xref: /openbmc/linux/drivers/usb/dwc2/gadget.c (revision 75b1a8f9d62e50f05d0e4e9f3c8bcde32527ffc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Copyright 2008 Openmoko, Inc.
7  * Copyright 2008 Simtec Electronics
8  *      Ben Dooks <ben@simtec.co.uk>
9  *      http://armlinux.simtec.co.uk/
10  *
11  * S3C USB2.0 High-speed / OtG driver
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/platform_device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/mutex.h>
21 #include <linux/seq_file.h>
22 #include <linux/delay.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/of_platform.h>
26 
27 #include <linux/usb/ch9.h>
28 #include <linux/usb/gadget.h>
29 #include <linux/usb/phy.h>
30 #include <linux/usb/composite.h>
31 
32 
33 #include "core.h"
34 #include "hw.h"
35 
36 /* conversion functions */
37 static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
38 {
39 	return container_of(req, struct dwc2_hsotg_req, req);
40 }
41 
42 static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
43 {
44 	return container_of(ep, struct dwc2_hsotg_ep, ep);
45 }
46 
47 static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
48 {
49 	return container_of(gadget, struct dwc2_hsotg, gadget);
50 }
51 
52 static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
53 {
54 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
55 }
56 
57 static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
58 {
59 	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
60 }
61 
62 static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
63 						u32 ep_index, u32 dir_in)
64 {
65 	if (dir_in)
66 		return hsotg->eps_in[ep_index];
67 	else
68 		return hsotg->eps_out[ep_index];
69 }
70 
71 /* forward declaration of functions */
72 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
73 
74 /**
75  * using_dma - return the DMA status of the driver.
76  * @hsotg: The driver state.
77  *
78  * Return true if we're using DMA.
79  *
80  * Currently, we have the DMA support code worked into everywhere
81  * that needs it, but the AMBA DMA implementation in the hardware can
82  * only DMA from 32bit aligned addresses. This means that gadgets such
83  * as the CDC Ethernet cannot work as they often pass packets which are
84  * not 32bit aligned.
85  *
86  * Unfortunately the choice to use DMA or not is global to the controller
87  * and seems to be only settable when the controller is being put through
88  * a core reset. This means we either need to fix the gadgets to take
89  * account of DMA alignment, or add bounce buffers (yuerk).
90  *
91  * g_using_dma is set depending on dts flag.
92  */
93 static inline bool using_dma(struct dwc2_hsotg *hsotg)
94 {
95 	return hsotg->params.g_dma;
96 }
97 
98 /*
99  * using_desc_dma - return the descriptor DMA status of the driver.
100  * @hsotg: The driver state.
101  *
102  * Return true if we're using descriptor DMA.
103  */
104 static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
105 {
106 	return hsotg->params.g_dma_desc;
107 }
108 
109 /**
110  * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
111  * @hs_ep: The endpoint
112  *
113  * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
114  * If an overrun occurs it will wrap the value and set the frame_overrun flag.
115  */
116 static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
117 {
118 	hs_ep->target_frame += hs_ep->interval;
119 	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
120 		hs_ep->frame_overrun = true;
121 		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
122 	} else {
123 		hs_ep->frame_overrun = false;
124 	}
125 }
126 
127 /**
128  * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
129  *                                    by one.
130  * @hs_ep: The endpoint.
131  *
132  * This function used in service interval based scheduling flow to calculate
133  * descriptor frame number filed value. For service interval mode frame
134  * number in descriptor should point to last (u)frame in the interval.
135  *
136  */
137 static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
138 {
139 	if (hs_ep->target_frame)
140 		hs_ep->target_frame -= 1;
141 	else
142 		hs_ep->target_frame = DSTS_SOFFN_LIMIT;
143 }
144 
145 /**
146  * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
147  * @hsotg: The device state
148  * @ints: A bitmask of the interrupts to enable
149  */
150 static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
151 {
152 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
153 	u32 new_gsintmsk;
154 
155 	new_gsintmsk = gsintmsk | ints;
156 
157 	if (new_gsintmsk != gsintmsk) {
158 		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
159 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
160 	}
161 }
162 
163 /**
164  * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
165  * @hsotg: The device state
166  * @ints: A bitmask of the interrupts to enable
167  */
168 static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
169 {
170 	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
171 	u32 new_gsintmsk;
172 
173 	new_gsintmsk = gsintmsk & ~ints;
174 
175 	if (new_gsintmsk != gsintmsk)
176 		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
177 }
178 
179 /**
180  * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
181  * @hsotg: The device state
182  * @ep: The endpoint index
183  * @dir_in: True if direction is in.
184  * @en: The enable value, true to enable
185  *
186  * Set or clear the mask for an individual endpoint's interrupt
187  * request.
188  */
189 static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
190 				  unsigned int ep, unsigned int dir_in,
191 				 unsigned int en)
192 {
193 	unsigned long flags;
194 	u32 bit = 1 << ep;
195 	u32 daint;
196 
197 	if (!dir_in)
198 		bit <<= 16;
199 
200 	local_irq_save(flags);
201 	daint = dwc2_readl(hsotg, DAINTMSK);
202 	if (en)
203 		daint |= bit;
204 	else
205 		daint &= ~bit;
206 	dwc2_writel(hsotg, daint, DAINTMSK);
207 	local_irq_restore(flags);
208 }
209 
210 /**
211  * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
212  *
213  * @hsotg: Programming view of the DWC_otg controller
214  */
215 int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
216 {
217 	if (hsotg->hw_params.en_multiple_tx_fifo)
218 		/* In dedicated FIFO mode we need count of IN EPs */
219 		return hsotg->hw_params.num_dev_in_eps;
220 	else
221 		/* In shared FIFO mode we need count of Periodic IN EPs */
222 		return hsotg->hw_params.num_dev_perio_in_ep;
223 }
224 
225 /**
226  * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
227  * device mode TX FIFOs
228  *
229  * @hsotg: Programming view of the DWC_otg controller
230  */
231 int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
232 {
233 	int addr;
234 	int tx_addr_max;
235 	u32 np_tx_fifo_size;
236 
237 	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
238 				hsotg->params.g_np_tx_fifo_size);
239 
240 	/* Get Endpoint Info Control block size in DWORDs. */
241 	tx_addr_max = hsotg->hw_params.total_fifo_size;
242 
243 	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
244 	if (tx_addr_max <= addr)
245 		return 0;
246 
247 	return tx_addr_max - addr;
248 }
249 
250 /**
251  * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
252  *
253  * @hsotg: Programming view of the DWC_otg controller
254  *
255  */
256 static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
257 {
258 	u32 gintsts2;
259 	u32 gintmsk2;
260 
261 	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
262 	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
263 	gintsts2 &= gintmsk2;
264 
265 	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
266 		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
267 		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
268 		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
269 	}
270 }
271 
272 /**
273  * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
274  * TX FIFOs
275  *
276  * @hsotg: Programming view of the DWC_otg controller
277  */
278 int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
279 {
280 	int tx_fifo_count;
281 	int tx_fifo_depth;
282 
283 	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
284 
285 	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
286 
287 	if (!tx_fifo_count)
288 		return tx_fifo_depth;
289 	else
290 		return tx_fifo_depth / tx_fifo_count;
291 }
292 
293 /**
294  * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
295  * @hsotg: The device instance.
296  */
297 static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
298 {
299 	unsigned int ep;
300 	unsigned int addr;
301 	int timeout;
302 
303 	u32 val;
304 	u32 *txfsz = hsotg->params.g_tx_fifo_size;
305 
306 	/* Reset fifo map if not correctly cleared during previous session */
307 	WARN_ON(hsotg->fifo_map);
308 	hsotg->fifo_map = 0;
309 
310 	/* set RX/NPTX FIFO sizes */
311 	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
312 	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
313 		    FIFOSIZE_STARTADDR_SHIFT) |
314 		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
315 		    GNPTXFSIZ);
316 
317 	/*
318 	 * arange all the rest of the TX FIFOs, as some versions of this
319 	 * block have overlapping default addresses. This also ensures
320 	 * that if the settings have been changed, then they are set to
321 	 * known values.
322 	 */
323 
324 	/* start at the end of the GNPTXFSIZ, rounded up */
325 	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
326 
327 	/*
328 	 * Configure fifos sizes from provided configuration and assign
329 	 * them to endpoints dynamically according to maxpacket size value of
330 	 * given endpoint.
331 	 */
332 	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
333 		if (!txfsz[ep])
334 			continue;
335 		val = addr;
336 		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
337 		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
338 			  "insufficient fifo memory");
339 		addr += txfsz[ep];
340 
341 		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
342 		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
343 	}
344 
345 	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
346 		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
347 		    GDFIFOCFG);
348 	/*
349 	 * according to p428 of the design guide, we need to ensure that
350 	 * all fifos are flushed before continuing
351 	 */
352 
353 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
354 	       GRSTCTL_RXFFLSH, GRSTCTL);
355 
356 	/* wait until the fifos are both flushed */
357 	timeout = 100;
358 	while (1) {
359 		val = dwc2_readl(hsotg, GRSTCTL);
360 
361 		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
362 			break;
363 
364 		if (--timeout == 0) {
365 			dev_err(hsotg->dev,
366 				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
367 				__func__, val);
368 			break;
369 		}
370 
371 		udelay(1);
372 	}
373 
374 	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
375 }
376 
377 /**
378  * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
379  * @ep: USB endpoint to allocate request for.
380  * @flags: Allocation flags
381  *
382  * Allocate a new USB request structure appropriate for the specified endpoint
383  */
384 static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
385 						       gfp_t flags)
386 {
387 	struct dwc2_hsotg_req *req;
388 
389 	req = kzalloc(sizeof(*req), flags);
390 	if (!req)
391 		return NULL;
392 
393 	INIT_LIST_HEAD(&req->queue);
394 
395 	return &req->req;
396 }
397 
398 /**
399  * is_ep_periodic - return true if the endpoint is in periodic mode.
400  * @hs_ep: The endpoint to query.
401  *
402  * Returns true if the endpoint is in periodic mode, meaning it is being
403  * used for an Interrupt or ISO transfer.
404  */
405 static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
406 {
407 	return hs_ep->periodic;
408 }
409 
410 /**
411  * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
412  * @hsotg: The device state.
413  * @hs_ep: The endpoint for the request
414  * @hs_req: The request being processed.
415  *
416  * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
417  * of a request to ensure the buffer is ready for access by the caller.
418  */
419 static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
420 				 struct dwc2_hsotg_ep *hs_ep,
421 				struct dwc2_hsotg_req *hs_req)
422 {
423 	struct usb_request *req = &hs_req->req;
424 
425 	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
426 }
427 
428 /*
429  * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
430  * for Control endpoint
431  * @hsotg: The device state.
432  *
433  * This function will allocate 4 descriptor chains for EP 0: 2 for
434  * Setup stage, per one for IN and OUT data/status transactions.
435  */
436 static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
437 {
438 	hsotg->setup_desc[0] =
439 		dmam_alloc_coherent(hsotg->dev,
440 				    sizeof(struct dwc2_dma_desc),
441 				    &hsotg->setup_desc_dma[0],
442 				    GFP_KERNEL);
443 	if (!hsotg->setup_desc[0])
444 		goto fail;
445 
446 	hsotg->setup_desc[1] =
447 		dmam_alloc_coherent(hsotg->dev,
448 				    sizeof(struct dwc2_dma_desc),
449 				    &hsotg->setup_desc_dma[1],
450 				    GFP_KERNEL);
451 	if (!hsotg->setup_desc[1])
452 		goto fail;
453 
454 	hsotg->ctrl_in_desc =
455 		dmam_alloc_coherent(hsotg->dev,
456 				    sizeof(struct dwc2_dma_desc),
457 				    &hsotg->ctrl_in_desc_dma,
458 				    GFP_KERNEL);
459 	if (!hsotg->ctrl_in_desc)
460 		goto fail;
461 
462 	hsotg->ctrl_out_desc =
463 		dmam_alloc_coherent(hsotg->dev,
464 				    sizeof(struct dwc2_dma_desc),
465 				    &hsotg->ctrl_out_desc_dma,
466 				    GFP_KERNEL);
467 	if (!hsotg->ctrl_out_desc)
468 		goto fail;
469 
470 	return 0;
471 
472 fail:
473 	return -ENOMEM;
474 }
475 
476 /**
477  * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
478  * @hsotg: The controller state.
479  * @hs_ep: The endpoint we're going to write for.
480  * @hs_req: The request to write data for.
481  *
482  * This is called when the TxFIFO has some space in it to hold a new
483  * transmission and we have something to give it. The actual setup of
484  * the data size is done elsewhere, so all we have to do is to actually
485  * write the data.
486  *
487  * The return value is zero if there is more space (or nothing was done)
488  * otherwise -ENOSPC is returned if the FIFO space was used up.
489  *
490  * This routine is only needed for PIO
491  */
492 static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
493 				 struct dwc2_hsotg_ep *hs_ep,
494 				struct dwc2_hsotg_req *hs_req)
495 {
496 	bool periodic = is_ep_periodic(hs_ep);
497 	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
498 	int buf_pos = hs_req->req.actual;
499 	int to_write = hs_ep->size_loaded;
500 	void *data;
501 	int can_write;
502 	int pkt_round;
503 	int max_transfer;
504 
505 	to_write -= (buf_pos - hs_ep->last_load);
506 
507 	/* if there's nothing to write, get out early */
508 	if (to_write == 0)
509 		return 0;
510 
511 	if (periodic && !hsotg->dedicated_fifos) {
512 		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
513 		int size_left;
514 		int size_done;
515 
516 		/*
517 		 * work out how much data was loaded so we can calculate
518 		 * how much data is left in the fifo.
519 		 */
520 
521 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
522 
523 		/*
524 		 * if shared fifo, we cannot write anything until the
525 		 * previous data has been completely sent.
526 		 */
527 		if (hs_ep->fifo_load != 0) {
528 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
529 			return -ENOSPC;
530 		}
531 
532 		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
533 			__func__, size_left,
534 			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
535 
536 		/* how much of the data has moved */
537 		size_done = hs_ep->size_loaded - size_left;
538 
539 		/* how much data is left in the fifo */
540 		can_write = hs_ep->fifo_load - size_done;
541 		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
542 			__func__, can_write);
543 
544 		can_write = hs_ep->fifo_size - can_write;
545 		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
546 			__func__, can_write);
547 
548 		if (can_write <= 0) {
549 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
550 			return -ENOSPC;
551 		}
552 	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
553 		can_write = dwc2_readl(hsotg,
554 				       DTXFSTS(hs_ep->fifo_index));
555 
556 		can_write &= 0xffff;
557 		can_write *= 4;
558 	} else {
559 		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
560 			dev_dbg(hsotg->dev,
561 				"%s: no queue slots available (0x%08x)\n",
562 				__func__, gnptxsts);
563 
564 			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
565 			return -ENOSPC;
566 		}
567 
568 		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
569 		can_write *= 4;	/* fifo size is in 32bit quantities. */
570 	}
571 
572 	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
573 
574 	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
575 		__func__, gnptxsts, can_write, to_write, max_transfer);
576 
577 	/*
578 	 * limit to 512 bytes of data, it seems at least on the non-periodic
579 	 * FIFO, requests of >512 cause the endpoint to get stuck with a
580 	 * fragment of the end of the transfer in it.
581 	 */
582 	if (can_write > 512 && !periodic)
583 		can_write = 512;
584 
585 	/*
586 	 * limit the write to one max-packet size worth of data, but allow
587 	 * the transfer to return that it did not run out of fifo space
588 	 * doing it.
589 	 */
590 	if (to_write > max_transfer) {
591 		to_write = max_transfer;
592 
593 		/* it's needed only when we do not use dedicated fifos */
594 		if (!hsotg->dedicated_fifos)
595 			dwc2_hsotg_en_gsint(hsotg,
596 					    periodic ? GINTSTS_PTXFEMP :
597 					   GINTSTS_NPTXFEMP);
598 	}
599 
600 	/* see if we can write data */
601 
602 	if (to_write > can_write) {
603 		to_write = can_write;
604 		pkt_round = to_write % max_transfer;
605 
606 		/*
607 		 * Round the write down to an
608 		 * exact number of packets.
609 		 *
610 		 * Note, we do not currently check to see if we can ever
611 		 * write a full packet or not to the FIFO.
612 		 */
613 
614 		if (pkt_round)
615 			to_write -= pkt_round;
616 
617 		/*
618 		 * enable correct FIFO interrupt to alert us when there
619 		 * is more room left.
620 		 */
621 
622 		/* it's needed only when we do not use dedicated fifos */
623 		if (!hsotg->dedicated_fifos)
624 			dwc2_hsotg_en_gsint(hsotg,
625 					    periodic ? GINTSTS_PTXFEMP :
626 					   GINTSTS_NPTXFEMP);
627 	}
628 
629 	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
630 		to_write, hs_req->req.length, can_write, buf_pos);
631 
632 	if (to_write <= 0)
633 		return -ENOSPC;
634 
635 	hs_req->req.actual = buf_pos + to_write;
636 	hs_ep->total_data += to_write;
637 
638 	if (periodic)
639 		hs_ep->fifo_load += to_write;
640 
641 	to_write = DIV_ROUND_UP(to_write, 4);
642 	data = hs_req->req.buf + buf_pos;
643 
644 	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
645 
646 	return (to_write >= can_write) ? -ENOSPC : 0;
647 }
648 
649 /**
650  * get_ep_limit - get the maximum data legnth for this endpoint
651  * @hs_ep: The endpoint
652  *
653  * Return the maximum data that can be queued in one go on a given endpoint
654  * so that transfers that are too long can be split.
655  */
656 static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
657 {
658 	int index = hs_ep->index;
659 	unsigned int maxsize;
660 	unsigned int maxpkt;
661 
662 	if (index != 0) {
663 		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
664 		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
665 	} else {
666 		maxsize = 64 + 64;
667 		if (hs_ep->dir_in)
668 			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
669 		else
670 			maxpkt = 2;
671 	}
672 
673 	/* we made the constant loading easier above by using +1 */
674 	maxpkt--;
675 	maxsize--;
676 
677 	/*
678 	 * constrain by packet count if maxpkts*pktsize is greater
679 	 * than the length register size.
680 	 */
681 
682 	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
683 		maxsize = maxpkt * hs_ep->ep.maxpacket;
684 
685 	return maxsize;
686 }
687 
688 /**
689  * dwc2_hsotg_read_frameno - read current frame number
690  * @hsotg: The device instance
691  *
692  * Return the current frame number
693  */
694 static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
695 {
696 	u32 dsts;
697 
698 	dsts = dwc2_readl(hsotg, DSTS);
699 	dsts &= DSTS_SOFFN_MASK;
700 	dsts >>= DSTS_SOFFN_SHIFT;
701 
702 	return dsts;
703 }
704 
705 /**
706  * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
707  * DMA descriptor chain prepared for specific endpoint
708  * @hs_ep: The endpoint
709  *
710  * Return the maximum data that can be queued in one go on a given endpoint
711  * depending on its descriptor chain capacity so that transfers that
712  * are too long can be split.
713  */
714 static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
715 {
716 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
717 	int is_isoc = hs_ep->isochronous;
718 	unsigned int maxsize;
719 	u32 mps = hs_ep->ep.maxpacket;
720 	int dir_in = hs_ep->dir_in;
721 
722 	if (is_isoc)
723 		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
724 					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
725 					   MAX_DMA_DESC_NUM_HS_ISOC;
726 	else
727 		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
728 
729 	/* Interrupt OUT EP with mps not multiple of 4 */
730 	if (hs_ep->index)
731 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
732 			maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
733 
734 	return maxsize;
735 }
736 
737 /*
738  * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
739  * @hs_ep: The endpoint
740  * @mask: RX/TX bytes mask to be defined
741  *
742  * Returns maximum data payload for one descriptor after analyzing endpoint
743  * characteristics.
