xref: /openbmc/linux/drivers/usb/core/message.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * message.c - synchronous message handling
3  */
4 
5 #include <linux/config.h>
6 
7 #ifdef CONFIG_USB_DEBUG
8 	#define DEBUG
9 #else
10 	#undef DEBUG
11 #endif
12 
13 #include <linux/pci.h>	/* for scatterlist macros */
14 #include <linux/usb.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/mm.h>
19 #include <linux/timer.h>
20 #include <linux/ctype.h>
21 #include <linux/device.h>
22 #include <asm/byteorder.h>
23 
24 #include "hcd.h"	/* for usbcore internals */
25 #include "usb.h"
26 
27 static void usb_api_blocking_completion(struct urb *urb, struct pt_regs *regs)
28 {
29 	complete((struct completion *)urb->context);
30 }
31 
32 
33 static void timeout_kill(unsigned long data)
34 {
35 	struct urb	*urb = (struct urb *) data;
36 
37 	usb_unlink_urb(urb);
38 }
39 
40 // Starts urb and waits for completion or timeout
41 // note that this call is NOT interruptible, while
42 // many device driver i/o requests should be interruptible
43 static int usb_start_wait_urb(struct urb *urb, int timeout, int* actual_length)
44 {
45 	struct completion	done;
46 	struct timer_list	timer;
47 	int			status;
48 
49 	init_completion(&done);
50 	urb->context = &done;
51 	urb->transfer_flags |= URB_ASYNC_UNLINK;
52 	urb->actual_length = 0;
53 	status = usb_submit_urb(urb, GFP_NOIO);
54 
55 	if (status == 0) {
56 		if (timeout > 0) {
57 			init_timer(&timer);
58 			timer.expires = jiffies + msecs_to_jiffies(timeout);
59 			timer.data = (unsigned long)urb;
60 			timer.function = timeout_kill;
61 			/* grr.  timeout _should_ include submit delays. */
62 			add_timer(&timer);
63 		}
64 		wait_for_completion(&done);
65 		status = urb->status;
66 		/* note:  HCDs return ETIMEDOUT for other reasons too */
67 		if (status == -ECONNRESET) {
68 			dev_dbg(&urb->dev->dev,
69 				"%s timed out on ep%d%s len=%d/%d\n",
70 				current->comm,
71 				usb_pipeendpoint(urb->pipe),
72 				usb_pipein(urb->pipe) ? "in" : "out",
73 				urb->actual_length,
74 				urb->transfer_buffer_length
75 				);
76 			if (urb->actual_length > 0)
77 				status = 0;
78 			else
79 				status = -ETIMEDOUT;
80 		}
81 		if (timeout > 0)
82 			del_timer_sync(&timer);
83 	}
84 
85 	if (actual_length)
86 		*actual_length = urb->actual_length;
87 	usb_free_urb(urb);
88 	return status;
89 }
90 
91 /*-------------------------------------------------------------------*/
92 // returns status (negative) or length (positive)
93 static int usb_internal_control_msg(struct usb_device *usb_dev,
94 				    unsigned int pipe,
95 				    struct usb_ctrlrequest *cmd,
96 				    void *data, int len, int timeout)
97 {
98 	struct urb *urb;
99 	int retv;
100 	int length;
101 
102 	urb = usb_alloc_urb(0, GFP_NOIO);
103 	if (!urb)
104 		return -ENOMEM;
105 
106 	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
107 			     len, usb_api_blocking_completion, NULL);
108 
109 	retv = usb_start_wait_urb(urb, timeout, &length);
110 	if (retv < 0)
111 		return retv;
112 	else
113 		return length;
114 }
115 
116 /**
117  *	usb_control_msg - Builds a control urb, sends it off and waits for completion
118  *	@dev: pointer to the usb device to send the message to
119  *	@pipe: endpoint "pipe" to send the message to
120  *	@request: USB message request value
121  *	@requesttype: USB message request type value
122  *	@value: USB message value
123  *	@index: USB message index value
124  *	@data: pointer to the data to send
125  *	@size: length in bytes of the data to send
126  *	@timeout: time in msecs to wait for the message to complete before
127  *		timing out (if 0 the wait is forever)
128  *	Context: !in_interrupt ()
129  *
130  *	This function sends a simple control message to a specified endpoint
131  *	and waits for the message to complete, or timeout.
132  *
133  *	If successful, it returns the number of bytes transferred, otherwise a negative error number.
134  *
135  *	Don't use this function from within an interrupt context, like a
136  *	bottom half handler.  If you need an asynchronous message, or need to send
137  *	a message from within interrupt context, use usb_submit_urb()
138  *      If a thread in your driver uses this call, make sure your disconnect()
139  *      method can wait for it to complete.  Since you don't have a handle on
140  *      the URB used, you can't cancel the request.
141  */
142 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype,
143 			 __u16 value, __u16 index, void *data, __u16 size, int timeout)
144 {
145 	struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
146 	int ret;
147 
148 	if (!dr)
149 		return -ENOMEM;
150 
151 	dr->bRequestType= requesttype;
152 	dr->bRequest = request;
153 	dr->wValue = cpu_to_le16p(&value);
154 	dr->wIndex = cpu_to_le16p(&index);
155 	dr->wLength = cpu_to_le16p(&size);
156 
157 	//dbg("usb_control_msg");
158 
159 	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
160 
161 	kfree(dr);
162 
163 	return ret;
164 }
165 
166 
167 /**
168  *	usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
169  *	@usb_dev: pointer to the usb device to send the message to
170  *	@pipe: endpoint "pipe" to send the message to
171  *	@data: pointer to the data to send
172  *	@len: length in bytes of the data to send
173  *	@actual_length: pointer to a location to put the actual length transferred in bytes
174  *	@timeout: time in msecs to wait for the message to complete before
175  *		timing out (if 0 the wait is forever)
176  *	Context: !in_interrupt ()
177  *
178  *	This function sends a simple bulk message to a specified endpoint
179  *	and waits for the message to complete, or timeout.
180  *
181  *	If successful, it returns 0, otherwise a negative error number.
182  *	The number of actual bytes transferred will be stored in the
183  *	actual_length paramater.
184  *
185  *	Don't use this function from within an interrupt context, like a
186  *	bottom half handler.  If you need an asynchronous message, or need to
187  *	send a message from within interrupt context, use usb_submit_urb()
188  *      If a thread in your driver uses this call, make sure your disconnect()
189  *      method can wait for it to complete.  Since you don't have a handle on
190  *      the URB used, you can't cancel the request.
