1 /* 2 * message.c - synchronous message handling 3 */ 4 5 #include <linux/config.h> 6 7 #ifdef CONFIG_USB_DEBUG 8 #define DEBUG 9 #else 10 #undef DEBUG 11 #endif 12 13 #include <linux/pci.h> /* for scatterlist macros */ 14 #include <linux/usb.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/init.h> 18 #include <linux/mm.h> 19 #include <linux/timer.h> 20 #include <linux/ctype.h> 21 #include <linux/device.h> 22 #include <asm/byteorder.h> 23 24 #include "hcd.h" /* for usbcore internals */ 25 #include "usb.h" 26 27 static void usb_api_blocking_completion(struct urb *urb, struct pt_regs *regs) 28 { 29 complete((struct completion *)urb->context); 30 } 31 32 33 static void timeout_kill(unsigned long data) 34 { 35 struct urb *urb = (struct urb *) data; 36 37 usb_unlink_urb(urb); 38 } 39 40 // Starts urb and waits for completion or timeout 41 // note that this call is NOT interruptible, while 42 // many device driver i/o requests should be interruptible 43 static int usb_start_wait_urb(struct urb *urb, int timeout, int* actual_length) 44 { 45 struct completion done; 46 struct timer_list timer; 47 int status; 48 49 init_completion(&done); 50 urb->context = &done; 51 urb->transfer_flags |= URB_ASYNC_UNLINK; 52 urb->actual_length = 0; 53 status = usb_submit_urb(urb, GFP_NOIO); 54 55 if (status == 0) { 56 if (timeout > 0) { 57 init_timer(&timer); 58 timer.expires = jiffies + msecs_to_jiffies(timeout); 59 timer.data = (unsigned long)urb; 60 timer.function = timeout_kill; 61 /* grr. timeout _should_ include submit delays. */ 62 add_timer(&timer); 63 } 64 wait_for_completion(&done); 65 status = urb->status; 66 /* note: HCDs return ETIMEDOUT for other reasons too */ 67 if (status == -ECONNRESET) { 68 dev_dbg(&urb->dev->dev, 69 "%s timed out on ep%d%s len=%d/%d\n", 70 current->comm, 71 usb_pipeendpoint(urb->pipe), 72 usb_pipein(urb->pipe) ? "in" : "out", 73 urb->actual_length, 74 urb->transfer_buffer_length 75 ); 76 if (urb->actual_length > 0) 77 status = 0; 78 else 79 status = -ETIMEDOUT; 80 } 81 if (timeout > 0) 82 del_timer_sync(&timer); 83 } 84 85 if (actual_length) 86 *actual_length = urb->actual_length; 87 usb_free_urb(urb); 88 return status; 89 } 90 91 /*-------------------------------------------------------------------*/ 92 // returns status (negative) or length (positive) 93 static int usb_internal_control_msg(struct usb_device *usb_dev, 94 unsigned int pipe, 95 struct usb_ctrlrequest *cmd, 96 void *data, int len, int timeout) 97 { 98 struct urb *urb; 99 int retv; 100 int length; 101 102 urb = usb_alloc_urb(0, GFP_NOIO); 103 if (!urb) 104 return -ENOMEM; 105 106 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data, 107 len, usb_api_blocking_completion, NULL); 108 109 retv = usb_start_wait_urb(urb, timeout, &length); 110 if (retv < 0) 111 return retv; 112 else 113 return length; 114 } 115 116 /** 117 * usb_control_msg - Builds a control urb, sends it off and waits for completion 118 * @dev: pointer to the usb device to send the message to 119 * @pipe: endpoint "pipe" to send the message to 120 * @request: USB message request value 121 * @requesttype: USB message request type value 122 * @value: USB message value 123 * @index: USB message index value 124 * @data: pointer to the data to send 125 * @size: length in bytes of the data to send 126 * @timeout: time in msecs to wait for the message to complete before 127 * timing out (if 0 the wait is forever) 128 * Context: !in_interrupt () 129 * 130 * This function sends a simple control message to a specified endpoint 131 * and waits for the message to complete, or timeout. 132 * 133 * If successful, it returns the number of bytes transferred, otherwise a negative error number. 134 * 135 * Don't use this function from within an interrupt context, like a 136 * bottom half handler. If you need an asynchronous message, or need to send 137 * a message from within interrupt context, use usb_submit_urb() 138 * If a thread in your driver uses this call, make sure your disconnect() 139 * method can wait for it to complete. Since you don't have a handle on 140 * the URB used, you can't cancel the request. 141 */ 142 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request, __u8 requesttype, 143 __u16 value, __u16 index, void *data, __u16 size, int timeout) 144 { 145 struct usb_ctrlrequest *dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO); 146 int ret; 147 148 if (!dr) 149 return -ENOMEM; 150 151 dr->bRequestType= requesttype; 152 dr->bRequest = request; 153 dr->wValue = cpu_to_le16p(&value); 154 dr->wIndex = cpu_to_le16p(&index); 155 dr->wLength = cpu_to_le16p(&size); 156 157 //dbg("usb_control_msg"); 158 159 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout); 160 161 kfree(dr); 162 163 return ret; 164 } 165 166 167 /** 168 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion 169 * @usb_dev: pointer to the usb device to send the message to 170 * @pipe: endpoint "pipe" to send the message to 171 * @data: pointer to the data to send 172 * @len: length in bytes of the data to send 173 * @actual_length: pointer to a location to put the actual length transferred in bytes 174 * @timeout: time in msecs to wait for the message to complete before 175 * timing out (if 0 the wait is forever) 176 * Context: !in_interrupt () 177 * 178 * This function sends a simple bulk message to a specified endpoint 179 * and waits for the message to complete, or timeout. 