xref: /openbmc/linux/drivers/usb/core/usb.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/mutex.h>
36 #include <linux/workqueue.h>
37 
38 #include <asm/io.h>
39 #include <asm/scatterlist.h>
40 #include <linux/mm.h>
41 #include <linux/dma-mapping.h>
42 
43 #include "hcd.h"
44 #include "usb.h"
45 
46 
47 const char *usbcore_name = "usbcore";
48 
49 static int nousb;	/* Disable USB when built into kernel image */
50 
51 /* Workqueue for autosuspend and for remote wakeup of root hubs */
52 struct workqueue_struct *ksuspend_usb_wq;
53 
54 #ifdef	CONFIG_USB_SUSPEND
55 static int usb_autosuspend_delay = 2;		/* Default delay value,
56 						 * in seconds */
57 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
58 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
59 
60 #else
61 #define usb_autosuspend_delay		0
62 #endif
63 
64 
65 /**
66  * usb_ifnum_to_if - get the interface object with a given interface number
67  * @dev: the device whose current configuration is considered
68  * @ifnum: the desired interface
69  *
70  * This walks the device descriptor for the currently active configuration
71  * and returns a pointer to the interface with that particular interface
72  * number, or null.
73  *
74  * Note that configuration descriptors are not required to assign interface
75  * numbers sequentially, so that it would be incorrect to assume that
76  * the first interface in that descriptor corresponds to interface zero.
77  * This routine helps device drivers avoid such mistakes.
78  * However, you should make sure that you do the right thing with any
79  * alternate settings available for this interfaces.
80  *
81  * Don't call this function unless you are bound to one of the interfaces
82  * on this device or you have locked the device!
83  */
84 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
85 				      unsigned ifnum)
86 {
87 	struct usb_host_config *config = dev->actconfig;
88 	int i;
89 
90 	if (!config)
91 		return NULL;
92 	for (i = 0; i < config->desc.bNumInterfaces; i++)
93 		if (config->interface[i]->altsetting[0]
94 				.desc.bInterfaceNumber == ifnum)
95 			return config->interface[i];
96 
97 	return NULL;
98 }
99 
100 /**
101  * usb_altnum_to_altsetting - get the altsetting structure with a given
102  *	alternate setting number.
103  * @intf: the interface containing the altsetting in question
104  * @altnum: the desired alternate setting number
105  *
106  * This searches the altsetting array of the specified interface for
107  * an entry with the correct bAlternateSetting value and returns a pointer
108  * to that entry, or null.
109  *
110  * Note that altsettings need not be stored sequentially by number, so
111  * it would be incorrect to assume that the first altsetting entry in
112  * the array corresponds to altsetting zero.  This routine helps device
113  * drivers avoid such mistakes.
114  *
115  * Don't call this function unless you are bound to the intf interface
116  * or you have locked the device!
117  */
118 struct usb_host_interface *usb_altnum_to_altsetting(const struct usb_interface *intf,
119 						    unsigned int altnum)
120 {
121 	int i;
122 
123 	for (i = 0; i < intf->num_altsetting; i++) {
124 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
125 			return &intf->altsetting[i];
126 	}
127 	return NULL;
128 }
129 
130 struct find_interface_arg {
131 	int minor;
132 	struct usb_interface *interface;
133 };
134 
135 static int __find_interface(struct device * dev, void * data)
136 {
137 	struct find_interface_arg *arg = data;
138 	struct usb_interface *intf;
139 
140 	/* can't look at usb devices, only interfaces */
141 	if (is_usb_device(dev))
142 		return 0;
143 
144 	intf = to_usb_interface(dev);
145 	if (intf->minor != -1 && intf->minor == arg->minor) {
146 		arg->interface = intf;
147 		return 1;
148 	}
149 	return 0;
150 }
151 
152 /**
153  * usb_find_interface - find usb_interface pointer for driver and device
154  * @drv: the driver whose current configuration is considered
155  * @minor: the minor number of the desired device
156  *
157  * This walks the driver device list and returns a pointer to the interface
158  * with the matching minor.  Note, this only works for devices that share the
159  * USB major number.
