xref: /openbmc/linux/drivers/usb/core/message.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/pci.h>	/* for scatterlist macros */
6 #include <linux/usb.h>
7 #include <linux/module.h>
8 #include <linux/slab.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/timer.h>
12 #include <linux/ctype.h>
13 #include <linux/device.h>
14 #include <linux/usb/quirks.h>
15 #include <asm/byteorder.h>
16 #include <asm/scatterlist.h>
17 
18 #include "hcd.h"	/* for usbcore internals */
19 #include "usb.h"
20 
21 struct api_context {
22 	struct completion	done;
23 	int			status;
24 };
25 
26 static void usb_api_blocking_completion(struct urb *urb)
27 {
28 	struct api_context *ctx = urb->context;
29 
30 	ctx->status = urb->status;
31 	complete(&ctx->done);
32 }
33 
34 
35 /*
36  * Starts urb and waits for completion or timeout. Note that this call
37  * is NOT interruptible. Many device driver i/o requests should be
38  * interruptible and therefore these drivers should implement their
39  * own interruptible routines.
40  */
41 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
42 {
43 	struct api_context ctx;
44 	unsigned long expire;
45 	int retval;
46 
47 	init_completion(&ctx.done);
48 	urb->context = &ctx;
49 	urb->actual_length = 0;
50 	retval = usb_submit_urb(urb, GFP_NOIO);
51 	if (unlikely(retval))
52 		goto out;
53 
54 	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
55 	if (!wait_for_completion_timeout(&ctx.done, expire)) {
56 		usb_kill_urb(urb);
57 		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
58 
59 		dev_dbg(&urb->dev->dev,
60 			"%s timed out on ep%d%s len=%d/%d\n",
61 			current->comm,
62 			usb_endpoint_num(&urb->ep->desc),
63 			usb_urb_dir_in(urb) ? "in" : "out",
64 			urb->actual_length,
65 			urb->transfer_buffer_length);
66 	} else
67 		retval = ctx.status;
68 out:
69 	if (actual_length)
70 		*actual_length = urb->actual_length;
71 
72 	usb_free_urb(urb);
73 	return retval;
74 }
75 
76 /*-------------------------------------------------------------------*/
77 // returns status (negative) or length (positive)
78 static int usb_internal_control_msg(struct usb_device *usb_dev,
79 				    unsigned int pipe,
80 				    struct usb_ctrlrequest *cmd,
81 				    void *data, int len, int timeout)
82 {
83 	struct urb *urb;
84 	int retv;
85 	int length;
86 
87 	urb = usb_alloc_urb(0, GFP_NOIO);
88 	if (!urb)
89 		return -ENOMEM;
90 
91 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
92 			     len, usb_api_blocking_completion, NULL);
93 
94 	retv = usb_start_wait_urb(urb, timeout, &length);
95 	if (retv < 0)
96 		return retv;
97 	else
98 		return length;
99 }
100 
101 /**
102  *	usb_control_msg - Builds a control urb, sends it off and waits for completion
103  *	@dev: pointer to the usb device to send the message to
104  *	@pipe: endpoint "pipe" to send the message to
105  *	@request: USB message request value
106  *	@requesttype: USB message request type value
107  *	@value: USB message value
108  *	@index: USB message index value
109  *	@data: pointer to the data to send
110  *	@size: length in bytes of the data to send
111  *	@timeout: time in msecs to wait for the message to complete before
112  *		timing out (if 0 the wait is forever)
113  *	Context: !in_interrupt ()
114  *
115  *	This function sends a simple control message to a specified endpoint
116  *	and waits for the message to complete, or timeout.
117  *
118  *	If successful, it returns the number of bytes transferred, otherwise a negative error number.
119  *
120  *	Don't use this function from within an interrupt context, like a
121  *	bottom half handler.  If you need an asynchronous message, or need to send
122  *	a message from within interrupt context, use usb_submit_urb()
123  *      If a thread in your driver uses this call, make sure your disconnect()
124  *      method can wait for it to complete.  Since you don't have a handle on
125  *      the URB used, you can't cancel the request.
126  */
127 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
128 			 __u16 value, __u16 index, void *data, __u16 size, int timeout)
129 {
130 	struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
131 	int ret;
132 
133 	if (!dr)
134 		return -ENOMEM;
135 
136 	dr->bRequestType= requesttype;
137 	dr->bRequest = request;
138 	dr->wValue = cpu_to_le16p(&value);
139 	dr->wIndex = cpu_to_le16p(&index);
140 	dr->wLength = cpu_to_le16p(&size);
141 
142 	//dbg("usb_control_msg");
143 
144 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
145 
146 	kfree(dr);
147 
148 	return ret;
149 }
150 
151 
152 /**
153  * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
154  * @usb_dev: pointer to the usb device to send the message to
155  * @pipe: endpoint "pipe" to send the message to
156  * @data: pointer to the data to send
157  * @len: length in bytes of the data to send
158  * @actual_length: pointer to a location to put the actual length transferred in bytes
159  * @timeout: time in msecs to wait for the message to complete before
160  *	timing out (if 0 the wait is forever)
161  * Context: !in_interrupt ()
162  *
163  * This function sends a simple interrupt message to a specified endpoint and
164  * waits for the message to complete, or timeout.
165  *
166  * If successful, it returns 0, otherwise a negative error number.  The number
167  * of actual bytes transferred will be stored in the actual_length paramater.
168  *
169  * Don't use this function from within an interrupt context, like a bottom half
170  * handler.  If you need an asynchronous message, or need to send a message
171  * from within interrupt context, use usb_submit_urb() If a thread in your
172  * driver uses this call, make sure your disconnect() method can wait for it to
173  * complete.  Since you don't have a handle on the URB used, you can't cancel
174  * the request.
175  */
176 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
177 		      void *data, int len, int *actual_length, int timeout)
178 {
179 	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
180 }
181 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
182 
183 /**
184  *	usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
185  *	@usb_dev: pointer to the usb device to send the message to
186  *	@pipe: endpoint "pipe" to send the message to
187  *	@data: pointer to the data to send
188  *	@len: length in bytes of the data to send
189  *	@actual_length: pointer to a location to put the actual length transferred in bytes
190  *	@timeout: time in msecs to wait for the message to complete before
191  *		timing out (if 0 the wait is forever)
192  *	Context: !in_interrupt ()
193  *
194  *	This function sends a simple bulk message to a specified endpoint
195  *	and waits for the message to complete, or timeout.
196  *
197  *	If successful, it returns 0, otherwise a negative error number.
198  *	The number of actual bytes transferred will be stored in the
199  *	actual_length paramater.
200  *
201  *	Don't use this function from within an interrupt context, like a
202  *	bottom half handler.  If you need an asynchronous message, or need to
203  *	send a message from within interrupt context, use usb_submit_urb()
204  *      If a thread in your driver uses this call, make sure your disconnect()
205  *      method can wait for it to complete.  Since you don't have a handle on
206  *      the URB used, you can't cancel the request.
207  *
208  *	Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT
209  *	ioctl, users are forced to abuse this routine by using it to submit
210  *	URBs for interrupt endpoints.  We will take the liberty of creating
211  *	an interrupt URB (with the default interval) if the target is an
212  *	interrupt endpoint.
