat) + i * 16;
3216 			INIT_LIST_HEAD(&desc->ext_prop);
3217 		}
3218 		ret = ffs_do_os_descs(ffs->ms_os_descs_count,
3219 				      vla_ptr(vlabuf, d, raw_descs) +
3220 				      fs_len + hs_len + ss_len,
3221 				      d_raw_descs__sz - fs_len - hs_len -
3222 				      ss_len,
3223 				      __ffs_func_bind_do_os_desc, func);
3224 		if (ret < 0)
3225 			goto error;
3226 	}
3227 	func->function.os_desc_n =
3228 		c->cdev->use_os_string ? ffs->interfaces_count : 0;
3229 
3230 	/* And we're done */
3231 	ffs_event_add(ffs, FUNCTIONFS_BIND);
3232 	return 0;
3233 
3234 error:
3235 	/* XXX Do we need to release all claimed endpoints here? */
3236 	return ret;
3237 }
3238 
3239 static int ffs_func_bind(struct usb_configuration *c,
3240 			 struct usb_function *f)
3241 {
3242 	struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3243 	struct ffs_function *func = ffs_func_from_usb(f);
3244 	int ret;
3245 
3246 	if (IS_ERR(ffs_opts))
3247 		return PTR_ERR(ffs_opts);
3248 
3249 	ret = _ffs_func_bind(c, f);
3250 	if (ret && !--ffs_opts->refcnt)
3251 		functionfs_unbind(func->ffs);
3252 
3253 	return ret;
3254 }
3255 
3256 
3257 /* Other USB function hooks *************************************************/
3258 
3259 static void ffs_reset_work(struct work_struct *work)
3260 {
3261 	struct ffs_data *ffs = container_of(work,
3262 		struct ffs_data, reset_work);
3263 	ffs_data_reset(ffs);
3264 }
3265 
3266 static int ffs_func_set_alt(struct usb_function *f,
3267 			    unsigned interface, unsigned alt)
3268 {
3269 	struct ffs_function *func = ffs_func_from_usb(f);
3270 	struct ffs_data *ffs = func->ffs;
3271 	int ret = 0, intf;
3272 
3273 	if (alt != (unsigned)-1) {
3274 		intf = ffs_func_revmap_intf(func, interface);
3275 		if (intf < 0)
3276 			return intf;
3277 	}
3278 
3279 	if (ffs->func)
3280 		ffs_func_eps_disable(ffs->func);
3281 
3282 	if (ffs->state == FFS_DEACTIVATED) {
3283 		ffs->state = FFS_CLOSING;
3284 		INIT_WORK(&ffs->reset_work, ffs_reset_work);
3285 		schedule_work(&ffs->reset_work);
3286 		return -ENODEV;
3287 	}
3288 
3289 	if (ffs->state != FFS_ACTIVE)
3290 		return -ENODEV;
3291 
3292 	if (alt == (unsigned)-1) {
3293 		ffs->func = NULL;
3294 		ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3295 		return 0;
3296 	}
3297 
3298 	ffs->func = func;
3299 	ret = ffs_func_eps_enable(func);
3300 	if (ret >= 0)
3301 		ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3302 	return ret;
3303 }
3304 
3305 static void ffs_func_disable(struct usb_function *f)
3306 {
3307 	ffs_func_set_alt(f, 0, (unsigned)-1);
3308 }
3309 
3310 static int ffs_func_setup(struct usb_function *f,
3311 			  const struct usb_ctrlrequest *creq)
3312 {
3313 	struct ffs_function *func = ffs_func_from_usb(f);
3314 	struct ffs_data *ffs = func->ffs;
3315 	unsigned long flags;
3316 	int ret;
3317 
3318 	ENTER();
3319 
3320 	pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3321 	pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3322 	pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3323 	pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3324 	pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3325 
3326 	/*
3327 	 * Most requests directed to interface go through here
3328 	 * (notable exceptions are set/get interface) so we need to
3329 	 * handle them.  All other either handled by composite or
3330 	 * passed to usb_configuration->setup() (if one is set).  No
3331 	 * matter, we will handle requests directed to endpoint here
3332 	 * as well (as it's straightforward).  Other request recipient
3333 	 * types are only handled when the user flag FUNCTIONFS_ALL_CTRL_RECIP
3334 	 * is being used.