160  */
161 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
162 {
163 	struct find_interface_arg argb;
164 	int retval;
165 
166 	argb.minor = minor;
167 	argb.interface = NULL;
168 	/* eat the error, it will be in argb.interface */
169 	retval = driver_for_each_device(&drv->drvwrap.driver, NULL, &argb,
170 					__find_interface);
171 	return argb.interface;
172 }
173 
174 /**
175  * usb_release_dev - free a usb device structure when all users of it are finished.
176  * @dev: device that's been disconnected
177  *
178  * Will be called only by the device core when all users of this usb device are
179  * done.
180  */
181 static void usb_release_dev(struct device *dev)
182 {
183 	struct usb_device *udev;
184 
185 	udev = to_usb_device(dev);
186 
187 	usb_destroy_configuration(udev);
188 	usb_put_hcd(bus_to_hcd(udev->bus));
189 	kfree(udev->product);
190 	kfree(udev->manufacturer);
191 	kfree(udev->serial);
192 	kfree(udev);
193 }
194 
195 struct device_type usb_device_type = {
196 	.name =		"usb_device",
197 	.release =	usb_release_dev,
198 };
199 
200 #ifdef	CONFIG_PM
201 
202 static int ksuspend_usb_init(void)
203 {
204 	/* This workqueue is supposed to be both freezable and
205 	 * singlethreaded.  Its job doesn't justify running on more
206 	 * than one CPU.
207 	 */
208 	ksuspend_usb_wq = create_freezeable_workqueue("ksuspend_usbd");
209 	if (!ksuspend_usb_wq)
210 		return -ENOMEM;
211 	return 0;
212 }
213 
214 static void ksuspend_usb_cleanup(void)
215 {
216 	destroy_workqueue(ksuspend_usb_wq);
217 }
218 
219 #else
220 
221 #define ksuspend_usb_init()	0
222 #define ksuspend_usb_cleanup()	do {} while (0)
223 
224 #endif	/* CONFIG_PM */
225 
226 
227 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
228 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
229 {
230 	struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
231 	return hcd->wireless;
232 }
233 
234 
235 /**
236  * usb_alloc_dev - usb device constructor (usbcore-internal)
237  * @parent: hub to which device is connected; null to allocate a root hub
238  * @bus: bus used to access the device
239  * @port1: one-based index of port; ignored for root hubs
240  * Context: !in_interrupt()
241  *
242  * Only hub drivers (including virtual root hub drivers for host
243  * controllers) should ever call this.
244  *
245  * This call may not be used in a non-sleeping context.
246  */
247 struct usb_device *
248 usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
249 {
250 	struct usb_device *dev;
251 	struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
252 	unsigned root_hub = 0;
253 
254 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
255 	if (!dev)
256 		return NULL;
257 
258 	if (!usb_get_hcd(bus_to_hcd(bus))) {
259 		kfree(dev);
260 		return NULL;
261 	}
262 
263 	device_initialize(&dev->dev);
264 	dev->dev.bus = &usb_bus_type;
265 	dev->dev.type = &usb_device_type;
266 	dev->dev.dma_mask = bus->controller->dma_mask;
267 	set_dev_node(&dev->dev, dev_to_node(bus->controller));
268 	dev->state = USB_STATE_ATTACHED;
269 	atomic_set(&dev->urbnum, 0);
270 
271 	INIT_LIST_HEAD(&dev->ep0.urb_list);
272 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
273 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
274 	/* ep0 maxpacket comes later, from device descriptor */
275 	usb_enable_endpoint(dev, &dev->ep0);
276 	dev->can_submit = 1;
277 
278 	/* Save readable and stable topology id, distinguishing devices
279 	 * by location for diagnostics, tools, driver model, etc.  The
280 	 * string is a path along hub ports, from the root.  Each device's
281 	 * dev->devpath will be stable until USB is re-cabled, and hubs
282 	 * are often labeled with these port numbers.  The bus_id isn't
283 	 * as stable:  bus->busnum changes easily from modprobe order,
284 	 * cardbus or pci hotplugging, and so on.