180 * 181 * If successful, it returns 0, otherwise a negative error number. 182 * The number of actual bytes transferred will be stored in the 183 * actual_length paramater. 184 * 185 * Don't use this function from within an interrupt context, like a 186 * bottom half handler. If you need an asynchronous message, or need to 187 * send a message from within interrupt context, use usb_submit_urb() 188 * If a thread in your driver uses this call, make sure your disconnect() 189 * method can wait for it to complete. Since you don't have a handle on 190 * the URB used, you can't cancel the request. 191 */ 192 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe, 193 void *data, int len, int *actual_length, int timeout) 194 { 195 struct urb *urb; 196 197 if (len < 0) 198 return -EINVAL; 199 200 urb=usb_alloc_urb(0, GFP_KERNEL); 201 if (!urb) 202 return -ENOMEM; 203 204 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len, 205 usb_api_blocking_completion, NULL); 206 207 return usb_start_wait_urb(urb, timeout, actual_length); 208 } 209 210 /*-------------------------------------------------------------------*/ 211 212 static void sg_clean (struct usb_sg_request *io) 213 { 214 if (io->urbs) { 215 while (io->entries--) 216 usb_free_urb (io->urbs [io->entries]); 217 kfree (io->urbs); 218 io->urbs = NULL; 219 } 220 if (io->dev->dev.dma_mask != NULL) 221 usb_buffer_unmap_sg (io->dev, io->pipe, io->sg, io->nents); 222 io->dev = NULL; 223 } 224 225 static void sg_complete (struct urb *urb, struct pt_regs *regs) 226 { 227 struct usb_sg_request *io = (struct usb_sg_request *) urb->context; 228 229 spin_lock (&io->lock); 230 231 /* In 2.5 we require hcds' endpoint queues not to progress after fault 232 * reports, until the completion callback (this!) returns. That lets 233 * device driver code (like this routine) unlink queued urbs first, 234 * if it needs to, since the HC won't work on them at all. So it's 235 * not possible for page N+1 to overwrite page N, and so on. 236 * 237 * That's only for "hard" faults; "soft" faults (unlinks) sometimes 238 * complete before the HCD can get requests away from hardware, 239 * though never during cleanup after a hard fault. 240 */ 241 if (io->status 242 && (io->status != -ECONNRESET 243 || urb->status != -ECONNRESET) 244 && urb->actual_length) { 245 dev_err (io->dev->bus->controller, 246 "dev %s ep%d%s scatterlist error %d/%d\n", 247 io->dev->devpath, 248 usb_pipeendpoint (urb->pipe), 249 usb_pipein (urb->pipe) ? "in" : "out", 250 urb->status, io->status); 251 // BUG (); 252 } 253 254 if (io->status == 0 && urb->status && urb->status != -ECONNRESET) { 255 int i, found, status; 256 257 io->status = urb->status; 258 259 /* the previous urbs, and this one, completed already. 260 * unlink pending urbs so they won't rx/tx bad data. 261 * careful: unlink can sometimes be synchronous... 262 */ 263 spin_unlock (&io->lock); 264 for (i = 0, found = 0; i < io->entries; i++) { 265 if (!io->urbs [i] || !io->urbs [i]->dev) 266 continue; 267 if (found) { 268 status = usb_unlink_urb (io->urbs [i]); 269 if (status != -EINPROGRESS && status != -EBUSY) 270 dev_err (&io->dev->dev, 271 "%s, unlink --> %d\n", 272 __FUNCTION__, status); 273 } else if (urb == io->urbs [i]) 274 found = 1; 275 } 276 spin_lock (&io->lock); 277 } 278 urb->dev = NULL; 279 280 /* on the last completion, signal usb_sg_wait() */ 281 io->bytes += urb->actual_length; 282 io->count--; 283 if (!io->count) 284 complete (&io->complete); 285 286 spin_unlock (&io->lock); 287 } 288 289 290 /** 291 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request 292 * @io: request block being initialized. until usb_sg_wait() returns, 293 * treat this as a pointer to an opaque block of memory, 294 * @dev: the usb device that will send or receive the data 295 * @pipe: endpoint "pipe" used to transfer the data 296 * @period: polling rate for interrupt endpoints, in frames or 297 * (for high speed endpoints) microframes; ignored for bulk 298 * @sg: scatterlist entries 299 * @nents: how many entries in the scatterlist 300 * @length: how many bytes to send from the scatterlist, or zero to 301 * send every byte identified in the list. 302 * @mem_flags: SLAB_* flags affecting memory allocations in this call 303 * 304 * Returns zero for success, else a negative errno value. This initializes a 305 * scatter/gather request, allocating resources such as I/O mappings and urb 306 * memory (except maybe memory used by USB controller drivers). 307 * 308 * The request must be issued using usb_sg_wait(), which waits for the I/O to 309 * complete (or to be canceled) and then cleans up all resources allocated by 310 * usb_sg_init(). 