191  */
192 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
193 			void *data, int len, int *actual_length, int timeout)
194 {
195 	struct urb *urb;
196 
197 	if (len < 0)
198 		return -EINVAL;
199 
200 	urb=usb_alloc_urb(0, GFP_KERNEL);
201 	if (!urb)
202 		return -ENOMEM;
203 
204 	usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
205 			  usb_api_blocking_completion, NULL);
206 
207 	return usb_start_wait_urb(urb, timeout, actual_length);
208 }
209 
210 /*-------------------------------------------------------------------*/
211 
212 static void sg_clean (struct usb_sg_request *io)
213 {
214 	if (io->urbs) {
215 		while (io->entries--)
216 			usb_free_urb (io->urbs [io->entries]);
217 		kfree (io->urbs);
218 		io->urbs = NULL;
219 	}
220 	if (io->dev->dev.dma_mask != NULL)
221 		usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents);
222 	io->dev = NULL;
223 }
224 
225 static void sg_complete (struct urb *urb, struct pt_regs *regs)
226 {
227 	struct usb_sg_request	*io = (struct usb_sg_request *) urb->context;
228 
229 	spin_lock (&io->lock);
230 
231 	/* In 2.5 we require hcds' endpoint queues not to progress after fault
232 	 * reports, until the completion callback (this!) returns.  That lets
233 	 * device driver code (like this routine) unlink queued urbs first,
234 	 * if it needs to, since the HC won't work on them at all.  So it's
235 	 * not possible for page N+1 to overwrite page N, and so on.
236 	 *
237 	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
238 	 * complete before the HCD can get requests away from hardware,
239 	 * though never during cleanup after a hard fault.
240 	 */
241 	if (io->status
242 			&& (io->status != -ECONNRESET
243 				|| urb->status != -ECONNRESET)
244 			&& urb->actual_length) {
245 		dev_err (io->dev->bus->controller,
246 			"dev %s ep%d%s scatterlist error %d/%d\n",
247 			io->dev->devpath,
248 			usb_pipeendpoint (urb->pipe),
249 			usb_pipein (urb->pipe) ? "in" : "out",
250 			urb->status, io->status);
251 		// BUG ();
252 	}
253 
254 	if (io->status == 0 && urb->status && urb->status != -ECONNRESET) {
255 		int		i, found, status;
256 
257 		io->status = urb->status;
258 
259 		/* the previous urbs, and this one, completed already.
260 		 * unlink pending urbs so they won't rx/tx bad data.
261 		 * careful: unlink can sometimes be synchronous...
262 		 */
263 		spin_unlock (&io->lock);
264 		for (i = 0, found = 0; i < io->entries; i++) {
265 			if (!io->urbs [i] || !io->urbs [i]->dev)
266 				continue;
267 			if (found) {
268 				status = usb_unlink_urb (io->urbs [i]);
269 				if (status != -EINPROGRESS && status != -EBUSY)
270 					dev_err (&io->dev->dev,
271 						"%s, unlink --> %d\n",
272 						__FUNCTION__, status);
273 			} else if (urb == io->urbs [i])
274 				found = 1;
275 		}
276 		spin_lock (&io->lock);
277 	}
278 	urb->dev = NULL;
279 
280 	/* on the last completion, signal usb_sg_wait() */
281 	io->bytes += urb->actual_length;
282 	io->count--;
283 	if (!io->count)
284 		complete (&io->complete);
285 
286 	spin_unlock (&io->lock);
287 }
288 
289 
290 /**
291  * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
292  * @io: request block being initialized.  until usb_sg_wait() returns,
293  *	treat this as a pointer to an opaque block of memory,
294  * @dev: the usb device that will send or receive the data
295  * @pipe: endpoint "pipe" used to transfer the data
296  * @period: polling rate for interrupt endpoints, in frames or
297  * 	(for high speed endpoints) microframes; ignored for bulk
298  * @sg: scatterlist entries
299  * @nents: how many entries in the scatterlist
300  * @length: how many bytes to send from the scatterlist, or zero to
301  * 	send every byte identified in the list.
302  * @mem_flags: SLAB_* flags affecting memory allocations in this call
303  *
304  * Returns zero for success, else a negative errno value.  This initializes a
305  * scatter/gather request, allocating resources such as I/O mappings and urb
306  * memory (except maybe memory used by USB controller drivers).
307  *
308  * The request must be issued using usb_sg_wait(), which waits for the I/O to
309  * complete (or to be canceled) and then cleans up all resources allocated by
310  * usb_sg_init().
311  *
312  * The request may be canceled with usb_sg_cancel(), either before or after
313  * usb_sg_wait() is called.
314  */
315 int usb_sg_init (
316 	struct usb_sg_request	*io,
317 	struct usb_device	*dev,
318 	unsigned		pipe,
319 	unsigned		period,
320 	struct scatterlist	*sg,
321 	int			nents,
322 	size_t			length,
323 	int			mem_flags
324 )
325 {
326 	int			i;
327 	int			urb_flags;
328 	int			dma;
329 
330 	if (!io || !dev || !sg
331 			|| usb_pipecontrol (pipe)
332 			|| usb_pipeisoc (pipe)
333 			|| nents <= 0)
334 		return -EINVAL;
335 
336 	spin_lock_init (&io->lock);
337 	io->dev = dev;
338 	io->pipe = pipe;
339 	io->sg = sg;
340 	io->nents = nents;
341 
342 	/* not all host controllers use DMA (like the mainstream pci ones);
343 	 * they can use PIO (sl811) or be software over another transport.
344 	 */
345 	dma = (dev->dev.dma_mask != NULL);
346 	if (dma)
347 		io->entries = usb_buffer_map_sg (dev, pipe, sg, nents);
348 	else
349 		io->entries = nents;
350 
351 	/* initialize all the urbs we'll use */
352 	if (io->entries <= 0)
353 		return io->entries;
354 
355 	io->count = io->entries;
356 	io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags);
357 	if (!io->urbs)
358 		goto nomem;
359 
360 	urb_flags = URB_ASYNC_UNLINK | URB_NO_TRANSFER_DMA_MAP
361 			| URB_NO_INTERRUPT;
362 	if (usb_pipein (pipe))
363 		urb_flags |= URB_SHORT_NOT_OK;
364 
365 	for (i = 0; i < io->entries; i++) {
366 		unsigned		len;
367 
368 		io->urbs [i] = usb_alloc_urb (0, mem_flags);
369 		if (!io->urbs [i]) {
370 			io->entries = i;
371 			goto nomem;
372 		}
373 
374 		io->urbs [i]->dev = NULL;
375 		io->urbs [i]->pipe = pipe;
376 		io->urbs [i]->interval = period;
377 		io->urbs [i]->transfer_flags = urb_flags;
378 
379 		io->urbs [i]->complete = sg_complete;
380 		io->urbs [i]->context = io;
381 		io->urbs [i]->status = -EINPROGRESS;
382 		io->urbs [i]->actual_length = 0;
383 
384 		if (dma) {
385 			/* hc may use _only_ transfer_dma */
386 			io->urbs [i]->transfer_dma = sg_dma_address (sg + i);
387 			len = sg_dma_len (sg + i);
388 		} else {
389 			/* hc may use _only_ transfer_buffer */
390 			io->urbs [i]->transfer_buffer =
391 				page_address (sg [i].page) + sg [i].offset;
392 			len = sg [i].length;
393 		}
394 
395 		if (length) {
396 			len = min_t (unsigned, len, length);
397 			length -= len;
398 			if (length == 0)
399 				io->entries = i + 1;
400 		}
401 		io->urbs [i]->transfer_buffer_length = len;
402 	}
403 	io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT;
404 
405 	/* transaction state */
406 	io->status = 0;
407 	io->bytes = 0;
408 	init_completion (&io->complete);
409 	return 0;
410 
411 nomem:
412 	sg_clean (io);
413 	return -ENOMEM;
414 }
415 
416 
417 /**
418  * usb_sg_wait - synchronously execute scatter/gather request
419  * @io: request block handle, as initialized with usb_sg_init().