285 	 */
286 	if (unlikely(!parent)) {
287 		dev->devpath[0] = '0';
288 
289 		dev->dev.parent = bus->controller;
290 		sprintf(&dev->dev.bus_id[0], "usb%d", bus->busnum);
291 		root_hub = 1;
292 	} else {
293 		/* match any labeling on the hubs; it's one-based */
294 		if (parent->devpath[0] == '0')
295 			snprintf(dev->devpath, sizeof dev->devpath,
296 				"%d", port1);
297 		else
298 			snprintf(dev->devpath, sizeof dev->devpath,
299 				"%s.%d", parent->devpath, port1);
300 
301 		dev->dev.parent = &parent->dev;
302 		sprintf(&dev->dev.bus_id[0], "%d-%s",
303 			bus->busnum, dev->devpath);
304 
305 		/* hub driver sets up TT records */
306 	}
307 
308 	dev->portnum = port1;
309 	dev->bus = bus;
310 	dev->parent = parent;
311 	INIT_LIST_HEAD(&dev->filelist);
312 
313 #ifdef	CONFIG_PM
314 	mutex_init(&dev->pm_mutex);
315 	INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work);
316 	dev->autosuspend_delay = usb_autosuspend_delay * HZ;
317 #endif
318 	if (root_hub)	/* Root hub always ok [and always wired] */
319 		dev->authorized = 1;
320 	else {
321 		dev->authorized = usb_hcd->authorized_default;
322 		dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
323 	}
324 	return dev;
325 }
326 
327 /**
328  * usb_get_dev - increments the reference count of the usb device structure
329  * @dev: the device being referenced
330  *
331  * Each live reference to a device should be refcounted.
332  *
333  * Drivers for USB interfaces should normally record such references in
334  * their probe() methods, when they bind to an interface, and release
335  * them by calling usb_put_dev(), in their disconnect() methods.
336  *
337  * A pointer to the device with the incremented reference counter is returned.
338  */
339 struct usb_device *usb_get_dev(struct usb_device *dev)
340 {
341 	if (dev)
342 		get_device(&dev->dev);
343 	return dev;
344 }
345 
346 /**
347  * usb_put_dev - release a use of the usb device structure
348  * @dev: device that's been disconnected
349  *
350  * Must be called when a user of a device is finished with it.  When the last
351  * user of the device calls this function, the memory of the device is freed.
352  */
353 void usb_put_dev(struct usb_device *dev)
354 {
355 	if (dev)
356 		put_device(&dev->dev);
357 }
358 
359 /**
360  * usb_get_intf - increments the reference count of the usb interface structure
361  * @intf: the interface being referenced
362  *
363  * Each live reference to a interface must be refcounted.
364  *
365  * Drivers for USB interfaces should normally record such references in
366  * their probe() methods, when they bind to an interface, and release
367  * them by calling usb_put_intf(), in their disconnect() methods.
368  *
369  * A pointer to the interface with the incremented reference counter is
370  * returned.
371  */
372 struct usb_interface *usb_get_intf(struct usb_interface *intf)
373 {
374 	if (intf)
375 		get_device(&intf->dev);
376 	return intf;
377 }
378 
379 /**
380  * usb_put_intf - release a use of the usb interface structure
381  * @intf: interface that's been decremented
382  *
383  * Must be called when a user of an interface is finished with it.  When the
384  * last user of the interface calls this function, the memory of the interface
385  * is freed.
386  */
387 void usb_put_intf(struct usb_interface *intf)
388 {
389 	if (intf)
390 		put_device(&intf->dev);
391 }
392 
393 
394 /*			USB device locking
395  *
396  * USB devices and interfaces are locked using the semaphore in their
397  * embedded struct device.  The hub driver guarantees that whenever a
398  * device is connected or disconnected, drivers are called with the
399  * USB device locked as well as their particular interface.
