1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/pci.h> /* for scatterlist macros */ 6 #include <linux/usb.h> 7 #include <linux/module.h> 8 #include <linux/slab.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/timer.h> 12 #include <linux/ctype.h> 13 #include <linux/device.h> 14 #include <linux/usb/quirks.h> 15 #include <asm/byteorder.h> 16 #include <asm/scatterlist.h> 17 18 #include "hcd.h" /* for usbcore internals */ 19 #include "usb.h" 20 21 struct api_context { 22 struct completion done; 23 int status; 24 }; 25 26 static void usb_api_blocking_completion(struct urb *urb) 27 { 28 struct api_context *ctx = urb->context; 29 30 ctx->status = urb->status; 31 complete(&ctx->done); 32 } 33 34 35 /* 36 * Starts urb and waits for completion or timeout. Note that this call 37 * is NOT interruptible. Many device driver i/o requests should be 38 * interruptible and therefore these drivers should implement their 39 * own interruptible routines. 40 */ 41 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length) 42 { 43 struct api_context ctx; 44 unsigned long expire; 45 int retval; 46 47 init_completion(&ctx.done); 48 urb->context = &ctx; 49 urb->actual_length = 0; 50 retval = usb_submit_urb(urb, GFP_NOIO); 51 if (unlikely(retval)) 52 goto out; 53 54 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT; 55 if (!wait_for_completion_timeout(&ctx.done, expire)) { 56 usb_kill_urb(urb); 57 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status); 58 59 dev_dbg(&urb->dev->dev, 60 "%s timed out on ep%d%s len=%d/%d\n", 61 current->comm, 62 usb_endpoint_num(&urb->ep->desc), 63 usb_urb_dir_in(urb) ? "in" : "out", 64 urb->actual_length, 65 urb->transfer_buffer_length); 66 } else 67 retval = ctx.status; 68 out: 69 if (actual_length) 70 *actual_length = urb->actual_length; 71 72 usb_free_urb(urb); 73 return retval; 74 } 75 76 /*-------------------------------------------------------------------*/ 77 // returns status (negative) or length (positive) 78 static int usb_internal_control_msg(struct usb_device *usb_dev, 79 unsigned int pipe, 80 struct usb_ctrlrequest *cmd, 81 void *data, int len, int timeout) 82 { 83 struct urb *urb; 84 int retv; 85 int length; 86 87 urb = usb_alloc_urb(0, GFP_NOIO); 88 if (!urb) 89 return -ENOMEM; 90 91 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 92 len, usb_api_blocking_completion, NULL); 93 94 retv = usb_start_wait_urb(urb, timeout, &length); 95 if (retv < 0) 96 return retv; 97 else 98 return length; 99 } 100 101 /** 102 * usb_control_msg - Builds a control urb, sends it off and waits for completion 103 * @dev: pointer to the usb device to send the message to 104 * @pipe: endpoint "pipe" to send the message to 105 * @request: USB message request value 106 * @requesttype: USB message request type value 107 * @value: USB message value 108 * @index: USB message index value 109 * @data: pointer to the data to send 110 * @size: length in bytes of the data to send 111 * @timeout: time in msecs to wait for the message to complete before 112 * timing out (if 0 the wait is forever) 113 * Context: !in_interrupt () 114 * 115 * This function sends a simple control message to a specified endpoint 116 * and waits for the message to complete, or timeout. 117 * 118 * If successful, it returns the number of bytes transferred, otherwise a negative error number. 119 * 120 * Don't use this function from within an interrupt context, like a 121 * bottom half handler. If you need an asynchronous message, or need to send 122 * a message from within interrupt context, use usb_submit_urb() 123 * If a thread in your driver uses this call, make sure your disconnect() 124 * method can wait for it to complete. Since you don't have a handle on 125 * the URB used, you can't cancel the request. 126 */ 127 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype, 128 __u16 value, __u16 index, void *data, __u16 size, int timeout) 129 { 130 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 131 int ret; 132 133 if (!dr) 134 return -ENOMEM; 135 136 dr->bRequestType= requesttype; 137 dr->bRequest = request; 138 dr->wValue = cpu_to_le16p(&value); 139 dr->wIndex = cpu_to_le16p(&index); 140 dr->wLength = cpu_to_le16p(&size); 141 142 //dbg("usb_control_msg"); 143 144 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 145 146 kfree(dr); 147 148 return ret; 149 } 150 151 152 /** 153 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion 154 * @usb_dev: pointer to the usb device to send the message to 155 * @pipe: endpoint "pipe" to send the message to 156 * @data: pointer to the data to send 157 * @len: length in bytes of the data to send 158 * @actual_length: pointer to a location to put the actual length transferred in bytes 159 * @timeout: time in msecs to wait for the message to complete before 160 * timing out (if 0 the wait is forever) 161 * Context: !in_interrupt () 162 * 163 * This function sends a simple interrupt message to a specified endpoint and 164 * waits for the message to complete, or timeout. 165 * 166 * If successful, it returns 0, otherwise a negative error number. The number 167 * of actual bytes transferred will be stored in the actual_length paramater. 168 * 169 * Don't use this function from within an interrupt context, like a bottom half 170 * handler. If you need an asynchronous message, or need to send a message 171 * from within interrupt context, use usb_submit_urb() If a thread in your 172 * driver uses this call, make sure your disconnect() method can wait for it to 173 * complete. Since you don't have a handle on the URB used, you can't cancel 174 * the request. 175 */ 176 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe, 177 void *data, int len, int *actual_length, int timeout) 178 { 179 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout); 180 } 181 EXPORT_SYMBOL_GPL(usb_interrupt_msg); 182 183 /** 184 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 185 * @usb_dev: pointer to the usb device to send the message to 186 * @pipe: endpoint "pipe" to send the message to 187 * @data: pointer to the data to send 188 * @len: length in bytes of the data to send 189 * @actual_length: pointer to a location to put the actual length transferred in bytes 190 * @timeout: time in msecs to wait for the message to complete before 191 * timing out (if 0 the wait is forever) 192 * Context: !in_interrupt () 193 * 194 * This function sends a simple bulk message to a specified endpoint 195 * and waits for the message to complete, or timeout. 196 * 197 * If successful, it returns 0, otherwise a negative error number. 198 * The number of actual bytes transferred will be stored in the 199 * actual_length paramater. 200 * 201 * Don't use this function from within an interrupt context, like a 202 * bottom half handler. If you need an asynchronous message, or need to 203 * send a message from within interrupt context, use usb_submit_urb() 204 * If a thread in your driver uses this call, make sure your disconnect() 205 * method can wait for it to complete. Since you don't have a handle on 206 * the URB used, you can't cancel the request. 207 * 208 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT 209 * ioctl, users are forced to abuse this routine by using it to submit 210 * URBs for interrupt endpoints. We will take the liberty of creating 211 * an interrupt URB (with the default interval) if the target is an 212 * interrupt endpoint. 