744  * DMA descriptor transfer bytes limit depends on EP type:
745  * Control out - MPS,
746  * Isochronous - descriptor rx/tx bytes bitfield limit,
747  * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
748  * have concatenations from various descriptors within one packet.
749  * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
750  * to a single descriptor.
751  *
752  * Selects corresponding mask for RX/TX bytes as well.
753  */
754 static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
755 {
756 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
757 	u32 mps = hs_ep->ep.maxpacket;
758 	int dir_in = hs_ep->dir_in;
759 	u32 desc_size = 0;
760 
761 	if (!hs_ep->index && !dir_in) {
762 		desc_size = mps;
763 		*mask = DEV_DMA_NBYTES_MASK;
764 	} else if (hs_ep->isochronous) {
765 		if (dir_in) {
766 			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
767 			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
768 		} else {
769 			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
770 			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
771 		}
772 	} else {
773 		desc_size = DEV_DMA_NBYTES_LIMIT;
774 		*mask = DEV_DMA_NBYTES_MASK;
775 
776 		/* Round down desc_size to be mps multiple */
777 		desc_size -= desc_size % mps;
778 	}
779 
780 	/* Interrupt OUT EP with mps not multiple of 4 */
781 	if (hs_ep->index)
782 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
783 			desc_size = mps;
784 			*mask = DEV_DMA_NBYTES_MASK;
785 		}
786 
787 	return desc_size;
788 }
789 
790 static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
791 						 struct dwc2_dma_desc **desc,
792 						 dma_addr_t dma_buff,
793 						 unsigned int len,
794 						 bool true_last)
795 {
796 	int dir_in = hs_ep->dir_in;
797 	u32 mps = hs_ep->ep.maxpacket;
798 	u32 maxsize = 0;
799 	u32 offset = 0;
800 	u32 mask = 0;
801 	int i;
802 
803 	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
804 
805 	hs_ep->desc_count = (len / maxsize) +
806 				((len % maxsize) ? 1 : 0);
807 	if (len == 0)
808 		hs_ep->desc_count = 1;
809 
810 	for (i = 0; i < hs_ep->desc_count; ++i) {
811 		(*desc)->status = 0;
812 		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
813 				 << DEV_DMA_BUFF_STS_SHIFT);
814 
815 		if (len > maxsize) {
816 			if (!hs_ep->index && !dir_in)
817 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
818 
819 			(*desc)->status |=
820 				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
821 			(*desc)->buf = dma_buff + offset;
822 
823 			len -= maxsize;
824 			offset += maxsize;
825 		} else {
826 			if (true_last)
827 				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
828 
829 			if (dir_in)
830 				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
831 					((hs_ep->send_zlp && true_last) ?
832 					DEV_DMA_SHORT : 0);
833 
834 			(*desc)->status |=
835 				len << DEV_DMA_NBYTES_SHIFT & mask;
836 			(*desc)->buf = dma_buff + offset;
837 		}
838 
839 		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
840 		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
841 				 << DEV_DMA_BUFF_STS_SHIFT);
842 		(*desc)++;
843 	}
844 }
845 
846 /*
847  * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
848  * @hs_ep: The endpoint
849  * @ureq: Request to transfer
850  * @offset: offset in bytes
851  * @len: Length of the transfer
852  *
853  * This function will iterate over descriptor chain and fill its entries
854  * with corresponding information based on transfer data.
855  */
856 static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
857 						 dma_addr_t dma_buff,
858 						 unsigned int len)
859 {
860 	struct usb_request *ureq = NULL;
861 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
862 	struct scatterlist *sg;
863 	int i;
864 	u8 desc_count = 0;
865 
866 	if (hs_ep->req)
867 		ureq = &hs_ep->req->req;
868 
869 	/* non-DMA sg buffer */
870 	if (!ureq || !ureq->num_sgs) {
871 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
872 			dma_buff, len, true);
873 		return;
874 	}
875 
876 	/* DMA sg buffer */
877 	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
878 		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
879 			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
880 			sg_is_last(sg));
881 		desc_count += hs_ep->desc_count;
882 	}
883 
884 	hs_ep->desc_count = desc_count;
885 }
886 
887 /*
888  * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
889  * @hs_ep: The isochronous endpoint.
890  * @dma_buff: usb requests dma buffer.
891  * @len: usb request transfer length.
892  *
893  * Fills next free descriptor with the data of the arrived usb request,
894  * frame info, sets Last and IOC bits increments next_desc. If filled
895  * descriptor is not the first one, removes L bit from the previous descriptor
896  * status.
897  */
898 static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
899 				      dma_addr_t dma_buff, unsigned int len)
900 {
901 	struct dwc2_dma_desc *desc;
902 	struct dwc2_hsotg *hsotg = hs_ep->parent;
903 	u32 index;
904 	u32 mask = 0;
905 	u8 pid = 0;
906 
907 	dwc2_gadget_get_desc_params(hs_ep, &mask);
908 
909 	index = hs_ep->next_desc;
910 	desc = &hs_ep->desc_list[index];
911 
912 	/* Check if descriptor chain full */
913 	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
914 	    DEV_DMA_BUFF_STS_HREADY) {
915 		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
916 		return 1;
917 	}
918 
919 	/* Clear L bit of previous desc if more than one entries in the chain */
920 	if (hs_ep->next_desc)
921 		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
922 
923 	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
924 		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
925 
926 	desc->status = 0;
927 	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
928 
929 	desc->buf = dma_buff;
930 	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
931 			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
932 
933 	if (hs_ep->dir_in) {
934 		if (len)
935 			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
936 		else
937 			pid = 1;
938 		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
939 				 DEV_DMA_ISOC_PID_MASK) |
940 				((len % hs_ep->ep.maxpacket) ?
941 				 DEV_DMA_SHORT : 0) |
942 				((hs_ep->target_frame <<
943 				  DEV_DMA_ISOC_FRNUM_SHIFT) &
944 				 DEV_DMA_ISOC_FRNUM_MASK);
945 	}
946 
947 	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
948 	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
949 
950 	/* Increment frame number by interval for IN */
951 	if (hs_ep->dir_in)
952 		dwc2_gadget_incr_frame_num(hs_ep);
953 
954 	/* Update index of last configured entry in the chain */
955 	hs_ep->next_desc++;
956 	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
957 		hs_ep->next_desc = 0;
958 
959 	return 0;
960 }
961 
962 /*
963  * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
964  * @hs_ep: The isochronous endpoint.
965  *
966  * Prepare descriptor chain for isochronous endpoints. Afterwards
967  * write DMA address to HW and enable the endpoint.
968  */
969 static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
970 {
971 	struct dwc2_hsotg *hsotg = hs_ep->parent;
972 	struct dwc2_hsotg_req *hs_req, *treq;
973 	int index = hs_ep->index;
974 	int ret;
975 	int i;
976 	u32 dma_reg;
977 	u32 depctl;
978 	u32 ctrl;
979 	struct dwc2_dma_desc *desc;
980 
981 	if (list_empty(&hs_ep->queue)) {
982 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
983 		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
984 		return;
985 	}
986 
987 	/* Initialize descriptor chain by Host Busy status */
988 	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
989 		desc = &hs_ep->desc_list[i];
990 		desc->status = 0;
991 		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
992 				    << DEV_DMA_BUFF_STS_SHIFT);
993 	}
994 
995 	hs_ep->next_desc = 0;
996 	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
997 		dma_addr_t dma_addr = hs_req->req.dma;
998 
999 		if (hs_req->req.num_sgs) {
1000 			WARN_ON(hs_req->req.num_sgs > 1);
1001 			dma_addr = sg_dma_address(hs_req->req.sg);
1002 		}
1003 		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1004 						 hs_req->req.length);
1005 		if (ret)
1006 			break;
1007 	}
1008 
1009 	hs_ep->compl_desc = 0;
1010 	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1011 	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1012 
1013 	/* write descriptor chain address to control register */
1014 	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1015 
1016 	ctrl = dwc2_readl(hsotg, depctl);
1017 	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1018 	dwc2_writel(hsotg, ctrl, depctl);
1019 }
1020 
1021 /**
1022  * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1023  * @hsotg: The controller state.
1024  * @hs_ep: The endpoint to process a request for
1025  * @hs_req: The request to start.
1026  * @continuing: True if we are doing more for the current request.
1027  *
1028  * Start the given request running by setting the endpoint registers
1029  * appropriately, and writing any data to the FIFOs.
1030  */
1031 static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1032 				 struct dwc2_hsotg_ep *hs_ep,
1033 				struct dwc2_hsotg_req *hs_req,
1034 				bool continuing)
1035 {
1036 	struct usb_request *ureq = &hs_req->req;
1037 	int index = hs_ep->index;
1038 	int dir_in = hs_ep->dir_in;
1039 	u32 epctrl_reg;
1040 	u32 epsize_reg;
1041 	u32 epsize;
1042 	u32 ctrl;
1043 	unsigned int length;
1044 	unsigned int packets;
1045 	unsigned int maxreq;
1046 	unsigned int dma_reg;
1047 
1048 	if (index != 0) {
1049 		if (hs_ep->req && !continuing) {
1050 			dev_err(hsotg->dev, "%s: active request\n", __func__);
1051 			WARN_ON(1);
1052 			return;
1053 		} else if (hs_ep->req != hs_req && continuing) {
1054 			dev_err(hsotg->dev,
1055 				"%s: continue different req\n", __func__);
1056 			WARN_ON(1);
1057 			return;
1058 		}
1059 	}
1060 
1061 	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1062 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1063 	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1064 
1065 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1066 		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1067 		hs_ep->dir_in ? "in" : "out");
1068 
1069 	/* If endpoint is stalled, we will restart request later */
1070 	ctrl = dwc2_readl(hsotg, epctrl_reg);
1071 
1072 	if (index && ctrl & DXEPCTL_STALL) {
1073 		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1074 		return;
1075 	}
1076 
1077 	length = ureq->length - ureq->actual;
1078 	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1079 		ureq->length, ureq->actual);
1080 
1081 	if (!using_desc_dma(hsotg))
1082 		maxreq = get_ep_limit(hs_ep);
1083 	else
1084 		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1085 
1086 	if (length > maxreq) {
1087 		int round = maxreq % hs_ep->ep.maxpacket;
1088 
1089 		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1090 			__func__, length, maxreq, round);
1091 
1092 		/* round down to multiple of packets */
1093 		if (round)
1094 			maxreq -= round;
1095 
1096 		length = maxreq;
1097 	}
1098 
1099 	if (length)
1100 		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1101 	else
1102 		packets = 1;	/* send one packet if length is zero. */
1103 
1104 	if (dir_in && index != 0)
1105 		if (hs_ep->isochronous)
1106 			epsize = DXEPTSIZ_MC(packets);
1107 		else
1108 			epsize = DXEPTSIZ_MC(1);
1109 	else
1110 		epsize = 0;
1111 
1112 	/*
1113 	 * zero length packet should be programmed on its own and should not
1114 	 * be counted in DIEPTSIZ.PktCnt with other packets.
1115 	 */
1116 	if (dir_in && ureq->zero && !continuing) {
1117 		/* Test if zlp is actually required. */
1118 		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1119 		    !(ureq->length % hs_ep->ep.maxpacket))
1120 			hs_ep->send_zlp = 1;
1121 	}
1122 
1123 	epsize |= DXEPTSIZ_PKTCNT(packets);
1124 	epsize |= DXEPTSIZ_XFERSIZE(length);
1125 
1126 	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1127 		__func__, packets, length, ureq->length, epsize, epsize_reg);
1128 
1129 	/* store the request as the current one we're doing */
1130 	hs_ep->req = hs_req;
1131 
1132 	if (using_desc_dma(hsotg)) {
1133 		u32 offset = 0;
1134 		u32 mps = hs_ep->ep.maxpacket;
1135 
1136 		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1137 		if (!dir_in) {
1138 			if (!index)
1139 				length = mps;
1140 			else if (length % mps)
1141 				length += (mps - (length % mps));
1142 		}
1143 
1144 		if (continuing)
1145 			offset = ureq->actual;
1146 
1147 		/* Fill DDMA chain entries */
1148 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1149 						     length);
1150 
1151 		/* write descriptor chain address to control register */
1152 		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1153 
1154 		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1155 			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1156 	} else {
1157 		/* write size / packets */
1158 		dwc2_writel(hsotg, epsize, epsize_reg);
1159 
1160 		if (using_dma(hsotg) && !continuing && (length != 0)) {
1161 			/*
1162 			 * write DMA address to control register, buffer
1163 			 * already synced by dwc2_hsotg_ep_queue().
1164 			 */
1165 
1166 			dwc2_writel(hsotg, ureq->dma, dma_reg);
1167 
1168 			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1169 				__func__, &ureq->dma, dma_reg);
1170 		}
1171 	}
1172 
1173 	if (hs_ep->isochronous && hs_ep->interval == 1) {
1174 		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1175 		dwc2_gadget_incr_frame_num(hs_ep);
1176 
1177 		if (hs_ep->target_frame & 0x1)
1178 			ctrl |= DXEPCTL_SETODDFR;
1179 		else
1180 			ctrl |= DXEPCTL_SETEVENFR;
1181 	}
1182 
1183 	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1184 
1185 	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1186 
1187 	/* For Setup request do not clear NAK */
1188 	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1189 		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1190 
1191 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1192 	dwc2_writel(hsotg, ctrl, epctrl_reg);
1193 
1194 	/*
1195 	 * set these, it seems that DMA support increments past the end
1196 	 * of the packet buffer so we need to calculate the length from
1197 	 * this information.
1198 	 */
1199 	hs_ep->size_loaded = length;
1200 	hs_ep->last_load = ureq->actual;
1201 
1202 	if (dir_in && !using_dma(hsotg)) {
1203 		/* set these anyway, we may need them for non-periodic in */
1204 		hs_ep->fifo_load = 0;
1205 
1206 		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1207 	}
1208 
1209 	/*
1210 	 * Note, trying to clear the NAK here causes problems with transmit
1211 	 * on the S3C6400 ending up with the TXFIFO becoming full.
1212 	 */
1213 
1214 	/* check ep is enabled */
1215 	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1216 		dev_dbg(hsotg->dev,
1217 			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1218 			 index, dwc2_readl(hsotg, epctrl_reg));
1219 
1220 	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1221 		__func__, dwc2_readl(hsotg, epctrl_reg));
1222 
1223 	/* enable ep interrupts */
1224 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1225 }
1226 
1227 /**
1228  * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1229  * @hsotg: The device state.
1230  * @hs_ep: The endpoint the request is on.
1231  * @req: The request being processed.
1232  *
1233  * We've been asked to queue a request, so ensure that the memory buffer
1234  * is correctly setup for DMA. If we've been passed an extant DMA address
1235  * then ensure the buffer has been synced to memory. If our buffer has no
1236  * DMA memory, then we map the memory and mark our request to allow us to
1237  * cleanup on completion.
1238  */
1239 static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1240 			      struct dwc2_hsotg_ep *hs_ep,
1241 			     struct usb_request *req)
1242 {
1243 	int ret;
1244 
1245 	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1246 	if (ret)
1247 		goto dma_error;
1248 
1249 	return 0;
1250 
1251 dma_error:
1252 	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1253 		__func__, req->buf, req->length);
1254 
1255 	return -EIO;
1256 }
1257 
1258 static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1259 						 struct dwc2_hsotg_ep *hs_ep,
1260 						 struct dwc2_hsotg_req *hs_req)
1261 {
1262 	void *req_buf = hs_req->req.buf;
1263 
1264 	/* If dma is not being used or buffer is aligned */
1265 	if (!using_dma(hsotg) || !((long)req_buf & 3))
1266 		return 0;
1267 
1268 	WARN_ON(hs_req->saved_req_buf);
1269 
1270 	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1271 		hs_ep->ep.name, req_buf, hs_req->req.length);
1272 
1273 	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1274 	if (!hs_req->req.buf) {
1275 		hs_req->req.buf = req_buf;
1276 		dev_err(hsotg->dev,
1277 			"%s: unable to allocate memory for bounce buffer\n",
1278 			__func__);
1279 		return -ENOMEM;
1280 	}
1281 
1282 	/* Save actual buffer */
1283 	hs_req->saved_req_buf = req_buf;
1284 
1285 	if (hs_ep->dir_in)
1286 		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1287 	return 0;
1288 }
1289 
1290 static void
1291 dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1292 					 struct dwc2_hsotg_ep *hs_ep,
1293 					 struct dwc2_hsotg_req *hs_req)
1294 {
1295 	/* If dma is not being used or buffer was aligned */
1296 	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1297 		return;
1298 
1299 	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1300 		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1301 
1302 	/* Copy data from bounce buffer on successful out transfer */
1303 	if (!hs_ep->dir_in && !hs_req->req.status)
1304 		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1305 		       hs_req->req.actual);
1306 
1307 	/* Free bounce buffer */
1308 	kfree(hs_req->req.buf);
1309 
1310 	hs_req->req.buf = hs_req->saved_req_buf;
1311 	hs_req->saved_req_buf = NULL;
1312 }
1313 
1314 /**
1315  * dwc2_gadget_target_frame_elapsed - Checks target frame
1316  * @hs_ep: The driver endpoint to check
1317  *
1318  * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1319  * corresponding transfer.
1320  */
1321 static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1322 {
1323 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1324 	u32 target_frame = hs_ep->target_frame;
1325 	u32 current_frame = hsotg->frame_number;
1326 	bool frame_overrun = hs_ep->frame_overrun;
1327 
1328 	if (!frame_overrun && current_frame >= target_frame)
1329 		return true;
1330 
1331 	if (frame_overrun && current_frame >= target_frame &&
1332 	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1333 		return true;
1334 
1335 	return false;
1336 }
1337 
1338 /*
1339  * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1340  * @hsotg: The driver state
1341  * @hs_ep: the ep descriptor chain is for
1342  *
1343  * Called to update EP0 structure's pointers depend on stage of
1344  * control transfer.
1345  */
1346 static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1347 					  struct dwc2_hsotg_ep *hs_ep)
1348 {
1349 	switch (hsotg->ep0_state) {
1350 	case DWC2_EP0_SETUP:
1351 	case DWC2_EP0_STATUS_OUT:
1352 		hs_ep->desc_list = hsotg->setup_desc[0];
1353 		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1354 		break;
1355 	case DWC2_EP0_DATA_IN:
1356 	case DWC2_EP0_STATUS_IN:
1357 		hs_ep->desc_list = hsotg->ctrl_in_desc;
1358 		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1359 		break;
1360 	case DWC2_EP0_DATA_OUT:
1361 		hs_ep->desc_list = hsotg->ctrl_out_desc;
1362 		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1363 		break;
1364 	default:
1365 		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1366 			hsotg->ep0_state);
1367 		return -EINVAL;
1368 	}
1369 
1370 	return 0;
1371 }
1372 
1373 static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1374 			       gfp_t gfp_flags)
1375 {
1376 	struct dwc2_hsotg_req *hs_req = our_req(req);
1377 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1378 	struct dwc2_hsotg *hs = hs_ep->parent;
1379 	bool first;
1380 	int ret;
1381 	u32 maxsize = 0;
1382 	u32 mask = 0;
1383 
1384 
1385 	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1386 		ep->name, req, req->length, req->buf, req->no_interrupt,
1387 		req->zero, req->short_not_ok);
1388 
1389 	/* Prevent new request submission when controller is suspended */
1390 	if (hs->lx_state != DWC2_L0) {
1391 		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1392 			__func__);
1393 		return -EAGAIN;
1394 	}
1395 
1396 	/* initialise status of the request */
1397 	INIT_LIST_HEAD(&hs_req->queue);
1398 	req->actual = 0;
1399 	req->status = -EINPROGRESS;
1400 
1401 	/* Don't queue ISOC request if length greater than mps*mc */
1402 	if (hs_ep->isochronous &&
1403 	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1404 		dev_err(hs->dev, "req length > maxpacket*mc\n");
1405 		return -EINVAL;
1406 	}
1407 
1408 	/* In DDMA mode for ISOC's don't queue request if length greater
1409 	 * than descriptor limits.