311 * 312 * The request may be canceled with usb_sg_cancel(), either before or after 313 * usb_sg_wait() is called. 314 */ 315 int usb_sg_init ( 316 struct usb_sg_request *io, 317 struct usb_device *dev, 318 unsigned pipe, 319 unsigned period, 320 struct scatterlist *sg, 321 int nents, 322 size_t length, 323 int mem_flags 324 ) 325 { 326 int i; 327 int urb_flags; 328 int dma; 329 330 if (!io || !dev || !sg 331 || usb_pipecontrol (pipe) 332 || usb_pipeisoc (pipe) 333 || nents <= 0) 334 return -EINVAL; 335 336 spin_lock_init (&io->lock); 337 io->dev = dev; 338 io->pipe = pipe; 339 io->sg = sg; 340 io->nents = nents; 341 342 /* not all host controllers use DMA (like the mainstream pci ones); 343 * they can use PIO (sl811) or be software over another transport. 344 */ 345 dma = (dev->dev.dma_mask != NULL); 346 if (dma) 347 io->entries = usb_buffer_map_sg (dev, pipe, sg, nents); 348 else 349 io->entries = nents; 350 351 /* initialize all the urbs we'll use */ 352 if (io->entries <= 0) 353 return io->entries; 354 355 io->count = io->entries; 356 io->urbs = kmalloc (io->entries * sizeof *io->urbs, mem_flags); 357 if (!io->urbs) 358 goto nomem; 359 360 urb_flags = URB_ASYNC_UNLINK | URB_NO_TRANSFER_DMA_MAP 361 | URB_NO_INTERRUPT; 362 if (usb_pipein (pipe)) 363 urb_flags |= URB_SHORT_NOT_OK; 364 365 for (i = 0; i < io->entries; i++) { 366 unsigned len; 367 368 io->urbs [i] = usb_alloc_urb (0, mem_flags); 369 if (!io->urbs [i]) { 370 io->entries = i; 371 goto nomem; 372 } 373 374 io->urbs [i]->dev = NULL; 375 io->urbs [i]->pipe = pipe; 376 io->urbs [i]->interval = period; 377 io->urbs [i]->transfer_flags = urb_flags; 378 379 io->urbs [i]->complete = sg_complete; 380 io->urbs [i]->context = io; 381 io->urbs [i]->status = -EINPROGRESS; 382 io->urbs [i]->actual_length = 0; 383 384 if (dma) { 385 /* hc may use _only_ transfer_dma */ 386 io->urbs [i]->transfer_dma = sg_dma_address (sg + i); 387 len = sg_dma_len (sg + i); 388 } else { 389 /* hc may use _only_ transfer_buffer */ 390 io->urbs [i]->transfer_buffer = 391 page_address (sg [i].page) + sg [i].offset; 392 len = sg [i].length; 393 } 394 395 if (length) { 396 len = min_t (unsigned, len, length); 397 length -= len; 398 if (length == 0) 399 io->entries = i + 1; 400 } 401 io->urbs [i]->transfer_buffer_length = len; 402 } 403 io->urbs [--i]->transfer_flags &= ~URB_NO_INTERRUPT; 404 405 /* transaction state */ 406 io->status = 0; 407 io->bytes = 0; 408 init_completion (&io->complete); 409 return 0; 410 411 nomem: 412 sg_clean (io); 413 return -ENOMEM; 414 } 415 416 417 /** 418 * usb_sg_wait - synchronously execute scatter/gather request 419 * @io: request block handle, as initialized with usb_sg_init(). 420 * some fields become accessible when this call returns. 421 * Context: !in_interrupt () 422 * 423 * This function blocks until the specified I/O operation completes. It 424 * leverages the grouping of the related I/O requests to get good transfer 425 * rates, by queueing the requests. At higher speeds, such queuing can 426 * significantly improve USB throughput. 427 * 428 * There are three kinds of completion for this function. 429 * (1) success, where io->status is zero. The number of io->bytes 430 * transferred is as requested. 431 * (2) error, where io->status is a negative errno value. The number 432 * of io->bytes transferred before the error is usually less 433 * than requested, and can be nonzero. 434 * (3) cancelation, a type of error with status -ECONNRESET that 435 * is initiated by usb_sg_cancel(). 436 * 437 * When this function returns, all memory allocated through usb_sg_init() or 438 * this call will have been freed. The request block parameter may still be 439 * passed to usb_sg_cancel(), or it may be freed. It could also be 440 * reinitialized and then reused. 441 * 442 * Data Transfer Rates: 443 * 444 * Bulk transfers are valid for full or high speed endpoints. 445 * The best full speed data rate is 19 packets of 64 bytes each 446 * per frame, or 1216 bytes per millisecond. 447 * The best high speed data rate is 13 packets of 512 bytes each 448 * per microframe, or 52 KBytes per millisecond. 449 * 450 * The reason to use interrupt transfers through this API would most likely 451 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond 452 * could be transferred. That capability is less useful for low or full 453 * speed interrupt endpoints, which allow at most one packet per millisecond, 454 * of at most 8 or 64 bytes (respectively). 455 */ 456 void usb_sg_wait (struct usb_sg_request *io) 457 { 458 int i, entries = io->entries; 459 460 /* queue the urbs. */ 461 spin_lock_irq (&io->lock); 462 for (i = 0; i < entries && !io->status; i++) { 463 int retval; 464 465 io->urbs [i]->dev = io->dev; 466 retval = usb_submit_urb (io->urbs [i], SLAB_ATOMIC); 467 468 /* after we submit, let completions or cancelations fire; 469 * we handshake using io->status. 