420  * 	some fields become accessible when this call returns.
421  * Context: !in_interrupt ()
422  *
423  * This function blocks until the specified I/O operation completes.  It
424  * leverages the grouping of the related I/O requests to get good transfer
425  * rates, by queueing the requests.  At higher speeds, such queuing can
426  * significantly improve USB throughput.
427  *
428  * There are three kinds of completion for this function.
429  * (1) success, where io->status is zero.  The number of io->bytes
430  *     transferred is as requested.
431  * (2) error, where io->status is a negative errno value.  The number
432  *     of io->bytes transferred before the error is usually less
433  *     than requested, and can be nonzero.
434  * (3) cancelation, a type of error with status -ECONNRESET that
435  *     is initiated by usb_sg_cancel().
436  *
437  * When this function returns, all memory allocated through usb_sg_init() or
438  * this call will have been freed.  The request block parameter may still be
439  * passed to usb_sg_cancel(), or it may be freed.  It could also be
440  * reinitialized and then reused.
441  *
442  * Data Transfer Rates:
443  *
444  * Bulk transfers are valid for full or high speed endpoints.
445  * The best full speed data rate is 19 packets of 64 bytes each
446  * per frame, or 1216 bytes per millisecond.
447  * The best high speed data rate is 13 packets of 512 bytes each
448  * per microframe, or 52 KBytes per millisecond.
449  *
450  * The reason to use interrupt transfers through this API would most likely
451  * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
452  * could be transferred.  That capability is less useful for low or full
453  * speed interrupt endpoints, which allow at most one packet per millisecond,
454  * of at most 8 or 64 bytes (respectively).
455  */
456 void usb_sg_wait (struct usb_sg_request *io)
457 {
458 	int		i, entries = io->entries;
459 
460 	/* queue the urbs.  */
461 	spin_lock_irq (&io->lock);
462 	for (i = 0; i < entries && !io->status; i++) {
463 		int	retval;
464 
465 		io->urbs [i]->dev = io->dev;
466 		retval = usb_submit_urb (io->urbs [i], SLAB_ATOMIC);
467 
468 		/* after we submit, let completions or cancelations fire;
469 		 * we handshake using io->status.
470 		 */
471 		spin_unlock_irq (&io->lock);
472 		switch (retval) {
473 			/* maybe we retrying will recover */
474 		case -ENXIO:	// hc didn't queue this one
475 		case -EAGAIN:
476 		case -ENOMEM:
477 			io->urbs[i]->dev = NULL;
478 			retval = 0;
479 			i--;
480 			yield ();
481 			break;
482 
483 			/* no error? continue immediately.
484 			 *
485 			 * NOTE: to work better with UHCI (4K I/O buffer may
486 			 * need 3K of TDs) it may be good to limit how many
487 			 * URBs are queued at once; N milliseconds?
488 			 */
489 		case 0:
490 			cpu_relax ();
491 			break;
492 
493 			/* fail any uncompleted urbs */
494 		default:
495 			io->urbs [i]->dev = NULL;
496 			io->urbs [i]->status = retval;
497 			dev_dbg (&io->dev->dev, "%s, submit --> %d\n",
498 				__FUNCTION__, retval);
499 			usb_sg_cancel (io);
500 		}
501 		spin_lock_irq (&io->lock);
502 		if (retval && (io->status == 0 || io->status == -ECONNRESET))
503 			io->status = retval;
504 	}
505 	io->count -= entries - i;
506 	if (io->count == 0)
507 		complete (&io->complete);
508 	spin_unlock_irq (&io->lock);
509 
510 	/* OK, yes, this could be packaged as non-blocking.
511 	 * So could the submit loop above ... but it's easier to
512 	 * solve neither problem than to solve both!
513 	 */
514 	wait_for_completion (&io->complete);
515 
516 	sg_clean (io);
517 }
518 
519 /**
520  * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
521  * @io: request block, initialized with usb_sg_init()
522  *
523  * This stops a request after it has been started by usb_sg_wait().
524  * It can also prevents one initialized by usb_sg_init() from starting,
525  * so that call just frees resources allocated to the request.
526  */
527 void usb_sg_cancel (struct usb_sg_request *io)
528 {
529 	unsigned long	flags;
530 
531 	spin_lock_irqsave (&io->lock, flags);
532 
533 	/* shut everything down, if it didn't already */
534 	if (!io->status) {
535 		int	i;
536 
537 		io->status = -ECONNRESET;
538 		spin_unlock (&io->lock);
539 		for (i = 0; i < io->entries; i++) {
540 			int	retval;
541 
542 			if (!io->urbs [i]->dev)
543 				continue;
544 			retval = usb_unlink_urb (io->urbs [i]);
545 			if (retval != -EINPROGRESS && retval != -EBUSY)
546 				dev_warn (&io->dev->dev, "%s, unlink --> %d\n",
547 					__FUNCTION__, retval);
548 		}
549 		spin_lock (&io->lock);
550 	}
551 	spin_unlock_irqrestore (&io->lock, flags);
552 }
553 
554 /*-------------------------------------------------------------------*/
555 
556 /**
557  * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
558  * @dev: the device whose descriptor is being retrieved
559  * @type: the descriptor type (USB_DT_*)
560  * @index: the number of the descriptor
561  * @buf: where to put the descriptor
562  * @size: how big is "buf"?
563  * Context: !in_interrupt ()
564  *
565  * Gets a USB descriptor.  Convenience functions exist to simplify
566  * getting some types of descriptors.  Use
567  * usb_get_string() or usb_string() for USB_DT_STRING.
568  * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
569  * are part of the device structure.
570  * In addition to a number of USB-standard descriptors, some
571  * devices also use class-specific or vendor-specific descriptors.
