xref: /openbmc/linux/drivers/usb/core/usb.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * drivers/usb/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23 
24 #include <linux/config.h>
25 
26 #ifdef CONFIG_USB_DEBUG
27 	#define DEBUG
28 #else
29 	#undef DEBUG
30 #endif
31 
32 #include <linux/module.h>
33 #include <linux/string.h>
34 #include <linux/bitops.h>
35 #include <linux/slab.h>
36 #include <linux/interrupt.h>  /* for in_interrupt() */
37 #include <linux/kmod.h>
38 #include <linux/init.h>
39 #include <linux/spinlock.h>
40 #include <linux/errno.h>
41 #include <linux/smp_lock.h>
42 #include <linux/rwsem.h>
43 #include <linux/usb.h>
44 
45 #include <asm/io.h>
46 #include <asm/scatterlist.h>
47 #include <linux/mm.h>
48 #include <linux/dma-mapping.h>
49 
50 #include "hcd.h"
51 #include "usb.h"
52 
53 extern int  usb_hub_init(void);
54 extern void usb_hub_cleanup(void);
55 extern int usb_major_init(void);
56 extern void usb_major_cleanup(void);
57 extern int usb_host_init(void);
58 extern void usb_host_cleanup(void);
59 
60 
61 const char *usbcore_name = "usbcore";
62 
63 static int nousb;	/* Disable USB when built into kernel image */
64 			/* Not honored on modular build */
65 
66 static DECLARE_RWSEM(usb_all_devices_rwsem);
67 
68 
69 static int generic_probe (struct device *dev)
70 {
71 	return 0;
72 }
73 static int generic_remove (struct device *dev)
74 {
75 	return 0;
76 }
77 
78 static struct device_driver usb_generic_driver = {
79 	.owner = THIS_MODULE,
80 	.name =	"usb",
81 	.bus = &usb_bus_type,
82 	.probe = generic_probe,
83 	.remove = generic_remove,
84 };
85 
86 static int usb_generic_driver_data;
87 
88 /* called from driver core with usb_bus_type.subsys writelock */
89 static int usb_probe_interface(struct device *dev)
90 {
91 	struct usb_interface * intf = to_usb_interface(dev);
92 	struct usb_driver * driver = to_usb_driver(dev->driver);
93 	const struct usb_device_id *id;
94 	int error = -ENODEV;
95 
96 	dev_dbg(dev, "%s\n", __FUNCTION__);
97 
98 	if (!driver->probe)
99 		return error;
100 	/* FIXME we'd much prefer to just resume it ... */
101 	if (interface_to_usbdev(intf)->state == USB_STATE_SUSPENDED)
102 		return -EHOSTUNREACH;
103 
104 	id = usb_match_id (intf, driver->id_table);
105 	if (id) {
106 		dev_dbg (dev, "%s - got id\n", __FUNCTION__);
107 		intf->condition = USB_INTERFACE_BINDING;
108 		error = driver->probe (intf, id);
109 		intf->condition = error ? USB_INTERFACE_UNBOUND :
110 				USB_INTERFACE_BOUND;
111 	}
112 
113 	return error;
114 }
115 
116 /* called from driver core with usb_bus_type.subsys writelock */
117 static int usb_unbind_interface(struct device *dev)
118 {
119 	struct usb_interface *intf = to_usb_interface(dev);
120 	struct usb_driver *driver = to_usb_driver(intf->dev.driver);
121 
122 	intf->condition = USB_INTERFACE_UNBINDING;
123 
124 	/* release all urbs for this interface */
125 	usb_disable_interface(interface_to_usbdev(intf), intf);
126 
127 	if (driver && driver->disconnect)
128 		driver->disconnect(intf);
129 
130 	/* reset other interface state */
131 	usb_set_interface(interface_to_usbdev(intf),
132 			intf->altsetting[0].desc.bInterfaceNumber,
133 			0);
134 	usb_set_intfdata(intf, NULL);
135 	intf->condition = USB_INTERFACE_UNBOUND;
136 
137 	return 0;
138 }
139 
140 /**
141  * usb_register - register a USB driver
142  * @new_driver: USB operations for the driver
143  *
144  * Registers a USB driver with the USB core.  The list of unattached
145  * interfaces will be rescanned whenever a new driver is added, allowing
146  * the new driver to attach to any recognized devices.
147  * Returns a negative error code on failure and 0 on success.
148  *
149  * NOTE: if you want your driver to use the USB major number, you must call
150  * usb_register_dev() to enable that functionality.  This function no longer
151  * takes care of that.
152  */
153 int usb_register(struct usb_driver *new_driver)
154 {
155 	int retval = 0;
156 
157 	if (nousb)
158 		return -ENODEV;
159 
160 	new_driver->driver.name = (char *)new_driver->name;
161 	new_driver->driver.bus = &usb_bus_type;
162 	new_driver->driver.probe = usb_probe_interface;
163 	new_driver->driver.remove = usb_unbind_interface;
164 	new_driver->driver.owner = new_driver->owner;
165 
166 	usb_lock_all_devices();
167 	retval = driver_register(&new_driver->driver);
168 	usb_unlock_all_devices();
169 
170 	if (!retval) {
171 		pr_info("%s: registered new driver %s\n",
172 			usbcore_name, new_driver->name);
173 		usbfs_update_special();
174 	} else {
175 		printk(KERN_ERR "%s: error %d registering driver %s\n",
176 			usbcore_name, retval, new_driver->name);
177 	}
178 
179 	return retval;
180 }
181 
182 /**
183  * usb_deregister - unregister a USB driver
184  * @driver: USB operations of the driver to unregister
185  * Context: must be able to sleep
186  *
187  * Unlinks the specified driver from the internal USB driver list.
188  *
189  * NOTE: If you called usb_register_dev(), you still need to call
190  * usb_deregister_dev() to clean up your driver's allocated minor numbers,
191  * this * call will no longer do it for you.
192  */
193 void usb_deregister(struct usb_driver *driver)
194 {
195 	pr_info("%s: deregistering driver %s\n", usbcore_name, driver->name);
196 
197 	usb_lock_all_devices();
198 	driver_unregister (&driver->driver);
199 	usb_unlock_all_devices();
200 
201 	usbfs_update_special();
202 }
203 
204 /**
205  * usb_ifnum_to_if - get the interface object with a given interface number
206  * @dev: the device whose current configuration is considered
207  * @ifnum: the desired interface
208  *
209  * This walks the device descriptor for the currently active configuration
210  * and returns a pointer to the interface with that particular interface
211  * number, or null.
212  *
213  * Note that configuration descriptors are not required to assign interface
214  * numbers sequentially, so that it would be incorrect to assume that
215  * the first interface in that descriptor corresponds to interface zero.
216  * This routine helps device drivers avoid such mistakes.
217  * However, you should make sure that you do the right thing with any
218  * alternate settings available for this interfaces.
219  *
220  * Don't call this function unless you are bound to one of the interfaces
221  * on this device or you have locked the device!