470 */ 471 spin_unlock_irq (&io->lock); 472 switch (retval) { 473 /* maybe we retrying will recover */ 474 case -ENXIO: // hc didn't queue this one 475 case -EAGAIN: 476 case -ENOMEM: 477 io->urbs[i]->dev = NULL; 478 retval = 0; 479 i--; 480 yield (); 481 break; 482 483 /* no error? continue immediately. 484 * 485 * NOTE: to work better with UHCI (4K I/O buffer may 486 * need 3K of TDs) it may be good to limit how many 487 * URBs are queued at once; N milliseconds? 488 */ 489 case 0: 490 cpu_relax (); 491 break; 492 493 /* fail any uncompleted urbs */ 494 default: 495 io->urbs [i]->dev = NULL; 496 io->urbs [i]->status = retval; 497 dev_dbg (&io->dev->dev, "%s, submit --> %d\n", 498 __FUNCTION__, retval); 499 usb_sg_cancel (io); 500 } 501 spin_lock_irq (&io->lock); 502 if (retval && (io->status == 0 || io->status == -ECONNRESET)) 503 io->status = retval; 504 } 505 io->count -= entries - i; 506 if (io->count == 0) 507 complete (&io->complete); 508 spin_unlock_irq (&io->lock); 509 510 /* OK, yes, this could be packaged as non-blocking. 511 * So could the submit loop above ... but it's easier to 512 * solve neither problem than to solve both! 513 */ 514 wait_for_completion (&io->complete); 515 516 sg_clean (io); 517 } 518 519 /** 520 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait() 521 * @io: request block, initialized with usb_sg_init() 522 * 523 * This stops a request after it has been started by usb_sg_wait(). 524 * It can also prevents one initialized by usb_sg_init() from starting, 525 * so that call just frees resources allocated to the request. 526 */ 527 void usb_sg_cancel (struct usb_sg_request *io) 528 { 529 unsigned long flags; 530 531 spin_lock_irqsave (&io->lock, flags); 532 533 /* shut everything down, if it didn't already */ 534 if (!io->status) { 535 int i; 536 537 io->status = -ECONNRESET; 538 spin_unlock (&io->lock); 539 for (i = 0; i < io->entries; i++) { 540 int retval; 541 542 if (!io->urbs [i]->dev) 543 continue; 544 retval = usb_unlink_urb (io->urbs [i]); 545 if (retval != -EINPROGRESS && retval != -EBUSY) 546 dev_warn (&io->dev->dev, "%s, unlink --> %d\n", 547 __FUNCTION__, retval); 548 } 549 spin_lock (&io->lock); 550 } 551 spin_unlock_irqrestore (&io->lock, flags); 552 } 553 554 /*-------------------------------------------------------------------*/ 555 556 /** 557 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request 558 * @dev: the device whose descriptor is being retrieved 559 * @type: the descriptor type (USB_DT_*) 560 * @index: the number of the descriptor 561 * @buf: where to put the descriptor 562 * @size: how big is "buf"? 563 * Context: !in_interrupt () 564 * 565 * Gets a USB descriptor. Convenience functions exist to simplify 566 * getting some types of descriptors. Use 567 * usb_get_string() or usb_string() for USB_DT_STRING. 568 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG) 569 * are part of the device structure. 570 * In addition to a number of USB-standard descriptors, some 571 * devices also use class-specific or vendor-specific descriptors. 572 * 573 * This call is synchronous, and may not be used in an interrupt context. 574 * 575 * Returns the number of bytes received on success, or else the status code 576 * returned by the underlying usb_control_msg() call. 577 */ 578 int usb_get_descriptor(struct usb_device *dev, unsigned char type, unsigned char index, void *buf, int size) 579 { 580 int i; 581 int result; 582 583 memset(buf,0,size); // Make sure we parse really received data 584 585 for (i = 0; i < 3; ++i) { 586 /* retry on length 0 or stall; some devices are flakey */ 587 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 588 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 589 (type << 8) + index, 0, buf, size, 590 USB_CTRL_GET_TIMEOUT); 591 if (result == 0 || result == -EPIPE) 592 continue; 593 if (result > 1 && ((u8 *)buf)[1] != type) { 594 result = -EPROTO; 595 continue; 596 } 597 break; 598 } 599 return result; 600 } 601 602 /** 603 * usb_get_string - gets a string descriptor 604 * @dev: the device whose string descriptor is being retrieved 605 * @langid: code for language chosen (from string descriptor zero) 606 * @index: the number of the descriptor 607 * @buf: where to put the string 608 * @size: how big is "buf"? 609 * Context: !in_interrupt () 610 * 611 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character, 612 * in little-endian byte order). 613 * The usb_string() function will often be a convenient way to turn 614 * these strings into kernel-printable form. 615 * 616 * Strings may be referenced in device, configuration, interface, or other 617 * descriptors, and could also be used in vendor-specific ways. 618 * 619 * This call is synchronous, and may not be used in an interrupt context. 620 * 621 * Returns the number of bytes received on success, or else the status code 622 * returned by the underlying usb_control_msg() call. 623 */ 624 int usb_get_string(struct usb_device *dev, unsigned short langid, 625 unsigned char index, void *buf, int size) 626 { 627 int i; 628 int result; 629 630 for (i = 0; i < 3; ++i) { 631 /* retry on length 0 or stall; some devices are flakey */ 632 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 633 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN, 634 (USB_DT_STRING << 8) + index, langid, buf, size, 635 USB_CTRL_GET_TIMEOUT); 636 if (!