xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision abd064a19d81001412281501819622d1568309e0)
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 
31 #include "core.h"
32 #include "hw.h"
33 
34 /* conversion functions */
35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36 {
37 	return container_of(req, struct dwc2_hsotg_req, req);
38 }
39 
40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41 {
42 	return container_of(ep, struct dwc2_hsotg_ep, ep);
43 }
44 
45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46 {
47 	return container_of(gadget, struct dwc2_hsotg, gadget);
48 }
49 
50 static inline void dwc2_set_bit(void __iomem *ptr, u32 val)
51 {
52 	dwc2_writel(dwc2_readl(ptr) | val, ptr);
53 }
54 
55 static inline void dwc2_clear_bit(void __iomem *ptr, u32 val)
56 {
57 	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
58 }
59 
60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 						u32 ep_index, u32 dir_in)
62 {
63 	if (dir_in)
64 		return hsotg->eps_in[ep_index];
65 	else
66 		return hsotg->eps_out[ep_index];
67 }
68 
69 /* forward declaration of functions */
70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71 
72 /**
73  * using_dma - return the DMA status of the driver.
74  * @hsotg: The driver state.
75  *
76  * Return true if we're using DMA.
77  *
78  * Currently, we have the DMA support code worked into everywhere
79  * that needs it, but the AMBA DMA implementation in the hardware can
80  * only DMA from 32bit aligned addresses. This means that gadgets such
81  * as the CDC Ethernet cannot work as they often pass packets which are
82  * not 32bit aligned.
83  *
84  * Unfortunately the choice to use DMA or not is global to the controller
85  * and seems to be only settable when the controller is being put through
86  * a core reset. This means we either need to fix the gadgets to take
87  * account of DMA alignment, or add bounce buffers (yuerk).
88  *
89  * g_using_dma is set depending on dts flag.
90  */
91 static inline bool using_dma(struct dwc2_hsotg *hsotg)
92 {
93 	return hsotg->params.g_dma;
94 }
95 
96 /*
97  * using_desc_dma - return the descriptor DMA status of the driver.
98  * @hsotg: The driver state.
99  *
100  * Return true if we're using descriptor DMA.
101  */
102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
103 {
104 	return hsotg->params.g_dma_desc;
105 }
106 
107 /**
108  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
109  * @hs_ep: The endpoint
110  * @increment: The value to increment by
111  *
112  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
113  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
114  */
115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
116 {
117 	hs_ep->target_frame += hs_ep->interval;
118 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
119 		hs_ep->frame_overrun = 1;
120 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
121 	} else {
122 		hs_ep->frame_overrun = 0;
123 	}
124 }
125 
126 /**
127  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
128  * @hsotg: The device state
129  * @ints: A bitmask of the interrupts to enable
130  */
131 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
132 {
133 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
134 	u32 new_gsintmsk;
135 
136 	new_gsintmsk = gsintmsk | ints;
137 
138 	if (new_gsintmsk != gsintmsk) {
139 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
140 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
141 	}
142 }
143 
144 /**
145  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
146  * @hsotg: The device state
147  * @ints: A bitmask of the interrupts to enable
148  */
149 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
150 {
151 	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
152 	u32 new_gsintmsk;
153 
154 	new_gsintmsk = gsintmsk & ~ints;
155 
156 	if (new_gsintmsk != gsintmsk)
157 		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
158 }
159 
160 /**
161  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
162  * @hsotg: The device state
163  * @ep: The endpoint index
164  * @dir_in: True if direction is in.
165  * @en: The enable value, true to enable
166  *
167  * Set or clear the mask for an individual endpoint's interrupt
168  * request.
169  */
170 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
171 				  unsigned int ep, unsigned int dir_in,
172 				 unsigned int en)
173 {
174 	unsigned long flags;
175 	u32 bit = 1 << ep;
176 	u32 daint;
177 
178 	if (!dir_in)
179 		bit <<= 16;
180 
181 	local_irq_save(flags);
182 	daint = dwc2_readl(hsotg->regs + DAINTMSK);
183 	if (en)
184 		daint |= bit;
185 	else
186 		daint &= ~bit;
187 	dwc2_writel(daint, hsotg->regs + DAINTMSK);
188 	local_irq_restore(flags);
189 }
190 
191 /**
192  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
193  */
194 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
195 {
196 	if (hsotg->hw_params.en_multiple_tx_fifo)
197 		/* In dedicated FIFO mode we need count of IN EPs */
198 		return hsotg->hw_params.num_dev_in_eps;
199 	else
200 		/* In shared FIFO mode we need count of Periodic IN EPs */
201 		return hsotg->hw_params.num_dev_perio_in_ep;
202 }
203 
204 /**
205  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
206  * device mode TX FIFOs
207  */
208 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
209 {
210 	int addr;
211 	int tx_addr_max;
212 	u32 np_tx_fifo_size;
213 
214 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
215 				hsotg->params.g_np_tx_fifo_size);
216 
217 	/* Get Endpoint Info Control block size in DWORDs. */
218 	tx_addr_max = hsotg->hw_params.total_fifo_size;
219 
220 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
221 	if (tx_addr_max <= addr)
222 		return 0;
223 
224 	return tx_addr_max - addr;
225 }
226 
227 /**
228  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
229  * TX FIFOs
230  */
231 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
232 {
233 	int tx_fifo_count;
234 	int tx_fifo_depth;
235 
236 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
237 
238 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
239 
240 	if (!tx_fifo_count)
241 		return tx_fifo_depth;
242 	else
243 		return tx_fifo_depth / tx_fifo_count;
244 }
245 
246 /**
247  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
248  * @hsotg: The device instance.
249  */
250 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
251 {
252 	unsigned int ep;
253 	unsigned int addr;
254 	int timeout;
255 
256 	u32 val;
257 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
258 
259 	/* Reset fifo map if not correctly cleared during previous session */
260 	WARN_ON(hsotg->fifo_map);
261 	hsotg->fifo_map = 0;
262 
263 	/* set RX/NPTX FIFO sizes */
264 	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
265 	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
266 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
267 		    hsotg->regs + GNPTXFSIZ);
268 
269 	/*
270 	 * arange all the rest of the TX FIFOs, as some versions of this
271 	 * block have overlapping default addresses. This also ensures
272 	 * that if the settings have been changed, then they are set to
273 	 * known values.
274 	 */
275 
276 	/* start at the end of the GNPTXFSIZ, rounded up */
277 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
278 
279 	/*
280 	 * Configure fifos sizes from provided configuration and assign
281 	 * them to endpoints dynamically according to maxpacket size value of
282 	 * given endpoint.
283 	 */
284 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
285 		if (!txfsz[ep])
286 			continue;
287 		val = addr;
288 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
289 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
290 			  "insufficient fifo memory");
291 		addr += txfsz[ep];
292 
293 		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
294 		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
295 	}
296 
297 	dwc2_writel(hsotg->hw_params.total_fifo_size |
298 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
299 		    hsotg->regs + GDFIFOCFG);
300 	/*
301 	 * according to p428 of the design guide, we need to ensure that
302 	 * all fifos are flushed before continuing
303 	 */
304 
305 	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
306 	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
307 
308 	/* wait until the fifos are both flushed */
309 	timeout = 100;
310 	while (1) {
311 		val = dwc2_readl(hsotg->regs + GRSTCTL);
312 
313 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
314 			break;
315 
316 		if (--timeout == 0) {
317 			dev_err(hsotg->dev,
318 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
319 				__func__, val);
320 			break;
321 		}
322 
323 		udelay(1);
324 	}
325 
326 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
327 }
328 
329 /**
330  * @ep: USB endpoint to allocate request for.
331  * @flags: Allocation flags
332  *
333  * Allocate a new USB request structure appropriate for the specified endpoint
334  */
335 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
336 						       gfp_t flags)
337 {
338 	struct dwc2_hsotg_req *req;
339 
340 	req = kzalloc(sizeof(*req), flags);
341 	if (!req)
342 		return NULL;
343 
344 	INIT_LIST_HEAD(&req->queue);
345 
346 	return &req->req;
347 }
348 
349 /**
350  * is_ep_periodic - return true if the endpoint is in periodic mode.
351  * @hs_ep: The endpoint to query.
352  *
353  * Returns true if the endpoint is in periodic mode, meaning it is being
354  * used for an Interrupt or ISO transfer.
355  */
356 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
357 {
358 	return hs_ep->periodic;
359 }
360 
361 /**
362  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
363  * @hsotg: The device state.
364  * @hs_ep: The endpoint for the request
365  * @hs_req: The request being processed.
366  *
367  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
368  * of a request to ensure the buffer is ready for access by the caller.
369  */
370 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
371 				 struct dwc2_hsotg_ep *hs_ep,
372 				struct dwc2_hsotg_req *hs_req)
373 {
374 	struct usb_request *req = &hs_req->req;
375 
376 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
377 }
378 
379 /*
380  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
381  * for Control endpoint
382  * @hsotg: The device state.
383  *
384  * This function will allocate 4 descriptor chains for EP 0: 2 for
385  * Setup stage, per one for IN and OUT data/status transactions.
386  */
387 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
388 {
389 	hsotg->setup_desc[0] =
390 		dmam_alloc_coherent(hsotg->dev,
391 				    sizeof(struct dwc2_dma_desc),
392 				    &hsotg->setup_desc_dma[0],
393 				    GFP_KERNEL);
394 	if (!hsotg->setup_desc[0])
395 		goto fail;
396 
397 	hsotg->setup_desc[1] =
398 		dmam_alloc_coherent(hsotg->dev,
399 				    sizeof(struct dwc2_dma_desc),
400 				    &hsotg->setup_desc_dma[1],
401 				    GFP_KERNEL);
402 	if (!hsotg->setup_desc[1])
403 		goto fail;
404 
405 	hsotg->ctrl_in_desc =
406 		dmam_alloc_coherent(hsotg->dev,
407 				    sizeof(struct dwc2_dma_desc),
408 				    &hsotg->ctrl_in_desc_dma,
409 				    GFP_KERNEL);
410 	if (!hsotg->ctrl_in_desc)
411 		goto fail;
412 
413 	hsotg->ctrl_out_desc =
414 		dmam_alloc_coherent(hsotg->dev,
415 				    sizeof(struct dwc2_dma_desc),
416 				    &hsotg->ctrl_out_desc_dma,
417 				    GFP_KERNEL);
418 	if (!hsotg->ctrl_out_desc)
419 		goto fail;
420 
421 	return 0;
422 
423 fail:
424 	return -ENOMEM;
425 }
426 
427 /**
428  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
429  * @hsotg: The controller state.
430  * @hs_ep: The endpoint we're going to write for.
431  * @hs_req: The request to write data for.
432  *
433  * This is called when the TxFIFO has some space in it to hold a new
434  * transmission and we have something to give it. The actual setup of
435  * the data size is done elsewhere, so all we have to do is to actually
436  * write the data.
437  *
438  * The return value is zero if there is more space (or nothing was done)
439  * otherwise -ENOSPC is returned if the FIFO space was used up.
440  *
441  * This routine is only needed for PIO
442  */
443 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
444 				 struct dwc2_hsotg_ep *hs_ep,
445 				struct dwc2_hsotg_req *hs_req)
446 {
447 	bool periodic = is_ep_periodic(hs_ep);
448 	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
449 	int buf_pos = hs_req->req.actual;
450 	int to_write = hs_ep->size_loaded;
451 	void *data;
452 	int can_write;
453 	int pkt_round;
454 	int max_transfer;
455 
456 	to_write -= (buf_pos - hs_ep->last_load);
457 
458 	/* if there's nothing to write, get out early */
459 	if (to_write == 0)
460 		return 0;
461 
462 	if (periodic && !hsotg->dedicated_fifos) {
463 		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
464 		int size_left;
465 		int size_done;
466 
467 		/*
468 		 * work out how much data was loaded so we can calculate
469 		 * how much data is left in the fifo.
470 		 */
471 
472 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
473 
474 		/*
475 		 * if shared fifo, we cannot write anything until the
476 		 * previous data has been completely sent.
477 		 */
478 		if (hs_ep->fifo_load != 0) {
479 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
480 			return -ENOSPC;
481 		}
482 
483 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
484 			__func__, size_left,
485 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
486 
487 		/* how much of the data has moved */
488 		size_done = hs_ep->size_loaded - size_left;
489 
490 		/* how much data is left in the fifo */
491 		can_write = hs_ep->fifo_load - size_done;
492 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
493 			__func__, can_write);
494 
495 		can_write = hs_ep->fifo_size - can_write;
496 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
497 			__func__, can_write);
498 
499 		if (can_write <= 0) {
500 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
501 			return -ENOSPC;
502 		}
503 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
504 		can_write = dwc2_readl(hsotg->regs +
505 				DTXFSTS(hs_ep->fifo_index));
506 
507 		can_write &= 0xffff;
508 		can_write *= 4;
509 	} else {
510 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
511 			dev_dbg(hsotg->dev,
512 				"%s: no queue slots available (0x%08x)\n",
513 				__func__, gnptxsts);
514 
515 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
516 			return -ENOSPC;
517 		}
518 
519 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
520 		can_write *= 4;	/* fifo size is in 32bit quantities. */
521 	}
522 
523 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
524 
525 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
526 		__func__, gnptxsts, can_write, to_write, max_transfer);
527 
528 	/*
529 	 * limit to 512 bytes of data, it seems at least on the non-periodic
530 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
531 	 * fragment of the end of the transfer in it.
532 	 */
533 	if (can_write > 512 && !periodic)
534 		can_write = 512;
535 
536 	/*
537 	 * limit the write to one max-packet size worth of data, but allow
538 	 * the transfer to return that it did not run out of fifo space
539 	 * doing it.
540 	 */
541 	if (to_write > max_transfer) {
542 		to_write = max_transfer;
543 
544 		/* it's needed only when we do not use dedicated fifos */
545 		if (!hsotg->dedicated_fifos)
546 			dwc2_hsotg_en_gsint(hsotg,
547 					    periodic ? GINTSTS_PTXFEMP :
548 					   GINTSTS_NPTXFEMP);
549 	}
550 
551 	/* see if we can write data */
552 
553 	if (to_write > can_write) {
554 		to_write = can_write;
555 		pkt_round = to_write % max_transfer;
556 
557 		/*
558 		 * Round the write down to an
559 		 * exact number of packets.
560 		 *
561 		 * Note, we do not currently check to see if we can ever
562 		 * write a full packet or not to the FIFO.
563 		 */
564 
565 		if (pkt_round)
566 			to_write -= pkt_round;
567 
568 		/*
569 		 * enable correct FIFO interrupt to alert us when there
570 		 * is more room left.
571 		 */
572 
573 		/* it's needed only when we do not use dedicated fifos */
574 		if (!hsotg->dedicated_fifos)
575 			dwc2_hsotg_en_gsint(hsotg,
576 					    periodic ? GINTSTS_PTXFEMP :
577 					   GINTSTS_NPTXFEMP);
578 	}
579 
580 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
581 		to_write, hs_req->req.length, can_write, buf_pos);
582 
583 	if (to_write <= 0)
584 		return -ENOSPC;
585 
586 	hs_req->req.actual = buf_pos + to_write;
587 	hs_ep->total_data += to_write;
588 
589 	if (periodic)
590 		hs_ep->fifo_load += to_write;
591 
592 	to_write = DIV_ROUND_UP(to_write, 4);
593 	data = hs_req->req.buf + buf_pos;
594 
595 	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
596 
597 	return (to_write >= can_write) ? -ENOSPC : 0;
598 }
599 
600 /**
601  * get_ep_limit - get the maximum data legnth for this endpoint
602  * @hs_ep: The endpoint
603  *
604  * Return the maximum data that can be queued in one go on a given endpoint
605  * so that transfers that are too long can be split.
606  */
607 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
608 {
609 	int index = hs_ep->index;
610 	unsigned int maxsize;
611 	unsigned int maxpkt;
612 
613 	if (index != 0) {
614 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
615 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
616 	} else {
617 		maxsize = 64 + 64;
618 		if (hs_ep->dir_in)
619 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
620 		else
621 			maxpkt = 2;
622 	}
623 
624 	/* we made the constant loading easier above by using +1 */
625 	maxpkt--;
626 	maxsize--;
627 
628 	/*
629 	 * constrain by packet count if maxpkts*pktsize is greater
630 	 * than the length register size.
631 	 */
632 
633 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
634 		maxsize = maxpkt * hs_ep->ep.maxpacket;
635 
636 	return maxsize;
637 }
638 
639 /**
640  * dwc2_hsotg_read_frameno - read current frame number
641  * @hsotg: The device instance
642  *
643  * Return the current frame number
644  */
645 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
646 {
647 	u32 dsts;
648 
649 	dsts = dwc2_readl(hsotg->regs + DSTS);
650 	dsts &= DSTS_SOFFN_MASK;
651 	dsts >>= DSTS_SOFFN_SHIFT;
652 
653 	return dsts;
654 }
655 
656 /**
657  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
658  * DMA descriptor chain prepared for specific endpoint
659  * @hs_ep: The endpoint
660  *
661  * Return the maximum data that can be queued in one go on a given endpoint
662  * depending on its descriptor chain capacity so that transfers that
663  * are too long can be split.