222  */
223 struct usb_interface *usb_ifnum_to_if(struct usb_device *dev, unsigned ifnum)
224 {
225 	struct usb_host_config *config = dev->actconfig;
226 	int i;
227 
228 	if (!config)
229 		return NULL;
230 	for (i = 0; i < config->desc.bNumInterfaces; i++)
231 		if (config->interface[i]->altsetting[0]
232 				.desc.bInterfaceNumber == ifnum)
233 			return config->interface[i];
234 
235 	return NULL;
236 }
237 
238 /**
239  * usb_altnum_to_altsetting - get the altsetting structure with a given
240  *	alternate setting number.
241  * @intf: the interface containing the altsetting in question
242  * @altnum: the desired alternate setting number
243  *
244  * This searches the altsetting array of the specified interface for
245  * an entry with the correct bAlternateSetting value and returns a pointer
246  * to that entry, or null.
247  *
248  * Note that altsettings need not be stored sequentially by number, so
249  * it would be incorrect to assume that the first altsetting entry in
250  * the array corresponds to altsetting zero.  This routine helps device
251  * drivers avoid such mistakes.
252  *
253  * Don't call this function unless you are bound to the intf interface
254  * or you have locked the device!
255  */
256 struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface *intf,
257 		unsigned int altnum)
258 {
259 	int i;
260 
261 	for (i = 0; i < intf->num_altsetting; i++) {
262 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
263 			return &intf->altsetting[i];
264 	}
265 	return NULL;
266 }
267 
268 /**
269  * usb_driver_claim_interface - bind a driver to an interface
270  * @driver: the driver to be bound
271  * @iface: the interface to which it will be bound; must be in the
272  *	usb device's active configuration
273  * @priv: driver data associated with that interface
274  *
275  * This is used by usb device drivers that need to claim more than one
276  * interface on a device when probing (audio and acm are current examples).
277  * No device driver should directly modify internal usb_interface or
278  * usb_device structure members.
279  *
280  * Few drivers should need to use this routine, since the most natural
281  * way to bind to an interface is to return the private data from
282  * the driver's probe() method.
283  *
284  * Callers must own the device lock and the driver model's usb_bus_type.subsys
285  * writelock.  So driver probe() entries don't need extra locking,
286  * but other call contexts may need to explicitly claim those locks.
287  */
288 int usb_driver_claim_interface(struct usb_driver *driver,
289 				struct usb_interface *iface, void* priv)
290 {
291 	struct device *dev = &iface->dev;
292 
293 	if (dev->driver)
294 		return -EBUSY;
295 
296 	dev->driver = &driver->driver;
297 	usb_set_intfdata(iface, priv);
298 	iface->condition = USB_INTERFACE_BOUND;
299 
300 	/* if interface was already added, bind now; else let
301 	 * the future device_add() bind it, bypassing probe()
302 	 */
303 	if (!list_empty (&dev->bus_list))
304 		device_bind_driver(dev);
305 
306 	return 0;
307 }
308 
309 /**
310  * usb_driver_release_interface - unbind a driver from an interface
311  * @driver: the driver to be unbound
312  * @iface: the interface from which it will be unbound
313  *
314  * This can be used by drivers to release an interface without waiting
315  * for their disconnect() methods to be called.  In typical cases this
316  * also causes the driver disconnect() method to be called.
317  *
318  * This call is synchronous, and may not be used in an interrupt context.
319  * Callers must own the device lock and the driver model's usb_bus_type.subsys
320  * writelock.  So driver disconnect() entries don't need extra locking,
321  * but other call contexts may need to explicitly claim those locks.
322  */
323 void usb_driver_release_interface(struct usb_driver *driver,
324 					struct usb_interface *iface)
325 {
326 	struct device *dev = &iface->dev;
327 
328 	/* this should never happen, don't release something that's not ours */
329 	if (!dev->driver || dev->driver != &driver->driver)
330 		return;
331 
332 	/* don't disconnect from disconnect(), or before dev_add() */
333 	if (!list_empty (&dev->driver_list) && !list_empty (&dev->bus_list))
334 		device_release_driver(dev);
335 
336 	dev->driver = NULL;
337 	usb_set_intfdata(iface, NULL);
338 	iface->condition = USB_INTERFACE_UNBOUND;
339 }
340 
341 /**
342  * usb_match_id - find first usb_device_id matching device or interface
343  * @interface: the interface of interest
344  * @id: array of usb_device_id structures, terminated by zero entry
345  *
346  * usb_match_id searches an array of usb_device_id's and returns
347  * the first one matching the device or interface, or null.
348  * This is used when binding (or rebinding) a driver to an interface.
349  * Most USB device drivers will use this indirectly, through the usb core,
350  * but some layered driver frameworks use it directly.
351  * These device tables are exported with MODULE_DEVICE_TABLE, through
352  * modutils and "modules.usbmap", to support the driver loading
353  * functionality of USB hotplugging.
354  *
355  * What Matches:
356  *
357  * The "match_flags" element in a usb_device_id controls which
358  * members are used.  If the corresponding bit is set, the
359  * value in the device_id must match its corresponding member
360  * in the device or interface descriptor, or else the device_id
361  * does not match.
362  *
363  * "driver_info" is normally used only by device drivers,
364  * but you can create a wildcard "matches anything" usb_device_id
365  * as a driver's "modules.usbmap" entry if you provide an id with
366  * only a nonzero "driver_info" field.  If you do this, the USB device
367  * driver's probe() routine should use additional intelligence to
368  * decide whether to bind to the specified interface.
369  *
370  * What Makes Good usb_device_id Tables:
371  *
372  * The match algorithm is very simple, so that intelligence in
373  * driver selection must come from smart driver id records.
374  * Unless you have good reasons to use another selection policy,
375  * provide match elements only in related groups, and order match
376  * specifiers from specific to general.  Use the macros provided
377  * for that purpose if you can.
378  *
379  * The most specific match specifiers use device descriptor
380  * data.  These are commonly used with product-specific matches;
381  * the USB_DEVICE macro lets you provide vendor and product IDs,
382  * and you can also match against ranges of product revisions.
383  * These are widely used for devices with application or vendor
384  * specific bDeviceClass values.
385  *
386  * Matches based on device class/subclass/protocol specifications
387  * are slightly more general; use the USB_DEVICE_INFO macro, or
388  * its siblings.  These are used with single-function devices
389  * where bDeviceClass doesn't specify that each interface has
390  * its own class.
391  *
392  * Matches based on interface class/subclass/protocol are the
393  * most general; they let drivers bind to any interface on a
394  * multiple-function device.  Use the USB_INTERFACE_INFO
395  * macro, or its siblings, to match class-per-interface style
396  * devices (as recorded in bDeviceClass).
397  *
398  * Within those groups, remember that not all combinations are
399  * meaningful.  For example, don't give a product version range
400  * without vendor and product IDs; or specify a protocol without
401  * its associated class and subclass.