213  */
214 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
215 			void *data, int len, int *actual_length, int timeout)
216 {
217 	struct urb *urb;
218 	struct usb_host_endpoint *ep;
219 
220 	ep = (usb_pipein(pipe) ? usb_dev->ep_in : usb_dev->ep_out)
221 			[usb_pipeendpoint(pipe)];
222 	if (!ep || len < 0)
223 		return -EINVAL;
224 
225 	urb = usb_alloc_urb(0, GFP_KERNEL);
226 	if (!urb)
227 		return -ENOMEM;
228 
229 	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
230 			USB_ENDPOINT_XFER_INT) {
231 		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
232 		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
233 				usb_api_blocking_completion, NULL,
234 				ep->desc.bInterval);
235 	} else
236 		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
237 				usb_api_blocking_completion, NULL);
238 
239 	return usb_start_wait_urb(urb, timeout, actual_length);
240 }
241 
242 /*-------------------------------------------------------------------*/
243 
244 static void sg_clean (struct usb_sg_request *io)
245 {
246 	if (io->urbs) {
247 		while (io->entries--)
248 			usb_free_urb (io->urbs [io->entries]);
249 		kfree (io->urbs);
250 		io->urbs = NULL;
251 	}
252 	if (io->dev->dev.dma_mask != NULL)
253 		usb_buffer_unmap_sg (io->dev, usb_pipein(io->pipe),
254 				io->sg, io->nents);
255 	io->dev = NULL;
256 }
257 
258 static void sg_complete (struct urb *urb)
259 {
260 	struct usb_sg_request	*io = urb->context;
261 	int status = urb->status;
262 
263 	spin_lock (&io->lock);
264 
265 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
266 	 * reports, until the completion callback (this!) returns.  That lets
267 	 * device driver code (like this routine) unlink queued urbs first,
268 	 * if it needs to, since the HC won't work on them at all.  So it's
269 	 * not possible for page N+1 to overwrite page N, and so on.
270 	 *
271 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
272 	 * complete before the HCD can get requests away from hardware,
273 	 * though never during cleanup after a hard fault.
274 	 */
275 	if (io->status
276 			&& (io->status != -ECONNRESET
277 				|| status != -ECONNRESET)
278 			&& urb->actual_length) {
279 		dev_err (io->dev->bus->controller,
280 			"dev %s ep%d%s scatterlist error %d/%d\n",
281 			io->dev->devpath,
282 			usb_endpoint_num(&urb->ep->desc),
283 			usb_urb_dir_in(urb) ? "in" : "out",
284 			status, io->status);
285 		// BUG ();
286 	}
287 
288 	if (io->status == 0 && status && status != -ECONNRESET) {
289 		int i, found, retval;
290 
291 		io->status = status;
292 
293 		/* the previous urbs, and this one, completed already.
294 		 * unlink pending urbs so they won't rx/tx bad data.
295 		 * careful: unlink can sometimes be synchronous...
296 		 */
297 		spin_unlock (&io->lock);
298 		for (i = 0, found = 0; i < io->entries; i++) {
299 			if (!io->urbs [i] || !io->urbs [i]->dev)
300 				continue;
301 			if (found) {
302 				retval = usb_unlink_urb (io->urbs [i]);
303 				if (retval != -EINPROGRESS &&
304 				    retval != -ENODEV &&
305 				    retval != -EBUSY)
306 					dev_err (&io->dev->dev,
307 						"%s, unlink --> %d\n",
308 						__FUNCTION__, retval);
309 			} else if (urb == io->urbs [i])
310 				found = 1;
311 		}
312 		spin_lock (&io->lock);
313 	}
314 	urb->dev = NULL;
315 
316 	/* on the last completion, signal usb_sg_wait() */
317 	io->bytes += urb->actual_length;
318 	io->count--;
319 	if (!io->count)
320 		complete (&io->complete);
321 
322 	spin_unlock (&io->lock);
323 }
324 
325 
326 /**
327  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
328  * @io: request block being initialized.  until usb_sg_wait() returns,
329  *	treat this as a pointer to an opaque block of memory,
330  * @dev: the usb device that will send or receive the data
331  * @pipe: endpoint "pipe" used to transfer the data
332  * @period: polling rate for interrupt endpoints, in frames or
333  * 	(for high speed endpoints) microframes; ignored for bulk
334  * @sg: scatterlist entries
335  * @nents: how many entries in the scatterlist
336  * @length: how many bytes to send from the scatterlist, or zero to
337  * 	send every byte identified in the list.
338  * @mem_flags: SLAB_* flags affecting memory allocations in this call
339  *
340  * Returns zero for success, else a negative errno value.  This initializes a
341  * scatter/gather request, allocating resources such as I/O mappings and urb
342  * memory (except maybe memory used by USB controller drivers).
343  *
344  * The request must be issued using usb_sg_wait(), which waits for the I/O to
345  * complete (or to be canceled) and then cleans up all resources allocated by
346  * usb_sg_init().
347  *
348  * The request may be canceled with usb_sg_cancel(), either before or after
349  * usb_sg_wait() is called.
350  */
351 int usb_sg_init (
352 	struct usb_sg_request	*io,
353 	struct usb_device	*dev,
354 	unsigned		pipe,
355 	unsigned		period,
356 	struct scatterlist	*sg,
357 	int			nents,
358 	size_t			length,
359 	gfp_t			mem_flags
360 )
361 {
362 	int			i;
363 	int			urb_flags;
364 	int			dma;
365 
366 	if (!io || !dev || !sg
367 			|| usb_pipecontrol (pipe)
368 			|| usb_pipeisoc (pipe)
369 			|| nents <= 0)
370 		return -EINVAL;
371 
372 	spin_lock_init (&io->lock);
373 	io->dev = dev;
374 	io->pipe = pipe;
375 	io->sg = sg;
376 	io->nents = nents;
377 
378 	/* not all host controllers use DMA (like the mainstream pci ones);
379 	 * they can use PIO (sl811) or be software over another transport.
380 	 */
381 	dma = (dev->dev.dma_mask != NULL);
382 	if (dma)
383 		io->entries = usb_buffer_map_sg(dev, usb_pipein(pipe),
384 				sg, nents);
385 	else
386 		io->entries = nents;
387 
388 	/* initialize all the urbs we'll use */
389 	if (io->entries <= 0)
390 		return io->entries;
391 
392 	io->count = io->entries;
393 	io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
394 	if (!io->urbs)
395 		goto nomem;
396 
397 	urb_flags = URB_NO_TRANSFER_DMA_MAP | URB_NO_INTERRUPT;
398 	if (usb_pipein (pipe))
399 		urb_flags |= URB_SHORT_NOT_OK;
400 
401 	for (i = 0; i < io->entries; i++) {
402 		unsigned		len;
403 
404 		io->urbs [i] = usb_alloc_urb (0, mem_flags);
405 		if (!io->urbs [i]) {
406 			io->entries = i;
407 			goto nomem;
408 		}
409 
410 		io->urbs [i]->dev = NULL;
411 		io->urbs [i]->pipe = pipe;
412 		io->urbs [i]->interval = period;
413 		io->urbs [i]->transfer_flags = urb_flags;
414 
415 		io->urbs [i]->complete = sg_complete;
416 		io->urbs [i]->context = io;
417 
418 		/*
419 		 * Some systems need to revert to PIO when DMA is temporarily
420 		 * unavailable.  For their sakes, both transfer_buffer and
421 		 * transfer_dma are set when possible.  However this can only
422 		 * work on systems without:
423 		 *
424 		 *  - HIGHMEM, since DMA buffers located in high memory are
425 		 *    not directly addressable by the CPU for PIO;
426 		 *
427 		 *  - IOMMU, since dma_map_sg() is allowed to use an IOMMU to
428 		 *    make virtually discontiguous buffers be "dma-contiguous"
429 		 *    so that PIO and DMA need diferent numbers of URBs.
430 		 *
431 		 * So when HIGHMEM or IOMMU are in use, transfer_buffer is NULL
432 		 * to prevent stale pointers and to help spot bugs.
