1 // SPDX-License-Identifier: GPL-2.0 2 /** 3 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com 5 * 6 * Copyright 2008 Openmoko, Inc. 7 * Copyright 2008 Simtec Electronics 8 * Ben Dooks <ben@simtec.co.uk> 9 * http://armlinux.simtec.co.uk/ 10 * 11 * S3C USB2.0 High-speed / OtG driver 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/interrupt.h> 18 #include <linux/platform_device.h> 19 #include <linux/dma-mapping.h> 20 #include <linux/mutex.h> 21 #include <linux/seq_file.h> 22 #include <linux/delay.h> 23 #include <linux/io.h> 24 #include <linux/slab.h> 25 #include <linux/of_platform.h> 26 27 #include <linux/usb/ch9.h> 28 #include <linux/usb/gadget.h> 29 #include <linux/usb/phy.h> 30 31 #include "core.h" 32 #include "hw.h" 33 34 /* conversion functions */ 35 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) 36 { 37 return container_of(req, struct dwc2_hsotg_req, req); 38 } 39 40 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) 41 { 42 return container_of(ep, struct dwc2_hsotg_ep, ep); 43 } 44 45 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) 46 { 47 return container_of(gadget, struct dwc2_hsotg, gadget); 48 } 49 50 static inline void dwc2_set_bit(void __iomem *ptr, u32 val) 51 { 52 dwc2_writel(dwc2_readl(ptr) | val, ptr); 53 } 54 55 static inline void dwc2_clear_bit(void __iomem *ptr, u32 val) 56 { 57 dwc2_writel(dwc2_readl(ptr) & ~val, ptr); 58 } 59 60 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, 61 u32 ep_index, u32 dir_in) 62 { 63 if (dir_in) 64 return hsotg->eps_in[ep_index]; 65 else 66 return hsotg->eps_out[ep_index]; 67 } 68 69 /* forward declaration of functions */ 70 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); 71 72 /** 73 * using_dma - return the DMA status of the driver. 74 * @hsotg: The driver state. 75 * 76 * Return true if we're using DMA. 77 * 78 * Currently, we have the DMA support code worked into everywhere 79 * that needs it, but the AMBA DMA implementation in the hardware can 80 * only DMA from 32bit aligned addresses. This means that gadgets such 81 * as the CDC Ethernet cannot work as they often pass packets which are 82 * not 32bit aligned. 83 * 84 * Unfortunately the choice to use DMA or not is global to the controller 85 * and seems to be only settable when the controller is being put through 86 * a core reset. This means we either need to fix the gadgets to take 87 * account of DMA alignment, or add bounce buffers (yuerk). 88 * 89 * g_using_dma is set depending on dts flag. 90 */ 91 static inline bool using_dma(struct dwc2_hsotg *hsotg) 92 { 93 return hsotg->params.g_dma; 94 } 95 96 /* 97 * using_desc_dma - return the descriptor DMA status of the driver. 98 * @hsotg: The driver state. 99 * 100 * Return true if we're using descriptor DMA. 101 */ 102 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) 103 { 104 return hsotg->params.g_dma_desc; 105 } 106 107 /** 108 * dwc2_gadget_incr_frame_num - Increments the targeted frame number. 109 * @hs_ep: The endpoint 110 * @increment: The value to increment by 111 * 112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. 113 * If an overrun occurs it will wrap the value and set the frame_overrun flag. 114 */ 115 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) 116 { 117 hs_ep->target_frame += hs_ep->interval; 118 if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) { 119 hs_ep->frame_overrun = 1; 120 hs_ep->target_frame &= DSTS_SOFFN_LIMIT; 121 } else { 122 hs_ep->frame_overrun = 0; 123 } 124 } 125 126 /** 127 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt 128 * @hsotg: The device state 129 * @ints: A bitmask of the interrupts to enable 130 */ 131 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) 132 { 133 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK); 134 u32 new_gsintmsk; 135 136 new_gsintmsk = gsintmsk | ints; 137 138 if (new_gsintmsk != gsintmsk) { 139 dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); 140 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK); 141 } 142 } 143 144 /** 145 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt 146 * @hsotg: The device state 147 * @ints: A bitmask of the interrupts to enable 148 */ 149 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) 150 { 151 u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK); 152 u32 new_gsintmsk; 153 154 new_gsintmsk = gsintmsk & ~ints; 155 156 if (new_gsintmsk != gsintmsk) 157 dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK); 158 } 159 160 /** 161 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq 162 * @hsotg: The device state 163 * @ep: The endpoint index 164 * @dir_in: True if direction is in. 165 * @en: The enable value, true to enable 166 * 167 * Set or clear the mask for an individual endpoint's interrupt 168 * request. 169 */ 170 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, 171 unsigned int ep, unsigned int dir_in, 172 unsigned int en) 173 { 174 unsigned long flags; 175 u32 bit = 1 << ep; 176 u32 daint; 177 178 if (!dir_in) 179 bit <<= 16; 180 181 local_irq_save(flags); 182 daint = dwc2_readl(hsotg->regs + DAINTMSK); 183 if (en) 184 daint |= bit; 185 else 186 daint &= ~bit; 187 dwc2_writel(daint, hsotg->regs + DAINTMSK); 188 local_irq_restore(flags); 189 } 190 191 /** 192 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode 193 */ 194 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) 195 { 196 if (hsotg->hw_params.en_multiple_tx_fifo) 197 /* In dedicated FIFO mode we need count of IN EPs */ 198 return hsotg->hw_params.num_dev_in_eps; 199 else 200 /* In shared FIFO mode we need count of Periodic IN EPs */ 201 return hsotg->hw_params.num_dev_perio_in_ep; 202 } 203 204 /** 205 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for 206 * device mode TX FIFOs 207 */ 208 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) 209 { 210 int addr; 211 int tx_addr_max; 212 u32 np_tx_fifo_size; 213 214 np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, 215 hsotg->params.g_np_tx_fifo_size); 216 217 /* Get Endpoint Info Control block size in DWORDs. */ 218 tx_addr_max = hsotg->hw_params.total_fifo_size; 219 220 addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; 221 if (tx_addr_max <= addr) 222 return 0; 223 224 return tx_addr_max - addr; 225 } 226 227 /** 228 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode 229 * TX FIFOs 230 */ 231 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) 232 { 233 int tx_fifo_count; 234 int tx_fifo_depth; 235 236 tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); 237 238 tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); 239 240 if (!tx_fifo_count) 241 return tx_fifo_depth; 242 else 243 return tx_fifo_depth / tx_fifo_count; 244 } 245 246 /** 247 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs 248 * @hsotg: The device instance. 249 */ 250 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) 251 { 252 unsigned int ep; 253 unsigned int addr; 254 int timeout; 255 256 u32 val; 257 u32 *txfsz = hsotg->params.g_tx_fifo_size; 258 259 /* Reset fifo map if not correctly cleared during previous session */ 260 WARN_ON(hsotg->fifo_map); 261 hsotg->fifo_map = 0; 262 263 /* set RX/NPTX FIFO sizes */ 264 dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ); 265 dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) | 266 (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), 267 hsotg->regs + GNPTXFSIZ); 268 269 /* 270 * arange all the rest of the TX FIFOs, as some versions of this 271 * block have overlapping default addresses. This also ensures 272 * that if the settings have been changed, then they are set to 273 * known values. 274 */ 275 276 /* start at the end of the GNPTXFSIZ, rounded up */ 277 addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; 278 279 /* 280 * Configure fifos sizes from provided configuration and assign 281 * them to endpoints dynamically according to maxpacket size value of 282 * given endpoint. 283 */ 284 for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { 285 if (!txfsz[ep]) 286 continue; 287 val = addr; 288 val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; 289 WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, 290 "insufficient fifo memory"); 291 addr += txfsz[ep]; 292 293 dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep)); 294 val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep)); 295 } 296 297 dwc2_writel(hsotg->hw_params.total_fifo_size | 298 addr << GDFIFOCFG_EPINFOBASE_SHIFT, 299 hsotg->regs + GDFIFOCFG); 300 /* 301 * according to p428 of the design guide, we need to ensure that 302 * all fifos are flushed before continuing 303 */ 304 305 dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | 306 GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL); 307 308 /* wait until the fifos are both flushed */ 309 timeout = 100; 310 while (1) { 311 val = dwc2_readl(hsotg->regs + GRSTCTL); 312 313 if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) 314 break; 315 316 if (--timeout == 0) { 317 dev_err(hsotg->dev, 318 "%s: timeout flushing fifos (GRSTCTL=%08x)\n", 319 __func__, val); 320 break; 321 } 322 323 udelay(1); 324 } 325 326 dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); 327 } 328 329 /** 330 * @ep: USB endpoint to allocate request for. 331 * @flags: Allocation flags 332 * 333 * Allocate a new USB request structure appropriate for the specified endpoint 334 */ 335 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, 336 gfp_t flags) 337 { 338 struct dwc2_hsotg_req *req; 339 340 req = kzalloc(sizeof(*req), flags); 341 if (!req) 342 return NULL; 343 344 INIT_LIST_HEAD(&req->queue); 345 346 return &req->req; 347 } 348 349 /** 350 * is_ep_periodic - return true if the endpoint is in periodic mode. 351 * @hs_ep: The endpoint to query. 352 * 353 * Returns true if the endpoint is in periodic mode, meaning it is being 354 * used for an Interrupt or ISO transfer. 355 */ 356 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) 357 { 358 return hs_ep->periodic; 359 } 360 361 /** 362 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request 363 * @hsotg: The device state. 364 * @hs_ep: The endpoint for the request 365 * @hs_req: The request being processed. 366 * 367 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion 368 * of a request to ensure the buffer is ready for access by the caller. 369 */ 370 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, 371 struct dwc2_hsotg_ep *hs_ep, 372 struct dwc2_hsotg_req *hs_req) 373 { 374 struct usb_request *req = &hs_req->req; 375 376 usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in); 377 } 378 379 /* 380 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains 381 * for Control endpoint 382 * @hsotg: The device state. 383 * 384 * This function will allocate 4 descriptor chains for EP 0: 2 for 385 * Setup stage, per one for IN and OUT data/status transactions. 386 */ 387 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) 388 { 389 hsotg->setup_desc[0] = 390 dmam_alloc_coherent(hsotg->dev, 391 sizeof(struct dwc2_dma_desc), 392 &hsotg->setup_desc_dma[0], 393 GFP_KERNEL); 394 if (!hsotg->setup_desc[0]) 395 goto fail; 396 397 hsotg->setup_desc[1] = 398 dmam_alloc_coherent(hsotg->dev, 399 sizeof(struct dwc2_dma_desc), 400 &hsotg->setup_desc_dma[1], 401 GFP_KERNEL); 402 if (!hsotg->setup_desc[1]) 403 goto fail; 404 405 hsotg->ctrl_in_desc = 406 dmam_alloc_coherent(hsotg->dev, 407 sizeof(struct dwc2_dma_desc), 408 &hsotg->ctrl_in_desc_dma, 409 GFP_KERNEL); 410 if (!hsotg->ctrl_in_desc) 411 goto fail; 412 413 hsotg->ctrl_out_desc = 414 dmam_alloc_coherent(hsotg->dev, 415 sizeof(struct dwc2_dma_desc), 416 &hsotg->ctrl_out_desc_dma, 417 GFP_KERNEL); 418 if (!hsotg->ctrl_out_desc) 419 goto fail; 420 421 return 0; 422 423 fail: 424 return -ENOMEM; 425 } 426 427 /** 428 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO 429 * @hsotg: The controller state. 430 * @hs_ep: The endpoint we're going to write for. 431 * @hs_req: The request to write data for. 432 * 433 * This is called when the TxFIFO has some space in it to hold a new 434 * transmission and we have something to give it. The actual setup of 435 * the data size is done elsewhere, so all we have to do is to actually 436 * write the data. 437 * 438 * The return value is zero if there is more space (or nothing was done) 439 * otherwise -ENOSPC is returned if the FIFO space was used up. 440 * 441 * This routine is only needed for PIO 442 */ 443 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, 444 struct dwc2_hsotg_ep *hs_ep, 445 struct dwc2_hsotg_req *hs_req) 446 { 447 bool periodic = is_ep_periodic(hs_ep); 448 u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS); 449 int buf_pos = hs_req->req.actual; 450 int to_write = hs_ep->size_loaded; 451 void *data; 452 int can_write; 453 int pkt_round; 454 int max_transfer; 455 456 to_write -= (buf_pos - hs_ep->last_load); 457 458 /* if there's nothing to write, get out early */ 459 if (to_write == 0) 460 return 0; 461 462 if (periodic && !hsotg->dedicated_fifos) { 463 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 464 int size_left; 465 int size_done; 466 467 /* 468 * work out how much data was loaded so we can calculate 469 * how much data is left in the fifo. 470 */ 471 472 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 473 474 /* 475 * if shared fifo, we cannot write anything until the 476 * previous data has been completely sent. 477 */ 478 if (hs_ep->fifo_load != 0) { 479 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 480 return -ENOSPC; 481 } 482 483 dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", 484 __func__, size_left, 485 hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); 486 487 /* how much of the data has moved */ 488 size_done = hs_ep->size_loaded - size_left; 489 490 /* how much data is left in the fifo */ 491 can_write = hs_ep->fifo_load - size_done; 492 dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", 493 __func__, can_write); 494 495 can_write = hs_ep->fifo_size - can_write; 496 dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", 497 __func__, can_write); 498 499 if (can_write <= 0) { 500 dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); 501 return -ENOSPC; 502 } 503 } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { 504 can_write = dwc2_readl(hsotg->regs + 505 DTXFSTS(hs_ep->fifo_index)); 506 507 can_write &= 0xffff; 508 can_write *= 4; 509 } else { 510 if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { 511 dev_dbg(hsotg->dev, 512 "%s: no queue slots available (0x%08x)\n", 513 __func__, gnptxsts); 514 515 dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); 516 return -ENOSPC; 517 } 518 519 can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); 520 can_write *= 4; /* fifo size is in 32bit quantities. */ 521 } 522 523 max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; 524 525 dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", 526 __func__, gnptxsts, can_write, to_write, max_transfer); 527 528 /* 529 * limit to 512 bytes of data, it seems at least on the non-periodic 530 * FIFO, requests of >512 cause the endpoint to get stuck with a 531 * fragment of the end of the transfer in it. 532 */ 533 if (can_write > 512 && !periodic) 534 can_write = 512; 535 536 /* 537 * limit the write to one max-packet size worth of data, but allow 538 * the transfer to return that it did not run out of fifo space 539 * doing it. 540 */ 541 if (to_write > max_transfer) { 542 to_write = max_transfer; 543 544 /* it's needed only when we do not use dedicated fifos */ 545 if (!hsotg->dedicated_fifos) 546 dwc2_hsotg_en_gsint(hsotg, 547 periodic ? GINTSTS_PTXFEMP : 548 GINTSTS_NPTXFEMP); 549 } 550 551 /* see if we can write data */ 552 553 if (to_write > can_write) { 554 to_write = can_write; 555 pkt_round = to_write % max_transfer; 556 557 /* 558 * Round the write down to an 559 * exact number of packets. 560 * 561 * Note, we do not currently check to see if we can ever 562 * write a full packet or not to the FIFO. 563 */ 564 565 if (pkt_round) 566 to_write -= pkt_round; 567 568 /* 569 * enable correct FIFO interrupt to alert us when there 570 * is more room left. 571 */ 572 573 /* it's needed only when we do not use dedicated fifos */ 574 if (!hsotg->dedicated_fifos) 575 dwc2_hsotg_en_gsint(hsotg, 576 periodic ? GINTSTS_PTXFEMP : 577 GINTSTS_NPTXFEMP); 578 } 579 580 dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", 581 to_write, hs_req->req.length, can_write, buf_pos); 582 583 if (to_write <= 0) 584 return -ENOSPC; 585 586 hs_req->req.actual = buf_pos + to_write; 587 hs_ep->total_data += to_write; 588 589 if (periodic) 590 hs_ep->fifo_load += to_write; 591 592 to_write = DIV_ROUND_UP(to_write, 4); 593 data = hs_req->req.buf + buf_pos; 594 595 iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write); 596 597 return (to_write >= can_write) ? -ENOSPC : 0; 598 } 599 600 /** 601 * get_ep_limit - get the maximum data legnth for this endpoint 602 * @hs_ep: The endpoint 603 * 604 * Return the maximum data that can be queued in one go on a given endpoint 605 * so that transfers that are too long can be split. 606 */ 607 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) 608 { 609 int index = hs_ep->index; 610 unsigned int maxsize; 611 unsigned int maxpkt; 612 613 if (index != 0) { 614 maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; 615 maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; 616 } else { 617 maxsize = 64 + 64; 618 if (hs_ep->dir_in) 619 maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; 620 else 621 maxpkt = 2; 622 } 623 624 /* we made the constant loading easier above by using +1 */ 625 maxpkt--; 626 maxsize--; 627 628 /* 629 * constrain by packet count if maxpkts*pktsize is greater 630 * than the length register size. 631 */ 632 633 if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) 634 maxsize = maxpkt * hs_ep->ep.maxpacket; 635 636 return maxsize; 637 } 638 639 /** 640 * dwc2_hsotg_read_frameno - read current frame number 641 * @hsotg: The device instance 642 * 643 * Return the current frame number 644 */ 645 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) 646 { 647 u32 dsts; 648 649 dsts = dwc2_readl(hsotg->regs + DSTS); 650 dsts &= DSTS_SOFFN_MASK; 651 dsts >>= DSTS_SOFFN_SHIFT; 652 653 return dsts; 654 } 655 656 /** 657 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the 658 * DMA descriptor chain prepared for specific endpoint 659 * @hs_ep: The endpoint 660 * 661 * Return the maximum data that can be queued in one go on a given endpoint 662 * depending on its descriptor chain capacity so that transfers that 663 * are too long can be split. 