402  */
403 const struct usb_device_id *
404 usb_match_id(struct usb_interface *interface, const struct usb_device_id *id)
405 {
406 	struct usb_host_interface *intf;
407 	struct usb_device *dev;
408 
409 	/* proc_connectinfo in devio.c may call us with id == NULL. */
410 	if (id == NULL)
411 		return NULL;
412 
413 	intf = interface->cur_altsetting;
414 	dev = interface_to_usbdev(interface);
415 
416 	/* It is important to check that id->driver_info is nonzero,
417 	   since an entry that is all zeroes except for a nonzero
418 	   id->driver_info is the way to create an entry that
419 	   indicates that the driver want to examine every
420 	   device and interface. */
421 	for (; id->idVendor || id->bDeviceClass || id->bInterfaceClass ||
422 	       id->driver_info; id++) {
423 
424 		if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
425 		    id->idVendor != le16_to_cpu(dev->descriptor.idVendor))
426 			continue;
427 
428 		if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&
429 		    id->idProduct != le16_to_cpu(dev->descriptor.idProduct))
430 			continue;
431 
432 		/* No need to test id->bcdDevice_lo != 0, since 0 is never
433 		   greater than any unsigned number. */
434 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&
435 		    (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice)))
436 			continue;
437 
438 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&
439 		    (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice)))
440 			continue;
441 
442 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&
443 		    (id->bDeviceClass != dev->descriptor.bDeviceClass))
444 			continue;
445 
446 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&
447 		    (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass))
448 			continue;
449 
450 		if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&
451 		    (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol))
452 			continue;
453 
454 		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) &&
455 		    (id->bInterfaceClass != intf->desc.bInterfaceClass))
456 			continue;
457 
458 		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) &&
459 		    (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass))
460 			continue;
461 
462 		if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) &&
463 		    (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol))
464 			continue;
465 
466 		return id;
467 	}
468 
469 	return NULL;
470 }
471 
472 /**
473  * usb_find_interface - find usb_interface pointer for driver and device
474  * @drv: the driver whose current configuration is considered
475  * @minor: the minor number of the desired device
476  *
477  * This walks the driver device list and returns a pointer to the interface
478  * with the matching minor.  Note, this only works for devices that share the
479  * USB major number.
480  */
481 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
482 {
483 	struct list_head *entry;
484 	struct device *dev;
485 	struct usb_interface *intf;
486 
487 	list_for_each(entry, &drv->driver.devices) {
488 		dev = container_of(entry, struct device, driver_list);
489 
490 		/* can't look at usb devices, only interfaces */
491 		if (dev->driver == &usb_generic_driver)
492 			continue;
493 
494 		intf = to_usb_interface(dev);
495 		if (intf->minor == -1)
496 			continue;
497 		if (intf->minor == minor)
498 			return intf;
499 	}
500 
501 	/* no device found that matches */
502 	return NULL;
503 }
504 
505 static int usb_device_match (struct device *dev, struct device_driver *drv)
506 {
507 	struct usb_interface *intf;
508 	struct usb_driver *usb_drv;
509 	const struct usb_device_id *id;
510 
511 	/* check for generic driver, which we don't match any device with */
512 	if (drv == &usb_generic_driver)
513 		return 0;
514 
515 	intf = to_usb_interface(dev);
516 	usb_drv = to_usb_driver(drv);
517 
518 	id = usb_match_id (intf, usb_drv->id_table);
519 	if (id)
520 		return 1;
521 
522 	return 0;
523 }
524 
525 
526 #ifdef	CONFIG_HOTPLUG
527 
528 /*
529  * USB hotplugging invokes what /proc/sys/kernel/hotplug says
530  * (normally /sbin/hotplug) when USB devices get added or removed.
531  *
532  * This invokes a user mode policy agent, typically helping to load driver
533  * or other modules, configure the device, and more.  Drivers can provide
534  * a MODULE_DEVICE_TABLE to help with module loading subtasks.
535  *
536  * We're called either from khubd (the typical case) or from root hub
537  * (init, kapmd, modprobe, rmmod, etc), but the agents need to handle
538  * delays in event delivery.  Use sysfs (and DEVPATH) to make sure the
539  * device (and this configuration!) are still present.
540  */
541 static int usb_hotplug (struct device *dev, char **envp, int num_envp,
542 			char *buffer, int buffer_size)
543 {
544 	struct usb_interface *intf;
545 	struct usb_device *usb_dev;
546 	int i = 0;
547 	int length = 0;
548 
549 	if (!dev)
550 		return -ENODEV;
551 
552 	/* driver is often null here; dev_dbg() would oops */
553 	pr_debug ("usb %s: hotplug\n", dev->bus_id);
554 
555 	/* Must check driver_data here, as on remove driver is always NULL */
556 	if ((dev->driver == &usb_generic_driver) ||
557 	    (dev->driver_data == &usb_generic_driver_data))
558 		return 0;
559 
560 	intf = to_usb_interface(dev);
561 	usb_dev = interface_to_usbdev (intf);
562 
563 	if (usb_dev->devnum < 0) {
564 		pr_debug ("usb %s: already deleted?\n", dev->bus_id);
565 		return -ENODEV;
566 	}
567 	if (!usb_dev->bus) {
568 		pr_debug ("usb %s: bus removed?\n", dev->bus_id);
569 		return -ENODEV;
570 	}
571 
572 #ifdef	CONFIG_USB_DEVICEFS
573 	/* If this is available, userspace programs can directly read
574 	 * all the device descriptors we don't tell them about.  Or
575 	 * even act as usermode drivers.
576 	 *
577 	 * FIXME reduce hardwired intelligence here
578 	 */
579 	if (add_hotplug_env_var(envp, num_envp, &i,
580 				buffer, buffer_size, &length,
581 				"DEVICE=/proc/bus/usb/%03d/%03d",
582 				usb_dev->bus->busnum, usb_dev->devnum))
583 		return -ENOMEM;
584 #endif
585 
586 	/* per-device configurations are common */
587 	if (add_hotplug_env_var(envp, num_envp, &i,
588 				buffer, buffer_size, &length,
589 				"PRODUCT=%x/%x/%x",
590 				le16_to_cpu(usb_dev->descriptor.idVendor),
591 				le16_to_cpu(usb_dev->descriptor.idProduct),
592 				le16_to_cpu(usb_dev->descriptor.bcdDevice)))
593 		return -ENOMEM;
594 
595 	/* class-based driver binding models */
596 	if (add_hotplug_env_var(envp, num_envp, &i,
597 				buffer, buffer_size, &length,
598 				"TYPE=%d/%d/%d",
599 				usb_dev->descriptor.bDeviceClass,
600 				usb_dev->descriptor.bDeviceSubClass,
601 				usb_dev->descriptor.bDeviceProtocol))
602 		return -ENOMEM;
603 
604 	if (usb_dev->descriptor.bDeviceClass == 0) {
605 		struct usb_host_interface *alt = intf->cur_altsetting;
606 
607 		/* 2.4 only exposed interface zero.  in 2.5, hotplug
608 		 * agents are called for all interfaces, and can use
609 		 * $DEVPATH/bInterfaceNumber if necessary.