1410 	 */
1411 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1412 		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1413 		if (hs_ep->dir_in && req->length > maxsize) {
1414 			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1415 				req->length, maxsize);
1416 			return -EINVAL;
1417 		}
1418 
1419 		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1420 			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1421 				req->length, hs_ep->ep.maxpacket);
1422 			return -EINVAL;
1423 		}
1424 	}
1425 
1426 	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1427 	if (ret)
1428 		return ret;
1429 
1430 	/* if we're using DMA, sync the buffers as necessary */
1431 	if (using_dma(hs)) {
1432 		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1433 		if (ret)
1434 			return ret;
1435 	}
1436 	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1437 	if (using_desc_dma(hs) && !hs_ep->index) {
1438 		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1439 		if (ret)
1440 			return ret;
1441 	}
1442 
1443 	first = list_empty(&hs_ep->queue);
1444 	list_add_tail(&hs_req->queue, &hs_ep->queue);
1445 
1446 	/*
1447 	 * Handle DDMA isochronous transfers separately - just add new entry
1448 	 * to the descriptor chain.
1449 	 * Transfer will be started once SW gets either one of NAK or
1450 	 * OutTknEpDis interrupts.
1451 	 */
1452 	if (using_desc_dma(hs) && hs_ep->isochronous) {
1453 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1454 			dma_addr_t dma_addr = hs_req->req.dma;
1455 
1456 			if (hs_req->req.num_sgs) {
1457 				WARN_ON(hs_req->req.num_sgs > 1);
1458 				dma_addr = sg_dma_address(hs_req->req.sg);
1459 			}
1460 			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1461 						   hs_req->req.length);
1462 		}
1463 		return 0;
1464 	}
1465 
1466 	/* Change EP direction if status phase request is after data out */
1467 	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1468 	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1469 		hs_ep->dir_in = 1;
1470 
1471 	if (first) {
1472 		if (!hs_ep->isochronous) {
1473 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1474 			return 0;
1475 		}
1476 
1477 		/* Update current frame number value. */
1478 		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1479 		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1480 			dwc2_gadget_incr_frame_num(hs_ep);
1481 			/* Update current frame number value once more as it
1482 			 * changes here.
1483 			 */
1484 			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1485 		}
1486 
1487 		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1488 			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1489 	}
1490 	return 0;
1491 }
1492 
1493 static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1494 				    gfp_t gfp_flags)
1495 {
1496 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1497 	struct dwc2_hsotg *hs = hs_ep->parent;
1498 	unsigned long flags = 0;
1499 	int ret = 0;
1500 
1501 	spin_lock_irqsave(&hs->lock, flags);
1502 	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1503 	spin_unlock_irqrestore(&hs->lock, flags);
1504 
1505 	return ret;
1506 }
1507 
1508 static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1509 				       struct usb_request *req)
1510 {
1511 	struct dwc2_hsotg_req *hs_req = our_req(req);
1512 
1513 	kfree(hs_req);
1514 }
1515 
1516 /**
1517  * dwc2_hsotg_complete_oursetup - setup completion callback
1518  * @ep: The endpoint the request was on.
1519  * @req: The request completed.
1520  *
1521  * Called on completion of any requests the driver itself
1522  * submitted that need cleaning up.
1523  */
1524 static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1525 					 struct usb_request *req)
1526 {
1527 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1528 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1529 
1530 	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1531 
1532 	dwc2_hsotg_ep_free_request(ep, req);
1533 }
1534 
1535 /**
1536  * ep_from_windex - convert control wIndex value to endpoint
1537  * @hsotg: The driver state.
1538  * @windex: The control request wIndex field (in host order).
1539  *
1540  * Convert the given wIndex into a pointer to an driver endpoint
1541  * structure, or return NULL if it is not a valid endpoint.
1542  */
1543 static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1544 					    u32 windex)
1545 {
1546 	struct dwc2_hsotg_ep *ep;
1547 	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1548 	int idx = windex & 0x7F;
1549 
1550 	if (windex >= 0x100)
1551 		return NULL;
1552 
1553 	if (idx > hsotg->num_of_eps)
1554 		return NULL;
1555 
1556 	ep = index_to_ep(hsotg, idx, dir);
1557 
1558 	if (idx && ep->dir_in != dir)
1559 		return NULL;
1560 
1561 	return ep;
1562 }
1563 
1564 /**
1565  * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1566  * @hsotg: The driver state.
1567  * @testmode: requested usb test mode
1568  * Enable usb Test Mode requested by the Host.
1569  */
1570 int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1571 {
1572 	int dctl = dwc2_readl(hsotg, DCTL);
1573 
1574 	dctl &= ~DCTL_TSTCTL_MASK;
1575 	switch (testmode) {
1576 	case USB_TEST_J:
1577 	case USB_TEST_K:
1578 	case USB_TEST_SE0_NAK:
1579 	case USB_TEST_PACKET:
1580 	case USB_TEST_FORCE_ENABLE:
1581 		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1582 		break;
1583 	default:
1584 		return -EINVAL;
1585 	}
1586 	dwc2_writel(hsotg, dctl, DCTL);
1587 	return 0;
1588 }
1589 
1590 /**
1591  * dwc2_hsotg_send_reply - send reply to control request
1592  * @hsotg: The device state
1593  * @ep: Endpoint 0
1594  * @buff: Buffer for request
1595  * @length: Length of reply.
1596  *
1597  * Create a request and queue it on the given endpoint. This is useful as
1598  * an internal method of sending replies to certain control requests, etc.
1599  */
1600 static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1601 				 struct dwc2_hsotg_ep *ep,
1602 				void *buff,
1603 				int length)
1604 {
1605 	struct usb_request *req;
1606 	int ret;
1607 
1608 	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1609 
1610 	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1611 	hsotg->ep0_reply = req;
1612 	if (!req) {
1613 		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1614 		return -ENOMEM;
1615 	}
1616 
1617 	req->buf = hsotg->ep0_buff;
1618 	req->length = length;
1619 	/*
1620 	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1621 	 * STATUS stage.
1622 	 */
1623 	req->zero = 0;
1624 	req->complete = dwc2_hsotg_complete_oursetup;
1625 
1626 	if (length)
1627 		memcpy(req->buf, buff, length);
1628 
1629 	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1630 	if (ret) {
1631 		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1632 		return ret;
1633 	}
1634 
1635 	return 0;
1636 }
1637 
1638 /**
1639  * dwc2_hsotg_process_req_status - process request GET_STATUS
1640  * @hsotg: The device state
1641  * @ctrl: USB control request
1642  */
1643 static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1644 					 struct usb_ctrlrequest *ctrl)
1645 {
1646 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1647 	struct dwc2_hsotg_ep *ep;
1648 	__le16 reply;
1649 	u16 status;
1650 	int ret;
1651 
1652 	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1653 
1654 	if (!ep0->dir_in) {
1655 		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1656 		return -EINVAL;
1657 	}
1658 
1659 	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1660 	case USB_RECIP_DEVICE:
1661 		status = hsotg->gadget.is_selfpowered <<
1662 			 USB_DEVICE_SELF_POWERED;
1663 		status |= hsotg->remote_wakeup_allowed <<
1664 			  USB_DEVICE_REMOTE_WAKEUP;
1665 		reply = cpu_to_le16(status);
1666 		break;
1667 
1668 	case USB_RECIP_INTERFACE:
1669 		/* currently, the data result should be zero */
1670 		reply = cpu_to_le16(0);
1671 		break;
1672 
1673 	case USB_RECIP_ENDPOINT:
1674 		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1675 		if (!ep)
1676 			return -ENOENT;
1677 
1678 		reply = cpu_to_le16(ep->halted ? 1 : 0);
1679 		break;
1680 
1681 	default:
1682 		return 0;
1683 	}
1684 
1685 	if (le16_to_cpu(ctrl->wLength) != 2)
1686 		return -EINVAL;
1687 
1688 	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1689 	if (ret) {
1690 		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1691 		return ret;
1692 	}
1693 
1694 	return 1;
1695 }
1696 
1697 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1698 
1699 /**
1700  * get_ep_head - return the first request on the endpoint
1701  * @hs_ep: The controller endpoint to get
1702  *
1703  * Get the first request on the endpoint.
1704  */
1705 static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1706 {
1707 	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1708 					queue);
1709 }
1710 
1711 /**
1712  * dwc2_gadget_start_next_request - Starts next request from ep queue
1713  * @hs_ep: Endpoint structure
1714  *
1715  * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1716  * in its handler. Hence we need to unmask it here to be able to do
1717  * resynchronization.
1718  */
1719 static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1720 {
1721 	u32 mask;
1722 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1723 	int dir_in = hs_ep->dir_in;
1724 	struct dwc2_hsotg_req *hs_req;
1725 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1726 
1727 	if (!list_empty(&hs_ep->queue)) {
1728 		hs_req = get_ep_head(hs_ep);
1729 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1730 		return;
1731 	}
1732 	if (!hs_ep->isochronous)
1733 		return;
1734 
1735 	if (dir_in) {
1736 		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1737 			__func__);
1738 	} else {
1739 		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1740 			__func__);
1741 		mask = dwc2_readl(hsotg, epmsk_reg);
1742 		mask |= DOEPMSK_OUTTKNEPDISMSK;
1743 		dwc2_writel(hsotg, mask, epmsk_reg);
1744 	}
1745 }
1746 
1747 /**
1748  * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1749  * @hsotg: The device state
1750  * @ctrl: USB control request
1751  */
1752 static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1753 					  struct usb_ctrlrequest *ctrl)
1754 {
1755 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1756 	struct dwc2_hsotg_req *hs_req;
1757 	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1758 	struct dwc2_hsotg_ep *ep;
1759 	int ret;
1760 	bool halted;
1761 	u32 recip;
1762 	u32 wValue;
1763 	u32 wIndex;
1764 
1765 	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1766 		__func__, set ? "SET" : "CLEAR");
1767 
1768 	wValue = le16_to_cpu(ctrl->wValue);
1769 	wIndex = le16_to_cpu(ctrl->wIndex);
1770 	recip = ctrl->bRequestType & USB_RECIP_MASK;
1771 
1772 	switch (recip) {
1773 	case USB_RECIP_DEVICE:
1774 		switch (wValue) {
1775 		case USB_DEVICE_REMOTE_WAKEUP:
1776 			if (set)
1777 				hsotg->remote_wakeup_allowed = 1;
1778 			else
1779 				hsotg->remote_wakeup_allowed = 0;
1780 			break;
1781 
1782 		case USB_DEVICE_TEST_MODE:
1783 			if ((wIndex & 0xff) != 0)
1784 				return -EINVAL;
1785 			if (!set)
1786 				return -EINVAL;
1787 
1788 			hsotg->test_mode = wIndex >> 8;
1789 			break;
1790 		default:
1791 			return -ENOENT;
1792 		}
1793 
1794 		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1795 		if (ret) {
1796 			dev_err(hsotg->dev,
1797 				"%s: failed to send reply\n", __func__);
1798 			return ret;
1799 		}
1800 		break;
1801 
1802 	case USB_RECIP_ENDPOINT:
1803 		ep = ep_from_windex(hsotg, wIndex);
1804 		if (!ep) {
1805 			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1806 				__func__, wIndex);
1807 			return -ENOENT;
1808 		}
1809 
1810 		switch (wValue) {
1811 		case USB_ENDPOINT_HALT:
1812 			halted = ep->halted;
1813 
1814 			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1815 
1816 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1817 			if (ret) {
1818 				dev_err(hsotg->dev,
1819 					"%s: failed to send reply\n", __func__);
1820 				return ret;
1821 			}
1822 
1823 			/*
1824 			 * we have to complete all requests for ep if it was
1825 			 * halted, and the halt was cleared by CLEAR_FEATURE
1826 			 */
1827 
1828 			if (!set && halted) {
1829 				/*
1830 				 * If we have request in progress,
1831 				 * then complete it
1832 				 */
1833 				if (ep->req) {
1834 					hs_req = ep->req;
1835 					ep->req = NULL;
1836 					list_del_init(&hs_req->queue);
1837 					if (hs_req->req.complete) {
1838 						spin_unlock(&hsotg->lock);
1839 						usb_gadget_giveback_request(
1840 							&ep->ep, &hs_req->req);
1841 						spin_lock(&hsotg->lock);
1842 					}
1843 				}
1844 
1845 				/* If we have pending request, then start it */
1846 				if (!ep->req)
1847 					dwc2_gadget_start_next_request(ep);
1848 			}
1849 
1850 			break;
1851 
1852 		default:
1853 			return -ENOENT;
1854 		}
1855 		break;
1856 	default:
1857 		return -ENOENT;
1858 	}
1859 	return 1;
1860 }
1861 
1862 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1863 
1864 /**
1865  * dwc2_hsotg_stall_ep0 - stall ep0
1866  * @hsotg: The device state
1867  *
1868  * Set stall for ep0 as response for setup request.
1869  */
1870 static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1871 {
1872 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1873 	u32 reg;
1874 	u32 ctrl;
1875 
1876 	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1877 	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1878 
1879 	/*
1880 	 * DxEPCTL_Stall will be cleared by EP once it has
1881 	 * taken effect, so no need to clear later.
1882 	 */
1883 
1884 	ctrl = dwc2_readl(hsotg, reg);
1885 	ctrl |= DXEPCTL_STALL;
1886 	ctrl |= DXEPCTL_CNAK;
1887 	dwc2_writel(hsotg, ctrl, reg);
1888 
1889 	dev_dbg(hsotg->dev,
1890 		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1891 		ctrl, reg, dwc2_readl(hsotg, reg));
1892 
1893 	 /*
1894 	  * complete won't be called, so we enqueue
1895 	  * setup request here
1896 	  */
1897 	 dwc2_hsotg_enqueue_setup(hsotg);
1898 }
1899 
1900 /**
1901  * dwc2_hsotg_process_control - process a control request
1902  * @hsotg: The device state
1903  * @ctrl: The control request received
1904  *
1905  * The controller has received the SETUP phase of a control request, and
1906  * needs to work out what to do next (and whether to pass it on to the
1907  * gadget driver).
1908  */
1909 static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1910 				       struct usb_ctrlrequest *ctrl)
1911 {
1912 	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1913 	int ret = 0;
1914 	u32 dcfg;
1915 
1916 	dev_dbg(hsotg->dev,
1917 		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1918 		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1919 		ctrl->wIndex, ctrl->wLength);
1920 
1921 	if (ctrl->wLength == 0) {
1922 		ep0->dir_in = 1;
1923 		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1924 	} else if (ctrl->bRequestType & USB_DIR_IN) {
1925 		ep0->dir_in = 1;
1926 		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1927 	} else {
1928 		ep0->dir_in = 0;
1929 		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1930 	}
1931 
1932 	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1933 		switch (ctrl->bRequest) {
1934 		case USB_REQ_SET_ADDRESS:
1935 			hsotg->connected = 1;
1936 			dcfg = dwc2_readl(hsotg, DCFG);
1937 			dcfg &= ~DCFG_DEVADDR_MASK;
1938 			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1939 				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1940 			dwc2_writel(hsotg, dcfg, DCFG);
1941 
1942 			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1943 
1944 			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1945 			return;
1946 
1947 		case USB_REQ_GET_STATUS:
1948 			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1949 			break;
1950 
1951 		case USB_REQ_CLEAR_FEATURE:
1952 		case USB_REQ_SET_FEATURE:
1953 			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1954 			break;
1955 		}
1956 	}
1957 
1958 	/* as a fallback, try delivering it to the driver to deal with */
1959 
1960 	if (ret == 0 && hsotg->driver) {
1961 		spin_unlock(&hsotg->lock);
1962 		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1963 		spin_lock(&hsotg->lock);
1964 		if (ret < 0)
1965 			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1966 	}
1967 
1968 	hsotg->delayed_status = false;
1969 	if (ret == USB_GADGET_DELAYED_STATUS)
1970 		hsotg->delayed_status = true;
1971 
1972 	/*
1973 	 * the request is either unhandlable, or is not formatted correctly
1974 	 * so respond with a STALL for the status stage to indicate failure.
1975 	 */
1976 
1977 	if (ret < 0)
1978 		dwc2_hsotg_stall_ep0(hsotg);
1979 }
1980 
1981 /**
1982  * dwc2_hsotg_complete_setup - completion of a setup transfer
1983  * @ep: The endpoint the request was on.
1984  * @req: The request completed.
1985  *
1986  * Called on completion of any requests the driver itself submitted for
1987  * EP0 setup packets
1988  */
1989 static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1990 				      struct usb_request *req)
1991 {
1992 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1993 	struct dwc2_hsotg *hsotg = hs_ep->parent;
1994 
1995 	if (req->status < 0) {
1996 		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1997 		return;
1998 	}
1999 
2000 	spin_lock(&hsotg->lock);
2001 	if (req->actual == 0)
2002 		dwc2_hsotg_enqueue_setup(hsotg);
2003 	else
2004 		dwc2_hsotg_process_control(hsotg, req->buf);
2005 	spin_unlock(&hsotg->lock);
2006 }
2007 
2008 /**
2009  * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2010  * @hsotg: The device state.
2011  *
2012  * Enqueue a request on EP0 if necessary to received any SETUP packets
2013  * received from the host.
2014  */
2015 static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2016 {
2017 	struct usb_request *req = hsotg->ctrl_req;
2018 	struct dwc2_hsotg_req *hs_req = our_req(req);
2019 	int ret;
2020 
2021 	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2022 
2023 	req->zero = 0;
2024 	req->length = 8;
2025 	req->buf = hsotg->ctrl_buff;
2026 	req->complete = dwc2_hsotg_complete_setup;
2027 
2028 	if (!list_empty(&hs_req->queue)) {
2029 		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2030 		return;
2031 	}
2032 
2033 	hsotg->eps_out[0]->dir_in = 0;
2034 	hsotg->eps_out[0]->send_zlp = 0;
2035 	hsotg->ep0_state = DWC2_EP0_SETUP;
2036 
2037 	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2038 	if (ret < 0) {
2039 		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2040 		/*
2041 		 * Don't think there's much we can do other than watch the
2042 		 * driver fail.
2043 		 */
2044 	}
2045 }
2046 
2047 static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2048 				   struct dwc2_hsotg_ep *hs_ep)
2049 {
2050 	u32 ctrl;
2051 	u8 index = hs_ep->index;
2052 	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2053 	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2054 
2055 	if (hs_ep->dir_in)
2056 		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2057 			index);
2058 	else
2059 		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2060 			index);
2061 	if (using_desc_dma(hsotg)) {
2062 		/* Not specific buffer needed for ep0 ZLP */
2063 		dma_addr_t dma = hs_ep->desc_list_dma;
2064 
2065 		if (!index)
2066 			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
2067 
2068 		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2069 	} else {
2070 		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2071 			    DXEPTSIZ_XFERSIZE(0),
2072 			    epsiz_reg);
2073 	}
2074 
2075 	ctrl = dwc2_readl(hsotg, epctl_reg);
2076 	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2077 	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2078 	ctrl |= DXEPCTL_USBACTEP;
2079 	dwc2_writel(hsotg, ctrl, epctl_reg);
2080 }
2081 
2082 /**
2083  * dwc2_hsotg_complete_request - complete a request given to us
2084  * @hsotg: The device state.