433 		 */
434 		if (dma) {
435 			io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
436 			len = sg_dma_len (sg + i);
437 #if defined(CONFIG_HIGHMEM) || defined(CONFIG_IOMMU)
438 			io->urbs[i]->transfer_buffer = NULL;
439 #else
440 			io->urbs[i]->transfer_buffer =
441 				page_address(sg[i].page) + sg[i].offset;
442 #endif
443 		} else {
444 			/* hc may use _only_ transfer_buffer */
445 			io->urbs [i]->transfer_buffer =
446 				page_address (sg [i].page) + sg [i].offset;
447 			len = sg [i].length;
448 		}
449 
450 		if (length) {
451 			len = min_t (unsigned, len, length);
452 			length -= len;
453 			if (length == 0)
454 				io->entries = i + 1;
455 		}
456 		io->urbs [i]->transfer_buffer_length = len;
457 	}
458 	io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
459 
460 	/* transaction state */
461 	io->status = 0;
462 	io->bytes = 0;
463 	init_completion (&io->complete);
464 	return 0;
465 
466 nomem:
467 	sg_clean (io);
468 	return -ENOMEM;
469 }
470 
471 
472 /**
473  * usb_sg_wait - synchronously execute scatter/gather request
474  * @io: request block handle, as initialized with usb_sg_init().
475  * 	some fields become accessible when this call returns.
476  * Context: !in_interrupt ()
477  *
478  * This function blocks until the specified I/O operation completes.  It
479  * leverages the grouping of the related I/O requests to get good transfer
480  * rates, by queueing the requests.  At higher speeds, such queuing can
481  * significantly improve USB throughput.
482  *
483  * There are three kinds of completion for this function.
484  * (1) success, where io->status is zero.  The number of io->bytes
485  *     transferred is as requested.
486  * (2) error, where io->status is a negative errno value.  The number
487  *     of io->bytes transferred before the error is usually less
488  *     than requested, and can be nonzero.
489  * (3) cancellation, a type of error with status -ECONNRESET that
490  *     is initiated by usb_sg_cancel().
491  *
492  * When this function returns, all memory allocated through usb_sg_init() or
493  * this call will have been freed.  The request block parameter may still be
494  * passed to usb_sg_cancel(), or it may be freed.  It could also be
495  * reinitialized and then reused.
496  *
497  * Data Transfer Rates:
498  *
499  * Bulk transfers are valid for full or high speed endpoints.
500  * The best full speed data rate is 19 packets of 64 bytes each
501  * per frame, or 1216 bytes per millisecond.
502  * The best high speed data rate is 13 packets of 512 bytes each
503  * per microframe, or 52 KBytes per millisecond.
504  *
505  * The reason to use interrupt transfers through this API would most likely
506  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
507  * could be transferred.  That capability is less useful for low or full
508  * speed interrupt endpoints, which allow at most one packet per millisecond,
509  * of at most 8 or 64 bytes (respectively).
510  */
511 void usb_sg_wait (struct usb_sg_request *io)
512 {
513 	int		i, entries = io->entries;
514 
515 	/* queue the urbs.  */
516 	spin_lock_irq (&io->lock);
517 	i = 0;
518 	while (i < entries && !io->status) {
519 		int	retval;
520 
521 		io->urbs [i]->dev = io->dev;
522 		retval = usb_submit_urb (io->urbs [i], GFP_ATOMIC);
523 
524 		/* after we submit, let completions or cancelations fire;
525 		 * we handshake using io->status.
526 		 */
527 		spin_unlock_irq (&io->lock);
528 		switch (retval) {
529 			/* maybe we retrying will recover */
530 		case -ENXIO:	// hc didn't queue this one
531 		case -EAGAIN:
532 		case -ENOMEM:
533 			io->urbs[i]->dev = NULL;
534 			retval = 0;
535 			yield ();
536 			break;
537 
538 			/* no error? continue immediately.
539 			 *
540 			 * NOTE: to work better with UHCI (4K I/O buffer may
541 			 * need 3K of TDs) it may be good to limit how many
542 			 * URBs are queued at once; N milliseconds?
543 			 */
544 		case 0:
545 			++i;
546 			cpu_relax ();
547 			break;
548 
549 			/* fail any uncompleted urbs */
550 		default:
551 			io->urbs [i]->dev = NULL;
552 			io->urbs [i]->status = retval;
553 			dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
554 				__FUNCTION__, retval);
555 			usb_sg_cancel (io);
556 		}
557 		spin_lock_irq (&io->lock);
558 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
559 			io->status = retval;
560 	}
561 	io->count -= entries - i;
562 	if (io->count == 0)
563 		complete (&io->complete);
564 	spin_unlock_irq (&io->lock);
565 
566 	/* OK, yes, this could be packaged as non-blocking.
567 	 * So could the submit loop above ... but it's easier to
568 	 * solve neither problem than to solve both!
569 	 */
570 	wait_for_completion (&io->complete);
571 
572 	sg_clean (io);
573 }
574 
575 /**
576  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
577  * @io: request block, initialized with usb_sg_init()
578  *
579  * This stops a request after it has been started by usb_sg_wait().
580  * It can also prevents one initialized by usb_sg_init() from starting,
581  * so that call just frees resources allocated to the request.
582  */
583 void usb_sg_cancel (struct usb_sg_request *io)
584 {
585 	unsigned long	flags;
586 
587 	spin_lock_irqsave (&io->lock, flags);
588 
589 	/* shut everything down, if it didn't already */
590 	if (!io->status) {
591 		int	i;
592 
593 		io->status = -ECONNRESET;
594 		spin_unlock (&io->lock);
595 		for (i = 0; i < io->entries; i++) {
596 			int	retval;
597 
598 			if (!io->urbs [i]->dev)
599 				continue;
600 			retval = usb_unlink_urb (io->urbs [i]);
601 			if (retval != -EINPROGRESS && retval != -EBUSY)
602 				dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
603 					__FUNCTION__, retval);
604 		}
605 		spin_lock (&io->lock);
606 	}
607 	spin_unlock_irqrestore (&io->lock, flags);
608 }
609 
610 /*-------------------------------------------------------------------*/
611 
612 /**
613  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
614  * @dev: the device whose descriptor is being retrieved
615  * @type: the descriptor type (USB_DT_*)
616  * @index: the number of the descriptor
617  * @buf: where to put the descriptor
618  * @size: how big is "buf"?
619  * Context: !in_interrupt ()
620  *
621  * Gets a USB descriptor.  Convenience functions exist to simplify
622  * getting some types of descriptors.  Use
623  * usb_get_string() or usb_string() for USB_DT_STRING.
624  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
625  * are part of the device structure.
626  * In addition to a number of USB-standard descriptors, some
627  * devices also use class-specific or vendor-specific descriptors.
628  *
629  * This call is synchronous, and may not be used in an interrupt context.
630  *
631  * Returns the number of bytes received on success, or else the status code
632  * returned by the underlying usb_control_msg() call.
633  */
634 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
635 {
636 	int i;
637 	int result;
638 
639 	memset(buf,0,size);	// Make sure we parse really received data
640 
641 	for (i = 0; i < 3; ++i) {
642 		/* retry on length 0 or error; some devices are flakey */
643 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
644 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
645 				(type << 8) + index, 0, buf, size,
646 				USB_CTRL_GET_TIMEOUT);
647 		if (result <= 0 && result != -ETIMEDOUT)
648 			continue;
649 		if (result > 1 && ((u8 *)buf)[1] != type) {
650 			result = -EPROTO;
651 			continue;
652 		}
653 		break;
654 	}
655 	return result;
656 }
657 
658 /**
659  * usb_get_string - gets a string descriptor
660  * @dev: the device whose string descriptor is being retrieved
661  * @langid: code for language chosen (from string descriptor zero)
662  * @index: the number of the descriptor
663  * @buf: where to put the string
664  * @size: how big is "buf"?