610 		 */
611 		if (add_hotplug_env_var(envp, num_envp, &i,
612 					buffer, buffer_size, &length,
613 					"INTERFACE=%d/%d/%d",
614 					alt->desc.bInterfaceClass,
615 					alt->desc.bInterfaceSubClass,
616 					alt->desc.bInterfaceProtocol))
617 			return -ENOMEM;
618 
619 		if (add_hotplug_env_var(envp, num_envp, &i,
620 					buffer, buffer_size, &length,
621 					"MODALIAS=usb:v%04Xp%04Xdl%04Xdh%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
622 					le16_to_cpu(usb_dev->descriptor.idVendor),
623 					le16_to_cpu(usb_dev->descriptor.idProduct),
624 					le16_to_cpu(usb_dev->descriptor.bcdDevice),
625 					le16_to_cpu(usb_dev->descriptor.bcdDevice),
626 					usb_dev->descriptor.bDeviceClass,
627 					usb_dev->descriptor.bDeviceSubClass,
628 					usb_dev->descriptor.bDeviceProtocol,
629 					alt->desc.bInterfaceClass,
630 					alt->desc.bInterfaceSubClass,
631 					alt->desc.bInterfaceProtocol))
632 			return -ENOMEM;
633  	} else {
634 		if (add_hotplug_env_var(envp, num_envp, &i,
635 					buffer, buffer_size, &length,
636 					"MODALIAS=usb:v%04Xp%04Xdl%04Xdh%04Xdc%02Xdsc%02Xdp%02Xic*isc*ip*",
637 					le16_to_cpu(usb_dev->descriptor.idVendor),
638 					le16_to_cpu(usb_dev->descriptor.idProduct),
639 					le16_to_cpu(usb_dev->descriptor.bcdDevice),
640 					le16_to_cpu(usb_dev->descriptor.bcdDevice),
641 					usb_dev->descriptor.bDeviceClass,
642 					usb_dev->descriptor.bDeviceSubClass,
643 					usb_dev->descriptor.bDeviceProtocol))
644 			return -ENOMEM;
645 	}
646 
647 	envp[i] = NULL;
648 
649 	return 0;
650 }
651 
652 #else
653 
654 static int usb_hotplug (struct device *dev, char **envp,
655 			int num_envp, char *buffer, int buffer_size)
656 {
657 	return -ENODEV;
658 }
659 
660 #endif	/* CONFIG_HOTPLUG */
661 
662 /**
663  * usb_release_dev - free a usb device structure when all users of it are finished.
664  * @dev: device that's been disconnected
665  *
666  * Will be called only by the device core when all users of this usb device are
667  * done.
668  */
669 static void usb_release_dev(struct device *dev)
670 {
671 	struct usb_device *udev;
672 
673 	udev = to_usb_device(dev);
674 
675 	usb_destroy_configuration(udev);
676 	usb_bus_put(udev->bus);
677 	kfree(udev->product);
678 	kfree(udev->manufacturer);
679 	kfree(udev->serial);
680 	kfree(udev);
681 }
682 
683 /**
684  * usb_alloc_dev - usb device constructor (usbcore-internal)
685  * @parent: hub to which device is connected; null to allocate a root hub
686  * @bus: bus used to access the device
687  * @port1: one-based index of port; ignored for root hubs
688  * Context: !in_interrupt ()
689  *
690  * Only hub drivers (including virtual root hub drivers for host
691  * controllers) should ever call this.
692  *
693  * This call may not be used in a non-sleeping context.
694  */
695 struct usb_device *
696 usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
697 {
698 	struct usb_device *dev;
699 
700 	dev = kmalloc(sizeof(*dev), GFP_KERNEL);
701 	if (!dev)
702 		return NULL;
703 
704 	memset(dev, 0, sizeof(*dev));
705 
706 	bus = usb_bus_get(bus);
707 	if (!bus) {
708 		kfree(dev);
709 		return NULL;
710 	}
711 
712 	device_initialize(&dev->dev);
713 	dev->dev.bus = &usb_bus_type;
714 	dev->dev.dma_mask = bus->controller->dma_mask;
715 	dev->dev.driver_data = &usb_generic_driver_data;
716 	dev->dev.driver = &usb_generic_driver;
717 	dev->dev.release = usb_release_dev;
718 	dev->state = USB_STATE_ATTACHED;
719 
720 	INIT_LIST_HEAD(&dev->ep0.urb_list);
721 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
722 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
723 	/* ep0 maxpacket comes later, from device descriptor */
724 	dev->ep_in[0] = dev->ep_out[0] = &dev->ep0;
725 
726 	/* Save readable and stable topology id, distinguishing devices
727 	 * by location for diagnostics, tools, driver model, etc.  The
728 	 * string is a path along hub ports, from the root.  Each device's
729 	 * dev->devpath will be stable until USB is re-cabled, and hubs
730 	 * are often labeled with these port numbers.  The bus_id isn't
731 	 * as stable:  bus->busnum changes easily from modprobe order,
732 	 * cardbus or pci hotplugging, and so on.
733 	 */
734 	if (unlikely (!parent)) {
735 		dev->devpath [0] = '0';
736 
737 		dev->dev.parent = bus->controller;
738 		sprintf (&dev->dev.bus_id[0], "usb%d", bus->busnum);
739 	} else {
740 		/* match any labeling on the hubs; it's one-based */
741 		if (parent->devpath [0] == '0')
742 			snprintf (dev->devpath, sizeof dev->devpath,
743 				"%d", port1);
744 		else
745 			snprintf (dev->devpath, sizeof dev->devpath,
746 				"%s.%d", parent->devpath, port1);
747 
748 		dev->dev.parent = &parent->dev;
749 		sprintf (&dev->dev.bus_id[0], "%d-%s",
750 			bus->busnum, dev->devpath);
751 
752 		/* hub driver sets up TT records */
753 	}
754 
755 	dev->bus = bus;
756 	dev->parent = parent;
757 	INIT_LIST_HEAD(&dev->filelist);
758 
759 	init_MUTEX(&dev->serialize);
760 
761 	return dev;
762 }
763 
764 /**
765  * usb_get_dev - increments the reference count of the usb device structure
766  * @dev: the device being referenced
767  *
768  * Each live reference to a device should be refcounted.
769  *
770  * Drivers for USB interfaces should normally record such references in
771  * their probe() methods, when they bind to an interface, and release
772  * them by calling usb_put_dev(), in their disconnect() methods.
773  *
774  * A pointer to the device with the incremented reference counter is returned.
775  */
776 struct usb_device *usb_get_dev(struct usb_device *dev)
777 {
778 	if (dev)
779 		get_device(&dev->dev);
780 	return dev;
781 }
782 
783 /**
784  * usb_put_dev - release a use of the usb device structure
785  * @dev: device that's been disconnected
786  *
787  * Must be called when a user of a device is finished with it.  When the last
788  * user of the device calls this function, the memory of the device is freed.