400  *
401  * Complications arise when several devices are to be locked at the same
402  * time.  Only hub-aware drivers that are part of usbcore ever have to
403  * do this; nobody else needs to worry about it.  The rule for locking
404  * is simple:
405  *
406  *	When locking both a device and its parent, always lock the
407  *	the parent first.
408  */
409 
410 /**
411  * usb_lock_device_for_reset - cautiously acquire the lock for a
412  *	usb device structure
413  * @udev: device that's being locked
414  * @iface: interface bound to the driver making the request (optional)
415  *
416  * Attempts to acquire the device lock, but fails if the device is
417  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
418  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
419  * lock, the routine polls repeatedly.  This is to prevent deadlock with
420  * disconnect; in some drivers (such as usb-storage) the disconnect()
421  * or suspend() method will block waiting for a device reset to complete.
422  *
423  * Returns a negative error code for failure, otherwise 1 or 0 to indicate
424  * that the device will or will not have to be unlocked.  (0 can be
425  * returned when an interface is given and is BINDING, because in that
426  * case the driver already owns the device lock.)
427  */
428 int usb_lock_device_for_reset(struct usb_device *udev,
429 			      const struct usb_interface *iface)
430 {
431 	unsigned long jiffies_expire = jiffies + HZ;
432 
433 	if (udev->state == USB_STATE_NOTATTACHED)
434 		return -ENODEV;
435 	if (udev->state == USB_STATE_SUSPENDED)
436 		return -EHOSTUNREACH;
437 	if (iface) {
438 		switch (iface->condition) {
439 		  case USB_INTERFACE_BINDING:
440 			return 0;
441 		  case USB_INTERFACE_BOUND:
442 			break;
443 		  default:
444 			return -EINTR;
445 		}
446 	}
447 
448 	while (usb_trylock_device(udev) != 0) {
449 
450 		/* If we can't acquire the lock after waiting one second,
451 		 * we're probably deadlocked */
452 		if (time_after(jiffies, jiffies_expire))
453 			return -EBUSY;
454 
455 		msleep(15);
456 		if (udev->state == USB_STATE_NOTATTACHED)
457 			return -ENODEV;
458 		if (udev->state == USB_STATE_SUSPENDED)
459 			return -EHOSTUNREACH;
460 		if (iface && iface->condition != USB_INTERFACE_BOUND)
461 			return -EINTR;
462 	}
463 	return 1;
464 }
465 
466 
467 static struct usb_device *match_device(struct usb_device *dev,
468 				       u16 vendor_id, u16 product_id)
469 {
470 	struct usb_device *ret_dev = NULL;
471 	int child;
472 
473 	dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
474 	    le16_to_cpu(dev->descriptor.idVendor),
475 	    le16_to_cpu(dev->descriptor.idProduct));
476 
477 	/* see if this device matches */
478 	if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
479 	    (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
480 		dev_dbg(&dev->dev, "matched this device!\n");
481 		ret_dev = usb_get_dev(dev);
482 		goto exit;
483 	}
484 
485 	/* look through all of the children of this device */
486 	for (child = 0; child < dev->maxchild; ++child) {
487 		if (dev->children[child]) {
488 			usb_lock_device(dev->children[child]);
489 			ret_dev = match_device(dev->children[child],
490 					       vendor_id, product_id);
491 			usb_unlock_device(dev->children[child]);
492 			if (ret_dev)
493 				goto exit;
494 		}
495 	}
496 exit:
497 	return ret_dev;
498 }
499 
500 /**
501  * usb_find_device - find a specific usb device in the system
502  * @vendor_id: the vendor id of the device to find
503  * @product_id: the product id of the device to find
504  *
505  * Returns a pointer to a struct usb_device if such a specified usb
506  * device is present in the system currently.  The usage count of the
507  * device will be incremented if a device is found.  Make sure to call
508  * usb_put_dev() when the caller is finished with the device.
509  *
510  * If a device with the specified vendor and product id is not found,
511  * NULL is returned.