665  * Context: !in_interrupt ()
666  *
667  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
668  * in little-endian byte order).
669  * The usb_string() function will often be a convenient way to turn
670  * these strings into kernel-printable form.
671  *
672  * Strings may be referenced in device, configuration, interface, or other
673  * descriptors, and could also be used in vendor-specific ways.
674  *
675  * This call is synchronous, and may not be used in an interrupt context.
676  *
677  * Returns the number of bytes received on success, or else the status code
678  * returned by the underlying usb_control_msg() call.
679  */
680 static int usb_get_string(struct usb_device *dev, unsigned short langid,
681 			  unsigned char index, void *buf, int size)
682 {
683 	int i;
684 	int result;
685 
686 	for (i = 0; i < 3; ++i) {
687 		/* retry on length 0 or stall; some devices are flakey */
688 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
689 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
690 			(USB_DT_STRING << 8) + index, langid, buf, size,
691 			USB_CTRL_GET_TIMEOUT);
692 		if (!(result == 0 || result == -EPIPE))
693 			break;
694 	}
695 	return result;
696 }
697 
698 static void usb_try_string_workarounds(unsigned char *buf, int *length)
699 {
700 	int newlength, oldlength = *length;
701 
702 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
703 		if (!isprint(buf[newlength]) || buf[newlength + 1])
704 			break;
705 
706 	if (newlength > 2) {
707 		buf[0] = newlength;
708 		*length = newlength;
709 	}
710 }
711 
712 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
713 		unsigned int index, unsigned char *buf)
714 {
715 	int rc;
716 
717 	/* Try to read the string descriptor by asking for the maximum
718 	 * possible number of bytes */
719 	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
720 		rc = -EIO;
721 	else
722 		rc = usb_get_string(dev, langid, index, buf, 255);
723 
724 	/* If that failed try to read the descriptor length, then
725 	 * ask for just that many bytes */
726 	if (rc < 2) {
727 		rc = usb_get_string(dev, langid, index, buf, 2);
728 		if (rc == 2)
729 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
730 	}
731 
732 	if (rc >= 2) {
733 		if (!buf[0] && !buf[1])
734 			usb_try_string_workarounds(buf, &rc);
735 
736 		/* There might be extra junk at the end of the descriptor */
737 		if (buf[0] < rc)
738 			rc = buf[0];
739 
740 		rc = rc - (rc & 1); /* force a multiple of two */
741 	}
742 
743 	if (rc < 2)
744 		rc = (rc < 0 ? rc : -EINVAL);
745 
746 	return rc;
747 }
748 
749 /**
750  * usb_string - returns ISO 8859-1 version of a string descriptor
751  * @dev: the device whose string descriptor is being retrieved
752  * @index: the number of the descriptor
753  * @buf: where to put the string
754  * @size: how big is "buf"?
755  * Context: !in_interrupt ()
756  *
757  * This converts the UTF-16LE encoded strings returned by devices, from
758  * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
759  * that are more usable in most kernel contexts.  Note that all characters
760  * in the chosen descriptor that can't be encoded using ISO-8859-1
761  * are converted to the question mark ("?") character, and this function
762  * chooses strings in the first language supported by the device.
763  *
764  * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
765  * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
766  * and is appropriate for use many uses of English and several other
767  * Western European languages.  (But it doesn't include the "Euro" symbol.)
768  *
769  * This call is synchronous, and may not be used in an interrupt context.
770  *
771  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
772  */
773 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
774 {
775 	unsigned char *tbuf;
776 	int err;
777 	unsigned int u, idx;
778 
779 	if (dev->state == USB_STATE_SUSPENDED)
780 		return -EHOSTUNREACH;
781 	if (size <= 0 || !buf || !index)
782 		return -EINVAL;
783 	buf[0] = 0;
784 	tbuf = kmalloc(256, GFP_KERNEL);
785 	if (!tbuf)
786 		return -ENOMEM;
787 
788 	/* get langid for strings if it's not yet known */
789 	if (!dev->have_langid) {
790 		err = usb_string_sub(dev, 0, 0, tbuf);
791 		if (err < 0) {
792 			dev_err (&dev->dev,
793 				"string descriptor 0 read error: %d\n",
794 				err);
795 			goto errout;
796 		} else if (err < 4) {
797 			dev_err (&dev->dev, "string descriptor 0 too short\n");
798 			err = -EINVAL;
799 			goto errout;
800 		} else {
801 			dev->have_langid = 1;
802 			dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
803 				/* always use the first langid listed */
804 			dev_dbg (&dev->dev, "default language 0x%04x\n",
805 				dev->string_langid);
806 		}
807 	}
808 
809 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
810 	if (err < 0)
811 		goto errout;
812 
813 	size--;		/* leave room for trailing NULL char in output buffer */
814 	for (idx = 0, u = 2; u < err; u += 2) {
815 		if (idx >= size)
816 			break;
817 		if (tbuf[u+1])			/* high byte */
818 			buf[idx++] = '?';  /* non ISO-8859-1 character */
819 		else
820 			buf[idx++] = tbuf[u];
821 	}
822 	buf[idx] = 0;
823 	err = idx;
824 
825 	if (tbuf[1] != USB_DT_STRING)
826 		dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);
827 
828  errout:
829 	kfree(tbuf);
830 	return err;
831 }
832 
833 /**
834  * usb_cache_string - read a string descriptor and cache it for later use
835  * @udev: the device whose string descriptor is being read
836  * @index: the descriptor index
837  *
838  * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
839  * or NULL if the index is 0 or the string could not be read.
840  */
841 char *usb_cache_string(struct usb_device *udev, int index)
842 {
843 	char *buf;
844 	char *smallbuf = NULL;
845 	int len;
846 
847 	if (index > 0 && (buf = kmalloc(256, GFP_KERNEL)) != NULL) {
848 		if ((len = usb_string(udev, index, buf, 256)) > 0) {
849 			if ((smallbuf = kmalloc(++len, GFP_KERNEL)) == NULL)
850 				return buf;
851 			memcpy(smallbuf, buf, len);
852 		}
853 		kfree(buf);
854 	}
855 	return smallbuf;
856 }
857 
858 /*
859  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
860  * @dev: the device whose device descriptor is being updated
861  * @size: how much of the descriptor to read
862  * Context: !in_interrupt ()
863  *
864  * Updates the copy of the device descriptor stored in the device structure,
865  * which dedicates space for this purpose.
866  *
867  * Not exported, only for use by the core.  If drivers really want to read
868  * the device descriptor directly, they can call usb_get_descriptor() with
869  * type = USB_DT_DEVICE and index = 0.
870  *
871  * This call is synchronous, and may not be used in an interrupt context.
872  *
873  * Returns the number of bytes received on success, or else the status code
874  * returned by the underlying usb_control_msg() call.
875  */
876 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
877 {
878 	struct usb_device_descriptor *desc;
879 	int ret;
880 
881 	if (size > sizeof(*desc))
882 		return -EINVAL;
883 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
884 	if (!desc)
885 		return -ENOMEM;
886 
887 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
888 	if (ret >= 0)
889 		memcpy(&dev->descriptor, desc, size);
890 	kfree(desc);
891 	return ret;
892 }
893 
894 /**
895  * usb_get_status - issues a GET_STATUS call
896  * @dev: the device whose status is being checked
897  * @type: USB_RECIP_*; for device, interface, or endpoint
898  * @target: zero (for device), else interface or endpoint number
899  * @data: pointer to two bytes of bitmap data
900  * Context: !in_interrupt ()
901  *
902  * Returns device, interface, or endpoint status.  Normally only of
903  * interest to see if the device is self powered, or has enabled the
904  * remote wakeup facility; or whether a bulk or interrupt endpoint
905  * is halted ("stalled").