789  */
790 void usb_put_dev(struct usb_device *dev)
791 {
792 	if (dev)
793 		put_device(&dev->dev);
794 }
795 
796 /**
797  * usb_get_intf - increments the reference count of the usb interface structure
798  * @intf: the interface being referenced
799  *
800  * Each live reference to a interface must be refcounted.
801  *
802  * Drivers for USB interfaces should normally record such references in
803  * their probe() methods, when they bind to an interface, and release
804  * them by calling usb_put_intf(), in their disconnect() methods.
805  *
806  * A pointer to the interface with the incremented reference counter is
807  * returned.
808  */
809 struct usb_interface *usb_get_intf(struct usb_interface *intf)
810 {
811 	if (intf)
812 		get_device(&intf->dev);
813 	return intf;
814 }
815 
816 /**
817  * usb_put_intf - release a use of the usb interface structure
818  * @intf: interface that's been decremented
819  *
820  * Must be called when a user of an interface is finished with it.  When the
821  * last user of the interface calls this function, the memory of the interface
822  * is freed.
823  */
824 void usb_put_intf(struct usb_interface *intf)
825 {
826 	if (intf)
827 		put_device(&intf->dev);
828 }
829 
830 
831 /*			USB device locking
832  *
833  * Although locking USB devices should be straightforward, it is
834  * complicated by the way the driver-model core works.  When a new USB
835  * driver is registered or unregistered, the core will automatically
836  * probe or disconnect all matching interfaces on all USB devices while
837  * holding the USB subsystem writelock.  There's no good way for us to
838  * tell which devices will be used or to lock them beforehand; our only
839  * option is to effectively lock all the USB devices.
840  *
841  * We do that by using a private rw-semaphore, usb_all_devices_rwsem.
842  * When locking an individual device you must first acquire the rwsem's
843  * readlock.  When a driver is registered or unregistered the writelock
844  * must be held.  These actions are encapsulated in the subroutines
845  * below, so all a driver needs to do is call usb_lock_device() and
846  * usb_unlock_device().
847  *
848  * Complications arise when several devices are to be locked at the same
849  * time.  Only hub-aware drivers that are part of usbcore ever have to
850  * do this; nobody else needs to worry about it.  The problem is that
851  * usb_lock_device() must not be called to lock a second device since it
852  * would acquire the rwsem's readlock reentrantly, leading to deadlock if
853  * another thread was waiting for the writelock.  The solution is simple:
854  *
855  *	When locking more than one device, call usb_lock_device()
856  *	to lock the first one.  Lock the others by calling
857  *	down(&udev->serialize) directly.
858  *
859  *	When unlocking multiple devices, use up(&udev->serialize)
860  *	to unlock all but the last one.  Unlock the last one by
861  *	calling usb_unlock_device().
862  *
863  *	When locking both a device and its parent, always lock the
864  *	the parent first.
865  */
866 
867 /**
868  * usb_lock_device - acquire the lock for a usb device structure
869  * @udev: device that's being locked
870  *
871  * Use this routine when you don't hold any other device locks;
872  * to acquire nested inner locks call down(&udev->serialize) directly.
873  * This is necessary for proper interaction with usb_lock_all_devices().
874  */
875 void usb_lock_device(struct usb_device *udev)
876 {
877 	down_read(&usb_all_devices_rwsem);
878 	down(&udev->serialize);
879 }
880 
881 /**
882  * usb_trylock_device - attempt to acquire the lock for a usb device structure
883  * @udev: device that's being locked
884  *
885  * Don't use this routine if you already hold a device lock;
886  * use down_trylock(&udev->serialize) instead.
887  * This is necessary for proper interaction with usb_lock_all_devices().
888  *
889  * Returns 1 if successful, 0 if contention.
890  */
891 int usb_trylock_device(struct usb_device *udev)
892 {
893 	if (!down_read_trylock(&usb_all_devices_rwsem))
894 		return 0;
895 	if (down_trylock(&udev->serialize)) {
896 		up_read(&usb_all_devices_rwsem);
897 		return 0;
898 	}
899 	return 1;
900 }
901 
902 /**
903  * usb_lock_device_for_reset - cautiously acquire the lock for a
904  *	usb device structure
905  * @udev: device that's being locked
906  * @iface: interface bound to the driver making the request (optional)
907  *
908  * Attempts to acquire the device lock, but fails if the device is
909  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
910  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
911  * lock, the routine polls repeatedly.  This is to prevent deadlock with
912  * disconnect; in some drivers (such as usb-storage) the disconnect()
913  * callback will block waiting for a device reset to complete.
914  *
915  * Returns a negative error code for failure, otherwise 1 or 0 to indicate
916  * that the device will or will not have to be unlocked.  (0 can be
917  * returned when an interface is given and is BINDING, because in that
918  * case the driver already owns the device lock.)
919  */
920 int usb_lock_device_for_reset(struct usb_device *udev,
921 		struct usb_interface *iface)
922 {
923 	if (udev->state == USB_STATE_NOTATTACHED)
924 		return -ENODEV;
925 	if (udev->state == USB_STATE_SUSPENDED)
926 		return -EHOSTUNREACH;
927 	if (iface) {
928 		switch (iface->condition) {
929 		  case USB_INTERFACE_BINDING:
930 			return 0;
931 		  case USB_INTERFACE_BOUND:
932 			break;
933 		  default:
934 			return -EINTR;
935 		}
936 	}
937 
938 	while (!usb_trylock_device(udev)) {
939 		msleep(15);
940 		if (udev->state == USB_STATE_NOTATTACHED)
941 			return -ENODEV;
942 		if (udev->state == USB_STATE_SUSPENDED)
943 			return -EHOSTUNREACH;
944 		if (iface && iface->condition != USB_INTERFACE_BOUND)
945 			return -EINTR;
946 	}
947 	return 1;
948 }
949 
950 /**
951  * usb_unlock_device - release the lock for a usb device structure
952  * @udev: device that's being unlocked
953  *
954  * Use this routine when releasing the only device lock you hold;
955  * to release inner nested locks call up(&udev->serialize) directly.
956  * This is necessary for proper interaction with usb_lock_all_devices().
957  */
958 void usb_unlock_device(struct usb_device *udev)
959 {
960 	up(&udev->serialize);
961 	up_read(&usb_all_devices_rwsem);
962 }
963 
964 /**
965  * usb_lock_all_devices - acquire the lock for all usb device structures
966  *
967  * This is necessary when registering a new driver or probing a bus,
968  * since the driver-model core may try to use any usb_device.