512  */
513 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
514 {
515 	struct list_head *buslist;
516 	struct usb_bus *bus;
517 	struct usb_device *dev = NULL;
518 
519 	mutex_lock(&usb_bus_list_lock);
520 	for (buslist = usb_bus_list.next;
521 	     buslist != &usb_bus_list;
522 	     buslist = buslist->next) {
523 		bus = container_of(buslist, struct usb_bus, bus_list);
524 		if (!bus->root_hub)
525 			continue;
526 		usb_lock_device(bus->root_hub);
527 		dev = match_device(bus->root_hub, vendor_id, product_id);
528 		usb_unlock_device(bus->root_hub);
529 		if (dev)
530 			goto exit;
531 	}
532 exit:
533 	mutex_unlock(&usb_bus_list_lock);
534 	return dev;
535 }
536 
537 /**
538  * usb_get_current_frame_number - return current bus frame number
539  * @dev: the device whose bus is being queried
540  *
541  * Returns the current frame number for the USB host controller
542  * used with the given USB device.  This can be used when scheduling
543  * isochronous requests.
544  *
545  * Note that different kinds of host controller have different
546  * "scheduling horizons".  While one type might support scheduling only
547  * 32 frames into the future, others could support scheduling up to
548  * 1024 frames into the future.
549  */
550 int usb_get_current_frame_number(struct usb_device *dev)
551 {
552 	return usb_hcd_get_frame_number(dev);
553 }
554 
555 /*-------------------------------------------------------------------*/
556 /*
557  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
558  * extra field of the interface and endpoint descriptor structs.
559  */
560 
561 int __usb_get_extra_descriptor(char *buffer, unsigned size,
562 	unsigned char type, void **ptr)
563 {
564 	struct usb_descriptor_header *header;
565 
566 	while (size >= sizeof(struct usb_descriptor_header)) {
567 		header = (struct usb_descriptor_header *)buffer;
568 
569 		if (header->bLength < 2) {
570 			printk(KERN_ERR
571 				"%s: bogus descriptor, type %d length %d\n",
572 				usbcore_name,
573 				header->bDescriptorType,
574 				header->bLength);
575 			return -1;
576 		}
577 
578 		if (header->bDescriptorType == type) {
579 			*ptr = header;
580 			return 0;
581 		}
582 
583 		buffer += header->bLength;
584 		size -= header->bLength;
585 	}
586 	return -1;
587 }
588 
589 /**
590  * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
591  * @dev: device the buffer will be used with
592  * @size: requested buffer size
593  * @mem_flags: affect whether allocation may block
594  * @dma: used to return DMA address of buffer
595  *
596  * Return value is either null (indicating no buffer could be allocated), or
597  * the cpu-space pointer to a buffer that may be used to perform DMA to the
598  * specified device.  Such cpu-space buffers are returned along with the DMA
599  * address (through the pointer provided).
600  *
601  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
602  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
603  * hardware during URB completion/resubmit.  The implementation varies between
604  * platforms, depending on details of how DMA will work to this device.
605  * Using these buffers also eliminates cacheline sharing problems on
606  * architectures where CPU caches are not DMA-coherent.  On systems without
607  * bus-snooping caches, these buffers are uncached.
608  *
609  * When the buffer is no longer used, free it with usb_buffer_free().
610  */
611 void *usb_buffer_alloc(
612 	struct usb_device *dev,
613 	size_t size,
614 	gfp_t mem_flags,
615 	dma_addr_t *dma
616 )
617 {
618 	if (!dev || !dev->bus)
619 		return NULL;
620 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
621 }
622 
623 /**
624  * usb_buffer_free - free memory allocated with usb_buffer_alloc()
625  * @dev: device the buffer was used with
626  * @size: requested buffer size
627  * @addr: CPU address of buffer
628  * @dma: DMA address of buffer
629  *
630  * This reclaims an I/O buffer, letting it be reused.  The memory must have
631  * been allocated using usb_buffer_alloc(), and the parameters must match
632  * those provided in that allocation request.