572  *
573  * This call is synchronous, and may not be used in an interrupt context.
574  *
575  * Returns the number of bytes received on success, or else the status code
576  * returned by the underlying usb_control_msg() call.
577  */
578 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size)
579 {
580 	int i;
581 	int result;
582 
583 	memset(buf,0,size);	// Make sure we parse really received data
584 
585 	for (i = 0; i < 3; ++i) {
586 		/* retry on length 0 or stall; some devices are flakey */
587 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
588 				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
589 				(type << 8) + index, 0, buf, size,
590 				USB_CTRL_GET_TIMEOUT);
591 		if (result == 0 || result == -EPIPE)
592 			continue;
593 		if (result > 1 && ((u8 *)buf)[1] != type) {
594 			result = -EPROTO;
595 			continue;
596 		}
597 		break;
598 	}
599 	return result;
600 }
601 
602 /**
603  * usb_get_string - gets a string descriptor
604  * @dev: the device whose string descriptor is being retrieved
605  * @langid: code for language chosen (from string descriptor zero)
606  * @index: the number of the descriptor
607  * @buf: where to put the string
608  * @size: how big is "buf"?
609  * Context: !in_interrupt ()
610  *
611  * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
612  * in little-endian byte order).
613  * The usb_string() function will often be a convenient way to turn
614  * these strings into kernel-printable form.
615  *
616  * Strings may be referenced in device, configuration, interface, or other
617  * descriptors, and could also be used in vendor-specific ways.
618  *
619  * This call is synchronous, and may not be used in an interrupt context.
620  *
621  * Returns the number of bytes received on success, or else the status code
622  * returned by the underlying usb_control_msg() call.
623  */
624 int usb_get_string(struct usb_device *dev, unsigned short langid,
625 		unsigned char index, void *buf, int size)
626 {
627 	int i;
628 	int result;
629 
630 	for (i = 0; i < 3; ++i) {
631 		/* retry on length 0 or stall; some devices are flakey */
632 		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
633 			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
634 			(USB_DT_STRING << 8) + index, langid, buf, size,
635 			USB_CTRL_GET_TIMEOUT);
636 		if (!(result == 0 || result == -EPIPE))
637 			break;
638 	}
639 	return result;
640 }
641 
642 static void usb_try_string_workarounds(unsigned char *buf, int *length)
643 {
644 	int newlength, oldlength = *length;
645 
646 	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
647 		if (!isprint(buf[newlength]) || buf[newlength + 1])
648 			break;
649 
650 	if (newlength > 2) {
651 		buf[0] = newlength;
652 		*length = newlength;
653 	}
654 }
655 
656 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
657 		unsigned int index, unsigned char *buf)
658 {
659 	int rc;
660 
661 	/* Try to read the string descriptor by asking for the maximum
662 	 * possible number of bytes */
663 	rc = usb_get_string(dev, langid, index, buf, 255);
664 
665 	/* If that failed try to read the descriptor length, then
666 	 * ask for just that many bytes */
667 	if (rc < 2) {
668 		rc = usb_get_string(dev, langid, index, buf, 2);
669 		if (rc == 2)
670 			rc = usb_get_string(dev, langid, index, buf, buf[0]);
671 	}
672 
673 	if (rc >= 2) {
674 		if (!buf[0] && !buf[1])
675 			usb_try_string_workarounds(buf, &rc);
676 
677 		/* There might be extra junk at the end of the descriptor */
678 		if (buf[0] < rc)
679 			rc = buf[0];
680 
681 		rc = rc - (rc & 1); /* force a multiple of two */
682 	}
683 
684 	if (rc < 2)
685 		rc = (rc < 0 ? rc : -EINVAL);
686 
687 	return rc;
688 }
689 
690 /**
691  * usb_string - returns ISO 8859-1 version of a string descriptor
692  * @dev: the device whose string descriptor is being retrieved
693  * @index: the number of the descriptor
694  * @buf: where to put the string
695  * @size: how big is "buf"?
696  * Context: !in_interrupt ()
697  *
698  * This converts the UTF-16LE encoded strings returned by devices, from
699  * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones
700  * that are more usable in most kernel contexts.  Note that all characters
701  * in the chosen descriptor that can't be encoded using ISO-8859-1
702  * are converted to the question mark ("?") character, and this function
703  * chooses strings in the first language supported by the device.
704  *
705  * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit
706  * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode,
707  * and is appropriate for use many uses of English and several other
708  * Western European languages.  (But it doesn't include the "Euro" symbol.)
709  *
710  * This call is synchronous, and may not be used in an interrupt context.
711  *
712  * Returns length of the string (>= 0) or usb_control_msg status (< 0).
713  */
714 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
715 {
716 	unsigned char *tbuf;
717 	int err;
718 	unsigned int u, idx;
719 
720 	if (dev->state == USB_STATE_SUSPENDED)
721 		return -EHOSTUNREACH;
722 	if (size <= 0 || !buf || !index)
723 		return -EINVAL;
724 	buf[0] = 0;
725 	tbuf = kmalloc(256, GFP_KERNEL);
726 	if (!tbuf)
727 		return -ENOMEM;
728 
729 	/* get langid for strings if it's not yet known */
730 	if (!dev->have_langid) {
731 		err = usb_string_sub(dev, 0, 0, tbuf);
732 		if (err < 0) {
733 			dev_err (&dev->dev,
734 				"string descriptor 0 read error: %d\n",
735 				err);
736 			goto errout;
737 		} else if (err < 4) {
738 			dev_err (&dev->dev, "string descriptor 0 too short\n");
739 			err = -EINVAL;
740 			goto errout;
741 		} else {
742 			dev->have_langid = -1;
743 			dev->string_langid = tbuf[2] | (tbuf[3]<< 8);
744 				/* always use the first langid listed */
745 			dev_dbg (&dev->dev, "default language 0x%04x\n",
746 				dev->string_langid);
747 		}
748 	}
749 
750 	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
751 	if (err < 0)
752 		goto errout;
753 
754 	size--;		/* leave room for trailing NULL char in output buffer */
755 	for (idx = 0, u = 2; u < err; u += 2) {
756 		if (idx >= size)
757 			break;
758 		if (tbuf[u+1])			/* high byte */
759 			buf[idx++] = '?';  /* non ISO-8859-1 character */
760 		else
761 			buf[idx++] = tbuf[u];
762 	}
763 	buf[idx] = 0;
764 	err = idx;
765 
766 	if (tbuf[1] != USB_DT_STRING)
767 		dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf);
768 
769  errout:
770 	kfree(tbuf);
771 	return err;
772 }
773 
774 /*
775  * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
776  * @dev: the device whose device descriptor is being updated
777  * @size: how much of the descriptor to read
778  * Context: !in_interrupt ()
779  *
780  * Updates the copy of the device descriptor stored in the device structure,
781  * which dedicates space for this purpose.  Note that several fields are
782  * converted to the host CPU's byte order:  the USB version (bcdUSB), and
783  * vendors product and version fields (idVendor, idProduct, and bcdDevice).