969  */
970 void usb_lock_all_devices(void)
971 {
972 	down_write(&usb_all_devices_rwsem);
973 }
974 
975 /**
976  * usb_unlock_all_devices - release the lock for all usb device structures
977  */
978 void usb_unlock_all_devices(void)
979 {
980 	up_write(&usb_all_devices_rwsem);
981 }
982 
983 
984 static struct usb_device *match_device(struct usb_device *dev,
985 				       u16 vendor_id, u16 product_id)
986 {
987 	struct usb_device *ret_dev = NULL;
988 	int child;
989 
990 	dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
991 	    le16_to_cpu(dev->descriptor.idVendor),
992 	    le16_to_cpu(dev->descriptor.idProduct));
993 
994 	/* see if this device matches */
995 	if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
996 	    (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
997 		dev_dbg (&dev->dev, "matched this device!\n");
998 		ret_dev = usb_get_dev(dev);
999 		goto exit;
1000 	}
1001 
1002 	/* look through all of the children of this device */
1003 	for (child = 0; child < dev->maxchild; ++child) {
1004 		if (dev->children[child]) {
1005 			down(&dev->children[child]->serialize);
1006 			ret_dev = match_device(dev->children[child],
1007 					       vendor_id, product_id);
1008 			up(&dev->children[child]->serialize);
1009 			if (ret_dev)
1010 				goto exit;
1011 		}
1012 	}
1013 exit:
1014 	return ret_dev;
1015 }
1016 
1017 /**
1018  * usb_find_device - find a specific usb device in the system
1019  * @vendor_id: the vendor id of the device to find
1020  * @product_id: the product id of the device to find
1021  *
1022  * Returns a pointer to a struct usb_device if such a specified usb
1023  * device is present in the system currently.  The usage count of the
1024  * device will be incremented if a device is found.  Make sure to call
1025  * usb_put_dev() when the caller is finished with the device.
1026  *
1027  * If a device with the specified vendor and product id is not found,
1028  * NULL is returned.
1029  */
1030 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
1031 {
1032 	struct list_head *buslist;
1033 	struct usb_bus *bus;
1034 	struct usb_device *dev = NULL;
1035 
1036 	down(&usb_bus_list_lock);
1037 	for (buslist = usb_bus_list.next;
1038 	     buslist != &usb_bus_list;
1039 	     buslist = buslist->next) {
1040 		bus = container_of(buslist, struct usb_bus, bus_list);
1041 		if (!bus->root_hub)
1042 			continue;
1043 		usb_lock_device(bus->root_hub);
1044 		dev = match_device(bus->root_hub, vendor_id, product_id);
1045 		usb_unlock_device(bus->root_hub);
1046 		if (dev)
1047 			goto exit;
1048 	}
1049 exit:
1050 	up(&usb_bus_list_lock);
1051 	return dev;
1052 }
1053 
1054 /**
1055  * usb_get_current_frame_number - return current bus frame number
1056  * @dev: the device whose bus is being queried
1057  *
1058  * Returns the current frame number for the USB host controller
1059  * used with the given USB device.  This can be used when scheduling
1060  * isochronous requests.
1061  *
1062  * Note that different kinds of host controller have different
1063  * "scheduling horizons".  While one type might support scheduling only
1064  * 32 frames into the future, others could support scheduling up to
1065  * 1024 frames into the future.
1066  */
1067 int usb_get_current_frame_number(struct usb_device *dev)
1068 {
1069 	return dev->bus->op->get_frame_number (dev);
1070 }
1071 
1072 /*-------------------------------------------------------------------*/
1073 /*
1074  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
1075  * extra field of the interface and endpoint descriptor structs.
1076  */
1077 
1078 int __usb_get_extra_descriptor(char *buffer, unsigned size,
1079 	unsigned char type, void **ptr)
1080 {
1081 	struct usb_descriptor_header *header;
1082 
1083 	while (size >= sizeof(struct usb_descriptor_header)) {
1084 		header = (struct usb_descriptor_header *)buffer;
1085 
1086 		if (header->bLength < 2) {
1087 			printk(KERN_ERR
1088 				"%s: bogus descriptor, type %d length %d\n",
1089 				usbcore_name,
1090 				header->bDescriptorType,
1091 				header->bLength);
1092 			return -1;
1093 		}
1094 
1095 		if (header->bDescriptorType == type) {
1096 			*ptr = header;
1097 			return 0;
1098 		}
1099 
1100 		buffer += header->bLength;
1101 		size -= header->bLength;
1102 	}
1103 	return -1;
1104 }
1105 
1106 /**
1107  * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
1108  * @dev: device the buffer will be used with
1109  * @size: requested buffer size
1110  * @mem_flags: affect whether allocation may block
1111  * @dma: used to return DMA address of buffer
1112  *
1113  * Return value is either null (indicating no buffer could be allocated), or
1114  * the cpu-space pointer to a buffer that may be used to perform DMA to the
1115  * specified device.  Such cpu-space buffers are returned along with the DMA
1116  * address (through the pointer provided).
1117  *
1118  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
1119  * to avoid behaviors like using "DMA bounce buffers", or tying down I/O
1120  * mapping hardware for long idle periods.  The implementation varies between
1121  * platforms, depending on details of how DMA will work to this device.
1122  * Using these buffers also helps prevent cacheline sharing problems on
1123  * architectures where CPU caches are not DMA-coherent.
1124  *
1125  * When the buffer is no longer used, free it with usb_buffer_free().
1126  */
1127 void *usb_buffer_alloc (
1128 	struct usb_device *dev,
1129 	size_t size,
1130 	int mem_flags,
1131 	dma_addr_t *dma
1132 )
1133 {
1134 	if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_alloc)
1135 		return NULL;
1136 	return dev->bus->op->buffer_alloc (dev->bus, size, mem_flags, dma);
1137 }
1138 
1139 /**
1140  * usb_buffer_free - free memory allocated with usb_buffer_alloc()
1141  * @dev: device the buffer was used with
1142  * @size: requested buffer size
1143  * @addr: CPU address of buffer
1144  * @dma: DMA address of buffer
1145  *
1146  * This reclaims an I/O buffer, letting it be reused.  The memory must have
1147  * been allocated using usb_buffer_alloc(), and the parameters must match
1148  * those provided in that allocation request.
1149  */
1150 void usb_buffer_free (
1151 	struct usb_device *dev,
1152 	size_t size,
1153 	void *addr,
1154 	dma_addr_t dma
1155 )
1156 {
1157 	if (!dev || !dev->bus || !dev->bus->op || !dev->bus->op->buffer_free)
1158 	    	return;
1159 	dev->bus->op->buffer_free (dev->bus, size, addr, dma);
1160 }
1161 
1162 /**
1163  * usb_buffer_map - create DMA mapping(s) for an urb
1164  * @urb: urb whose transfer_buffer/setup_packet will be mapped
1165  *
1166  * Return value is either null (indicating no buffer could be mapped), or
1167  * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
1168  * added to urb->transfer_flags if the operation succeeds.  If the device
1169  * is connected to this system through a non-DMA controller, this operation
1170  * always succeeds.
1171  *
1172  * This call would normally be used for an urb which is reused, perhaps
1173  * as the target of a large periodic transfer, with usb_buffer_dmasync()
1174  * calls to synchronize memory and dma state.