664  */
665 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
666 {
667 	int is_isoc = hs_ep->isochronous;
668 	unsigned int maxsize;
669 
670 	if (is_isoc)
671 		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
672 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
673 	else
674 		maxsize = DEV_DMA_NBYTES_LIMIT;
675 
676 	/* Above size of one descriptor was chosen, multiple it */
677 	maxsize *= MAX_DMA_DESC_NUM_GENERIC;
678 
679 	return maxsize;
680 }
681 
682 /*
683  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
684  * @hs_ep: The endpoint
685  * @mask: RX/TX bytes mask to be defined
686  *
687  * Returns maximum data payload for one descriptor after analyzing endpoint
688  * characteristics.
689  * DMA descriptor transfer bytes limit depends on EP type:
690  * Control out - MPS,
691  * Isochronous - descriptor rx/tx bytes bitfield limit,
692  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
693  * have concatenations from various descriptors within one packet.
694  *
695  * Selects corresponding mask for RX/TX bytes as well.
696  */
697 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
698 {
699 	u32 mps = hs_ep->ep.maxpacket;
700 	int dir_in = hs_ep->dir_in;
701 	u32 desc_size = 0;
702 
703 	if (!hs_ep->index && !dir_in) {
704 		desc_size = mps;
705 		*mask = DEV_DMA_NBYTES_MASK;
706 	} else if (hs_ep->isochronous) {
707 		if (dir_in) {
708 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
709 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
710 		} else {
711 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
712 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
713 		}
714 	} else {
715 		desc_size = DEV_DMA_NBYTES_LIMIT;
716 		*mask = DEV_DMA_NBYTES_MASK;
717 
718 		/* Round down desc_size to be mps multiple */
719 		desc_size -= desc_size % mps;
720 	}
721 
722 	return desc_size;
723 }
724 
725 /*
726  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
727  * @hs_ep: The endpoint
728  * @dma_buff: DMA address to use
729  * @len: Length of the transfer
730  *
731  * This function will iterate over descriptor chain and fill its entries
732  * with corresponding information based on transfer data.
733  */
734 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
735 						 dma_addr_t dma_buff,
736 						 unsigned int len)
737 {
738 	struct dwc2_hsotg *hsotg = hs_ep->parent;
739 	int dir_in = hs_ep->dir_in;
740 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
741 	u32 mps = hs_ep->ep.maxpacket;
742 	u32 maxsize = 0;
743 	u32 offset = 0;
744 	u32 mask = 0;
745 	int i;
746 
747 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
748 
749 	hs_ep->desc_count = (len / maxsize) +
750 				((len % maxsize) ? 1 : 0);
751 	if (len == 0)
752 		hs_ep->desc_count = 1;
753 
754 	for (i = 0; i < hs_ep->desc_count; ++i) {
755 		desc->status = 0;
756 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
757 				 << DEV_DMA_BUFF_STS_SHIFT);
758 
759 		if (len > maxsize) {
760 			if (!hs_ep->index && !dir_in)
761 				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
762 
763 			desc->status |= (maxsize <<
764 						DEV_DMA_NBYTES_SHIFT & mask);
765 			desc->buf = dma_buff + offset;
766 
767 			len -= maxsize;
768 			offset += maxsize;
769 		} else {
770 			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
771 
772 			if (dir_in)
773 				desc->status |= (len % mps) ? DEV_DMA_SHORT :
774 					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
775 			if (len > maxsize)
776 				dev_err(hsotg->dev, "wrong len %d\n", len);
777 
778 			desc->status |=
779 				len << DEV_DMA_NBYTES_SHIFT & mask;
780 			desc->buf = dma_buff + offset;
781 		}
782 
783 		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
784 		desc->status |= (DEV_DMA_BUFF_STS_HREADY
785 				 << DEV_DMA_BUFF_STS_SHIFT);
786 		desc++;
787 	}
788 }
789 
790 /*
791  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
792  * @hs_ep: The isochronous endpoint.
793  * @dma_buff: usb requests dma buffer.
794  * @len: usb request transfer length.
795  *
796  * Finds out index of first free entry either in the bottom or up half of
797  * descriptor chain depend on which is under SW control and not processed
798  * by HW. Then fills that descriptor with the data of the arrived usb request,
799  * frame info, sets Last and IOC bits increments next_desc. If filled
800  * descriptor is not the first one, removes L bit from the previous descriptor
801  * status.
802  */
803 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
804 				      dma_addr_t dma_buff, unsigned int len)
805 {
806 	struct dwc2_dma_desc *desc;
807 	struct dwc2_hsotg *hsotg = hs_ep->parent;
808 	u32 index;
809 	u32 maxsize = 0;
810 	u32 mask = 0;
811 
812 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
813 	if (len > maxsize) {
814 		dev_err(hsotg->dev, "wrong len %d\n", len);
815 		return -EINVAL;
816 	}
817 
818 	/*
819 	 * If SW has already filled half of chain, then return and wait for
820 	 * the other chain to be processed by HW.
821 	 */
822 	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
823 		return -EBUSY;
824 
825 	/* Increment frame number by interval for IN */
826 	if (hs_ep->dir_in)
827 		dwc2_gadget_incr_frame_num(hs_ep);
828 
829 	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
830 		 hs_ep->next_desc;
831 
832 	/* Sanity check of calculated index */
833 	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
834 	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
835 		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
836 		return -EINVAL;
837 	}
838 
839 	desc = &hs_ep->desc_list[index];
840 
841 	/* Clear L bit of previous desc if more than one entries in the chain */
842 	if (hs_ep->next_desc)
843 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
844 
845 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
846 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
847 
848 	desc->status = 0;
849 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
850 
851 	desc->buf = dma_buff;
852 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
853 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
854 
855 	if (hs_ep->dir_in) {
856 		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
857 				 DEV_DMA_ISOC_PID_MASK) |
858 				((len % hs_ep->ep.maxpacket) ?
859 				 DEV_DMA_SHORT : 0) |
860 				((hs_ep->target_frame <<
861 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
862 				 DEV_DMA_ISOC_FRNUM_MASK);
863 	}
864 
865 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
866 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
867 
868 	/* Update index of last configured entry in the chain */
869 	hs_ep->next_desc++;
870 
871 	return 0;
872 }
873 
874 /*
875  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
876  * @hs_ep: The isochronous endpoint.
877  *
878  * Prepare first descriptor chain for isochronous endpoints. Afterwards
879  * write DMA address to HW and enable the endpoint.
880  *
881  * Switch between descriptor chains via isoc_chain_num to give SW opportunity
882  * to prepare second descriptor chain while first one is being processed by HW.
883  */
884 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
885 {
886 	struct dwc2_hsotg *hsotg = hs_ep->parent;
887 	struct dwc2_hsotg_req *hs_req, *treq;
888 	int index = hs_ep->index;
889 	int ret;
890 	u32 dma_reg;
891 	u32 depctl;
892 	u32 ctrl;
893 
894 	if (list_empty(&hs_ep->queue)) {
895 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
896 		return;
897 	}
898 
899 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
900 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
901 						 hs_req->req.length);
902 		if (ret) {
903 			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
904 			break;
905 		}
906 	}
907 
908 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
909 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
910 
911 	/* write descriptor chain address to control register */
912 	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
913 
914 	ctrl = dwc2_readl(hsotg->regs + depctl);
915 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
916 	dwc2_writel(ctrl, hsotg->regs + depctl);
917 
918 	/* Switch ISOC descriptor chain number being processed by SW*/
919 	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
920 	hs_ep->next_desc = 0;
921 }
922 
923 /**
924  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
925  * @hsotg: The controller state.
926  * @hs_ep: The endpoint to process a request for
927  * @hs_req: The request to start.
928  * @continuing: True if we are doing more for the current request.
929  *
930  * Start the given request running by setting the endpoint registers
931  * appropriately, and writing any data to the FIFOs.
932  */
933 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
934 				 struct dwc2_hsotg_ep *hs_ep,
935 				struct dwc2_hsotg_req *hs_req,
936 				bool continuing)
937 {
938 	struct usb_request *ureq = &hs_req->req;
939 	int index = hs_ep->index;
940 	int dir_in = hs_ep->dir_in;
941 	u32 epctrl_reg;
942 	u32 epsize_reg;
943 	u32 epsize;
944 	u32 ctrl;
945 	unsigned int length;
946 	unsigned int packets;
947 	unsigned int maxreq;
948 	unsigned int dma_reg;
949 
950 	if (index != 0) {
951 		if (hs_ep->req && !continuing) {
952 			dev_err(hsotg->dev, "%s: active request\n", __func__);
953 			WARN_ON(1);
954 			return;
955 		} else if (hs_ep->req != hs_req && continuing) {
956 			dev_err(hsotg->dev,
957 				"%s: continue different req\n", __func__);
958 			WARN_ON(1);
959 			return;
960 		}
961 	}
962 
963 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
964 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
965 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
966 
967 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
968 		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
969 		hs_ep->dir_in ? "in" : "out");
970 
971 	/* If endpoint is stalled, we will restart request later */
972 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
973 
974 	if (index && ctrl & DXEPCTL_STALL) {
975 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
976 		return;
977 	}
978 
979 	length = ureq->length - ureq->actual;
980 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
981 		ureq->length, ureq->actual);
982 
983 	if (!using_desc_dma(hsotg))
984 		maxreq = get_ep_limit(hs_ep);
985 	else
986 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
987 
988 	if (length > maxreq) {
989 		int round = maxreq % hs_ep->ep.maxpacket;
990 
991 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
992 			__func__, length, maxreq, round);
993 
994 		/* round down to multiple of packets */
995 		if (round)
996 			maxreq -= round;
997 
998 		length = maxreq;
999 	}
1000 
1001 	if (length)
1002 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1003 	else
1004 		packets = 1;	/* send one packet if length is zero. */
1005 
1006 	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1007 		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1008 		return;
1009 	}
1010 
1011 	if (dir_in && index != 0)
1012 		if (hs_ep->isochronous)
1013 			epsize = DXEPTSIZ_MC(packets);
1014 		else
1015 			epsize = DXEPTSIZ_MC(1);
1016 	else
1017 		epsize = 0;
1018 
1019 	/*
1020 	 * zero length packet should be programmed on its own and should not
1021 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1022 	 */
1023 	if (dir_in && ureq->zero && !continuing) {
1024 		/* Test if zlp is actually required. */
1025 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1026 		    !(ureq->length % hs_ep->ep.maxpacket))
1027 			hs_ep->send_zlp = 1;
1028 	}
1029 
1030 	epsize |= DXEPTSIZ_PKTCNT(packets);
1031 	epsize |= DXEPTSIZ_XFERSIZE(length);
1032 
1033 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1034 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1035 
1036 	/* store the request as the current one we're doing */
1037 	hs_ep->req = hs_req;
1038 
1039 	if (using_desc_dma(hsotg)) {
1040 		u32 offset = 0;
1041 		u32 mps = hs_ep->ep.maxpacket;
1042 
1043 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1044 		if (!dir_in) {
1045 			if (!index)
1046 				length = mps;
1047 			else if (length % mps)
1048 				length += (mps - (length % mps));
1049 		}
1050 
1051 		/*
1052 		 * If more data to send, adjust DMA for EP0 out data stage.
1053 		 * ureq->dma stays unchanged, hence increment it by already
1054 		 * passed passed data count before starting new transaction.
1055 		 */
1056 		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1057 		    continuing)
1058 			offset = ureq->actual;
1059 
1060 		/* Fill DDMA chain entries */
1061 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1062 						     length);
1063 
1064 		/* write descriptor chain address to control register */
1065 		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1066 
1067 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1068 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1069 	} else {
1070 		/* write size / packets */
1071 		dwc2_writel(epsize, hsotg->regs + epsize_reg);
1072 
1073 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1074 			/*
1075 			 * write DMA address to control register, buffer
1076 			 * already synced by dwc2_hsotg_ep_queue().
1077 			 */
1078 
1079 			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
1080 
1081 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1082 				__func__, &ureq->dma, dma_reg);
1083 		}
1084 	}
1085 
1086 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1087 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1088 		dwc2_gadget_incr_frame_num(hs_ep);
1089 
1090 		if (hs_ep->target_frame & 0x1)
1091 			ctrl |= DXEPCTL_SETODDFR;
1092 		else
1093 			ctrl |= DXEPCTL_SETEVENFR;
1094 	}
1095 
1096 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1097 
1098 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1099 
1100 	/* For Setup request do not clear NAK */
1101 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1102 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1103 
1104 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1105 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1106 
1107 	/*
1108 	 * set these, it seems that DMA support increments past the end
1109 	 * of the packet buffer so we need to calculate the length from
1110 	 * this information.
1111 	 */
1112 	hs_ep->size_loaded = length;
1113 	hs_ep->last_load = ureq->actual;
1114 
1115 	if (dir_in && !using_dma(hsotg)) {
1116 		/* set these anyway, we may need them for non-periodic in */
1117 		hs_ep->fifo_load = 0;
1118 
1119 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1120 	}
1121 
1122 	/*
1123 	 * Note, trying to clear the NAK here causes problems with transmit
1124 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1125 	 */
1126 
1127 	/* check ep is enabled */
1128 	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1129 		dev_dbg(hsotg->dev,
1130 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1131 			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1132 
1133 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1134 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1135 
1136 	/* enable ep interrupts */
1137 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1138 }
1139 
1140 /**
1141  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1142  * @hsotg: The device state.
1143  * @hs_ep: The endpoint the request is on.
1144  * @req: The request being processed.
1145  *
1146  * We've been asked to queue a request, so ensure that the memory buffer
1147  * is correctly setup for DMA. If we've been passed an extant DMA address
1148  * then ensure the buffer has been synced to memory. If our buffer has no
1149  * DMA memory, then we map the memory and mark our request to allow us to
1150  * cleanup on completion.
1151  */
1152 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1153 			      struct dwc2_hsotg_ep *hs_ep,
1154 			     struct usb_request *req)
1155 {
1156 	int ret;
1157 
1158 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1159 	if (ret)
1160 		goto dma_error;
1161 
1162 	return 0;
1163 
1164 dma_error:
1165 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1166 		__func__, req->buf, req->length);
1167 
1168 	return -EIO;
1169 }
1170 
1171 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1172 						 struct dwc2_hsotg_ep *hs_ep,
1173 						 struct dwc2_hsotg_req *hs_req)
1174 {
1175 	void *req_buf = hs_req->req.buf;
1176 
1177 	/* If dma is not being used or buffer is aligned */
1178 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1179 		return 0;
1180 
1181 	WARN_ON(hs_req->saved_req_buf);
1182 
1183 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1184 		hs_ep->ep.name, req_buf, hs_req->req.length);
1185 
1186 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1187 	if (!hs_req->req.buf) {
1188 		hs_req->req.buf = req_buf;
1189 		dev_err(hsotg->dev,
1190 			"%s: unable to allocate memory for bounce buffer\n",
1191 			__func__);
1192 		return -ENOMEM;
1193 	}
1194 
1195 	/* Save actual buffer */
1196 	hs_req->saved_req_buf = req_buf;
1197 
1198 	if (hs_ep->dir_in)
1199 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1200 	return 0;
1201 }
1202 
1203 static void
1204 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1205 					 struct dwc2_hsotg_ep *hs_ep,
1206 					 struct dwc2_hsotg_req *hs_req)
1207 {
1208 	/* If dma is not being used or buffer was aligned */
1209 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1210 		return;
1211 
1212 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1213 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1214 
1215 	/* Copy data from bounce buffer on successful out transfer */
1216 	if (!hs_ep->dir_in && !hs_req->req.status)
1217 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1218 		       hs_req->req.actual);
1219 
1220 	/* Free bounce buffer */
1221 	kfree(hs_req->req.buf);
1222 
1223 	hs_req->req.buf = hs_req->saved_req_buf;
1224 	hs_req->saved_req_buf = NULL;
1225 }
1226 
1227 /**
1228  * dwc2_gadget_target_frame_elapsed - Checks target frame
1229  * @hs_ep: The driver endpoint to check
1230  *
1231  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1232  * corresponding transfer.
1233  */
1234 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1235 {
1236 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1237 	u32 target_frame = hs_ep->target_frame;
1238 	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1239 	bool frame_overrun = hs_ep->frame_overrun;
1240 
1241 	if (!frame_overrun && current_frame >= target_frame)
1242 		return true;
1243 
1244 	if (frame_overrun && current_frame >= target_frame &&
1245 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1246 		return true;
1247 
1248 	return false;
1249 }
1250 
1251 /*
1252  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1253  * @hsotg: The driver state
1254  * @hs_ep: the ep descriptor chain is for
1255  *
1256  * Called to update EP0 structure's pointers depend on stage of
1257  * control transfer.