2085  * @hs_ep: The endpoint the request was on.
2086  * @hs_req: The request to complete.
2087  * @result: The result code (0 => Ok, otherwise errno)
2088  *
2089  * The given request has finished, so call the necessary completion
2090  * if it has one and then look to see if we can start a new request
2091  * on the endpoint.
2092  *
2093  * Note, expects the ep to already be locked as appropriate.
2094  */
2095 static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2096 					struct dwc2_hsotg_ep *hs_ep,
2097 				       struct dwc2_hsotg_req *hs_req,
2098 				       int result)
2099 {
2100 	if (!hs_req) {
2101 		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2102 		return;
2103 	}
2104 
2105 	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2106 		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2107 
2108 	/*
2109 	 * only replace the status if we've not already set an error
2110 	 * from a previous transaction
2111 	 */
2112 
2113 	if (hs_req->req.status == -EINPROGRESS)
2114 		hs_req->req.status = result;
2115 
2116 	if (using_dma(hsotg))
2117 		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2118 
2119 	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2120 
2121 	hs_ep->req = NULL;
2122 	list_del_init(&hs_req->queue);
2123 
2124 	/*
2125 	 * call the complete request with the locks off, just in case the
2126 	 * request tries to queue more work for this endpoint.
2127 	 */
2128 
2129 	if (hs_req->req.complete) {
2130 		spin_unlock(&hsotg->lock);
2131 		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2132 		spin_lock(&hsotg->lock);
2133 	}
2134 
2135 	/* In DDMA don't need to proceed to starting of next ISOC request */
2136 	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2137 		return;
2138 
2139 	/*
2140 	 * Look to see if there is anything else to do. Note, the completion
2141 	 * of the previous request may have caused a new request to be started
2142 	 * so be careful when doing this.
2143 	 */
2144 
2145 	if (!hs_ep->req && result >= 0)
2146 		dwc2_gadget_start_next_request(hs_ep);
2147 }
2148 
2149 /*
2150  * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2151  * @hs_ep: The endpoint the request was on.
2152  *
2153  * Get first request from the ep queue, determine descriptor on which complete
2154  * happened. SW discovers which descriptor currently in use by HW, adjusts
2155  * dma_address and calculates index of completed descriptor based on the value
2156  * of DEPDMA register. Update actual length of request, giveback to gadget.
2157  */
2158 static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2159 {
2160 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2161 	struct dwc2_hsotg_req *hs_req;
2162 	struct usb_request *ureq;
2163 	u32 desc_sts;
2164 	u32 mask;
2165 
2166 	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2167 
2168 	/* Process only descriptors with buffer status set to DMA done */
2169 	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2170 		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2171 
2172 		hs_req = get_ep_head(hs_ep);
2173 		if (!hs_req) {
2174 			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2175 			return;
2176 		}
2177 		ureq = &hs_req->req;
2178 
2179 		/* Check completion status */
2180 		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2181 			DEV_DMA_STS_SUCC) {
2182 			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2183 				DEV_DMA_ISOC_RX_NBYTES_MASK;
2184 			ureq->actual = ureq->length - ((desc_sts & mask) >>
2185 				DEV_DMA_ISOC_NBYTES_SHIFT);
2186 
2187 			/* Adjust actual len for ISOC Out if len is
2188 			 * not align of 4
2189 			 */
2190 			if (!hs_ep->dir_in && ureq->length & 0x3)
2191 				ureq->actual += 4 - (ureq->length & 0x3);
2192 
2193 			/* Set actual frame number for completed transfers */
2194 			ureq->frame_number =
2195 				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2196 				DEV_DMA_ISOC_FRNUM_SHIFT;
2197 		}
2198 
2199 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2200 
2201 		hs_ep->compl_desc++;
2202 		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2203 			hs_ep->compl_desc = 0;
2204 		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2205 	}
2206 }
2207 
2208 /*
2209  * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2210  * @hs_ep: The isochronous endpoint.
2211  *
2212  * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2213  * interrupt. Reset target frame and next_desc to allow to start
2214  * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2215  * interrupt for OUT direction.
2216  */
2217 static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2218 {
2219 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2220 
2221 	if (!hs_ep->dir_in)
2222 		dwc2_flush_rx_fifo(hsotg);
2223 	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2224 
2225 	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2226 	hs_ep->next_desc = 0;
2227 	hs_ep->compl_desc = 0;
2228 }
2229 
2230 /**
2231  * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2232  * @hsotg: The device state.
2233  * @ep_idx: The endpoint index for the data
2234  * @size: The size of data in the fifo, in bytes
2235  *
2236  * The FIFO status shows there is data to read from the FIFO for a given
2237  * endpoint, so sort out whether we need to read the data into a request
2238  * that has been made for that endpoint.
2239  */
2240 static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2241 {
2242 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2243 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2244 	int to_read;
2245 	int max_req;
2246 	int read_ptr;
2247 
2248 	if (!hs_req) {
2249 		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2250 		int ptr;
2251 
2252 		dev_dbg(hsotg->dev,
2253 			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2254 			 __func__, size, ep_idx, epctl);
2255 
2256 		/* dump the data from the FIFO, we've nothing we can do */
2257 		for (ptr = 0; ptr < size; ptr += 4)
2258 			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2259 
2260 		return;
2261 	}
2262 
2263 	to_read = size;
2264 	read_ptr = hs_req->req.actual;
2265 	max_req = hs_req->req.length - read_ptr;
2266 
2267 	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2268 		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2269 
2270 	if (to_read > max_req) {
2271 		/*
2272 		 * more data appeared than we where willing
2273 		 * to deal with in this request.
2274 		 */
2275 
2276 		/* currently we don't deal this */
2277 		WARN_ON_ONCE(1);
2278 	}
2279 
2280 	hs_ep->total_data += to_read;
2281 	hs_req->req.actual += to_read;
2282 	to_read = DIV_ROUND_UP(to_read, 4);
2283 
2284 	/*
2285 	 * note, we might over-write the buffer end by 3 bytes depending on
2286 	 * alignment of the data.
2287 	 */
2288 	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2289 		       hs_req->req.buf + read_ptr, to_read);
2290 }
2291 
2292 /**
2293  * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2294  * @hsotg: The device instance
2295  * @dir_in: If IN zlp
2296  *
2297  * Generate a zero-length IN packet request for terminating a SETUP
2298  * transaction.
2299  *
2300  * Note, since we don't write any data to the TxFIFO, then it is
2301  * currently believed that we do not need to wait for any space in
2302  * the TxFIFO.
2303  */
2304 static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2305 {
2306 	/* eps_out[0] is used in both directions */
2307 	hsotg->eps_out[0]->dir_in = dir_in;
2308 	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2309 
2310 	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2311 }
2312 
2313 static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2314 					    u32 epctl_reg)
2315 {
2316 	u32 ctrl;
2317 
2318 	ctrl = dwc2_readl(hsotg, epctl_reg);
2319 	if (ctrl & DXEPCTL_EOFRNUM)
2320 		ctrl |= DXEPCTL_SETEVENFR;
2321 	else
2322 		ctrl |= DXEPCTL_SETODDFR;
2323 	dwc2_writel(hsotg, ctrl, epctl_reg);
2324 }
2325 
2326 /*
2327  * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2328  * @hs_ep - The endpoint on which transfer went
2329  *
2330  * Iterate over endpoints descriptor chain and get info on bytes remained
2331  * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2332  */
2333 static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2334 {
2335 	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2336 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2337 	unsigned int bytes_rem = 0;
2338 	unsigned int bytes_rem_correction = 0;
2339 	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2340 	int i;
2341 	u32 status;
2342 	u32 mps = hs_ep->ep.maxpacket;
2343 	int dir_in = hs_ep->dir_in;
2344 
2345 	if (!desc)
2346 		return -EINVAL;
2347 
2348 	/* Interrupt OUT EP with mps not multiple of 4 */
2349 	if (hs_ep->index)
2350 		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2351 			bytes_rem_correction = 4 - (mps % 4);
2352 
2353 	for (i = 0; i < hs_ep->desc_count; ++i) {
2354 		status = desc->status;
2355 		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2356 		bytes_rem -= bytes_rem_correction;
2357 
2358 		if (status & DEV_DMA_STS_MASK)
2359 			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2360 				i, status & DEV_DMA_STS_MASK);
2361 
2362 		if (status & DEV_DMA_L)
2363 			break;
2364 
2365 		desc++;
2366 	}
2367 
2368 	return bytes_rem;
2369 }
2370 
2371 /**
2372  * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2373  * @hsotg: The device instance
2374  * @epnum: The endpoint received from
2375  *
2376  * The RXFIFO has delivered an OutDone event, which means that the data
2377  * transfer for an OUT endpoint has been completed, either by a short
2378  * packet or by the finish of a transfer.
2379  */
2380 static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2381 {
2382 	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2383 	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2384 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2385 	struct usb_request *req = &hs_req->req;
2386 	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2387 	int result = 0;
2388 
2389 	if (!hs_req) {
2390 		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2391 		return;
2392 	}
2393 
2394 	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2395 		dev_dbg(hsotg->dev, "zlp packet received\n");
2396 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2397 		dwc2_hsotg_enqueue_setup(hsotg);
2398 		return;
2399 	}
2400 
2401 	if (using_desc_dma(hsotg))
2402 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2403 
2404 	if (using_dma(hsotg)) {
2405 		unsigned int size_done;
2406 
2407 		/*
2408 		 * Calculate the size of the transfer by checking how much
2409 		 * is left in the endpoint size register and then working it
2410 		 * out from the amount we loaded for the transfer.
2411 		 *
2412 		 * We need to do this as DMA pointers are always 32bit aligned
2413 		 * so may overshoot/undershoot the transfer.
2414 		 */
2415 
2416 		size_done = hs_ep->size_loaded - size_left;
2417 		size_done += hs_ep->last_load;
2418 
2419 		req->actual = size_done;
2420 	}
2421 
2422 	/* if there is more request to do, schedule new transfer */
2423 	if (req->actual < req->length && size_left == 0) {
2424 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2425 		return;
2426 	}
2427 
2428 	if (req->actual < req->length && req->short_not_ok) {
2429 		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2430 			__func__, req->actual, req->length);
2431 
2432 		/*
2433 		 * todo - what should we return here? there's no one else
2434 		 * even bothering to check the status.
2435 		 */
2436 	}
2437 
2438 	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2439 	if (!using_desc_dma(hsotg) && epnum == 0 &&
2440 	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2441 		/* Move to STATUS IN */
2442 		if (!hsotg->delayed_status)
2443 			dwc2_hsotg_ep0_zlp(hsotg, true);
2444 	}
2445 
2446 	/*
2447 	 * Slave mode OUT transfers do not go through XferComplete so
2448 	 * adjust the ISOC parity here.
2449 	 */
2450 	if (!using_dma(hsotg)) {
2451 		if (hs_ep->isochronous && hs_ep->interval == 1)
2452 			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2453 		else if (hs_ep->isochronous && hs_ep->interval > 1)
2454 			dwc2_gadget_incr_frame_num(hs_ep);
2455 	}
2456 
2457 	/* Set actual frame number for completed transfers */
2458 	if (!using_desc_dma(hsotg) && hs_ep->isochronous)
2459 		req->frame_number = hsotg->frame_number;
2460 
2461 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2462 }
2463 
2464 /**
2465  * dwc2_hsotg_handle_rx - RX FIFO has data
2466  * @hsotg: The device instance
2467  *
2468  * The IRQ handler has detected that the RX FIFO has some data in it
2469  * that requires processing, so find out what is in there and do the
2470  * appropriate read.
2471  *
2472  * The RXFIFO is a true FIFO, the packets coming out are still in packet
2473  * chunks, so if you have x packets received on an endpoint you'll get x
2474  * FIFO events delivered, each with a packet's worth of data in it.
2475  *
2476  * When using DMA, we should not be processing events from the RXFIFO
2477  * as the actual data should be sent to the memory directly and we turn
2478  * on the completion interrupts to get notifications of transfer completion.
2479  */
2480 static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2481 {
2482 	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2483 	u32 epnum, status, size;
2484 
2485 	WARN_ON(using_dma(hsotg));
2486 
2487 	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2488 	status = grxstsr & GRXSTS_PKTSTS_MASK;
2489 
2490 	size = grxstsr & GRXSTS_BYTECNT_MASK;
2491 	size >>= GRXSTS_BYTECNT_SHIFT;
2492 
2493 	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2494 		__func__, grxstsr, size, epnum);
2495 
2496 	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2497 	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2498 		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2499 		break;
2500 
2501 	case GRXSTS_PKTSTS_OUTDONE:
2502 		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2503 			dwc2_hsotg_read_frameno(hsotg));
2504 
2505 		if (!using_dma(hsotg))
2506 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2507 		break;
2508 
2509 	case GRXSTS_PKTSTS_SETUPDONE:
2510 		dev_dbg(hsotg->dev,
2511 			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2512 			dwc2_hsotg_read_frameno(hsotg),
2513 			dwc2_readl(hsotg, DOEPCTL(0)));
2514 		/*
2515 		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2516 		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2517 		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2518 		 */
2519 		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2520 			dwc2_hsotg_handle_outdone(hsotg, epnum);
2521 		break;
2522 
2523 	case GRXSTS_PKTSTS_OUTRX:
2524 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2525 		break;
2526 
2527 	case GRXSTS_PKTSTS_SETUPRX:
2528 		dev_dbg(hsotg->dev,
2529 			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2530 			dwc2_hsotg_read_frameno(hsotg),
2531 			dwc2_readl(hsotg, DOEPCTL(0)));
2532 
2533 		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2534 
2535 		dwc2_hsotg_rx_data(hsotg, epnum, size);
2536 		break;
2537 
2538 	default:
2539 		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2540 			 __func__, grxstsr);
2541 
2542 		dwc2_hsotg_dump(hsotg);
2543 		break;
2544 	}
2545 }
2546 
2547 /**
2548  * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2549  * @mps: The maximum packet size in bytes.
2550  */
2551 static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2552 {
2553 	switch (mps) {
2554 	case 64:
2555 		return D0EPCTL_MPS_64;
2556 	case 32:
2557 		return D0EPCTL_MPS_32;
2558 	case 16:
2559 		return D0EPCTL_MPS_16;
2560 	case 8:
2561 		return D0EPCTL_MPS_8;
2562 	}
2563 
2564 	/* bad max packet size, warn and return invalid result */
2565 	WARN_ON(1);
2566 	return (u32)-1;
2567 }
2568 
2569 /**
2570  * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2571  * @hsotg: The driver state.
2572  * @ep: The index number of the endpoint
2573  * @mps: The maximum packet size in bytes
2574  * @mc: The multicount value
2575  * @dir_in: True if direction is in.
2576  *
2577  * Configure the maximum packet size for the given endpoint, updating
2578  * the hardware control registers to reflect this.
2579  */
2580 static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2581 					unsigned int ep, unsigned int mps,
2582 					unsigned int mc, unsigned int dir_in)
2583 {
2584 	struct dwc2_hsotg_ep *hs_ep;
2585 	u32 reg;
2586 
2587 	hs_ep = index_to_ep(hsotg, ep, dir_in);
2588 	if (!hs_ep)
2589 		return;
2590 
2591 	if (ep == 0) {
2592 		u32 mps_bytes = mps;
2593 
2594 		/* EP0 is a special case */
2595 		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2596 		if (mps > 3)
2597 			goto bad_mps;
2598 		hs_ep->ep.maxpacket = mps_bytes;
2599 		hs_ep->mc = 1;
2600 	} else {
2601 		if (mps > 1024)
2602 			goto bad_mps;
2603 		hs_ep->mc = mc;
2604 		if (mc > 3)
2605 			goto bad_mps;
2606 		hs_ep->ep.maxpacket = mps;
2607 	}
2608 
2609 	if (dir_in) {
2610 		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2611 		reg &= ~DXEPCTL_MPS_MASK;
2612 		reg |= mps;
2613 		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2614 	} else {
2615 		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2616 		reg &= ~DXEPCTL_MPS_MASK;
2617 		reg |= mps;
2618 		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2619 	}
2620 
2621 	return;
2622 
2623 bad_mps:
2624 	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2625 }
2626 
2627 /**
2628  * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2629  * @hsotg: The driver state
2630  * @idx: The index for the endpoint (0..15)
2631  */
2632 static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2633 {
2634 	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2635 		    GRSTCTL);
2636 
2637 	/* wait until the fifo is flushed */
2638 	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2639 		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2640 			 __func__);
2641 }
2642 
2643 /**
2644  * dwc2_hsotg_trytx - check to see if anything needs transmitting
2645  * @hsotg: The driver state
2646  * @hs_ep: The driver endpoint to check.
2647  *
2648  * Check to see if there is a request that has data to send, and if so
2649  * make an attempt to write data into the FIFO.
2650  */
2651 static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2652 			    struct dwc2_hsotg_ep *hs_ep)
2653 {
2654 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2655 
2656 	if (!hs_ep->dir_in || !hs_req) {
2657 		/**
2658 		 * if request is not enqueued, we disable interrupts
2659 		 * for endpoints, excepting ep0
2660 		 */
2661 		if (hs_ep->index != 0)
2662 			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2663 					      hs_ep->dir_in, 0);
2664 		return 0;
2665 	}
2666 
2667 	if (hs_req->req.actual < hs_req->req.length) {
2668 		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2669 			hs_ep->index);
2670 		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2671 	}
2672 
2673 	return 0;
2674 }
2675 
2676 /**
2677  * dwc2_hsotg_complete_in - complete IN transfer
2678  * @hsotg: The device state.
2679  * @hs_ep: The endpoint that has just completed.
2680  *
2681  * An IN transfer has been completed, update the transfer's state and then
2682  * call the relevant completion routines.
2683  */
2684 static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2685 				   struct dwc2_hsotg_ep *hs_ep)
2686 {
2687 	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2688 	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2689 	int size_left, size_done;
2690 
2691 	if (!hs_req) {
2692 		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2693 		return;
2694 	}
2695 
2696 	/* Finish ZLP handling for IN EP0 transactions */
2697 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2698 		dev_dbg(hsotg->dev, "zlp packet sent\n");
2699 
2700 		/*
2701 		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2702 		 * changed to IN. Change back to complete OUT transfer request
2703 		 */
2704 		hs_ep->dir_in = 0;
2705 
2706 		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2707 		if (hsotg->test_mode) {
2708 			int ret;
2709 
2710 			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2711 			if (ret < 0) {
2712 				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2713 					hsotg->test_mode);
2714 				dwc2_hsotg_stall_ep0(hsotg);
2715 				return;
2716 			}
2717 		}
2718 		dwc2_hsotg_enqueue_setup(hsotg);
2719 		return;
2720 	}
2721 
2722 	/*
2723 	 * Calculate the size of the transfer by checking how much is left
2724 	 * in the endpoint size register and then working it out from
2725 	 * the amount we loaded for the transfer.
2726 	 *
2727 	 * We do this even for DMA, as the transfer may have incremented
2728 	 * past the end of the buffer (DMA transfers are always 32bit
2729 	 * aligned).