906  *
907  * Bits in these status bitmaps are set using the SET_FEATURE request,
908  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
909  * function should be used to clear halt ("stall") status.
910  *
911  * This call is synchronous, and may not be used in an interrupt context.
912  *
913  * Returns the number of bytes received on success, or else the status code
914  * returned by the underlying usb_control_msg() call.
915  */
916 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
917 {
918 	int ret;
919 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
920 
921 	if (!status)
922 		return -ENOMEM;
923 
924 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
925 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
926 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
927 
928 	*(u16 *)data = *status;
929 	kfree(status);
930 	return ret;
931 }
932 
933 /**
934  * usb_clear_halt - tells device to clear endpoint halt/stall condition
935  * @dev: device whose endpoint is halted
936  * @pipe: endpoint "pipe" being cleared
937  * Context: !in_interrupt ()
938  *
939  * This is used to clear halt conditions for bulk and interrupt endpoints,
940  * as reported by URB completion status.  Endpoints that are halted are
941  * sometimes referred to as being "stalled".  Such endpoints are unable
942  * to transmit or receive data until the halt status is cleared.  Any URBs
943  * queued for such an endpoint should normally be unlinked by the driver
944  * before clearing the halt condition, as described in sections 5.7.5
945  * and 5.8.5 of the USB 2.0 spec.
946  *
947  * Note that control and isochronous endpoints don't halt, although control
948  * endpoints report "protocol stall" (for unsupported requests) using the
949  * same status code used to report a true stall.
950  *
951  * This call is synchronous, and may not be used in an interrupt context.
952  *
953  * Returns zero on success, or else the status code returned by the
954  * underlying usb_control_msg() call.
955  */
956 int usb_clear_halt(struct usb_device *dev, int pipe)
957 {
958 	int result;
959 	int endp = usb_pipeendpoint(pipe);
960 
961 	if (usb_pipein (pipe))
962 		endp |= USB_DIR_IN;
963 
964 	/* we don't care if it wasn't halted first. in fact some devices
965 	 * (like some ibmcam model 1 units) seem to expect hosts to make
966 	 * this request for iso endpoints, which can't halt!
967 	 */
968 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
969 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
970 		USB_ENDPOINT_HALT, endp, NULL, 0,
971 		USB_CTRL_SET_TIMEOUT);
972 
973 	/* don't un-halt or force to DATA0 except on success */
974 	if (result < 0)
975 		return result;
976 
977 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
978 	 * the clear "took", so some devices could lock up if you check...
979 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
980 	 *
981 	 * NOTE:  make sure the logic here doesn't diverge much from
982 	 * the copy in usb-storage, for as long as we need two copies.
983 	 */
984 
985 	/* toggle was reset by the clear */
986 	usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
987 
988 	return 0;
989 }
990 
991 /**
992  * usb_disable_endpoint -- Disable an endpoint by address
993  * @dev: the device whose endpoint is being disabled
994  * @epaddr: the endpoint's address.  Endpoint number for output,
995  *	endpoint number + USB_DIR_IN for input
996  *
997  * Deallocates hcd/hardware state for this endpoint ... and nukes all
998  * pending urbs.
999  *
1000  * If the HCD hasn't registered a disable() function, this sets the
1001  * endpoint's maxpacket size to 0 to prevent further submissions.
1002  */
1003 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
1004 {
1005 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1006 	struct usb_host_endpoint *ep;
1007 
1008 	if (!dev)
1009 		return;
1010 
1011 	if (usb_endpoint_out(epaddr)) {
1012 		ep = dev->ep_out[epnum];
1013 		dev->ep_out[epnum] = NULL;
1014 	} else {
1015 		ep = dev->ep_in[epnum];
1016 		dev->ep_in[epnum] = NULL;
1017 	}
1018 	if (ep) {
1019 		ep->enabled = 0;
1020 		usb_hcd_flush_endpoint(dev, ep);
1021 		usb_hcd_disable_endpoint(dev, ep);
1022 	}
1023 }
1024 
1025 /**
1026  * usb_disable_interface -- Disable all endpoints for an interface
1027  * @dev: the device whose interface is being disabled
1028  * @intf: pointer to the interface descriptor
1029  *
1030  * Disables all the endpoints for the interface's current altsetting.
1031  */
1032 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
1033 {
1034 	struct usb_host_interface *alt = intf->cur_altsetting;
1035 	int i;
1036 
1037 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1038 		usb_disable_endpoint(dev,
1039 				alt->endpoint[i].desc.bEndpointAddress);
1040 	}
1041 }
1042 
1043 /*
1044  * usb_disable_device - Disable all the endpoints for a USB device
1045  * @dev: the device whose endpoints are being disabled
1046  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1047  *
1048  * Disables all the device's endpoints, potentially including endpoint 0.
1049  * Deallocates hcd/hardware state for the endpoints (nuking all or most
1050  * pending urbs) and usbcore state for the interfaces, so that usbcore
1051  * must usb_set_configuration() before any interfaces could be used.
1052  */
1053 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1054 {
1055 	int i;
1056 
1057 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
1058 			skip_ep0 ? "non-ep0" : "all");
1059 	for (i = skip_ep0; i < 16; ++i) {
1060 		usb_disable_endpoint(dev, i);
1061 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1062 	}
1063 	dev->toggle[0] = dev->toggle[1] = 0;
1064 
1065 	/* getting rid of interfaces will disconnect
1066 	 * any drivers bound to them (a key side effect)
1067 	 */
1068 	if (dev->actconfig) {
1069 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1070 			struct usb_interface	*interface;
1071 
1072 			/* remove this interface if it has been registered */
1073 			interface = dev->actconfig->interface[i];
1074 			if (!device_is_registered(&interface->dev))
1075 				continue;
1076 			dev_dbg (&dev->dev, "unregistering interface %s\n",
1077 				interface->dev.bus_id);
1078 			usb_remove_sysfs_intf_files(interface);
1079 			device_del (&interface->dev);
1080 		}
1081 
1082 		/* Now that the interfaces are unbound, nobody should
1083 		 * try to access them.
1084 		 */
1085 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1086 			put_device (&dev->actconfig->interface[i]->dev);
1087 			dev->actconfig->interface[i] = NULL;
1088 		}
1089 		dev->actconfig = NULL;
1090 		if (dev->state == USB_STATE_CONFIGURED)
1091 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1092 	}
1093 }
1094 
1095 
1096 /*
1097  * usb_enable_endpoint - Enable an endpoint for USB communications
1098  * @dev: the device whose interface is being enabled
1099  * @ep: the endpoint
1100  *
1101  * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1102  * For control endpoints, both the input and output sides are handled.
1103  */
1104 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1105 {
1106 	int epnum = usb_endpoint_num(&ep->desc);
1107 	int is_out = usb_endpoint_dir_out(&ep->desc);
1108 	int is_control = usb_endpoint_xfer_control(&ep->desc);
1109 
1110 	if (is_out || is_control) {
1111 		usb_settoggle(dev, epnum, 1, 0);
1112 		dev->ep_out[epnum] = ep;
1113 	}
1114 	if (!is_out || is_control) {
1115 		usb_settoggle(dev, epnum, 0, 0);
1116 		dev->ep_in[epnum] = ep;
1117 	}
1118 	ep->enabled = 1;
1119 }
1120 
1121 /*
1122  * usb_enable_interface - Enable all the endpoints for an interface
1123  * @dev: the device whose interface is being enabled
1124  * @intf: pointer to the interface descriptor
1125  *
1126  * Enables all the endpoints for the interface's current altsetting.