784  * That lets device drivers compare against non-byteswapped constants.
785  *
786  * Not exported, only for use by the core.  If drivers really want to read
787  * the device descriptor directly, they can call usb_get_descriptor() with
788  * type = USB_DT_DEVICE and index = 0.
789  *
790  * This call is synchronous, and may not be used in an interrupt context.
791  *
792  * Returns the number of bytes received on success, or else the status code
793  * returned by the underlying usb_control_msg() call.
794  */
795 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
796 {
797 	struct usb_device_descriptor *desc;
798 	int ret;
799 
800 	if (size > sizeof(*desc))
801 		return -EINVAL;
802 	desc = kmalloc(sizeof(*desc), GFP_NOIO);
803 	if (!desc)
804 		return -ENOMEM;
805 
806 	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
807 	if (ret >= 0)
808 		memcpy(&dev->descriptor, desc, size);
809 	kfree(desc);
810 	return ret;
811 }
812 
813 /**
814  * usb_get_status - issues a GET_STATUS call
815  * @dev: the device whose status is being checked
816  * @type: USB_RECIP_*; for device, interface, or endpoint
817  * @target: zero (for device), else interface or endpoint number
818  * @data: pointer to two bytes of bitmap data
819  * Context: !in_interrupt ()
820  *
821  * Returns device, interface, or endpoint status.  Normally only of
822  * interest to see if the device is self powered, or has enabled the
823  * remote wakeup facility; or whether a bulk or interrupt endpoint
824  * is halted ("stalled").
825  *
826  * Bits in these status bitmaps are set using the SET_FEATURE request,
827  * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
828  * function should be used to clear halt ("stall") status.
829  *
830  * This call is synchronous, and may not be used in an interrupt context.
831  *
832  * Returns the number of bytes received on success, or else the status code
833  * returned by the underlying usb_control_msg() call.
834  */
835 int usb_get_status(struct usb_device *dev, int type, int target, void *data)
836 {
837 	int ret;
838 	u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
839 
840 	if (!status)
841 		return -ENOMEM;
842 
843 	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
844 		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
845 		sizeof(*status), USB_CTRL_GET_TIMEOUT);
846 
847 	*(u16 *)data = *status;
848 	kfree(status);
849 	return ret;
850 }
851 
852 /**
853  * usb_clear_halt - tells device to clear endpoint halt/stall condition
854  * @dev: device whose endpoint is halted
855  * @pipe: endpoint "pipe" being cleared
856  * Context: !in_interrupt ()
857  *
858  * This is used to clear halt conditions for bulk and interrupt endpoints,
859  * as reported by URB completion status.  Endpoints that are halted are
860  * sometimes referred to as being "stalled".  Such endpoints are unable
861  * to transmit or receive data until the halt status is cleared.  Any URBs
862  * queued for such an endpoint should normally be unlinked by the driver
863  * before clearing the halt condition, as described in sections 5.7.5
864  * and 5.8.5 of the USB 2.0 spec.
865  *
866  * Note that control and isochronous endpoints don't halt, although control
867  * endpoints report "protocol stall" (for unsupported requests) using the
868  * same status code used to report a true stall.
869  *
870  * This call is synchronous, and may not be used in an interrupt context.
871  *
872  * Returns zero on success, or else the status code returned by the
873  * underlying usb_control_msg() call.
874  */
875 int usb_clear_halt(struct usb_device *dev, int pipe)
876 {
877 	int result;
878 	int endp = usb_pipeendpoint(pipe);
879 
880 	if (usb_pipein (pipe))
881 		endp |= USB_DIR_IN;
882 
883 	/* we don't care if it wasn't halted first. in fact some devices
884 	 * (like some ibmcam model 1 units) seem to expect hosts to make
885 	 * this request for iso endpoints, which can't halt!
886 	 */
887 	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
888 		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
889 		USB_ENDPOINT_HALT, endp, NULL, 0,
890 		USB_CTRL_SET_TIMEOUT);
891 
892 	/* don't un-halt or force to DATA0 except on success */
893 	if (result < 0)
894 		return result;
895 
896 	/* NOTE:  seems like Microsoft and Apple don't bother verifying
897 	 * the clear "took", so some devices could lock up if you check...
898 	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
899 	 *
900 	 * NOTE:  make sure the logic here doesn't diverge much from
901 	 * the copy in usb-storage, for as long as we need two copies.
902 	 */
903 
904 	/* toggle was reset by the clear */
905 	usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0);
906 
907 	return 0;
908 }
909 
910 /**
911  * usb_disable_endpoint -- Disable an endpoint by address
912  * @dev: the device whose endpoint is being disabled
913  * @epaddr: the endpoint's address.  Endpoint number for output,
914  *	endpoint number + USB_DIR_IN for input
915  *
916  * Deallocates hcd/hardware state for this endpoint ... and nukes all
917  * pending urbs.
918  *
919  * If the HCD hasn't registered a disable() function, this sets the
920  * endpoint's maxpacket size to 0 to prevent further submissions.
921  */
922 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr)
923 {
924 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
925 	struct usb_host_endpoint *ep;
926 
927 	if (!dev)
928 		return;
929 
930 	if (usb_endpoint_out(epaddr)) {
931 		ep = dev->ep_out[epnum];
932 		dev->ep_out[epnum] = NULL;
933 	} else {
934 		ep = dev->ep_in[epnum];
935 		dev->ep_in[epnum] = NULL;
936 	}
937 	if (ep && dev->bus && dev->bus->op && dev->bus->op->disable)
938 		dev->bus->op->disable(dev, ep);
939 }
940 
941 /**
942  * usb_disable_interface -- Disable all endpoints for an interface
943  * @dev: the device whose interface is being disabled
944  * @intf: pointer to the interface descriptor
945  *
946  * Disables all the endpoints for the interface's current altsetting.
947  */
948 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf)
949 {
950 	struct usb_host_interface *alt = intf->cur_altsetting;
951 	int i;
952 
953 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
954 		usb_disable_endpoint(dev,
955 				alt->endpoint[i].desc.bEndpointAddress);
956 	}
957 }
958 
959 /*
960  * usb_disable_device - Disable all the endpoints for a USB device
961  * @dev: the device whose endpoints are being disabled
962  * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
963  *
964  * Disables all the device's endpoints, potentially including endpoint 0.
965  * Deallocates hcd/hardware state for the endpoints (nuking all or most
966  * pending urbs) and usbcore state for the interfaces, so that usbcore
967  * must usb_set_configuration() before any interfaces could be used.