2730 	 */
2731 	if (using_desc_dma(hsotg)) {
2732 		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2733 		if (size_left < 0)
2734 			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2735 				size_left);
2736 	} else {
2737 		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2738 	}
2739 
2740 	size_done = hs_ep->size_loaded - size_left;
2741 	size_done += hs_ep->last_load;
2742 
2743 	if (hs_req->req.actual != size_done)
2744 		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2745 			__func__, hs_req->req.actual, size_done);
2746 
2747 	hs_req->req.actual = size_done;
2748 	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2749 		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2750 
2751 	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2752 		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2753 		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2754 		return;
2755 	}
2756 
2757 	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2758 	if (hs_ep->send_zlp) {
2759 		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2760 		hs_ep->send_zlp = 0;
2761 		/* transfer will be completed on next complete interrupt */
2762 		return;
2763 	}
2764 
2765 	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2766 		/* Move to STATUS OUT */
2767 		dwc2_hsotg_ep0_zlp(hsotg, false);
2768 		return;
2769 	}
2770 
2771 	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2772 }
2773 
2774 /**
2775  * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2776  * @hsotg: The device state.
2777  * @idx: Index of ep.
2778  * @dir_in: Endpoint direction 1-in 0-out.
2779  *
2780  * Reads for endpoint with given index and direction, by masking
2781  * epint_reg with coresponding mask.
2782  */
2783 static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2784 					  unsigned int idx, int dir_in)
2785 {
2786 	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2787 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2788 	u32 ints;
2789 	u32 mask;
2790 	u32 diepempmsk;
2791 
2792 	mask = dwc2_readl(hsotg, epmsk_reg);
2793 	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2794 	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2795 	mask |= DXEPINT_SETUP_RCVD;
2796 
2797 	ints = dwc2_readl(hsotg, epint_reg);
2798 	ints &= mask;
2799 	return ints;
2800 }
2801 
2802 /**
2803  * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2804  * @hs_ep: The endpoint on which interrupt is asserted.
2805  *
2806  * This interrupt indicates that the endpoint has been disabled per the
2807  * application's request.
2808  *
2809  * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2810  * in case of ISOC completes current request.
2811  *
2812  * For ISOC-OUT endpoints completes expired requests. If there is remaining
2813  * request starts it.
2814  */
2815 static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2816 {
2817 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2818 	struct dwc2_hsotg_req *hs_req;
2819 	unsigned char idx = hs_ep->index;
2820 	int dir_in = hs_ep->dir_in;
2821 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2822 	int dctl = dwc2_readl(hsotg, DCTL);
2823 
2824 	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2825 
2826 	if (dir_in) {
2827 		int epctl = dwc2_readl(hsotg, epctl_reg);
2828 
2829 		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2830 
2831 		if (hs_ep->isochronous) {
2832 			dwc2_hsotg_complete_in(hsotg, hs_ep);
2833 			return;
2834 		}
2835 
2836 		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2837 			int dctl = dwc2_readl(hsotg, DCTL);
2838 
2839 			dctl |= DCTL_CGNPINNAK;
2840 			dwc2_writel(hsotg, dctl, DCTL);
2841 		}
2842 		return;
2843 	}
2844 
2845 	if (dctl & DCTL_GOUTNAKSTS) {
2846 		dctl |= DCTL_CGOUTNAK;
2847 		dwc2_writel(hsotg, dctl, DCTL);
2848 	}
2849 
2850 	if (!hs_ep->isochronous)
2851 		return;
2852 
2853 	if (list_empty(&hs_ep->queue)) {
2854 		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2855 			__func__, hs_ep);
2856 		return;
2857 	}
2858 
2859 	do {
2860 		hs_req = get_ep_head(hs_ep);
2861 		if (hs_req)
2862 			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2863 						    -ENODATA);
2864 		dwc2_gadget_incr_frame_num(hs_ep);
2865 		/* Update current frame number value. */
2866 		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2867 	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2868 
2869 	dwc2_gadget_start_next_request(hs_ep);
2870 }
2871 
2872 /**
2873  * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2874  * @ep: The endpoint on which interrupt is asserted.
2875  *
2876  * This is starting point for ISOC-OUT transfer, synchronization done with
2877  * first out token received from host while corresponding EP is disabled.
2878  *
2879  * Device does not know initial frame in which out token will come. For this
2880  * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2881  * getting this interrupt SW starts calculation for next transfer frame.
2882  */
2883 static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2884 {
2885 	struct dwc2_hsotg *hsotg = ep->parent;
2886 	int dir_in = ep->dir_in;
2887 	u32 doepmsk;
2888 
2889 	if (dir_in || !ep->isochronous)
2890 		return;
2891 
2892 	if (using_desc_dma(hsotg)) {
2893 		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2894 			/* Start first ISO Out */
2895 			ep->target_frame = hsotg->frame_number;
2896 			dwc2_gadget_start_isoc_ddma(ep);
2897 		}
2898 		return;
2899 	}
2900 
2901 	if (ep->interval > 1 &&
2902 	    ep->target_frame == TARGET_FRAME_INITIAL) {
2903 		u32 ctrl;
2904 
2905 		ep->target_frame = hsotg->frame_number;
2906 		dwc2_gadget_incr_frame_num(ep);
2907 
2908 		ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2909 		if (ep->target_frame & 0x1)
2910 			ctrl |= DXEPCTL_SETODDFR;
2911 		else
2912 			ctrl |= DXEPCTL_SETEVENFR;
2913 
2914 		dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2915 	}
2916 
2917 	dwc2_gadget_start_next_request(ep);
2918 	doepmsk = dwc2_readl(hsotg, DOEPMSK);
2919 	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2920 	dwc2_writel(hsotg, doepmsk, DOEPMSK);
2921 }
2922 
2923 /**
2924  * dwc2_gadget_handle_nak - handle NAK interrupt
2925  * @hs_ep: The endpoint on which interrupt is asserted.
2926  *
2927  * This is starting point for ISOC-IN transfer, synchronization done with
2928  * first IN token received from host while corresponding EP is disabled.
2929  *
2930  * Device does not know when first one token will arrive from host. On first
2931  * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2932  * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2933  * sent in response to that as there was no data in FIFO. SW is basing on this
2934  * interrupt to obtain frame in which token has come and then based on the
2935  * interval calculates next frame for transfer.
2936  */
2937 static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2938 {
2939 	struct dwc2_hsotg *hsotg = hs_ep->parent;
2940 	int dir_in = hs_ep->dir_in;
2941 
2942 	if (!dir_in || !hs_ep->isochronous)
2943 		return;
2944 
2945 	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2946 
2947 		if (using_desc_dma(hsotg)) {
2948 			hs_ep->target_frame = hsotg->frame_number;
2949 			dwc2_gadget_incr_frame_num(hs_ep);
2950 
2951 			/* In service interval mode target_frame must
2952 			 * be set to last (u)frame of the service interval.
2953 			 */
2954 			if (hsotg->params.service_interval) {
2955 				/* Set target_frame to the first (u)frame of
2956 				 * the service interval
2957 				 */
2958 				hs_ep->target_frame &= ~hs_ep->interval + 1;
2959 
2960 				/* Set target_frame to the last (u)frame of
2961 				 * the service interval
2962 				 */
2963 				dwc2_gadget_incr_frame_num(hs_ep);
2964 				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2965 			}
2966 
2967 			dwc2_gadget_start_isoc_ddma(hs_ep);
2968 			return;
2969 		}
2970 
2971 		hs_ep->target_frame = hsotg->frame_number;
2972 		if (hs_ep->interval > 1) {
2973 			u32 ctrl = dwc2_readl(hsotg,
2974 					      DIEPCTL(hs_ep->index));
2975 			if (hs_ep->target_frame & 0x1)
2976 				ctrl |= DXEPCTL_SETODDFR;
2977 			else
2978 				ctrl |= DXEPCTL_SETEVENFR;
2979 
2980 			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2981 		}
2982 
2983 		dwc2_hsotg_complete_request(hsotg, hs_ep,
2984 					    get_ep_head(hs_ep), 0);
2985 	}
2986 
2987 	if (!using_desc_dma(hsotg))
2988 		dwc2_gadget_incr_frame_num(hs_ep);
2989 }
2990 
2991 /**
2992  * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2993  * @hsotg: The driver state
2994  * @idx: The index for the endpoint (0..15)
2995  * @dir_in: Set if this is an IN endpoint
2996  *
2997  * Process and clear any interrupt pending for an individual endpoint
2998  */
2999 static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3000 			     int dir_in)
3001 {
3002 	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3003 	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3004 	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3005 	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3006 	u32 ints;
3007 
3008 	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
3009 
3010 	/* Clear endpoint interrupts */
3011 	dwc2_writel(hsotg, ints, epint_reg);
3012 
3013 	if (!hs_ep) {
3014 		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3015 			__func__, idx, dir_in ? "in" : "out");
3016 		return;
3017 	}
3018 
3019 	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3020 		__func__, idx, dir_in ? "in" : "out", ints);
3021 
3022 	/* Don't process XferCompl interrupt if it is a setup packet */
3023 	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3024 		ints &= ~DXEPINT_XFERCOMPL;
3025 
3026 	/*
3027 	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3028 	 * stage and xfercomplete was generated without SETUP phase done
3029 	 * interrupt. SW should parse received setup packet only after host's
3030 	 * exit from setup phase of control transfer.
3031 	 */
3032 	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3033 	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3034 		ints &= ~DXEPINT_XFERCOMPL;
3035 
3036 	if (ints & DXEPINT_XFERCOMPL) {
3037 		dev_dbg(hsotg->dev,
3038 			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3039 			__func__, dwc2_readl(hsotg, epctl_reg),
3040 			dwc2_readl(hsotg, epsiz_reg));
3041 
3042 		/* In DDMA handle isochronous requests separately */
3043 		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3044 			/* XferCompl set along with BNA */
3045 			if (!(ints & DXEPINT_BNAINTR))
3046 				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3047 		} else if (dir_in) {
3048 			/*
3049 			 * We get OutDone from the FIFO, so we only
3050 			 * need to look at completing IN requests here
3051 			 * if operating slave mode
3052 			 */
3053 			if (hs_ep->isochronous && hs_ep->interval > 1)
3054 				dwc2_gadget_incr_frame_num(hs_ep);
3055 
3056 			dwc2_hsotg_complete_in(hsotg, hs_ep);
3057 			if (ints & DXEPINT_NAKINTRPT)
3058 				ints &= ~DXEPINT_NAKINTRPT;
3059 
3060 			if (idx == 0 && !hs_ep->req)
3061 				dwc2_hsotg_enqueue_setup(hsotg);
3062 		} else if (using_dma(hsotg)) {
3063 			/*
3064 			 * We're using DMA, we need to fire an OutDone here
3065 			 * as we ignore the RXFIFO.
3066 			 */
3067 			if (hs_ep->isochronous && hs_ep->interval > 1)
3068 				dwc2_gadget_incr_frame_num(hs_ep);
3069 
3070 			dwc2_hsotg_handle_outdone(hsotg, idx);
3071 		}
3072 	}
3073 
3074 	if (ints & DXEPINT_EPDISBLD)
3075 		dwc2_gadget_handle_ep_disabled(hs_ep);
3076 
3077 	if (ints & DXEPINT_OUTTKNEPDIS)
3078 		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3079 
3080 	if (ints & DXEPINT_NAKINTRPT)
3081 		dwc2_gadget_handle_nak(hs_ep);
3082 
3083 	if (ints & DXEPINT_AHBERR)
3084 		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3085 
3086 	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3087 		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3088 
3089 		if (using_dma(hsotg) && idx == 0) {
3090 			/*
3091 			 * this is the notification we've received a
3092 			 * setup packet. In non-DMA mode we'd get this
3093 			 * from the RXFIFO, instead we need to process
3094 			 * the setup here.
3095 			 */
3096 
3097 			if (dir_in)
3098 				WARN_ON_ONCE(1);
3099 			else
3100 				dwc2_hsotg_handle_outdone(hsotg, 0);
3101 		}
3102 	}
3103 
3104 	if (ints & DXEPINT_STSPHSERCVD) {
3105 		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3106 
3107 		/* Safety check EP0 state when STSPHSERCVD asserted */
3108 		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3109 			/* Move to STATUS IN for DDMA */
3110 			if (using_desc_dma(hsotg)) {
3111 				if (!hsotg->delayed_status)
3112 					dwc2_hsotg_ep0_zlp(hsotg, true);
3113 				else
3114 				/* In case of 3 stage Control Write with delayed
3115 				 * status, when Status IN transfer started
3116 				 * before STSPHSERCVD asserted, NAKSTS bit not
3117 				 * cleared by CNAK in dwc2_hsotg_start_req()
3118 				 * function. Clear now NAKSTS to allow complete
3119 				 * transfer.
3120 				 */
3121 					dwc2_set_bit(hsotg, DIEPCTL(0),
3122 						     DXEPCTL_CNAK);
3123 			}
3124 		}
3125 
3126 	}
3127 
3128 	if (ints & DXEPINT_BACK2BACKSETUP)
3129 		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3130 
3131 	if (ints & DXEPINT_BNAINTR) {
3132 		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3133 		if (hs_ep->isochronous)
3134 			dwc2_gadget_handle_isoc_bna(hs_ep);
3135 	}
3136 
3137 	if (dir_in && !hs_ep->isochronous) {
3138 		/* not sure if this is important, but we'll clear it anyway */
3139 		if (ints & DXEPINT_INTKNTXFEMP) {
3140 			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3141 				__func__, idx);
3142 		}
3143 
3144 		/* this probably means something bad is happening */
3145 		if (ints & DXEPINT_INTKNEPMIS) {
3146 			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3147 				 __func__, idx);
3148 		}
3149 
3150 		/* FIFO has space or is empty (see GAHBCFG) */
3151 		if (hsotg->dedicated_fifos &&
3152 		    ints & DXEPINT_TXFEMP) {
3153 			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3154 				__func__, idx);
3155 			if (!using_dma(hsotg))
3156 				dwc2_hsotg_trytx(hsotg, hs_ep);
3157 		}
3158 	}
3159 }
3160 
3161 /**
3162  * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3163  * @hsotg: The device state.
3164  *
3165  * Handle updating the device settings after the enumeration phase has
3166  * been completed.
3167  */
3168 static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3169 {
3170 	u32 dsts = dwc2_readl(hsotg, DSTS);
3171 	int ep0_mps = 0, ep_mps = 8;
3172 
3173 	/*
3174 	 * This should signal the finish of the enumeration phase
3175 	 * of the USB handshaking, so we should now know what rate
3176 	 * we connected at.
3177 	 */
3178 
3179 	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3180 
3181 	/*
3182 	 * note, since we're limited by the size of transfer on EP0, and
3183 	 * it seems IN transfers must be a even number of packets we do
3184 	 * not advertise a 64byte MPS on EP0.
3185 	 */
3186 
3187 	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3188 	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3189 	case DSTS_ENUMSPD_FS:
3190 	case DSTS_ENUMSPD_FS48:
3191 		hsotg->gadget.speed = USB_SPEED_FULL;
3192 		ep0_mps = EP0_MPS_LIMIT;
3193 		ep_mps = 1023;
3194 		break;
3195 
3196 	case DSTS_ENUMSPD_HS:
3197 		hsotg->gadget.speed = USB_SPEED_HIGH;
3198 		ep0_mps = EP0_MPS_LIMIT;
3199 		ep_mps = 1024;
3200 		break;
3201 
3202 	case DSTS_ENUMSPD_LS:
3203 		hsotg->gadget.speed = USB_SPEED_LOW;
3204 		ep0_mps = 8;
3205 		ep_mps = 8;
3206 		/*
3207 		 * note, we don't actually support LS in this driver at the
3208 		 * moment, and the documentation seems to imply that it isn't
3209 		 * supported by the PHYs on some of the devices.
3210 		 */
3211 		break;
3212 	}
3213 	dev_info(hsotg->dev, "new device is %s\n",
3214 		 usb_speed_string(hsotg->gadget.speed));
3215 
3216 	/*
3217 	 * we should now know the maximum packet size for an
3218 	 * endpoint, so set the endpoints to a default value.
3219 	 */
3220 
3221 	if (ep0_mps) {
3222 		int i;
3223 		/* Initialize ep0 for both in and out directions */
3224 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3225 		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3226 		for (i = 1; i < hsotg->num_of_eps; i++) {
3227 			if (hsotg->eps_in[i])
3228 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3229 							    0, 1);
3230 			if (hsotg->eps_out[i])
3231 				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3232 							    0, 0);
3233 		}
3234 	}
3235 
3236 	/* ensure after enumeration our EP0 is active */
3237 
3238 	dwc2_hsotg_enqueue_setup(hsotg);
3239 
3240 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3241 		dwc2_readl(hsotg, DIEPCTL0),
3242 		dwc2_readl(hsotg, DOEPCTL0));
3243 }
3244 
3245 /**
3246  * kill_all_requests - remove all requests from the endpoint's queue
3247  * @hsotg: The device state.
3248  * @ep: The endpoint the requests may be on.
3249  * @result: The result code to use.
3250  *
3251  * Go through the requests on the given endpoint and mark them
3252  * completed with the given result code.
3253  */
3254 static void kill_all_requests(struct dwc2_hsotg *hsotg,
3255 			      struct dwc2_hsotg_ep *ep,
3256 			      int result)
3257 {
3258 	unsigned int size;
3259 
3260 	ep->req = NULL;
3261 
3262 	while (!list_empty(&ep->queue)) {
3263 		struct dwc2_hsotg_req *req = get_ep_head(ep);
3264 
3265 		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3266 	}
3267 
3268 	if (!hsotg->dedicated_fifos)
3269 		return;
3270 	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3271 	if (size < ep->fifo_size)
3272 		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3273 }
3274 
3275 /**
3276  * dwc2_hsotg_disconnect - disconnect service
3277  * @hsotg: The device state.
3278  *
3279  * The device has been disconnected. Remove all current
3280  * transactions and signal the gadget driver that this
3281  * has happened.
3282  */
3283 void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3284 {
3285 	unsigned int ep;
3286 
3287 	if (!hsotg->connected)
3288 		return;
3289 
3290 	hsotg->connected = 0;
3291 	hsotg->test_mode = 0;
3292 
3293 	/* all endpoints should be shutdown */
3294 	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3295 		if (hsotg->eps_in[ep])
3296 			kill_all_requests(hsotg, hsotg->eps_in[ep],
3297 					  -ESHUTDOWN);
3298 		if (hsotg->eps_out[ep])
3299 			kill_all_requests(hsotg, hsotg->eps_out[ep],
3300 					  -ESHUTDOWN);
3301 	}
3302 
3303 	call_gadget(hsotg, disconnect);
3304 	hsotg->lx_state = DWC2_L3;
3305 
3306 	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3307 }
3308 
3309 /**
3310  * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3311  * @hsotg: The device state:
3312  * @periodic: True if this is a periodic FIFO interrupt
3313  */
3314 static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3315 {
3316 	struct dwc2_hsotg_ep *ep;
3317 	int epno, ret;
3318 
3319 	/* look through for any more data to transmit */
3320 	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3321 		ep = index_to_ep(hsotg, epno, 1);
3322 
3323 		if (!ep)
3324 			continue;
3325 
3326 		if (!ep->dir_in)
3327 			continue;
3328 
3329 		if ((periodic && !ep->periodic) ||
3330 		    (!periodic && ep->periodic))
3331 			continue;
3332 
3333 		ret = dwc2_hsotg_trytx(hsotg, ep);
3334 		if (ret < 0)
3335 			break;
3336 	}
3337 }
3338 
3339 /* IRQ flags which will trigger a retry around the IRQ loop */
3340 #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3341 			GINTSTS_PTXFEMP |  \
3342 			GINTSTS_RXFLVL)
3343 
3344 static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3345 /**
3346  * dwc2_hsotg_core_init - issue softreset to the core
3347  * @hsotg: The device state
3348  * @is_usb_reset: Usb resetting flag
3349  *
3350  * Issue a soft reset to the core, and await the core finishing it.