1258  */
1259 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1260 					  struct dwc2_hsotg_ep *hs_ep)
1261 {
1262 	switch (hsotg->ep0_state) {
1263 	case DWC2_EP0_SETUP:
1264 	case DWC2_EP0_STATUS_OUT:
1265 		hs_ep->desc_list = hsotg->setup_desc[0];
1266 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1267 		break;
1268 	case DWC2_EP0_DATA_IN:
1269 	case DWC2_EP0_STATUS_IN:
1270 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1271 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1272 		break;
1273 	case DWC2_EP0_DATA_OUT:
1274 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1275 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1276 		break;
1277 	default:
1278 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1279 			hsotg->ep0_state);
1280 		return -EINVAL;
1281 	}
1282 
1283 	return 0;
1284 }
1285 
1286 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1287 			       gfp_t gfp_flags)
1288 {
1289 	struct dwc2_hsotg_req *hs_req = our_req(req);
1290 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1291 	struct dwc2_hsotg *hs = hs_ep->parent;
1292 	bool first;
1293 	int ret;
1294 
1295 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1296 		ep->name, req, req->length, req->buf, req->no_interrupt,
1297 		req->zero, req->short_not_ok);
1298 
1299 	/* Prevent new request submission when controller is suspended */
1300 	if (hs->lx_state == DWC2_L2) {
1301 		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1302 			__func__);
1303 		return -EAGAIN;
1304 	}
1305 
1306 	/* initialise status of the request */
1307 	INIT_LIST_HEAD(&hs_req->queue);
1308 	req->actual = 0;
1309 	req->status = -EINPROGRESS;
1310 
1311 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1312 	if (ret)
1313 		return ret;
1314 
1315 	/* if we're using DMA, sync the buffers as necessary */
1316 	if (using_dma(hs)) {
1317 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1318 		if (ret)
1319 			return ret;
1320 	}
1321 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1322 	if (using_desc_dma(hs) && !hs_ep->index) {
1323 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1324 		if (ret)
1325 			return ret;
1326 	}
1327 
1328 	first = list_empty(&hs_ep->queue);
1329 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1330 
1331 	/*
1332 	 * Handle DDMA isochronous transfers separately - just add new entry
1333 	 * to the half of descriptor chain that is not processed by HW.
1334 	 * Transfer will be started once SW gets either one of NAK or
1335 	 * OutTknEpDis interrupts.
1336 	 */
1337 	if (using_desc_dma(hs) && hs_ep->isochronous &&
1338 	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1339 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1340 						 hs_req->req.length);
1341 		if (ret)
1342 			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1343 
1344 		return 0;
1345 	}
1346 
1347 	if (first) {
1348 		if (!hs_ep->isochronous) {
1349 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1350 			return 0;
1351 		}
1352 
1353 		while (dwc2_gadget_target_frame_elapsed(hs_ep))
1354 			dwc2_gadget_incr_frame_num(hs_ep);
1355 
1356 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1357 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1358 	}
1359 	return 0;
1360 }
1361 
1362 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1363 				    gfp_t gfp_flags)
1364 {
1365 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1366 	struct dwc2_hsotg *hs = hs_ep->parent;
1367 	unsigned long flags = 0;
1368 	int ret = 0;
1369 
1370 	spin_lock_irqsave(&hs->lock, flags);
1371 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1372 	spin_unlock_irqrestore(&hs->lock, flags);
1373 
1374 	return ret;
1375 }
1376 
1377 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1378 				       struct usb_request *req)
1379 {
1380 	struct dwc2_hsotg_req *hs_req = our_req(req);
1381 
1382 	kfree(hs_req);
1383 }
1384 
1385 /**
1386  * dwc2_hsotg_complete_oursetup - setup completion callback
1387  * @ep: The endpoint the request was on.
1388  * @req: The request completed.
1389  *
1390  * Called on completion of any requests the driver itself
1391  * submitted that need cleaning up.
1392  */
1393 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1394 					 struct usb_request *req)
1395 {
1396 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1397 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1398 
1399 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1400 
1401 	dwc2_hsotg_ep_free_request(ep, req);
1402 }
1403 
1404 /**
1405  * ep_from_windex - convert control wIndex value to endpoint
1406  * @hsotg: The driver state.
1407  * @windex: The control request wIndex field (in host order).
1408  *
1409  * Convert the given wIndex into a pointer to an driver endpoint
1410  * structure, or return NULL if it is not a valid endpoint.
1411  */
1412 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1413 					    u32 windex)
1414 {
1415 	struct dwc2_hsotg_ep *ep;
1416 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1417 	int idx = windex & 0x7F;
1418 
1419 	if (windex >= 0x100)
1420 		return NULL;
1421 
1422 	if (idx > hsotg->num_of_eps)
1423 		return NULL;
1424 
1425 	ep = index_to_ep(hsotg, idx, dir);
1426 
1427 	if (idx && ep->dir_in != dir)
1428 		return NULL;
1429 
1430 	return ep;
1431 }
1432 
1433 /**
1434  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1435  * @hsotg: The driver state.
1436  * @testmode: requested usb test mode
1437  * Enable usb Test Mode requested by the Host.
1438  */
1439 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1440 {
1441 	int dctl = dwc2_readl(hsotg->regs + DCTL);
1442 
1443 	dctl &= ~DCTL_TSTCTL_MASK;
1444 	switch (testmode) {
1445 	case TEST_J:
1446 	case TEST_K:
1447 	case TEST_SE0_NAK:
1448 	case TEST_PACKET:
1449 	case TEST_FORCE_EN:
1450 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1451 		break;
1452 	default:
1453 		return -EINVAL;
1454 	}
1455 	dwc2_writel(dctl, hsotg->regs + DCTL);
1456 	return 0;
1457 }
1458 
1459 /**
1460  * dwc2_hsotg_send_reply - send reply to control request
1461  * @hsotg: The device state
1462  * @ep: Endpoint 0
1463  * @buff: Buffer for request
1464  * @length: Length of reply.
1465  *
1466  * Create a request and queue it on the given endpoint. This is useful as
1467  * an internal method of sending replies to certain control requests, etc.
1468  */
1469 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1470 				 struct dwc2_hsotg_ep *ep,
1471 				void *buff,
1472 				int length)
1473 {
1474 	struct usb_request *req;
1475 	int ret;
1476 
1477 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1478 
1479 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1480 	hsotg->ep0_reply = req;
1481 	if (!req) {
1482 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1483 		return -ENOMEM;
1484 	}
1485 
1486 	req->buf = hsotg->ep0_buff;
1487 	req->length = length;
1488 	/*
1489 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1490 	 * STATUS stage.
1491 	 */
1492 	req->zero = 0;
1493 	req->complete = dwc2_hsotg_complete_oursetup;
1494 
1495 	if (length)
1496 		memcpy(req->buf, buff, length);
1497 
1498 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1499 	if (ret) {
1500 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1501 		return ret;
1502 	}
1503 
1504 	return 0;
1505 }
1506 
1507 /**
1508  * dwc2_hsotg_process_req_status - process request GET_STATUS
1509  * @hsotg: The device state
1510  * @ctrl: USB control request
1511  */
1512 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1513 					 struct usb_ctrlrequest *ctrl)
1514 {
1515 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1516 	struct dwc2_hsotg_ep *ep;
1517 	__le16 reply;
1518 	int ret;
1519 
1520 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1521 
1522 	if (!ep0->dir_in) {
1523 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1524 		return -EINVAL;
1525 	}
1526 
1527 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1528 	case USB_RECIP_DEVICE:
1529 		/*
1530 		 * bit 0 => self powered
1531 		 * bit 1 => remote wakeup
1532 		 */
1533 		reply = cpu_to_le16(0);
1534 		break;
1535 
1536 	case USB_RECIP_INTERFACE:
1537 		/* currently, the data result should be zero */
1538 		reply = cpu_to_le16(0);
1539 		break;
1540 
1541 	case USB_RECIP_ENDPOINT:
1542 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1543 		if (!ep)
1544 			return -ENOENT;
1545 
1546 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1547 		break;
1548 
1549 	default:
1550 		return 0;
1551 	}
1552 
1553 	if (le16_to_cpu(ctrl->wLength) != 2)
1554 		return -EINVAL;
1555 
1556 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1557 	if (ret) {
1558 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1559 		return ret;
1560 	}
1561 
1562 	return 1;
1563 }
1564 
1565 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1566 
1567 /**
1568  * get_ep_head - return the first request on the endpoint
1569  * @hs_ep: The controller endpoint to get
1570  *
1571  * Get the first request on the endpoint.
1572  */
1573 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1574 {
1575 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1576 					queue);
1577 }
1578 
1579 /**
1580  * dwc2_gadget_start_next_request - Starts next request from ep queue
1581  * @hs_ep: Endpoint structure
1582  *
1583  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1584  * in its handler. Hence we need to unmask it here to be able to do
1585  * resynchronization.
1586  */
1587 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1588 {
1589 	u32 mask;
1590 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1591 	int dir_in = hs_ep->dir_in;
1592 	struct dwc2_hsotg_req *hs_req;
1593 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1594 
1595 	if (!list_empty(&hs_ep->queue)) {
1596 		hs_req = get_ep_head(hs_ep);
1597 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1598 		return;
1599 	}
1600 	if (!hs_ep->isochronous)
1601 		return;
1602 
1603 	if (dir_in) {
1604 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1605 			__func__);
1606 	} else {
1607 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1608 			__func__);
1609 		mask = dwc2_readl(hsotg->regs + epmsk_reg);
1610 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1611 		dwc2_writel(mask, hsotg->regs + epmsk_reg);
1612 	}
1613 }
1614 
1615 /**
1616  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1617  * @hsotg: The device state
1618  * @ctrl: USB control request
1619  */
1620 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1621 					  struct usb_ctrlrequest *ctrl)
1622 {
1623 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1624 	struct dwc2_hsotg_req *hs_req;
1625 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1626 	struct dwc2_hsotg_ep *ep;
1627 	int ret;
1628 	bool halted;
1629 	u32 recip;
1630 	u32 wValue;
1631 	u32 wIndex;
1632 
1633 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1634 		__func__, set ? "SET" : "CLEAR");
1635 
1636 	wValue = le16_to_cpu(ctrl->wValue);
1637 	wIndex = le16_to_cpu(ctrl->wIndex);
1638 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1639 
1640 	switch (recip) {
1641 	case USB_RECIP_DEVICE:
1642 		switch (wValue) {
1643 		case USB_DEVICE_TEST_MODE:
1644 			if ((wIndex & 0xff) != 0)
1645 				return -EINVAL;
1646 			if (!set)
1647 				return -EINVAL;
1648 
1649 			hsotg->test_mode = wIndex >> 8;
1650 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1651 			if (ret) {
1652 				dev_err(hsotg->dev,
1653 					"%s: failed to send reply\n", __func__);
1654 				return ret;
1655 			}
1656 			break;
1657 		default:
1658 			return -ENOENT;
1659 		}
1660 		break;
1661 
1662 	case USB_RECIP_ENDPOINT:
1663 		ep = ep_from_windex(hsotg, wIndex);
1664 		if (!ep) {
1665 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1666 				__func__, wIndex);
1667 			return -ENOENT;
1668 		}
1669 
1670 		switch (wValue) {
1671 		case USB_ENDPOINT_HALT:
1672 			halted = ep->halted;
1673 
1674 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1675 
1676 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1677 			if (ret) {
1678 				dev_err(hsotg->dev,
1679 					"%s: failed to send reply\n", __func__);
1680 				return ret;
1681 			}
1682 
1683 			/*
1684 			 * we have to complete all requests for ep if it was
1685 			 * halted, and the halt was cleared by CLEAR_FEATURE
1686 			 */
1687 
1688 			if (!set && halted) {
1689 				/*
1690 				 * If we have request in progress,
1691 				 * then complete it
1692 				 */
1693 				if (ep->req) {
1694 					hs_req = ep->req;
1695 					ep->req = NULL;
1696 					list_del_init(&hs_req->queue);
1697 					if (hs_req->req.complete) {
1698 						spin_unlock(&hsotg->lock);
1699 						usb_gadget_giveback_request(
1700 							&ep->ep, &hs_req->req);
1701 						spin_lock(&hsotg->lock);
1702 					}
1703 				}
1704 
1705 				/* If we have pending request, then start it */
1706 				if (!ep->req)
1707 					dwc2_gadget_start_next_request(ep);
1708 			}
1709 
1710 			break;
1711 
1712 		default:
1713 			return -ENOENT;
1714 		}
1715 		break;
1716 	default:
1717 		return -ENOENT;
1718 	}
1719 	return 1;
1720 }
1721 
1722 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1723 
1724 /**
1725  * dwc2_hsotg_stall_ep0 - stall ep0
1726  * @hsotg: The device state
1727  *
1728  * Set stall for ep0 as response for setup request.
1729  */
1730 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1731 {
1732 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1733 	u32 reg;
1734 	u32 ctrl;
1735 
1736 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1737 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1738 
1739 	/*
1740 	 * DxEPCTL_Stall will be cleared by EP once it has
1741 	 * taken effect, so no need to clear later.
1742 	 */
1743 
1744 	ctrl = dwc2_readl(hsotg->regs + reg);
1745 	ctrl |= DXEPCTL_STALL;
1746 	ctrl |= DXEPCTL_CNAK;
1747 	dwc2_writel(ctrl, hsotg->regs + reg);
1748 
1749 	dev_dbg(hsotg->dev,
1750 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1751 		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1752 
1753 	 /*
1754 	  * complete won't be called, so we enqueue
1755 	  * setup request here
1756 	  */
1757 	 dwc2_hsotg_enqueue_setup(hsotg);
1758 }
1759 
1760 /**
1761  * dwc2_hsotg_process_control - process a control request
1762  * @hsotg: The device state
1763  * @ctrl: The control request received
1764  *
1765  * The controller has received the SETUP phase of a control request, and
1766  * needs to work out what to do next (and whether to pass it on to the
1767  * gadget driver).
1768  */
1769 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1770 				       struct usb_ctrlrequest *ctrl)
1771 {
1772 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1773 	int ret = 0;
1774 	u32 dcfg;
1775 
1776 	dev_dbg(hsotg->dev,
1777 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1778 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1779 		ctrl->wIndex, ctrl->wLength);
1780 
1781 	if (ctrl->wLength == 0) {
1782 		ep0->dir_in = 1;
1783 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1784 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1785 		ep0->dir_in = 1;
1786 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1787 	} else {
1788 		ep0->dir_in = 0;
1789 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1790 	}
1791 
1792 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1793 		switch (ctrl->bRequest) {
1794 		case USB_REQ_SET_ADDRESS:
1795 			hsotg->connected = 1;
1796 			dcfg = dwc2_readl(hsotg->regs + DCFG);
1797 			dcfg &= ~DCFG_DEVADDR_MASK;
1798 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1799 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1800 			dwc2_writel(dcfg, hsotg->regs + DCFG);
1801 
1802 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1803 
1804 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1805 			return;
1806 
1807 		case USB_REQ_GET_STATUS:
1808 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1809 			break;
1810 
1811 		case USB_REQ_CLEAR_FEATURE:
1812 		case USB_REQ_SET_FEATURE:
1813 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1814 			break;
1815 		}
1816 	}
1817 
1818 	/* as a fallback, try delivering it to the driver to deal with */
1819 
1820 	if (ret == 0 && hsotg->driver) {
1821 		spin_unlock(&hsotg->lock);
1822 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1823 		spin_lock(&hsotg->lock);
1824 		if (ret < 0)
1825 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1826 	}
1827 
1828 	/*
1829 	 * the request is either unhandlable, or is not formatted correctly
1830 	 * so respond with a STALL for the status stage to indicate failure.
1831 	 */
1832 
1833 	if (ret < 0)
1834 		dwc2_hsotg_stall_ep0(hsotg);
1835 }
1836 
1837 /**
1838  * dwc2_hsotg_complete_setup - completion of a setup transfer
1839  * @ep: The endpoint the request was on.
1840  * @req: The request completed.
1841  *
1842  * Called on completion of any requests the driver itself submitted for
1843  * EP0 setup packets
1844  */
1845 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1846 				      struct usb_request *req)
1847 {
1848 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1849 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1850 
1851 	if (req->status < 0) {
1852 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1853 		return;
1854 	}
1855 
1856 	spin_lock(&hsotg->lock);
1857 	if (req->actual == 0)
1858 		dwc2_hsotg_enqueue_setup(hsotg);
1859 	else
1860 		dwc2_hsotg_process_control(hsotg, req->buf);
1861 	spin_unlock(&hsotg->lock);
1862 }
1863 
1864 /**
1865  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1866  * @hsotg: The device state.