(result == 0 || result == -EPIPE)) 637 break; 638 } 639 return result; 640 } 641 642 static void usb_try_string_workarounds(unsigned char *buf, int *length) 643 { 644 int newlength, oldlength = *length; 645 646 for (newlength = 2; newlength + 1 < oldlength; newlength += 2) 647 if (!isprint(buf[newlength]) || buf[newlength + 1]) 648 break; 649 650 if (newlength > 2) { 651 buf[0] = newlength; 652 *length = newlength; 653 } 654 } 655 656 static int usb_string_sub(struct usb_device *dev, unsigned int langid, 657 unsigned int index, unsigned char *buf) 658 { 659 int rc; 660 661 /* Try to read the string descriptor by asking for the maximum 662 * possible number of bytes */ 663 rc = usb_get_string(dev, langid, index, buf, 255); 664 665 /* If that failed try to read the descriptor length, then 666 * ask for just that many bytes */ 667 if (rc < 2) { 668 rc = usb_get_string(dev, langid, index, buf, 2); 669 if (rc == 2) 670 rc = usb_get_string(dev, langid, index, buf, buf[0]); 671 } 672 673 if (rc >= 2) { 674 if (!buf[0] && !buf[1]) 675 usb_try_string_workarounds(buf, &rc); 676 677 /* There might be extra junk at the end of the descriptor */ 678 if (buf[0] < rc) 679 rc = buf[0]; 680 681 rc = rc - (rc & 1); /* force a multiple of two */ 682 } 683 684 if (rc < 2) 685 rc = (rc < 0 ? rc : -EINVAL); 686 687 return rc; 688 } 689 690 /** 691 * usb_string - returns ISO 8859-1 version of a string descriptor 692 * @dev: the device whose string descriptor is being retrieved 693 * @index: the number of the descriptor 694 * @buf: where to put the string 695 * @size: how big is "buf"? 696 * Context: !in_interrupt () 697 * 698 * This converts the UTF-16LE encoded strings returned by devices, from 699 * usb_get_string_descriptor(), to null-terminated ISO-8859-1 encoded ones 700 * that are more usable in most kernel contexts. Note that all characters 701 * in the chosen descriptor that can't be encoded using ISO-8859-1 702 * are converted to the question mark ("?") character, and this function 703 * chooses strings in the first language supported by the device. 704 * 705 * The ASCII (or, redundantly, "US-ASCII") character set is the seven-bit 706 * subset of ISO 8859-1. ISO-8859-1 is the eight-bit subset of Unicode, 707 * and is appropriate for use many uses of English and several other 708 * Western European languages. (But it doesn't include the "Euro" symbol.) 709 * 710 * This call is synchronous, and may not be used in an interrupt context. 711 * 712 * Returns length of the string (>= 0) or usb_control_msg status (< 0). 713 */ 714 int usb_string(struct usb_device *dev, int index, char *buf, size_t size) 715 { 716 unsigned char *tbuf; 717 int err; 718 unsigned int u, idx; 719 720 if (dev->state == USB_STATE_SUSPENDED) 721 return -EHOSTUNREACH; 722 if (size <= 0 || !buf || !index) 723 return -EINVAL; 724 buf[0] = 0; 725 tbuf = kmalloc(256, GFP_KERNEL); 726 if (!tbuf) 727 return -ENOMEM; 728 729 /* get langid for strings if it's not yet known */ 730 if (!dev->have_langid) { 731 err = usb_string_sub(dev, 0, 0, tbuf); 732 if (err < 0) { 733 dev_err (&dev->dev, 734 "string descriptor 0 read error: %d\n", 735 err); 736 goto errout; 737 } else if (err < 4) { 738 dev_err (&dev->dev, "string descriptor 0 too short\n"); 739 err = -EINVAL; 740 goto errout; 741 } else { 742 dev->have_langid = -1; 743 dev->string_langid = tbuf[2] | (tbuf[3]<< 8); 744 /* always use the first langid listed */ 745 dev_dbg (&dev->dev, "default language 0x%04x\n", 746 dev->string_langid); 747 } 748 } 749 750 err = usb_string_sub(dev, dev->string_langid, index, tbuf); 751 if (err < 0) 752 goto errout; 753 754 size--; /* leave room for trailing NULL char in output buffer */ 755 for (idx = 0, u = 2; u < err; u += 2) { 756 if (idx >= size) 757 break; 758 if (tbuf[u+1]) /* high byte */ 759 buf[idx++] = '?'; /* non ISO-8859-1 character */ 760 else 761 buf[idx++] = tbuf[u]; 762 } 763 buf[idx] = 0; 764 err = idx; 765 766 if (tbuf[1] != USB_DT_STRING) 767 dev_dbg(&dev->dev, "wrong descriptor type %02x for string %d (\"%s\")\n", tbuf[1], index, buf); 768 769 errout: 770 kfree(tbuf); 771 return err; 772 } 773 774 /* 775 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore) 776 * @dev: the device whose device descriptor is being updated 777 * @size: how much of the descriptor to read 778 * Context: !in_interrupt () 779 * 780 * Updates the copy of the device descriptor stored in the device structure, 781 * which dedicates space for this purpose. Note that several fields are 782 * converted to the host CPU's byte order: the USB version (bcdUSB), and 783 * vendors product and version fields (idVendor, idProduct, and bcdDevice). 784 * That lets device drivers compare against non-byteswapped constants. 