664 */ 665 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) 666 { 667 int is_isoc = hs_ep->isochronous; 668 unsigned int maxsize; 669 670 if (is_isoc) 671 maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : 672 DEV_DMA_ISOC_RX_NBYTES_LIMIT; 673 else 674 maxsize = DEV_DMA_NBYTES_LIMIT; 675 676 /* Above size of one descriptor was chosen, multiple it */ 677 maxsize *= MAX_DMA_DESC_NUM_GENERIC; 678 679 return maxsize; 680 } 681 682 /* 683 * dwc2_gadget_get_desc_params - get DMA descriptor parameters. 684 * @hs_ep: The endpoint 685 * @mask: RX/TX bytes mask to be defined 686 * 687 * Returns maximum data payload for one descriptor after analyzing endpoint 688 * characteristics. 689 * DMA descriptor transfer bytes limit depends on EP type: 690 * Control out - MPS, 691 * Isochronous - descriptor rx/tx bytes bitfield limit, 692 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not 693 * have concatenations from various descriptors within one packet. 694 * 695 * Selects corresponding mask for RX/TX bytes as well. 696 */ 697 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) 698 { 699 u32 mps = hs_ep->ep.maxpacket; 700 int dir_in = hs_ep->dir_in; 701 u32 desc_size = 0; 702 703 if (!hs_ep->index && !dir_in) { 704 desc_size = mps; 705 *mask = DEV_DMA_NBYTES_MASK; 706 } else if (hs_ep->isochronous) { 707 if (dir_in) { 708 desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; 709 *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; 710 } else { 711 desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; 712 *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; 713 } 714 } else { 715 desc_size = DEV_DMA_NBYTES_LIMIT; 716 *mask = DEV_DMA_NBYTES_MASK; 717 718 /* Round down desc_size to be mps multiple */ 719 desc_size -= desc_size % mps; 720 } 721 722 return desc_size; 723 } 724 725 /* 726 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. 727 * @hs_ep: The endpoint 728 * @dma_buff: DMA address to use 729 * @len: Length of the transfer 730 * 731 * This function will iterate over descriptor chain and fill its entries 732 * with corresponding information based on transfer data. 733 */ 734 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, 735 dma_addr_t dma_buff, 736 unsigned int len) 737 { 738 struct dwc2_hsotg *hsotg = hs_ep->parent; 739 int dir_in = hs_ep->dir_in; 740 struct dwc2_dma_desc *desc = hs_ep->desc_list; 741 u32 mps = hs_ep->ep.maxpacket; 742 u32 maxsize = 0; 743 u32 offset = 0; 744 u32 mask = 0; 745 int i; 746 747 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 748 749 hs_ep->desc_count = (len / maxsize) + 750 ((len % maxsize) ? 1 : 0); 751 if (len == 0) 752 hs_ep->desc_count = 1; 753 754 for (i = 0; i < hs_ep->desc_count; ++i) { 755 desc->status = 0; 756 desc->status |= (DEV_DMA_BUFF_STS_HBUSY 757 << DEV_DMA_BUFF_STS_SHIFT); 758 759 if (len > maxsize) { 760 if (!hs_ep->index && !dir_in) 761 desc->status |= (DEV_DMA_L | DEV_DMA_IOC); 762 763 desc->status |= (maxsize << 764 DEV_DMA_NBYTES_SHIFT & mask); 765 desc->buf = dma_buff + offset; 766 767 len -= maxsize; 768 offset += maxsize; 769 } else { 770 desc->status |= (DEV_DMA_L | DEV_DMA_IOC); 771 772 if (dir_in) 773 desc->status |= (len % mps) ? DEV_DMA_SHORT : 774 ((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0); 775 if (len > maxsize) 776 dev_err(hsotg->dev, "wrong len %d\n", len); 777 778 desc->status |= 779 len << DEV_DMA_NBYTES_SHIFT & mask; 780 desc->buf = dma_buff + offset; 781 } 782 783 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 784 desc->status |= (DEV_DMA_BUFF_STS_HREADY 785 << DEV_DMA_BUFF_STS_SHIFT); 786 desc++; 787 } 788 } 789 790 /* 791 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. 792 * @hs_ep: The isochronous endpoint. 793 * @dma_buff: usb requests dma buffer. 794 * @len: usb request transfer length. 795 * 796 * Finds out index of first free entry either in the bottom or up half of 797 * descriptor chain depend on which is under SW control and not processed 798 * by HW. Then fills that descriptor with the data of the arrived usb request, 799 * frame info, sets Last and IOC bits increments next_desc. If filled 800 * descriptor is not the first one, removes L bit from the previous descriptor 801 * status. 802 */ 803 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, 804 dma_addr_t dma_buff, unsigned int len) 805 { 806 struct dwc2_dma_desc *desc; 807 struct dwc2_hsotg *hsotg = hs_ep->parent; 808 u32 index; 809 u32 maxsize = 0; 810 u32 mask = 0; 811 812 maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); 813 if (len > maxsize) { 814 dev_err(hsotg->dev, "wrong len %d\n", len); 815 return -EINVAL; 816 } 817 818 /* 819 * If SW has already filled half of chain, then return and wait for 820 * the other chain to be processed by HW. 821 */ 822 if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2) 823 return -EBUSY; 824 825 /* Increment frame number by interval for IN */ 826 if (hs_ep->dir_in) 827 dwc2_gadget_incr_frame_num(hs_ep); 828 829 index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num + 830 hs_ep->next_desc; 831 832 /* Sanity check of calculated index */ 833 if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) || 834 (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) { 835 dev_err(hsotg->dev, "wrong index %d for iso chain\n", index); 836 return -EINVAL; 837 } 838 839 desc = &hs_ep->desc_list[index]; 840 841 /* Clear L bit of previous desc if more than one entries in the chain */ 842 if (hs_ep->next_desc) 843 hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; 844 845 dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", 846 __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); 847 848 desc->status = 0; 849 desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); 850 851 desc->buf = dma_buff; 852 desc->status |= (DEV_DMA_L | DEV_DMA_IOC | 853 ((len << DEV_DMA_NBYTES_SHIFT) & mask)); 854 855 if (hs_ep->dir_in) { 856 desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) & 857 DEV_DMA_ISOC_PID_MASK) | 858 ((len % hs_ep->ep.maxpacket) ? 859 DEV_DMA_SHORT : 0) | 860 ((hs_ep->target_frame << 861 DEV_DMA_ISOC_FRNUM_SHIFT) & 862 DEV_DMA_ISOC_FRNUM_MASK); 863 } 864 865 desc->status &= ~DEV_DMA_BUFF_STS_MASK; 866 desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); 867 868 /* Update index of last configured entry in the chain */ 869 hs_ep->next_desc++; 870 871 return 0; 872 } 873 874 /* 875 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA 876 * @hs_ep: The isochronous endpoint. 877 * 878 * Prepare first descriptor chain for isochronous endpoints. Afterwards 879 * write DMA address to HW and enable the endpoint. 880 * 881 * Switch between descriptor chains via isoc_chain_num to give SW opportunity 882 * to prepare second descriptor chain while first one is being processed by HW. 883 */ 884 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 885 { 886 struct dwc2_hsotg *hsotg = hs_ep->parent; 887 struct dwc2_hsotg_req *hs_req, *treq; 888 int index = hs_ep->index; 889 int ret; 890 u32 dma_reg; 891 u32 depctl; 892 u32 ctrl; 893 894 if (list_empty(&hs_ep->queue)) { 895 dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); 896 return; 897 } 898 899 list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { 900 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma, 901 hs_req->req.length); 902 if (ret) { 903 dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); 904 break; 905 } 906 } 907 908 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 909 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 910 911 /* write descriptor chain address to control register */ 912 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg); 913 914 ctrl = dwc2_readl(hsotg->regs + depctl); 915 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 916 dwc2_writel(ctrl, hsotg->regs + depctl); 917 918 /* Switch ISOC descriptor chain number being processed by SW*/ 919 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1; 920 hs_ep->next_desc = 0; 921 } 922 923 /** 924 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue 925 * @hsotg: The controller state. 926 * @hs_ep: The endpoint to process a request for 927 * @hs_req: The request to start. 928 * @continuing: True if we are doing more for the current request. 929 * 930 * Start the given request running by setting the endpoint registers 931 * appropriately, and writing any data to the FIFOs. 932 */ 933 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, 934 struct dwc2_hsotg_ep *hs_ep, 935 struct dwc2_hsotg_req *hs_req, 936 bool continuing) 937 { 938 struct usb_request *ureq = &hs_req->req; 939 int index = hs_ep->index; 940 int dir_in = hs_ep->dir_in; 941 u32 epctrl_reg; 942 u32 epsize_reg; 943 u32 epsize; 944 u32 ctrl; 945 unsigned int length; 946 unsigned int packets; 947 unsigned int maxreq; 948 unsigned int dma_reg; 949 950 if (index != 0) { 951 if (hs_ep->req && !continuing) { 952 dev_err(hsotg->dev, "%s: active request\n", __func__); 953 WARN_ON(1); 954 return; 955 } else if (hs_ep->req != hs_req && continuing) { 956 dev_err(hsotg->dev, 957 "%s: continue different req\n", __func__); 958 WARN_ON(1); 959 return; 960 } 961 } 962 963 dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); 964 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 965 epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 966 967 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", 968 __func__, dwc2_readl(hsotg->regs + epctrl_reg), index, 969 hs_ep->dir_in ? "in" : "out"); 970 971 /* If endpoint is stalled, we will restart request later */ 972 ctrl = dwc2_readl(hsotg->regs + epctrl_reg); 973 974 if (index && ctrl & DXEPCTL_STALL) { 975 dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); 976 return; 977 } 978 979 length = ureq->length - ureq->actual; 980 dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", 981 ureq->length, ureq->actual); 982 983 if (!using_desc_dma(hsotg)) 984 maxreq = get_ep_limit(hs_ep); 985 else 986 maxreq = dwc2_gadget_get_chain_limit(hs_ep); 987 988 if (length > maxreq) { 989 int round = maxreq % hs_ep->ep.maxpacket; 990 991 dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", 992 __func__, length, maxreq, round); 993 994 /* round down to multiple of packets */ 995 if (round) 996 maxreq -= round; 997 998 length = maxreq; 999 } 1000 1001 if (length) 1002 packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); 1003 else 1004 packets = 1; /* send one packet if length is zero. */ 1005 1006 if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) { 1007 dev_err(hsotg->dev, "req length > maxpacket*mc\n"); 1008 return; 1009 } 1010 1011 if (dir_in && index != 0) 1012 if (hs_ep->isochronous) 1013 epsize = DXEPTSIZ_MC(packets); 1014 else 1015 epsize = DXEPTSIZ_MC(1); 1016 else 1017 epsize = 0; 1018 1019 /* 1020 * zero length packet should be programmed on its own and should not 1021 * be counted in DIEPTSIZ.PktCnt with other packets. 1022 */ 1023 if (dir_in && ureq->zero && !continuing) { 1024 /* Test if zlp is actually required. */ 1025 if ((ureq->length >= hs_ep->ep.maxpacket) && 1026 !(ureq->length % hs_ep->ep.maxpacket)) 1027 hs_ep->send_zlp = 1; 1028 } 1029 1030 epsize |= DXEPTSIZ_PKTCNT(packets); 1031 epsize |= DXEPTSIZ_XFERSIZE(length); 1032 1033 dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", 1034 __func__, packets, length, ureq->length, epsize, epsize_reg); 1035 1036 /* store the request as the current one we're doing */ 1037 hs_ep->req = hs_req; 1038 1039 if (using_desc_dma(hsotg)) { 1040 u32 offset = 0; 1041 u32 mps = hs_ep->ep.maxpacket; 1042 1043 /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ 1044 if (!dir_in) { 1045 if (!index) 1046 length = mps; 1047 else if (length % mps) 1048 length += (mps - (length % mps)); 1049 } 1050 1051 /* 1052 * If more data to send, adjust DMA for EP0 out data stage. 1053 * ureq->dma stays unchanged, hence increment it by already 1054 * passed passed data count before starting new transaction. 1055 */ 1056 if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT && 1057 continuing) 1058 offset = ureq->actual; 1059 1060 /* Fill DDMA chain entries */ 1061 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, 1062 length); 1063 1064 /* write descriptor chain address to control register */ 1065 dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg); 1066 1067 dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", 1068 __func__, (u32)hs_ep->desc_list_dma, dma_reg); 1069 } else { 1070 /* write size / packets */ 1071 dwc2_writel(epsize, hsotg->regs + epsize_reg); 1072 1073 if (using_dma(hsotg) && !continuing && (length != 0)) { 1074 /* 1075 * write DMA address to control register, buffer 1076 * already synced by dwc2_hsotg_ep_queue(). 1077 */ 1078 1079 dwc2_writel(ureq->dma, hsotg->regs + dma_reg); 1080 1081 dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", 1082 __func__, &ureq->dma, dma_reg); 1083 } 1084 } 1085 1086 if (hs_ep->isochronous && hs_ep->interval == 1) { 1087 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 1088 dwc2_gadget_incr_frame_num(hs_ep); 1089 1090 if (hs_ep->target_frame & 0x1) 1091 ctrl |= DXEPCTL_SETODDFR; 1092 else 1093 ctrl |= DXEPCTL_SETEVENFR; 1094 } 1095 1096 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1097 1098 dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); 1099 1100 /* For Setup request do not clear NAK */ 1101 if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) 1102 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1103 1104 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 1105 dwc2_writel(ctrl, hsotg->regs + epctrl_reg); 1106 1107 /* 1108 * set these, it seems that DMA support increments past the end 1109 * of the packet buffer so we need to calculate the length from 1110 * this information. 1111 */ 1112 hs_ep->size_loaded = length; 1113 hs_ep->last_load = ureq->actual; 1114 1115 if (dir_in && !using_dma(hsotg)) { 1116 /* set these anyway, we may need them for non-periodic in */ 1117 hs_ep->fifo_load = 0; 1118 1119 dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 1120 } 1121 1122 /* 1123 * Note, trying to clear the NAK here causes problems with transmit 1124 * on the S3C6400 ending up with the TXFIFO becoming full. 1125 */ 1126 1127 /* check ep is enabled */ 1128 if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA)) 1129 dev_dbg(hsotg->dev, 1130 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", 1131 index, dwc2_readl(hsotg->regs + epctrl_reg)); 1132 1133 dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", 1134 __func__, dwc2_readl(hsotg->regs + epctrl_reg)); 1135 1136 /* enable ep interrupts */ 1137 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); 1138 } 1139 1140 /** 1141 * dwc2_hsotg_map_dma - map the DMA memory being used for the request 1142 * @hsotg: The device state. 1143 * @hs_ep: The endpoint the request is on. 1144 * @req: The request being processed. 1145 * 1146 * We've been asked to queue a request, so ensure that the memory buffer 1147 * is correctly setup for DMA. If we've been passed an extant DMA address 1148 * then ensure the buffer has been synced to memory. If our buffer has no 1149 * DMA memory, then we map the memory and mark our request to allow us to 1150 * cleanup on completion. 1151 */ 1152 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, 1153 struct dwc2_hsotg_ep *hs_ep, 1154 struct usb_request *req) 1155 { 1156 int ret; 1157 1158 ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); 1159 if (ret) 1160 goto dma_error; 1161 1162 return 0; 1163 1164 dma_error: 1165 dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", 1166 __func__, req->buf, req->length); 1167 1168 return -EIO; 1169 } 1170 1171 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, 1172 struct dwc2_hsotg_ep *hs_ep, 1173 struct dwc2_hsotg_req *hs_req) 1174 { 1175 void *req_buf = hs_req->req.buf; 1176 1177 /* If dma is not being used or buffer is aligned */ 1178 if (!using_dma(hsotg) || !((long)req_buf & 3)) 1179 return 0; 1180 1181 WARN_ON(hs_req->saved_req_buf); 1182 1183 dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, 1184 hs_ep->ep.name, req_buf, hs_req->req.length); 1185 1186 hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); 1187 if (!hs_req->req.buf) { 1188 hs_req->req.buf = req_buf; 1189 dev_err(hsotg->dev, 1190 "%s: unable to allocate memory for bounce buffer\n", 1191 __func__); 1192 return -ENOMEM; 1193 } 1194 1195 /* Save actual buffer */ 1196 hs_req->saved_req_buf = req_buf; 1197 1198 if (hs_ep->dir_in) 1199 memcpy(hs_req->req.buf, req_buf, hs_req->req.length); 1200 return 0; 1201 } 1202 1203 static void 1204 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, 1205 struct dwc2_hsotg_ep *hs_ep, 1206 struct dwc2_hsotg_req *hs_req) 1207 { 1208 /* If dma is not being used or buffer was aligned */ 1209 if (!using_dma(hsotg) || !hs_req->saved_req_buf) 1210 return; 1211 1212 dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, 1213 hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); 1214 1215 /* Copy data from bounce buffer on successful out transfer */ 1216 if (!hs_ep->dir_in && !hs_req->req.status) 1217 memcpy(hs_req->saved_req_buf, hs_req->req.buf, 1218 hs_req->req.actual); 1219 1220 /* Free bounce buffer */ 1221 kfree(hs_req->req.buf); 1222 1223 hs_req->req.buf = hs_req->saved_req_buf; 1224 hs_req->saved_req_buf = NULL; 1225 } 1226 1227 /** 1228 * dwc2_gadget_target_frame_elapsed - Checks target frame 1229 * @hs_ep: The driver endpoint to check 1230 * 1231 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop 1232 * corresponding transfer. 