1867  *
1868  * Enqueue a request on EP0 if necessary to received any SETUP packets
1869  * received from the host.
1870  */
1871 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1872 {
1873 	struct usb_request *req = hsotg->ctrl_req;
1874 	struct dwc2_hsotg_req *hs_req = our_req(req);
1875 	int ret;
1876 
1877 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1878 
1879 	req->zero = 0;
1880 	req->length = 8;
1881 	req->buf = hsotg->ctrl_buff;
1882 	req->complete = dwc2_hsotg_complete_setup;
1883 
1884 	if (!list_empty(&hs_req->queue)) {
1885 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1886 		return;
1887 	}
1888 
1889 	hsotg->eps_out[0]->dir_in = 0;
1890 	hsotg->eps_out[0]->send_zlp = 0;
1891 	hsotg->ep0_state = DWC2_EP0_SETUP;
1892 
1893 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1894 	if (ret < 0) {
1895 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1896 		/*
1897 		 * Don't think there's much we can do other than watch the
1898 		 * driver fail.
1899 		 */
1900 	}
1901 }
1902 
1903 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1904 				   struct dwc2_hsotg_ep *hs_ep)
1905 {
1906 	u32 ctrl;
1907 	u8 index = hs_ep->index;
1908 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1909 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1910 
1911 	if (hs_ep->dir_in)
1912 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1913 			index);
1914 	else
1915 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1916 			index);
1917 	if (using_desc_dma(hsotg)) {
1918 		/* Not specific buffer needed for ep0 ZLP */
1919 		dma_addr_t dma = hs_ep->desc_list_dma;
1920 
1921 		if (!index)
1922 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1923 
1924 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1925 	} else {
1926 		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1927 			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1928 			    epsiz_reg);
1929 	}
1930 
1931 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1932 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1933 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1934 	ctrl |= DXEPCTL_USBACTEP;
1935 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1936 }
1937 
1938 /**
1939  * dwc2_hsotg_complete_request - complete a request given to us
1940  * @hsotg: The device state.
1941  * @hs_ep: The endpoint the request was on.
1942  * @hs_req: The request to complete.
1943  * @result: The result code (0 => Ok, otherwise errno)
1944  *
1945  * The given request has finished, so call the necessary completion
1946  * if it has one and then look to see if we can start a new request
1947  * on the endpoint.
1948  *
1949  * Note, expects the ep to already be locked as appropriate.
1950  */
1951 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1952 					struct dwc2_hsotg_ep *hs_ep,
1953 				       struct dwc2_hsotg_req *hs_req,
1954 				       int result)
1955 {
1956 	if (!hs_req) {
1957 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1958 		return;
1959 	}
1960 
1961 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1962 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1963 
1964 	/*
1965 	 * only replace the status if we've not already set an error
1966 	 * from a previous transaction
1967 	 */
1968 
1969 	if (hs_req->req.status == -EINPROGRESS)
1970 		hs_req->req.status = result;
1971 
1972 	if (using_dma(hsotg))
1973 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1974 
1975 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1976 
1977 	hs_ep->req = NULL;
1978 	list_del_init(&hs_req->queue);
1979 
1980 	/*
1981 	 * call the complete request with the locks off, just in case the
1982 	 * request tries to queue more work for this endpoint.
1983 	 */
1984 
1985 	if (hs_req->req.complete) {
1986 		spin_unlock(&hsotg->lock);
1987 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1988 		spin_lock(&hsotg->lock);
1989 	}
1990 
1991 	/* In DDMA don't need to proceed to starting of next ISOC request */
1992 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
1993 		return;
1994 
1995 	/*
1996 	 * Look to see if there is anything else to do. Note, the completion
1997 	 * of the previous request may have caused a new request to be started
1998 	 * so be careful when doing this.
1999 	 */
2000 
2001 	if (!hs_ep->req && result >= 0)
2002 		dwc2_gadget_start_next_request(hs_ep);
2003 }
2004 
2005 /*
2006  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2007  * @hs_ep: The endpoint the request was on.
2008  *
2009  * Get first request from the ep queue, determine descriptor on which complete
2010  * happened. SW based on isoc_chain_num discovers which half of the descriptor
2011  * chain is currently in use by HW, adjusts dma_address and calculates index
2012  * of completed descriptor based on the value of DEPDMA register. Update actual
2013  * length of request, giveback to gadget.
2014  */
2015 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2016 {
2017 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2018 	struct dwc2_hsotg_req *hs_req;
2019 	struct usb_request *ureq;
2020 	int index;
2021 	dma_addr_t dma_addr;
2022 	u32 dma_reg;
2023 	u32 depdma;
2024 	u32 desc_sts;
2025 	u32 mask;
2026 
2027 	hs_req = get_ep_head(hs_ep);
2028 	if (!hs_req) {
2029 		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2030 		return;
2031 	}
2032 	ureq = &hs_req->req;
2033 
2034 	dma_addr = hs_ep->desc_list_dma;
2035 
2036 	/*
2037 	 * If lower half of  descriptor chain is currently use by SW,
2038 	 * that means higher half is being processed by HW, so shift
2039 	 * DMA address to higher half of descriptor chain.
2040 	 */
2041 	if (!hs_ep->isoc_chain_num)
2042 		dma_addr += sizeof(struct dwc2_dma_desc) *
2043 			    (MAX_DMA_DESC_NUM_GENERIC / 2);
2044 
2045 	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
2046 	depdma = dwc2_readl(hsotg->regs + dma_reg);
2047 
2048 	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
2049 	desc_sts = hs_ep->desc_list[index].status;
2050 
2051 	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2052 	       DEV_DMA_ISOC_RX_NBYTES_MASK;
2053 	ureq->actual = ureq->length -
2054 		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
2055 
2056 	/* Adjust actual length for ISOC Out if length is not align of 4 */
2057 	if (!hs_ep->dir_in && ureq->length & 0x3)
2058 		ureq->actual += 4 - (ureq->length & 0x3);
2059 
2060 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2061 }
2062 
2063 /*
2064  * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2065  * @hs_ep: The isochronous endpoint to be re-enabled.
2066  *
2067  * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2068  * BNA (OUT endpoint) check the status of other half of descriptor chain that
2069  * was under SW control till HW was busy and restart the endpoint if needed.
2070  */
2071 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2072 {
2073 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2074 	u32 depctl;
2075 	u32 dma_reg;
2076 	u32 ctrl;
2077 	u32 dma_addr = hs_ep->desc_list_dma;
2078 	unsigned char index = hs_ep->index;
2079 
2080 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2081 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2082 
2083 	ctrl = dwc2_readl(hsotg->regs + depctl);
2084 
2085 	/*
2086 	 * EP was disabled if HW has processed last descriptor or BNA was set.
2087 	 * So restart ep if SW has prepared new descriptor chain in ep_queue
2088 	 * routine while HW was busy.
2089 	 */
2090 	if (!(ctrl & DXEPCTL_EPENA)) {
2091 		if (!hs_ep->next_desc) {
2092 			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2093 				__func__);
2094 			return;
2095 		}
2096 
2097 		dma_addr += sizeof(struct dwc2_dma_desc) *
2098 			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
2099 			    hs_ep->isoc_chain_num;
2100 		dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2101 
2102 		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2103 		dwc2_writel(ctrl, hsotg->regs + depctl);
2104 
2105 		/* Switch ISOC descriptor chain number being processed by SW*/
2106 		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2107 		hs_ep->next_desc = 0;
2108 
2109 		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2110 			__func__);
2111 	}
2112 }
2113 
2114 /**
2115  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2116  * @hsotg: The device state.
2117  * @ep_idx: The endpoint index for the data
2118  * @size: The size of data in the fifo, in bytes
2119  *
2120  * The FIFO status shows there is data to read from the FIFO for a given
2121  * endpoint, so sort out whether we need to read the data into a request
2122  * that has been made for that endpoint.
2123  */
2124 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2125 {
2126 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2127 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2128 	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2129 	int to_read;
2130 	int max_req;
2131 	int read_ptr;
2132 
2133 	if (!hs_req) {
2134 		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2135 		int ptr;
2136 
2137 		dev_dbg(hsotg->dev,
2138 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2139 			 __func__, size, ep_idx, epctl);
2140 
2141 		/* dump the data from the FIFO, we've nothing we can do */
2142 		for (ptr = 0; ptr < size; ptr += 4)
2143 			(void)dwc2_readl(fifo);
2144 
2145 		return;
2146 	}
2147 
2148 	to_read = size;
2149 	read_ptr = hs_req->req.actual;
2150 	max_req = hs_req->req.length - read_ptr;
2151 
2152 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2153 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2154 
2155 	if (to_read > max_req) {
2156 		/*
2157 		 * more data appeared than we where willing
2158 		 * to deal with in this request.
2159 		 */
2160 
2161 		/* currently we don't deal this */
2162 		WARN_ON_ONCE(1);
2163 	}
2164 
2165 	hs_ep->total_data += to_read;
2166 	hs_req->req.actual += to_read;
2167 	to_read = DIV_ROUND_UP(to_read, 4);
2168 
2169 	/*
2170 	 * note, we might over-write the buffer end by 3 bytes depending on
2171 	 * alignment of the data.
2172 	 */
2173 	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2174 }
2175 
2176 /**
2177  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2178  * @hsotg: The device instance
2179  * @dir_in: If IN zlp
2180  *
2181  * Generate a zero-length IN packet request for terminating a SETUP
2182  * transaction.
2183  *
2184  * Note, since we don't write any data to the TxFIFO, then it is
2185  * currently believed that we do not need to wait for any space in
2186  * the TxFIFO.
2187  */
2188 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2189 {
2190 	/* eps_out[0] is used in both directions */
2191 	hsotg->eps_out[0]->dir_in = dir_in;
2192 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2193 
2194 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2195 }
2196 
2197 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2198 					    u32 epctl_reg)
2199 {
2200 	u32 ctrl;
2201 
2202 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2203 	if (ctrl & DXEPCTL_EOFRNUM)
2204 		ctrl |= DXEPCTL_SETEVENFR;
2205 	else
2206 		ctrl |= DXEPCTL_SETODDFR;
2207 	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2208 }
2209 
2210 /*
2211  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2212  * @hs_ep - The endpoint on which transfer went
2213  *
2214  * Iterate over endpoints descriptor chain and get info on bytes remained
2215  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2216  */
2217 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2218 {
2219 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2220 	unsigned int bytes_rem = 0;
2221 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2222 	int i;
2223 	u32 status;
2224 
2225 	if (!desc)
2226 		return -EINVAL;
2227 
2228 	for (i = 0; i < hs_ep->desc_count; ++i) {
2229 		status = desc->status;
2230 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2231 
2232 		if (status & DEV_DMA_STS_MASK)
2233 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2234 				i, status & DEV_DMA_STS_MASK);
2235 	}
2236 
2237 	return bytes_rem;
2238 }
2239 
2240 /**
2241  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2242  * @hsotg: The device instance
2243  * @epnum: The endpoint received from
2244  *
2245  * The RXFIFO has delivered an OutDone event, which means that the data
2246  * transfer for an OUT endpoint has been completed, either by a short
2247  * packet or by the finish of a transfer.
2248  */
2249 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2250 {
2251 	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2252 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2253 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2254 	struct usb_request *req = &hs_req->req;
2255 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2256 	int result = 0;
2257 
2258 	if (!hs_req) {
2259 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2260 		return;
2261 	}
2262 
2263 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2264 		dev_dbg(hsotg->dev, "zlp packet received\n");
2265 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2266 		dwc2_hsotg_enqueue_setup(hsotg);
2267 		return;
2268 	}
2269 
2270 	if (using_desc_dma(hsotg))
2271 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2272 
2273 	if (using_dma(hsotg)) {
2274 		unsigned int size_done;
2275 
2276 		/*
2277 		 * Calculate the size of the transfer by checking how much
2278 		 * is left in the endpoint size register and then working it
2279 		 * out from the amount we loaded for the transfer.
2280 		 *
2281 		 * We need to do this as DMA pointers are always 32bit aligned
2282 		 * so may overshoot/undershoot the transfer.
2283 		 */
2284 
2285 		size_done = hs_ep->size_loaded - size_left;
2286 		size_done += hs_ep->last_load;
2287 
2288 		req->actual = size_done;
2289 	}
2290 
2291 	/* if there is more request to do, schedule new transfer */
2292 	if (req->actual < req->length && size_left == 0) {
2293 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2294 		return;
2295 	}
2296 
2297 	if (req->actual < req->length && req->short_not_ok) {
2298 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2299 			__func__, req->actual, req->length);
2300 
2301 		/*
2302 		 * todo - what should we return here? there's no one else
2303 		 * even bothering to check the status.
2304 		 */
2305 	}
2306 
2307 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2308 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2309 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2310 		/* Move to STATUS IN */
2311 		dwc2_hsotg_ep0_zlp(hsotg, true);
2312 		return;
2313 	}
2314 
2315 	/*
2316 	 * Slave mode OUT transfers do not go through XferComplete so
2317 	 * adjust the ISOC parity here.
2318 	 */
2319 	if (!using_dma(hsotg)) {
2320 		if (hs_ep->isochronous && hs_ep->interval == 1)
2321 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2322 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2323 			dwc2_gadget_incr_frame_num(hs_ep);
2324 	}
2325 
2326 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2327 }
2328 
2329 /**
2330  * dwc2_hsotg_handle_rx - RX FIFO has data
2331  * @hsotg: The device instance
2332  *
2333  * The IRQ handler has detected that the RX FIFO has some data in it
2334  * that requires processing, so find out what is in there and do the
2335  * appropriate read.
2336  *
2337  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2338  * chunks, so if you have x packets received on an endpoint you'll get x
2339  * FIFO events delivered, each with a packet's worth of data in it.
2340  *
2341  * When using DMA, we should not be processing events from the RXFIFO
2342  * as the actual data should be sent to the memory directly and we turn
2343  * on the completion interrupts to get notifications of transfer completion.
2344  */
2345 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2346 {
2347 	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2348 	u32 epnum, status, size;
2349 
2350 	WARN_ON(using_dma(hsotg));
2351 
2352 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2353 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2354 
2355 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2356 	size >>= GRXSTS_BYTECNT_SHIFT;
2357 
2358 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2359 		__func__, grxstsr, size, epnum);
2360 
2361 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2362 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2363 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2364 		break;
2365 
2366 	case GRXSTS_PKTSTS_OUTDONE:
2367 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2368 			dwc2_hsotg_read_frameno(hsotg));
2369 
2370 		if (!using_dma(hsotg))
2371 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2372 		break;
2373 
2374 	case GRXSTS_PKTSTS_SETUPDONE:
2375 		dev_dbg(hsotg->dev,
2376 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2377 			dwc2_hsotg_read_frameno(hsotg),
2378 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2379 		/*
2380 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2381 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2382 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2383 		 */
2384 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2385 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2386 		break;
2387 
2388 	case GRXSTS_PKTSTS_OUTRX:
2389 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2390 		break;
2391 
2392 	case GRXSTS_PKTSTS_SETUPRX:
2393 		dev_dbg(hsotg->dev,
2394 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2395 			dwc2_hsotg_read_frameno(hsotg),
2396 			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2397 
2398 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2399 
2400 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2401 		break;
2402 
2403 	default:
2404 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2405 			 __func__, grxstsr);
2406 
2407 		dwc2_hsotg_dump(hsotg);
2408 		break;
2409 	}
2410 }
2411 
2412 /**
2413  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2414  * @mps: The maximum packet size in bytes.
2415  */
2416 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2417 {
2418 	switch (mps) {
2419 	case 64:
2420 		return D0EPCTL_MPS_64;
2421 	case 32:
2422 		return D0EPCTL_MPS_32;
2423 	case 16:
2424 		return D0EPCTL_MPS_16;
2425 	case 8:
2426 		return D0EPCTL_MPS_8;
2427 	}
2428 
2429 	/* bad max packet size, warn and return invalid result */
2430 	WARN_ON(1);
2431 	return (u32)-1;
2432 }
2433 
2434 /**
2435  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2436  * @hsotg: The driver state.
2437  * @ep: The index number of the endpoint
2438  * @mps: The maximum packet size in bytes
2439  * @mc: The multicount value
2440  *
2441  * Configure the maximum packet size for the given endpoint, updating
2442  * the hardware control registers to reflect this.