968  */
969 void usb_disable_device(struct usb_device *dev, int skip_ep0)
970 {
971 	int i;
972 
973 	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__,
974 			skip_ep0 ? "non-ep0" : "all");
975 	for (i = skip_ep0; i < 16; ++i) {
976 		usb_disable_endpoint(dev, i);
977 		usb_disable_endpoint(dev, i + USB_DIR_IN);
978 	}
979 	dev->toggle[0] = dev->toggle[1] = 0;
980 
981 	/* getting rid of interfaces will disconnect
982 	 * any drivers bound to them (a key side effect)
983 	 */
984 	if (dev->actconfig) {
985 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
986 			struct usb_interface	*interface;
987 
988 			/* remove this interface */
989 			interface = dev->actconfig->interface[i];
990 			dev_dbg (&dev->dev, "unregistering interface %s\n",
991 				interface->dev.bus_id);
992 			usb_remove_sysfs_intf_files(interface);
993 			kfree(interface->cur_altsetting->string);
994 			interface->cur_altsetting->string = NULL;
995 			device_del (&interface->dev);
996 		}
997 
998 		/* Now that the interfaces are unbound, nobody should
999 		 * try to access them.
1000 		 */
1001 		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1002 			put_device (&dev->actconfig->interface[i]->dev);
1003 			dev->actconfig->interface[i] = NULL;
1004 		}
1005 		dev->actconfig = NULL;
1006 		if (dev->state == USB_STATE_CONFIGURED)
1007 			usb_set_device_state(dev, USB_STATE_ADDRESS);
1008 	}
1009 }
1010 
1011 
1012 /*
1013  * usb_enable_endpoint - Enable an endpoint for USB communications
1014  * @dev: the device whose interface is being enabled
1015  * @ep: the endpoint
1016  *
1017  * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers.
1018  * For control endpoints, both the input and output sides are handled.
1019  */
1020 static void
1021 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep)
1022 {
1023 	unsigned int epaddr = ep->desc.bEndpointAddress;
1024 	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1025 	int is_control;
1026 
1027 	is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
1028 			== USB_ENDPOINT_XFER_CONTROL);
1029 	if (usb_endpoint_out(epaddr) || is_control) {
1030 		usb_settoggle(dev, epnum, 1, 0);
1031 		dev->ep_out[epnum] = ep;
1032 	}
1033 	if (!usb_endpoint_out(epaddr) || is_control) {
1034 		usb_settoggle(dev, epnum, 0, 0);
1035 		dev->ep_in[epnum] = ep;
1036 	}
1037 }
1038 
1039 /*
1040  * usb_enable_interface - Enable all the endpoints for an interface
1041  * @dev: the device whose interface is being enabled
1042  * @intf: pointer to the interface descriptor
1043  *
1044  * Enables all the endpoints for the interface's current altsetting.
1045  */
1046 static void usb_enable_interface(struct usb_device *dev,
1047 				 struct usb_interface *intf)
1048 {
1049 	struct usb_host_interface *alt = intf->cur_altsetting;
1050 	int i;
1051 
1052 	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1053 		usb_enable_endpoint(dev, &alt->endpoint[i]);
1054 }
1055 
1056 /**
1057  * usb_set_interface - Makes a particular alternate setting be current
1058  * @dev: the device whose interface is being updated
1059  * @interface: the interface being updated
1060  * @alternate: the setting being chosen.
1061  * Context: !in_interrupt ()
1062  *
1063  * This is used to enable data transfers on interfaces that may not
1064  * be enabled by default.  Not all devices support such configurability.
1065  * Only the driver bound to an interface may change its setting.
1066  *
1067  * Within any given configuration, each interface may have several
1068  * alternative settings.  These are often used to control levels of
1069  * bandwidth consumption.  For example, the default setting for a high
1070  * speed interrupt endpoint may not send more than 64 bytes per microframe,
1071  * while interrupt transfers of up to 3KBytes per microframe are legal.
1072  * Also, isochronous endpoints may never be part of an
1073  * interface's default setting.  To access such bandwidth, alternate
1074  * interface settings must be made current.
1075  *
1076  * Note that in the Linux USB subsystem, bandwidth associated with
1077  * an endpoint in a given alternate setting is not reserved until an URB
1078  * is submitted that needs that bandwidth.  Some other operating systems
1079  * allocate bandwidth early, when a configuration is chosen.
1080  *
1081  * This call is synchronous, and may not be used in an interrupt context.
1082  * Also, drivers must not change altsettings while urbs are scheduled for
1083  * endpoints in that interface; all such urbs must first be completed
1084  * (perhaps forced by unlinking).
1085  *
1086  * Returns zero on success, or else the status code returned by the
1087  * underlying usb_control_msg() call.
1088  */
1089 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1090 {
1091 	struct usb_interface *iface;
1092 	struct usb_host_interface *alt;
1093 	int ret;
1094 	int manual = 0;
1095 
1096 	if (dev->state == USB_STATE_SUSPENDED)
1097 		return -EHOSTUNREACH;
1098 
1099 	iface = usb_ifnum_to_if(dev, interface);
1100 	if (!iface) {
1101 		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1102 			interface);
1103 		return -EINVAL;
1104 	}
1105 
1106 	alt = usb_altnum_to_altsetting(iface, alternate);
1107 	if (!alt) {
1108 		warn("selecting invalid altsetting %d", alternate);
1109 		return -EINVAL;
1110 	}
1111 
1112 	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1113 				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1114 				   alternate, interface, NULL, 0, 5000);
1115 
1116 	/* 9.4.10 says devices don't need this and are free to STALL the
1117 	 * request if the interface only has one alternate setting.
1118 	 */
1119 	if (ret == -EPIPE && iface->num_altsetting == 1) {
1120 		dev_dbg(&dev->dev,
1121 			"manual set_interface for iface %d, alt %d\n",
1122 			interface, alternate);
1123 		manual = 1;
1124 	} else if (ret < 0)
1125 		return ret;
1126 
1127 	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1128 	 * when they implement async or easily-killable versions of this or
1129 	 * other "should-be-internal" functions (like clear_halt).
1130 	 * should hcd+usbcore postprocess control requests?
1131 	 */
1132 
1133 	/* prevent submissions using previous endpoint settings */
1134 	usb_disable_interface(dev, iface);
1135 
1136 	/* 9.1.1.5 says:
1137 	 *
1138 	 *	Configuring a device or changing an alternate setting
1139 	 *	causes all of the status and configuration values
1140 	 *	associated with endpoints in the affected interfaces to
1141 	 *	be set to their default values. This includes setting
1142 	 *	the data toggle of any endpoint using data toggles to
1143 	 *	the value DATA0.