213 */ 214 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 215 void *data, int len, int *actual_length, int timeout) 216 { 217 struct urb *urb; 218 struct usb_host_endpoint *ep; 219 220 ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out) 221 [usb_pipeendpoint(pipe)]; 222 if (!ep || len < 0) 223 return -EINVAL; 224 225 urb = usb_alloc_urb(0, GFP_KERNEL); 226 if (!urb) 227 return -ENOMEM; 228 229 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) == 230 USB_ENDPOINT_XFER_INT) { 231 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30); 232 usb_fill_int_urb(urb, usb_dev, pipe, data, len, 233 usb_api_blocking_completion, NULL, 234 ep->desc.bInterval); 235 } else 236 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 237 usb_api_blocking_completion, NULL); 238 239 return usb_start_wait_urb(urb, timeout, actual_length); 240 } 241 242 /*-------------------------------------------------------------------*/ 243 244 static void sg_clean (struct usb_sg_request *io) 245 { 246 if (io->urbs) { 247 while (io->entries--) 248 usb_free_urb (io->urbs [io->entries]); 249 kfree (io->urbs); 250 io->urbs = NULL; 251 } 252 if (io->dev->dev.dma_mask != NULL) 253 usb_buffer_unmap_sg (io->dev, usb_pipein(io->pipe), 254 io->sg, io->nents); 255 io->dev = NULL; 256 } 257 258 static void sg_complete (struct urb *urb) 259 { 260 struct usb_sg_request *io = urb->context; 261 int status = urb->status; 262 263 spin_lock (&io->lock); 264 265 /* In 2.5 we require hcds' endpoint queues not to progress after fault 266 * reports, until the completion callback (this!) returns. That lets 267 * device driver code (like this routine) unlink queued urbs first, 268 * if it needs to, since the HC won't work on them at all. So it's 269 * not possible for page N+1 to overwrite page N, and so on. 270 * 271 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 272 * complete before the HCD can get requests away from hardware, 273 * though never during cleanup after a hard fault. 274 */ 275 if (io->status 276 && (io->status != -ECONNRESET 277 || status != -ECONNRESET) 278 && urb->actual_length) { 279 dev_err (io->dev->bus->controller, 280 "dev %s ep%d%s scatterlist error %d/%d\n", 281 io->dev->devpath, 282 usb_endpoint_num(&urb->ep->desc), 283 usb_urb_dir_in(urb) ? "in" : "out", 284 status, io->status); 285 // BUG (); 286 } 287 288 if (io->status == 0 && status && status != -ECONNRESET) { 289 int i, found, retval; 290 291 io->status = status; 292 293 /* the previous urbs, and this one, completed already. 294 * unlink pending urbs so they won't rx/tx bad data. 295 * careful: unlink can sometimes be synchronous... 296 */ 297 spin_unlock (&io->lock); 298 for (i = 0, found = 0; i < io->entries; i++) { 299 if (!io->urbs [i] || !io->urbs [i]->dev) 300 continue; 301 if (found) { 302 retval = usb_unlink_urb (io->urbs [i]); 303 if (retval != -EINPROGRESS && 304 retval != -ENODEV && 305 retval != -EBUSY) 306 dev_err (&io->dev->dev, 307 "%s, unlink --> %d\n", 308 __FUNCTION__, retval); 309 } else if (urb == io->urbs [i]) 310 found = 1; 311 } 312 spin_lock (&io->lock); 313 } 314 urb->dev = NULL; 315 316 /* on the last completion, signal usb_sg_wait() */ 317 io->bytes += urb->actual_length; 318 io->count--; 319 if (!io->count) 320 complete (&io->complete); 321 322 spin_unlock (&io->lock); 323 } 324 325 326 /** 327 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 328 * @io: request block being initialized. until usb_sg_wait() returns, 329 * treat this as a pointer to an opaque block of memory, 330 * @dev: the usb device that will send or receive the data 331 * @pipe: endpoint "pipe" used to transfer the data 332 * @period: polling rate for interrupt endpoints, in frames or 333 * (for high speed endpoints) microframes; ignored for bulk 334 * @sg: scatterlist entries 335 * @nents: how many entries in the scatterlist 336 * @length: how many bytes to send from the scatterlist, or zero to 337 * send every byte identified in the list. 338 * @mem_flags: SLAB_* flags affecting memory allocations in this call 339 * 340 * Returns zero for success, else a negative errno value. This initializes a 341 * scatter/gather request, allocating resources such as I/O mappings and urb 342 * memory (except maybe memory used by USB controller drivers). 343 * 344 * The request must be issued using usb_sg_wait(), which waits for the I/O to 345 * complete (or to be canceled) and then cleans up all resources allocated by 346 * usb_sg_init(). 347 * 348 * The request may be canceled with usb_sg_cancel(), either before or after 349 * usb_sg_wait() is called. 350 */ 351 int usb_sg_init ( 352 struct usb_sg_request *io, 353 struct usb_device *dev, 354 unsigned pipe, 355 unsigned period, 356 struct scatterlist *sg, 357 int nents, 358 size_t length, 359 gfp_t mem_flags 360 ) 361 { 362 int i; 363 int urb_flags; 364 int dma; 365 366 if (!io || !dev || !sg 367 || usb_pipecontrol (pipe) 368 || usb_pipeisoc (pipe) 369 || nents <= 0) 370 return -EINVAL; 371 372 spin_lock_init (&io->lock); 373 io->dev = dev; 374 io->pipe = pipe; 375 io->sg = sg; 376 io->nents = nents; 377 378 /* not all host controllers use DMA (like the mainstream pci ones); 379 * they can use PIO (sl811) or be software over another transport. 380 */ 381 dma = (dev->dev.dma_mask != NULL); 382 if (dma) 383 io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe), 384 sg, nents); 385 else 386 io->entries = nents; 387 388 /* initialize all the urbs we'll use */ 389 if (io->entries <= 0) 390 return io->entries; 391 392 io->count = io->entries; 393 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags); 394 if (!io->urbs) 395 goto nomem; 396 397 urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT; 398 if (usb_pipein (pipe)) 399 urb_flags |= URB_SHORT_NOT_OK; 400 401 for (i = 0; i < io->entries; i++) { 402 unsigned len; 403 404 io->urbs [i] = usb_alloc_urb (0, mem_flags); 405 if (!io->urbs [i]) { 406 io->entries = i; 407 goto nomem; 408 } 409 410 io->urbs [i]->dev = NULL; 411 io->urbs [i]->pipe = pipe; 412 io->urbs [i]->interval = period; 413 io->urbs [i]->transfer_flags = urb_flags; 414 415 io->urbs [i]->complete = sg_complete; 416 io->urbs [i]->context = io; 417 418 /* 419 * Some systems need to revert to PIO when DMA is temporarily 420 * unavailable. For their sakes, both transfer_buffer and 421 * transfer_dma are set when possible. However this can only 422 * work on systems without: 423 * 424 * - HIGHMEM, since DMA buffers located in high memory are 425 * not directly addressable by the CPU for PIO; 426 * 427 * - IOMMU, since dma_map_sg() is allowed to use an IOMMU to 428 * make virtually discontiguous buffers be "dma-contiguous" 429 * so that PIO and DMA need diferent numbers of URBs. 430 * 431 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL 432 * to prevent stale pointers and to help spot bugs. 433 */ 434 if (dma) { 435 io->urbs [i]->transfer_dma = sg_dma_address (sg + i); 436 len = sg_dma_len (sg + i); 437 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_IOMMU) 438 io->urbs[i]->transfer_buffer = NULL; 439 #else 440 io->urbs[i]->transfer_buffer = 441 page_address(sg[i].page) + sg[i].offset; 442 #endif 443 } else { 444 /* hc may use _only_ transfer_buffer */ 445 io->urbs [i]->transfer_buffer = 446 page_address (sg [i].page) + sg [i].offset; 447 len = sg [i].length; 448 } 449 450 if (length) { 451 len = min_t (unsigned, len, length); 452 length -= len; 453 if (length == 0) 454 io->entries = i + 1; 455 } 456 io->urbs [i]->transfer_buffer_length = len; 457 } 458 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT; 459 460 /* transaction state */ 461 io->status = 0; 462 io->bytes = 0; 463 init_completion (&io->complete); 464 return 0; 465 466 nomem: 467 sg_clean (io); 468 return -ENOMEM; 469 } 470 471 472 /** 473 * usb_sg_wait - synchronously execute scatter/gather request 474 * @io: request block handle, as initialized with usb_sg_init(). 