3335 	 */
3336 	if (ffs->state != FFS_ACTIVE)
3337 		return -ENODEV;
3338 
3339 	switch (creq->bRequestType & USB_RECIP_MASK) {
3340 	case USB_RECIP_INTERFACE:
3341 		ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3342 		if (ret < 0)
3343 			return ret;
3344 		break;
3345 
3346 	case USB_RECIP_ENDPOINT:
3347 		ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3348 		if (ret < 0)
3349 			return ret;
3350 		if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3351 			ret = func->ffs->eps_addrmap[ret];
3352 		break;
3353 
3354 	default:
3355 		if (func->ffs->user_flags & FUNCTIONFS_ALL_CTRL_RECIP)
3356 			ret = le16_to_cpu(creq->wIndex);
3357 		else
3358 			return -EOPNOTSUPP;
3359 	}
3360 
3361 	spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3362 	ffs->ev.setup = *creq;
3363 	ffs->ev.setup.wIndex = cpu_to_le16(ret);
3364 	__ffs_event_add(ffs, FUNCTIONFS_SETUP);
3365 	spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3366 
3367 	return creq->wLength == 0 ? USB_GADGET_DELAYED_STATUS : 0;
3368 }
3369 
3370 static bool ffs_func_req_match(struct usb_function *f,
3371 			       const struct usb_ctrlrequest *creq,
3372 			       bool config0)
3373 {
3374 	struct ffs_function *func = ffs_func_from_usb(f);
3375 
3376 	if (config0 && !(func->ffs->user_flags & FUNCTIONFS_CONFIG0_SETUP))
3377 		return false;
3378 
3379 	switch (creq->bRequestType & USB_RECIP_MASK) {
3380 	case USB_RECIP_INTERFACE:
3381 		return (ffs_func_revmap_intf(func,
3382 					     le16_to_cpu(creq->wIndex)) >= 0);
3383 	case USB_RECIP_ENDPOINT:
3384 		return (ffs_func_revmap_ep(func,
3385 					   le16_to_cpu(creq->wIndex)) >= 0);
3386 	default:
3387 		return (bool) (func->ffs->user_flags &
3388 			       FUNCTIONFS_ALL_CTRL_RECIP);
3389 	}
3390 }
3391 
3392 static void ffs_func_suspend(struct usb_function *f)
3393 {
3394 	ENTER();
3395 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3396 }
3397 
3398 static void ffs_func_resume(struct usb_function *f)
3399 {
3400 	ENTER();
3401 	ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3402 }
3403 
3404 
3405 /* Endpoint and interface numbers reverse mapping ***************************/
3406 
3407 static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3408 {
3409 	num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3410 	return num ? num : -EDOM;
3411 }
3412 
3413 static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3414 {
3415 	short *nums = func->interfaces_nums;
3416 	unsigned count = func->ffs->interfaces_count;
3417 
3418 	for (; count; --count, ++nums) {
3419 		if (*nums >= 0 && *nums == intf)
3420 			return nums - func->interfaces_nums;
3421 	}
3422 
3423 	return -EDOM;
3424 }
3425 
3426 
3427 /* Devices management *******************************************************/
3428 
3429 static LIST_HEAD(ffs_devices);
3430 
3431 static struct ffs_dev *_ffs_do_find_dev(const char *name)
3432 {
3433 	struct ffs_dev *dev;
3434 
3435 	if (!name)
3436 		return NULL;
3437 
3438 	list_for_each_entry(dev, &ffs_devices, entry) {
3439 		if (strcmp(dev->name, name) == 0)
3440 			return dev;
3441 	}
3442 
3443 	return NULL;
3444 }
3445 
3446 /*
3447  * ffs_lock must be taken by the caller of this function
3448  */
3449 static struct ffs_dev *_ffs_get_single_dev(void)
3450 {
3451 	struct ffs_dev *dev;
3452 
3453 	if (list_is_singular(&ffs_devices)) {
3454 		dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3455 		if (dev->single)
3456 			return dev;
3457 	}
3458 
3459 	return NULL;
3460 }
3461 
3462 /*
3463  * ffs_lock must be taken by the caller of this function