3351  */
3352 void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3353 				       bool is_usb_reset)
3354 {
3355 	u32 intmsk;
3356 	u32 val;
3357 	u32 usbcfg;
3358 	u32 dcfg = 0;
3359 	int ep;
3360 
3361 	/* Kill any ep0 requests as controller will be reinitialized */
3362 	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3363 
3364 	if (!is_usb_reset) {
3365 		if (dwc2_core_reset(hsotg, true))
3366 			return;
3367 	} else {
3368 		/* all endpoints should be shutdown */
3369 		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3370 			if (hsotg->eps_in[ep])
3371 				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3372 			if (hsotg->eps_out[ep])
3373 				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3374 		}
3375 	}
3376 
3377 	/*
3378 	 * we must now enable ep0 ready for host detection and then
3379 	 * set configuration.
3380 	 */
3381 
3382 	/* keep other bits untouched (so e.g. forced modes are not lost) */
3383 	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3384 	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3385 	usbcfg |= GUSBCFG_TOUTCAL(7);
3386 
3387 	/* remove the HNP/SRP and set the PHY */
3388 	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3389         dwc2_writel(hsotg, usbcfg, GUSBCFG);
3390 
3391 	dwc2_phy_init(hsotg, true);
3392 
3393 	dwc2_hsotg_init_fifo(hsotg);
3394 
3395 	if (!is_usb_reset)
3396 		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3397 
3398 	dcfg |= DCFG_EPMISCNT(1);
3399 
3400 	switch (hsotg->params.speed) {
3401 	case DWC2_SPEED_PARAM_LOW:
3402 		dcfg |= DCFG_DEVSPD_LS;
3403 		break;
3404 	case DWC2_SPEED_PARAM_FULL:
3405 		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3406 			dcfg |= DCFG_DEVSPD_FS48;
3407 		else
3408 			dcfg |= DCFG_DEVSPD_FS;
3409 		break;
3410 	default:
3411 		dcfg |= DCFG_DEVSPD_HS;
3412 	}
3413 
3414 	if (hsotg->params.ipg_isoc_en)
3415 		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3416 
3417 	dwc2_writel(hsotg, dcfg,  DCFG);
3418 
3419 	/* Clear any pending OTG interrupts */
3420 	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3421 
3422 	/* Clear any pending interrupts */
3423 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3424 	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3425 		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3426 		GINTSTS_USBRST | GINTSTS_RESETDET |
3427 		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3428 		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3429 		GINTSTS_LPMTRANRCVD;
3430 
3431 	if (!using_desc_dma(hsotg))
3432 		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3433 
3434 	if (!hsotg->params.external_id_pin_ctl)
3435 		intmsk |= GINTSTS_CONIDSTSCHNG;
3436 
3437 	dwc2_writel(hsotg, intmsk, GINTMSK);
3438 
3439 	if (using_dma(hsotg)) {
3440 		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3441 			    hsotg->params.ahbcfg,
3442 			    GAHBCFG);
3443 
3444 		/* Set DDMA mode support in the core if needed */
3445 		if (using_desc_dma(hsotg))
3446 			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3447 
3448 	} else {
3449 		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3450 						(GAHBCFG_NP_TXF_EMP_LVL |
3451 						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3452 			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3453 	}
3454 
3455 	/*
3456 	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3457 	 * when we have no data to transfer. Otherwise we get being flooded by
3458 	 * interrupts.
3459 	 */
3460 
3461 	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3462 		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3463 		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3464 		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3465 		DIEPMSK);
3466 
3467 	/*
3468 	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3469 	 * DMA mode we may need this and StsPhseRcvd.
3470 	 */
3471 	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3472 		DOEPMSK_STSPHSERCVDMSK) : 0) |
3473 		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3474 		DOEPMSK_SETUPMSK,
3475 		DOEPMSK);
3476 
3477 	/* Enable BNA interrupt for DDMA */
3478 	if (using_desc_dma(hsotg)) {
3479 		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3480 		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3481 	}
3482 
3483 	/* Enable Service Interval mode if supported */
3484 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3485 		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3486 
3487 	dwc2_writel(hsotg, 0, DAINTMSK);
3488 
3489 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3490 		dwc2_readl(hsotg, DIEPCTL0),
3491 		dwc2_readl(hsotg, DOEPCTL0));
3492 
3493 	/* enable in and out endpoint interrupts */
3494 	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3495 
3496 	/*
3497 	 * Enable the RXFIFO when in slave mode, as this is how we collect
3498 	 * the data. In DMA mode, we get events from the FIFO but also
3499 	 * things we cannot process, so do not use it.
3500 	 */
3501 	if (!using_dma(hsotg))
3502 		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3503 
3504 	/* Enable interrupts for EP0 in and out */
3505 	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3506 	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3507 
3508 	if (!is_usb_reset) {
3509 		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3510 		udelay(10);  /* see openiboot */
3511 		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3512 	}
3513 
3514 	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3515 
3516 	/*
3517 	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3518 	 * writing to the EPCTL register..
3519 	 */
3520 
3521 	/* set to read 1 8byte packet */
3522 	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3523 	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3524 
3525 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3526 	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3527 	       DXEPCTL_USBACTEP,
3528 	       DOEPCTL0);
3529 
3530 	/* enable, but don't activate EP0in */
3531 	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3532 	       DXEPCTL_USBACTEP, DIEPCTL0);
3533 
3534 	/* clear global NAKs */
3535 	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3536 	if (!is_usb_reset)
3537 		val |= DCTL_SFTDISCON;
3538 	dwc2_set_bit(hsotg, DCTL, val);
3539 
3540 	/* configure the core to support LPM */
3541 	dwc2_gadget_init_lpm(hsotg);
3542 
3543 	/* program GREFCLK register if needed */
3544 	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3545 		dwc2_gadget_program_ref_clk(hsotg);
3546 
3547 	/* must be at-least 3ms to allow bus to see disconnect */
3548 	mdelay(3);
3549 
3550 	hsotg->lx_state = DWC2_L0;
3551 
3552 	dwc2_hsotg_enqueue_setup(hsotg);
3553 
3554 	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3555 		dwc2_readl(hsotg, DIEPCTL0),
3556 		dwc2_readl(hsotg, DOEPCTL0));
3557 }
3558 
3559 void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3560 {
3561 	/* set the soft-disconnect bit */
3562 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3563 }
3564 
3565 void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3566 {
3567 	/* remove the soft-disconnect and let's go */
3568 	dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3569 }
3570 
3571 /**
3572  * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3573  * @hsotg: The device state:
3574  *
3575  * This interrupt indicates one of the following conditions occurred while
3576  * transmitting an ISOC transaction.
3577  * - Corrupted IN Token for ISOC EP.
3578  * - Packet not complete in FIFO.
3579  *
3580  * The following actions will be taken:
3581  * - Determine the EP
3582  * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3583  */
3584 static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3585 {
3586 	struct dwc2_hsotg_ep *hs_ep;
3587 	u32 epctrl;
3588 	u32 daintmsk;
3589 	u32 idx;
3590 
3591 	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3592 
3593 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3594 
3595 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3596 		hs_ep = hsotg->eps_in[idx];
3597 		/* Proceed only unmasked ISOC EPs */
3598 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3599 			continue;
3600 
3601 		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3602 		if ((epctrl & DXEPCTL_EPENA) &&
3603 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3604 			epctrl |= DXEPCTL_SNAK;
3605 			epctrl |= DXEPCTL_EPDIS;
3606 			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3607 		}
3608 	}
3609 
3610 	/* Clear interrupt */
3611 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3612 }
3613 
3614 /**
3615  * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3616  * @hsotg: The device state:
3617  *
3618  * This interrupt indicates one of the following conditions occurred while
3619  * transmitting an ISOC transaction.
3620  * - Corrupted OUT Token for ISOC EP.
3621  * - Packet not complete in FIFO.
3622  *
3623  * The following actions will be taken:
3624  * - Determine the EP
3625  * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3626  */
3627 static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3628 {
3629 	u32 gintsts;
3630 	u32 gintmsk;
3631 	u32 daintmsk;
3632 	u32 epctrl;
3633 	struct dwc2_hsotg_ep *hs_ep;
3634 	int idx;
3635 
3636 	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3637 
3638 	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3639 	daintmsk >>= DAINT_OUTEP_SHIFT;
3640 
3641 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3642 		hs_ep = hsotg->eps_out[idx];
3643 		/* Proceed only unmasked ISOC EPs */
3644 		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3645 			continue;
3646 
3647 		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3648 		if ((epctrl & DXEPCTL_EPENA) &&
3649 		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3650 			/* Unmask GOUTNAKEFF interrupt */
3651 			gintmsk = dwc2_readl(hsotg, GINTMSK);
3652 			gintmsk |= GINTSTS_GOUTNAKEFF;
3653 			dwc2_writel(hsotg, gintmsk, GINTMSK);
3654 
3655 			gintsts = dwc2_readl(hsotg, GINTSTS);
3656 			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3657 				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3658 				break;
3659 			}
3660 		}
3661 	}
3662 
3663 	/* Clear interrupt */
3664 	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3665 }
3666 
3667 /**
3668  * dwc2_hsotg_irq - handle device interrupt
3669  * @irq: The IRQ number triggered
3670  * @pw: The pw value when registered the handler.
3671  */
3672 static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3673 {
3674 	struct dwc2_hsotg *hsotg = pw;
3675 	int retry_count = 8;
3676 	u32 gintsts;
3677 	u32 gintmsk;
3678 
3679 	if (!dwc2_is_device_mode(hsotg))
3680 		return IRQ_NONE;
3681 
3682 	spin_lock(&hsotg->lock);
3683 irq_retry:
3684 	gintsts = dwc2_readl(hsotg, GINTSTS);
3685 	gintmsk = dwc2_readl(hsotg, GINTMSK);
3686 
3687 	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3688 		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3689 
3690 	gintsts &= gintmsk;
3691 
3692 	if (gintsts & GINTSTS_RESETDET) {
3693 		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3694 
3695 		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3696 
3697 		/* This event must be used only if controller is suspended */
3698 		if (hsotg->lx_state == DWC2_L2) {
3699 			dwc2_exit_partial_power_down(hsotg, true);
3700 			hsotg->lx_state = DWC2_L0;
3701 		}
3702 	}
3703 
3704 	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3705 		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
3706 		u32 connected = hsotg->connected;
3707 
3708 		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3709 		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3710 			dwc2_readl(hsotg, GNPTXSTS));
3711 
3712 		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3713 
3714 		/* Report disconnection if it is not already done. */
3715 		dwc2_hsotg_disconnect(hsotg);
3716 
3717 		/* Reset device address to zero */
3718 		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3719 
3720 		if (usb_status & GOTGCTL_BSESVLD && connected)
3721 			dwc2_hsotg_core_init_disconnected(hsotg, true);
3722 	}
3723 
3724 	if (gintsts & GINTSTS_ENUMDONE) {
3725 		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3726 
3727 		dwc2_hsotg_irq_enumdone(hsotg);
3728 	}
3729 
3730 	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3731 		u32 daint = dwc2_readl(hsotg, DAINT);
3732 		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3733 		u32 daint_out, daint_in;
3734 		int ep;
3735 
3736 		daint &= daintmsk;
3737 		daint_out = daint >> DAINT_OUTEP_SHIFT;
3738 		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3739 
3740 		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3741 
3742 		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3743 						ep++, daint_out >>= 1) {
3744 			if (daint_out & 1)
3745 				dwc2_hsotg_epint(hsotg, ep, 0);
3746 		}
3747 
3748 		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3749 						ep++, daint_in >>= 1) {
3750 			if (daint_in & 1)
3751 				dwc2_hsotg_epint(hsotg, ep, 1);
3752 		}
3753 	}
3754 
3755 	/* check both FIFOs */
3756 
3757 	if (gintsts & GINTSTS_NPTXFEMP) {
3758 		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3759 
3760 		/*
3761 		 * Disable the interrupt to stop it happening again
3762 		 * unless one of these endpoint routines decides that
3763 		 * it needs re-enabling
3764 		 */
3765 
3766 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3767 		dwc2_hsotg_irq_fifoempty(hsotg, false);
3768 	}
3769 
3770 	if (gintsts & GINTSTS_PTXFEMP) {
3771 		dev_dbg(hsotg->dev, "PTxFEmp\n");
3772 
3773 		/* See note in GINTSTS_NPTxFEmp */
3774 
3775 		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3776 		dwc2_hsotg_irq_fifoempty(hsotg, true);
3777 	}
3778 
3779 	if (gintsts & GINTSTS_RXFLVL) {
3780 		/*
3781 		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3782 		 * we need to retry dwc2_hsotg_handle_rx if this is still
3783 		 * set.
3784 		 */
3785 
3786 		dwc2_hsotg_handle_rx(hsotg);
3787 	}
3788 
3789 	if (gintsts & GINTSTS_ERLYSUSP) {
3790 		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3791 		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3792 	}
3793 
3794 	/*
3795 	 * these next two seem to crop-up occasionally causing the core
3796 	 * to shutdown the USB transfer, so try clearing them and logging
3797 	 * the occurrence.
3798 	 */
3799 
3800 	if (gintsts & GINTSTS_GOUTNAKEFF) {
3801 		u8 idx;
3802 		u32 epctrl;
3803 		u32 gintmsk;
3804 		u32 daintmsk;
3805 		struct dwc2_hsotg_ep *hs_ep;
3806 
3807 		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3808 		daintmsk >>= DAINT_OUTEP_SHIFT;
3809 		/* Mask this interrupt */
3810 		gintmsk = dwc2_readl(hsotg, GINTMSK);
3811 		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3812 		dwc2_writel(hsotg, gintmsk, GINTMSK);
3813 
3814 		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3815 		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3816 			hs_ep = hsotg->eps_out[idx];
3817 			/* Proceed only unmasked ISOC EPs */
3818 			if (BIT(idx) & ~daintmsk)
3819 				continue;
3820 
3821 			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3822 
3823 			//ISOC Ep's only
3824 			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3825 				epctrl |= DXEPCTL_SNAK;
3826 				epctrl |= DXEPCTL_EPDIS;
3827 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3828 				continue;
3829 			}
3830 
3831 			//Non-ISOC EP's
3832 			if (hs_ep->halted) {
3833 				if (!(epctrl & DXEPCTL_EPENA))
3834 					epctrl |= DXEPCTL_EPENA;
3835 				epctrl |= DXEPCTL_EPDIS;
3836 				epctrl |= DXEPCTL_STALL;
3837 				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3838 			}
3839 		}
3840 
3841 		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3842 	}
3843 
3844 	if (gintsts & GINTSTS_GINNAKEFF) {
3845 		dev_info(hsotg->dev, "GINNakEff triggered\n");
3846 
3847 		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3848 
3849 		dwc2_hsotg_dump(hsotg);
3850 	}
3851 
3852 	if (gintsts & GINTSTS_INCOMPL_SOIN)
3853 		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3854 
3855 	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3856 		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3857 
3858 	/*
3859 	 * if we've had fifo events, we should try and go around the
3860 	 * loop again to see if there's any point in returning yet.
3861 	 */
3862 
3863 	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3864 		goto irq_retry;
3865 
3866 	/* Check WKUP_ALERT interrupt*/
3867 	if (hsotg->params.service_interval)
3868 		dwc2_gadget_wkup_alert_handler(hsotg);
3869 
3870 	spin_unlock(&hsotg->lock);
3871 
3872 	return IRQ_HANDLED;
3873 }
3874 
3875 static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3876 				   struct dwc2_hsotg_ep *hs_ep)
3877 {
3878 	u32 epctrl_reg;
3879 	u32 epint_reg;
3880 
3881 	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3882 		DOEPCTL(hs_ep->index);
3883 	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3884 		DOEPINT(hs_ep->index);
3885 
3886 	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3887 		hs_ep->name);
3888 
3889 	if (hs_ep->dir_in) {
3890 		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3891 			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3892 			/* Wait for Nak effect */
3893 			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3894 						    DXEPINT_INEPNAKEFF, 100))
3895 				dev_warn(hsotg->dev,
3896 					 "%s: timeout DIEPINT.NAKEFF\n",
3897 					 __func__);
3898 		} else {
3899 			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3900 			/* Wait for Nak effect */
3901 			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3902 						    GINTSTS_GINNAKEFF, 100))
3903 				dev_warn(hsotg->dev,
3904 					 "%s: timeout GINTSTS.GINNAKEFF\n",
3905 					 __func__);
3906 		}
3907 	} else {
3908 		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3909 			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3910 
3911 		/* Wait for global nak to take effect */
3912 		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3913 					    GINTSTS_GOUTNAKEFF, 100))
3914 			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3915 				 __func__);
3916 	}
3917 
3918 	/* Disable ep */
3919 	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3920 
3921 	/* Wait for ep to be disabled */
3922 	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3923 		dev_warn(hsotg->dev,
3924 			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3925 
3926 	/* Clear EPDISBLD interrupt */
3927 	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3928 
3929 	if (hs_ep->dir_in) {
3930 		unsigned short fifo_index;
3931 
3932 		if (hsotg->dedicated_fifos || hs_ep->periodic)
3933 			fifo_index = hs_ep->fifo_index;
3934 		else
3935 			fifo_index = 0;
3936 
3937 		/* Flush TX FIFO */
3938 		dwc2_flush_tx_fifo(hsotg, fifo_index);
3939 
3940 		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3941 		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3942 			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3943 
3944 	} else {
3945 		/* Remove global NAKs */
3946 		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3947 	}
3948 }
3949 
3950 /**
3951  * dwc2_hsotg_ep_enable - enable the given endpoint
3952  * @ep: The USB endpint to configure
3953  * @desc: The USB endpoint descriptor to configure with.
3954  *
3955  * This is called from the USB gadget code's usb_ep_enable().