475 * some fields become accessible when this call returns. 476 * Context: !in_interrupt () 477 * 478 * This function blocks until the specified I/O operation completes. It 479 * leverages the grouping of the related I/O requests to get good transfer 480 * rates, by queueing the requests. At higher speeds, such queuing can 481 * significantly improve USB throughput. 482 * 483 * There are three kinds of completion for this function. 484 * (1) success, where io->status is zero. The number of io->bytes 485 * transferred is as requested. 486 * (2) error, where io->status is a negative errno value. The number 487 * of io->bytes transferred before the error is usually less 488 * than requested, and can be nonzero. 489 * (3) cancellation, a type of error with status -ECONNRESET that 490 * is initiated by usb_sg_cancel(). 491 * 492 * When this function returns, all memory allocated through usb_sg_init() or 493 * this call will have been freed. The request block parameter may still be 494 * passed to usb_sg_cancel(), or it may be freed. It could also be 495 * reinitialized and then reused. 496 * 497 * Data Transfer Rates: 498 * 499 * Bulk transfers are valid for full or high speed endpoints. 500 * The best full speed data rate is 19 packets of 64 bytes each 501 * per frame, or 1216 bytes per millisecond. 502 * The best high speed data rate is 13 packets of 512 bytes each 503 * per microframe, or 52 KBytes per millisecond. 504 * 505 * The reason to use interrupt transfers through this API would most likely 506 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 507 * could be transferred. That capability is less useful for low or full 508 * speed interrupt endpoints, which allow at most one packet per millisecond, 509 * of at most 8 or 64 bytes (respectively). 510 */ 511 void usb_sg_wait (struct usb_sg_request *io) 512 { 513 int i, entries = io->entries; 514 515 /* queue the urbs. */ 516 spin_lock_irq (&io->lock); 517 i = 0; 518 while (i < entries && !io->status) { 519 int retval; 520 521 io->urbs [i]->dev = io->dev; 522 retval = usb_submit_urb (io->urbs [i], GFP_ATOMIC); 523 524 /* after we submit, let completions or cancelations fire; 525 * we handshake using io->status. 526 */ 527 spin_unlock_irq (&io->lock); 528 switch (retval) { 529 /* maybe we retrying will recover */ 530 case -ENXIO: // hc didn't queue this one 531 case -EAGAIN: 532 case -ENOMEM: 533 io->urbs[i]->dev = NULL; 534 retval = 0; 535 yield (); 536 break; 537 538 /* no error? continue immediately. 539 * 540 * NOTE: to work better with UHCI (4K I/O buffer may 541 * need 3K of TDs) it may be good to limit how many 542 * URBs are queued at once; N milliseconds? 543 */ 544 case 0: 545 ++i; 546 cpu_relax (); 547 break; 548 549 /* fail any uncompleted urbs */ 550 default: 551 io->urbs [i]->dev = NULL; 552 io->urbs [i]->status = retval; 553 dev_dbg (&io->dev->dev, "%s, submit --> %d\n", 554 __FUNCTION__, retval); 555 usb_sg_cancel (io); 556 } 557 spin_lock_irq (&io->lock); 558 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 559 io->status = retval; 560 } 561 io->count -= entries - i; 562 if (io->count == 0) 563 complete (&io->complete); 564 spin_unlock_irq (&io->lock); 565 566 /* OK, yes, this could be packaged as non-blocking. 567 * So could the submit loop above ... but it's easier to 568 * solve neither problem than to solve both! 569 */ 570 wait_for_completion (&io->complete); 571 572 sg_clean (io); 573 } 574 575 /** 576 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 577 * @io: request block, initialized with usb_sg_init() 578 * 579 * This stops a request after it has been started by usb_sg_wait(). 580 * It can also prevents one initialized by usb_sg_init() from starting, 581 * so that call just frees resources allocated to the request. 582 */ 583 void usb_sg_cancel (struct usb_sg_request *io) 584 { 585 unsigned long flags; 586 587 spin_lock_irqsave (&io->lock, flags); 588 589 /* shut everything down, if it didn't already */ 590 if (!io->status) { 591 int i; 592 593 io->status = -ECONNRESET; 594 spin_unlock (&io->lock); 595 for (i = 0; i < io->entries; i++) { 596 int retval; 597 598 if (!io->urbs [i]->dev) 599 continue; 600 retval = usb_unlink_urb (io->urbs [i]); 601 if (retval != -EINPROGRESS && retval != -EBUSY) 602 dev_warn (&io->dev->dev, "%s, unlink --> %d\n", 603 __FUNCTION__, retval); 604 } 605 spin_lock (&io->lock); 606 } 607 spin_unlock_irqrestore (&io->lock, flags); 608 } 609 610 /*-------------------------------------------------------------------*/ 611 612 /** 613 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 614 * @dev: the device whose descriptor is being retrieved 615 * @type: the descriptor type (USB_DT_*) 616 * @index: the number of the descriptor 617 * @buf: where to put the descriptor 618 * @size: how big is "buf"? 619 * Context: !in_interrupt () 620 * 621 * Gets a USB descriptor. Convenience functions exist to simplify 622 * getting some types of descriptors. Use 623 * usb_get_string() or usb_string() for USB_DT_STRING. 624 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 625 * are part of the device structure. 626 * In addition to a number of USB-standard descriptors, some 627 * devices also use class-specific or vendor-specific descriptors. 628 * 629 * This call is synchronous, and may not be used in an interrupt context. 630 * 631 * Returns the number of bytes received on success, or else the status code 632 * returned by the underlying usb_control_msg() call. 633 */ 634 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size) 635 { 636 int i; 637 int result; 638 639 memset(buf,0,size); // Make sure we parse really received data 640 641 for (i = 0; i < 3; ++i) { 642 /* retry on length 0 or error; some devices are flakey */ 643 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 644 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 645 (type << 8) + index, 0, buf, size, 646 USB_CTRL_GET_TIMEOUT); 647 if (result <= 0 && result != -ETIMEDOUT) 648 continue; 649 if (result > 1 && ((u8 *)buf)[1] != type) { 650 result = -EPROTO; 651 continue; 652 } 653 break; 654 } 655 return result; 656 } 657 658 /** 659 * usb_get_string - gets a string descriptor 660 * @dev: the device whose string descriptor is being retrieved 661 * @langid: code for language chosen (from string descriptor zero) 662 * @index: the number of the descriptor 663 * @buf: where to put the string 664 * @size: how big is "buf"? 