785 * 786 * Not exported, only for use by the core. If drivers really want to read 787 * the device descriptor directly, they can call usb_get_descriptor() with 788 * type = USB_DT_DEVICE and index = 0. 789 * 790 * This call is synchronous, and may not be used in an interrupt context. 791 * 792 * Returns the number of bytes received on success, or else the status code 793 * returned by the underlying usb_control_msg() call. 794 */ 795 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size) 796 { 797 struct usb_device_descriptor *desc; 798 int ret; 799 800 if (size > sizeof(*desc)) 801 return -EINVAL; 802 desc = kmalloc(sizeof(*desc), GFP_NOIO); 803 if (!desc) 804 return -ENOMEM; 805 806 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size); 807 if (ret >= 0) 808 memcpy(&dev->descriptor, desc, size); 809 kfree(desc); 810 return ret; 811 } 812 813 /** 814 * usb_get_status - issues a GET_STATUS call 815 * @dev: the device whose status is being checked 816 * @type: USB_RECIP_*; for device, interface, or endpoint 817 * @target: zero (for device), else interface or endpoint number 818 * @data: pointer to two bytes of bitmap data 819 * Context: !in_interrupt () 820 * 821 * Returns device, interface, or endpoint status. Normally only of 822 * interest to see if the device is self powered, or has enabled the 823 * remote wakeup facility; or whether a bulk or interrupt endpoint 824 * is halted ("stalled"). 825 * 826 * Bits in these status bitmaps are set using the SET_FEATURE request, 827 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt() 828 * function should be used to clear halt ("stall") status. 829 * 830 * This call is synchronous, and may not be used in an interrupt context. 831 * 832 * Returns the number of bytes received on success, or else the status code 833 * returned by the underlying usb_control_msg() call. 834 */ 835 int usb_get_status(struct usb_device *dev, int type, int target, void *data) 836 { 837 int ret; 838 u16 *status = kmalloc(sizeof(*status), GFP_KERNEL); 839 840 if (!status) 841 return -ENOMEM; 842 843 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0), 844 USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status, 845 sizeof(*status), USB_CTRL_GET_TIMEOUT); 846 847 *(u16 *)data = *status; 848 kfree(status); 849 return ret; 850 } 851 852 /** 853 * usb_clear_halt - tells device to clear endpoint halt/stall condition 854 * @dev: device whose endpoint is halted 855 * @pipe: endpoint "pipe" being cleared 856 * Context: !in_interrupt () 857 * 858 * This is used to clear halt conditions for bulk and interrupt endpoints, 859 * as reported by URB completion status. Endpoints that are halted are 860 * sometimes referred to as being "stalled". Such endpoints are unable 861 * to transmit or receive data until the halt status is cleared. Any URBs 862 * queued for such an endpoint should normally be unlinked by the driver 863 * before clearing the halt condition, as described in sections 5.7.5 864 * and 5.8.5 of the USB 2.0 spec. 865 * 866 * Note that control and isochronous endpoints don't halt, although control 867 * endpoints report "protocol stall" (for unsupported requests) using the 868 * same status code used to report a true stall. 869 * 870 * This call is synchronous, and may not be used in an interrupt context. 871 * 872 * Returns zero on success, or else the status code returned by the 873 * underlying usb_control_msg() call. 874 */ 875 int usb_clear_halt(struct usb_device *dev, int pipe) 876 { 877 int result; 878 int endp = usb_pipeendpoint(pipe); 879 880 if (usb_pipein (pipe)) 881 endp |= USB_DIR_IN; 882 883 /* we don't care if it wasn't halted first. in fact some devices 884 * (like some ibmcam model 1 units) seem to expect hosts to make 885 * this request for iso endpoints, which can't halt! 886 */ 887 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 888 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT, 889 USB_ENDPOINT_HALT, endp, NULL, 0, 890 USB_CTRL_SET_TIMEOUT); 891 892 /* don't un-halt or force to DATA0 except on success */ 893 if (result < 0) 894 return result; 895 896 /* NOTE: seems like Microsoft and Apple don't bother verifying 897 * the clear "took", so some devices could lock up if you check... 898 * such as the Hagiwara FlashGate DUAL. So we won't bother. 899 * 900 * NOTE: make sure the logic here doesn't diverge much from 901 * the copy in usb-storage, for as long as we need two copies. 902 */ 903 904 /* toggle was reset by the clear */ 905 usb_settoggle(dev, usb_pipeendpoint(pipe), usb_pipeout(pipe), 0); 906 907 return 0; 908 } 909 910 /** 911 * usb_disable_endpoint -- Disable an endpoint by address 912 * @dev: the device whose endpoint is being disabled 913 * @epaddr: the endpoint's address. Endpoint number for output, 914 * endpoint number + USB_DIR_IN for input 915 * 916 * Deallocates hcd/hardware state for this endpoint ... and nukes all 917 * pending urbs. 918 * 919 * If the HCD hasn't registered a disable() function, this sets the 920 * endpoint's maxpacket size to 0 to prevent further submissions. 