633  */
634 void usb_buffer_free(
635 	struct usb_device *dev,
636 	size_t size,
637 	void *addr,
638 	dma_addr_t dma
639 )
640 {
641 	if (!dev || !dev->bus)
642 		return;
643 	if (!addr)
644 		return;
645 	hcd_buffer_free(dev->bus, size, addr, dma);
646 }
647 
648 /**
649  * usb_buffer_map - create DMA mapping(s) for an urb
650  * @urb: urb whose transfer_buffer/setup_packet will be mapped
651  *
652  * Return value is either null (indicating no buffer could be mapped), or
653  * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
654  * added to urb->transfer_flags if the operation succeeds.  If the device
655  * is connected to this system through a non-DMA controller, this operation
656  * always succeeds.
657  *
658  * This call would normally be used for an urb which is reused, perhaps
659  * as the target of a large periodic transfer, with usb_buffer_dmasync()
660  * calls to synchronize memory and dma state.
661  *
662  * Reverse the effect of this call with usb_buffer_unmap().
663  */
664 #if 0
665 struct urb *usb_buffer_map(struct urb *urb)
666 {
667 	struct usb_bus		*bus;
668 	struct device		*controller;
669 
670 	if (!urb
671 			|| !urb->dev
672 			|| !(bus = urb->dev->bus)
673 			|| !(controller = bus->controller))
674 		return NULL;
675 
676 	if (controller->dma_mask) {
677 		urb->transfer_dma = dma_map_single(controller,
678 			urb->transfer_buffer, urb->transfer_buffer_length,
679 			usb_pipein(urb->pipe)
680 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
681 		if (usb_pipecontrol(urb->pipe))
682 			urb->setup_dma = dma_map_single(controller,
683 					urb->setup_packet,
684 					sizeof(struct usb_ctrlrequest),
685 					DMA_TO_DEVICE);
686 	// FIXME generic api broken like pci, can't report errors
687 	// if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
688 	} else
689 		urb->transfer_dma = ~0;
690 	urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
691 				| URB_NO_SETUP_DMA_MAP);
692 	return urb;
693 }
694 #endif  /*  0  */
695 
696 /* XXX DISABLED, no users currently.  If you wish to re-enable this
697  * XXX please determine whether the sync is to transfer ownership of
698  * XXX the buffer from device to cpu or vice verse, and thusly use the
699  * XXX appropriate _for_{cpu,device}() method.  -DaveM
700  */
701 #if 0
702 
703 /**
704  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
705  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
706  */
707 void usb_buffer_dmasync(struct urb *urb)
708 {
709 	struct usb_bus		*bus;
710 	struct device		*controller;
711 
712 	if (!urb
713 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
714 			|| !urb->dev
715 			|| !(bus = urb->dev->bus)
716 			|| !(controller = bus->controller))
717 		return;
718 
719 	if (controller->dma_mask) {
720 		dma_sync_single(controller,
721 			urb->transfer_dma, urb->transfer_buffer_length,
722 			usb_pipein(urb->pipe)
723 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
724 		if (usb_pipecontrol(urb->pipe))
725 			dma_sync_single(controller,
726 					urb->setup_dma,
727 					sizeof(struct usb_ctrlrequest),
728 					DMA_TO_DEVICE);
729 	}
730 }
731 #endif
732 
733 /**
734  * usb_buffer_unmap - free DMA mapping(s) for an urb
735  * @urb: urb whose transfer_buffer will be unmapped
736  *
737  * Reverses the effect of usb_buffer_map().