3464  */
3465 static struct ffs_dev *_ffs_find_dev(const char *name)
3466 {
3467 	struct ffs_dev *dev;
3468 
3469 	dev = _ffs_get_single_dev();
3470 	if (dev)
3471 		return dev;
3472 
3473 	return _ffs_do_find_dev(name);
3474 }
3475 
3476 /* Configfs support *********************************************************/
3477 
3478 static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3479 {
3480 	return container_of(to_config_group(item), struct f_fs_opts,
3481 			    func_inst.group);
3482 }
3483 
3484 static void ffs_attr_release(struct config_item *item)
3485 {
3486 	struct f_fs_opts *opts = to_ffs_opts(item);
3487 
3488 	usb_put_function_instance(&opts->func_inst);
3489 }
3490 
3491 static struct configfs_item_operations ffs_item_ops = {
3492 	.release	= ffs_attr_release,
3493 };
3494 
3495 static const struct config_item_type ffs_func_type = {
3496 	.ct_item_ops	= &ffs_item_ops,
3497 	.ct_owner	= THIS_MODULE,
3498 };
3499 
3500 
3501 /* Function registration interface ******************************************/
3502 
3503 static void ffs_free_inst(struct usb_function_instance *f)
3504 {
3505 	struct f_fs_opts *opts;
3506 
3507 	opts = to_f_fs_opts(f);
3508 	ffs_release_dev(opts->dev);
3509 	ffs_dev_lock();
3510 	_ffs_free_dev(opts->dev);
3511 	ffs_dev_unlock();
3512 	kfree(opts);
3513 }
3514 
3515 static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3516 {
3517 	if (strlen(name) >= sizeof_field(struct ffs_dev, name))
3518 		return -ENAMETOOLONG;
3519 	return ffs_name_dev(to_f_fs_opts(fi)->dev, name);
3520 }
3521 
3522 static struct usb_function_instance *ffs_alloc_inst(void)
3523 {
3524 	struct f_fs_opts *opts;
3525 	struct ffs_dev *dev;
3526 
3527 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3528 	if (!opts)
3529 		return ERR_PTR(-ENOMEM);
3530 
3531 	opts->func_inst.set_inst_name = ffs_set_inst_name;
3532 	opts->func_inst.free_func_inst = ffs_free_inst;
3533 	ffs_dev_lock();
3534 	dev = _ffs_alloc_dev();
3535 	ffs_dev_unlock();
3536 	if (IS_ERR(dev)) {
3537 		kfree(opts);
3538 		return ERR_CAST(dev);
3539 	}
3540 	opts->dev = dev;
3541 	dev->opts = opts;
3542 
3543 	config_group_init_type_name(&opts->func_inst.group, "",
3544 				    &ffs_func_type);
3545 	return &opts->func_inst;
3546 }
3547 
3548 static void ffs_free(struct usb_function *f)
3549 {
3550 	kfree(ffs_func_from_usb(f));
3551 }
3552 
3553 static void ffs_func_unbind(struct usb_configuration *c,
3554 			    struct usb_function *f)
3555 {
3556 	struct ffs_function *func = ffs_func_from_usb(f);
3557 	struct ffs_data *ffs = func->ffs;
3558 	struct f_fs_opts *opts =
3559 		container_of(f->fi, struct f_fs_opts, func_inst);
3560 	struct ffs_ep *ep = func->eps;
3561 	unsigned count = ffs->eps_count;
3562 	unsigned long flags;
3563 
3564 	ENTER();
3565 	if (ffs->func == func) {
3566 		ffs_func_eps_disable(func);
3567 		ffs->func = NULL;
3568 	}
3569 
3570 	/* Drain any pending AIO completions */
3571 	drain_workqueue(ffs->io_completion_wq);
3572 
3573 	if (!--opts->refcnt)
3574 		functionfs_unbind(ffs);
3575 
3576 	/* cleanup after autoconfig */
3577 	spin_lock_irqsave(&func->ffs->eps_lock, flags);
3578 	while (count--) {
3579 		if (ep->ep && ep->req)
3580 			usb_ep_free_request(ep->ep, ep->req);
3581 		ep->req = NULL;
3582 		++ep;
3583 	}
3584 	spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3585 	kfree(func->eps);
3586 	func->eps = NULL;
3587 	/*
3588 	 * eps, descriptors and interfaces_nums are allocated in the
3589 	 * same chunk so only one free is required.