1144 	 *
1145 	 * Some devices take this too literally and don't reset the data
1146 	 * toggles if the new altsetting is the same as the old one (the
1147 	 * command isn't "changing" an alternate setting).  We will manually
1148 	 * reset the toggles when the new and old altsettings are the same.
1149 	 * Most devices won't need this, but fortunately it doesn't happen
1150 	 * often.
1151 	 */
1152 	if (iface->cur_altsetting == alt)
1153 		manual = 1;
1154 	iface->cur_altsetting = alt;
1155 
1156 	/* If the interface only has one altsetting and the device didn't
1157 	 * accept the request (or whenever the old altsetting is the same
1158 	 * as the new one), we attempt to carry out the equivalent action
1159 	 * by manually clearing the HALT feature for each endpoint in the
1160 	 * new altsetting.
1161 	 */
1162 	if (manual) {
1163 		int i;
1164 
1165 		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1166 			unsigned int epaddr =
1167 				alt->endpoint[i].desc.bEndpointAddress;
1168 			unsigned int pipe =
1169 	__create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr)
1170 	| (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN);
1171 
1172 			usb_clear_halt(dev, pipe);
1173 		}
1174 	}
1175 
1176 	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1177 	 *
1178 	 * Note:
1179 	 * Despite EP0 is always present in all interfaces/AS, the list of
1180 	 * endpoints from the descriptor does not contain EP0. Due to its
1181 	 * omnipresence one might expect EP0 being considered "affected" by
1182 	 * any SetInterface request and hence assume toggles need to be reset.
1183 	 * However, EP0 toggles are re-synced for every individual transfer
1184 	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1185 	 * (Likewise, EP0 never "halts" on well designed devices.)
1186 	 */
1187 	usb_enable_interface(dev, iface);
1188 
1189 	return 0;
1190 }
1191 
1192 /**
1193  * usb_reset_configuration - lightweight device reset
1194  * @dev: the device whose configuration is being reset
1195  *
1196  * This issues a standard SET_CONFIGURATION request to the device using
1197  * the current configuration.  The effect is to reset most USB-related
1198  * state in the device, including interface altsettings (reset to zero),
1199  * endpoint halts (cleared), and data toggle (only for bulk and interrupt
1200  * endpoints).  Other usbcore state is unchanged, including bindings of
1201  * usb device drivers to interfaces.
1202  *
1203  * Because this affects multiple interfaces, avoid using this with composite
1204  * (multi-interface) devices.  Instead, the driver for each interface may
1205  * use usb_set_interface() on the interfaces it claims.  Resetting the whole
1206  * configuration would affect other drivers' interfaces.
1207  *
1208  * The caller must own the device lock.
1209  *
1210  * Returns zero on success, else a negative error code.
1211  */
1212 int usb_reset_configuration(struct usb_device *dev)
1213 {
1214 	int			i, retval;
1215 	struct usb_host_config	*config;
1216 
1217 	if (dev->state == USB_STATE_SUSPENDED)
1218 		return -EHOSTUNREACH;
1219 
1220 	/* caller must have locked the device and must own
1221 	 * the usb bus readlock (so driver bindings are stable);
1222 	 * calls during probe() are fine
1223 	 */
1224 
1225 	for (i = 1; i < 16; ++i) {
1226 		usb_disable_endpoint(dev, i);
1227 		usb_disable_endpoint(dev, i + USB_DIR_IN);
1228 	}
1229 
1230 	config = dev->actconfig;
1231 	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1232 			USB_REQ_SET_CONFIGURATION, 0,
1233 			config->desc.bConfigurationValue, 0,
1234 			NULL, 0, USB_CTRL_SET_TIMEOUT);
1235 	if (retval < 0) {
1236 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1237 		return retval;
1238 	}
1239 
1240 	dev->toggle[0] = dev->toggle[1] = 0;
1241 
1242 	/* re-init hc/hcd interface/endpoint state */
1243 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1244 		struct usb_interface *intf = config->interface[i];
1245 		struct usb_host_interface *alt;
1246 
1247 		alt = usb_altnum_to_altsetting(intf, 0);
1248 
1249 		/* No altsetting 0?  We'll assume the first altsetting.
1250 		 * We could use a GetInterface call, but if a device is
1251 		 * so non-compliant that it doesn't have altsetting 0
1252 		 * then I wouldn't trust its reply anyway.
1253 		 */
1254 		if (!alt)
1255 			alt = &intf->altsetting[0];
1256 
1257 		intf->cur_altsetting = alt;
1258 		usb_enable_interface(dev, intf);
1259 	}
1260 	return 0;
1261 }
1262 
1263 static void release_interface(struct device *dev)
1264 {
1265 	struct usb_interface *intf = to_usb_interface(dev);
1266 	struct usb_interface_cache *intfc =
1267 			altsetting_to_usb_interface_cache(intf->altsetting);
1268 
1269 	kref_put(&intfc->ref, usb_release_interface_cache);
1270 	kfree(intf);
1271 }
1272 
1273 /*
1274  * usb_set_configuration - Makes a particular device setting be current
1275  * @dev: the device whose configuration is being updated
1276  * @configuration: the configuration being chosen.
1277  * Context: !in_interrupt(), caller owns the device lock
1278  *
1279  * This is used to enable non-default device modes.  Not all devices
1280  * use this kind of configurability; many devices only have one
1281  * configuration.
1282  *
1283  * USB device configurations may affect Linux interoperability,
1284  * power consumption and the functionality available.  For example,
1285  * the default configuration is limited to using 100mA of bus power,
1286  * so that when certain device functionality requires more power,
1287  * and the device is bus powered, that functionality should be in some
1288  * non-default device configuration.  Other device modes may also be
1289  * reflected as configuration options, such as whether two ISDN
1290  * channels are available independently; and choosing between open
1291  * standard device protocols (like CDC) or proprietary ones.
1292  *
1293  * Note that USB has an additional level of device configurability,
1294  * associated with interfaces.  That configurability is accessed using
1295  * usb_set_interface().
1296  *
1297  * This call is synchronous. The calling context must be able to sleep,
1298  * must own the device lock, and must not hold the driver model's USB
1299  * bus rwsem; usb device driver probe() methods cannot use this routine.
1300  *
1301  * Returns zero on success, or else the status code returned by the
1302  * underlying call that failed.  On succesful completion, each interface
1303  * in the original device configuration has been destroyed, and each one
1304  * in the new configuration has been probed by all relevant usb device
1305  * drivers currently known to the kernel.
1306  */
1307 int usb_set_configuration(struct usb_device *dev, int configuration)
1308 {
1309 	int i, ret;
1310 	struct usb_host_config *cp = NULL;
1311 	struct usb_interface **new_interfaces = NULL;
1312 	int n, nintf;
1313 
1314 	for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1315 		if (dev->config[i].desc.bConfigurationValue == configuration) {
1316 			cp = &dev->config[i];
1317 			break;
1318 		}
1319 	}
1320 	if ((!cp && configuration != 0))
1321 		return -EINVAL;
1322 
1323 	/* The USB spec says configuration 0 means unconfigured.