665 * Context: !in_interrupt () 666 * 667 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 668 * in little-endian byte order). 669 * The usb_string() function will often be a convenient way to turn 670 * these strings into kernel-printable form. 671 * 672 * Strings may be referenced in device, configuration, interface, or other 673 * descriptors, and could also be used in vendor-specific ways. 674 * 675 * This call is synchronous, and may not be used in an interrupt context. 676 * 677 * Returns the number of bytes received on success, or else the status code 678 * returned by the underlying usb_control_msg() call. 679 */ 680 static int usb_get_string(struct usb_device *dev, unsigned short langid, 681 unsigned char index, void *buf, int size) 682 { 683 int i; 684 int result; 685 686 for (i = 0; i < 3; ++i) { 687 /* retry on length 0 or stall; some devices are flakey */ 688 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 689 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 690 (USB_DT_STRING << 8) + index, langid, buf, size, 691 USB_CTRL_GET_TIMEOUT); 692 if (!(result == 0 || result == -EPIPE)) 693 break; 694 } 695 return result; 696 } 697 698 static void usb_try_string_workarounds(unsigned char *buf, int *length) 699 { 700 int newlength, oldlength = *length; 701 702 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 703 if (!isprint(buf[newlength]) || buf[newlength + 1]) 704 break; 705 706 if (newlength > 2) { 707 buf[0] = newlength; 708 *length = newlength; 709 } 710 } 711 712 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 713 unsigned int index, unsigned char *buf) 714 { 715 int rc; 716 717 /* Try to read the string descriptor by asking for the maximum 718 * possible number of bytes */ 719 if (dev->quirks & USB_QUIRK_STRING_FETCH_255) 720 rc = -EIO; 721 else 722 rc = usb_get_string(dev, langid, index, buf, 255); 723 724 /* If that failed try to read the descriptor length, then 725 * ask for just that many bytes */ 726 if (rc < 2) { 727 rc = usb_get_string(dev, langid, index, buf, 2); 728 if (rc == 2) 729 rc = usb_get_string(dev, langid, index, buf, buf[0]); 730 } 731 732 if (rc >= 2) { 733 if (!buf[0] && !buf[1]) 734 usb_try_string_workarounds(buf, &rc); 735 736 /* There might be extra junk at the end of the descriptor */ 737 if (buf[0] < rc) 738 rc = buf[0]; 739 740 rc = rc - (rc & 1); /* force a multiple of two */ 741 } 742 743 if (rc < 2) 744 rc = (rc < 0 ? rc : -EINVAL); 745 746 return rc; 747 } 748 749 /** 750 * usb_string - returns ISO 8859-1 version of a string descriptor 751 * @dev: the device whose string descriptor is being retrieved 752 * @index: the number of the descriptor 753 * @buf: where to put the string 754 * @size: how big is "buf"? 755 * Context: !in_interrupt () 756 * 757 * This converts the UTF-16LE encoded strings returned by devices, from 758 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones 759 * that are more usable in most kernel contexts. Note that all characters 760 * in the chosen descriptor that can't be encoded using ISO-8859-1 761 * are converted to the question mark ("?") character, and this function 762 * chooses strings in the first language supported by the device. 763 * 764 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit 765 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode, 766 * and is appropriate for use many uses of English and several other 767 * Western European languages. (But it doesn't include the "Euro" symbol.) 768 * 769 * This call is synchronous, and may not be used in an interrupt context. 770 * 771 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 772 */ 773 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 774 { 775 unsigned char *tbuf; 776 int err; 777 unsigned int u, idx; 778 779 if (dev->state == USB_STATE_SUSPENDED) 780 return -EHOSTUNREACH; 781 if (size <= 0 || !buf || !index) 782 return -EINVAL; 783 buf[0] = 0; 784 tbuf = kmalloc(256, GFP_KERNEL); 785 if (!tbuf) 786 return -ENOMEM; 787 788 /* get langid for strings if it's not yet known */ 789 if (!dev->have_langid) { 790 err = usb_string_sub(dev, 0, 0, tbuf); 791 if (err < 0) { 792 dev_err (&dev->dev, 793 "string descriptor 0 read error: %d\n", 794 err); 795 goto errout; 796 } else if (err < 4) { 797 dev_err (&dev->dev, "string descriptor 0 too short\n"); 798 err = -EINVAL; 799 goto errout; 800 } else { 801 dev->have_langid = 1; 802 dev->string_langid = tbuf[2] | (tbuf[3]<< 8); 803 /* always use the first langid listed */ 804 dev_dbg (&dev->dev, "default language 0x%04x\n", 805 dev->string_langid); 806 } 807 } 808 809 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 810 if (err < 0) 811 goto errout; 812 813 size--; /* leave room for trailing NULL char in output buffer */ 814 for (idx = 0, u = 2; u < err; u += 2) { 815 if (idx >= size) 816 break; 817 if (tbuf[u+1]) /* high byte */ 818 buf[idx++] = '?'; /* non ISO-8859-1 character */ 819 else 820 buf[idx++] = tbuf[u]; 821 } 822 buf[idx] = 0; 823 err = idx; 824 825 if (tbuf[1] != USB_DT_STRING) 826 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf); 827 828 errout: 829 kfree(tbuf); 830 return err; 831 } 832 833 /** 834 * usb_cache_string - read a string descriptor and cache it for later use 835 * @udev: the device whose string descriptor is being read 836 * @index: the descriptor index 837 * 838 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string, 839 * or NULL if the index is 0 or the string could not be read. 840 */ 841 char *usb_cache_string(struct usb_device *udev, int index) 842 { 843 char *buf; 844 char *smallbuf = NULL; 845 int len; 846 847 if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) { 848 if ((len = usb_string(udev, index, buf, 256)) > 0) { 849 if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL) 850 return buf; 851 memcpy(smallbuf, buf, len); 852 } 853 kfree(buf); 854 } 855 return smallbuf; 856 } 857 858 /* 859 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 860 * @dev: the device whose device descriptor is being updated 861 * @size: how much of the descriptor to read 862 * Context: !in_interrupt () 863 * 864 * Updates the copy of the device descriptor stored in the device structure, 865 * which dedicates space for this purpose. 866 * 867 * Not exported, only for use by the core. If drivers really want to read 868 * the device descriptor directly, they can call usb_get_descriptor() with 869 * type = USB_DT_DEVICE and index = 0. 870 * 871 * This call is synchronous, and may not be used in an interrupt context. 872 * 873 * Returns the number of bytes received on success, or else the status code 874 * returned by the underlying usb_control_msg() call. 875 */ 876 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 877 { 878 struct usb_device_descriptor *desc; 879 int ret; 880 881 if (size > sizeof(*desc)) 882 return -EINVAL; 883 desc = kmalloc(sizeof(*desc), GFP_NOIO); 884 if (!desc) 885 return -ENOMEM; 886 887 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 888 if (ret >= 0) 889 memcpy(&dev->descriptor, desc, size); 890 kfree(desc); 891 return ret; 892 } 893 894 /** 895 * usb_get_status - issues a GET_STATUS call 896 * @dev: the device whose status is being checked 897 * @type: USB_RECIP_*; for device, interface, or endpoint 898 * @target: zero (for device), else interface or endpoint number 899 * @data: pointer to two bytes of bitmap data 900 * Context: !in_interrupt () 901 * 902 * Returns device, interface, or endpoint status. Normally only of 903 * interest to see if the device is self powered, or has enabled the 904 * remote wakeup facility; or whether a bulk or interrupt endpoint 905 * is halted ("stalled"). 