3590 	 */
3591 	func->function.fs_descriptors = NULL;
3592 	func->function.hs_descriptors = NULL;
3593 	func->function.ss_descriptors = NULL;
3594 	func->function.ssp_descriptors = NULL;
3595 	func->interfaces_nums = NULL;
3596 
3597 	ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3598 }
3599 
3600 static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3601 {
3602 	struct ffs_function *func;
3603 
3604 	ENTER();
3605 
3606 	func = kzalloc(sizeof(*func), GFP_KERNEL);
3607 	if (!func)
3608 		return ERR_PTR(-ENOMEM);
3609 
3610 	func->function.name    = "Function FS Gadget";
3611 
3612 	func->function.bind    = ffs_func_bind;
3613 	func->function.unbind  = ffs_func_unbind;
3614 	func->function.set_alt = ffs_func_set_alt;
3615 	func->function.disable = ffs_func_disable;
3616 	func->function.setup   = ffs_func_setup;
3617 	func->function.req_match = ffs_func_req_match;
3618 	func->function.suspend = ffs_func_suspend;
3619 	func->function.resume  = ffs_func_resume;
3620 	func->function.free_func = ffs_free;
3621 
3622 	return &func->function;
3623 }
3624 
3625 /*
3626  * ffs_lock must be taken by the caller of this function
3627  */
3628 static struct ffs_dev *_ffs_alloc_dev(void)
3629 {
3630 	struct ffs_dev *dev;
3631 	int ret;
3632 
3633 	if (_ffs_get_single_dev())
3634 			return ERR_PTR(-EBUSY);
3635 
3636 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3637 	if (!dev)
3638 		return ERR_PTR(-ENOMEM);
3639 
3640 	if (list_empty(&ffs_devices)) {
3641 		ret = functionfs_init();
3642 		if (ret) {
3643 			kfree(dev);
3644 			return ERR_PTR(ret);
3645 		}
3646 	}
3647 
3648 	list_add(&dev->entry, &ffs_devices);
3649 
3650 	return dev;
3651 }
3652 
3653 int ffs_name_dev(struct ffs_dev *dev, const char *name)
3654 {
3655 	struct ffs_dev *existing;
3656 	int ret = 0;
3657 
3658 	ffs_dev_lock();
3659 
3660 	existing = _ffs_do_find_dev(name);
3661 	if (!existing)
3662 		strlcpy(dev->name, name, ARRAY_SIZE(dev->name));
3663 	else if (existing != dev)
3664 		ret = -EBUSY;
3665 
3666 	ffs_dev_unlock();
3667 
3668 	return ret;
3669 }
3670 EXPORT_SYMBOL_GPL(ffs_name_dev);
3671 
3672 int ffs_single_dev(struct ffs_dev *dev)
3673 {
3674 	int ret;
3675 
3676 	ret = 0;
3677 	ffs_dev_lock();
3678 
3679 	if (!list_is_singular(&ffs_devices))
3680 		ret = -EBUSY;
3681 	else
3682 		dev->single = true;
3683 
3684 	ffs_dev_unlock();
3685 	return ret;
3686 }
3687 EXPORT_SYMBOL_GPL(ffs_single_dev);
3688 
3689 /*
3690  * ffs_lock must be taken by the caller of this function
3691  */
3692 static void _ffs_free_dev(struct ffs_dev *dev)
3693 {
3694 	list_del(&dev->entry);
3695 
3696 	kfree(dev);
3697 	if (list_empty(&ffs_devices))
3698 		functionfs_cleanup();
3699 }
3700 
3701 static int ffs_acquire_dev(const char *dev_name, struct ffs_data *ffs_data)
3702 {
3703 	int ret = 0;
3704 	struct ffs_dev *ffs_dev;
3705 
3706 	ENTER();
3707 	ffs_dev_lock();
3708 
3709 	ffs_dev = _ffs_find_dev(dev_name);
3710 	if (!ffs_dev) {
3711 		ret = -ENOENT;
3712 	} else if (ffs_dev->mounted) {
3713 		ret = -EBUSY;
3714 	} else if (ffs_dev->ffs_acquire_dev_callback &&