1324 	 * But if a device includes a configuration numbered 0,
1325 	 * we will accept it as a correctly configured state.
1326 	 */
1327 	if (cp && configuration == 0)
1328 		dev_warn(&dev->dev, "config 0 descriptor??\n");
1329 
1330 	if (dev->state == USB_STATE_SUSPENDED)
1331 		return -EHOSTUNREACH;
1332 
1333 	/* Allocate memory for new interfaces before doing anything else,
1334 	 * so that if we run out then nothing will have changed. */
1335 	n = nintf = 0;
1336 	if (cp) {
1337 		nintf = cp->desc.bNumInterfaces;
1338 		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1339 				GFP_KERNEL);
1340 		if (!new_interfaces) {
1341 			dev_err(&dev->dev, "Out of memory");
1342 			return -ENOMEM;
1343 		}
1344 
1345 		for (; n < nintf; ++n) {
1346 			new_interfaces[n] = kmalloc(
1347 					sizeof(struct usb_interface),
1348 					GFP_KERNEL);
1349 			if (!new_interfaces[n]) {
1350 				dev_err(&dev->dev, "Out of memory");
1351 				ret = -ENOMEM;
1352 free_interfaces:
1353 				while (--n >= 0)
1354 					kfree(new_interfaces[n]);
1355 				kfree(new_interfaces);
1356 				return ret;
1357 			}
1358 		}
1359 	}
1360 
1361 	/* if it's already configured, clear out old state first.
1362 	 * getting rid of old interfaces means unbinding their drivers.
1363 	 */
1364 	if (dev->state != USB_STATE_ADDRESS)
1365 		usb_disable_device (dev, 1);	// Skip ep0
1366 
1367 	if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1368 			USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1369 			NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0)
1370 		goto free_interfaces;
1371 
1372 	dev->actconfig = cp;
1373 	if (!cp)
1374 		usb_set_device_state(dev, USB_STATE_ADDRESS);
1375 	else {
1376 		usb_set_device_state(dev, USB_STATE_CONFIGURED);
1377 
1378 		/* Initialize the new interface structures and the
1379 		 * hc/hcd/usbcore interface/endpoint state.
1380 		 */
1381 		for (i = 0; i < nintf; ++i) {
1382 			struct usb_interface_cache *intfc;
1383 			struct usb_interface *intf;
1384 			struct usb_host_interface *alt;
1385 
1386 			cp->interface[i] = intf = new_interfaces[i];
1387 			memset(intf, 0, sizeof(*intf));
1388 			intfc = cp->intf_cache[i];
1389 			intf->altsetting = intfc->altsetting;
1390 			intf->num_altsetting = intfc->num_altsetting;
1391 			kref_get(&intfc->ref);
1392 
1393 			alt = usb_altnum_to_altsetting(intf, 0);
1394 
1395 			/* No altsetting 0?  We'll assume the first altsetting.
1396 			 * We could use a GetInterface call, but if a device is
1397 			 * so non-compliant that it doesn't have altsetting 0
1398 			 * then I wouldn't trust its reply anyway.
1399 			 */
1400 			if (!alt)
1401 				alt = &intf->altsetting[0];
1402 
1403 			intf->cur_altsetting = alt;
1404 			usb_enable_interface(dev, intf);
1405 			intf->dev.parent = &dev->dev;
1406 			intf->dev.driver = NULL;
1407 			intf->dev.bus = &usb_bus_type;
1408 			intf->dev.dma_mask = dev->dev.dma_mask;
1409 			intf->dev.release = release_interface;
1410 			device_initialize (&intf->dev);
1411 			sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d",
1412 				 dev->bus->busnum, dev->devpath,
1413 				 configuration,
1414 				 alt->desc.bInterfaceNumber);
1415 		}
1416 		kfree(new_interfaces);
1417 
1418 		if ((cp->desc.iConfiguration) &&
1419 		    (cp->string == NULL)) {
1420 			cp->string = kmalloc(256, GFP_KERNEL);
1421 			if (cp->string)
1422 				usb_string(dev, cp->desc.iConfiguration, cp->string, 256);
1423 		}
1424 
1425 		/* Now that all the interfaces are set up, register them
1426 		 * to trigger binding of drivers to interfaces.  probe()
1427 		 * routines may install different altsettings and may
1428 		 * claim() any interfaces not yet bound.  Many class drivers
1429 		 * need that: CDC, audio, video, etc.
1430 		 */
1431 		for (i = 0; i < nintf; ++i) {
1432 			struct usb_interface *intf = cp->interface[i];
1433 			struct usb_interface_descriptor *desc;
1434 
1435 			desc = &intf->altsetting [0].desc;
1436 			dev_dbg (&dev->dev,
1437 				"adding %s (config #%d, interface %d)\n",
1438 				intf->dev.bus_id, configuration,
1439 				desc->bInterfaceNumber);
1440 			ret = device_add (&intf->dev);
1441 			if (ret != 0) {
1442 				dev_err(&dev->dev,
1443 					"device_add(%s) --> %d\n",
1444 					intf->dev.bus_id,
1445 					ret);
1446 				continue;
1447 			}
1448 			if ((intf->cur_altsetting->desc.iInterface) &&
1449 			    (intf->cur_altsetting->string == NULL)) {
1450 				intf->cur_altsetting->string = kmalloc(256, GFP_KERNEL);
1451 				if (intf->cur_altsetting->string)
1452 					usb_string(dev, intf->cur_altsetting->desc.iInterface,
1453 						   intf->cur_altsetting->string, 256);
1454 			}
1455 			usb_create_sysfs_intf_files (intf);
1456 		}
1457 	}
1458 
1459 	return ret;
1460 }
1461 
1462 // synchronous request completion model
1463 EXPORT_SYMBOL(usb_control_msg);
1464 EXPORT_SYMBOL(usb_bulk_msg);
1465 
1466 EXPORT_SYMBOL(usb_sg_init);
1467 EXPORT_SYMBOL(usb_sg_cancel);
1468 EXPORT_SYMBOL(usb_sg_wait);
1469 
1470 // synchronous control message convenience routines
1471 EXPORT_SYMBOL(usb_get_descriptor);
1472 EXPORT_SYMBOL(usb_get_status);
1473 EXPORT_SYMBOL(usb_get_string);
1474 EXPORT_SYMBOL(usb_string);
1475 
1476 // synchronous calls that also maintain usbcore state
1477 EXPORT_SYMBOL(usb_clear_halt);
1478 EXPORT_SYMBOL(usb_reset_configuration);
1479 EXPORT_SYMBOL(usb_set_interface);
1480 
1481