906 * 907 * Bits in these status bitmaps are set using the SET_FEATURE request, 908 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 909 * function should be used to clear halt ("stall") status. 910 * 911 * This call is synchronous, and may not be used in an interrupt context. 912 * 913 * Returns the number of bytes received on success, or else the status code 914 * returned by the underlying usb_control_msg() call. 915 */ 916 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 917 { 918 int ret; 919 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 920 921 if (!status) 922 return -ENOMEM; 923 924 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 925 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 926 sizeof(*status), USB_CTRL_GET_TIMEOUT); 927 928 *(u16 *)data = *status; 929 kfree(status); 930 return ret; 931 } 932 933 /** 934 * usb_clear_halt - tells device to clear endpoint halt/stall condition 935 * @dev: device whose endpoint is halted 936 * @pipe: endpoint "pipe" being cleared 937 * Context: !in_interrupt () 938 * 939 * This is used to clear halt conditions for bulk and interrupt endpoints, 940 * as reported by URB completion status. Endpoints that are halted are 941 * sometimes referred to as being "stalled". Such endpoints are unable 942 * to transmit or receive data until the halt status is cleared. Any URBs 943 * queued for such an endpoint should normally be unlinked by the driver 944 * before clearing the halt condition, as described in sections 5.7.5 945 * and 5.8.5 of the USB 2.0 spec. 946 * 947 * Note that control and isochronous endpoints don't halt, although control 948 * endpoints report "protocol stall" (for unsupported requests) using the 949 * same status code used to report a true stall. 950 * 951 * This call is synchronous, and may not be used in an interrupt context. 952 * 953 * Returns zero on success, or else the status code returned by the 954 * underlying usb_control_msg() call. 955 */ 956 int usb_clear_halt(struct usb_device *dev, int pipe) 957 { 958 int result; 959 int endp = usb_pipeendpoint(pipe); 960 961 if (usb_pipein (pipe)) 962 endp |= USB_DIR_IN; 963 964 /* we don't care if it wasn't halted first. in fact some devices 965 * (like some ibmcam model 1 units) seem to expect hosts to make 966 * this request for iso endpoints, which can't halt! 967 */ 968 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 969 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 970 USB_ENDPOINT_HALT, endp, NULL, 0, 971 USB_CTRL_SET_TIMEOUT); 972 973 /* don't un-halt or force to DATA0 except on success */ 974 if (result < 0) 975 return result; 976 977 /* NOTE: seems like Microsoft and Apple don't bother verifying 978 * the clear "took", so some devices could lock up if you check... 979 * such as the Hagiwara FlashGate DUAL. So we won't bother. 980 * 981 * NOTE: make sure the logic here doesn't diverge much from 982 * the copy in usb-storage, for as long as we need two copies. 983 */ 984 985 /* toggle was reset by the clear */ 986 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); 987 988 return 0; 989 } 990 991 /** 992 * usb_disable_endpoint -- Disable an endpoint by address 993 * @dev: the device whose endpoint is being disabled 994 * @epaddr: the endpoint's address. Endpoint number for output, 995 * endpoint number + USB_DIR_IN for input 996 * 997 * Deallocates hcd/hardware state for this endpoint ... and nukes all 998 * pending urbs. 999 * 1000 * If the HCD hasn't registered a disable() function, this sets the 1001 * endpoint's maxpacket size to 0 to prevent further submissions. 1002 */ 1003 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr) 1004 { 1005 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1006 struct usb_host_endpoint *ep; 1007 1008 if (!dev) 1009 return; 1010 1011 if (usb_endpoint_out(epaddr)) { 1012 ep = dev->ep_out[epnum]; 1013 dev->ep_out[epnum] = NULL; 1014 } else { 1015 ep = dev->ep_in[epnum]; 1016 dev->ep_in[epnum] = NULL; 1017 } 1018 if (ep) { 1019 ep->enabled = 0; 1020 usb_hcd_flush_endpoint(dev, ep); 1021 usb_hcd_disable_endpoint(dev, ep); 1022 } 1023 } 1024 1025 /** 1026 * usb_disable_interface -- Disable all endpoints for an interface 1027 * @dev: the device whose interface is being disabled 1028 * @intf: pointer to the interface descriptor 1029 * 1030 * Disables all the endpoints for the interface's current altsetting. 1031 */ 1032 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf) 1033 { 1034 struct usb_host_interface *alt = intf->cur_altsetting; 1035 int i; 1036 1037 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 1038 usb_disable_endpoint(dev, 1039 alt->endpoint[i].desc.bEndpointAddress); 1040 } 1041 } 1042 1043 /* 1044 * usb_disable_device - Disable all the endpoints for a USB device 1045 * @dev: the device whose endpoints are being disabled 1046 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 1047 * 1048 * Disables all the device's endpoints, potentially including endpoint 0. 1049 * Deallocates hcd/hardware state for the endpoints (nuking all or most 1050 * pending urbs) and usbcore state for the interfaces, so that usbcore 1051 * must usb_set_configuration() before any interfaces could be used. 1052 */ 1053 void usb_disable_device(struct usb_device *dev, int skip_ep0) 1054 { 1055 int i; 1056 1057 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__, 1058 skip_ep0 ? "non-ep0" : "all"); 1059 for (i = skip_ep0; i < 16; ++i) { 1060 usb_disable_endpoint(dev, i); 1061 usb_disable_endpoint(dev, i + USB_DIR_IN); 1062 } 1063 dev->toggle[0] = dev->toggle[1] = 0; 1064 1065 /* getting rid of interfaces will disconnect 1066 * any drivers bound to them (a key side effect) 1067 */ 1068 if (dev->actconfig) { 1069 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1070 struct usb_interface *interface; 1071 1072 /* remove this interface if it has been registered */ 1073 interface = dev->actconfig->interface[i]; 1074 if (!device_is_registered(&interface->dev)) 1075 continue; 1076 dev_dbg (&dev->dev, "unregistering interface %s\n", 1077 interface->dev.bus_id); 1078 usb_remove_sysfs_intf_files(interface); 1079 device_del (&interface->dev); 1080 } 1081 1082 /* Now that the interfaces are unbound, nobody should 1083 * try to access them. 1084 */ 1085 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1086 put_device (&dev->actconfig->interface[i]->dev); 1087 dev->actconfig->interface[i] = NULL; 1088 } 1089 dev->actconfig = NULL; 1090 if (dev->state == USB_STATE_CONFIGURED) 1091 usb_set_device_state(dev, USB_STATE_ADDRESS); 1092 } 1093 } 1094 1095 1096 /* 1097 * usb_enable_endpoint - Enable an endpoint for USB communications 1098 * @dev: the device whose interface is being enabled 1099 * @ep: the endpoint 1100 * 1101 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers. 1102 * For control endpoints, both the input and output sides are handled. 