1127  */
1128 static void usb_enable_interface(struct usb_device *dev,
1129 				 struct usb_interface *intf)
1130 {
1131 	struct usb_host_interface *alt = intf->cur_altsetting;
1132 	int i;
1133 
1134 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1135 		usb_enable_endpoint(dev, &alt->endpoint[i]);
1136 }
1137 
1138 /**
1139  * usb_set_interface - Makes a particular alternate setting be current
1140  * @dev: the device whose interface is being updated
1141  * @interface: the interface being updated
1142  * @alternate: the setting being chosen.
1143  * Context: !in_interrupt ()
1144  *
1145  * This is used to enable data transfers on interfaces that may not
1146  * be enabled by default.  Not all devices support such configurability.
1147  * Only the driver bound to an interface may change its setting.
1148  *
1149  * Within any given configuration, each interface may have several
1150  * alternative settings.  These are often used to control levels of
1151  * bandwidth consumption.  For example, the default setting for a high
1152  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1153  * while interrupt transfers of up to 3KBytes per microframe are legal.
1154  * Also, isochronous endpoints may never be part of an
1155  * interface's default setting.  To access such bandwidth, alternate
1156  * interface settings must be made current.
1157  *
1158  * Note that in the Linux USB subsystem, bandwidth associated with
1159  * an endpoint in a given alternate setting is not reserved until an URB
1160  * is submitted that needs that bandwidth.  Some other operating systems
1161  * allocate bandwidth early, when a configuration is chosen.
1162  *
1163  * This call is synchronous, and may not be used in an interrupt context.
1164  * Also, drivers must not change altsettings while urbs are scheduled for
1165  * endpoints in that interface; all such urbs must first be completed
1166  * (perhaps forced by unlinking).
1167  *
1168  * Returns zero on success, or else the status code returned by the
1169  * underlying usb_control_msg() call.
1170  */
1171 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1172 {
1173 	struct usb_interface *iface;
1174 	struct usb_host_interface *alt;
1175 	int ret;
1176 	int manual = 0;
1177 	int changed;
1178 
1179 	if (dev->state == USB_STATE_SUSPENDED)
1180 		return -EHOSTUNREACH;
1181 
1182 	iface = usb_ifnum_to_if(dev, interface);
1183 	if (!iface) {
1184 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1185 			interface);
1186 		return -EINVAL;
1187 	}
1188 
1189 	alt = usb_altnum_to_altsetting(iface, alternate);
1190 	if (!alt) {
1191 		warn("selecting invalid altsetting %d", alternate);
1192 		return -EINVAL;
1193 	}
1194 
1195 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1196 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1197 				   alternate, interface, NULL, 0, 5000);
1198 
1199 	/* 9.4.10 says devices don't need this and are free to STALL the
1200 	 * request if the interface only has one alternate setting.
1201 	 */
1202 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1203 		dev_dbg(&dev->dev,
1204 			"manual set_interface for iface %d, alt %d\n",
1205 			interface, alternate);
1206 		manual = 1;
1207 	} else if (ret < 0)
1208 		return ret;
1209 
1210 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1211 	 * when they implement async or easily-killable versions of this or
1212 	 * other "should-be-internal" functions (like clear_halt).
1213 	 * should hcd+usbcore postprocess control requests?
1214 	 */
1215 
1216 	/* prevent submissions using previous endpoint settings */
1217 	changed = (iface->cur_altsetting != alt);
1218 	if (changed && device_is_registered(&iface->dev))
1219 		usb_remove_sysfs_intf_files(iface);
1220 	usb_disable_interface(dev, iface);
1221 
1222 	iface->cur_altsetting = alt;
1223 
1224 	/* If the interface only has one altsetting and the device didn't
1225 	 * accept the request, we attempt to carry out the equivalent action
1226 	 * by manually clearing the HALT feature for each endpoint in the
1227 	 * new altsetting.
1228 	 */
1229 	if (manual) {
1230 		int i;
1231 
1232 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1233 			unsigned int epaddr =
1234 				alt->endpoint[i].desc.bEndpointAddress;
1235 			unsigned int pipe =
1236 	__create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1237 	| (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1238 
1239 			usb_clear_halt(dev, pipe);
1240 		}
1241 	}
1242 
1243 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1244 	 *
1245 	 * Note:
1246 	 * Despite EP0 is always present in all interfaces/AS, the list of
1247 	 * endpoints from the descriptor does not contain EP0. Due to its
1248 	 * omnipresence one might expect EP0 being considered "affected" by
1249 	 * any SetInterface request and hence assume toggles need to be reset.
1250 	 * However, EP0 toggles are re-synced for every individual transfer
1251 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1252 	 * (Likewise, EP0 never "halts" on well designed devices.)
1253 	 */
1254 	usb_enable_interface(dev, iface);
1255 	if (changed && device_is_registered(&iface->dev))
1256 		usb_create_sysfs_intf_files(iface);
1257 
1258 	return 0;
1259 }
1260 
1261 /**
1262  * usb_reset_configuration - lightweight device reset
1263  * @dev: the device whose configuration is being reset
1264  *
1265  * This issues a standard SET_CONFIGURATION request to the device using
1266  * the current configuration.  The effect is to reset most USB-related
1267  * state in the device, including interface altsettings (reset to zero),
1268  * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1269  * endpoints).  Other usbcore state is unchanged, including bindings of
1270  * usb device drivers to interfaces.
1271  *
1272  * Because this affects multiple interfaces, avoid using this with composite
1273  * (multi-interface) devices.  Instead, the driver for each interface may
1274  * use usb_set_interface() on the interfaces it claims.  Be careful though;
1275  * some devices don't support the SET_INTERFACE request, and others won't
1276  * reset all the interface state (notably data toggles).  Resetting the whole
1277  * configuration would affect other drivers' interfaces.
1278  *
1279  * The caller must own the device lock.
1280  *
1281  * Returns zero on success, else a negative error code.
1282  */
1283 int usb_reset_configuration(struct usb_device *dev)
1284 {
1285 	int			i, retval;
1286 	struct usb_host_config	*config;
1287 
1288 	if (dev->state == USB_STATE_SUSPENDED)
1289 		return -EHOSTUNREACH;
1290 
1291 	/* caller must have locked the device and must own
1292 	 * the usb bus readlock (so driver bindings are stable);
1293 	 * calls during probe() are fine
1294 	 */
1295 
1296 	for (i = 1; i < 16; ++i) {
1297 		usb_disable_endpoint(dev, i);
1298 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1299 	}
1300 
1301 	config = dev->actconfig;
1302 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1303 			USB_REQ_SET_CONFIGURATION, 0,
1304 			config->desc.bConfigurationValue, 0,
1305 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1306 	if (retval < 0)
1307 		return retval;
1308 
1309 	dev->toggle[0] = dev->toggle[1] = 0;
1310 
1311 	/* re-init hc/hcd interface/endpoint state */
1312 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1313 		struct usb_interface *intf = config->interface[i];
1314 		struct usb_host_interface *alt;
1315 
1316 		if (device_is_registered(&intf->dev))
1317 			usb_remove_sysfs_intf_files(intf);
1318 		alt = usb_altnum_to_altsetting(intf, 0);
1319 
1320 		/* No altsetting 0?  We'll assume the first altsetting.
1321 		 * We could use a GetInterface call, but if a device is
1322 		 * so non-compliant that it doesn't have altsetting 0
1323 		 * then I wouldn't trust its reply anyway.