3956  */
3957 static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3958 				const struct usb_endpoint_descriptor *desc)
3959 {
3960 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3961 	struct dwc2_hsotg *hsotg = hs_ep->parent;
3962 	unsigned long flags;
3963 	unsigned int index = hs_ep->index;
3964 	u32 epctrl_reg;
3965 	u32 epctrl;
3966 	u32 mps;
3967 	u32 mc;
3968 	u32 mask;
3969 	unsigned int dir_in;
3970 	unsigned int i, val, size;
3971 	int ret = 0;
3972 	unsigned char ep_type;
3973 	int desc_num;
3974 
3975 	dev_dbg(hsotg->dev,
3976 		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3977 		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3978 		desc->wMaxPacketSize, desc->bInterval);
3979 
3980 	/* not to be called for EP0 */
3981 	if (index == 0) {
3982 		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3983 		return -EINVAL;
3984 	}
3985 
3986 	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3987 	if (dir_in != hs_ep->dir_in) {
3988 		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3989 		return -EINVAL;
3990 	}
3991 
3992 	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3993 	mps = usb_endpoint_maxp(desc);
3994 	mc = usb_endpoint_maxp_mult(desc);
3995 
3996 	/* ISOC IN in DDMA supported bInterval up to 10 */
3997 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3998 	    dir_in && desc->bInterval > 10) {
3999 		dev_err(hsotg->dev,
4000 			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4001 		return -EINVAL;
4002 	}
4003 
4004 	/* High bandwidth ISOC OUT in DDMA not supported */
4005 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4006 	    !dir_in && mc > 1) {
4007 		dev_err(hsotg->dev,
4008 			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4009 		return -EINVAL;
4010 	}
4011 
4012 	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4013 
4014 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4015 	epctrl = dwc2_readl(hsotg, epctrl_reg);
4016 
4017 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4018 		__func__, epctrl, epctrl_reg);
4019 
4020 	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4021 		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4022 	else
4023 		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4024 
4025 	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4026 	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4027 		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4028 			desc_num * sizeof(struct dwc2_dma_desc),
4029 			&hs_ep->desc_list_dma, GFP_ATOMIC);
4030 		if (!hs_ep->desc_list) {
4031 			ret = -ENOMEM;
4032 			goto error2;
4033 		}
4034 	}
4035 
4036 	spin_lock_irqsave(&hsotg->lock, flags);
4037 
4038 	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4039 	epctrl |= DXEPCTL_MPS(mps);
4040 
4041 	/*
4042 	 * mark the endpoint as active, otherwise the core may ignore
4043 	 * transactions entirely for this endpoint
4044 	 */
4045 	epctrl |= DXEPCTL_USBACTEP;
4046 
4047 	/* update the endpoint state */
4048 	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4049 
4050 	/* default, set to non-periodic */
4051 	hs_ep->isochronous = 0;
4052 	hs_ep->periodic = 0;
4053 	hs_ep->halted = 0;
4054 	hs_ep->interval = desc->bInterval;
4055 
4056 	switch (ep_type) {
4057 	case USB_ENDPOINT_XFER_ISOC:
4058 		epctrl |= DXEPCTL_EPTYPE_ISO;
4059 		epctrl |= DXEPCTL_SETEVENFR;
4060 		hs_ep->isochronous = 1;
4061 		hs_ep->interval = 1 << (desc->bInterval - 1);
4062 		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4063 		hs_ep->next_desc = 0;
4064 		hs_ep->compl_desc = 0;
4065 		if (dir_in) {
4066 			hs_ep->periodic = 1;
4067 			mask = dwc2_readl(hsotg, DIEPMSK);
4068 			mask |= DIEPMSK_NAKMSK;
4069 			dwc2_writel(hsotg, mask, DIEPMSK);
4070 		} else {
4071 			mask = dwc2_readl(hsotg, DOEPMSK);
4072 			mask |= DOEPMSK_OUTTKNEPDISMSK;
4073 			dwc2_writel(hsotg, mask, DOEPMSK);
4074 		}
4075 		break;
4076 
4077 	case USB_ENDPOINT_XFER_BULK:
4078 		epctrl |= DXEPCTL_EPTYPE_BULK;
4079 		break;
4080 
4081 	case USB_ENDPOINT_XFER_INT:
4082 		if (dir_in)
4083 			hs_ep->periodic = 1;
4084 
4085 		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4086 			hs_ep->interval = 1 << (desc->bInterval - 1);
4087 
4088 		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4089 		break;
4090 
4091 	case USB_ENDPOINT_XFER_CONTROL:
4092 		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4093 		break;
4094 	}
4095 
4096 	/*
4097 	 * if the hardware has dedicated fifos, we must give each IN EP
4098 	 * a unique tx-fifo even if it is non-periodic.
4099 	 */
4100 	if (dir_in && hsotg->dedicated_fifos) {
4101 		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4102 		u32 fifo_index = 0;
4103 		u32 fifo_size = UINT_MAX;
4104 
4105 		size = hs_ep->ep.maxpacket * hs_ep->mc;
4106 		for (i = 1; i <= fifo_count; ++i) {
4107 			if (hsotg->fifo_map & (1 << i))
4108 				continue;
4109 			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4110 			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4111 			if (val < size)
4112 				continue;
4113 			/* Search for smallest acceptable fifo */
4114 			if (val < fifo_size) {
4115 				fifo_size = val;
4116 				fifo_index = i;
4117 			}
4118 		}
4119 		if (!fifo_index) {
4120 			dev_err(hsotg->dev,
4121 				"%s: No suitable fifo found\n", __func__);
4122 			ret = -ENOMEM;
4123 			goto error1;
4124 		}
4125 		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4126 		hsotg->fifo_map |= 1 << fifo_index;
4127 		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4128 		hs_ep->fifo_index = fifo_index;
4129 		hs_ep->fifo_size = fifo_size;
4130 	}
4131 
4132 	/* for non control endpoints, set PID to D0 */
4133 	if (index && !hs_ep->isochronous)
4134 		epctrl |= DXEPCTL_SETD0PID;
4135 
4136 	/* WA for Full speed ISOC IN in DDMA mode.
4137 	 * By Clear NAK status of EP, core will send ZLP
4138 	 * to IN token and assert NAK interrupt relying
4139 	 * on TxFIFO status only
4140 	 */
4141 
4142 	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4143 	    hs_ep->isochronous && dir_in) {
4144 		/* The WA applies only to core versions from 2.72a
4145 		 * to 4.00a (including both). Also for FS_IOT_1.00a
4146 		 * and HS_IOT_1.00a.
4147 		 */
4148 		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4149 
4150 		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4151 		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4152 		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4153 		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4154 			epctrl |= DXEPCTL_CNAK;
4155 	}
4156 
4157 	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4158 		__func__, epctrl);
4159 
4160 	dwc2_writel(hsotg, epctrl, epctrl_reg);
4161 	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4162 		__func__, dwc2_readl(hsotg, epctrl_reg));
4163 
4164 	/* enable the endpoint interrupt */
4165 	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4166 
4167 error1:
4168 	spin_unlock_irqrestore(&hsotg->lock, flags);
4169 
4170 error2:
4171 	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4172 		dmam_free_coherent(hsotg->dev, desc_num *
4173 			sizeof(struct dwc2_dma_desc),
4174 			hs_ep->desc_list, hs_ep->desc_list_dma);
4175 		hs_ep->desc_list = NULL;
4176 	}
4177 
4178 	return ret;
4179 }
4180 
4181 /**
4182  * dwc2_hsotg_ep_disable - disable given endpoint
4183  * @ep: The endpoint to disable.
4184  */
4185 static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4186 {
4187 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4188 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4189 	int dir_in = hs_ep->dir_in;
4190 	int index = hs_ep->index;
4191 	u32 epctrl_reg;
4192 	u32 ctrl;
4193 
4194 	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4195 
4196 	if (ep == &hsotg->eps_out[0]->ep) {
4197 		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4198 		return -EINVAL;
4199 	}
4200 
4201 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4202 		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4203 		return -EINVAL;
4204 	}
4205 
4206 	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4207 
4208 	ctrl = dwc2_readl(hsotg, epctrl_reg);
4209 
4210 	if (ctrl & DXEPCTL_EPENA)
4211 		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4212 
4213 	ctrl &= ~DXEPCTL_EPENA;
4214 	ctrl &= ~DXEPCTL_USBACTEP;
4215 	ctrl |= DXEPCTL_SNAK;
4216 
4217 	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4218 	dwc2_writel(hsotg, ctrl, epctrl_reg);
4219 
4220 	/* disable endpoint interrupts */
4221 	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4222 
4223 	/* terminate all requests with shutdown */
4224 	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4225 
4226 	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4227 	hs_ep->fifo_index = 0;
4228 	hs_ep->fifo_size = 0;
4229 
4230 	return 0;
4231 }
4232 
4233 static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4234 {
4235 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4236 	struct dwc2_hsotg *hsotg = hs_ep->parent;
4237 	unsigned long flags;
4238 	int ret;
4239 
4240 	spin_lock_irqsave(&hsotg->lock, flags);
4241 	ret = dwc2_hsotg_ep_disable(ep);
4242 	spin_unlock_irqrestore(&hsotg->lock, flags);
4243 	return ret;
4244 }
4245 
4246 /**
4247  * on_list - check request is on the given endpoint
4248  * @ep: The endpoint to check.
4249  * @test: The request to test if it is on the endpoint.
4250  */
4251 static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4252 {
4253 	struct dwc2_hsotg_req *req, *treq;
4254 
4255 	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4256 		if (req == test)
4257 			return true;
4258 	}
4259 
4260 	return false;
4261 }
4262 
4263 /**
4264  * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4265  * @ep: The endpoint to dequeue.
4266  * @req: The request to be removed from a queue.
4267  */
4268 static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4269 {
4270 	struct dwc2_hsotg_req *hs_req = our_req(req);
4271 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4272 	struct dwc2_hsotg *hs = hs_ep->parent;
4273 	unsigned long flags;
4274 
4275 	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4276 
4277 	spin_lock_irqsave(&hs->lock, flags);
4278 
4279 	if (!on_list(hs_ep, hs_req)) {
4280 		spin_unlock_irqrestore(&hs->lock, flags);
4281 		return -EINVAL;
4282 	}
4283 
4284 	/* Dequeue already started request */
4285 	if (req == &hs_ep->req->req)
4286 		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4287 
4288 	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4289 	spin_unlock_irqrestore(&hs->lock, flags);
4290 
4291 	return 0;
4292 }
4293 
4294 /**
4295  * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4296  * @ep: The endpoint to set halt.
4297  * @value: Set or unset the halt.
4298  * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4299  *       the endpoint is busy processing requests.
4300  *
4301  * We need to stall the endpoint immediately if request comes from set_feature
4302  * protocol command handler.
4303  */
4304 static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4305 {
4306 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4307 	struct dwc2_hsotg *hs = hs_ep->parent;
4308 	int index = hs_ep->index;
4309 	u32 epreg;
4310 	u32 epctl;
4311 	u32 xfertype;
4312 
4313 	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4314 
4315 	if (index == 0) {
4316 		if (value)
4317 			dwc2_hsotg_stall_ep0(hs);
4318 		else
4319 			dev_warn(hs->dev,
4320 				 "%s: can't clear halt on ep0\n", __func__);
4321 		return 0;
4322 	}
4323 
4324 	if (hs_ep->isochronous) {
4325 		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4326 		return -EINVAL;
4327 	}
4328 
4329 	if (!now && value && !list_empty(&hs_ep->queue)) {
4330 		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4331 			ep->name);
4332 		return -EAGAIN;
4333 	}
4334 
4335 	if (hs_ep->dir_in) {
4336 		epreg = DIEPCTL(index);
4337 		epctl = dwc2_readl(hs, epreg);
4338 
4339 		if (value) {
4340 			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4341 			if (epctl & DXEPCTL_EPENA)
4342 				epctl |= DXEPCTL_EPDIS;
4343 		} else {
4344 			epctl &= ~DXEPCTL_STALL;
4345 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4346 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4347 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4348 				epctl |= DXEPCTL_SETD0PID;
4349 		}
4350 		dwc2_writel(hs, epctl, epreg);
4351 	} else {
4352 		epreg = DOEPCTL(index);
4353 		epctl = dwc2_readl(hs, epreg);
4354 
4355 		if (value) {
4356 			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4357 				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4358 			// STALL bit will be set in GOUTNAKEFF interrupt handler
4359 		} else {
4360 			epctl &= ~DXEPCTL_STALL;
4361 			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4362 			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4363 			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4364 				epctl |= DXEPCTL_SETD0PID;
4365 			dwc2_writel(hs, epctl, epreg);
4366 		}
4367 	}
4368 
4369 	hs_ep->halted = value;
4370 	return 0;
4371 }
4372 
4373 /**
4374  * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4375  * @ep: The endpoint to set halt.
4376  * @value: Set or unset the halt.
4377  */
4378 static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4379 {
4380 	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4381 	struct dwc2_hsotg *hs = hs_ep->parent;
4382 	unsigned long flags = 0;
4383 	int ret = 0;
4384 
4385 	spin_lock_irqsave(&hs->lock, flags);
4386 	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4387 	spin_unlock_irqrestore(&hs->lock, flags);
4388 
4389 	return ret;
4390 }
4391 
4392 static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4393 	.enable		= dwc2_hsotg_ep_enable,
4394 	.disable	= dwc2_hsotg_ep_disable_lock,
4395 	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4396 	.free_request	= dwc2_hsotg_ep_free_request,
4397 	.queue		= dwc2_hsotg_ep_queue_lock,
4398 	.dequeue	= dwc2_hsotg_ep_dequeue,
4399 	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4400 	/* note, don't believe we have any call for the fifo routines */
4401 };
4402 
4403 /**
4404  * dwc2_hsotg_init - initialize the usb core
4405  * @hsotg: The driver state
4406  */
4407 static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4408 {
4409 	/* unmask subset of endpoint interrupts */
4410 
4411 	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4412 		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4413 		    DIEPMSK);
4414 
4415 	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4416 		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4417 		    DOEPMSK);
4418 
4419 	dwc2_writel(hsotg, 0, DAINTMSK);
4420 
4421 	/* Be in disconnected state until gadget is registered */
4422 	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4423 
4424 	/* setup fifos */
4425 
4426 	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4427 		dwc2_readl(hsotg, GRXFSIZ),
4428 		dwc2_readl(hsotg, GNPTXFSIZ));
4429 
4430 	dwc2_hsotg_init_fifo(hsotg);
4431 
4432 	if (using_dma(hsotg))
4433 		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4434 }
4435 
4436 /**
4437  * dwc2_hsotg_udc_start - prepare the udc for work
4438  * @gadget: The usb gadget state
4439  * @driver: The usb gadget driver
4440  *
4441  * Perform initialization to prepare udc device and driver
4442  * to work.
4443  */
4444 static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4445 				struct usb_gadget_driver *driver)
4446 {
4447 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4448 	unsigned long flags;
4449 	int ret;
4450 
4451 	if (!hsotg) {
4452 		pr_err("%s: called with no device\n", __func__);
4453 		return -ENODEV;
4454 	}
4455 
4456 	if (!driver) {
4457 		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4458 		return -EINVAL;
4459 	}
4460 
4461 	if (driver->max_speed < USB_SPEED_FULL)
4462 		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4463 
4464 	if (!driver->setup) {
4465 		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4466 		return -EINVAL;
4467 	}
4468 
4469 	WARN_ON(hsotg->driver);
4470 
4471 	driver->driver.bus = NULL;
4472 	hsotg->driver = driver;
4473 	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4474 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4475 
4476 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4477 		ret = dwc2_lowlevel_hw_enable(hsotg);
4478 		if (ret)
4479 			goto err;
4480 	}
4481 
4482 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4483 		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4484 
4485 	spin_lock_irqsave(&hsotg->lock, flags);
4486 	if (dwc2_hw_is_device(hsotg)) {
4487 		dwc2_hsotg_init(hsotg);
4488 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4489 	}
4490 
4491 	hsotg->enabled = 0;
4492 	spin_unlock_irqrestore(&hsotg->lock, flags);
4493 
4494 	gadget->sg_supported = using_desc_dma(hsotg);
4495 	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4496 
4497 	return 0;
4498 
4499 err:
4500 	hsotg->driver = NULL;
4501 	return ret;
4502 }
4503 
4504 /**
4505  * dwc2_hsotg_udc_stop - stop the udc
4506  * @gadget: The usb gadget state
4507  *
4508  * Stop udc hw block and stay tunned for future transmissions
4509  */
4510 static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4511 {
4512 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4513 	unsigned long flags = 0;
4514 	int ep;
4515 
4516 	if (!hsotg)
4517 		return -ENODEV;
4518 
4519 	/* all endpoints should be shutdown */
4520 	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4521 		if (hsotg->eps_in[ep])
4522 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4523 		if (hsotg->eps_out[ep])
4524 			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4525 	}
4526 
4527 	spin_lock_irqsave(&hsotg->lock, flags);
4528 
4529 	hsotg->driver = NULL;
4530 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4531 	hsotg->enabled = 0;
4532 
4533 	spin_unlock_irqrestore(&hsotg->lock, flags);
4534 
4535 	if (!IS_ERR_OR_NULL(hsotg->uphy))
4536 		otg_set_peripheral(hsotg->uphy->otg, NULL);
4537 
4538 	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4539 		dwc2_lowlevel_hw_disable(hsotg);
4540 
4541 	return 0;
4542 }
4543 
4544 /**
4545  * dwc2_hsotg_gadget_getframe - read the frame number
4546  * @gadget: The usb gadget state
4547  *
4548  * Read the {micro} frame number
4549  */
4550 static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4551 {
4552 	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4553 }
4554 
4555 /**
4556  * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4557  * @gadget: The usb gadget state
4558  * @is_selfpowered: Whether the device is self-powered
4559  *
4560  * Set if the device is self or bus powered.
4561  */
4562 static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4563 				      int is_selfpowered)
4564 {
4565 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4566 	unsigned long flags;
4567 
4568 	spin_lock_irqsave(&hsotg->lock, flags);
4569 	gadget->is_selfpowered = !!is_selfpowered;
4570 	spin_unlock_irqrestore(&hsotg->lock, flags);
4571 
4572 	return 0;
4573 }
4574 
4575 /**
4576  * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4577  * @gadget: The usb gadget state
4578  * @is_on: Current state of the USB PHY
4579  *
4580  * Connect/Disconnect the USB PHY pullup
4581  */
4582 static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4583 {
4584 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4585 	unsigned long flags = 0;
4586 
4587 	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4588 		hsotg->op_state);
4589 
4590 	/* Don't modify pullup state while in host mode */
4591 	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4592 		hsotg->enabled = is_on;
4593 		return 0;
4594 	}
4595 
4596 	spin_lock_irqsave(&hsotg->lock, flags);
4597 	if (is_on) {
4598 		hsotg->enabled = 1;
4599 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4600 		/* Enable ACG feature in device mode,if supported */
4601 		dwc2_enable_acg(hsotg);
4602 		dwc2_hsotg_core_connect(hsotg);
4603 	} else {
4604 		dwc2_hsotg_core_disconnect(hsotg);
4605 		dwc2_hsotg_disconnect(hsotg);
4606 		hsotg->enabled = 0;
4607 	}
4608 
4609 	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4610 	spin_unlock_irqrestore(&hsotg->lock, flags);
4611 
4612 	return 0;
4613 }
4614 
4615 static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4616 {
4617 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4618 	unsigned long flags;
4619 
4620 	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4621 	spin_lock_irqsave(&hsotg->lock, flags);
4622 
4623 	/*
4624 	 * If controller is hibernated, it must exit from power_down
4625 	 * before being initialized / de-initialized
4626 	 */
4627 	if (hsotg->lx_state == DWC2_L2)
4628 		dwc2_exit_partial_power_down(hsotg, false);
4629 
4630 	if (is_active) {
4631 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4632 
4633 		dwc2_hsotg_core_init_disconnected(hsotg, false);
4634 		if (hsotg->enabled) {
4635 			/* Enable ACG feature in device mode,if supported */
4636 			dwc2_enable_acg(hsotg);
4637 			dwc2_hsotg_core_connect(hsotg);
4638 		}
4639 	} else {
4640 		dwc2_hsotg_core_disconnect(hsotg);
4641 		dwc2_hsotg_disconnect(hsotg);
4642 	}
4643 
4644 	spin_unlock_irqrestore(&hsotg->lock, flags);
4645 	return 0;
4646 }
4647 
4648 /**
4649  * dwc2_hsotg_vbus_draw - report bMaxPower field
4650  * @gadget: The usb gadget state
4651  * @mA: Amount of current
4652  *
4653  * Report how much power the device may consume to the phy.