1103 */ 1104 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep) 1105 { 1106 int epnum = usb_endpoint_num(&ep->desc); 1107 int is_out = usb_endpoint_dir_out(&ep->desc); 1108 int is_control = usb_endpoint_xfer_control(&ep->desc); 1109 1110 if (is_out || is_control) { 1111 usb_settoggle(dev, epnum, 1, 0); 1112 dev->ep_out[epnum] = ep; 1113 } 1114 if (!is_out || is_control) { 1115 usb_settoggle(dev, epnum, 0, 0); 1116 dev->ep_in[epnum] = ep; 1117 } 1118 ep->enabled = 1; 1119 } 1120 1121 /* 1122 * usb_enable_interface - Enable all the endpoints for an interface 1123 * @dev: the device whose interface is being enabled 1124 * @intf: pointer to the interface descriptor 1125 * 1126 * Enables all the endpoints for the interface's current altsetting. 1127 */ 1128 static void usb_enable_interface(struct usb_device *dev, 1129 struct usb_interface *intf) 1130 { 1131 struct usb_host_interface *alt = intf->cur_altsetting; 1132 int i; 1133 1134 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1135 usb_enable_endpoint(dev, &alt->endpoint[i]); 1136 } 1137 1138 /** 1139 * usb_set_interface - Makes a particular alternate setting be current 1140 * @dev: the device whose interface is being updated 1141 * @interface: the interface being updated 1142 * @alternate: the setting being chosen. 1143 * Context: !in_interrupt () 1144 * 1145 * This is used to enable data transfers on interfaces that may not 1146 * be enabled by default. Not all devices support such configurability. 1147 * Only the driver bound to an interface may change its setting. 1148 * 1149 * Within any given configuration, each interface may have several 1150 * alternative settings. These are often used to control levels of 1151 * bandwidth consumption. For example, the default setting for a high 1152 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1153 * while interrupt transfers of up to 3KBytes per microframe are legal. 1154 * Also, isochronous endpoints may never be part of an 1155 * interface's default setting. To access such bandwidth, alternate 1156 * interface settings must be made current. 1157 * 1158 * Note that in the Linux USB subsystem, bandwidth associated with 1159 * an endpoint in a given alternate setting is not reserved until an URB 1160 * is submitted that needs that bandwidth. Some other operating systems 1161 * allocate bandwidth early, when a configuration is chosen. 1162 * 1163 * This call is synchronous, and may not be used in an interrupt context. 1164 * Also, drivers must not change altsettings while urbs are scheduled for 1165 * endpoints in that interface; all such urbs must first be completed 1166 * (perhaps forced by unlinking). 1167 * 1168 * Returns zero on success, or else the status code returned by the 1169 * underlying usb_control_msg() call. 1170 */ 1171 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1172 { 1173 struct usb_interface *iface; 1174 struct usb_host_interface *alt; 1175 int ret; 1176 int manual = 0; 1177 int changed; 1178 1179 if (dev->state == USB_STATE_SUSPENDED) 1180 return -EHOSTUNREACH; 1181 1182 iface = usb_ifnum_to_if(dev, interface); 1183 if (!iface) { 1184 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1185 interface); 1186 return -EINVAL; 1187 } 1188 1189 alt = usb_altnum_to_altsetting(iface, alternate); 1190 if (!alt) { 1191 warn("selecting invalid altsetting %d", alternate); 1192 return -EINVAL; 1193 } 1194 1195 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1196 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1197 alternate, interface, NULL, 0, 5000); 1198 1199 /* 9.4.10 says devices don't need this and are free to STALL the 1200 * request if the interface only has one alternate setting. 1201 */ 1202 if (ret == -EPIPE && iface->num_altsetting == 1) { 1203 dev_dbg(&dev->dev, 1204 "manual set_interface for iface %d, alt %d\n", 1205 interface, alternate); 1206 manual = 1; 1207 } else if (ret < 0) 1208 return ret; 1209 1210 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1211 * when they implement async or easily-killable versions of this or 1212 * other "should-be-internal" functions (like clear_halt). 1213 * should hcd+usbcore postprocess control requests? 1214 */ 1215 1216 /* prevent submissions using previous endpoint settings */ 1217 changed = (iface->cur_altsetting != alt); 1218 if (changed && device_is_registered(&iface->dev)) 1219 usb_remove_sysfs_intf_files(iface); 1220 usb_disable_interface(dev, iface); 1221 1222 iface->cur_altsetting = alt; 1223 1224 /* If the interface only has one altsetting and the device didn't 1225 * accept the request, we attempt to carry out the equivalent action 1226 * by manually clearing the HALT feature for each endpoint in the 1227 * new altsetting. 1228 */ 1229 if (manual) { 1230 int i; 1231 1232 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1233 unsigned int epaddr = 1234 alt->endpoint[i].desc.bEndpointAddress; 1235 unsigned int pipe = 1236 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr) 1237 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN); 1238 1239 usb_clear_halt(dev, pipe); 1240 } 1241 } 1242 1243 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1244 * 1245 * Note: 1246 * Despite EP0 is always present in all interfaces/AS, the list of 1247 * endpoints from the descriptor does not contain EP0. Due to its 1248 * omnipresence one might expect EP0 being considered "affected" by 1249 * any SetInterface request and hence assume toggles need to be reset. 1250 * However, EP0 toggles are re-synced for every individual transfer 1251 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1252 * (Likewise, EP0 never "halts" on well designed devices.) 1253 */ 1254 usb_enable_interface(dev, iface); 1255 if (changed && device_is_registered(&iface->dev)) 1256 usb_create_sysfs_intf_files(iface); 1257 1258 return 0; 1259 } 1260 1261 /** 1262 * usb_reset_configuration - lightweight device reset 1263 * @dev: the device whose configuration is being reset 1264 * 1265 * This issues a standard SET_CONFIGURATION request to the device using 1266 * the current configuration. The effect is to reset most USB-related 1267 * state in the device, including interface altsettings (reset to zero), 1268 * endpoint halts (cleared), and data toggle (only for bulk and interrupt 1269 * endpoints). Other usbcore state is unchanged, including bindings of 1270 * usb device drivers to interfaces. 1271 * 1272 * Because this affects multiple interfaces, avoid using this with composite 1273 * (multi-interface) devices. Instead, the driver for each interface may 1274 * use usb_set_interface() on the interfaces it claims. Be careful though; 1275 * some devices don't support the SET_INTERFACE request, and others won't 1276 * reset all the interface state (notably data toggles). Resetting the whole 1277 * configuration would affect other drivers' interfaces. 