1233 */ 1234 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) 1235 { 1236 struct dwc2_hsotg *hsotg = hs_ep->parent; 1237 u32 target_frame = hs_ep->target_frame; 1238 u32 current_frame = dwc2_hsotg_read_frameno(hsotg); 1239 bool frame_overrun = hs_ep->frame_overrun; 1240 1241 if (!frame_overrun && current_frame >= target_frame) 1242 return true; 1243 1244 if (frame_overrun && current_frame >= target_frame && 1245 ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2)) 1246 return true; 1247 1248 return false; 1249 } 1250 1251 /* 1252 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers 1253 * @hsotg: The driver state 1254 * @hs_ep: the ep descriptor chain is for 1255 * 1256 * Called to update EP0 structure's pointers depend on stage of 1257 * control transfer. 1258 */ 1259 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, 1260 struct dwc2_hsotg_ep *hs_ep) 1261 { 1262 switch (hsotg->ep0_state) { 1263 case DWC2_EP0_SETUP: 1264 case DWC2_EP0_STATUS_OUT: 1265 hs_ep->desc_list = hsotg->setup_desc[0]; 1266 hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; 1267 break; 1268 case DWC2_EP0_DATA_IN: 1269 case DWC2_EP0_STATUS_IN: 1270 hs_ep->desc_list = hsotg->ctrl_in_desc; 1271 hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; 1272 break; 1273 case DWC2_EP0_DATA_OUT: 1274 hs_ep->desc_list = hsotg->ctrl_out_desc; 1275 hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; 1276 break; 1277 default: 1278 dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", 1279 hsotg->ep0_state); 1280 return -EINVAL; 1281 } 1282 1283 return 0; 1284 } 1285 1286 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, 1287 gfp_t gfp_flags) 1288 { 1289 struct dwc2_hsotg_req *hs_req = our_req(req); 1290 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1291 struct dwc2_hsotg *hs = hs_ep->parent; 1292 bool first; 1293 int ret; 1294 1295 dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", 1296 ep->name, req, req->length, req->buf, req->no_interrupt, 1297 req->zero, req->short_not_ok); 1298 1299 /* Prevent new request submission when controller is suspended */ 1300 if (hs->lx_state == DWC2_L2) { 1301 dev_dbg(hs->dev, "%s: don't submit request while suspended\n", 1302 __func__); 1303 return -EAGAIN; 1304 } 1305 1306 /* initialise status of the request */ 1307 INIT_LIST_HEAD(&hs_req->queue); 1308 req->actual = 0; 1309 req->status = -EINPROGRESS; 1310 1311 ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); 1312 if (ret) 1313 return ret; 1314 1315 /* if we're using DMA, sync the buffers as necessary */ 1316 if (using_dma(hs)) { 1317 ret = dwc2_hsotg_map_dma(hs, hs_ep, req); 1318 if (ret) 1319 return ret; 1320 } 1321 /* If using descriptor DMA configure EP0 descriptor chain pointers */ 1322 if (using_desc_dma(hs) && !hs_ep->index) { 1323 ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); 1324 if (ret) 1325 return ret; 1326 } 1327 1328 first = list_empty(&hs_ep->queue); 1329 list_add_tail(&hs_req->queue, &hs_ep->queue); 1330 1331 /* 1332 * Handle DDMA isochronous transfers separately - just add new entry 1333 * to the half of descriptor chain that is not processed by HW. 1334 * Transfer will be started once SW gets either one of NAK or 1335 * OutTknEpDis interrupts. 1336 */ 1337 if (using_desc_dma(hs) && hs_ep->isochronous && 1338 hs_ep->target_frame != TARGET_FRAME_INITIAL) { 1339 ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma, 1340 hs_req->req.length); 1341 if (ret) 1342 dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__); 1343 1344 return 0; 1345 } 1346 1347 if (first) { 1348 if (!hs_ep->isochronous) { 1349 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1350 return 0; 1351 } 1352 1353 while (dwc2_gadget_target_frame_elapsed(hs_ep)) 1354 dwc2_gadget_incr_frame_num(hs_ep); 1355 1356 if (hs_ep->target_frame != TARGET_FRAME_INITIAL) 1357 dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); 1358 } 1359 return 0; 1360 } 1361 1362 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, 1363 gfp_t gfp_flags) 1364 { 1365 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1366 struct dwc2_hsotg *hs = hs_ep->parent; 1367 unsigned long flags = 0; 1368 int ret = 0; 1369 1370 spin_lock_irqsave(&hs->lock, flags); 1371 ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); 1372 spin_unlock_irqrestore(&hs->lock, flags); 1373 1374 return ret; 1375 } 1376 1377 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, 1378 struct usb_request *req) 1379 { 1380 struct dwc2_hsotg_req *hs_req = our_req(req); 1381 1382 kfree(hs_req); 1383 } 1384 1385 /** 1386 * dwc2_hsotg_complete_oursetup - setup completion callback 1387 * @ep: The endpoint the request was on. 1388 * @req: The request completed. 1389 * 1390 * Called on completion of any requests the driver itself 1391 * submitted that need cleaning up. 1392 */ 1393 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, 1394 struct usb_request *req) 1395 { 1396 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1397 struct dwc2_hsotg *hsotg = hs_ep->parent; 1398 1399 dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); 1400 1401 dwc2_hsotg_ep_free_request(ep, req); 1402 } 1403 1404 /** 1405 * ep_from_windex - convert control wIndex value to endpoint 1406 * @hsotg: The driver state. 1407 * @windex: The control request wIndex field (in host order). 1408 * 1409 * Convert the given wIndex into a pointer to an driver endpoint 1410 * structure, or return NULL if it is not a valid endpoint. 1411 */ 1412 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, 1413 u32 windex) 1414 { 1415 struct dwc2_hsotg_ep *ep; 1416 int dir = (windex & USB_DIR_IN) ? 1 : 0; 1417 int idx = windex & 0x7F; 1418 1419 if (windex >= 0x100) 1420 return NULL; 1421 1422 if (idx > hsotg->num_of_eps) 1423 return NULL; 1424 1425 ep = index_to_ep(hsotg, idx, dir); 1426 1427 if (idx && ep->dir_in != dir) 1428 return NULL; 1429 1430 return ep; 1431 } 1432 1433 /** 1434 * dwc2_hsotg_set_test_mode - Enable usb Test Modes 1435 * @hsotg: The driver state. 1436 * @testmode: requested usb test mode 1437 * Enable usb Test Mode requested by the Host. 1438 */ 1439 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) 1440 { 1441 int dctl = dwc2_readl(hsotg->regs + DCTL); 1442 1443 dctl &= ~DCTL_TSTCTL_MASK; 1444 switch (testmode) { 1445 case TEST_J: 1446 case TEST_K: 1447 case TEST_SE0_NAK: 1448 case TEST_PACKET: 1449 case TEST_FORCE_EN: 1450 dctl |= testmode << DCTL_TSTCTL_SHIFT; 1451 break; 1452 default: 1453 return -EINVAL; 1454 } 1455 dwc2_writel(dctl, hsotg->regs + DCTL); 1456 return 0; 1457 } 1458 1459 /** 1460 * dwc2_hsotg_send_reply - send reply to control request 1461 * @hsotg: The device state 1462 * @ep: Endpoint 0 1463 * @buff: Buffer for request 1464 * @length: Length of reply. 1465 * 1466 * Create a request and queue it on the given endpoint. This is useful as 1467 * an internal method of sending replies to certain control requests, etc. 1468 */ 1469 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, 1470 struct dwc2_hsotg_ep *ep, 1471 void *buff, 1472 int length) 1473 { 1474 struct usb_request *req; 1475 int ret; 1476 1477 dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); 1478 1479 req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); 1480 hsotg->ep0_reply = req; 1481 if (!req) { 1482 dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); 1483 return -ENOMEM; 1484 } 1485 1486 req->buf = hsotg->ep0_buff; 1487 req->length = length; 1488 /* 1489 * zero flag is for sending zlp in DATA IN stage. It has no impact on 1490 * STATUS stage. 1491 */ 1492 req->zero = 0; 1493 req->complete = dwc2_hsotg_complete_oursetup; 1494 1495 if (length) 1496 memcpy(req->buf, buff, length); 1497 1498 ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); 1499 if (ret) { 1500 dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); 1501 return ret; 1502 } 1503 1504 return 0; 1505 } 1506 1507 /** 1508 * dwc2_hsotg_process_req_status - process request GET_STATUS 1509 * @hsotg: The device state 1510 * @ctrl: USB control request 1511 */ 1512 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, 1513 struct usb_ctrlrequest *ctrl) 1514 { 1515 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1516 struct dwc2_hsotg_ep *ep; 1517 __le16 reply; 1518 int ret; 1519 1520 dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); 1521 1522 if (!ep0->dir_in) { 1523 dev_warn(hsotg->dev, "%s: direction out?\n", __func__); 1524 return -EINVAL; 1525 } 1526 1527 switch (ctrl->bRequestType & USB_RECIP_MASK) { 1528 case USB_RECIP_DEVICE: 1529 /* 1530 * bit 0 => self powered 1531 * bit 1 => remote wakeup 1532 */ 1533 reply = cpu_to_le16(0); 1534 break; 1535 1536 case USB_RECIP_INTERFACE: 1537 /* currently, the data result should be zero */ 1538 reply = cpu_to_le16(0); 1539 break; 1540 1541 case USB_RECIP_ENDPOINT: 1542 ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); 1543 if (!ep) 1544 return -ENOENT; 1545 1546 reply = cpu_to_le16(ep->halted ? 1 : 0); 1547 break; 1548 1549 default: 1550 return 0; 1551 } 1552 1553 if (le16_to_cpu(ctrl->wLength) != 2) 1554 return -EINVAL; 1555 1556 ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); 1557 if (ret) { 1558 dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); 1559 return ret; 1560 } 1561 1562 return 1; 1563 } 1564 1565 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); 1566 1567 /** 1568 * get_ep_head - return the first request on the endpoint 1569 * @hs_ep: The controller endpoint to get 1570 * 1571 * Get the first request on the endpoint. 1572 */ 1573 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) 1574 { 1575 return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, 1576 queue); 1577 } 1578 1579 /** 1580 * dwc2_gadget_start_next_request - Starts next request from ep queue 1581 * @hs_ep: Endpoint structure 1582 * 1583 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked 1584 * in its handler. Hence we need to unmask it here to be able to do 1585 * resynchronization. 1586 */ 1587 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) 1588 { 1589 u32 mask; 1590 struct dwc2_hsotg *hsotg = hs_ep->parent; 1591 int dir_in = hs_ep->dir_in; 1592 struct dwc2_hsotg_req *hs_req; 1593 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 1594 1595 if (!list_empty(&hs_ep->queue)) { 1596 hs_req = get_ep_head(hs_ep); 1597 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); 1598 return; 1599 } 1600 if (!hs_ep->isochronous) 1601 return; 1602 1603 if (dir_in) { 1604 dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", 1605 __func__); 1606 } else { 1607 dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", 1608 __func__); 1609 mask = dwc2_readl(hsotg->regs + epmsk_reg); 1610 mask |= DOEPMSK_OUTTKNEPDISMSK; 1611 dwc2_writel(mask, hsotg->regs + epmsk_reg); 1612 } 1613 } 1614 1615 /** 1616 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE 1617 * @hsotg: The device state 1618 * @ctrl: USB control request 1619 */ 1620 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, 1621 struct usb_ctrlrequest *ctrl) 1622 { 1623 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1624 struct dwc2_hsotg_req *hs_req; 1625 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 1626 struct dwc2_hsotg_ep *ep; 1627 int ret; 1628 bool halted; 1629 u32 recip; 1630 u32 wValue; 1631 u32 wIndex; 1632 1633 dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", 1634 __func__, set ? "SET" : "CLEAR"); 1635 1636 wValue = le16_to_cpu(ctrl->wValue); 1637 wIndex = le16_to_cpu(ctrl->wIndex); 1638 recip = ctrl->bRequestType & USB_RECIP_MASK; 1639 1640 switch (recip) { 1641 case USB_RECIP_DEVICE: 1642 switch (wValue) { 1643 case USB_DEVICE_TEST_MODE: 1644 if ((wIndex & 0xff) != 0) 1645 return -EINVAL; 1646 if (!set) 1647 return -EINVAL; 1648 1649 hsotg->test_mode = wIndex >> 8; 1650 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1651 if (ret) { 1652 dev_err(hsotg->dev, 1653 "%s: failed to send reply\n", __func__); 1654 return ret; 1655 } 1656 break; 1657 default: 1658 return -ENOENT; 1659 } 1660 break; 1661 1662 case USB_RECIP_ENDPOINT: 1663 ep = ep_from_windex(hsotg, wIndex); 1664 if (!ep) { 1665 dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", 1666 __func__, wIndex); 1667 return -ENOENT; 1668 } 1669 1670 switch (wValue) { 1671 case USB_ENDPOINT_HALT: 1672 halted = ep->halted; 1673 1674 dwc2_hsotg_ep_sethalt(&ep->ep, set, true); 1675 1676 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1677 if (ret) { 1678 dev_err(hsotg->dev, 1679 "%s: failed to send reply\n", __func__); 1680 return ret; 1681 } 1682 1683 /* 1684 * we have to complete all requests for ep if it was 1685 * halted, and the halt was cleared by CLEAR_FEATURE 1686 */ 1687 1688 if (!set && halted) { 1689 /* 1690 * If we have request in progress, 1691 * then complete it 1692 */ 1693 if (ep->req) { 1694 hs_req = ep->req; 1695 ep->req = NULL; 1696 list_del_init(&hs_req->queue); 1697 if (hs_req->req.complete) { 1698 spin_unlock(&hsotg->lock); 1699 usb_gadget_giveback_request( 1700 &ep->ep, &hs_req->req); 1701 spin_lock(&hsotg->lock); 1702 } 1703 } 1704 1705 /* If we have pending request, then start it */ 1706 if (!ep->req) 1707 dwc2_gadget_start_next_request(ep); 1708 } 1709 1710 break; 1711 1712 default: 1713 return -ENOENT; 1714 } 1715 break; 1716 default: 1717 return -ENOENT; 1718 } 1719 return 1; 1720 } 1721 1722 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); 1723 1724 /** 1725 * dwc2_hsotg_stall_ep0 - stall ep0 1726 * @hsotg: The device state 1727 * 1728 * Set stall for ep0 as response for setup request. 1729 */ 1730 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) 1731 { 1732 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1733 u32 reg; 1734 u32 ctrl; 1735 1736 dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); 1737 reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; 1738 1739 /* 1740 * DxEPCTL_Stall will be cleared by EP once it has 1741 * taken effect, so no need to clear later. 1742 */ 1743 1744 ctrl = dwc2_readl(hsotg->regs + reg); 1745 ctrl |= DXEPCTL_STALL; 1746 ctrl |= DXEPCTL_CNAK; 1747 dwc2_writel(ctrl, hsotg->regs + reg); 1748 1749 dev_dbg(hsotg->dev, 1750 "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", 1751 ctrl, reg, dwc2_readl(hsotg->regs + reg)); 1752 1753 /* 1754 * complete won't be called, so we enqueue 1755 * setup request here 1756 */ 1757 dwc2_hsotg_enqueue_setup(hsotg); 1758 } 1759 1760 /** 1761 * dwc2_hsotg_process_control - process a control request 1762 * @hsotg: The device state 1763 * @ctrl: The control request received 1764 * 1765 * The controller has received the SETUP phase of a control request, and 1766 * needs to work out what to do next (and whether to pass it on to the 1767 * gadget driver). 1768 */ 1769 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, 1770 struct usb_ctrlrequest *ctrl) 1771 { 1772 struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; 1773 int ret = 0; 1774 u32 dcfg; 1775 1776 dev_dbg(hsotg->dev, 1777 "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", 1778 ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, 1779 ctrl->wIndex, ctrl->wLength); 1780 1781 if (ctrl->wLength == 0) { 1782 ep0->dir_in = 1; 1783 hsotg->ep0_state = DWC2_EP0_STATUS_IN; 1784 } else if (ctrl->bRequestType & USB_DIR_IN) { 1785 ep0->dir_in = 1; 1786 hsotg->ep0_state = DWC2_EP0_DATA_IN; 1787 } else { 1788 ep0->dir_in = 0; 1789 hsotg->ep0_state = DWC2_EP0_DATA_OUT; 1790 } 1791 1792 if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { 1793 switch (ctrl->bRequest) { 1794 case USB_REQ_SET_ADDRESS: 1795 hsotg->connected = 1; 1796 dcfg = dwc2_readl(hsotg->regs + DCFG); 1797 dcfg &= ~DCFG_DEVADDR_MASK; 1798 dcfg |= (le16_to_cpu(ctrl->wValue) << 1799 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; 1800 dwc2_writel(dcfg, hsotg->regs + DCFG); 1801 1802 dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); 1803 1804 ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); 1805 return; 1806 1807 case USB_REQ_GET_STATUS: 1808 ret = dwc2_hsotg_process_req_status(hsotg, ctrl); 1809 break; 1810 1811 case USB_REQ_CLEAR_FEATURE: 1812 case USB_REQ_SET_FEATURE: 1813 ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); 1814 break; 1815 } 1816 } 1817 1818 /* as a fallback, try delivering it to the driver to deal with */ 1819 1820 if (ret == 0 && hsotg->driver) { 1821 spin_unlock(&hsotg->lock); 1822 ret = hsotg->driver->setup(&hsotg->gadget, ctrl); 1823 spin_lock(&hsotg->lock); 1824 if (ret < 0) 1825 dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); 1826 } 1827 1828 /* 1829 * the request is either unhandlable, or is not formatted correctly 1830 * so respond with a STALL for the status stage to indicate failure. 1831 */ 1832 1833 if (ret < 0) 1834 dwc2_hsotg_stall_ep0(hsotg); 1835 } 1836 1837 /** 1838 * dwc2_hsotg_complete_setup - completion of a setup transfer 1839 * @ep: The endpoint the request was on. 1840 * @req: The request completed. 1841 * 1842 * Called on completion of any requests the driver itself submitted for 1843 * EP0 setup packets 1844 */ 1845 static void dwc2_hsotg_complete_setup(struct usb_ep *ep, 1846 struct usb_request *req) 1847 { 1848 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 1849 struct dwc2_hsotg *hsotg = hs_ep->parent; 1850 1851 if (req->status < 0) { 1852 dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); 1853 return; 1854 } 1855 1856 spin_lock(&hsotg->lock); 1857 if (req->actual == 0) 1858 dwc2_hsotg_enqueue_setup(hsotg); 1859 else 1860 dwc2_hsotg_process_control(hsotg, req->buf); 1861 spin_unlock(&hsotg->lock); 1862 } 1863 1864 /** 1865 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets 1866 * @hsotg: The device state. 1867 * 1868 * Enqueue a request on EP0 if necessary to received any SETUP packets 1869 * received from the host. 1870 */ 1871 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) 1872 { 1873 struct usb_request *req = hsotg->ctrl_req; 1874 struct dwc2_hsotg_req *hs_req = our_req(req); 1875 int ret; 1876 1877 dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); 1878 1879 req->zero = 0; 1880 req->length = 8; 1881 req->buf = hsotg->ctrl_buff; 1882 req->complete = dwc2_hsotg_complete_setup; 1883 1884 if (!list_empty(&hs_req->queue)) { 1885 dev_dbg(hsotg->dev, "%s already queued???