1175  *
1176  * Reverse the effect of this call with usb_buffer_unmap().
1177  */
1178 #if 0
1179 struct urb *usb_buffer_map (struct urb *urb)
1180 {
1181 	struct usb_bus		*bus;
1182 	struct device		*controller;
1183 
1184 	if (!urb
1185 			|| !urb->dev
1186 			|| !(bus = urb->dev->bus)
1187 			|| !(controller = bus->controller))
1188 		return NULL;
1189 
1190 	if (controller->dma_mask) {
1191 		urb->transfer_dma = dma_map_single (controller,
1192 			urb->transfer_buffer, urb->transfer_buffer_length,
1193 			usb_pipein (urb->pipe)
1194 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1195 		if (usb_pipecontrol (urb->pipe))
1196 			urb->setup_dma = dma_map_single (controller,
1197 					urb->setup_packet,
1198 					sizeof (struct usb_ctrlrequest),
1199 					DMA_TO_DEVICE);
1200 	// FIXME generic api broken like pci, can't report errors
1201 	// if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
1202 	} else
1203 		urb->transfer_dma = ~0;
1204 	urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
1205 				| URB_NO_SETUP_DMA_MAP);
1206 	return urb;
1207 }
1208 #endif  /*  0  */
1209 
1210 /* XXX DISABLED, no users currently.  If you wish to re-enable this
1211  * XXX please determine whether the sync is to transfer ownership of
1212  * XXX the buffer from device to cpu or vice verse, and thusly use the
1213  * XXX appropriate _for_{cpu,device}() method.  -DaveM
1214  */
1215 #if 0
1216 
1217 /**
1218  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
1219  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
1220  */
1221 void usb_buffer_dmasync (struct urb *urb)
1222 {
1223 	struct usb_bus		*bus;
1224 	struct device		*controller;
1225 
1226 	if (!urb
1227 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1228 			|| !urb->dev
1229 			|| !(bus = urb->dev->bus)
1230 			|| !(controller = bus->controller))
1231 		return;
1232 
1233 	if (controller->dma_mask) {
1234 		dma_sync_single (controller,
1235 			urb->transfer_dma, urb->transfer_buffer_length,
1236 			usb_pipein (urb->pipe)
1237 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1238 		if (usb_pipecontrol (urb->pipe))
1239 			dma_sync_single (controller,
1240 					urb->setup_dma,
1241 					sizeof (struct usb_ctrlrequest),
1242 					DMA_TO_DEVICE);
1243 	}
1244 }
1245 #endif
1246 
1247 /**
1248  * usb_buffer_unmap - free DMA mapping(s) for an urb
1249  * @urb: urb whose transfer_buffer will be unmapped
1250  *
1251  * Reverses the effect of usb_buffer_map().
1252  */
1253 #if 0
1254 void usb_buffer_unmap (struct urb *urb)
1255 {
1256 	struct usb_bus		*bus;
1257 	struct device		*controller;
1258 
1259 	if (!urb
1260 			|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
1261 			|| !urb->dev
1262 			|| !(bus = urb->dev->bus)
1263 			|| !(controller = bus->controller))
1264 		return;
1265 
1266 	if (controller->dma_mask) {
1267 		dma_unmap_single (controller,
1268 			urb->transfer_dma, urb->transfer_buffer_length,
1269 			usb_pipein (urb->pipe)
1270 				? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1271 		if (usb_pipecontrol (urb->pipe))
1272 			dma_unmap_single (controller,
1273 					urb->setup_dma,
1274 					sizeof (struct usb_ctrlrequest),
1275 					DMA_TO_DEVICE);
1276 	}
1277 	urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
1278 				| URB_NO_SETUP_DMA_MAP);
1279 }
1280 #endif  /*  0  */
1281 
1282 /**
1283  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
1284  * @dev: device to which the scatterlist will be mapped
1285  * @pipe: endpoint defining the mapping direction
1286  * @sg: the scatterlist to map
1287  * @nents: the number of entries in the scatterlist
1288  *
1289  * Return value is either < 0 (indicating no buffers could be mapped), or
1290  * the number of DMA mapping array entries in the scatterlist.
1291  *
1292  * The caller is responsible for placing the resulting DMA addresses from
1293  * the scatterlist into URB transfer buffer pointers, and for setting the
1294  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
1295  *
1296  * Top I/O rates come from queuing URBs, instead of waiting for each one
1297  * to complete before starting the next I/O.   This is particularly easy
1298  * to do with scatterlists.  Just allocate and submit one URB for each DMA
1299  * mapping entry returned, stopping on the first error or when all succeed.
1300  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
1301  *
1302  * This call would normally be used when translating scatterlist requests,
1303  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
1304  * may be able to coalesce mappings for improved I/O efficiency.
1305  *
1306  * Reverse the effect of this call with usb_buffer_unmap_sg().
1307  */
1308 int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
1309 		struct scatterlist *sg, int nents)
1310 {
1311 	struct usb_bus		*bus;
1312 	struct device		*controller;
1313 
1314 	if (!dev
1315 			|| usb_pipecontrol (pipe)
1316 			|| !(bus = dev->bus)
1317 			|| !(controller = bus->controller)
1318 			|| !controller->dma_mask)
1319 		return -1;
1320 
1321 	// FIXME generic api broken like pci, can't report errors
1322 	return dma_map_sg (controller, sg, nents,
1323 			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1324 }
1325 
1326 /* XXX DISABLED, no users currently.  If you wish to re-enable this
1327  * XXX please determine whether the sync is to transfer ownership of
1328  * XXX the buffer from device to cpu or vice verse, and thusly use the
1329  * XXX appropriate _for_{cpu,device}() method.  -DaveM
1330  */
1331 #if 0
1332 
1333 /**
1334  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
1335  * @dev: device to which the scatterlist will be mapped
1336  * @pipe: endpoint defining the mapping direction
1337  * @sg: the scatterlist to synchronize
1338  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1339  *
1340  * Use this when you are re-using a scatterlist's data buffers for
1341  * another USB request.
1342  */
1343 void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
1344 		struct scatterlist *sg, int n_hw_ents)
1345 {
1346 	struct usb_bus		*bus;
1347 	struct device		*controller;
1348 
1349 	if (!dev
1350 			|| !(bus = dev->bus)
1351 			|| !(controller = bus->controller)
1352 			|| !controller->dma_mask)
1353 		return;
1354 
1355 	dma_sync_sg (controller, sg, n_hw_ents,
1356 			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1357 }
1358 #endif
1359 
1360 /**
1361  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
1362  * @dev: device to which the scatterlist will be mapped
1363  * @pipe: endpoint defining the mapping direction
1364  * @sg: the scatterlist to unmap
1365  * @n_hw_ents: the positive return value from usb_buffer_map_sg
1366  *
1367  * Reverses the effect of usb_buffer_map_sg().