1278 * 1279 * The caller must own the device lock. 1280 * 1281 * Returns zero on success, else a negative error code. 1282 */ 1283 int usb_reset_configuration(struct usb_device *dev) 1284 { 1285 int i, retval; 1286 struct usb_host_config *config; 1287 1288 if (dev->state == USB_STATE_SUSPENDED) 1289 return -EHOSTUNREACH; 1290 1291 /* caller must have locked the device and must own 1292 * the usb bus readlock (so driver bindings are stable); 1293 * calls during probe() are fine 1294 */ 1295 1296 for (i = 1; i < 16; ++i) { 1297 usb_disable_endpoint(dev, i); 1298 usb_disable_endpoint(dev, i + USB_DIR_IN); 1299 } 1300 1301 config = dev->actconfig; 1302 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1303 USB_REQ_SET_CONFIGURATION, 0, 1304 config->desc.bConfigurationValue, 0, 1305 NULL, 0, USB_CTRL_SET_TIMEOUT); 1306 if (retval < 0) 1307 return retval; 1308 1309 dev->toggle[0] = dev->toggle[1] = 0; 1310 1311 /* re-init hc/hcd interface/endpoint state */ 1312 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1313 struct usb_interface *intf = config->interface[i]; 1314 struct usb_host_interface *alt; 1315 1316 if (device_is_registered(&intf->dev)) 1317 usb_remove_sysfs_intf_files(intf); 1318 alt = usb_altnum_to_altsetting(intf, 0); 1319 1320 /* No altsetting 0? We'll assume the first altsetting. 1321 * We could use a GetInterface call, but if a device is 1322 * so non-compliant that it doesn't have altsetting 0 1323 * then I wouldn't trust its reply anyway. 1324 */ 1325 if (!alt) 1326 alt = &intf->altsetting[0]; 1327 1328 intf->cur_altsetting = alt; 1329 usb_enable_interface(dev, intf); 1330 if (device_is_registered(&intf->dev)) 1331 usb_create_sysfs_intf_files(intf); 1332 } 1333 return 0; 1334 } 1335 1336 static void usb_release_interface(struct device *dev) 1337 { 1338 struct usb_interface *intf = to_usb_interface(dev); 1339 struct usb_interface_cache *intfc = 1340 altsetting_to_usb_interface_cache(intf->altsetting); 1341 1342 kref_put(&intfc->ref, usb_release_interface_cache); 1343 kfree(intf); 1344 } 1345 1346 #ifdef CONFIG_HOTPLUG 1347 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1348 { 1349 struct usb_device *usb_dev; 1350 struct usb_interface *intf; 1351 struct usb_host_interface *alt; 1352 1353 if (!dev) 1354 return -ENODEV; 1355 1356 /* driver is often null here; dev_dbg() would oops */ 1357 pr_debug ("usb %s: uevent\n", dev->bus_id); 1358 1359 intf = to_usb_interface(dev); 1360 usb_dev = interface_to_usbdev(intf); 1361 alt = intf->cur_altsetting; 1362 1363 #ifdef CONFIG_USB_DEVICEFS 1364 if (add_uevent_var(env, "DEVICE=/proc/bus/usb/%03d/%03d", 1365 usb_dev->bus->busnum, usb_dev->devnum)) 1366 return -ENOMEM; 1367 #endif 1368 1369 if (add_uevent_var(env, "PRODUCT=%x/%x/%x", 1370 le16_to_cpu(usb_dev->descriptor.idVendor), 1371 le16_to_cpu(usb_dev->descriptor.idProduct), 1372 le16_to_cpu(usb_dev->descriptor.bcdDevice))) 1373 return -ENOMEM; 1374 1375 if (add_uevent_var(env, "TYPE=%d/%d/%d", 1376 usb_dev->descriptor.bDeviceClass, 1377 usb_dev->descriptor.bDeviceSubClass, 1378 usb_dev->descriptor.bDeviceProtocol)) 1379 return -ENOMEM; 1380 1381 if (add_uevent_var(env, "INTERFACE=%d/%d/%d", 1382 alt->desc.bInterfaceClass, 1383 alt->desc.bInterfaceSubClass, 1384 alt->desc.bInterfaceProtocol)) 1385 return -ENOMEM; 1386 1387 if (add_uevent_var(env, 1388 "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X", 1389 le16_to_cpu(usb_dev->descriptor.idVendor), 1390 le16_to_cpu(usb_dev->descriptor.idProduct), 1391 le16_to_cpu(usb_dev->descriptor.bcdDevice), 1392 usb_dev->descriptor.bDeviceClass, 1393 usb_dev->descriptor.bDeviceSubClass, 1394 usb_dev->descriptor.bDeviceProtocol, 1395 alt->desc.bInterfaceClass, 1396 alt->desc.bInterfaceSubClass, 1397 alt->desc.bInterfaceProtocol)) 1398 return -ENOMEM; 1399 1400 return 0; 1401 } 1402 1403 #else 1404 1405 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env) 1406 { 1407 return -ENODEV; 1408 } 1409 #endif /* CONFIG_HOTPLUG */ 1410 1411 struct device_type usb_if_device_type = { 1412 .name = "usb_interface", 1413 .release = usb_release_interface, 1414 .uevent = usb_if_uevent, 1415 }; 1416 1417 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev, 1418 struct usb_host_config *config, 1419 u8 inum) 1420 { 1421 struct usb_interface_assoc_descriptor *retval = NULL; 1422 struct usb_interface_assoc_descriptor *intf_assoc; 1423 int first_intf; 1424 int last_intf; 1425 int i; 1426 1427 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) { 1428 intf_assoc = config->intf_assoc[i]; 1429 if (intf_assoc->bInterfaceCount == 0) 1430 continue; 1431 1432 first_intf = intf_assoc->bFirstInterface; 1433 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1); 1434 if (inum >= first_intf && inum <= last_intf) { 1435 if (!retval) 1436 retval = intf_assoc; 1437 else 1438 dev_err(&dev->dev, "Interface #%d referenced" 1439 " by multiple IADs\n", inum); 1440 } 1441 } 1442 1443 return retval; 1444 } 1445 1446 1447 /* 1448 * usb_set_configuration - Makes a particular device setting be current 1449 * @dev: the device whose configuration is being updated 1450 * @configuration: the configuration being chosen. 1451 * Context: !in_interrupt(), caller owns the device lock 1452 * 1453 * This is used to enable non-default device modes. Not all devices 1454 * use this kind of configurability; many devices only have one 1455 * configuration. 1456 * 1457 * @configuration is the value of the configuration to be installed. 1458 * According to the USB spec (e.g. section 9.1.1.5), configuration values 1459 * must be non-zero; a value of zero indicates that the device in 1460 * unconfigured. However some devices erroneously use 0 as one of their 1461 * configuration values. To help manage such devices, this routine will 1462 * accept @configuration = -1 as indicating the device should be put in 1463 * an unconfigured state. 1464 * 1465 * USB device configurations may affect Linux interoperability, 1466 * power consumption and the functionality available. For example, 1467 * the default configuration is limited to using 100mA of bus power, 1468 * so that when certain device functionality requires more power, 1469 * and the device is bus powered, that functionality should be in some 1470 * non-default device configuration. Other device modes may also be 1471 * reflected as configuration options, such as whether two ISDN 1472 * channels are available independently; and choosing between open 1473 * standard device protocols (like CDC) or proprietary ones. 1474 * 1475 * Note that a non-authorized device (dev->authorized == 0) will only 1476 * be put in unconfigured mode. 1477 * 1478 * Note that USB has an additional level of device configurability, 1479 * associated with interfaces. That configurability is accessed using 1480 * usb_set_interface(). 1481 * 1482 * This call is synchronous. The calling context must be able to sleep, 1483 * must own the device lock, and must not hold the driver model's USB 1484 * bus mutex; usb device driver probe() methods cannot use this routine. 1485 * 1486 * Returns zero on success, or else the status code returned by the 1487 * underlying call that failed. On successful completion, each interface 1488 * in the original device configuration has been destroyed, and each one 1489 * in the new configuration has been probed by all relevant usb device 1490 * drivers currently known to the kernel. 1491 */ 1492 int usb_set_configuration(struct usb_device *dev, int configuration) 1493 { 1494 int i, ret; 1495 struct usb_host_config *cp = NULL; 1496 struct usb_interface **new_interfaces = NULL; 1497 int n, nintf; 1498 1499 if (dev->authorized == 0 || configuration == -1) 1500 configuration = 0; 1501 else { 1502 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1503 if (dev->config[i].desc.bConfigurationValue == 1504 configuration) { 1505 cp = &dev->config[i]; 1506 break; 1507 } 1508 } 1509 } 1510 if ((!cp && configuration != 0)) 1511 return -EINVAL; 1512 1513 /* The USB spec says configuration 0 means unconfigured. 