738  */
739 #if 0
740 void usb_buffer_unmap(struct urb *urb)
741 {
742 	struct usb_bus		*bus;
743 	struct device		*controller;
744 
745 	if (!urb
746 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
747 			|| !urb->dev
748 			|| !(bus = urb->dev->bus)
749 			|| !(controller = bus->controller))
750 		return;
751 
752 	if (controller->dma_mask) {
753 		dma_unmap_single(controller,
754 			urb->transfer_dma, urb->transfer_buffer_length,
755 			usb_pipein(urb->pipe)
756 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
757 		if (usb_pipecontrol(urb->pipe))
758 			dma_unmap_single(controller,
759 					urb->setup_dma,
760 					sizeof(struct usb_ctrlrequest),
761 					DMA_TO_DEVICE);
762 	}
763 	urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
764 				| URB_NO_SETUP_DMA_MAP);
765 }
766 #endif  /*  0  */
767 
768 /**
769  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
770  * @dev: device to which the scatterlist will be mapped
771  * @is_in: mapping transfer direction
772  * @sg: the scatterlist to map
773  * @nents: the number of entries in the scatterlist
774  *
775  * Return value is either < 0 (indicating no buffers could be mapped), or
776  * the number of DMA mapping array entries in the scatterlist.
777  *
778  * The caller is responsible for placing the resulting DMA addresses from
779  * the scatterlist into URB transfer buffer pointers, and for setting the
780  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
781  *
782  * Top I/O rates come from queuing URBs, instead of waiting for each one
783  * to complete before starting the next I/O.   This is particularly easy
784  * to do with scatterlists.  Just allocate and submit one URB for each DMA
785  * mapping entry returned, stopping on the first error or when all succeed.
786  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
787  *
788  * This call would normally be used when translating scatterlist requests,
789  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
790  * may be able to coalesce mappings for improved I/O efficiency.
791  *
792  * Reverse the effect of this call with usb_buffer_unmap_sg().
793  */
794 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
795 		      struct scatterlist *sg, int nents)
796 {
797 	struct usb_bus		*bus;
798 	struct device		*controller;
799 
800 	if (!dev
801 			|| !(bus = dev->bus)
802 			|| !(controller = bus->controller)
803 			|| !controller->dma_mask)
804 		return -1;
805 
806 	// FIXME generic api broken like pci, can't report errors
807 	return dma_map_sg(controller, sg, nents,
808 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
809 }
810 
811 /* XXX DISABLED, no users currently.  If you wish to re-enable this
812  * XXX please determine whether the sync is to transfer ownership of
813  * XXX the buffer from device to cpu or vice verse, and thusly use the
814  * XXX appropriate _for_{cpu,device}() method.  -DaveM
815  */
816 #if 0
817 
818 /**
819  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
820  * @dev: device to which the scatterlist will be mapped
821  * @is_in: mapping transfer direction
822  * @sg: the scatterlist to synchronize
823  * @n_hw_ents: the positive return value from usb_buffer_map_sg
824  *
825  * Use this when you are re-using a scatterlist's data buffers for
826  * another USB request.
827  */
828 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
829 			   struct scatterlist *sg, int n_hw_ents)
830 {
831 	struct usb_bus		*bus;
832 	struct device		*controller;
833 
834 	if (!dev
835 			|| !(bus = dev->bus)
836 			|| !(controller = bus->controller)
837 			|| !controller->dma_mask)
838 		return;
839 
840 	dma_sync_sg(controller, sg, n_hw_ents,
841 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
842 }
843 #endif
844 
845 /**
846  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
847  * @dev: device to which the scatterlist will be mapped
848  * @is_in: mapping transfer direction
849  * @sg: the scatterlist to unmap
850  * @n_hw_ents: the positive return value from usb_buffer_map_sg
851  *
852  * Reverses the effect of usb_buffer_map_sg().