2443  */
2444 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2445 					unsigned int ep, unsigned int mps,
2446 					unsigned int mc, unsigned int dir_in)
2447 {
2448 	struct dwc2_hsotg_ep *hs_ep;
2449 	void __iomem *regs = hsotg->regs;
2450 	u32 reg;
2451 
2452 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2453 	if (!hs_ep)
2454 		return;
2455 
2456 	if (ep == 0) {
2457 		u32 mps_bytes = mps;
2458 
2459 		/* EP0 is a special case */
2460 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2461 		if (mps > 3)
2462 			goto bad_mps;
2463 		hs_ep->ep.maxpacket = mps_bytes;
2464 		hs_ep->mc = 1;
2465 	} else {
2466 		if (mps > 1024)
2467 			goto bad_mps;
2468 		hs_ep->mc = mc;
2469 		if (mc > 3)
2470 			goto bad_mps;
2471 		hs_ep->ep.maxpacket = mps;
2472 	}
2473 
2474 	if (dir_in) {
2475 		reg = dwc2_readl(regs + DIEPCTL(ep));
2476 		reg &= ~DXEPCTL_MPS_MASK;
2477 		reg |= mps;
2478 		dwc2_writel(reg, regs + DIEPCTL(ep));
2479 	} else {
2480 		reg = dwc2_readl(regs + DOEPCTL(ep));
2481 		reg &= ~DXEPCTL_MPS_MASK;
2482 		reg |= mps;
2483 		dwc2_writel(reg, regs + DOEPCTL(ep));
2484 	}
2485 
2486 	return;
2487 
2488 bad_mps:
2489 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2490 }
2491 
2492 /**
2493  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2494  * @hsotg: The driver state
2495  * @idx: The index for the endpoint (0..15)
2496  */
2497 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2498 {
2499 	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2500 		    hsotg->regs + GRSTCTL);
2501 
2502 	/* wait until the fifo is flushed */
2503 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2504 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2505 			 __func__);
2506 }
2507 
2508 /**
2509  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2510  * @hsotg: The driver state
2511  * @hs_ep: The driver endpoint to check.
2512  *
2513  * Check to see if there is a request that has data to send, and if so
2514  * make an attempt to write data into the FIFO.
2515  */
2516 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2517 			    struct dwc2_hsotg_ep *hs_ep)
2518 {
2519 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2520 
2521 	if (!hs_ep->dir_in || !hs_req) {
2522 		/**
2523 		 * if request is not enqueued, we disable interrupts
2524 		 * for endpoints, excepting ep0
2525 		 */
2526 		if (hs_ep->index != 0)
2527 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2528 					      hs_ep->dir_in, 0);
2529 		return 0;
2530 	}
2531 
2532 	if (hs_req->req.actual < hs_req->req.length) {
2533 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2534 			hs_ep->index);
2535 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2536 	}
2537 
2538 	return 0;
2539 }
2540 
2541 /**
2542  * dwc2_hsotg_complete_in - complete IN transfer
2543  * @hsotg: The device state.
2544  * @hs_ep: The endpoint that has just completed.
2545  *
2546  * An IN transfer has been completed, update the transfer's state and then
2547  * call the relevant completion routines.
2548  */
2549 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2550 				   struct dwc2_hsotg_ep *hs_ep)
2551 {
2552 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2553 	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2554 	int size_left, size_done;
2555 
2556 	if (!hs_req) {
2557 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2558 		return;
2559 	}
2560 
2561 	/* Finish ZLP handling for IN EP0 transactions */
2562 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2563 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2564 
2565 		/*
2566 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2567 		 * changed to IN. Change back to complete OUT transfer request
2568 		 */
2569 		hs_ep->dir_in = 0;
2570 
2571 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2572 		if (hsotg->test_mode) {
2573 			int ret;
2574 
2575 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2576 			if (ret < 0) {
2577 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2578 					hsotg->test_mode);
2579 				dwc2_hsotg_stall_ep0(hsotg);
2580 				return;
2581 			}
2582 		}
2583 		dwc2_hsotg_enqueue_setup(hsotg);
2584 		return;
2585 	}
2586 
2587 	/*
2588 	 * Calculate the size of the transfer by checking how much is left
2589 	 * in the endpoint size register and then working it out from
2590 	 * the amount we loaded for the transfer.
2591 	 *
2592 	 * We do this even for DMA, as the transfer may have incremented
2593 	 * past the end of the buffer (DMA transfers are always 32bit
2594 	 * aligned).
2595 	 */
2596 	if (using_desc_dma(hsotg)) {
2597 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2598 		if (size_left < 0)
2599 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2600 				size_left);
2601 	} else {
2602 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2603 	}
2604 
2605 	size_done = hs_ep->size_loaded - size_left;
2606 	size_done += hs_ep->last_load;
2607 
2608 	if (hs_req->req.actual != size_done)
2609 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2610 			__func__, hs_req->req.actual, size_done);
2611 
2612 	hs_req->req.actual = size_done;
2613 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2614 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2615 
2616 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2617 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2618 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2619 		return;
2620 	}
2621 
2622 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2623 	if (hs_ep->send_zlp) {
2624 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2625 		hs_ep->send_zlp = 0;
2626 		/* transfer will be completed on next complete interrupt */
2627 		return;
2628 	}
2629 
2630 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2631 		/* Move to STATUS OUT */
2632 		dwc2_hsotg_ep0_zlp(hsotg, false);
2633 		return;
2634 	}
2635 
2636 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2637 }
2638 
2639 /**
2640  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2641  * @hsotg: The device state.
2642  * @idx: Index of ep.
2643  * @dir_in: Endpoint direction 1-in 0-out.
2644  *
2645  * Reads for endpoint with given index and direction, by masking
2646  * epint_reg with coresponding mask.
2647  */
2648 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2649 					  unsigned int idx, int dir_in)
2650 {
2651 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2652 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2653 	u32 ints;
2654 	u32 mask;
2655 	u32 diepempmsk;
2656 
2657 	mask = dwc2_readl(hsotg->regs + epmsk_reg);
2658 	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2659 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2660 	mask |= DXEPINT_SETUP_RCVD;
2661 
2662 	ints = dwc2_readl(hsotg->regs + epint_reg);
2663 	ints &= mask;
2664 	return ints;
2665 }
2666 
2667 /**
2668  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2669  * @hs_ep: The endpoint on which interrupt is asserted.
2670  *
2671  * This interrupt indicates that the endpoint has been disabled per the
2672  * application's request.
2673  *
2674  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2675  * in case of ISOC completes current request.
2676  *
2677  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2678  * request starts it.
2679  */
2680 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2681 {
2682 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2683 	struct dwc2_hsotg_req *hs_req;
2684 	unsigned char idx = hs_ep->index;
2685 	int dir_in = hs_ep->dir_in;
2686 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2687 	int dctl = dwc2_readl(hsotg->regs + DCTL);
2688 
2689 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2690 
2691 	if (dir_in) {
2692 		int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2693 
2694 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2695 
2696 		if (hs_ep->isochronous) {
2697 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2698 			return;
2699 		}
2700 
2701 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2702 			int dctl = dwc2_readl(hsotg->regs + DCTL);
2703 
2704 			dctl |= DCTL_CGNPINNAK;
2705 			dwc2_writel(dctl, hsotg->regs + DCTL);
2706 		}
2707 		return;
2708 	}
2709 
2710 	if (dctl & DCTL_GOUTNAKSTS) {
2711 		dctl |= DCTL_CGOUTNAK;
2712 		dwc2_writel(dctl, hsotg->regs + DCTL);
2713 	}
2714 
2715 	if (!hs_ep->isochronous)
2716 		return;
2717 
2718 	if (list_empty(&hs_ep->queue)) {
2719 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2720 			__func__, hs_ep);
2721 		return;
2722 	}
2723 
2724 	do {
2725 		hs_req = get_ep_head(hs_ep);
2726 		if (hs_req)
2727 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2728 						    -ENODATA);
2729 		dwc2_gadget_incr_frame_num(hs_ep);
2730 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2731 
2732 	dwc2_gadget_start_next_request(hs_ep);
2733 }
2734 
2735 /**
2736  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2737  * @hs_ep: The endpoint on which interrupt is asserted.
2738  *
2739  * This is starting point for ISOC-OUT transfer, synchronization done with
2740  * first out token received from host while corresponding EP is disabled.
2741  *
2742  * Device does not know initial frame in which out token will come. For this
2743  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2744  * getting this interrupt SW starts calculation for next transfer frame.
2745  */
2746 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2747 {
2748 	struct dwc2_hsotg *hsotg = ep->parent;
2749 	int dir_in = ep->dir_in;
2750 	u32 doepmsk;
2751 	u32 tmp;
2752 
2753 	if (dir_in || !ep->isochronous)
2754 		return;
2755 
2756 	/*
2757 	 * Store frame in which irq was asserted here, as
2758 	 * it can change while completing request below.
2759 	 */
2760 	tmp = dwc2_hsotg_read_frameno(hsotg);
2761 
2762 	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2763 
2764 	if (using_desc_dma(hsotg)) {
2765 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2766 			/* Start first ISO Out */
2767 			ep->target_frame = tmp;
2768 			dwc2_gadget_start_isoc_ddma(ep);
2769 		}
2770 		return;
2771 	}
2772 
2773 	if (ep->interval > 1 &&
2774 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2775 		u32 dsts;
2776 		u32 ctrl;
2777 
2778 		dsts = dwc2_readl(hsotg->regs + DSTS);
2779 		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2780 		dwc2_gadget_incr_frame_num(ep);
2781 
2782 		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2783 		if (ep->target_frame & 0x1)
2784 			ctrl |= DXEPCTL_SETODDFR;
2785 		else
2786 			ctrl |= DXEPCTL_SETEVENFR;
2787 
2788 		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2789 	}
2790 
2791 	dwc2_gadget_start_next_request(ep);
2792 	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2793 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2794 	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2795 }
2796 
2797 /**
2798  * dwc2_gadget_handle_nak - handle NAK interrupt
2799  * @hs_ep: The endpoint on which interrupt is asserted.
2800  *
2801  * This is starting point for ISOC-IN transfer, synchronization done with
2802  * first IN token received from host while corresponding EP is disabled.
2803  *
2804  * Device does not know when first one token will arrive from host. On first
2805  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2806  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2807  * sent in response to that as there was no data in FIFO. SW is basing on this
2808  * interrupt to obtain frame in which token has come and then based on the
2809  * interval calculates next frame for transfer.
2810  */
2811 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2812 {
2813 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2814 	int dir_in = hs_ep->dir_in;
2815 
2816 	if (!dir_in || !hs_ep->isochronous)
2817 		return;
2818 
2819 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2820 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2821 
2822 		if (using_desc_dma(hsotg)) {
2823 			dwc2_gadget_start_isoc_ddma(hs_ep);
2824 			return;
2825 		}
2826 
2827 		if (hs_ep->interval > 1) {
2828 			u32 ctrl = dwc2_readl(hsotg->regs +
2829 					      DIEPCTL(hs_ep->index));
2830 			if (hs_ep->target_frame & 0x1)
2831 				ctrl |= DXEPCTL_SETODDFR;
2832 			else
2833 				ctrl |= DXEPCTL_SETEVENFR;
2834 
2835 			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2836 		}
2837 
2838 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2839 					    get_ep_head(hs_ep), 0);
2840 	}
2841 
2842 	dwc2_gadget_incr_frame_num(hs_ep);
2843 }
2844 
2845 /**
2846  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2847  * @hsotg: The driver state
2848  * @idx: The index for the endpoint (0..15)
2849  * @dir_in: Set if this is an IN endpoint
2850  *
2851  * Process and clear any interrupt pending for an individual endpoint
2852  */
2853 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2854 			     int dir_in)
2855 {
2856 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2857 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2858 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2859 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2860 	u32 ints;
2861 	u32 ctrl;
2862 
2863 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2864 	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2865 
2866 	/* Clear endpoint interrupts */
2867 	dwc2_writel(ints, hsotg->regs + epint_reg);
2868 
2869 	if (!hs_ep) {
2870 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2871 			__func__, idx, dir_in ? "in" : "out");
2872 		return;
2873 	}
2874 
2875 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2876 		__func__, idx, dir_in ? "in" : "out", ints);
2877 
2878 	/* Don't process XferCompl interrupt if it is a setup packet */
2879 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2880 		ints &= ~DXEPINT_XFERCOMPL;
2881 
2882 	/*
2883 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2884 	 * stage and xfercomplete was generated without SETUP phase done
2885 	 * interrupt. SW should parse received setup packet only after host's
2886 	 * exit from setup phase of control transfer.
2887 	 */
2888 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2889 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2890 		ints &= ~DXEPINT_XFERCOMPL;
2891 
2892 	if (ints & DXEPINT_XFERCOMPL) {
2893 		dev_dbg(hsotg->dev,
2894 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2895 			__func__, dwc2_readl(hsotg->regs + epctl_reg),
2896 			dwc2_readl(hsotg->regs + epsiz_reg));
2897 
2898 		/* In DDMA handle isochronous requests separately */
2899 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2900 			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2901 			/* Try to start next isoc request */
2902 			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2903 		} else if (dir_in) {
2904 			/*
2905 			 * We get OutDone from the FIFO, so we only
2906 			 * need to look at completing IN requests here
2907 			 * if operating slave mode
2908 			 */
2909 			if (hs_ep->isochronous && hs_ep->interval > 1)
2910 				dwc2_gadget_incr_frame_num(hs_ep);
2911 
2912 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2913 			if (ints & DXEPINT_NAKINTRPT)
2914 				ints &= ~DXEPINT_NAKINTRPT;
2915 
2916 			if (idx == 0 && !hs_ep->req)
2917 				dwc2_hsotg_enqueue_setup(hsotg);
2918 		} else if (using_dma(hsotg)) {
2919 			/*
2920 			 * We're using DMA, we need to fire an OutDone here
2921 			 * as we ignore the RXFIFO.
2922 			 */
2923 			if (hs_ep->isochronous && hs_ep->interval > 1)
2924 				dwc2_gadget_incr_frame_num(hs_ep);
2925 
2926 			dwc2_hsotg_handle_outdone(hsotg, idx);
2927 		}
2928 	}
2929 
2930 	if (ints & DXEPINT_EPDISBLD)
2931 		dwc2_gadget_handle_ep_disabled(hs_ep);
2932 
2933 	if (ints & DXEPINT_OUTTKNEPDIS)
2934 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2935 
2936 	if (ints & DXEPINT_NAKINTRPT)
2937 		dwc2_gadget_handle_nak(hs_ep);
2938 
2939 	if (ints & DXEPINT_AHBERR)
2940 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2941 
2942 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2943 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2944 
2945 		if (using_dma(hsotg) && idx == 0) {
2946 			/*
2947 			 * this is the notification we've received a
2948 			 * setup packet. In non-DMA mode we'd get this
2949 			 * from the RXFIFO, instead we need to process
2950 			 * the setup here.
2951 			 */
2952 
2953 			if (dir_in)
2954 				WARN_ON_ONCE(1);
2955 			else
2956 				dwc2_hsotg_handle_outdone(hsotg, 0);
2957 		}
2958 	}
2959 
2960 	if (ints & DXEPINT_STSPHSERCVD) {
2961 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2962 
2963 		/* Safety check EP0 state when STSPHSERCVD asserted */
2964 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2965 			/* Move to STATUS IN for DDMA */
2966 			if (using_desc_dma(hsotg))
2967 				dwc2_hsotg_ep0_zlp(hsotg, true);
2968 		}
2969 
2970 	}
2971 
2972 	if (ints & DXEPINT_BACK2BACKSETUP)
2973 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2974 
2975 	if (ints & DXEPINT_BNAINTR) {
2976 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2977 
2978 		/*
2979 		 * Try to start next isoc request, if any.
2980 		 * Sometimes the endpoint remains enabled after BNA interrupt
2981 		 * assertion, which is not expected, hence we can enter here
2982 		 * couple of times.
2983 		 */
2984 		if (hs_ep->isochronous)
2985 			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2986 	}
2987 
2988 	if (dir_in && !hs_ep->isochronous) {
2989 		/* not sure if this is important, but we'll clear it anyway */
2990 		if (ints & DXEPINT_INTKNTXFEMP) {
2991 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2992 				__func__, idx);
2993 		}
2994 
2995 		/* this probably means something bad is happening */
2996 		if (ints & DXEPINT_INTKNEPMIS) {
2997 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2998 				 __func__, idx);
2999 		}
3000 
3001 		/* FIFO has space or is empty (see GAHBCFG) */
3002 		if (hsotg->dedicated_fifos &&
3003 		    ints & DXEPINT_TXFEMP) {
3004 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3005 				__func__, idx);
3006 			if (!using_dma(hsotg))
3007 				dwc2_hsotg_trytx(hsotg, hs_ep);
3008 		}
3009 	}
3010 }
3011 
3012 /**
3013  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3014  * @hsotg: The device state.
3015  *
3016  * Handle updating the device settings after the enumeration phase has
3017  * been completed.
3018  */
3019 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3020 {
3021 	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3022 	int ep0_mps = 0, ep_mps = 8;
3023 
3024 	/*
3025 	 * This should signal the finish of the enumeration phase
3026 	 * of the USB handshaking, so we should now know what rate
3027 	 * we connected at.
3028 	 */
3029 
3030 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3031 
3032 	/*
3033 	 * note, since we're limited by the size of transfer on EP0, and
3034 	 * it seems IN transfers must be a even number of packets we do
3035 	 * not advertise a 64byte MPS on EP0.