\n", __func__); 1886 return; 1887 } 1888 1889 hsotg->eps_out[0]->dir_in = 0; 1890 hsotg->eps_out[0]->send_zlp = 0; 1891 hsotg->ep0_state = DWC2_EP0_SETUP; 1892 1893 ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); 1894 if (ret < 0) { 1895 dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); 1896 /* 1897 * Don't think there's much we can do other than watch the 1898 * driver fail. 1899 */ 1900 } 1901 } 1902 1903 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, 1904 struct dwc2_hsotg_ep *hs_ep) 1905 { 1906 u32 ctrl; 1907 u8 index = hs_ep->index; 1908 u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 1909 u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); 1910 1911 if (hs_ep->dir_in) 1912 dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", 1913 index); 1914 else 1915 dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", 1916 index); 1917 if (using_desc_dma(hsotg)) { 1918 /* Not specific buffer needed for ep0 ZLP */ 1919 dma_addr_t dma = hs_ep->desc_list_dma; 1920 1921 if (!index) 1922 dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); 1923 1924 dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); 1925 } else { 1926 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 1927 DXEPTSIZ_XFERSIZE(0), hsotg->regs + 1928 epsiz_reg); 1929 } 1930 1931 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 1932 ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ 1933 ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ 1934 ctrl |= DXEPCTL_USBACTEP; 1935 dwc2_writel(ctrl, hsotg->regs + epctl_reg); 1936 } 1937 1938 /** 1939 * dwc2_hsotg_complete_request - complete a request given to us 1940 * @hsotg: The device state. 1941 * @hs_ep: The endpoint the request was on. 1942 * @hs_req: The request to complete. 1943 * @result: The result code (0 => Ok, otherwise errno) 1944 * 1945 * The given request has finished, so call the necessary completion 1946 * if it has one and then look to see if we can start a new request 1947 * on the endpoint. 1948 * 1949 * Note, expects the ep to already be locked as appropriate. 1950 */ 1951 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, 1952 struct dwc2_hsotg_ep *hs_ep, 1953 struct dwc2_hsotg_req *hs_req, 1954 int result) 1955 { 1956 if (!hs_req) { 1957 dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); 1958 return; 1959 } 1960 1961 dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", 1962 hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); 1963 1964 /* 1965 * only replace the status if we've not already set an error 1966 * from a previous transaction 1967 */ 1968 1969 if (hs_req->req.status == -EINPROGRESS) 1970 hs_req->req.status = result; 1971 1972 if (using_dma(hsotg)) 1973 dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); 1974 1975 dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); 1976 1977 hs_ep->req = NULL; 1978 list_del_init(&hs_req->queue); 1979 1980 /* 1981 * call the complete request with the locks off, just in case the 1982 * request tries to queue more work for this endpoint. 1983 */ 1984 1985 if (hs_req->req.complete) { 1986 spin_unlock(&hsotg->lock); 1987 usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); 1988 spin_lock(&hsotg->lock); 1989 } 1990 1991 /* In DDMA don't need to proceed to starting of next ISOC request */ 1992 if (using_desc_dma(hsotg) && hs_ep->isochronous) 1993 return; 1994 1995 /* 1996 * Look to see if there is anything else to do. Note, the completion 1997 * of the previous request may have caused a new request to be started 1998 * so be careful when doing this. 1999 */ 2000 2001 if (!hs_ep->req && result >= 0) 2002 dwc2_gadget_start_next_request(hs_ep); 2003 } 2004 2005 /* 2006 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA 2007 * @hs_ep: The endpoint the request was on. 2008 * 2009 * Get first request from the ep queue, determine descriptor on which complete 2010 * happened. SW based on isoc_chain_num discovers which half of the descriptor 2011 * chain is currently in use by HW, adjusts dma_address and calculates index 2012 * of completed descriptor based on the value of DEPDMA register. Update actual 2013 * length of request, giveback to gadget. 2014 */ 2015 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) 2016 { 2017 struct dwc2_hsotg *hsotg = hs_ep->parent; 2018 struct dwc2_hsotg_req *hs_req; 2019 struct usb_request *ureq; 2020 int index; 2021 dma_addr_t dma_addr; 2022 u32 dma_reg; 2023 u32 depdma; 2024 u32 desc_sts; 2025 u32 mask; 2026 2027 hs_req = get_ep_head(hs_ep); 2028 if (!hs_req) { 2029 dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); 2030 return; 2031 } 2032 ureq = &hs_req->req; 2033 2034 dma_addr = hs_ep->desc_list_dma; 2035 2036 /* 2037 * If lower half of descriptor chain is currently use by SW, 2038 * that means higher half is being processed by HW, so shift 2039 * DMA address to higher half of descriptor chain. 2040 */ 2041 if (!hs_ep->isoc_chain_num) 2042 dma_addr += sizeof(struct dwc2_dma_desc) * 2043 (MAX_DMA_DESC_NUM_GENERIC / 2); 2044 2045 dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index); 2046 depdma = dwc2_readl(hsotg->regs + dma_reg); 2047 2048 index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1; 2049 desc_sts = hs_ep->desc_list[index].status; 2050 2051 mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : 2052 DEV_DMA_ISOC_RX_NBYTES_MASK; 2053 ureq->actual = ureq->length - 2054 ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT); 2055 2056 /* Adjust actual length for ISOC Out if length is not align of 4 */ 2057 if (!hs_ep->dir_in && ureq->length & 0x3) 2058 ureq->actual += 4 - (ureq->length & 0x3); 2059 2060 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2061 } 2062 2063 /* 2064 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any. 2065 * @hs_ep: The isochronous endpoint to be re-enabled. 2066 * 2067 * If ep has been disabled due to last descriptor servicing (IN endpoint) or 2068 * BNA (OUT endpoint) check the status of other half of descriptor chain that 2069 * was under SW control till HW was busy and restart the endpoint if needed. 2070 */ 2071 static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) 2072 { 2073 struct dwc2_hsotg *hsotg = hs_ep->parent; 2074 u32 depctl; 2075 u32 dma_reg; 2076 u32 ctrl; 2077 u32 dma_addr = hs_ep->desc_list_dma; 2078 unsigned char index = hs_ep->index; 2079 2080 dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); 2081 depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); 2082 2083 ctrl = dwc2_readl(hsotg->regs + depctl); 2084 2085 /* 2086 * EP was disabled if HW has processed last descriptor or BNA was set. 2087 * So restart ep if SW has prepared new descriptor chain in ep_queue 2088 * routine while HW was busy. 2089 */ 2090 if (!(ctrl & DXEPCTL_EPENA)) { 2091 if (!hs_ep->next_desc) { 2092 dev_dbg(hsotg->dev, "%s: No more ISOC requests\n", 2093 __func__); 2094 return; 2095 } 2096 2097 dma_addr += sizeof(struct dwc2_dma_desc) * 2098 (MAX_DMA_DESC_NUM_GENERIC / 2) * 2099 hs_ep->isoc_chain_num; 2100 dwc2_writel(dma_addr, hsotg->regs + dma_reg); 2101 2102 ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; 2103 dwc2_writel(ctrl, hsotg->regs + depctl); 2104 2105 /* Switch ISOC descriptor chain number being processed by SW*/ 2106 hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1; 2107 hs_ep->next_desc = 0; 2108 2109 dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n", 2110 __func__); 2111 } 2112 } 2113 2114 /** 2115 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint 2116 * @hsotg: The device state. 2117 * @ep_idx: The endpoint index for the data 2118 * @size: The size of data in the fifo, in bytes 2119 * 2120 * The FIFO status shows there is data to read from the FIFO for a given 2121 * endpoint, so sort out whether we need to read the data into a request 2122 * that has been made for that endpoint. 2123 */ 2124 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) 2125 { 2126 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; 2127 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2128 void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx); 2129 int to_read; 2130 int max_req; 2131 int read_ptr; 2132 2133 if (!hs_req) { 2134 u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx)); 2135 int ptr; 2136 2137 dev_dbg(hsotg->dev, 2138 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", 2139 __func__, size, ep_idx, epctl); 2140 2141 /* dump the data from the FIFO, we've nothing we can do */ 2142 for (ptr = 0; ptr < size; ptr += 4) 2143 (void)dwc2_readl(fifo); 2144 2145 return; 2146 } 2147 2148 to_read = size; 2149 read_ptr = hs_req->req.actual; 2150 max_req = hs_req->req.length - read_ptr; 2151 2152 dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", 2153 __func__, to_read, max_req, read_ptr, hs_req->req.length); 2154 2155 if (to_read > max_req) { 2156 /* 2157 * more data appeared than we where willing 2158 * to deal with in this request. 2159 */ 2160 2161 /* currently we don't deal this */ 2162 WARN_ON_ONCE(1); 2163 } 2164 2165 hs_ep->total_data += to_read; 2166 hs_req->req.actual += to_read; 2167 to_read = DIV_ROUND_UP(to_read, 4); 2168 2169 /* 2170 * note, we might over-write the buffer end by 3 bytes depending on 2171 * alignment of the data. 2172 */ 2173 ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read); 2174 } 2175 2176 /** 2177 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint 2178 * @hsotg: The device instance 2179 * @dir_in: If IN zlp 2180 * 2181 * Generate a zero-length IN packet request for terminating a SETUP 2182 * transaction. 2183 * 2184 * Note, since we don't write any data to the TxFIFO, then it is 2185 * currently believed that we do not need to wait for any space in 2186 * the TxFIFO. 2187 */ 2188 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) 2189 { 2190 /* eps_out[0] is used in both directions */ 2191 hsotg->eps_out[0]->dir_in = dir_in; 2192 hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; 2193 2194 dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); 2195 } 2196 2197 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg, 2198 u32 epctl_reg) 2199 { 2200 u32 ctrl; 2201 2202 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 2203 if (ctrl & DXEPCTL_EOFRNUM) 2204 ctrl |= DXEPCTL_SETEVENFR; 2205 else 2206 ctrl |= DXEPCTL_SETODDFR; 2207 dwc2_writel(ctrl, hsotg->regs + epctl_reg); 2208 } 2209 2210 /* 2211 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc 2212 * @hs_ep - The endpoint on which transfer went 2213 * 2214 * Iterate over endpoints descriptor chain and get info on bytes remained 2215 * in DMA descriptors after transfer has completed. Used for non isoc EPs. 2216 */ 2217 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) 2218 { 2219 struct dwc2_hsotg *hsotg = hs_ep->parent; 2220 unsigned int bytes_rem = 0; 2221 struct dwc2_dma_desc *desc = hs_ep->desc_list; 2222 int i; 2223 u32 status; 2224 2225 if (!desc) 2226 return -EINVAL; 2227 2228 for (i = 0; i < hs_ep->desc_count; ++i) { 2229 status = desc->status; 2230 bytes_rem += status & DEV_DMA_NBYTES_MASK; 2231 2232 if (status & DEV_DMA_STS_MASK) 2233 dev_err(hsotg->dev, "descriptor %d closed with %x\n", 2234 i, status & DEV_DMA_STS_MASK); 2235 } 2236 2237 return bytes_rem; 2238 } 2239 2240 /** 2241 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO 2242 * @hsotg: The device instance 2243 * @epnum: The endpoint received from 2244 * 2245 * The RXFIFO has delivered an OutDone event, which means that the data 2246 * transfer for an OUT endpoint has been completed, either by a short 2247 * packet or by the finish of a transfer. 2248 */ 2249 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) 2250 { 2251 u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum)); 2252 struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; 2253 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2254 struct usb_request *req = &hs_req->req; 2255 unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2256 int result = 0; 2257 2258 if (!hs_req) { 2259 dev_dbg(hsotg->dev, "%s: no request active\n", __func__); 2260 return; 2261 } 2262 2263 if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { 2264 dev_dbg(hsotg->dev, "zlp packet received\n"); 2265 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2266 dwc2_hsotg_enqueue_setup(hsotg); 2267 return; 2268 } 2269 2270 if (using_desc_dma(hsotg)) 2271 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2272 2273 if (using_dma(hsotg)) { 2274 unsigned int size_done; 2275 2276 /* 2277 * Calculate the size of the transfer by checking how much 2278 * is left in the endpoint size register and then working it 2279 * out from the amount we loaded for the transfer. 2280 * 2281 * We need to do this as DMA pointers are always 32bit aligned 2282 * so may overshoot/undershoot the transfer. 2283 */ 2284 2285 size_done = hs_ep->size_loaded - size_left; 2286 size_done += hs_ep->last_load; 2287 2288 req->actual = size_done; 2289 } 2290 2291 /* if there is more request to do, schedule new transfer */ 2292 if (req->actual < req->length && size_left == 0) { 2293 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2294 return; 2295 } 2296 2297 if (req->actual < req->length && req->short_not_ok) { 2298 dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", 2299 __func__, req->actual, req->length); 2300 2301 /* 2302 * todo - what should we return here? there's no one else 2303 * even bothering to check the status. 2304 */ 2305 } 2306 2307 /* DDMA IN status phase will start from StsPhseRcvd interrupt */ 2308 if (!using_desc_dma(hsotg) && epnum == 0 && 2309 hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2310 /* Move to STATUS IN */ 2311 dwc2_hsotg_ep0_zlp(hsotg, true); 2312 return; 2313 } 2314 2315 /* 2316 * Slave mode OUT transfers do not go through XferComplete so 2317 * adjust the ISOC parity here. 2318 */ 2319 if (!using_dma(hsotg)) { 2320 if (hs_ep->isochronous && hs_ep->interval == 1) 2321 dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum)); 2322 else if (hs_ep->isochronous && hs_ep->interval > 1) 2323 dwc2_gadget_incr_frame_num(hs_ep); 2324 } 2325 2326 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); 2327 } 2328 2329 /** 2330 * dwc2_hsotg_handle_rx - RX FIFO has data 2331 * @hsotg: The device instance 2332 * 2333 * The IRQ handler has detected that the RX FIFO has some data in it 2334 * that requires processing, so find out what is in there and do the 2335 * appropriate read. 2336 * 2337 * The RXFIFO is a true FIFO, the packets coming out are still in packet 2338 * chunks, so if you have x packets received on an endpoint you'll get x 2339 * FIFO events delivered, each with a packet's worth of data in it. 2340 * 2341 * When using DMA, we should not be processing events from the RXFIFO 2342 * as the actual data should be sent to the memory directly and we turn 2343 * on the completion interrupts to get notifications of transfer completion. 2344 */ 2345 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) 2346 { 2347 u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP); 2348 u32 epnum, status, size; 2349 2350 WARN_ON(using_dma(hsotg)); 2351 2352 epnum = grxstsr & GRXSTS_EPNUM_MASK; 2353 status = grxstsr & GRXSTS_PKTSTS_MASK; 2354 2355 size = grxstsr & GRXSTS_BYTECNT_MASK; 2356 size >>= GRXSTS_BYTECNT_SHIFT; 2357 2358 dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", 2359 __func__, grxstsr, size, epnum); 2360 2361 switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { 2362 case GRXSTS_PKTSTS_GLOBALOUTNAK: 2363 dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); 2364 break; 2365 2366 case GRXSTS_PKTSTS_OUTDONE: 2367 dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", 2368 dwc2_hsotg_read_frameno(hsotg)); 2369 2370 if (!using_dma(hsotg)) 2371 dwc2_hsotg_handle_outdone(hsotg, epnum); 2372 break; 2373 2374 case GRXSTS_PKTSTS_SETUPDONE: 2375 dev_dbg(hsotg->dev, 2376 "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2377 dwc2_hsotg_read_frameno(hsotg), 2378 dwc2_readl(hsotg->regs + DOEPCTL(0))); 2379 /* 2380 * Call dwc2_hsotg_handle_outdone here if it was not called from 2381 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't 2382 * generate GRXSTS_PKTSTS_OUTDONE for setup packet. 2383 */ 2384 if (hsotg->ep0_state == DWC2_EP0_SETUP) 2385 dwc2_hsotg_handle_outdone(hsotg, epnum); 2386 break; 2387 2388 case GRXSTS_PKTSTS_OUTRX: 2389 dwc2_hsotg_rx_data(hsotg, epnum, size); 2390 break; 2391 2392 case GRXSTS_PKTSTS_SETUPRX: 2393 dev_dbg(hsotg->dev, 2394 "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", 2395 dwc2_hsotg_read_frameno(hsotg), 2396 dwc2_readl(hsotg->regs + DOEPCTL(0))); 2397 2398 WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); 2399 2400 dwc2_hsotg_rx_data(hsotg, epnum, size); 2401 break; 2402 2403 default: 2404 dev_warn(hsotg->dev, "%s: unknown status %08x\n", 2405 __func__, grxstsr); 2406 2407 dwc2_hsotg_dump(hsotg); 2408 break; 2409 } 2410 } 2411 2412 /** 2413 * dwc2_hsotg_ep0_mps - turn max packet size into register setting 2414 * @mps: The maximum packet size in bytes. 2415 */ 2416 static u32 dwc2_hsotg_ep0_mps(unsigned int mps) 2417 { 2418 switch (mps) { 2419 case 64: 2420 return D0EPCTL_MPS_64; 2421 case 32: 2422 return D0EPCTL_MPS_32; 2423 case 16: 2424 return D0EPCTL_MPS_16; 2425 case 8: 2426 return D0EPCTL_MPS_8; 2427 } 2428 2429 /* bad max packet size, warn and return invalid result */ 2430 WARN_ON(1); 2431 return (u32)-1; 2432 } 2433 2434 /** 2435 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field 2436 * @hsotg: The driver state. 