853  */
854 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
855 			 struct scatterlist *sg, int n_hw_ents)
856 {
857 	struct usb_bus		*bus;
858 	struct device		*controller;
859 
860 	if (!dev
861 			|| !(bus = dev->bus)
862 			|| !(controller = bus->controller)
863 			|| !controller->dma_mask)
864 		return;
865 
866 	dma_unmap_sg(controller, sg, n_hw_ents,
867 			is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
868 }
869 
870 /* format to disable USB on kernel command line is: nousb */
871 __module_param_call("", nousb, param_set_bool, param_get_bool, &nousb, 0444);
872 
873 /*
874  * for external read access to <nousb>
875  */
876 int usb_disabled(void)
877 {
878 	return nousb;
879 }
880 
881 /*
882  * Init
883  */
884 static int __init usb_init(void)
885 {
886 	int retval;
887 	if (nousb) {
888 		pr_info("%s: USB support disabled\n", usbcore_name);
889 		return 0;
890 	}
891 
892 	retval = ksuspend_usb_init();
893 	if (retval)
894 		goto out;
895 	retval = bus_register(&usb_bus_type);
896 	if (retval)
897 		goto bus_register_failed;
898 	retval = usb_host_init();
899 	if (retval)
900 		goto host_init_failed;
901 	retval = usb_major_init();
902 	if (retval)
903 		goto major_init_failed;
904 	retval = usb_register(&usbfs_driver);
905 	if (retval)
906 		goto driver_register_failed;
907 	retval = usb_devio_init();
908 	if (retval)
909 		goto usb_devio_init_failed;
910 	retval = usbfs_init();
911 	if (retval)
912 		goto fs_init_failed;
913 	retval = usb_hub_init();
914 	if (retval)
915 		goto hub_init_failed;
916 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
917 	if (!retval)
918 		goto out;
919 
920 	usb_hub_cleanup();
921 hub_init_failed:
922 	usbfs_cleanup();
923 fs_init_failed:
924 	usb_devio_cleanup();
925 usb_devio_init_failed:
926 	usb_deregister(&usbfs_driver);
927 driver_register_failed:
928 	usb_major_cleanup();
929 major_init_failed:
930 	usb_host_cleanup();
931 host_init_failed:
932 	bus_unregister(&usb_bus_type);
933 bus_register_failed:
934 	ksuspend_usb_cleanup();
935 out:
936 	return retval;
937 }
938 
939 /*
940  * Cleanup
941  */
942 static void __exit usb_exit(void)
943 {
944 	/* This will matter if shutdown/reboot does exitcalls. */
945 	if (nousb)
946 		return;
947 
948 	usb_deregister_device_driver(&usb_generic_driver);
949 	usb_major_cleanup();
950 	usbfs_cleanup();
951 	usb_deregister(&usbfs_driver);
952 	usb_devio_cleanup();
953 	usb_hub_cleanup();
954 	usb_host_cleanup();
955 	bus_unregister(&usb_bus_type);
956 	ksuspend_usb_cleanup();
957 }
958 
959 subsys_initcall(usb_init);
960 module_exit(usb_exit);
961 
962 /*
963  * USB may be built into the kernel or be built as modules.
964  * These symbols are exported for device (or host controller)
965  * driver modules to use.
966  */
967 
968 EXPORT_SYMBOL(usb_disabled);
969 
970 EXPORT_SYMBOL_GPL(usb_get_intf);
971 EXPORT_SYMBOL_GPL(usb_put_intf);
972 
973 EXPORT_SYMBOL(usb_put_dev);
974 EXPORT_SYMBOL(usb_get_dev);
975 EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
976 
977 EXPORT_SYMBOL(usb_lock_device_for_reset);
978 
979 EXPORT_SYMBOL(usb_find_interface);
980 EXPORT_SYMBOL(usb_ifnum_to_if);
981 EXPORT_SYMBOL(usb_altnum_to_altsetting);
982 
983 EXPORT_SYMBOL(__usb_get_extra_descriptor);
984 
985 EXPORT_SYMBOL(usb_get_current_frame_number);
986 
987 EXPORT_SYMBOL(usb_buffer_alloc);
988 EXPORT_SYMBOL(usb_buffer_free);
989 
990 #if 0
991 EXPORT_SYMBOL(usb_buffer_map);
992 EXPORT_SYMBOL(usb_buffer_dmasync);
993 EXPORT_SYMBOL(usb_buffer_unmap);
994 #endif
995 
996 EXPORT_SYMBOL(usb_buffer_map_sg);
997 #if 0
998 EXPORT_SYMBOL(usb_buffer_dmasync_sg);
999 #endif
1000 EXPORT_SYMBOL(usb_buffer_unmap_sg);
1001 
1002 MODULE_LICENSE("GPL");
1003