3715 		   ffs_dev->ffs_acquire_dev_callback(ffs_dev)) {
3716 		ret = -ENOENT;
3717 	} else {
3718 		ffs_dev->mounted = true;
3719 		ffs_dev->ffs_data = ffs_data;
3720 		ffs_data->private_data = ffs_dev;
3721 	}
3722 
3723 	ffs_dev_unlock();
3724 	return ret;
3725 }
3726 
3727 static void ffs_release_dev(struct ffs_dev *ffs_dev)
3728 {
3729 	ENTER();
3730 	ffs_dev_lock();
3731 
3732 	if (ffs_dev && ffs_dev->mounted) {
3733 		ffs_dev->mounted = false;
3734 		if (ffs_dev->ffs_data) {
3735 			ffs_dev->ffs_data->private_data = NULL;
3736 			ffs_dev->ffs_data = NULL;
3737 		}
3738 
3739 		if (ffs_dev->ffs_release_dev_callback)
3740 			ffs_dev->ffs_release_dev_callback(ffs_dev);
3741 	}
3742 
3743 	ffs_dev_unlock();
3744 }
3745 
3746 static int ffs_ready(struct ffs_data *ffs)
3747 {
3748 	struct ffs_dev *ffs_obj;
3749 	int ret = 0;
3750 
3751 	ENTER();
3752 	ffs_dev_lock();
3753 
3754 	ffs_obj = ffs->private_data;
3755 	if (!ffs_obj) {
3756 		ret = -EINVAL;
3757 		goto done;
3758 	}
3759 	if (WARN_ON(ffs_obj->desc_ready)) {
3760 		ret = -EBUSY;
3761 		goto done;
3762 	}
3763 
3764 	ffs_obj->desc_ready = true;
3765 
3766 	if (ffs_obj->ffs_ready_callback) {
3767 		ret = ffs_obj->ffs_ready_callback(ffs);
3768 		if (ret)
3769 			goto done;
3770 	}
3771 
3772 	set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3773 done:
3774 	ffs_dev_unlock();
3775 	return ret;
3776 }
3777 
3778 static void ffs_closed(struct ffs_data *ffs)
3779 {
3780 	struct ffs_dev *ffs_obj;
3781 	struct f_fs_opts *opts;
3782 	struct config_item *ci;
3783 
3784 	ENTER();
3785 	ffs_dev_lock();
3786 
3787 	ffs_obj = ffs->private_data;
3788 	if (!ffs_obj)
3789 		goto done;
3790 
3791 	ffs_obj->desc_ready = false;
3792 
3793 	if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3794 	    ffs_obj->ffs_closed_callback)
3795 		ffs_obj->ffs_closed_callback(ffs);
3796 
3797 	if (ffs_obj->opts)
3798 		opts = ffs_obj->opts;
3799 	else
3800 		goto done;
3801 
3802 	if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3803 	    || !kref_read(&opts->func_inst.group.cg_item.ci_kref))
3804 		goto done;
3805 
3806 	ci = opts->func_inst.group.cg_item.ci_parent->ci_parent;
3807 	ffs_dev_unlock();
3808 
3809 	if (test_bit(FFS_FL_BOUND, &ffs->flags))
3810 		unregister_gadget_item(ci);
3811 	return;
3812 done:
3813 	ffs_dev_unlock();
3814 }
3815 
3816 /* Misc helper functions ****************************************************/
3817 
3818 static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3819 {
3820 	return nonblock
3821 		? mutex_trylock(mutex) ? 0 : -EAGAIN
3822 		: mutex_lock_interruptible(mutex);
3823 }
3824 
3825 static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3826 {
3827 	char *data;
3828 
3829 	if (!len)
3830 		return NULL;
3831 
3832 	data = memdup_user(buf, len);
3833 	if (IS_ERR(data))
3834 		return data;
3835 
3836 	pr_vdebug("Buffer from user space:\n");
3837 	ffs_dump_mem("", data, len);
3838 
3839 	return data;
3840 }
3841 
3842 DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3843 MODULE_LICENSE("GPL");
3844 MODULE_AUTHOR("Michal Nazarewicz");
3845