2437 * @ep: The index number of the endpoint 2438 * @mps: The maximum packet size in bytes 2439 * @mc: The multicount value 2440 * 2441 * Configure the maximum packet size for the given endpoint, updating 2442 * the hardware control registers to reflect this. 2443 */ 2444 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, 2445 unsigned int ep, unsigned int mps, 2446 unsigned int mc, unsigned int dir_in) 2447 { 2448 struct dwc2_hsotg_ep *hs_ep; 2449 void __iomem *regs = hsotg->regs; 2450 u32 reg; 2451 2452 hs_ep = index_to_ep(hsotg, ep, dir_in); 2453 if (!hs_ep) 2454 return; 2455 2456 if (ep == 0) { 2457 u32 mps_bytes = mps; 2458 2459 /* EP0 is a special case */ 2460 mps = dwc2_hsotg_ep0_mps(mps_bytes); 2461 if (mps > 3) 2462 goto bad_mps; 2463 hs_ep->ep.maxpacket = mps_bytes; 2464 hs_ep->mc = 1; 2465 } else { 2466 if (mps > 1024) 2467 goto bad_mps; 2468 hs_ep->mc = mc; 2469 if (mc > 3) 2470 goto bad_mps; 2471 hs_ep->ep.maxpacket = mps; 2472 } 2473 2474 if (dir_in) { 2475 reg = dwc2_readl(regs + DIEPCTL(ep)); 2476 reg &= ~DXEPCTL_MPS_MASK; 2477 reg |= mps; 2478 dwc2_writel(reg, regs + DIEPCTL(ep)); 2479 } else { 2480 reg = dwc2_readl(regs + DOEPCTL(ep)); 2481 reg &= ~DXEPCTL_MPS_MASK; 2482 reg |= mps; 2483 dwc2_writel(reg, regs + DOEPCTL(ep)); 2484 } 2485 2486 return; 2487 2488 bad_mps: 2489 dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); 2490 } 2491 2492 /** 2493 * dwc2_hsotg_txfifo_flush - flush Tx FIFO 2494 * @hsotg: The driver state 2495 * @idx: The index for the endpoint (0..15) 2496 */ 2497 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) 2498 { 2499 dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, 2500 hsotg->regs + GRSTCTL); 2501 2502 /* wait until the fifo is flushed */ 2503 if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) 2504 dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", 2505 __func__); 2506 } 2507 2508 /** 2509 * dwc2_hsotg_trytx - check to see if anything needs transmitting 2510 * @hsotg: The driver state 2511 * @hs_ep: The driver endpoint to check. 2512 * 2513 * Check to see if there is a request that has data to send, and if so 2514 * make an attempt to write data into the FIFO. 2515 */ 2516 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, 2517 struct dwc2_hsotg_ep *hs_ep) 2518 { 2519 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2520 2521 if (!hs_ep->dir_in || !hs_req) { 2522 /** 2523 * if request is not enqueued, we disable interrupts 2524 * for endpoints, excepting ep0 2525 */ 2526 if (hs_ep->index != 0) 2527 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, 2528 hs_ep->dir_in, 0); 2529 return 0; 2530 } 2531 2532 if (hs_req->req.actual < hs_req->req.length) { 2533 dev_dbg(hsotg->dev, "trying to write more for ep%d\n", 2534 hs_ep->index); 2535 return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); 2536 } 2537 2538 return 0; 2539 } 2540 2541 /** 2542 * dwc2_hsotg_complete_in - complete IN transfer 2543 * @hsotg: The device state. 2544 * @hs_ep: The endpoint that has just completed. 2545 * 2546 * An IN transfer has been completed, update the transfer's state and then 2547 * call the relevant completion routines. 2548 */ 2549 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, 2550 struct dwc2_hsotg_ep *hs_ep) 2551 { 2552 struct dwc2_hsotg_req *hs_req = hs_ep->req; 2553 u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index)); 2554 int size_left, size_done; 2555 2556 if (!hs_req) { 2557 dev_dbg(hsotg->dev, "XferCompl but no req\n"); 2558 return; 2559 } 2560 2561 /* Finish ZLP handling for IN EP0 transactions */ 2562 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { 2563 dev_dbg(hsotg->dev, "zlp packet sent\n"); 2564 2565 /* 2566 * While send zlp for DWC2_EP0_STATUS_IN EP direction was 2567 * changed to IN. Change back to complete OUT transfer request 2568 */ 2569 hs_ep->dir_in = 0; 2570 2571 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2572 if (hsotg->test_mode) { 2573 int ret; 2574 2575 ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); 2576 if (ret < 0) { 2577 dev_dbg(hsotg->dev, "Invalid Test #%d\n", 2578 hsotg->test_mode); 2579 dwc2_hsotg_stall_ep0(hsotg); 2580 return; 2581 } 2582 } 2583 dwc2_hsotg_enqueue_setup(hsotg); 2584 return; 2585 } 2586 2587 /* 2588 * Calculate the size of the transfer by checking how much is left 2589 * in the endpoint size register and then working it out from 2590 * the amount we loaded for the transfer. 2591 * 2592 * We do this even for DMA, as the transfer may have incremented 2593 * past the end of the buffer (DMA transfers are always 32bit 2594 * aligned). 2595 */ 2596 if (using_desc_dma(hsotg)) { 2597 size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); 2598 if (size_left < 0) 2599 dev_err(hsotg->dev, "error parsing DDMA results %d\n", 2600 size_left); 2601 } else { 2602 size_left = DXEPTSIZ_XFERSIZE_GET(epsize); 2603 } 2604 2605 size_done = hs_ep->size_loaded - size_left; 2606 size_done += hs_ep->last_load; 2607 2608 if (hs_req->req.actual != size_done) 2609 dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", 2610 __func__, hs_req->req.actual, size_done); 2611 2612 hs_req->req.actual = size_done; 2613 dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", 2614 hs_req->req.length, hs_req->req.actual, hs_req->req.zero); 2615 2616 if (!size_left && hs_req->req.actual < hs_req->req.length) { 2617 dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); 2618 dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); 2619 return; 2620 } 2621 2622 /* Zlp for all endpoints, for ep0 only in DATA IN stage */ 2623 if (hs_ep->send_zlp) { 2624 dwc2_hsotg_program_zlp(hsotg, hs_ep); 2625 hs_ep->send_zlp = 0; 2626 /* transfer will be completed on next complete interrupt */ 2627 return; 2628 } 2629 2630 if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { 2631 /* Move to STATUS OUT */ 2632 dwc2_hsotg_ep0_zlp(hsotg, false); 2633 return; 2634 } 2635 2636 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); 2637 } 2638 2639 /** 2640 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep 2641 * @hsotg: The device state. 2642 * @idx: Index of ep. 2643 * @dir_in: Endpoint direction 1-in 0-out. 2644 * 2645 * Reads for endpoint with given index and direction, by masking 2646 * epint_reg with coresponding mask. 2647 */ 2648 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, 2649 unsigned int idx, int dir_in) 2650 { 2651 u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; 2652 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2653 u32 ints; 2654 u32 mask; 2655 u32 diepempmsk; 2656 2657 mask = dwc2_readl(hsotg->regs + epmsk_reg); 2658 diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK); 2659 mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; 2660 mask |= DXEPINT_SETUP_RCVD; 2661 2662 ints = dwc2_readl(hsotg->regs + epint_reg); 2663 ints &= mask; 2664 return ints; 2665 } 2666 2667 /** 2668 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD 2669 * @hs_ep: The endpoint on which interrupt is asserted. 2670 * 2671 * This interrupt indicates that the endpoint has been disabled per the 2672 * application's request. 2673 * 2674 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, 2675 * in case of ISOC completes current request. 2676 * 2677 * For ISOC-OUT endpoints completes expired requests. If there is remaining 2678 * request starts it. 2679 */ 2680 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) 2681 { 2682 struct dwc2_hsotg *hsotg = hs_ep->parent; 2683 struct dwc2_hsotg_req *hs_req; 2684 unsigned char idx = hs_ep->index; 2685 int dir_in = hs_ep->dir_in; 2686 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2687 int dctl = dwc2_readl(hsotg->regs + DCTL); 2688 2689 dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); 2690 2691 if (dir_in) { 2692 int epctl = dwc2_readl(hsotg->regs + epctl_reg); 2693 2694 dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); 2695 2696 if (hs_ep->isochronous) { 2697 dwc2_hsotg_complete_in(hsotg, hs_ep); 2698 return; 2699 } 2700 2701 if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { 2702 int dctl = dwc2_readl(hsotg->regs + DCTL); 2703 2704 dctl |= DCTL_CGNPINNAK; 2705 dwc2_writel(dctl, hsotg->regs + DCTL); 2706 } 2707 return; 2708 } 2709 2710 if (dctl & DCTL_GOUTNAKSTS) { 2711 dctl |= DCTL_CGOUTNAK; 2712 dwc2_writel(dctl, hsotg->regs + DCTL); 2713 } 2714 2715 if (!hs_ep->isochronous) 2716 return; 2717 2718 if (list_empty(&hs_ep->queue)) { 2719 dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", 2720 __func__, hs_ep); 2721 return; 2722 } 2723 2724 do { 2725 hs_req = get_ep_head(hs_ep); 2726 if (hs_req) 2727 dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 2728 -ENODATA); 2729 dwc2_gadget_incr_frame_num(hs_ep); 2730 } while (dwc2_gadget_target_frame_elapsed(hs_ep)); 2731 2732 dwc2_gadget_start_next_request(hs_ep); 2733 } 2734 2735 /** 2736 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS 2737 * @hs_ep: The endpoint on which interrupt is asserted. 2738 * 2739 * This is starting point for ISOC-OUT transfer, synchronization done with 2740 * first out token received from host while corresponding EP is disabled. 2741 * 2742 * Device does not know initial frame in which out token will come. For this 2743 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon 2744 * getting this interrupt SW starts calculation for next transfer frame. 2745 */ 2746 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) 2747 { 2748 struct dwc2_hsotg *hsotg = ep->parent; 2749 int dir_in = ep->dir_in; 2750 u32 doepmsk; 2751 u32 tmp; 2752 2753 if (dir_in || !ep->isochronous) 2754 return; 2755 2756 /* 2757 * Store frame in which irq was asserted here, as 2758 * it can change while completing request below. 2759 */ 2760 tmp = dwc2_hsotg_read_frameno(hsotg); 2761 2762 dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA); 2763 2764 if (using_desc_dma(hsotg)) { 2765 if (ep->target_frame == TARGET_FRAME_INITIAL) { 2766 /* Start first ISO Out */ 2767 ep->target_frame = tmp; 2768 dwc2_gadget_start_isoc_ddma(ep); 2769 } 2770 return; 2771 } 2772 2773 if (ep->interval > 1 && 2774 ep->target_frame == TARGET_FRAME_INITIAL) { 2775 u32 dsts; 2776 u32 ctrl; 2777 2778 dsts = dwc2_readl(hsotg->regs + DSTS); 2779 ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 2780 dwc2_gadget_incr_frame_num(ep); 2781 2782 ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index)); 2783 if (ep->target_frame & 0x1) 2784 ctrl |= DXEPCTL_SETODDFR; 2785 else 2786 ctrl |= DXEPCTL_SETEVENFR; 2787 2788 dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index)); 2789 } 2790 2791 dwc2_gadget_start_next_request(ep); 2792 doepmsk = dwc2_readl(hsotg->regs + DOEPMSK); 2793 doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK; 2794 dwc2_writel(doepmsk, hsotg->regs + DOEPMSK); 2795 } 2796 2797 /** 2798 * dwc2_gadget_handle_nak - handle NAK interrupt 2799 * @hs_ep: The endpoint on which interrupt is asserted. 2800 * 2801 * This is starting point for ISOC-IN transfer, synchronization done with 2802 * first IN token received from host while corresponding EP is disabled. 2803 * 2804 * Device does not know when first one token will arrive from host. On first 2805 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' 2806 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was 2807 * sent in response to that as there was no data in FIFO. SW is basing on this 2808 * interrupt to obtain frame in which token has come and then based on the 2809 * interval calculates next frame for transfer. 2810 */ 2811 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) 2812 { 2813 struct dwc2_hsotg *hsotg = hs_ep->parent; 2814 int dir_in = hs_ep->dir_in; 2815 2816 if (!dir_in || !hs_ep->isochronous) 2817 return; 2818 2819 if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { 2820 hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg); 2821 2822 if (using_desc_dma(hsotg)) { 2823 dwc2_gadget_start_isoc_ddma(hs_ep); 2824 return; 2825 } 2826 2827 if (hs_ep->interval > 1) { 2828 u32 ctrl = dwc2_readl(hsotg->regs + 2829 DIEPCTL(hs_ep->index)); 2830 if (hs_ep->target_frame & 0x1) 2831 ctrl |= DXEPCTL_SETODDFR; 2832 else 2833 ctrl |= DXEPCTL_SETEVENFR; 2834 2835 dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index)); 2836 } 2837 2838 dwc2_hsotg_complete_request(hsotg, hs_ep, 2839 get_ep_head(hs_ep), 0); 2840 } 2841 2842 dwc2_gadget_incr_frame_num(hs_ep); 2843 } 2844 2845 /** 2846 * dwc2_hsotg_epint - handle an in/out endpoint interrupt 2847 * @hsotg: The driver state 2848 * @idx: The index for the endpoint (0..15) 2849 * @dir_in: Set if this is an IN endpoint 2850 * 2851 * Process and clear any interrupt pending for an individual endpoint 2852 */ 2853 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, 2854 int dir_in) 2855 { 2856 struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); 2857 u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); 2858 u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); 2859 u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); 2860 u32 ints; 2861 u32 ctrl; 2862 2863 ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); 2864 ctrl = dwc2_readl(hsotg->regs + epctl_reg); 2865 2866 /* Clear endpoint interrupts */ 2867 dwc2_writel(ints, hsotg->regs + epint_reg); 2868 2869 if (!hs_ep) { 2870 dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", 2871 __func__, idx, dir_in ? "in" : "out"); 2872 return; 2873 } 2874 2875 dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", 2876 __func__, idx, dir_in ? "in" : "out", ints); 2877 2878 /* Don't process XferCompl interrupt if it is a setup packet */ 2879 if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) 2880 ints &= ~DXEPINT_XFERCOMPL; 2881 2882 /* 2883 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP 2884 * stage and xfercomplete was generated without SETUP phase done 2885 * interrupt. SW should parse received setup packet only after host's 2886 * exit from setup phase of control transfer. 2887 */ 2888 if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && 2889 hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) 2890 ints &= ~DXEPINT_XFERCOMPL; 2891 2892 if (ints & DXEPINT_XFERCOMPL) { 2893 dev_dbg(hsotg->dev, 2894 "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", 2895 __func__, dwc2_readl(hsotg->regs + epctl_reg), 2896 dwc2_readl(hsotg->regs + epsiz_reg)); 2897 2898 /* In DDMA handle isochronous requests separately */ 2899 if (using_desc_dma(hsotg) && hs_ep->isochronous) { 2900 dwc2_gadget_complete_isoc_request_ddma(hs_ep); 2901 /* Try to start next isoc request */ 2902 dwc2_gadget_start_next_isoc_ddma(hs_ep); 2903 } else if (dir_in) { 2904 /* 2905 * We get OutDone from the FIFO, so we only 2906 * need to look at completing IN requests here 2907 * if operating slave mode 2908 */ 2909 if (hs_ep->isochronous && hs_ep->interval > 1) 2910 dwc2_gadget_incr_frame_num(hs_ep); 2911 2912 dwc2_hsotg_complete_in(hsotg, hs_ep); 2913 if (ints & DXEPINT_NAKINTRPT) 2914 ints &= ~DXEPINT_NAKINTRPT; 2915 2916 if (idx == 0 && !hs_ep->req) 2917 dwc2_hsotg_enqueue_setup(hsotg); 2918 } else if (using_dma(hsotg)) { 2919 /* 2920 * We're using DMA, we need to fire an OutDone here 2921 * as we ignore the RXFIFO. 2922 */ 2923 if (hs_ep->isochronous && hs_ep->interval > 1) 2924 dwc2_gadget_incr_frame_num(hs_ep); 2925 2926 dwc2_hsotg_handle_outdone(hsotg, idx); 2927 } 2928 } 2929 2930 if (ints & DXEPINT_EPDISBLD) 2931 dwc2_gadget_handle_ep_disabled(hs_ep); 2932 2933 if (ints & DXEPINT_OUTTKNEPDIS) 2934 dwc2_gadget_handle_out_token_ep_disabled(hs_ep); 2935 2936 if (ints & DXEPINT_NAKINTRPT) 2937 dwc2_gadget_handle_nak(hs_ep); 2938 2939 if (ints & DXEPINT_AHBERR) 2940 dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); 2941 2942 if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ 2943 dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); 2944 2945 if (using_dma(hsotg) && idx == 0) { 2946 /* 2947 * this is the notification we've received a 2948 * setup packet. In non-DMA mode we'd get this 2949 * from the RXFIFO, instead we need to process 2950 * the setup here. 2951 */ 2952 2953 if (dir_in) 2954 WARN_ON_ONCE(1); 2955 else 2956 dwc2_hsotg_handle_outdone(hsotg, 0); 2957 } 2958 } 2959 2960 if (ints & DXEPINT_STSPHSERCVD) { 2961 dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); 2962 2963 /* Safety check EP0 state when STSPHSERCVD asserted */ 2964 if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { 2965 /* Move to STATUS IN for DDMA */ 2966 if (using_desc_dma(hsotg)) 2967 dwc2_hsotg_ep0_zlp(hsotg, true); 2968 } 2969 2970 } 2971 2972 if (ints & DXEPINT_BACK2BACKSETUP) 2973 dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); 2974 2975 if (ints & DXEPINT_BNAINTR) { 2976 dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); 2977 2978 /* 2979 * Try to start next isoc request, if any. 2980 * Sometimes the endpoint remains enabled after BNA interrupt 2981 * assertion, which is not expected, hence we can enter here 2982 * couple of times. 2983 */ 2984 if (hs_ep->isochronous) 2985 dwc2_gadget_start_next_isoc_ddma(hs_ep); 2986 } 2987 2988 if (dir_in && !hs_ep->isochronous) { 2989 /* not sure if this is important, but we'll clear it anyway */ 2990 if (ints & DXEPINT_INTKNTXFEMP) { 2991 dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", 2992 __func__, idx); 2993 } 2994 2995 /* this probably means something bad is happening */ 2996 if (ints & DXEPINT_INTKNEPMIS) { 2997 dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", 2998 __func__, idx); 2999 } 3000 3001 /* FIFO has space or is empty (see GAHBCFG) */ 3002 if (hsotg->dedicated_fifos && 3003 ints & DXEPINT_TXFEMP) { 3004 dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", 3005 __func__, idx); 3006 if (!using_dma(hsotg)) 3007 dwc2_hsotg_trytx(hsotg, hs_ep); 3008 } 3009 } 3010 } 3011 3012 /** 3013 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) 3014 * @hsotg: The device state. 3015 * 3016 * Handle updating the device settings after the enumeration phase has 3017 * been completed. 3018 */ 3019 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) 3020 { 3021 u32 dsts = dwc2_readl(hsotg->regs + DSTS); 3022 int ep0_mps = 0, ep_mps = 8; 3023 3024 /* 3025 * This should signal the finish of the enumeration phase 3026 * of the USB handshaking, so we should now know what rate 3027 * we connected at. 3028 */ 3029 3030 dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); 3031 3032 /* 3033 * note, since we're limited by the size of transfer on EP0, and 3034 * it seems IN transfers must be a even number of packets we do 3035 * not advertise a 64byte MPS on EP0. 