1368  */
1369 void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
1370 		struct scatterlist *sg, int n_hw_ents)
1371 {
1372 	struct usb_bus		*bus;
1373 	struct device		*controller;
1374 
1375 	if (!dev
1376 			|| !(bus = dev->bus)
1377 			|| !(controller = bus->controller)
1378 			|| !controller->dma_mask)
1379 		return;
1380 
1381 	dma_unmap_sg (controller, sg, n_hw_ents,
1382 			usb_pipein (pipe) ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
1383 }
1384 
1385 static int usb_generic_suspend(struct device *dev, u32 state)
1386 {
1387 	struct usb_interface *intf;
1388 	struct usb_driver *driver;
1389 
1390 	if (dev->driver == &usb_generic_driver)
1391 		return usb_suspend_device (to_usb_device(dev), state);
1392 
1393 	if ((dev->driver == NULL) ||
1394 	    (dev->driver_data == &usb_generic_driver_data))
1395 		return 0;
1396 
1397 	intf = to_usb_interface(dev);
1398 	driver = to_usb_driver(dev->driver);
1399 
1400 	/* there's only one USB suspend state */
1401 	if (intf->dev.power.power_state)
1402 		return 0;
1403 
1404 	if (driver->suspend)
1405 		return driver->suspend(intf, state);
1406 	return 0;
1407 }
1408 
1409 static int usb_generic_resume(struct device *dev)
1410 {
1411 	struct usb_interface *intf;
1412 	struct usb_driver *driver;
1413 
1414 	/* devices resume through their hub */
1415 	if (dev->driver == &usb_generic_driver)
1416 		return usb_resume_device (to_usb_device(dev));
1417 
1418 	if ((dev->driver == NULL) ||
1419 	    (dev->driver_data == &usb_generic_driver_data))
1420 		return 0;
1421 
1422 	intf = to_usb_interface(dev);
1423 	driver = to_usb_driver(dev->driver);
1424 
1425 	if (driver->resume)
1426 		return driver->resume(intf);
1427 	return 0;
1428 }
1429 
1430 struct bus_type usb_bus_type = {
1431 	.name =		"usb",
1432 	.match =	usb_device_match,
1433 	.hotplug =	usb_hotplug,
1434 	.suspend =	usb_generic_suspend,
1435 	.resume =	usb_generic_resume,
1436 };
1437 
1438 #ifndef MODULE
1439 
1440 static int __init usb_setup_disable(char *str)
1441 {
1442 	nousb = 1;
1443 	return 1;
1444 }
1445 
1446 /* format to disable USB on kernel command line is: nousb */
1447 __setup("nousb", usb_setup_disable);
1448 
1449 #endif
1450 
1451 /*
1452  * for external read access to <nousb>
1453  */
1454 int usb_disabled(void)
1455 {
1456 	return nousb;
1457 }
1458 
1459 /*
1460  * Init
1461  */
1462 static int __init usb_init(void)
1463 {
1464 	int retval;
1465 	if (nousb) {
1466 		pr_info ("%s: USB support disabled\n", usbcore_name);
1467 		return 0;
1468 	}
1469 
1470 	retval = bus_register(&usb_bus_type);
1471 	if (retval)
1472 		goto out;
1473 	retval = usb_host_init();
1474 	if (retval)
1475 		goto host_init_failed;
1476 	retval = usb_major_init();
1477 	if (retval)
1478 		goto major_init_failed;
1479 	retval = usbfs_init();
1480 	if (retval)
1481 		goto fs_init_failed;
1482 	retval = usb_hub_init();
1483 	if (retval)
1484 		goto hub_init_failed;
1485 
1486 	retval = driver_register(&usb_generic_driver);
1487 	if (!retval)
1488 		goto out;
1489 
1490 	usb_hub_cleanup();
1491 hub_init_failed:
1492 	usbfs_cleanup();
1493 fs_init_failed:
1494 	usb_major_cleanup();
1495 major_init_failed:
1496 	usb_host_cleanup();
1497 host_init_failed:
1498 	bus_unregister(&usb_bus_type);
1499 out:
1500 	return retval;
1501 }
1502 
1503 /*
1504  * Cleanup
1505  */
1506 static void __exit usb_exit(void)
1507 {
1508 	/* This will matter if shutdown/reboot does exitcalls. */
1509 	if (nousb)
1510 		return;
1511 
1512 	driver_unregister(&usb_generic_driver);
1513 	usb_major_cleanup();
1514 	usbfs_cleanup();
1515 	usb_hub_cleanup();
1516 	usb_host_cleanup();
1517 	bus_unregister(&usb_bus_type);
1518 }
1519 
1520 subsys_initcall(usb_init);
1521 module_exit(usb_exit);
1522 
1523 /*
1524  * USB may be built into the kernel or be built as modules.
1525  * These symbols are exported for device (or host controller)
1526  * driver modules to use.
1527  */
1528 
1529 EXPORT_SYMBOL(usb_register);
1530 EXPORT_SYMBOL(usb_deregister);
1531 EXPORT_SYMBOL(usb_disabled);
1532 
1533 EXPORT_SYMBOL(usb_alloc_dev);
1534 EXPORT_SYMBOL(usb_put_dev);
1535 EXPORT_SYMBOL(usb_get_dev);
1536 EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
1537 
1538 EXPORT_SYMBOL(usb_lock_device);
1539 EXPORT_SYMBOL(usb_trylock_device);
1540 EXPORT_SYMBOL(usb_lock_device_for_reset);
1541 EXPORT_SYMBOL(usb_unlock_device);
1542 
1543 EXPORT_SYMBOL(usb_driver_claim_interface);
1544 EXPORT_SYMBOL(usb_driver_release_interface);
1545 EXPORT_SYMBOL(usb_match_id);
1546 EXPORT_SYMBOL(usb_find_interface);
1547 EXPORT_SYMBOL(usb_ifnum_to_if);
1548 EXPORT_SYMBOL(usb_altnum_to_altsetting);
1549 
1550 EXPORT_SYMBOL(usb_reset_device);
1551 EXPORT_SYMBOL(usb_disconnect);
1552 
1553 EXPORT_SYMBOL(__usb_get_extra_descriptor);
1554 
1555 EXPORT_SYMBOL(usb_find_device);
1556 EXPORT_SYMBOL(usb_get_current_frame_number);
1557 
1558 EXPORT_SYMBOL (usb_buffer_alloc);
1559 EXPORT_SYMBOL (usb_buffer_free);
1560 
1561 #if 0
1562 EXPORT_SYMBOL (usb_buffer_map);
1563 EXPORT_SYMBOL (usb_buffer_dmasync);
1564 EXPORT_SYMBOL (usb_buffer_unmap);
1565 #endif
1566 
1567 EXPORT_SYMBOL (usb_buffer_map_sg);
1568 #if 0
1569 EXPORT_SYMBOL (usb_buffer_dmasync_sg);
1570 #endif
1571 EXPORT_SYMBOL (usb_buffer_unmap_sg);
1572 
1573 MODULE_LICENSE("GPL");
1574