3036 	 */
3037 
3038 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3039 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3040 	case DSTS_ENUMSPD_FS:
3041 	case DSTS_ENUMSPD_FS48:
3042 		hsotg->gadget.speed = USB_SPEED_FULL;
3043 		ep0_mps = EP0_MPS_LIMIT;
3044 		ep_mps = 1023;
3045 		break;
3046 
3047 	case DSTS_ENUMSPD_HS:
3048 		hsotg->gadget.speed = USB_SPEED_HIGH;
3049 		ep0_mps = EP0_MPS_LIMIT;
3050 		ep_mps = 1024;
3051 		break;
3052 
3053 	case DSTS_ENUMSPD_LS:
3054 		hsotg->gadget.speed = USB_SPEED_LOW;
3055 		ep0_mps = 8;
3056 		ep_mps = 8;
3057 		/*
3058 		 * note, we don't actually support LS in this driver at the
3059 		 * moment, and the documentation seems to imply that it isn't
3060 		 * supported by the PHYs on some of the devices.
3061 		 */
3062 		break;
3063 	}
3064 	dev_info(hsotg->dev, "new device is %s\n",
3065 		 usb_speed_string(hsotg->gadget.speed));
3066 
3067 	/*
3068 	 * we should now know the maximum packet size for an
3069 	 * endpoint, so set the endpoints to a default value.
3070 	 */
3071 
3072 	if (ep0_mps) {
3073 		int i;
3074 		/* Initialize ep0 for both in and out directions */
3075 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3076 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3077 		for (i = 1; i < hsotg->num_of_eps; i++) {
3078 			if (hsotg->eps_in[i])
3079 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3080 							    0, 1);
3081 			if (hsotg->eps_out[i])
3082 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3083 							    0, 0);
3084 		}
3085 	}
3086 
3087 	/* ensure after enumeration our EP0 is active */
3088 
3089 	dwc2_hsotg_enqueue_setup(hsotg);
3090 
3091 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3092 		dwc2_readl(hsotg->regs + DIEPCTL0),
3093 		dwc2_readl(hsotg->regs + DOEPCTL0));
3094 }
3095 
3096 /**
3097  * kill_all_requests - remove all requests from the endpoint's queue
3098  * @hsotg: The device state.
3099  * @ep: The endpoint the requests may be on.
3100  * @result: The result code to use.
3101  *
3102  * Go through the requests on the given endpoint and mark them
3103  * completed with the given result code.
3104  */
3105 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3106 			      struct dwc2_hsotg_ep *ep,
3107 			      int result)
3108 {
3109 	struct dwc2_hsotg_req *req, *treq;
3110 	unsigned int size;
3111 
3112 	ep->req = NULL;
3113 
3114 	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3115 		dwc2_hsotg_complete_request(hsotg, ep, req,
3116 					    result);
3117 
3118 	if (!hsotg->dedicated_fifos)
3119 		return;
3120 	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3121 	if (size < ep->fifo_size)
3122 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3123 }
3124 
3125 /**
3126  * dwc2_hsotg_disconnect - disconnect service
3127  * @hsotg: The device state.
3128  *
3129  * The device has been disconnected. Remove all current
3130  * transactions and signal the gadget driver that this
3131  * has happened.
3132  */
3133 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3134 {
3135 	unsigned int ep;
3136 
3137 	if (!hsotg->connected)
3138 		return;
3139 
3140 	hsotg->connected = 0;
3141 	hsotg->test_mode = 0;
3142 
3143 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3144 		if (hsotg->eps_in[ep])
3145 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3146 					  -ESHUTDOWN);
3147 		if (hsotg->eps_out[ep])
3148 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3149 					  -ESHUTDOWN);
3150 	}
3151 
3152 	call_gadget(hsotg, disconnect);
3153 	hsotg->lx_state = DWC2_L3;
3154 
3155 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3156 }
3157 
3158 /**
3159  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3160  * @hsotg: The device state:
3161  * @periodic: True if this is a periodic FIFO interrupt
3162  */
3163 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3164 {
3165 	struct dwc2_hsotg_ep *ep;
3166 	int epno, ret;
3167 
3168 	/* look through for any more data to transmit */
3169 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3170 		ep = index_to_ep(hsotg, epno, 1);
3171 
3172 		if (!ep)
3173 			continue;
3174 
3175 		if (!ep->dir_in)
3176 			continue;
3177 
3178 		if ((periodic && !ep->periodic) ||
3179 		    (!periodic && ep->periodic))
3180 			continue;
3181 
3182 		ret = dwc2_hsotg_trytx(hsotg, ep);
3183 		if (ret < 0)
3184 			break;
3185 	}
3186 }
3187 
3188 /* IRQ flags which will trigger a retry around the IRQ loop */
3189 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3190 			GINTSTS_PTXFEMP |  \
3191 			GINTSTS_RXFLVL)
3192 
3193 /**
3194  * dwc2_hsotg_core_init - issue softreset to the core
3195  * @hsotg: The device state
3196  *
3197  * Issue a soft reset to the core, and await the core finishing it.
3198  */
3199 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3200 				       bool is_usb_reset)
3201 {
3202 	u32 intmsk;
3203 	u32 val;
3204 	u32 usbcfg;
3205 	u32 dcfg = 0;
3206 
3207 	/* Kill any ep0 requests as controller will be reinitialized */
3208 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3209 
3210 	if (!is_usb_reset)
3211 		if (dwc2_core_reset(hsotg, true))
3212 			return;
3213 
3214 	/*
3215 	 * we must now enable ep0 ready for host detection and then
3216 	 * set configuration.
3217 	 */
3218 
3219 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3220 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3221 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3222 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3223 
3224 	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3225 	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3226 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3227 		/* FS/LS Dedicated Transceiver Interface */
3228 		usbcfg |= GUSBCFG_PHYSEL;
3229 	} else {
3230 		/* set the PLL on, remove the HNP/SRP and set the PHY */
3231 		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3232 		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3233 			(val << GUSBCFG_USBTRDTIM_SHIFT);
3234 	}
3235 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3236 
3237 	dwc2_hsotg_init_fifo(hsotg);
3238 
3239 	if (!is_usb_reset)
3240 		dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3241 
3242 	dcfg |= DCFG_EPMISCNT(1);
3243 
3244 	switch (hsotg->params.speed) {
3245 	case DWC2_SPEED_PARAM_LOW:
3246 		dcfg |= DCFG_DEVSPD_LS;
3247 		break;
3248 	case DWC2_SPEED_PARAM_FULL:
3249 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3250 			dcfg |= DCFG_DEVSPD_FS48;
3251 		else
3252 			dcfg |= DCFG_DEVSPD_FS;
3253 		break;
3254 	default:
3255 		dcfg |= DCFG_DEVSPD_HS;
3256 	}
3257 
3258 	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3259 
3260 	/* Clear any pending OTG interrupts */
3261 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3262 
3263 	/* Clear any pending interrupts */
3264 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3265 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3266 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3267 		GINTSTS_USBRST | GINTSTS_RESETDET |
3268 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3269 		GINTSTS_USBSUSP | GINTSTS_WKUPINT;
3270 
3271 	if (!using_desc_dma(hsotg))
3272 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3273 
3274 	if (!hsotg->params.external_id_pin_ctl)
3275 		intmsk |= GINTSTS_CONIDSTSCHNG;
3276 
3277 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3278 
3279 	if (using_dma(hsotg)) {
3280 		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3281 			    hsotg->params.ahbcfg,
3282 			    hsotg->regs + GAHBCFG);
3283 
3284 		/* Set DDMA mode support in the core if needed */
3285 		if (using_desc_dma(hsotg))
3286 			dwc2_set_bit(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3287 
3288 	} else {
3289 		dwc2_writel(((hsotg->dedicated_fifos) ?
3290 						(GAHBCFG_NP_TXF_EMP_LVL |
3291 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3292 			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3293 	}
3294 
3295 	/*
3296 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3297 	 * when we have no data to transfer. Otherwise we get being flooded by
3298 	 * interrupts.
3299 	 */
3300 
3301 	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3302 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3303 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3304 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3305 		hsotg->regs + DIEPMSK);
3306 
3307 	/*
3308 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3309 	 * DMA mode we may need this and StsPhseRcvd.
3310 	 */
3311 	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3312 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3313 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3314 		DOEPMSK_SETUPMSK,
3315 		hsotg->regs + DOEPMSK);
3316 
3317 	/* Enable BNA interrupt for DDMA */
3318 	if (using_desc_dma(hsotg))
3319 		dwc2_set_bit(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3320 
3321 	dwc2_writel(0, hsotg->regs + DAINTMSK);
3322 
3323 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3324 		dwc2_readl(hsotg->regs + DIEPCTL0),
3325 		dwc2_readl(hsotg->regs + DOEPCTL0));
3326 
3327 	/* enable in and out endpoint interrupts */
3328 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3329 
3330 	/*
3331 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3332 	 * the data. In DMA mode, we get events from the FIFO but also
3333 	 * things we cannot process, so do not use it.
3334 	 */
3335 	if (!using_dma(hsotg))
3336 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3337 
3338 	/* Enable interrupts for EP0 in and out */
3339 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3340 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3341 
3342 	if (!is_usb_reset) {
3343 		dwc2_set_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3344 		udelay(10);  /* see openiboot */
3345 		dwc2_clear_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3346 	}
3347 
3348 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3349 
3350 	/*
3351 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3352 	 * writing to the EPCTL register..
3353 	 */
3354 
3355 	/* set to read 1 8byte packet */
3356 	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3357 	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3358 
3359 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3360 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3361 	       DXEPCTL_USBACTEP,
3362 	       hsotg->regs + DOEPCTL0);
3363 
3364 	/* enable, but don't activate EP0in */
3365 	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3366 	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3367 
3368 	/* clear global NAKs */
3369 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3370 	if (!is_usb_reset)
3371 		val |= DCTL_SFTDISCON;
3372 	dwc2_set_bit(hsotg->regs + DCTL, val);
3373 
3374 	/* must be at-least 3ms to allow bus to see disconnect */
3375 	mdelay(3);
3376 
3377 	hsotg->lx_state = DWC2_L0;
3378 
3379 	dwc2_hsotg_enqueue_setup(hsotg);
3380 
3381 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3382 		dwc2_readl(hsotg->regs + DIEPCTL0),
3383 		dwc2_readl(hsotg->regs + DOEPCTL0));
3384 }
3385 
3386 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3387 {
3388 	/* set the soft-disconnect bit */
3389 	dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3390 }
3391 
3392 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3393 {
3394 	/* remove the soft-disconnect and let's go */
3395 	dwc2_clear_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3396 }
3397 
3398 /**
3399  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3400  * @hsotg: The device state:
3401  *
3402  * This interrupt indicates one of the following conditions occurred while
3403  * transmitting an ISOC transaction.
3404  * - Corrupted IN Token for ISOC EP.
3405  * - Packet not complete in FIFO.
3406  *
3407  * The following actions will be taken:
3408  * - Determine the EP
3409  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3410  */
3411 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3412 {
3413 	struct dwc2_hsotg_ep *hs_ep;
3414 	u32 epctrl;
3415 	u32 daintmsk;
3416 	u32 idx;
3417 
3418 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3419 
3420 	daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3421 
3422 	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3423 		hs_ep = hsotg->eps_in[idx];
3424 		/* Proceed only unmasked ISOC EPs */
3425 		if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3426 			continue;
3427 
3428 		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3429 		if ((epctrl & DXEPCTL_EPENA) &&
3430 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3431 			epctrl |= DXEPCTL_SNAK;
3432 			epctrl |= DXEPCTL_EPDIS;
3433 			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3434 		}
3435 	}
3436 
3437 	/* Clear interrupt */
3438 	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3439 }
3440 
3441 /**
3442  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3443  * @hsotg: The device state:
3444  *
3445  * This interrupt indicates one of the following conditions occurred while
3446  * transmitting an ISOC transaction.
3447  * - Corrupted OUT Token for ISOC EP.
3448  * - Packet not complete in FIFO.
3449  *
3450  * The following actions will be taken:
3451  * - Determine the EP
3452  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3453  */
3454 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3455 {
3456 	u32 gintsts;
3457 	u32 gintmsk;
3458 	u32 daintmsk;
3459 	u32 epctrl;
3460 	struct dwc2_hsotg_ep *hs_ep;
3461 	int idx;
3462 
3463 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3464 
3465 	daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3466 	daintmsk >>= DAINT_OUTEP_SHIFT;
3467 
3468 	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3469 		hs_ep = hsotg->eps_out[idx];
3470 		/* Proceed only unmasked ISOC EPs */
3471 		if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3472 			continue;
3473 
3474 		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3475 		if ((epctrl & DXEPCTL_EPENA) &&
3476 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3477 			/* Unmask GOUTNAKEFF interrupt */
3478 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3479 			gintmsk |= GINTSTS_GOUTNAKEFF;
3480 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3481 
3482 			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3483 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3484 				dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3485 				break;
3486 			}
3487 		}
3488 	}
3489 
3490 	/* Clear interrupt */
3491 	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3492 }
3493 
3494 /**
3495  * dwc2_hsotg_irq - handle device interrupt
3496  * @irq: The IRQ number triggered
3497  * @pw: The pw value when registered the handler.
3498  */
3499 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3500 {
3501 	struct dwc2_hsotg *hsotg = pw;
3502 	int retry_count = 8;
3503 	u32 gintsts;
3504 	u32 gintmsk;
3505 
3506 	if (!dwc2_is_device_mode(hsotg))
3507 		return IRQ_NONE;
3508 
3509 	spin_lock(&hsotg->lock);
3510 irq_retry:
3511 	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3512 	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3513 
3514 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3515 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3516 
3517 	gintsts &= gintmsk;
3518 
3519 	if (gintsts & GINTSTS_RESETDET) {
3520 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3521 
3522 		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3523 
3524 		/* This event must be used only if controller is suspended */
3525 		if (hsotg->lx_state == DWC2_L2) {
3526 			dwc2_exit_hibernation(hsotg, true);
3527 			hsotg->lx_state = DWC2_L0;
3528 		}
3529 	}
3530 
3531 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3532 		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3533 		u32 connected = hsotg->connected;
3534 
3535 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3536 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3537 			dwc2_readl(hsotg->regs + GNPTXSTS));
3538 
3539 		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3540 
3541 		/* Report disconnection if it is not already done. */
3542 		dwc2_hsotg_disconnect(hsotg);
3543 
3544 		/* Reset device address to zero */
3545 		dwc2_clear_bit(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3546 
3547 		if (usb_status & GOTGCTL_BSESVLD && connected)
3548 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3549 	}
3550 
3551 	if (gintsts & GINTSTS_ENUMDONE) {
3552 		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3553 
3554 		dwc2_hsotg_irq_enumdone(hsotg);
3555 	}
3556 
3557 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3558 		u32 daint = dwc2_readl(hsotg->regs + DAINT);
3559 		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3560 		u32 daint_out, daint_in;
3561 		int ep;
3562 
3563 		daint &= daintmsk;
3564 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3565 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3566 
3567 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3568 
3569 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3570 						ep++, daint_out >>= 1) {
3571 			if (daint_out & 1)
3572 				dwc2_hsotg_epint(hsotg, ep, 0);
3573 		}
3574 
3575 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3576 						ep++, daint_in >>= 1) {
3577 			if (daint_in & 1)
3578 				dwc2_hsotg_epint(hsotg, ep, 1);
3579 		}
3580 	}
3581 
3582 	/* check both FIFOs */
3583 
3584 	if (gintsts & GINTSTS_NPTXFEMP) {
3585 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3586 
3587 		/*
3588 		 * Disable the interrupt to stop it happening again
3589 		 * unless one of these endpoint routines decides that
3590 		 * it needs re-enabling
3591 		 */
3592 
3593 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3594 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3595 	}
3596 
3597 	if (gintsts & GINTSTS_PTXFEMP) {
3598 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3599 
3600 		/* See note in GINTSTS_NPTxFEmp */
3601 
3602 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3603 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3604 	}
3605 
3606 	if (gintsts & GINTSTS_RXFLVL) {
3607 		/*
3608 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3609 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3610 		 * set.
3611 		 */
3612 
3613 		dwc2_hsotg_handle_rx(hsotg);
3614 	}
3615 
3616 	if (gintsts & GINTSTS_ERLYSUSP) {
3617 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3618 		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3619 	}
3620 
3621 	/*
3622 	 * these next two seem to crop-up occasionally causing the core
3623 	 * to shutdown the USB transfer, so try clearing them and logging
3624 	 * the occurrence.