3036 */ 3037 3038 /* catch both EnumSpd_FS and EnumSpd_FS48 */ 3039 switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { 3040 case DSTS_ENUMSPD_FS: 3041 case DSTS_ENUMSPD_FS48: 3042 hsotg->gadget.speed = USB_SPEED_FULL; 3043 ep0_mps = EP0_MPS_LIMIT; 3044 ep_mps = 1023; 3045 break; 3046 3047 case DSTS_ENUMSPD_HS: 3048 hsotg->gadget.speed = USB_SPEED_HIGH; 3049 ep0_mps = EP0_MPS_LIMIT; 3050 ep_mps = 1024; 3051 break; 3052 3053 case DSTS_ENUMSPD_LS: 3054 hsotg->gadget.speed = USB_SPEED_LOW; 3055 ep0_mps = 8; 3056 ep_mps = 8; 3057 /* 3058 * note, we don't actually support LS in this driver at the 3059 * moment, and the documentation seems to imply that it isn't 3060 * supported by the PHYs on some of the devices. 3061 */ 3062 break; 3063 } 3064 dev_info(hsotg->dev, "new device is %s\n", 3065 usb_speed_string(hsotg->gadget.speed)); 3066 3067 /* 3068 * we should now know the maximum packet size for an 3069 * endpoint, so set the endpoints to a default value. 3070 */ 3071 3072 if (ep0_mps) { 3073 int i; 3074 /* Initialize ep0 for both in and out directions */ 3075 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); 3076 dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); 3077 for (i = 1; i < hsotg->num_of_eps; i++) { 3078 if (hsotg->eps_in[i]) 3079 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3080 0, 1); 3081 if (hsotg->eps_out[i]) 3082 dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 3083 0, 0); 3084 } 3085 } 3086 3087 /* ensure after enumeration our EP0 is active */ 3088 3089 dwc2_hsotg_enqueue_setup(hsotg); 3090 3091 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3092 dwc2_readl(hsotg->regs + DIEPCTL0), 3093 dwc2_readl(hsotg->regs + DOEPCTL0)); 3094 } 3095 3096 /** 3097 * kill_all_requests - remove all requests from the endpoint's queue 3098 * @hsotg: The device state. 3099 * @ep: The endpoint the requests may be on. 3100 * @result: The result code to use. 3101 * 3102 * Go through the requests on the given endpoint and mark them 3103 * completed with the given result code. 3104 */ 3105 static void kill_all_requests(struct dwc2_hsotg *hsotg, 3106 struct dwc2_hsotg_ep *ep, 3107 int result) 3108 { 3109 struct dwc2_hsotg_req *req, *treq; 3110 unsigned int size; 3111 3112 ep->req = NULL; 3113 3114 list_for_each_entry_safe(req, treq, &ep->queue, queue) 3115 dwc2_hsotg_complete_request(hsotg, ep, req, 3116 result); 3117 3118 if (!hsotg->dedicated_fifos) 3119 return; 3120 size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4; 3121 if (size < ep->fifo_size) 3122 dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); 3123 } 3124 3125 /** 3126 * dwc2_hsotg_disconnect - disconnect service 3127 * @hsotg: The device state. 3128 * 3129 * The device has been disconnected. Remove all current 3130 * transactions and signal the gadget driver that this 3131 * has happened. 3132 */ 3133 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) 3134 { 3135 unsigned int ep; 3136 3137 if (!hsotg->connected) 3138 return; 3139 3140 hsotg->connected = 0; 3141 hsotg->test_mode = 0; 3142 3143 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 3144 if (hsotg->eps_in[ep]) 3145 kill_all_requests(hsotg, hsotg->eps_in[ep], 3146 -ESHUTDOWN); 3147 if (hsotg->eps_out[ep]) 3148 kill_all_requests(hsotg, hsotg->eps_out[ep], 3149 -ESHUTDOWN); 3150 } 3151 3152 call_gadget(hsotg, disconnect); 3153 hsotg->lx_state = DWC2_L3; 3154 3155 usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); 3156 } 3157 3158 /** 3159 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler 3160 * @hsotg: The device state: 3161 * @periodic: True if this is a periodic FIFO interrupt 3162 */ 3163 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) 3164 { 3165 struct dwc2_hsotg_ep *ep; 3166 int epno, ret; 3167 3168 /* look through for any more data to transmit */ 3169 for (epno = 0; epno < hsotg->num_of_eps; epno++) { 3170 ep = index_to_ep(hsotg, epno, 1); 3171 3172 if (!ep) 3173 continue; 3174 3175 if (!ep->dir_in) 3176 continue; 3177 3178 if ((periodic && !ep->periodic) || 3179 (!periodic && ep->periodic)) 3180 continue; 3181 3182 ret = dwc2_hsotg_trytx(hsotg, ep); 3183 if (ret < 0) 3184 break; 3185 } 3186 } 3187 3188 /* IRQ flags which will trigger a retry around the IRQ loop */ 3189 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ 3190 GINTSTS_PTXFEMP | \ 3191 GINTSTS_RXFLVL) 3192 3193 /** 3194 * dwc2_hsotg_core_init - issue softreset to the core 3195 * @hsotg: The device state 3196 * 3197 * Issue a soft reset to the core, and await the core finishing it. 3198 */ 3199 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, 3200 bool is_usb_reset) 3201 { 3202 u32 intmsk; 3203 u32 val; 3204 u32 usbcfg; 3205 u32 dcfg = 0; 3206 3207 /* Kill any ep0 requests as controller will be reinitialized */ 3208 kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); 3209 3210 if (!is_usb_reset) 3211 if (dwc2_core_reset(hsotg, true)) 3212 return; 3213 3214 /* 3215 * we must now enable ep0 ready for host detection and then 3216 * set configuration. 3217 */ 3218 3219 /* keep other bits untouched (so e.g. forced modes are not lost) */ 3220 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 3221 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP | 3222 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK); 3223 3224 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS && 3225 (hsotg->params.speed == DWC2_SPEED_PARAM_FULL || 3226 hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) { 3227 /* FS/LS Dedicated Transceiver Interface */ 3228 usbcfg |= GUSBCFG_PHYSEL; 3229 } else { 3230 /* set the PLL on, remove the HNP/SRP and set the PHY */ 3231 val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; 3232 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) | 3233 (val << GUSBCFG_USBTRDTIM_SHIFT); 3234 } 3235 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 3236 3237 dwc2_hsotg_init_fifo(hsotg); 3238 3239 if (!is_usb_reset) 3240 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON); 3241 3242 dcfg |= DCFG_EPMISCNT(1); 3243 3244 switch (hsotg->params.speed) { 3245 case DWC2_SPEED_PARAM_LOW: 3246 dcfg |= DCFG_DEVSPD_LS; 3247 break; 3248 case DWC2_SPEED_PARAM_FULL: 3249 if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) 3250 dcfg |= DCFG_DEVSPD_FS48; 3251 else 3252 dcfg |= DCFG_DEVSPD_FS; 3253 break; 3254 default: 3255 dcfg |= DCFG_DEVSPD_HS; 3256 } 3257 3258 dwc2_writel(dcfg, hsotg->regs + DCFG); 3259 3260 /* Clear any pending OTG interrupts */ 3261 dwc2_writel(0xffffffff, hsotg->regs + GOTGINT); 3262 3263 /* Clear any pending interrupts */ 3264 dwc2_writel(0xffffffff, hsotg->regs + GINTSTS); 3265 intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | 3266 GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | 3267 GINTSTS_USBRST | GINTSTS_RESETDET | 3268 GINTSTS_ENUMDONE | GINTSTS_OTGINT | 3269 GINTSTS_USBSUSP | GINTSTS_WKUPINT; 3270 3271 if (!using_desc_dma(hsotg)) 3272 intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; 3273 3274 if (!hsotg->params.external_id_pin_ctl) 3275 intmsk |= GINTSTS_CONIDSTSCHNG; 3276 3277 dwc2_writel(intmsk, hsotg->regs + GINTMSK); 3278 3279 if (using_dma(hsotg)) { 3280 dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | 3281 hsotg->params.ahbcfg, 3282 hsotg->regs + GAHBCFG); 3283 3284 /* Set DDMA mode support in the core if needed */ 3285 if (using_desc_dma(hsotg)) 3286 dwc2_set_bit(hsotg->regs + DCFG, DCFG_DESCDMA_EN); 3287 3288 } else { 3289 dwc2_writel(((hsotg->dedicated_fifos) ? 3290 (GAHBCFG_NP_TXF_EMP_LVL | 3291 GAHBCFG_P_TXF_EMP_LVL) : 0) | 3292 GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG); 3293 } 3294 3295 /* 3296 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts 3297 * when we have no data to transfer. Otherwise we get being flooded by 3298 * interrupts. 3299 */ 3300 3301 dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ? 3302 DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | 3303 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | 3304 DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, 3305 hsotg->regs + DIEPMSK); 3306 3307 /* 3308 * don't need XferCompl, we get that from RXFIFO in slave mode. In 3309 * DMA mode we may need this and StsPhseRcvd. 3310 */ 3311 dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | 3312 DOEPMSK_STSPHSERCVDMSK) : 0) | 3313 DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | 3314 DOEPMSK_SETUPMSK, 3315 hsotg->regs + DOEPMSK); 3316 3317 /* Enable BNA interrupt for DDMA */ 3318 if (using_desc_dma(hsotg)) 3319 dwc2_set_bit(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK); 3320 3321 dwc2_writel(0, hsotg->regs + DAINTMSK); 3322 3323 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3324 dwc2_readl(hsotg->regs + DIEPCTL0), 3325 dwc2_readl(hsotg->regs + DOEPCTL0)); 3326 3327 /* enable in and out endpoint interrupts */ 3328 dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); 3329 3330 /* 3331 * Enable the RXFIFO when in slave mode, as this is how we collect 3332 * the data. In DMA mode, we get events from the FIFO but also 3333 * things we cannot process, so do not use it. 3334 */ 3335 if (!using_dma(hsotg)) 3336 dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); 3337 3338 /* Enable interrupts for EP0 in and out */ 3339 dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); 3340 dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); 3341 3342 if (!is_usb_reset) { 3343 dwc2_set_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 3344 udelay(10); /* see openiboot */ 3345 dwc2_clear_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE); 3346 } 3347 3348 dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL)); 3349 3350 /* 3351 * DxEPCTL_USBActEp says RO in manual, but seems to be set by 3352 * writing to the EPCTL register.. 3353 */ 3354 3355 /* set to read 1 8byte packet */ 3356 dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | 3357 DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0); 3358 3359 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3360 DXEPCTL_CNAK | DXEPCTL_EPENA | 3361 DXEPCTL_USBACTEP, 3362 hsotg->regs + DOEPCTL0); 3363 3364 /* enable, but don't activate EP0in */ 3365 dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | 3366 DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0); 3367 3368 /* clear global NAKs */ 3369 val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; 3370 if (!is_usb_reset) 3371 val |= DCTL_SFTDISCON; 3372 dwc2_set_bit(hsotg->regs + DCTL, val); 3373 3374 /* must be at-least 3ms to allow bus to see disconnect */ 3375 mdelay(3); 3376 3377 hsotg->lx_state = DWC2_L0; 3378 3379 dwc2_hsotg_enqueue_setup(hsotg); 3380 3381 dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", 3382 dwc2_readl(hsotg->regs + DIEPCTL0), 3383 dwc2_readl(hsotg->regs + DOEPCTL0)); 3384 } 3385 3386 static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) 3387 { 3388 /* set the soft-disconnect bit */ 3389 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON); 3390 } 3391 3392 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) 3393 { 3394 /* remove the soft-disconnect and let's go */ 3395 dwc2_clear_bit(hsotg->regs + DCTL, DCTL_SFTDISCON); 3396 } 3397 3398 /** 3399 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. 3400 * @hsotg: The device state: 3401 * 3402 * This interrupt indicates one of the following conditions occurred while 3403 * transmitting an ISOC transaction. 3404 * - Corrupted IN Token for ISOC EP. 3405 * - Packet not complete in FIFO. 3406 * 3407 * The following actions will be taken: 3408 * - Determine the EP 3409 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO 3410 */ 3411 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) 3412 { 3413 struct dwc2_hsotg_ep *hs_ep; 3414 u32 epctrl; 3415 u32 daintmsk; 3416 u32 idx; 3417 3418 dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); 3419 3420 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 3421 3422 for (idx = 1; idx <= hsotg->num_of_eps; idx++) { 3423 hs_ep = hsotg->eps_in[idx]; 3424 /* Proceed only unmasked ISOC EPs */ 3425 if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk)) 3426 continue; 3427 3428 epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx)); 3429 if ((epctrl & DXEPCTL_EPENA) && 3430 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3431 epctrl |= DXEPCTL_SNAK; 3432 epctrl |= DXEPCTL_EPDIS; 3433 dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx)); 3434 } 3435 } 3436 3437 /* Clear interrupt */ 3438 dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS); 3439 } 3440 3441 /** 3442 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt 3443 * @hsotg: The device state: 3444 * 3445 * This interrupt indicates one of the following conditions occurred while 3446 * transmitting an ISOC transaction. 3447 * - Corrupted OUT Token for ISOC EP. 3448 * - Packet not complete in FIFO. 3449 * 3450 * The following actions will be taken: 3451 * - Determine the EP 3452 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. 3453 */ 3454 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) 3455 { 3456 u32 gintsts; 3457 u32 gintmsk; 3458 u32 daintmsk; 3459 u32 epctrl; 3460 struct dwc2_hsotg_ep *hs_ep; 3461 int idx; 3462 3463 dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); 3464 3465 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 3466 daintmsk >>= DAINT_OUTEP_SHIFT; 3467 3468 for (idx = 1; idx <= hsotg->num_of_eps; idx++) { 3469 hs_ep = hsotg->eps_out[idx]; 3470 /* Proceed only unmasked ISOC EPs */ 3471 if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk)) 3472 continue; 3473 3474 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx)); 3475 if ((epctrl & DXEPCTL_EPENA) && 3476 dwc2_gadget_target_frame_elapsed(hs_ep)) { 3477 /* Unmask GOUTNAKEFF interrupt */ 3478 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3479 gintmsk |= GINTSTS_GOUTNAKEFF; 3480 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3481 3482 gintsts = dwc2_readl(hsotg->regs + GINTSTS); 3483 if (!(gintsts & GINTSTS_GOUTNAKEFF)) { 3484 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK); 3485 break; 3486 } 3487 } 3488 } 3489 3490 /* Clear interrupt */ 3491 dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS); 3492 } 3493 3494 /** 3495 * dwc2_hsotg_irq - handle device interrupt 3496 * @irq: The IRQ number triggered 3497 * @pw: The pw value when registered the handler. 3498 */ 3499 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) 3500 { 3501 struct dwc2_hsotg *hsotg = pw; 3502 int retry_count = 8; 3503 u32 gintsts; 3504 u32 gintmsk; 3505 3506 if (!dwc2_is_device_mode(hsotg)) 3507 return IRQ_NONE; 3508 3509 spin_lock(&hsotg->lock); 3510 irq_retry: 3511 gintsts = dwc2_readl(hsotg->regs + GINTSTS); 3512 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3513 3514 dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", 3515 __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); 3516 3517 gintsts &= gintmsk; 3518 3519 if (gintsts & GINTSTS_RESETDET) { 3520 dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); 3521 3522 dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS); 3523 3524 /* This event must be used only if controller is suspended */ 3525 if (hsotg->lx_state == DWC2_L2) { 3526 dwc2_exit_hibernation(hsotg, true); 3527 hsotg->lx_state = DWC2_L0; 3528 } 3529 } 3530 3531 if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { 3532 u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL); 3533 u32 connected = hsotg->connected; 3534 3535 dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); 3536 dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", 3537 dwc2_readl(hsotg->regs + GNPTXSTS)); 3538 3539 dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS); 3540 3541 /* Report disconnection if it is not already done. */ 3542 dwc2_hsotg_disconnect(hsotg); 3543 3544 /* Reset device address to zero */ 3545 dwc2_clear_bit(hsotg->regs + DCFG, DCFG_DEVADDR_MASK); 3546 3547 if (usb_status & GOTGCTL_BSESVLD && connected) 3548 dwc2_hsotg_core_init_disconnected(hsotg, true); 3549 } 3550 3551 if (gintsts & GINTSTS_ENUMDONE) { 3552 dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS); 3553 3554 dwc2_hsotg_irq_enumdone(hsotg); 3555 } 3556 3557 if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { 3558 u32 daint = dwc2_readl(hsotg->regs + DAINT); 3559 u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 3560 u32 daint_out, daint_in; 3561 int ep; 3562 3563 daint &= daintmsk; 3564 daint_out = daint >> DAINT_OUTEP_SHIFT; 3565 daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); 3566 3567 dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); 3568 3569 for (ep = 0; ep < hsotg->num_of_eps && daint_out; 3570 ep++, daint_out >>= 1) { 3571 if (daint_out & 1) 3572 dwc2_hsotg_epint(hsotg, ep, 0); 3573 } 3574 3575 for (ep = 0; ep < hsotg->num_of_eps && daint_in; 3576 ep++, daint_in >>= 1) { 3577 if (daint_in & 1) 3578 dwc2_hsotg_epint(hsotg, ep, 1); 3579 } 3580 } 3581 3582 /* check both FIFOs */ 3583 3584 if (gintsts & GINTSTS_NPTXFEMP) { 3585 dev_dbg(hsotg->dev, "NPTxFEmp\n"); 3586 3587 /* 3588 * Disable the interrupt to stop it happening again 3589 * unless one of these endpoint routines decides that 3590 * it needs re-enabling 3591 */ 3592 3593 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); 3594 dwc2_hsotg_irq_fifoempty(hsotg, false); 3595 } 3596 3597 if (gintsts & GINTSTS_PTXFEMP) { 3598 dev_dbg(hsotg->dev, "PTxFEmp\n"); 3599 3600 /* See note in GINTSTS_NPTxFEmp */ 3601 3602 dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); 3603 dwc2_hsotg_irq_fifoempty(hsotg, true); 3604 } 3605 3606 if (gintsts & GINTSTS_RXFLVL) { 3607 /* 3608 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, 3609 * we need to retry dwc2_hsotg_handle_rx if this is still 3610 * set. 3611 */ 3612 3613 dwc2_hsotg_handle_rx(hsotg); 3614 } 3615 3616 if (gintsts & GINTSTS_ERLYSUSP) { 3617 dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); 3618 dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS); 3619 } 3620 3621 /* 3622 * these next two seem to crop-up occasionally causing the core 3623 * to shutdown the USB transfer, so try clearing them and logging 3624 * the occurrence. 