1324 		 */
1325 		if (!alt)
1326 			alt = &intf->altsetting[0];
1327 
1328 		intf->cur_altsetting = alt;
1329 		usb_enable_interface(dev, intf);
1330 		if (device_is_registered(&intf->dev))
1331 			usb_create_sysfs_intf_files(intf);
1332 	}
1333 	return 0;
1334 }
1335 
1336 static void usb_release_interface(struct device *dev)
1337 {
1338 	struct usb_interface *intf = to_usb_interface(dev);
1339 	struct usb_interface_cache *intfc =
1340 			altsetting_to_usb_interface_cache(intf->altsetting);
1341 
1342 	kref_put(&intfc->ref, usb_release_interface_cache);
1343 	kfree(intf);
1344 }
1345 
1346 #ifdef	CONFIG_HOTPLUG
1347 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1348 {
1349 	struct usb_device *usb_dev;
1350 	struct usb_interface *intf;
1351 	struct usb_host_interface *alt;
1352 
1353 	if (!dev)
1354 		return -ENODEV;
1355 
1356 	/* driver is often null here; dev_dbg() would oops */
1357 	pr_debug ("usb %s: uevent\n", dev->bus_id);
1358 
1359 	intf = to_usb_interface(dev);
1360 	usb_dev = interface_to_usbdev(intf);
1361 	alt = intf->cur_altsetting;
1362 
1363 #ifdef CONFIG_USB_DEVICEFS
1364 	if (add_uevent_var(env, "DEVICE=/proc/bus/usb/%03d/%03d",
1365 			   usb_dev->bus->busnum, usb_dev->devnum))
1366 		return -ENOMEM;
1367 #endif
1368 
1369 	if (add_uevent_var(env, "PRODUCT=%x/%x/%x",
1370 			   le16_to_cpu(usb_dev->descriptor.idVendor),
1371 			   le16_to_cpu(usb_dev->descriptor.idProduct),
1372 			   le16_to_cpu(usb_dev->descriptor.bcdDevice)))
1373 		return -ENOMEM;
1374 
1375 	if (add_uevent_var(env, "TYPE=%d/%d/%d",
1376 			   usb_dev->descriptor.bDeviceClass,
1377 			   usb_dev->descriptor.bDeviceSubClass,
1378 			   usb_dev->descriptor.bDeviceProtocol))
1379 		return -ENOMEM;
1380 
1381 	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1382 		   alt->desc.bInterfaceClass,
1383 		   alt->desc.bInterfaceSubClass,
1384 		   alt->desc.bInterfaceProtocol))
1385 		return -ENOMEM;
1386 
1387 	if (add_uevent_var(env,
1388 		   "MODALIAS=usb:v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02X",
1389 		   le16_to_cpu(usb_dev->descriptor.idVendor),
1390 		   le16_to_cpu(usb_dev->descriptor.idProduct),
1391 		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1392 		   usb_dev->descriptor.bDeviceClass,
1393 		   usb_dev->descriptor.bDeviceSubClass,
1394 		   usb_dev->descriptor.bDeviceProtocol,
1395 		   alt->desc.bInterfaceClass,
1396 		   alt->desc.bInterfaceSubClass,
1397 		   alt->desc.bInterfaceProtocol))
1398 		return -ENOMEM;
1399 
1400 	return 0;
1401 }
1402 
1403 #else
1404 
1405 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1406 {
1407 	return -ENODEV;
1408 }
1409 #endif	/* CONFIG_HOTPLUG */
1410 
1411 struct device_type usb_if_device_type = {
1412 	.name =		"usb_interface",
1413 	.release =	usb_release_interface,
1414 	.uevent =	usb_if_uevent,
1415 };
1416 
1417 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1418 						       struct usb_host_config *config,
1419 						       u8 inum)
1420 {
1421 	struct usb_interface_assoc_descriptor *retval = NULL;
1422 	struct usb_interface_assoc_descriptor *intf_assoc;
1423 	int first_intf;
1424 	int last_intf;
1425 	int i;
1426 
1427 	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1428 		intf_assoc = config->intf_assoc[i];
1429 		if (intf_assoc->bInterfaceCount == 0)
1430 			continue;
1431 
1432 		first_intf = intf_assoc->bFirstInterface;
1433 		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1434 		if (inum >= first_intf && inum <= last_intf) {
1435 			if (!retval)
1436 				retval = intf_assoc;
1437 			else
1438 				dev_err(&dev->dev, "Interface #%d referenced"
1439 					" by multiple IADs\n", inum);
1440 		}
1441 	}
1442 
1443 	return retval;
1444 }
1445 
1446 
1447 /*
1448  * usb_set_configuration - Makes a particular device setting be current
1449  * @dev: the device whose configuration is being updated
1450  * @configuration: the configuration being chosen.
1451  * Context: !in_interrupt(), caller owns the device lock
1452  *
1453  * This is used to enable non-default device modes.  Not all devices
1454  * use this kind of configurability; many devices only have one
1455  * configuration.
1456  *
1457  * @configuration is the value of the configuration to be installed.
1458  * According to the USB spec (e.g. section 9.1.1.5), configuration values
1459  * must be non-zero; a value of zero indicates that the device in
1460  * unconfigured.  However some devices erroneously use 0 as one of their
1461  * configuration values.  To help manage such devices, this routine will
1462  * accept @configuration = -1 as indicating the device should be put in
1463  * an unconfigured state.
1464  *
1465  * USB device configurations may affect Linux interoperability,
1466  * power consumption and the functionality available.  For example,
1467  * the default configuration is limited to using 100mA of bus power,
1468  * so that when certain device functionality requires more power,
1469  * and the device is bus powered, that functionality should be in some
1470  * non-default device configuration.  Other device modes may also be
1471  * reflected as configuration options, such as whether two ISDN
1472  * channels are available independently; and choosing between open
1473  * standard device protocols (like CDC) or proprietary ones.
1474  *
1475  * Note that a non-authorized device (dev->authorized == 0) will only
1476  * be put in unconfigured mode.
1477  *
1478  * Note that USB has an additional level of device configurability,
1479  * associated with interfaces.  That configurability is accessed using
1480  * usb_set_interface().
1481  *
1482  * This call is synchronous. The calling context must be able to sleep,
1483  * must own the device lock, and must not hold the driver model's USB
1484  * bus mutex; usb device driver probe() methods cannot use this routine.
1485  *
1486  * Returns zero on success, or else the status code returned by the
1487  * underlying call that failed.  On successful completion, each interface
1488  * in the original device configuration has been destroyed, and each one
1489  * in the new configuration has been probed by all relevant usb device
1490  * drivers currently known to the kernel.
1491  */
1492 int usb_set_configuration(struct usb_device *dev, int configuration)
1493 {
1494 	int i, ret;
1495 	struct usb_host_config *cp = NULL;
1496 	struct usb_interface **new_interfaces = NULL;
1497 	int n, nintf;
1498 
1499 	if (dev->authorized == 0 || configuration == -1)
1500 		configuration = 0;
1501 	else {
1502 		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1503 			if (dev->config[i].desc.bConfigurationValue ==
1504 					configuration) {
1505 				cp = &dev->config[i];
1506 				break;
1507 			}
1508 		}
1509 	}
1510 	if ((!cp && configuration != 0))
1511 		return -EINVAL;
1512 
1513 	/* The USB spec says configuration 0 means unconfigured.
1514 	 * But if a device includes a configuration numbered 0,
1515 	 * we will accept it as a correctly configured state.
1516 	 * Use -1 if you really want to unconfigure the device.