921 */ 922 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr) 923 { 924 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 925 struct usb_host_endpoint *ep; 926 927 if (!dev) 928 return; 929 930 if (usb_endpoint_out(epaddr)) { 931 ep = dev->ep_out[epnum]; 932 dev->ep_out[epnum] = NULL; 933 } else { 934 ep = dev->ep_in[epnum]; 935 dev->ep_in[epnum] = NULL; 936 } 937 if (ep && dev->bus && dev->bus->op && dev->bus->op->disable) 938 dev->bus->op->disable(dev, ep); 939 } 940 941 /** 942 * usb_disable_interface -- Disable all endpoints for an interface 943 * @dev: the device whose interface is being disabled 944 * @intf: pointer to the interface descriptor 945 * 946 * Disables all the endpoints for the interface's current altsetting. 947 */ 948 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf) 949 { 950 struct usb_host_interface *alt = intf->cur_altsetting; 951 int i; 952 953 for (i = 0; i < alt->desc.bNumEndpoints; ++i) { 954 usb_disable_endpoint(dev, 955 alt->endpoint[i].desc.bEndpointAddress); 956 } 957 } 958 959 /* 960 * usb_disable_device - Disable all the endpoints for a USB device 961 * @dev: the device whose endpoints are being disabled 962 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it. 963 * 964 * Disables all the device's endpoints, potentially including endpoint 0. 965 * Deallocates hcd/hardware state for the endpoints (nuking all or most 966 * pending urbs) and usbcore state for the interfaces, so that usbcore 967 * must usb_set_configuration() before any interfaces could be used. 968 */ 969 void usb_disable_device(struct usb_device *dev, int skip_ep0) 970 { 971 int i; 972 973 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __FUNCTION__, 974 skip_ep0 ? "non-ep0" : "all"); 975 for (i = skip_ep0; i < 16; ++i) { 976 usb_disable_endpoint(dev, i); 977 usb_disable_endpoint(dev, i + USB_DIR_IN); 978 } 979 dev->toggle[0] = dev->toggle[1] = 0; 980 981 /* getting rid of interfaces will disconnect 982 * any drivers bound to them (a key side effect) 983 */ 984 if (dev->actconfig) { 985 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 986 struct usb_interface *interface; 987 988 /* remove this interface */ 989 interface = dev->actconfig->interface[i]; 990 dev_dbg (&dev->dev, "unregistering interface %s\n", 991 interface->dev.bus_id); 992 usb_remove_sysfs_intf_files(interface); 993 kfree(interface->cur_altsetting->string); 994 interface->cur_altsetting->string = NULL; 995 device_del (&interface->dev); 996 } 997 998 /* Now that the interfaces are unbound, nobody should 999 * try to access them. 1000 */ 1001 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) { 1002 put_device (&dev->actconfig->interface[i]->dev); 1003 dev->actconfig->interface[i] = NULL; 1004 } 1005 dev->actconfig = NULL; 1006 if (dev->state == USB_STATE_CONFIGURED) 1007 usb_set_device_state(dev, USB_STATE_ADDRESS); 1008 } 1009 } 1010 1011 1012 /* 1013 * usb_enable_endpoint - Enable an endpoint for USB communications 1014 * @dev: the device whose interface is being enabled 1015 * @ep: the endpoint 1016 * 1017 * Resets the endpoint toggle, and sets dev->ep_{in,out} pointers. 1018 * For control endpoints, both the input and output sides are handled. 1019 */ 1020 static void 1021 usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep) 1022 { 1023 unsigned int epaddr = ep->desc.bEndpointAddress; 1024 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK; 1025 int is_control; 1026 1027 is_control = ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) 1028 == USB_ENDPOINT_XFER_CONTROL); 1029 if (usb_endpoint_out(epaddr) || is_control) { 1030 usb_settoggle(dev, epnum, 1, 0); 1031 dev->ep_out[epnum] = ep; 1032 } 1033 if (!usb_endpoint_out(epaddr) || is_control) { 1034 usb_settoggle(dev, epnum, 0, 0); 1035 dev->ep_in[epnum] = ep; 1036 } 1037 } 1038 1039 /* 1040 * usb_enable_interface - Enable all the endpoints for an interface 1041 * @dev: the device whose interface is being enabled 1042 * @intf: pointer to the interface descriptor 1043 * 1044 * Enables all the endpoints for the interface's current altsetting. 1045 */ 1046 static void usb_enable_interface(struct usb_device *dev, 1047 struct usb_interface *intf) 1048 { 1049 struct usb_host_interface *alt = intf->cur_altsetting; 1050 int i; 1051 1052 for (i = 0; i < alt->desc.bNumEndpoints; ++i) 1053 usb_enable_endpoint(dev, &alt->endpoint[i]); 1054 } 1055 1056 /** 1057 * usb_set_interface - Makes a particular alternate setting be current 1058 * @dev: the device whose interface is being updated 1059 * @interface: the interface being updated 1060 * @alternate: the setting being chosen. 1061 * Context: !in_interrupt () 1062 * 1063 * This is used to enable data transfers on interfaces that may not 1064 * be enabled by default. Not all devices support such configurability. 1065 * Only the driver bound to an interface may change its setting. 