4654  */
4655 static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4656 {
4657 	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4658 
4659 	if (IS_ERR_OR_NULL(hsotg->uphy))
4660 		return -ENOTSUPP;
4661 	return usb_phy_set_power(hsotg->uphy, mA);
4662 }
4663 
4664 static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4665 	.get_frame	= dwc2_hsotg_gadget_getframe,
4666 	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4667 	.udc_start		= dwc2_hsotg_udc_start,
4668 	.udc_stop		= dwc2_hsotg_udc_stop,
4669 	.pullup                 = dwc2_hsotg_pullup,
4670 	.vbus_session		= dwc2_hsotg_vbus_session,
4671 	.vbus_draw		= dwc2_hsotg_vbus_draw,
4672 };
4673 
4674 /**
4675  * dwc2_hsotg_initep - initialise a single endpoint
4676  * @hsotg: The device state.
4677  * @hs_ep: The endpoint to be initialised.
4678  * @epnum: The endpoint number
4679  * @dir_in: True if direction is in.
4680  *
4681  * Initialise the given endpoint (as part of the probe and device state
4682  * creation) to give to the gadget driver. Setup the endpoint name, any
4683  * direction information and other state that may be required.
4684  */
4685 static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4686 			      struct dwc2_hsotg_ep *hs_ep,
4687 				       int epnum,
4688 				       bool dir_in)
4689 {
4690 	char *dir;
4691 
4692 	if (epnum == 0)
4693 		dir = "";
4694 	else if (dir_in)
4695 		dir = "in";
4696 	else
4697 		dir = "out";
4698 
4699 	hs_ep->dir_in = dir_in;
4700 	hs_ep->index = epnum;
4701 
4702 	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4703 
4704 	INIT_LIST_HEAD(&hs_ep->queue);
4705 	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4706 
4707 	/* add to the list of endpoints known by the gadget driver */
4708 	if (epnum)
4709 		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4710 
4711 	hs_ep->parent = hsotg;
4712 	hs_ep->ep.name = hs_ep->name;
4713 
4714 	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4715 		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4716 	else
4717 		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4718 					   epnum ? 1024 : EP0_MPS_LIMIT);
4719 	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4720 
4721 	if (epnum == 0) {
4722 		hs_ep->ep.caps.type_control = true;
4723 	} else {
4724 		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4725 			hs_ep->ep.caps.type_iso = true;
4726 			hs_ep->ep.caps.type_bulk = true;
4727 		}
4728 		hs_ep->ep.caps.type_int = true;
4729 	}
4730 
4731 	if (dir_in)
4732 		hs_ep->ep.caps.dir_in = true;
4733 	else
4734 		hs_ep->ep.caps.dir_out = true;
4735 
4736 	/*
4737 	 * if we're using dma, we need to set the next-endpoint pointer
4738 	 * to be something valid.
4739 	 */
4740 
4741 	if (using_dma(hsotg)) {
4742 		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4743 
4744 		if (dir_in)
4745 			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4746 		else
4747 			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4748 	}
4749 }
4750 
4751 /**
4752  * dwc2_hsotg_hw_cfg - read HW configuration registers
4753  * @hsotg: Programming view of the DWC_otg controller
4754  *
4755  * Read the USB core HW configuration registers
4756  */
4757 static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4758 {
4759 	u32 cfg;
4760 	u32 ep_type;
4761 	u32 i;
4762 
4763 	/* check hardware configuration */
4764 
4765 	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4766 
4767 	/* Add ep0 */
4768 	hsotg->num_of_eps++;
4769 
4770 	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4771 					sizeof(struct dwc2_hsotg_ep),
4772 					GFP_KERNEL);
4773 	if (!hsotg->eps_in[0])
4774 		return -ENOMEM;
4775 	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4776 	hsotg->eps_out[0] = hsotg->eps_in[0];
4777 
4778 	cfg = hsotg->hw_params.dev_ep_dirs;
4779 	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4780 		ep_type = cfg & 3;
4781 		/* Direction in or both */
4782 		if (!(ep_type & 2)) {
4783 			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4784 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4785 			if (!hsotg->eps_in[i])
4786 				return -ENOMEM;
4787 		}
4788 		/* Direction out or both */
4789 		if (!(ep_type & 1)) {
4790 			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4791 				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4792 			if (!hsotg->eps_out[i])
4793 				return -ENOMEM;
4794 		}
4795 	}
4796 
4797 	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4798 	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4799 
4800 	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4801 		 hsotg->num_of_eps,
4802 		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4803 		 hsotg->fifo_mem);
4804 	return 0;
4805 }
4806 
4807 /**
4808  * dwc2_hsotg_dump - dump state of the udc
4809  * @hsotg: Programming view of the DWC_otg controller
4810  *
4811  */
4812 static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4813 {
4814 #ifdef DEBUG
4815 	struct device *dev = hsotg->dev;
4816 	u32 val;
4817 	int idx;
4818 
4819 	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4820 		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4821 		 dwc2_readl(hsotg, DIEPMSK));
4822 
4823 	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4824 		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4825 
4826 	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4827 		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4828 
4829 	/* show periodic fifo settings */
4830 
4831 	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4832 		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4833 		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4834 			 val >> FIFOSIZE_DEPTH_SHIFT,
4835 			 val & FIFOSIZE_STARTADDR_MASK);
4836 	}
4837 
4838 	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4839 		dev_info(dev,
4840 			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4841 			 dwc2_readl(hsotg, DIEPCTL(idx)),
4842 			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4843 			 dwc2_readl(hsotg, DIEPDMA(idx)));
4844 
4845 		val = dwc2_readl(hsotg, DOEPCTL(idx));
4846 		dev_info(dev,
4847 			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4848 			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4849 			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4850 			 dwc2_readl(hsotg, DOEPDMA(idx)));
4851 	}
4852 
4853 	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4854 		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4855 #endif
4856 }
4857 
4858 /**
4859  * dwc2_gadget_init - init function for gadget
4860  * @hsotg: Programming view of the DWC_otg controller
4861  *
4862  */
4863 int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4864 {
4865 	struct device *dev = hsotg->dev;
4866 	int epnum;
4867 	int ret;
4868 
4869 	/* Dump fifo information */
4870 	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4871 		hsotg->params.g_np_tx_fifo_size);
4872 	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4873 
4874 	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4875 	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4876 	hsotg->gadget.name = dev_name(dev);
4877 	hsotg->remote_wakeup_allowed = 0;
4878 
4879 	if (hsotg->params.lpm)
4880 		hsotg->gadget.lpm_capable = true;
4881 
4882 	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4883 		hsotg->gadget.is_otg = 1;
4884 	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4885 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4886 
4887 	ret = dwc2_hsotg_hw_cfg(hsotg);
4888 	if (ret) {
4889 		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4890 		return ret;
4891 	}
4892 
4893 	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4894 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4895 	if (!hsotg->ctrl_buff)
4896 		return -ENOMEM;
4897 
4898 	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4899 			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4900 	if (!hsotg->ep0_buff)
4901 		return -ENOMEM;
4902 
4903 	if (using_desc_dma(hsotg)) {
4904 		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4905 		if (ret < 0)
4906 			return ret;
4907 	}
4908 
4909 	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4910 			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4911 	if (ret < 0) {
4912 		dev_err(dev, "cannot claim IRQ for gadget\n");
4913 		return ret;
4914 	}
4915 
4916 	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4917 
4918 	if (hsotg->num_of_eps == 0) {
4919 		dev_err(dev, "wrong number of EPs (zero)\n");
4920 		return -EINVAL;
4921 	}
4922 
4923 	/* setup endpoint information */
4924 
4925 	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4926 	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4927 
4928 	/* allocate EP0 request */
4929 
4930 	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4931 						     GFP_KERNEL);
4932 	if (!hsotg->ctrl_req) {
4933 		dev_err(dev, "failed to allocate ctrl req\n");
4934 		return -ENOMEM;
4935 	}
4936 
4937 	/* initialise the endpoints now the core has been initialised */
4938 	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4939 		if (hsotg->eps_in[epnum])
4940 			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4941 					  epnum, 1);
4942 		if (hsotg->eps_out[epnum])
4943 			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4944 					  epnum, 0);
4945 	}
4946 
4947 	dwc2_hsotg_dump(hsotg);
4948 
4949 	return 0;
4950 }
4951 
4952 /**
4953  * dwc2_hsotg_remove - remove function for hsotg driver
4954  * @hsotg: Programming view of the DWC_otg controller
4955  *
4956  */
4957 int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4958 {
4959 	usb_del_gadget_udc(&hsotg->gadget);
4960 	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4961 
4962 	return 0;
4963 }
4964 
4965 int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4966 {
4967 	unsigned long flags;
4968 
4969 	if (hsotg->lx_state != DWC2_L0)
4970 		return 0;
4971 
4972 	if (hsotg->driver) {
4973 		int ep;
4974 
4975 		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4976 			 hsotg->driver->driver.name);
4977 
4978 		spin_lock_irqsave(&hsotg->lock, flags);
4979 		if (hsotg->enabled)
4980 			dwc2_hsotg_core_disconnect(hsotg);
4981 		dwc2_hsotg_disconnect(hsotg);
4982 		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4983 		spin_unlock_irqrestore(&hsotg->lock, flags);
4984 
4985 		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4986 			if (hsotg->eps_in[ep])
4987 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4988 			if (hsotg->eps_out[ep])
4989 				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4990 		}
4991 	}
4992 
4993 	return 0;
4994 }
4995 
4996 int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4997 {
4998 	unsigned long flags;
4999 
5000 	if (hsotg->lx_state == DWC2_L2)
5001 		return 0;
5002 
5003 	if (hsotg->driver) {
5004 		dev_info(hsotg->dev, "resuming usb gadget %s\n",
5005 			 hsotg->driver->driver.name);
5006 
5007 		spin_lock_irqsave(&hsotg->lock, flags);
5008 		dwc2_hsotg_core_init_disconnected(hsotg, false);
5009 		if (hsotg->enabled) {
5010 			/* Enable ACG feature in device mode,if supported */
5011 			dwc2_enable_acg(hsotg);
5012 			dwc2_hsotg_core_connect(hsotg);
5013 		}
5014 		spin_unlock_irqrestore(&hsotg->lock, flags);
5015 	}
5016 
5017 	return 0;
5018 }
5019 
5020 /**
5021  * dwc2_backup_device_registers() - Backup controller device registers.
5022  * When suspending usb bus, registers needs to be backuped
5023  * if controller power is disabled once suspended.
5024  *
5025  * @hsotg: Programming view of the DWC_otg controller
5026  */
5027 int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5028 {
5029 	struct dwc2_dregs_backup *dr;
5030 	int i;
5031 
5032 	dev_dbg(hsotg->dev, "%s\n", __func__);
5033 
5034 	/* Backup dev regs */
5035 	dr = &hsotg->dr_backup;
5036 
5037 	dr->dcfg = dwc2_readl(hsotg, DCFG);
5038 	dr->dctl = dwc2_readl(hsotg, DCTL);
5039 	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5040 	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5041 	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5042 
5043 	for (i = 0; i < hsotg->num_of_eps; i++) {
5044 		/* Backup IN EPs */
5045 		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5046 
5047 		/* Ensure DATA PID is correctly configured */
5048 		if (dr->diepctl[i] & DXEPCTL_DPID)
5049 			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5050 		else
5051 			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5052 
5053 		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5054 		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5055 
5056 		/* Backup OUT EPs */
5057 		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5058 
5059 		/* Ensure DATA PID is correctly configured */
5060 		if (dr->doepctl[i] & DXEPCTL_DPID)
5061 			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5062 		else
5063 			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5064 
5065 		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5066 		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5067 		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5068 	}
5069 	dr->valid = true;
5070 	return 0;
5071 }
5072 
5073 /**
5074  * dwc2_restore_device_registers() - Restore controller device registers.
5075  * When resuming usb bus, device registers needs to be restored
5076  * if controller power were disabled.
5077  *
5078  * @hsotg: Programming view of the DWC_otg controller
5079  * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5080  *
5081  * Return: 0 if successful, negative error code otherwise
5082  */
5083 int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5084 {
5085 	struct dwc2_dregs_backup *dr;
5086 	int i;
5087 
5088 	dev_dbg(hsotg->dev, "%s\n", __func__);
5089 
5090 	/* Restore dev regs */
5091 	dr = &hsotg->dr_backup;
5092 	if (!dr->valid) {
5093 		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5094 			__func__);
5095 		return -EINVAL;
5096 	}
5097 	dr->valid = false;
5098 
5099 	if (!remote_wakeup)
5100 		dwc2_writel(hsotg, dr->dctl, DCTL);
5101 
5102 	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5103 	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5104 	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5105 
5106 	for (i = 0; i < hsotg->num_of_eps; i++) {
5107 		/* Restore IN EPs */
5108 		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5109 		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5110 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5111 		/** WA for enabled EPx's IN in DDMA mode. On entering to
5112 		 * hibernation wrong value read and saved from DIEPDMAx,
5113 		 * as result BNA interrupt asserted on hibernation exit
5114 		 * by restoring from saved area.
5115 		 */
5116 		if (hsotg->params.g_dma_desc &&
5117 		    (dr->diepctl[i] & DXEPCTL_EPENA))
5118 			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5119 		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5120 		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5121 		/* Restore OUT EPs */
5122 		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5123 		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5124 		 * hibernation wrong value read and saved from DOEPDMAx,
5125 		 * as result BNA interrupt asserted on hibernation exit
5126 		 * by restoring from saved area.
5127 		 */
5128 		if (hsotg->params.g_dma_desc &&
5129 		    (dr->doepctl[i] & DXEPCTL_EPENA))
5130 			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5131 		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5132 		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5133 	}
5134 
5135 	return 0;
5136 }
5137 
5138 /**
5139  * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5140  *
5141  * @hsotg: Programming view of DWC_otg controller
5142  *
5143  */
5144 void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5145 {
5146 	u32 val;
5147 
5148 	if (!hsotg->params.lpm)
5149 		return;
5150 
5151 	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5152 	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5153 	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5154 	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5155 	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5156 	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5157 	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5158 	dwc2_writel(hsotg, val, GLPMCFG);
5159 	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5160 
5161 	/* Unmask WKUP_ALERT Interrupt */
5162 	if (hsotg->params.service_interval)
5163 		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5164 }
5165 
5166 /**
5167  * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5168  *
5169  * @hsotg: Programming view of DWC_otg controller
5170  *
5171  */
5172 void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5173 {
5174 	u32 val = 0;
5175 
5176 	val |= GREFCLK_REF_CLK_MODE;
5177 	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5178 	val |= hsotg->params.sof_cnt_wkup_alert <<
5179 	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5180 
5181 	dwc2_writel(hsotg, val, GREFCLK);
5182 	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5183 }
5184 
5185 /**
5186  * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5187  *
5188  * @hsotg: Programming view of the DWC_otg controller
5189  *
5190  * Return non-zero if failed to enter to hibernation.
5191  */
5192 int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5193 {
5194 	u32 gpwrdn;
5195 	int ret = 0;
5196 
5197 	/* Change to L2(suspend) state */
5198 	hsotg->lx_state = DWC2_L2;
5199 	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5200 	ret = dwc2_backup_global_registers(hsotg);
5201 	if (ret) {
5202 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5203 			__func__);
5204 		return ret;
5205 	}
5206 	ret = dwc2_backup_device_registers(hsotg);
5207 	if (ret) {
5208 		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5209 			__func__);
5210 		return ret;
5211 	}
5212 
5213 	gpwrdn = GPWRDN_PWRDNRSTN;
5214 	gpwrdn |= GPWRDN_PMUACTV;
5215 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5216 	udelay(10);
5217 
5218 	/* Set flag to indicate that we are in hibernation */
5219 	hsotg->hibernated = 1;
5220 
5221 	/* Enable interrupts from wake up logic */
5222 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5223 	gpwrdn |= GPWRDN_PMUINTSEL;
5224 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5225 	udelay(10);
5226 
5227 	/* Unmask device mode interrupts in GPWRDN */
5228 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5229 	gpwrdn |= GPWRDN_RST_DET_MSK;
5230 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5231 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5232 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5233 	udelay(10);
5234 
5235 	/* Enable Power Down Clamp */
5236 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5237 	gpwrdn |= GPWRDN_PWRDNCLMP;
5238 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5239 	udelay(10);
5240 
5241 	/* Switch off VDD */
5242 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5243 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5244 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5245 	udelay(10);
5246 
5247 	/* Save gpwrdn register for further usage if stschng interrupt */
5248 	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5249 	dev_dbg(hsotg->dev, "Hibernation completed\n");
5250 
5251 	return ret;
5252 }
5253 
5254 /**
5255  * dwc2_gadget_exit_hibernation()
5256  * This function is for exiting from Device mode hibernation by host initiated
5257  * resume/reset and device initiated remote-wakeup.
5258  *
5259  * @hsotg: Programming view of the DWC_otg controller
5260  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5261  * @reset: indicates whether resume is initiated by Reset.
5262  *
5263  * Return non-zero if failed to exit from hibernation.
5264  */
5265 int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5266 				 int rem_wakeup, int reset)
5267 {
5268 	u32 pcgcctl;
5269 	u32 gpwrdn;
5270 	u32 dctl;
5271 	int ret = 0;
5272 	struct dwc2_gregs_backup *gr;
5273 	struct dwc2_dregs_backup *dr;
5274 
5275 	gr = &hsotg->gr_backup;
5276 	dr = &hsotg->dr_backup;
5277 
5278 	if (!hsotg->hibernated) {
5279 		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5280 		return 1;
5281 	}
5282 	dev_dbg(hsotg->dev,
5283 		"%s: called with rem_wakeup = %d reset = %d\n",
5284 		__func__, rem_wakeup, reset);
5285 
5286 	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5287 
5288 	if (!reset) {
5289 		/* Clear all pending interupts */
5290 		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5291 	}
5292 
5293 	/* De-assert Restore */
5294 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5295 	gpwrdn &= ~GPWRDN_RESTORE;
5296 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5297 	udelay(10);
5298 
5299 	if (!rem_wakeup) {
5300 		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5301 		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5302 		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5303 	}
5304 
5305 	/* Restore GUSBCFG, DCFG and DCTL */
5306 	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5307 	dwc2_writel(hsotg, dr->dcfg, DCFG);
5308 	dwc2_writel(hsotg, dr->dctl, DCTL);
5309 
5310 	/* De-assert Wakeup Logic */
5311 	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5312 	gpwrdn &= ~GPWRDN_PMUACTV;
5313 	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5314 
5315 	if (rem_wakeup) {
5316 		udelay(10);
5317 		/* Start Remote Wakeup Signaling */
5318 		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5319 	} else {
5320 		udelay(50);
5321 		/* Set Device programming done bit */
5322 		dctl = dwc2_readl(hsotg, DCTL);
5323 		dctl |= DCTL_PWRONPRGDONE;
5324 		dwc2_writel(hsotg, dctl, DCTL);
5325 	}
5326 	/* Wait for interrupts which must be cleared */
5327 	mdelay(2);
5328 	/* Clear all pending interupts */
5329 	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5330 
5331 	/* Restore global registers */
5332 	ret = dwc2_restore_global_registers(hsotg);
5333 	if (ret) {
5334 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5335 			__func__);
5336 		return ret;
5337 	}
5338 
5339 	/* Restore device registers */
5340 	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5341 	if (ret) {
5342 		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5343 			__func__);
5344 		return ret;
5345 	}
5346 
5347 	if (rem_wakeup) {
5348 		mdelay(10);
5349 		dctl = dwc2_readl(hsotg, DCTL);
5350 		dctl &= ~DCTL_RMTWKUPSIG;
5351 		dwc2_writel(hsotg, dctl, DCTL);
5352 	}
5353 
5354 	hsotg->hibernated = 0;
5355 	hsotg->lx_state = DWC2_L0;
5356 	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5357 
5358 	return ret;
5359 }
5360