3625 */ 3626 3627 if (gintsts & GINTSTS_GOUTNAKEFF) { 3628 u8 idx; 3629 u32 epctrl; 3630 u32 gintmsk; 3631 u32 daintmsk; 3632 struct dwc2_hsotg_ep *hs_ep; 3633 3634 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 3635 daintmsk >>= DAINT_OUTEP_SHIFT; 3636 /* Mask this interrupt */ 3637 gintmsk = dwc2_readl(hsotg->regs + GINTMSK); 3638 gintmsk &= ~GINTSTS_GOUTNAKEFF; 3639 dwc2_writel(gintmsk, hsotg->regs + GINTMSK); 3640 3641 dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); 3642 for (idx = 1; idx <= hsotg->num_of_eps; idx++) { 3643 hs_ep = hsotg->eps_out[idx]; 3644 /* Proceed only unmasked ISOC EPs */ 3645 if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk)) 3646 continue; 3647 3648 epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx)); 3649 3650 if (epctrl & DXEPCTL_EPENA) { 3651 epctrl |= DXEPCTL_SNAK; 3652 epctrl |= DXEPCTL_EPDIS; 3653 dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx)); 3654 } 3655 } 3656 3657 /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ 3658 } 3659 3660 if (gintsts & GINTSTS_GINNAKEFF) { 3661 dev_info(hsotg->dev, "GINNakEff triggered\n"); 3662 3663 dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK); 3664 3665 dwc2_hsotg_dump(hsotg); 3666 } 3667 3668 if (gintsts & GINTSTS_INCOMPL_SOIN) 3669 dwc2_gadget_handle_incomplete_isoc_in(hsotg); 3670 3671 if (gintsts & GINTSTS_INCOMPL_SOOUT) 3672 dwc2_gadget_handle_incomplete_isoc_out(hsotg); 3673 3674 /* 3675 * if we've had fifo events, we should try and go around the 3676 * loop again to see if there's any point in returning yet. 3677 */ 3678 3679 if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) 3680 goto irq_retry; 3681 3682 spin_unlock(&hsotg->lock); 3683 3684 return IRQ_HANDLED; 3685 } 3686 3687 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, 3688 struct dwc2_hsotg_ep *hs_ep) 3689 { 3690 u32 epctrl_reg; 3691 u32 epint_reg; 3692 3693 epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : 3694 DOEPCTL(hs_ep->index); 3695 epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : 3696 DOEPINT(hs_ep->index); 3697 3698 dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, 3699 hs_ep->name); 3700 3701 if (hs_ep->dir_in) { 3702 if (hsotg->dedicated_fifos || hs_ep->periodic) { 3703 dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_SNAK); 3704 /* Wait for Nak effect */ 3705 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, 3706 DXEPINT_INEPNAKEFF, 100)) 3707 dev_warn(hsotg->dev, 3708 "%s: timeout DIEPINT.NAKEFF\n", 3709 __func__); 3710 } else { 3711 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGNPINNAK); 3712 /* Wait for Nak effect */ 3713 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3714 GINTSTS_GINNAKEFF, 100)) 3715 dev_warn(hsotg->dev, 3716 "%s: timeout GINTSTS.GINNAKEFF\n", 3717 __func__); 3718 } 3719 } else { 3720 if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF)) 3721 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK); 3722 3723 /* Wait for global nak to take effect */ 3724 if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, 3725 GINTSTS_GOUTNAKEFF, 100)) 3726 dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", 3727 __func__); 3728 } 3729 3730 /* Disable ep */ 3731 dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); 3732 3733 /* Wait for ep to be disabled */ 3734 if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) 3735 dev_warn(hsotg->dev, 3736 "%s: timeout DOEPCTL.EPDisable\n", __func__); 3737 3738 /* Clear EPDISBLD interrupt */ 3739 dwc2_set_bit(hsotg->regs + epint_reg, DXEPINT_EPDISBLD); 3740 3741 if (hs_ep->dir_in) { 3742 unsigned short fifo_index; 3743 3744 if (hsotg->dedicated_fifos || hs_ep->periodic) 3745 fifo_index = hs_ep->fifo_index; 3746 else 3747 fifo_index = 0; 3748 3749 /* Flush TX FIFO */ 3750 dwc2_flush_tx_fifo(hsotg, fifo_index); 3751 3752 /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ 3753 if (!hsotg->dedicated_fifos && !hs_ep->periodic) 3754 dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK); 3755 3756 } else { 3757 /* Remove global NAKs */ 3758 dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGOUTNAK); 3759 } 3760 } 3761 3762 /** 3763 * dwc2_hsotg_ep_enable - enable the given endpoint 3764 * @ep: The USB endpint to configure 3765 * @desc: The USB endpoint descriptor to configure with. 3766 * 3767 * This is called from the USB gadget code's usb_ep_enable(). 3768 */ 3769 static int dwc2_hsotg_ep_enable(struct usb_ep *ep, 3770 const struct usb_endpoint_descriptor *desc) 3771 { 3772 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3773 struct dwc2_hsotg *hsotg = hs_ep->parent; 3774 unsigned long flags; 3775 unsigned int index = hs_ep->index; 3776 u32 epctrl_reg; 3777 u32 epctrl; 3778 u32 mps; 3779 u32 mc; 3780 u32 mask; 3781 unsigned int dir_in; 3782 unsigned int i, val, size; 3783 int ret = 0; 3784 3785 dev_dbg(hsotg->dev, 3786 "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", 3787 __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, 3788 desc->wMaxPacketSize, desc->bInterval); 3789 3790 /* not to be called for EP0 */ 3791 if (index == 0) { 3792 dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); 3793 return -EINVAL; 3794 } 3795 3796 dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; 3797 if (dir_in != hs_ep->dir_in) { 3798 dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); 3799 return -EINVAL; 3800 } 3801 3802 mps = usb_endpoint_maxp(desc); 3803 mc = usb_endpoint_maxp_mult(desc); 3804 3805 /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ 3806 3807 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 3808 epctrl = dwc2_readl(hsotg->regs + epctrl_reg); 3809 3810 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", 3811 __func__, epctrl, epctrl_reg); 3812 3813 /* Allocate DMA descriptor chain for non-ctrl endpoints */ 3814 if (using_desc_dma(hsotg) && !hs_ep->desc_list) { 3815 hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, 3816 MAX_DMA_DESC_NUM_GENERIC * 3817 sizeof(struct dwc2_dma_desc), 3818 &hs_ep->desc_list_dma, GFP_ATOMIC); 3819 if (!hs_ep->desc_list) { 3820 ret = -ENOMEM; 3821 goto error2; 3822 } 3823 } 3824 3825 spin_lock_irqsave(&hsotg->lock, flags); 3826 3827 epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); 3828 epctrl |= DXEPCTL_MPS(mps); 3829 3830 /* 3831 * mark the endpoint as active, otherwise the core may ignore 3832 * transactions entirely for this endpoint 3833 */ 3834 epctrl |= DXEPCTL_USBACTEP; 3835 3836 /* update the endpoint state */ 3837 dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); 3838 3839 /* default, set to non-periodic */ 3840 hs_ep->isochronous = 0; 3841 hs_ep->periodic = 0; 3842 hs_ep->halted = 0; 3843 hs_ep->interval = desc->bInterval; 3844 3845 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) { 3846 case USB_ENDPOINT_XFER_ISOC: 3847 epctrl |= DXEPCTL_EPTYPE_ISO; 3848 epctrl |= DXEPCTL_SETEVENFR; 3849 hs_ep->isochronous = 1; 3850 hs_ep->interval = 1 << (desc->bInterval - 1); 3851 hs_ep->target_frame = TARGET_FRAME_INITIAL; 3852 hs_ep->isoc_chain_num = 0; 3853 hs_ep->next_desc = 0; 3854 if (dir_in) { 3855 hs_ep->periodic = 1; 3856 mask = dwc2_readl(hsotg->regs + DIEPMSK); 3857 mask |= DIEPMSK_NAKMSK; 3858 dwc2_writel(mask, hsotg->regs + DIEPMSK); 3859 } else { 3860 mask = dwc2_readl(hsotg->regs + DOEPMSK); 3861 mask |= DOEPMSK_OUTTKNEPDISMSK; 3862 dwc2_writel(mask, hsotg->regs + DOEPMSK); 3863 } 3864 break; 3865 3866 case USB_ENDPOINT_XFER_BULK: 3867 epctrl |= DXEPCTL_EPTYPE_BULK; 3868 break; 3869 3870 case USB_ENDPOINT_XFER_INT: 3871 if (dir_in) 3872 hs_ep->periodic = 1; 3873 3874 if (hsotg->gadget.speed == USB_SPEED_HIGH) 3875 hs_ep->interval = 1 << (desc->bInterval - 1); 3876 3877 epctrl |= DXEPCTL_EPTYPE_INTERRUPT; 3878 break; 3879 3880 case USB_ENDPOINT_XFER_CONTROL: 3881 epctrl |= DXEPCTL_EPTYPE_CONTROL; 3882 break; 3883 } 3884 3885 /* 3886 * if the hardware has dedicated fifos, we must give each IN EP 3887 * a unique tx-fifo even if it is non-periodic. 3888 */ 3889 if (dir_in && hsotg->dedicated_fifos) { 3890 u32 fifo_index = 0; 3891 u32 fifo_size = UINT_MAX; 3892 3893 size = hs_ep->ep.maxpacket * hs_ep->mc; 3894 for (i = 1; i < hsotg->num_of_eps; ++i) { 3895 if (hsotg->fifo_map & (1 << i)) 3896 continue; 3897 val = dwc2_readl(hsotg->regs + DPTXFSIZN(i)); 3898 val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; 3899 if (val < size) 3900 continue; 3901 /* Search for smallest acceptable fifo */ 3902 if (val < fifo_size) { 3903 fifo_size = val; 3904 fifo_index = i; 3905 } 3906 } 3907 if (!fifo_index) { 3908 dev_err(hsotg->dev, 3909 "%s: No suitable fifo found\n", __func__); 3910 ret = -ENOMEM; 3911 goto error1; 3912 } 3913 hsotg->fifo_map |= 1 << fifo_index; 3914 epctrl |= DXEPCTL_TXFNUM(fifo_index); 3915 hs_ep->fifo_index = fifo_index; 3916 hs_ep->fifo_size = fifo_size; 3917 } 3918 3919 /* for non control endpoints, set PID to D0 */ 3920 if (index && !hs_ep->isochronous) 3921 epctrl |= DXEPCTL_SETD0PID; 3922 3923 dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", 3924 __func__, epctrl); 3925 3926 dwc2_writel(epctrl, hsotg->regs + epctrl_reg); 3927 dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", 3928 __func__, dwc2_readl(hsotg->regs + epctrl_reg)); 3929 3930 /* enable the endpoint interrupt */ 3931 dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); 3932 3933 error1: 3934 spin_unlock_irqrestore(&hsotg->lock, flags); 3935 3936 error2: 3937 if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { 3938 dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC * 3939 sizeof(struct dwc2_dma_desc), 3940 hs_ep->desc_list, hs_ep->desc_list_dma); 3941 hs_ep->desc_list = NULL; 3942 } 3943 3944 return ret; 3945 } 3946 3947 /** 3948 * dwc2_hsotg_ep_disable - disable given endpoint 3949 * @ep: The endpoint to disable. 3950 */ 3951 static int dwc2_hsotg_ep_disable(struct usb_ep *ep) 3952 { 3953 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 3954 struct dwc2_hsotg *hsotg = hs_ep->parent; 3955 int dir_in = hs_ep->dir_in; 3956 int index = hs_ep->index; 3957 unsigned long flags; 3958 u32 epctrl_reg; 3959 u32 ctrl; 3960 3961 dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); 3962 3963 if (ep == &hsotg->eps_out[0]->ep) { 3964 dev_err(hsotg->dev, "%s: called for ep0\n", __func__); 3965 return -EINVAL; 3966 } 3967 3968 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 3969 dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); 3970 return -EINVAL; 3971 } 3972 3973 epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); 3974 3975 spin_lock_irqsave(&hsotg->lock, flags); 3976 3977 ctrl = dwc2_readl(hsotg->regs + epctrl_reg); 3978 3979 if (ctrl & DXEPCTL_EPENA) 3980 dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); 3981 3982 ctrl &= ~DXEPCTL_EPENA; 3983 ctrl &= ~DXEPCTL_USBACTEP; 3984 ctrl |= DXEPCTL_SNAK; 3985 3986 dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); 3987 dwc2_writel(ctrl, hsotg->regs + epctrl_reg); 3988 3989 /* disable endpoint interrupts */ 3990 dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); 3991 3992 /* terminate all requests with shutdown */ 3993 kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); 3994 3995 hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); 3996 hs_ep->fifo_index = 0; 3997 hs_ep->fifo_size = 0; 3998 3999 spin_unlock_irqrestore(&hsotg->lock, flags); 4000 return 0; 4001 } 4002 4003 /** 4004 * on_list - check request is on the given endpoint 4005 * @ep: The endpoint to check. 4006 * @test: The request to test if it is on the endpoint. 4007 */ 4008 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) 4009 { 4010 struct dwc2_hsotg_req *req, *treq; 4011 4012 list_for_each_entry_safe(req, treq, &ep->queue, queue) { 4013 if (req == test) 4014 return true; 4015 } 4016 4017 return false; 4018 } 4019 4020 /** 4021 * dwc2_hsotg_ep_dequeue - dequeue given endpoint 4022 * @ep: The endpoint to dequeue. 4023 * @req: The request to be removed from a queue. 4024 */ 4025 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) 4026 { 4027 struct dwc2_hsotg_req *hs_req = our_req(req); 4028 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4029 struct dwc2_hsotg *hs = hs_ep->parent; 4030 unsigned long flags; 4031 4032 dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); 4033 4034 spin_lock_irqsave(&hs->lock, flags); 4035 4036 if (!on_list(hs_ep, hs_req)) { 4037 spin_unlock_irqrestore(&hs->lock, flags); 4038 return -EINVAL; 4039 } 4040 4041 /* Dequeue already started request */ 4042 if (req == &hs_ep->req->req) 4043 dwc2_hsotg_ep_stop_xfr(hs, hs_ep); 4044 4045 dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); 4046 spin_unlock_irqrestore(&hs->lock, flags); 4047 4048 return 0; 4049 } 4050 4051 /** 4052 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint 4053 * @ep: The endpoint to set halt. 4054 * @value: Set or unset the halt. 4055 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if 4056 * the endpoint is busy processing requests. 4057 * 4058 * We need to stall the endpoint immediately if request comes from set_feature 4059 * protocol command handler. 4060 */ 4061 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) 4062 { 4063 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4064 struct dwc2_hsotg *hs = hs_ep->parent; 4065 int index = hs_ep->index; 4066 u32 epreg; 4067 u32 epctl; 4068 u32 xfertype; 4069 4070 dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); 4071 4072 if (index == 0) { 4073 if (value) 4074 dwc2_hsotg_stall_ep0(hs); 4075 else 4076 dev_warn(hs->dev, 4077 "%s: can't clear halt on ep0\n", __func__); 4078 return 0; 4079 } 4080 4081 if (hs_ep->isochronous) { 4082 dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); 4083 return -EINVAL; 4084 } 4085 4086 if (!now && value && !list_empty(&hs_ep->queue)) { 4087 dev_dbg(hs->dev, "%s request is pending, cannot halt\n", 4088 ep->name); 4089 return -EAGAIN; 4090 } 4091 4092 if (hs_ep->dir_in) { 4093 epreg = DIEPCTL(index); 4094 epctl = dwc2_readl(hs->regs + epreg); 4095 4096 if (value) { 4097 epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; 4098 if (epctl & DXEPCTL_EPENA) 4099 epctl |= DXEPCTL_EPDIS; 4100 } else { 4101 epctl &= ~DXEPCTL_STALL; 4102 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4103 if (xfertype == DXEPCTL_EPTYPE_BULK || 4104 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4105 epctl |= DXEPCTL_SETD0PID; 4106 } 4107 dwc2_writel(epctl, hs->regs + epreg); 4108 } else { 4109 epreg = DOEPCTL(index); 4110 epctl = dwc2_readl(hs->regs + epreg); 4111 4112 if (value) { 4113 epctl |= DXEPCTL_STALL; 4114 } else { 4115 epctl &= ~DXEPCTL_STALL; 4116 xfertype = epctl & DXEPCTL_EPTYPE_MASK; 4117 if (xfertype == DXEPCTL_EPTYPE_BULK || 4118 xfertype == DXEPCTL_EPTYPE_INTERRUPT) 4119 epctl |= DXEPCTL_SETD0PID; 4120 } 4121 dwc2_writel(epctl, hs->regs + epreg); 4122 } 4123 4124 hs_ep->halted = value; 4125 4126 return 0; 4127 } 4128 4129 /** 4130 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held 4131 * @ep: The endpoint to set halt. 4132 * @value: Set or unset the halt. 4133 */ 4134 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) 4135 { 4136 struct dwc2_hsotg_ep *hs_ep = our_ep(ep); 4137 struct dwc2_hsotg *hs = hs_ep->parent; 4138 unsigned long flags = 0; 4139 int ret = 0; 4140 4141 spin_lock_irqsave(&hs->lock, flags); 4142 ret = dwc2_hsotg_ep_sethalt(ep, value, false); 4143 spin_unlock_irqrestore(&hs->lock, flags); 4144 4145 return ret; 4146 } 4147 4148 static const struct usb_ep_ops dwc2_hsotg_ep_ops = { 4149 .enable = dwc2_hsotg_ep_enable, 4150 .disable = dwc2_hsotg_ep_disable, 4151 .alloc_request = dwc2_hsotg_ep_alloc_request, 4152 .free_request = dwc2_hsotg_ep_free_request, 4153 .queue = dwc2_hsotg_ep_queue_lock, 4154 .dequeue = dwc2_hsotg_ep_dequeue, 4155 .set_halt = dwc2_hsotg_ep_sethalt_lock, 4156 /* note, don't believe we have any call for the fifo routines */ 4157 }; 4158 4159 /** 4160 * dwc2_hsotg_init - initialize the usb core 4161 * @hsotg: The driver state 4162 */ 4163 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) 4164 { 4165 u32 trdtim; 4166 u32 usbcfg; 4167 /* unmask subset of endpoint interrupts */ 4168 4169 dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | 4170 DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, 4171 hsotg->regs + DIEPMSK); 4172 4173 dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | 4174 DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, 4175 hsotg->regs + DOEPMSK); 4176 4177 dwc2_writel(0, hsotg->regs + DAINTMSK); 4178 4179 /* Be in disconnected state until gadget is registered */ 4180 dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON); 4181 4182 /* setup fifos */ 4183 4184 dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4185 dwc2_readl(hsotg->regs + GRXFSIZ), 4186 dwc2_readl(hsotg->regs + GNPTXFSIZ)); 4187 4188 dwc2_hsotg_init_fifo(hsotg); 4189 4190 /* keep other bits untouched (so e.g. forced modes are not lost) */ 4191 usbcfg = dwc2_readl(hsotg->regs + GUSBCFG); 4192 usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP | 4193 GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK); 4194 4195 /* set the PLL on, remove the HNP/SRP and set the PHY */ 4196 trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5; 4197 usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) | 4198 (trdtim << GUSBCFG_USBTRDTIM_SHIFT); 4199 dwc2_writel(usbcfg, hsotg->regs + GUSBCFG); 4200 4201 if (using_dma(hsotg)) 4202 dwc2_set_bit(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN); 4203 } 4204 4205 /** 4206 * dwc2_hsotg_udc_start - prepare the udc for work 4207 * @gadget: The usb gadget state 4208 * @driver: The usb gadget driver 4209 * 4210 * Perform initialization to prepare udc device and driver 4211 * to work. 4212 */ 4213 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, 4214 struct usb_gadget_driver *driver) 4215 { 4216 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4217 unsigned long flags; 4218 int ret; 4219 4220 if (!hsotg) { 4221 pr_err("%s: called with no device\n", __func__); 4222 return -ENODEV; 4223 } 4224 4225 if (!driver) { 4226 dev_err(hsotg->dev, "%s: no driver\n", __func__); 4227 return -EINVAL; 4228 } 4229 4230 if (driver->max_speed < USB_SPEED_FULL) 4231 dev_err(hsotg->dev, "%s: bad speed\n", __func__); 4232 4233 if (!driver->setup) { 4234 dev_err(hsotg->dev, "%s: missing entry points\n", __func__); 4235 return -EINVAL; 4236 } 4237 4238 WARN_ON(hsotg->driver); 4239 4240 driver->driver.bus = NULL; 4241 hsotg->driver = driver; 4242 hsotg->gadget.dev.of_node = hsotg->dev->of_node; 4243 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4244 4245 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { 4246 ret = dwc2_lowlevel_hw_enable(hsotg); 4247 if (ret) 4248 goto err; 4249 } 4250 4251 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4252 otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); 4253 4254 spin_lock_irqsave(&hsotg->lock, flags); 4255 if (dwc2_hw_is_device(hsotg)) { 4256 dwc2_hsotg_init(hsotg); 4257 dwc2_hsotg_core_init_disconnected(hsotg, false); 4258 } 4259 4260 hsotg->enabled = 0; 4261 spin_unlock_irqrestore(&hsotg->lock, flags); 4262 4263 dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); 4264 4265 return 0; 4266 4267 err: 4268 hsotg->driver = NULL; 4269 return ret; 4270 } 4271 4272 /** 4273 * dwc2_hsotg_udc_stop - stop the udc 4274 * @gadget: The usb gadget state 4275 * @driver: The usb gadget driver 4276 * 4277 * Stop udc hw block and stay tunned for future transmissions 4278 */ 4279 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) 4280 { 4281 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4282 unsigned long flags = 0; 4283 int ep; 4284 4285 if (!hsotg) 4286 return -ENODEV; 4287 4288 /* all endpoints should be shutdown */ 4289 for (ep = 1; ep < hsotg->num_of_eps; ep++) { 4290 if (hsotg->eps_in[ep]) 4291 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 4292 if (hsotg->eps_out[ep]) 4293 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 4294 } 4295 4296 spin_lock_irqsave(&hsotg->lock, flags); 4297 4298 hsotg->driver = NULL; 4299 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4300 hsotg->enabled = 0; 4301 4302 spin_unlock_irqrestore(&hsotg->lock, flags); 4303 4304 if (!IS_ERR_OR_NULL(hsotg->uphy)) 4305 otg_set_peripheral(hsotg->uphy->otg, NULL); 4306 4307 if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4308 dwc2_lowlevel_hw_disable(hsotg); 4309 4310 return 0; 4311 } 4312 4313 /** 4314 * dwc2_hsotg_gadget_getframe - read the frame number 4315 * @gadget: The usb gadget state 4316 * 4317 * Read the {micro} frame number 4318 */ 4319 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) 4320 { 4321 return dwc2_hsotg_read_frameno(to_hsotg(gadget)); 4322 } 4323 4324 /** 4325 * dwc2_hsotg_pullup - connect/disconnect the USB PHY 4326 * @gadget: The usb gadget state 4327 * @is_on: Current state of the USB PHY 4328 * 4329 * Connect/Disconnect the USB PHY pullup 4330 */ 4331 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) 4332 { 4333 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4334 unsigned long flags = 0; 4335 4336 dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, 4337 hsotg->op_state); 4338 4339 /* Don't modify pullup state while in host mode */ 4340 if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { 4341 hsotg->enabled = is_on; 4342 return 0; 4343 } 4344 4345 spin_lock_irqsave(&hsotg->lock, flags); 4346 if (is_on) { 4347 hsotg->enabled = 1; 4348 dwc2_hsotg_core_init_disconnected(hsotg, false); 4349 dwc2_hsotg_core_connect(hsotg); 4350 } else { 4351 dwc2_hsotg_core_disconnect(hsotg); 4352 dwc2_hsotg_disconnect(hsotg); 4353 hsotg->enabled = 0; 4354 } 4355 4356 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4357 spin_unlock_irqrestore(&hsotg->lock, flags); 4358 4359 return 0; 4360 } 4361 4362 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) 4363 { 4364 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4365 unsigned long flags; 4366 4367 dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); 4368 spin_lock_irqsave(&hsotg->lock, flags); 4369 4370 /* 4371 * If controller is hibernated, it must exit from hibernation 4372 * before being initialized / de-initialized 4373 */ 4374 if (hsotg->lx_state == DWC2_L2) 4375 dwc2_exit_hibernation(hsotg, false); 4376 4377 if (is_active) { 4378 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4379 4380 dwc2_hsotg_core_init_disconnected(hsotg, false); 4381 if (hsotg->enabled) 4382 dwc2_hsotg_core_connect(hsotg); 4383 } else { 4384 dwc2_hsotg_core_disconnect(hsotg); 4385 dwc2_hsotg_disconnect(hsotg); 4386 } 4387 4388 spin_unlock_irqrestore(&hsotg->lock, flags); 4389 return 0; 4390 } 4391 4392 /** 4393 * dwc2_hsotg_vbus_draw - report bMaxPower field 4394 * @gadget: The usb gadget state 4395 * @mA: Amount of current 4396 * 4397 * Report how much power the device may consume to the phy. 4398 */ 4399 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) 4400 { 4401 struct dwc2_hsotg *hsotg = to_hsotg(gadget); 4402 4403 if (IS_ERR_OR_NULL(hsotg->uphy)) 4404 return -ENOTSUPP; 4405 return usb_phy_set_power(hsotg->uphy, mA); 4406 } 4407 4408 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { 4409 .get_frame = dwc2_hsotg_gadget_getframe, 4410 .udc_start = dwc2_hsotg_udc_start, 4411 .udc_stop = dwc2_hsotg_udc_stop, 4412 .pullup = dwc2_hsotg_pullup, 4413 .vbus_session = dwc2_hsotg_vbus_session, 4414 .vbus_draw = dwc2_hsotg_vbus_draw, 4415 }; 4416 4417 /** 4418 * dwc2_hsotg_initep - initialise a single endpoint 4419 * @hsotg: The device state. 4420 * @hs_ep: The endpoint to be initialised. 4421 * @epnum: The endpoint number 4422 * 4423 * Initialise the given endpoint (as part of the probe and device state 4424 * creation) to give to the gadget driver. Setup the endpoint name, any 4425 * direction information and other state that may be required. 4426 */ 4427 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, 4428 struct dwc2_hsotg_ep *hs_ep, 4429 int epnum, 4430 bool dir_in) 4431 { 4432 char *dir; 4433 4434 if (epnum == 0) 4435 dir = ""; 4436 else if (dir_in) 4437 dir = "in"; 4438 else 4439 dir = "out"; 4440 4441 hs_ep->dir_in = dir_in; 4442 hs_ep->index = epnum; 4443 4444 snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); 4445 4446 INIT_LIST_HEAD(&hs_ep->queue); 4447 INIT_LIST_HEAD(&hs_ep->ep.ep_list); 4448 4449 /* add to the list of endpoints known by the gadget driver */ 4450 if (epnum) 4451 list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); 4452 4453 hs_ep->parent = hsotg; 4454 hs_ep->ep.name = hs_ep->name; 4455 4456 if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) 4457 usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); 4458 else 4459 usb_ep_set_maxpacket_limit(&hs_ep->ep, 4460 epnum ? 1024 : EP0_MPS_LIMIT); 4461 hs_ep->ep.ops = &dwc2_hsotg_ep_ops; 4462 4463 if (epnum == 0) { 4464 hs_ep->ep.caps.type_control = true; 4465 } else { 4466 if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { 4467 hs_ep->ep.caps.type_iso = true; 4468 hs_ep->ep.caps.type_bulk = true; 4469 } 4470 hs_ep->ep.caps.type_int = true; 4471 } 4472 4473 if (dir_in) 4474 hs_ep->ep.caps.dir_in = true; 4475 else 4476 hs_ep->ep.caps.dir_out = true; 4477 4478 /* 4479 * if we're using dma, we need to set the next-endpoint pointer 4480 * to be something valid. 4481 */ 4482 4483 if (using_dma(hsotg)) { 4484 u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); 4485 4486 if (dir_in) 4487 dwc2_writel(next, hsotg->regs + DIEPCTL(epnum)); 4488 else 4489 dwc2_writel(next, hsotg->regs + DOEPCTL(epnum)); 4490 } 4491 } 4492 4493 /** 4494 * dwc2_hsotg_hw_cfg - read HW configuration registers 4495 * @param: The device state 4496 * 4497 * Read the USB core HW configuration registers 4498 */ 4499 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) 4500 { 4501 u32 cfg; 4502 u32 ep_type; 4503 u32 i; 4504 4505 /* check hardware configuration */ 4506 4507 hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; 4508 4509 /* Add ep0 */ 4510 hsotg->num_of_eps++; 4511 4512 hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, 4513 sizeof(struct dwc2_hsotg_ep), 4514 GFP_KERNEL); 4515 if (!hsotg->eps_in[0]) 4516 return -ENOMEM; 4517 /* Same dwc2_hsotg_ep is used in both directions for ep0 */ 4518 hsotg->eps_out[0] = hsotg->eps_in[0]; 4519 4520 cfg = hsotg->hw_params.dev_ep_dirs; 4521 for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { 4522 ep_type = cfg & 3; 4523 /* Direction in or both */ 4524 if (!(ep_type & 2)) { 4525 hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, 4526 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4527 if (!hsotg->eps_in[i]) 4528 return -ENOMEM; 4529 } 4530 /* Direction out or both */ 4531 if (!(ep_type & 1)) { 4532 hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, 4533 sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); 4534 if (!hsotg->eps_out[i]) 4535 return -ENOMEM; 4536 } 4537 } 4538 4539 hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; 4540 hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; 4541 4542 dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", 4543 hsotg->num_of_eps, 4544 hsotg->dedicated_fifos ? "dedicated" : "shared", 4545 hsotg->fifo_mem); 4546 return 0; 4547 } 4548 4549 /** 4550 * dwc2_hsotg_dump - dump state of the udc 4551 * @param: The device state 4552 */ 4553 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) 4554 { 4555 #ifdef DEBUG 4556 struct device *dev = hsotg->dev; 4557 void __iomem *regs = hsotg->regs; 4558 u32 val; 4559 int idx; 4560 4561 dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", 4562 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL), 4563 dwc2_readl(regs + DIEPMSK)); 4564 4565 dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", 4566 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1)); 4567 4568 dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", 4569 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ)); 4570 4571 /* show periodic fifo settings */ 4572 4573 for (idx = 1; idx < hsotg->num_of_eps; idx++) { 4574 val = dwc2_readl(regs + DPTXFSIZN(idx)); 4575 dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, 4576 val >> FIFOSIZE_DEPTH_SHIFT, 4577 val & FIFOSIZE_STARTADDR_MASK); 4578 } 4579 4580 for (idx = 0; idx < hsotg->num_of_eps; idx++) { 4581 dev_info(dev, 4582 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, 4583 dwc2_readl(regs + DIEPCTL(idx)), 4584 dwc2_readl(regs + DIEPTSIZ(idx)), 4585 dwc2_readl(regs + DIEPDMA(idx))); 4586 4587 val = dwc2_readl(regs + DOEPCTL(idx)); 4588 dev_info(dev, 4589 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", 4590 idx, dwc2_readl(regs + DOEPCTL(idx)), 4591 dwc2_readl(regs + DOEPTSIZ(idx)), 4592 dwc2_readl(regs + DOEPDMA(idx))); 4593 } 4594 4595 dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", 4596 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE)); 4597 #endif 4598 } 4599 4600 /** 4601 * dwc2_gadget_init - init function for gadget 4602 * @dwc2: The data structure for the DWC2 driver. 4603 */ 4604 int dwc2_gadget_init(struct dwc2_hsotg *hsotg) 4605 { 4606 struct device *dev = hsotg->dev; 4607 int epnum; 4608 int ret; 4609 4610 /* Dump fifo information */ 4611 dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", 4612 hsotg->params.g_np_tx_fifo_size); 4613 dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); 4614 4615 hsotg->gadget.max_speed = USB_SPEED_HIGH; 4616 hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; 4617 hsotg->gadget.name = dev_name(dev); 4618 if (hsotg->dr_mode == USB_DR_MODE_OTG) 4619 hsotg->gadget.is_otg = 1; 4620 else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) 4621 hsotg->op_state = OTG_STATE_B_PERIPHERAL; 4622 4623 ret = dwc2_hsotg_hw_cfg(hsotg); 4624 if (ret) { 4625 dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); 4626 return ret; 4627 } 4628 4629 hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, 4630 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4631 if (!hsotg->ctrl_buff) 4632 return -ENOMEM; 4633 4634 hsotg->ep0_buff = devm_kzalloc(hsotg->dev, 4635 DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); 4636 if (!hsotg->ep0_buff) 4637 return -ENOMEM; 4638 4639 if (using_desc_dma(hsotg)) { 4640 ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); 4641 if (ret < 0) 4642 return ret; 4643 } 4644 4645 ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, 4646 IRQF_SHARED, dev_name(hsotg->dev), hsotg); 4647 if (ret < 0) { 4648 dev_err(dev, "cannot claim IRQ for gadget\n"); 4649 return ret; 4650 } 4651 4652 /* hsotg->num_of_eps holds number of EPs other than ep0 */ 4653 4654 if (hsotg->num_of_eps == 0) { 4655 dev_err(dev, "wrong number of EPs (zero)\n"); 4656 return -EINVAL; 4657 } 4658 4659 /* setup endpoint information */ 4660 4661 INIT_LIST_HEAD(&hsotg->gadget.ep_list); 4662 hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; 4663 4664 /* allocate EP0 request */ 4665 4666 hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, 4667 GFP_KERNEL); 4668 if (!hsotg->ctrl_req) { 4669 dev_err(dev, "failed to allocate ctrl req\n"); 4670 return -ENOMEM; 4671 } 4672 4673 /* initialise the endpoints now the core has been initialised */ 4674 for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { 4675 if (hsotg->eps_in[epnum]) 4676 dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], 4677 epnum, 1); 4678 if (hsotg->eps_out[epnum]) 4679 dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], 4680 epnum, 0); 4681 } 4682 4683 ret = usb_add_gadget_udc(dev, &hsotg->gadget); 4684 if (ret) 4685 return ret; 4686 4687 dwc2_hsotg_dump(hsotg); 4688 4689 return 0; 4690 } 4691 4692 /** 4693 * dwc2_hsotg_remove - remove function for hsotg driver 4694 * @pdev: The platform information for the driver 4695 */ 4696 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) 4697 { 4698 usb_del_gadget_udc(&hsotg->gadget); 4699 4700 return 0; 4701 } 4702 4703 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) 4704 { 4705 unsigned long flags; 4706 4707 if (hsotg->lx_state != DWC2_L0) 4708 return 0; 4709 4710 if (hsotg->driver) { 4711 int ep; 4712 4713 dev_info(hsotg->dev, "suspending usb gadget %s\n", 4714 hsotg->driver->driver.name); 4715 4716 spin_lock_irqsave(&hsotg->lock, flags); 4717 if (hsotg->enabled) 4718 dwc2_hsotg_core_disconnect(hsotg); 4719 dwc2_hsotg_disconnect(hsotg); 4720 hsotg->gadget.speed = USB_SPEED_UNKNOWN; 4721 spin_unlock_irqrestore(&hsotg->lock, flags); 4722 4723 for (ep = 0; ep < hsotg->num_of_eps; ep++) { 4724 if (hsotg->eps_in[ep]) 4725 dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); 4726 if (hsotg->eps_out[ep]) 4727 dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); 4728 } 4729 } 4730 4731 return 0; 4732 } 4733 4734 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) 4735 { 4736 unsigned long flags; 4737 4738 if (hsotg->lx_state == DWC2_L2) 4739 return 0; 4740 4741 if (hsotg->driver) { 4742 dev_info(hsotg->dev, "resuming usb gadget %s\n", 4743 hsotg->driver->driver.name); 4744 4745 spin_lock_irqsave(&hsotg->lock, flags); 4746 dwc2_hsotg_core_init_disconnected(hsotg, false); 4747 if (hsotg->enabled) 4748 dwc2_hsotg_core_connect(hsotg); 4749 spin_unlock_irqrestore(&hsotg->lock, flags); 4750 } 4751 4752 return 0; 4753 } 4754 4755 /** 4756 * dwc2_backup_device_registers() - Backup controller device registers. 4757 * When suspending usb bus, registers needs to be backuped 4758 * if controller power is disabled once suspended. 4759 * 4760 * @hsotg: Programming view of the DWC_otg controller 4761 */ 4762 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) 4763 { 4764 struct dwc2_dregs_backup *dr; 4765 int i; 4766 4767 dev_dbg(hsotg->dev, "%s\n", __func__); 4768 4769 /* Backup dev regs */ 4770 dr = &hsotg->dr_backup; 4771 4772 dr->dcfg = dwc2_readl(hsotg->regs + DCFG); 4773 dr->dctl = dwc2_readl(hsotg->regs + DCTL); 4774 dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK); 4775 dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK); 4776 dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK); 4777 4778 for (i = 0; i < hsotg->num_of_eps; i++) { 4779 /* Backup IN EPs */ 4780 dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i)); 4781 4782 /* Ensure DATA PID is correctly configured */ 4783 if (dr->diepctl[i] & DXEPCTL_DPID) 4784 dr->diepctl[i] |= DXEPCTL_SETD1PID; 4785 else 4786 dr->diepctl[i] |= DXEPCTL_SETD0PID; 4787 4788 dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i)); 4789 dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i)); 4790 4791 /* Backup OUT EPs */ 4792 dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i)); 4793 4794 /* Ensure DATA PID is correctly configured */ 4795 if (dr->doepctl[i] & DXEPCTL_DPID) 4796 dr->doepctl[i] |= DXEPCTL_SETD1PID; 4797 else 4798 dr->doepctl[i] |= DXEPCTL_SETD0PID; 4799 4800 dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i)); 4801 dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i)); 4802 } 4803 dr->valid = true; 4804 return 0; 4805 } 4806 4807 /** 4808 * dwc2_restore_device_registers() - Restore controller device registers. 4809 * When resuming usb bus, device registers needs to be restored 4810 * if controller power were disabled. 4811 * 4812 * @hsotg: Programming view of the DWC_otg controller 4813 */ 4814 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg) 4815 { 4816 struct dwc2_dregs_backup *dr; 4817 u32 dctl; 4818 int i; 4819 4820 dev_dbg(hsotg->dev, "%s\n", __func__); 4821 4822 /* Restore dev regs */ 4823 dr = &hsotg->dr_backup; 4824 if (!dr->valid) { 4825 dev_err(hsotg->dev, "%s: no device registers to restore\n", 4826 __func__); 4827 return -EINVAL; 4828 } 4829 dr->valid = false; 4830 4831 dwc2_writel(dr->dcfg, hsotg->regs + DCFG); 4832 dwc2_writel(dr->dctl, hsotg->regs + DCTL); 4833 dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK); 4834 dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK); 4835 dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK); 4836 4837 for (i = 0; i < hsotg->num_of_eps; i++) { 4838 /* Restore IN EPs */ 4839 dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i)); 4840 dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i)); 4841 dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i)); 4842 4843 /* Restore OUT EPs */ 4844 dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i)); 4845 dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i)); 4846 dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i)); 4847 } 4848 4849 /* Set the Power-On Programming done bit */ 4850 dctl = dwc2_readl(hsotg->regs + DCTL); 4851 dctl |= DCTL_PWRONPRGDONE; 4852 dwc2_writel(dctl, hsotg->regs + DCTL); 4853 4854 return 0; 4855 } 4856