3625 	 */
3626 
3627 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3628 		u8 idx;
3629 		u32 epctrl;
3630 		u32 gintmsk;
3631 		u32 daintmsk;
3632 		struct dwc2_hsotg_ep *hs_ep;
3633 
3634 		daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3635 		daintmsk >>= DAINT_OUTEP_SHIFT;
3636 		/* Mask this interrupt */
3637 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3638 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3639 		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3640 
3641 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3642 		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3643 			hs_ep = hsotg->eps_out[idx];
3644 			/* Proceed only unmasked ISOC EPs */
3645 			if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3646 				continue;
3647 
3648 			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3649 
3650 			if (epctrl & DXEPCTL_EPENA) {
3651 				epctrl |= DXEPCTL_SNAK;
3652 				epctrl |= DXEPCTL_EPDIS;
3653 				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3654 			}
3655 		}
3656 
3657 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3658 	}
3659 
3660 	if (gintsts & GINTSTS_GINNAKEFF) {
3661 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3662 
3663 		dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3664 
3665 		dwc2_hsotg_dump(hsotg);
3666 	}
3667 
3668 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3669 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3670 
3671 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3672 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3673 
3674 	/*
3675 	 * if we've had fifo events, we should try and go around the
3676 	 * loop again to see if there's any point in returning yet.
3677 	 */
3678 
3679 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3680 		goto irq_retry;
3681 
3682 	spin_unlock(&hsotg->lock);
3683 
3684 	return IRQ_HANDLED;
3685 }
3686 
3687 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3688 				   struct dwc2_hsotg_ep *hs_ep)
3689 {
3690 	u32 epctrl_reg;
3691 	u32 epint_reg;
3692 
3693 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3694 		DOEPCTL(hs_ep->index);
3695 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3696 		DOEPINT(hs_ep->index);
3697 
3698 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3699 		hs_ep->name);
3700 
3701 	if (hs_ep->dir_in) {
3702 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3703 			dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3704 			/* Wait for Nak effect */
3705 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3706 						    DXEPINT_INEPNAKEFF, 100))
3707 				dev_warn(hsotg->dev,
3708 					 "%s: timeout DIEPINT.NAKEFF\n",
3709 					 __func__);
3710 		} else {
3711 			dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3712 			/* Wait for Nak effect */
3713 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3714 						    GINTSTS_GINNAKEFF, 100))
3715 				dev_warn(hsotg->dev,
3716 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3717 					 __func__);
3718 		}
3719 	} else {
3720 		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3721 			dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3722 
3723 		/* Wait for global nak to take effect */
3724 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3725 					    GINTSTS_GOUTNAKEFF, 100))
3726 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3727 				 __func__);
3728 	}
3729 
3730 	/* Disable ep */
3731 	dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3732 
3733 	/* Wait for ep to be disabled */
3734 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3735 		dev_warn(hsotg->dev,
3736 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3737 
3738 	/* Clear EPDISBLD interrupt */
3739 	dwc2_set_bit(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3740 
3741 	if (hs_ep->dir_in) {
3742 		unsigned short fifo_index;
3743 
3744 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3745 			fifo_index = hs_ep->fifo_index;
3746 		else
3747 			fifo_index = 0;
3748 
3749 		/* Flush TX FIFO */
3750 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3751 
3752 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3753 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3754 			dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3755 
3756 	} else {
3757 		/* Remove global NAKs */
3758 		dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3759 	}
3760 }
3761 
3762 /**
3763  * dwc2_hsotg_ep_enable - enable the given endpoint
3764  * @ep: The USB endpint to configure
3765  * @desc: The USB endpoint descriptor to configure with.
3766  *
3767  * This is called from the USB gadget code's usb_ep_enable().
3768  */
3769 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3770 				const struct usb_endpoint_descriptor *desc)
3771 {
3772 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3773 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3774 	unsigned long flags;
3775 	unsigned int index = hs_ep->index;
3776 	u32 epctrl_reg;
3777 	u32 epctrl;
3778 	u32 mps;
3779 	u32 mc;
3780 	u32 mask;
3781 	unsigned int dir_in;
3782 	unsigned int i, val, size;
3783 	int ret = 0;
3784 
3785 	dev_dbg(hsotg->dev,
3786 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3787 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3788 		desc->wMaxPacketSize, desc->bInterval);
3789 
3790 	/* not to be called for EP0 */
3791 	if (index == 0) {
3792 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3793 		return -EINVAL;
3794 	}
3795 
3796 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3797 	if (dir_in != hs_ep->dir_in) {
3798 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3799 		return -EINVAL;
3800 	}
3801 
3802 	mps = usb_endpoint_maxp(desc);
3803 	mc = usb_endpoint_maxp_mult(desc);
3804 
3805 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3806 
3807 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3808 	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3809 
3810 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3811 		__func__, epctrl, epctrl_reg);
3812 
3813 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3814 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3815 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3816 			MAX_DMA_DESC_NUM_GENERIC *
3817 			sizeof(struct dwc2_dma_desc),
3818 			&hs_ep->desc_list_dma, GFP_ATOMIC);
3819 		if (!hs_ep->desc_list) {
3820 			ret = -ENOMEM;
3821 			goto error2;
3822 		}
3823 	}
3824 
3825 	spin_lock_irqsave(&hsotg->lock, flags);
3826 
3827 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3828 	epctrl |= DXEPCTL_MPS(mps);
3829 
3830 	/*
3831 	 * mark the endpoint as active, otherwise the core may ignore
3832 	 * transactions entirely for this endpoint
3833 	 */
3834 	epctrl |= DXEPCTL_USBACTEP;
3835 
3836 	/* update the endpoint state */
3837 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3838 
3839 	/* default, set to non-periodic */
3840 	hs_ep->isochronous = 0;
3841 	hs_ep->periodic = 0;
3842 	hs_ep->halted = 0;
3843 	hs_ep->interval = desc->bInterval;
3844 
3845 	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3846 	case USB_ENDPOINT_XFER_ISOC:
3847 		epctrl |= DXEPCTL_EPTYPE_ISO;
3848 		epctrl |= DXEPCTL_SETEVENFR;
3849 		hs_ep->isochronous = 1;
3850 		hs_ep->interval = 1 << (desc->bInterval - 1);
3851 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3852 		hs_ep->isoc_chain_num = 0;
3853 		hs_ep->next_desc = 0;
3854 		if (dir_in) {
3855 			hs_ep->periodic = 1;
3856 			mask = dwc2_readl(hsotg->regs + DIEPMSK);
3857 			mask |= DIEPMSK_NAKMSK;
3858 			dwc2_writel(mask, hsotg->regs + DIEPMSK);
3859 		} else {
3860 			mask = dwc2_readl(hsotg->regs + DOEPMSK);
3861 			mask |= DOEPMSK_OUTTKNEPDISMSK;
3862 			dwc2_writel(mask, hsotg->regs + DOEPMSK);
3863 		}
3864 		break;
3865 
3866 	case USB_ENDPOINT_XFER_BULK:
3867 		epctrl |= DXEPCTL_EPTYPE_BULK;
3868 		break;
3869 
3870 	case USB_ENDPOINT_XFER_INT:
3871 		if (dir_in)
3872 			hs_ep->periodic = 1;
3873 
3874 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
3875 			hs_ep->interval = 1 << (desc->bInterval - 1);
3876 
3877 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3878 		break;
3879 
3880 	case USB_ENDPOINT_XFER_CONTROL:
3881 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3882 		break;
3883 	}
3884 
3885 	/*
3886 	 * if the hardware has dedicated fifos, we must give each IN EP
3887 	 * a unique tx-fifo even if it is non-periodic.
3888 	 */
3889 	if (dir_in && hsotg->dedicated_fifos) {
3890 		u32 fifo_index = 0;
3891 		u32 fifo_size = UINT_MAX;
3892 
3893 		size = hs_ep->ep.maxpacket * hs_ep->mc;
3894 		for (i = 1; i < hsotg->num_of_eps; ++i) {
3895 			if (hsotg->fifo_map & (1 << i))
3896 				continue;
3897 			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3898 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3899 			if (val < size)
3900 				continue;
3901 			/* Search for smallest acceptable fifo */
3902 			if (val < fifo_size) {
3903 				fifo_size = val;
3904 				fifo_index = i;
3905 			}
3906 		}
3907 		if (!fifo_index) {
3908 			dev_err(hsotg->dev,
3909 				"%s: No suitable fifo found\n", __func__);
3910 			ret = -ENOMEM;
3911 			goto error1;
3912 		}
3913 		hsotg->fifo_map |= 1 << fifo_index;
3914 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
3915 		hs_ep->fifo_index = fifo_index;
3916 		hs_ep->fifo_size = fifo_size;
3917 	}
3918 
3919 	/* for non control endpoints, set PID to D0 */
3920 	if (index && !hs_ep->isochronous)
3921 		epctrl |= DXEPCTL_SETD0PID;
3922 
3923 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3924 		__func__, epctrl);
3925 
3926 	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3927 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3928 		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3929 
3930 	/* enable the endpoint interrupt */
3931 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3932 
3933 error1:
3934 	spin_unlock_irqrestore(&hsotg->lock, flags);
3935 
3936 error2:
3937 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3938 		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3939 			sizeof(struct dwc2_dma_desc),
3940 			hs_ep->desc_list, hs_ep->desc_list_dma);
3941 		hs_ep->desc_list = NULL;
3942 	}
3943 
3944 	return ret;
3945 }
3946 
3947 /**
3948  * dwc2_hsotg_ep_disable - disable given endpoint
3949  * @ep: The endpoint to disable.
3950  */
3951 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3952 {
3953 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3954 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3955 	int dir_in = hs_ep->dir_in;
3956 	int index = hs_ep->index;
3957 	unsigned long flags;
3958 	u32 epctrl_reg;
3959 	u32 ctrl;
3960 
3961 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3962 
3963 	if (ep == &hsotg->eps_out[0]->ep) {
3964 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
3965 		return -EINVAL;
3966 	}
3967 
3968 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3969 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
3970 		return -EINVAL;
3971 	}
3972 
3973 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3974 
3975 	spin_lock_irqsave(&hsotg->lock, flags);
3976 
3977 	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3978 
3979 	if (ctrl & DXEPCTL_EPENA)
3980 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3981 
3982 	ctrl &= ~DXEPCTL_EPENA;
3983 	ctrl &= ~DXEPCTL_USBACTEP;
3984 	ctrl |= DXEPCTL_SNAK;
3985 
3986 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3987 	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3988 
3989 	/* disable endpoint interrupts */
3990 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3991 
3992 	/* terminate all requests with shutdown */
3993 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
3994 
3995 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
3996 	hs_ep->fifo_index = 0;
3997 	hs_ep->fifo_size = 0;
3998 
3999 	spin_unlock_irqrestore(&hsotg->lock, flags);
4000 	return 0;
4001 }
4002 
4003 /**
4004  * on_list - check request is on the given endpoint
4005  * @ep: The endpoint to check.
4006  * @test: The request to test if it is on the endpoint.
4007  */
4008 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4009 {
4010 	struct dwc2_hsotg_req *req, *treq;
4011 
4012 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4013 		if (req == test)
4014 			return true;
4015 	}
4016 
4017 	return false;
4018 }
4019 
4020 /**
4021  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4022  * @ep: The endpoint to dequeue.
4023  * @req: The request to be removed from a queue.
4024  */
4025 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4026 {
4027 	struct dwc2_hsotg_req *hs_req = our_req(req);
4028 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4029 	struct dwc2_hsotg *hs = hs_ep->parent;
4030 	unsigned long flags;
4031 
4032 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4033 
4034 	spin_lock_irqsave(&hs->lock, flags);
4035 
4036 	if (!on_list(hs_ep, hs_req)) {
4037 		spin_unlock_irqrestore(&hs->lock, flags);
4038 		return -EINVAL;
4039 	}
4040 
4041 	/* Dequeue already started request */
4042 	if (req == &hs_ep->req->req)
4043 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4044 
4045 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4046 	spin_unlock_irqrestore(&hs->lock, flags);
4047 
4048 	return 0;
4049 }
4050 
4051 /**
4052  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4053  * @ep: The endpoint to set halt.
4054  * @value: Set or unset the halt.
4055  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4056  *       the endpoint is busy processing requests.
4057  *
4058  * We need to stall the endpoint immediately if request comes from set_feature
4059  * protocol command handler.
4060  */
4061 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4062 {
4063 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4064 	struct dwc2_hsotg *hs = hs_ep->parent;
4065 	int index = hs_ep->index;
4066 	u32 epreg;
4067 	u32 epctl;
4068 	u32 xfertype;
4069 
4070 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4071 
4072 	if (index == 0) {
4073 		if (value)
4074 			dwc2_hsotg_stall_ep0(hs);
4075 		else
4076 			dev_warn(hs->dev,
4077 				 "%s: can't clear halt on ep0\n", __func__);
4078 		return 0;
4079 	}
4080 
4081 	if (hs_ep->isochronous) {
4082 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4083 		return -EINVAL;
4084 	}
4085 
4086 	if (!now && value && !list_empty(&hs_ep->queue)) {
4087 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4088 			ep->name);
4089 		return -EAGAIN;
4090 	}
4091 
4092 	if (hs_ep->dir_in) {
4093 		epreg = DIEPCTL(index);
4094 		epctl = dwc2_readl(hs->regs + epreg);
4095 
4096 		if (value) {
4097 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4098 			if (epctl & DXEPCTL_EPENA)
4099 				epctl |= DXEPCTL_EPDIS;
4100 		} else {
4101 			epctl &= ~DXEPCTL_STALL;
4102 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4103 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4104 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4105 				epctl |= DXEPCTL_SETD0PID;
4106 		}
4107 		dwc2_writel(epctl, hs->regs + epreg);
4108 	} else {
4109 		epreg = DOEPCTL(index);
4110 		epctl = dwc2_readl(hs->regs + epreg);
4111 
4112 		if (value) {
4113 			epctl |= DXEPCTL_STALL;
4114 		} else {
4115 			epctl &= ~DXEPCTL_STALL;
4116 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4117 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4118 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4119 				epctl |= DXEPCTL_SETD0PID;
4120 		}
4121 		dwc2_writel(epctl, hs->regs + epreg);
4122 	}
4123 
4124 	hs_ep->halted = value;
4125 
4126 	return 0;
4127 }
4128 
4129 /**
4130  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4131  * @ep: The endpoint to set halt.
4132  * @value: Set or unset the halt.
4133  */
4134 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4135 {
4136 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4137 	struct dwc2_hsotg *hs = hs_ep->parent;
4138 	unsigned long flags = 0;
4139 	int ret = 0;
4140 
4141 	spin_lock_irqsave(&hs->lock, flags);
4142 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4143 	spin_unlock_irqrestore(&hs->lock, flags);
4144 
4145 	return ret;
4146 }
4147 
4148 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4149 	.enable		= dwc2_hsotg_ep_enable,
4150 	.disable	= dwc2_hsotg_ep_disable,
4151 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4152 	.free_request	= dwc2_hsotg_ep_free_request,
4153 	.queue		= dwc2_hsotg_ep_queue_lock,
4154 	.dequeue	= dwc2_hsotg_ep_dequeue,
4155 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4156 	/* note, don't believe we have any call for the fifo routines */
4157 };
4158 
4159 /**
4160  * dwc2_hsotg_init - initialize the usb core
4161  * @hsotg: The driver state
4162  */
4163 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4164 {
4165 	u32 trdtim;
4166 	u32 usbcfg;
4167 	/* unmask subset of endpoint interrupts */
4168 
4169 	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4170 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4171 		    hsotg->regs + DIEPMSK);
4172 
4173 	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4174 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4175 		    hsotg->regs + DOEPMSK);
4176 
4177 	dwc2_writel(0, hsotg->regs + DAINTMSK);
4178 
4179 	/* Be in disconnected state until gadget is registered */
4180 	dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
4181 
4182 	/* setup fifos */
4183 
4184 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4185 		dwc2_readl(hsotg->regs + GRXFSIZ),
4186 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4187 
4188 	dwc2_hsotg_init_fifo(hsotg);
4189 
4190 	/* keep other bits untouched (so e.g. forced modes are not lost) */
4191 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4192 	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4193 		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4194 
4195 	/* set the PLL on, remove the HNP/SRP and set the PHY */
4196 	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4197 	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4198 		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4199 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4200 
4201 	if (using_dma(hsotg))
4202 		dwc2_set_bit(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4203 }
4204 
4205 /**
4206  * dwc2_hsotg_udc_start - prepare the udc for work
4207  * @gadget: The usb gadget state
4208  * @driver: The usb gadget driver
4209  *
4210  * Perform initialization to prepare udc device and driver
4211  * to work.