1517 	 */
1518 	if (cp && configuration == 0)
1519 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1520 
1521 	/* Allocate memory for new interfaces before doing anything else,
1522 	 * so that if we run out then nothing will have changed. */
1523 	n = nintf = 0;
1524 	if (cp) {
1525 		nintf = cp->desc.bNumInterfaces;
1526 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1527 				GFP_KERNEL);
1528 		if (!new_interfaces) {
1529 			dev_err(&dev->dev, "Out of memory\n");
1530 			return -ENOMEM;
1531 		}
1532 
1533 		for (; n < nintf; ++n) {
1534 			new_interfaces[n] = kzalloc(
1535 					sizeof(struct usb_interface),
1536 					GFP_KERNEL);
1537 			if (!new_interfaces[n]) {
1538 				dev_err(&dev->dev, "Out of memory\n");
1539 				ret = -ENOMEM;
1540 free_interfaces:
1541 				while (--n >= 0)
1542 					kfree(new_interfaces[n]);
1543 				kfree(new_interfaces);
1544 				return ret;
1545 			}
1546 		}
1547 
1548 		i = dev->bus_mA - cp->desc.bMaxPower * 2;
1549 		if (i < 0)
1550 			dev_warn(&dev->dev, "new config #%d exceeds power "
1551 					"limit by %dmA\n",
1552 					configuration, -i);
1553 	}
1554 
1555 	/* Wake up the device so we can send it the Set-Config request */
1556 	ret = usb_autoresume_device(dev);
1557 	if (ret)
1558 		goto free_interfaces;
1559 
1560 	/* if it's already configured, clear out old state first.
1561 	 * getting rid of old interfaces means unbinding their drivers.
1562 	 */
1563 	if (dev->state != USB_STATE_ADDRESS)
1564 		usb_disable_device (dev, 1);	// Skip ep0
1565 
1566 	if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1567 			USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1568 			NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) {
1569 
1570 		/* All the old state is gone, so what else can we do?
1571 		 * The device is probably useless now anyway.
1572 		 */
1573 		cp = NULL;
1574 	}
1575 
1576 	dev->actconfig = cp;
1577 	if (!cp) {
1578 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1579 		usb_autosuspend_device(dev);
1580 		goto free_interfaces;
1581 	}
1582 	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1583 
1584 	/* Initialize the new interface structures and the
1585 	 * hc/hcd/usbcore interface/endpoint state.
1586 	 */
1587 	for (i = 0; i < nintf; ++i) {
1588 		struct usb_interface_cache *intfc;
1589 		struct usb_interface *intf;
1590 		struct usb_host_interface *alt;
1591 
1592 		cp->interface[i] = intf = new_interfaces[i];
1593 		intfc = cp->intf_cache[i];
1594 		intf->altsetting = intfc->altsetting;
1595 		intf->num_altsetting = intfc->num_altsetting;
1596 		intf->intf_assoc = find_iad(dev, cp, i);
1597 		kref_get(&intfc->ref);
1598 
1599 		alt = usb_altnum_to_altsetting(intf, 0);
1600 
1601 		/* No altsetting 0?  We'll assume the first altsetting.
1602 		 * We could use a GetInterface call, but if a device is
1603 		 * so non-compliant that it doesn't have altsetting 0
1604 		 * then I wouldn't trust its reply anyway.
1605 		 */
1606 		if (!alt)
1607 			alt = &intf->altsetting[0];
1608 
1609 		intf->cur_altsetting = alt;
1610 		usb_enable_interface(dev, intf);
1611 		intf->dev.parent = &dev->dev;
1612 		intf->dev.driver = NULL;
1613 		intf->dev.bus = &usb_bus_type;
1614 		intf->dev.type = &usb_if_device_type;
1615 		intf->dev.dma_mask = dev->dev.dma_mask;
1616 		device_initialize (&intf->dev);
1617 		mark_quiesced(intf);
1618 		sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1619 			 dev->bus->busnum, dev->devpath,
1620 			 configuration, alt->desc.bInterfaceNumber);
1621 	}
1622 	kfree(new_interfaces);
1623 
1624 	if (cp->string == NULL)
1625 		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1626 
1627 	/* Now that all the interfaces are set up, register them
1628 	 * to trigger binding of drivers to interfaces.  probe()
1629 	 * routines may install different altsettings and may
1630 	 * claim() any interfaces not yet bound.  Many class drivers
1631 	 * need that: CDC, audio, video, etc.
1632 	 */
1633 	for (i = 0; i < nintf; ++i) {
1634 		struct usb_interface *intf = cp->interface[i];
1635 
1636 		dev_dbg (&dev->dev,
1637 			"adding %s (config #%d, interface %d)\n",
1638 			intf->dev.bus_id, configuration,
1639 			intf->cur_altsetting->desc.bInterfaceNumber);
1640 		ret = device_add (&intf->dev);
1641 		if (ret != 0) {
1642 			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1643 				intf->dev.bus_id, ret);
1644 			continue;
1645 		}
1646 		usb_create_sysfs_intf_files (intf);
1647 	}
1648 
1649 	usb_autosuspend_device(dev);
1650 	return 0;
1651 }
1652 
1653 struct set_config_request {
1654 	struct usb_device	*udev;
1655 	int			config;
1656 	struct work_struct	work;
1657 };
1658 
1659 /* Worker routine for usb_driver_set_configuration() */
1660 static void driver_set_config_work(struct work_struct *work)
1661 {
1662 	struct set_config_request *req =
1663 		container_of(work, struct set_config_request, work);
1664 
1665 	usb_lock_device(req->udev);
1666 	usb_set_configuration(req->udev, req->config);
1667 	usb_unlock_device(req->udev);
1668 	usb_put_dev(req->udev);
1669 	kfree(req);
1670 }
1671 
1672 /**
1673  * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1674  * @udev: the device whose configuration is being updated
1675  * @config: the configuration being chosen.
1676  * Context: In process context, must be able to sleep
1677  *
1678  * Device interface drivers are not allowed to change device configurations.
1679  * This is because changing configurations will destroy the interface the
1680  * driver is bound to and create new ones; it would be like a floppy-disk
1681  * driver telling the computer to replace the floppy-disk drive with a
1682  * tape drive!
1683  *
1684  * Still, in certain specialized circumstances the need may arise.  This
1685  * routine gets around the normal restrictions by using a work thread to
1686  * submit the change-config request.
1687  *
1688  * Returns 0 if the request was succesfully queued, error code otherwise.
1689  * The caller has no way to know whether the queued request will eventually
1690  * succeed.
1691  */
1692 int usb_driver_set_configuration(struct usb_device *udev, int config)
1693 {
1694 	struct set_config_request *req;
1695 
1696 	req = kmalloc(sizeof(*req), GFP_KERNEL);
1697 	if (!req)
1698 		return -ENOMEM;
1699 	req->udev = udev;
1700 	req->config = config;
1701 	INIT_WORK(&req->work, driver_set_config_work);
1702 
1703 	usb_get_dev(udev);
1704 	schedule_work(&req->work);
1705 	return 0;
1706 }
1707 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1708 
1709 // synchronous request completion model
1710 EXPORT_SYMBOL(usb_control_msg);
1711 EXPORT_SYMBOL(usb_bulk_msg);
1712 
1713 EXPORT_SYMBOL(usb_sg_init);
1714 EXPORT_SYMBOL(usb_sg_cancel);
1715 EXPORT_SYMBOL(usb_sg_wait);
1716 
1717 // synchronous control message convenience routines
1718 EXPORT_SYMBOL(usb_get_descriptor);
1719 EXPORT_SYMBOL(usb_get_status);
1720 EXPORT_SYMBOL(usb_string);
1721 
1722 // synchronous calls that also maintain usbcore state
1723 EXPORT_SYMBOL(usb_clear_halt);
1724 EXPORT_SYMBOL(usb_reset_configuration);
1725 EXPORT_SYMBOL(usb_set_interface);
1726 
1727