1514 * But if a device includes a configuration numbered 0, 1515 * we will accept it as a correctly configured state. 1516 * Use -1 if you really want to unconfigure the device. 1517 */ 1518 if (cp && configuration == 0) 1519 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1520 1521 /* Allocate memory for new interfaces before doing anything else, 1522 * so that if we run out then nothing will have changed. */ 1523 n = nintf = 0; 1524 if (cp) { 1525 nintf = cp->desc.bNumInterfaces; 1526 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1527 GFP_KERNEL); 1528 if (!new_interfaces) { 1529 dev_err(&dev->dev, "Out of memory\n"); 1530 return -ENOMEM; 1531 } 1532 1533 for (; n < nintf; ++n) { 1534 new_interfaces[n] = kzalloc( 1535 sizeof(struct usb_interface), 1536 GFP_KERNEL); 1537 if (!new_interfaces[n]) { 1538 dev_err(&dev->dev, "Out of memory\n"); 1539 ret = -ENOMEM; 1540 free_interfaces: 1541 while (--n >= 0) 1542 kfree(new_interfaces[n]); 1543 kfree(new_interfaces); 1544 return ret; 1545 } 1546 } 1547 1548 i = dev->bus_mA - cp->desc.bMaxPower * 2; 1549 if (i < 0) 1550 dev_warn(&dev->dev, "new config #%d exceeds power " 1551 "limit by %dmA\n", 1552 configuration, -i); 1553 } 1554 1555 /* Wake up the device so we can send it the Set-Config request */ 1556 ret = usb_autoresume_device(dev); 1557 if (ret) 1558 goto free_interfaces; 1559 1560 /* if it's already configured, clear out old state first. 1561 * getting rid of old interfaces means unbinding their drivers. 1562 */ 1563 if (dev->state != USB_STATE_ADDRESS) 1564 usb_disable_device (dev, 1); // Skip ep0 1565 1566 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1567 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1568 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) { 1569 1570 /* All the old state is gone, so what else can we do? 1571 * The device is probably useless now anyway. 1572 */ 1573 cp = NULL; 1574 } 1575 1576 dev->actconfig = cp; 1577 if (!cp) { 1578 usb_set_device_state(dev, USB_STATE_ADDRESS); 1579 usb_autosuspend_device(dev); 1580 goto free_interfaces; 1581 } 1582 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1583 1584 /* Initialize the new interface structures and the 1585 * hc/hcd/usbcore interface/endpoint state. 1586 */ 1587 for (i = 0; i < nintf; ++i) { 1588 struct usb_interface_cache *intfc; 1589 struct usb_interface *intf; 1590 struct usb_host_interface *alt; 1591 1592 cp->interface[i] = intf = new_interfaces[i]; 1593 intfc = cp->intf_cache[i]; 1594 intf->altsetting = intfc->altsetting; 1595 intf->num_altsetting = intfc->num_altsetting; 1596 intf->intf_assoc = find_iad(dev, cp, i); 1597 kref_get(&intfc->ref); 1598 1599 alt = usb_altnum_to_altsetting(intf, 0); 1600 1601 /* No altsetting 0? We'll assume the first altsetting. 1602 * We could use a GetInterface call, but if a device is 1603 * so non-compliant that it doesn't have altsetting 0 1604 * then I wouldn't trust its reply anyway. 1605 */ 1606 if (!alt) 1607 alt = &intf->altsetting[0]; 1608 1609 intf->cur_altsetting = alt; 1610 usb_enable_interface(dev, intf); 1611 intf->dev.parent = &dev->dev; 1612 intf->dev.driver = NULL; 1613 intf->dev.bus = &usb_bus_type; 1614 intf->dev.type = &usb_if_device_type; 1615 intf->dev.dma_mask = dev->dev.dma_mask; 1616 device_initialize (&intf->dev); 1617 mark_quiesced(intf); 1618 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d", 1619 dev->bus->busnum, dev->devpath, 1620 configuration, alt->desc.bInterfaceNumber); 1621 } 1622 kfree(new_interfaces); 1623 1624 if (cp->string == NULL) 1625 cp->string = usb_cache_string(dev, cp->desc.iConfiguration); 1626 1627 /* Now that all the interfaces are set up, register them 1628 * to trigger binding of drivers to interfaces. probe() 1629 * routines may install different altsettings and may 1630 * claim() any interfaces not yet bound. Many class drivers 1631 * need that: CDC, audio, video, etc. 1632 */ 1633 for (i = 0; i < nintf; ++i) { 1634 struct usb_interface *intf = cp->interface[i]; 1635 1636 dev_dbg (&dev->dev, 1637 "adding %s (config #%d, interface %d)\n", 1638 intf->dev.bus_id, configuration, 1639 intf->cur_altsetting->desc.bInterfaceNumber); 1640 ret = device_add (&intf->dev); 1641 if (ret != 0) { 1642 dev_err(&dev->dev, "device_add(%s) --> %d\n", 1643 intf->dev.bus_id, ret); 1644 continue; 1645 } 1646 usb_create_sysfs_intf_files (intf); 1647 } 1648 1649 usb_autosuspend_device(dev); 1650 return 0; 1651 } 1652 1653 struct set_config_request { 1654 struct usb_device *udev; 1655 int config; 1656 struct work_struct work; 1657 }; 1658 1659 /* Worker routine for usb_driver_set_configuration() */ 1660 static void driver_set_config_work(struct work_struct *work) 1661 { 1662 struct set_config_request *req = 1663 container_of(work, struct set_config_request, work); 1664 1665 usb_lock_device(req->udev); 1666 usb_set_configuration(req->udev, req->config); 1667 usb_unlock_device(req->udev); 1668 usb_put_dev(req->udev); 1669 kfree(req); 1670 } 1671 1672 /** 1673 * usb_driver_set_configuration - Provide a way for drivers to change device configurations 1674 * @udev: the device whose configuration is being updated 1675 * @config: the configuration being chosen. 1676 * Context: In process context, must be able to sleep 1677 * 1678 * Device interface drivers are not allowed to change device configurations. 1679 * This is because changing configurations will destroy the interface the 1680 * driver is bound to and create new ones; it would be like a floppy-disk 1681 * driver telling the computer to replace the floppy-disk drive with a 1682 * tape drive! 1683 * 1684 * Still, in certain specialized circumstances the need may arise. This 1685 * routine gets around the normal restrictions by using a work thread to 1686 * submit the change-config request. 1687 * 1688 * Returns 0 if the request was succesfully queued, error code otherwise. 1689 * The caller has no way to know whether the queued request will eventually 1690 * succeed. 1691 */ 1692 int usb_driver_set_configuration(struct usb_device *udev, int config) 1693 { 1694 struct set_config_request *req; 1695 1696 req = kmalloc(sizeof(*req), GFP_KERNEL); 1697 if (!req) 1698 return -ENOMEM; 1699 req->udev = udev; 1700 req->config = config; 1701 INIT_WORK(&req->work, driver_set_config_work); 1702 1703 usb_get_dev(udev); 1704 schedule_work(&req->work); 1705 return 0; 1706 } 1707 EXPORT_SYMBOL_GPL(usb_driver_set_configuration); 1708 1709 // synchronous request completion model 1710 EXPORT_SYMBOL(usb_control_msg); 1711 EXPORT_SYMBOL(usb_bulk_msg); 1712 1713 EXPORT_SYMBOL(usb_sg_init); 1714 EXPORT_SYMBOL(usb_sg_cancel); 1715 EXPORT_SYMBOL(usb_sg_wait); 1716 1717 // synchronous control message convenience routines 1718 EXPORT_SYMBOL(usb_get_descriptor); 1719 EXPORT_SYMBOL(usb_get_status); 1720 EXPORT_SYMBOL(usb_string); 1721 1722 // synchronous calls that also maintain usbcore state 1723 EXPORT_SYMBOL(usb_clear_halt); 1724 EXPORT_SYMBOL(usb_reset_configuration); 1725 EXPORT_SYMBOL(usb_set_interface); 1726 1727