4212  */
4213 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4214 				struct usb_gadget_driver *driver)
4215 {
4216 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4217 	unsigned long flags;
4218 	int ret;
4219 
4220 	if (!hsotg) {
4221 		pr_err("%s: called with no device\n", __func__);
4222 		return -ENODEV;
4223 	}
4224 
4225 	if (!driver) {
4226 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4227 		return -EINVAL;
4228 	}
4229 
4230 	if (driver->max_speed < USB_SPEED_FULL)
4231 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4232 
4233 	if (!driver->setup) {
4234 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4235 		return -EINVAL;
4236 	}
4237 
4238 	WARN_ON(hsotg->driver);
4239 
4240 	driver->driver.bus = NULL;
4241 	hsotg->driver = driver;
4242 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4243 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4244 
4245 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4246 		ret = dwc2_lowlevel_hw_enable(hsotg);
4247 		if (ret)
4248 			goto err;
4249 	}
4250 
4251 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4252 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4253 
4254 	spin_lock_irqsave(&hsotg->lock, flags);
4255 	if (dwc2_hw_is_device(hsotg)) {
4256 		dwc2_hsotg_init(hsotg);
4257 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4258 	}
4259 
4260 	hsotg->enabled = 0;
4261 	spin_unlock_irqrestore(&hsotg->lock, flags);
4262 
4263 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4264 
4265 	return 0;
4266 
4267 err:
4268 	hsotg->driver = NULL;
4269 	return ret;
4270 }
4271 
4272 /**
4273  * dwc2_hsotg_udc_stop - stop the udc
4274  * @gadget: The usb gadget state
4275  * @driver: The usb gadget driver
4276  *
4277  * Stop udc hw block and stay tunned for future transmissions
4278  */
4279 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4280 {
4281 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4282 	unsigned long flags = 0;
4283 	int ep;
4284 
4285 	if (!hsotg)
4286 		return -ENODEV;
4287 
4288 	/* all endpoints should be shutdown */
4289 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4290 		if (hsotg->eps_in[ep])
4291 			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4292 		if (hsotg->eps_out[ep])
4293 			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4294 	}
4295 
4296 	spin_lock_irqsave(&hsotg->lock, flags);
4297 
4298 	hsotg->driver = NULL;
4299 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4300 	hsotg->enabled = 0;
4301 
4302 	spin_unlock_irqrestore(&hsotg->lock, flags);
4303 
4304 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4305 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4306 
4307 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4308 		dwc2_lowlevel_hw_disable(hsotg);
4309 
4310 	return 0;
4311 }
4312 
4313 /**
4314  * dwc2_hsotg_gadget_getframe - read the frame number
4315  * @gadget: The usb gadget state
4316  *
4317  * Read the {micro} frame number
4318  */
4319 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4320 {
4321 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4322 }
4323 
4324 /**
4325  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4326  * @gadget: The usb gadget state
4327  * @is_on: Current state of the USB PHY
4328  *
4329  * Connect/Disconnect the USB PHY pullup
4330  */
4331 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4332 {
4333 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4334 	unsigned long flags = 0;
4335 
4336 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4337 		hsotg->op_state);
4338 
4339 	/* Don't modify pullup state while in host mode */
4340 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4341 		hsotg->enabled = is_on;
4342 		return 0;
4343 	}
4344 
4345 	spin_lock_irqsave(&hsotg->lock, flags);
4346 	if (is_on) {
4347 		hsotg->enabled = 1;
4348 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4349 		dwc2_hsotg_core_connect(hsotg);
4350 	} else {
4351 		dwc2_hsotg_core_disconnect(hsotg);
4352 		dwc2_hsotg_disconnect(hsotg);
4353 		hsotg->enabled = 0;
4354 	}
4355 
4356 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4357 	spin_unlock_irqrestore(&hsotg->lock, flags);
4358 
4359 	return 0;
4360 }
4361 
4362 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4363 {
4364 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4365 	unsigned long flags;
4366 
4367 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4368 	spin_lock_irqsave(&hsotg->lock, flags);
4369 
4370 	/*
4371 	 * If controller is hibernated, it must exit from hibernation
4372 	 * before being initialized / de-initialized
4373 	 */
4374 	if (hsotg->lx_state == DWC2_L2)
4375 		dwc2_exit_hibernation(hsotg, false);
4376 
4377 	if (is_active) {
4378 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4379 
4380 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4381 		if (hsotg->enabled)
4382 			dwc2_hsotg_core_connect(hsotg);
4383 	} else {
4384 		dwc2_hsotg_core_disconnect(hsotg);
4385 		dwc2_hsotg_disconnect(hsotg);
4386 	}
4387 
4388 	spin_unlock_irqrestore(&hsotg->lock, flags);
4389 	return 0;
4390 }
4391 
4392 /**
4393  * dwc2_hsotg_vbus_draw - report bMaxPower field
4394  * @gadget: The usb gadget state
4395  * @mA: Amount of current
4396  *
4397  * Report how much power the device may consume to the phy.
4398  */
4399 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4400 {
4401 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4402 
4403 	if (IS_ERR_OR_NULL(hsotg->uphy))
4404 		return -ENOTSUPP;
4405 	return usb_phy_set_power(hsotg->uphy, mA);
4406 }
4407 
4408 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4409 	.get_frame	= dwc2_hsotg_gadget_getframe,
4410 	.udc_start		= dwc2_hsotg_udc_start,
4411 	.udc_stop		= dwc2_hsotg_udc_stop,
4412 	.pullup                 = dwc2_hsotg_pullup,
4413 	.vbus_session		= dwc2_hsotg_vbus_session,
4414 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4415 };
4416 
4417 /**
4418  * dwc2_hsotg_initep - initialise a single endpoint
4419  * @hsotg: The device state.
4420  * @hs_ep: The endpoint to be initialised.
4421  * @epnum: The endpoint number
4422  *
4423  * Initialise the given endpoint (as part of the probe and device state
4424  * creation) to give to the gadget driver. Setup the endpoint name, any
4425  * direction information and other state that may be required.
4426  */
4427 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4428 			      struct dwc2_hsotg_ep *hs_ep,
4429 				       int epnum,
4430 				       bool dir_in)
4431 {
4432 	char *dir;
4433 
4434 	if (epnum == 0)
4435 		dir = "";
4436 	else if (dir_in)
4437 		dir = "in";
4438 	else
4439 		dir = "out";
4440 
4441 	hs_ep->dir_in = dir_in;
4442 	hs_ep->index = epnum;
4443 
4444 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4445 
4446 	INIT_LIST_HEAD(&hs_ep->queue);
4447 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4448 
4449 	/* add to the list of endpoints known by the gadget driver */
4450 	if (epnum)
4451 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4452 
4453 	hs_ep->parent = hsotg;
4454 	hs_ep->ep.name = hs_ep->name;
4455 
4456 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4457 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4458 	else
4459 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4460 					   epnum ? 1024 : EP0_MPS_LIMIT);
4461 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4462 
4463 	if (epnum == 0) {
4464 		hs_ep->ep.caps.type_control = true;
4465 	} else {
4466 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4467 			hs_ep->ep.caps.type_iso = true;
4468 			hs_ep->ep.caps.type_bulk = true;
4469 		}
4470 		hs_ep->ep.caps.type_int = true;
4471 	}
4472 
4473 	if (dir_in)
4474 		hs_ep->ep.caps.dir_in = true;
4475 	else
4476 		hs_ep->ep.caps.dir_out = true;
4477 
4478 	/*
4479 	 * if we're using dma, we need to set the next-endpoint pointer
4480 	 * to be something valid.
4481 	 */
4482 
4483 	if (using_dma(hsotg)) {
4484 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4485 
4486 		if (dir_in)
4487 			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4488 		else
4489 			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4490 	}
4491 }
4492 
4493 /**
4494  * dwc2_hsotg_hw_cfg - read HW configuration registers
4495  * @param: The device state
4496  *
4497  * Read the USB core HW configuration registers
4498  */
4499 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4500 {
4501 	u32 cfg;
4502 	u32 ep_type;
4503 	u32 i;
4504 
4505 	/* check hardware configuration */
4506 
4507 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4508 
4509 	/* Add ep0 */
4510 	hsotg->num_of_eps++;
4511 
4512 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4513 					sizeof(struct dwc2_hsotg_ep),
4514 					GFP_KERNEL);
4515 	if (!hsotg->eps_in[0])
4516 		return -ENOMEM;
4517 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4518 	hsotg->eps_out[0] = hsotg->eps_in[0];
4519 
4520 	cfg = hsotg->hw_params.dev_ep_dirs;
4521 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4522 		ep_type = cfg & 3;
4523 		/* Direction in or both */
4524 		if (!(ep_type & 2)) {
4525 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4526 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4527 			if (!hsotg->eps_in[i])
4528 				return -ENOMEM;
4529 		}
4530 		/* Direction out or both */
4531 		if (!(ep_type & 1)) {
4532 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4533 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4534 			if (!hsotg->eps_out[i])
4535 				return -ENOMEM;
4536 		}
4537 	}
4538 
4539 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4540 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4541 
4542 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4543 		 hsotg->num_of_eps,
4544 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4545 		 hsotg->fifo_mem);
4546 	return 0;
4547 }
4548 
4549 /**
4550  * dwc2_hsotg_dump - dump state of the udc
4551  * @param: The device state
4552  */
4553 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4554 {
4555 #ifdef DEBUG
4556 	struct device *dev = hsotg->dev;
4557 	void __iomem *regs = hsotg->regs;
4558 	u32 val;
4559 	int idx;
4560 
4561 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4562 		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4563 		 dwc2_readl(regs + DIEPMSK));
4564 
4565 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4566 		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4567 
4568 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4569 		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4570 
4571 	/* show periodic fifo settings */
4572 
4573 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4574 		val = dwc2_readl(regs + DPTXFSIZN(idx));
4575 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4576 			 val >> FIFOSIZE_DEPTH_SHIFT,
4577 			 val & FIFOSIZE_STARTADDR_MASK);
4578 	}
4579 
4580 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4581 		dev_info(dev,
4582 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4583 			 dwc2_readl(regs + DIEPCTL(idx)),
4584 			 dwc2_readl(regs + DIEPTSIZ(idx)),
4585 			 dwc2_readl(regs + DIEPDMA(idx)));
4586 
4587 		val = dwc2_readl(regs + DOEPCTL(idx));
4588 		dev_info(dev,
4589 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4590 			 idx, dwc2_readl(regs + DOEPCTL(idx)),
4591 			 dwc2_readl(regs + DOEPTSIZ(idx)),
4592 			 dwc2_readl(regs + DOEPDMA(idx)));
4593 	}
4594 
4595 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4596 		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4597 #endif
4598 }
4599 
4600 /**
4601  * dwc2_gadget_init - init function for gadget
4602  * @dwc2: The data structure for the DWC2 driver.
4603  */
4604 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4605 {
4606 	struct device *dev = hsotg->dev;
4607 	int epnum;
4608 	int ret;
4609 
4610 	/* Dump fifo information */
4611 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4612 		hsotg->params.g_np_tx_fifo_size);
4613 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4614 
4615 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4616 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4617 	hsotg->gadget.name = dev_name(dev);
4618 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4619 		hsotg->gadget.is_otg = 1;
4620 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4621 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4622 
4623 	ret = dwc2_hsotg_hw_cfg(hsotg);
4624 	if (ret) {
4625 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4626 		return ret;
4627 	}
4628 
4629 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4630 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4631 	if (!hsotg->ctrl_buff)
4632 		return -ENOMEM;
4633 
4634 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4635 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4636 	if (!hsotg->ep0_buff)
4637 		return -ENOMEM;
4638 
4639 	if (using_desc_dma(hsotg)) {
4640 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4641 		if (ret < 0)
4642 			return ret;
4643 	}
4644 
4645 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4646 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4647 	if (ret < 0) {
4648 		dev_err(dev, "cannot claim IRQ for gadget\n");
4649 		return ret;
4650 	}
4651 
4652 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4653 
4654 	if (hsotg->num_of_eps == 0) {
4655 		dev_err(dev, "wrong number of EPs (zero)\n");
4656 		return -EINVAL;
4657 	}
4658 
4659 	/* setup endpoint information */
4660 
4661 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4662 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4663 
4664 	/* allocate EP0 request */
4665 
4666 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4667 						     GFP_KERNEL);
4668 	if (!hsotg->ctrl_req) {
4669 		dev_err(dev, "failed to allocate ctrl req\n");
4670 		return -ENOMEM;
4671 	}
4672 
4673 	/* initialise the endpoints now the core has been initialised */
4674 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4675 		if (hsotg->eps_in[epnum])
4676 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4677 					  epnum, 1);
4678 		if (hsotg->eps_out[epnum])
4679 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4680 					  epnum, 0);
4681 	}
4682 
4683 	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4684 	if (ret)
4685 		return ret;
4686 
4687 	dwc2_hsotg_dump(hsotg);
4688 
4689 	return 0;
4690 }
4691 
4692 /**
4693  * dwc2_hsotg_remove - remove function for hsotg driver
4694  * @pdev: The platform information for the driver
4695  */
4696 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4697 {
4698 	usb_del_gadget_udc(&hsotg->gadget);
4699 
4700 	return 0;
4701 }
4702 
4703 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4704 {
4705 	unsigned long flags;
4706 
4707 	if (hsotg->lx_state != DWC2_L0)
4708 		return 0;
4709 
4710 	if (hsotg->driver) {
4711 		int ep;
4712 
4713 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4714 			 hsotg->driver->driver.name);
4715 
4716 		spin_lock_irqsave(&hsotg->lock, flags);
4717 		if (hsotg->enabled)
4718 			dwc2_hsotg_core_disconnect(hsotg);
4719 		dwc2_hsotg_disconnect(hsotg);
4720 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4721 		spin_unlock_irqrestore(&hsotg->lock, flags);
4722 
4723 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4724 			if (hsotg->eps_in[ep])
4725 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4726 			if (hsotg->eps_out[ep])
4727 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4728 		}
4729 	}
4730 
4731 	return 0;
4732 }
4733 
4734 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4735 {
4736 	unsigned long flags;
4737 
4738 	if (hsotg->lx_state == DWC2_L2)
4739 		return 0;
4740 
4741 	if (hsotg->driver) {
4742 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4743 			 hsotg->driver->driver.name);
4744 
4745 		spin_lock_irqsave(&hsotg->lock, flags);
4746 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4747 		if (hsotg->enabled)
4748 			dwc2_hsotg_core_connect(hsotg);
4749 		spin_unlock_irqrestore(&hsotg->lock, flags);
4750 	}
4751 
4752 	return 0;
4753 }
4754 
4755 /**
4756  * dwc2_backup_device_registers() - Backup controller device registers.
4757  * When suspending usb bus, registers needs to be backuped
4758  * if controller power is disabled once suspended.
4759  *
4760  * @hsotg: Programming view of the DWC_otg controller
4761  */
4762 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4763 {
4764 	struct dwc2_dregs_backup *dr;
4765 	int i;
4766 
4767 	dev_dbg(hsotg->dev, "%s\n", __func__);
4768 
4769 	/* Backup dev regs */
4770 	dr = &hsotg->dr_backup;
4771 
4772 	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4773 	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4774 	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4775 	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4776 	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4777 
4778 	for (i = 0; i < hsotg->num_of_eps; i++) {
4779 		/* Backup IN EPs */
4780 		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4781 
4782 		/* Ensure DATA PID is correctly configured */
4783 		if (dr->diepctl[i] & DXEPCTL_DPID)
4784 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4785 		else
4786 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4787 
4788 		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4789 		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4790 
4791 		/* Backup OUT EPs */
4792 		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4793 
4794 		/* Ensure DATA PID is correctly configured */
4795 		if (dr->doepctl[i] & DXEPCTL_DPID)
4796 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
4797 		else
4798 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
4799 
4800 		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4801 		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4802 	}
4803 	dr->valid = true;
4804 	return 0;
4805 }
4806 
4807 /**
4808  * dwc2_restore_device_registers() - Restore controller device registers.
4809  * When resuming usb bus, device registers needs to be restored
4810  * if controller power were disabled.
4811  *
4812  * @hsotg: Programming view of the DWC_otg controller
4813  */
4814 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
4815 {
4816 	struct dwc2_dregs_backup *dr;
4817 	u32 dctl;
4818 	int i;
4819 
4820 	dev_dbg(hsotg->dev, "%s\n", __func__);
4821 
4822 	/* Restore dev regs */
4823 	dr = &hsotg->dr_backup;
4824 	if (!dr->valid) {
4825 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
4826 			__func__);
4827 		return -EINVAL;
4828 	}
4829 	dr->valid = false;
4830 
4831 	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
4832 	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4833 	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4834 	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4835 	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4836 
4837 	for (i = 0; i < hsotg->num_of_eps; i++) {
4838 		/* Restore IN EPs */
4839 		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4840 		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4841 		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4842 
4843 		/* Restore OUT EPs */
4844 		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4845 		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4846 		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4847 	}
4848 
4849 	/* Set the Power-On Programming done bit */
4850 	dctl = dwc2_readl(hsotg->regs + DCTL);
4851 	dctl |= DCTL_PWRONPRGDONE;
4852 	dwc2_writel(dctl, hsotg->regs + DCTL);
4853 
4854 	return 0;
4855 }
4856