1066 * 1067 * Within any given configuration, each interface may have several 1068 * alternative settings. These are often used to control levels of 1069 * bandwidth consumption. For example, the default setting for a high 1070 * speed interrupt endpoint may not send more than 64 bytes per microframe, 1071 * while interrupt transfers of up to 3KBytes per microframe are legal. 1072 * Also, isochronous endpoints may never be part of an 1073 * interface's default setting. To access such bandwidth, alternate 1074 * interface settings must be made current. 1075 * 1076 * Note that in the Linux USB subsystem, bandwidth associated with 1077 * an endpoint in a given alternate setting is not reserved until an URB 1078 * is submitted that needs that bandwidth. Some other operating systems 1079 * allocate bandwidth early, when a configuration is chosen. 1080 * 1081 * This call is synchronous, and may not be used in an interrupt context. 1082 * Also, drivers must not change altsettings while urbs are scheduled for 1083 * endpoints in that interface; all such urbs must first be completed 1084 * (perhaps forced by unlinking). 1085 * 1086 * Returns zero on success, or else the status code returned by the 1087 * underlying usb_control_msg() call. 1088 */ 1089 int usb_set_interface(struct usb_device *dev, int interface, int alternate) 1090 { 1091 struct usb_interface *iface; 1092 struct usb_host_interface *alt; 1093 int ret; 1094 int manual = 0; 1095 1096 if (dev->state == USB_STATE_SUSPENDED) 1097 return -EHOSTUNREACH; 1098 1099 iface = usb_ifnum_to_if(dev, interface); 1100 if (!iface) { 1101 dev_dbg(&dev->dev, "selecting invalid interface %d\n", 1102 interface); 1103 return -EINVAL; 1104 } 1105 1106 alt = usb_altnum_to_altsetting(iface, alternate); 1107 if (!alt) { 1108 warn("selecting invalid altsetting %d", alternate); 1109 return -EINVAL; 1110 } 1111 1112 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1113 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE, 1114 alternate, interface, NULL, 0, 5000); 1115 1116 /* 9.4.10 says devices don't need this and are free to STALL the 1117 * request if the interface only has one alternate setting. 1118 */ 1119 if (ret == -EPIPE && iface->num_altsetting == 1) { 1120 dev_dbg(&dev->dev, 1121 "manual set_interface for iface %d, alt %d\n", 1122 interface, alternate); 1123 manual = 1; 1124 } else if (ret < 0) 1125 return ret; 1126 1127 /* FIXME drivers shouldn't need to replicate/bugfix the logic here 1128 * when they implement async or easily-killable versions of this or 1129 * other "should-be-internal" functions (like clear_halt). 1130 * should hcd+usbcore postprocess control requests? 1131 */ 1132 1133 /* prevent submissions using previous endpoint settings */ 1134 usb_disable_interface(dev, iface); 1135 1136 /* 9.1.1.5 says: 1137 * 1138 * Configuring a device or changing an alternate setting 1139 * causes all of the status and configuration values 1140 * associated with endpoints in the affected interfaces to 1141 * be set to their default values. This includes setting 1142 * the data toggle of any endpoint using data toggles to 1143 * the value DATA0. 1144 * 1145 * Some devices take this too literally and don't reset the data 1146 * toggles if the new altsetting is the same as the old one (the 1147 * command isn't "changing" an alternate setting). We will manually 1148 * reset the toggles when the new and old altsettings are the same. 1149 * Most devices won't need this, but fortunately it doesn't happen 1150 * often. 1151 */ 1152 if (iface->cur_altsetting == alt) 1153 manual = 1; 1154 iface->cur_altsetting = alt; 1155 1156 /* If the interface only has one altsetting and the device didn't 1157 * accept the request (or whenever the old altsetting is the same 1158 * as the new one), we attempt to carry out the equivalent action 1159 * by manually clearing the HALT feature for each endpoint in the 1160 * new altsetting. 1161 */ 1162 if (manual) { 1163 int i; 1164 1165 for (i = 0; i < alt->desc.bNumEndpoints; i++) { 1166 unsigned int epaddr = 1167 alt->endpoint[i].desc.bEndpointAddress; 1168 unsigned int pipe = 1169 __create_pipe(dev, USB_ENDPOINT_NUMBER_MASK & epaddr) 1170 | (usb_endpoint_out(epaddr) ? USB_DIR_OUT : USB_DIR_IN); 1171 1172 usb_clear_halt(dev, pipe); 1173 } 1174 } 1175 1176 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting 1177 * 1178 * Note: 1179 * Despite EP0 is always present in all interfaces/AS, the list of 1180 * endpoints from the descriptor does not contain EP0. Due to its 1181 * omnipresence one might expect EP0 being considered "affected" by 1182 * any SetInterface request and hence assume toggles need to be reset. 1183 * However, EP0 toggles are re-synced for every individual transfer 1184 * during the SETUP stage - hence EP0 toggles are "don't care" here. 1185 * (Likewise, EP0 never "halts" on well designed devices.) 1186 */ 1187 usb_enable_interface(dev, iface); 1188 1189 return 0; 1190 } 1191 1192 /** 1193 * usb_reset_configuration - lightweight device reset 1194 * @dev: the device whose configuration is being reset 1195 * 1196 * This issues a standard SET_CONFIGURATION request to the device using 1197 * the current configuration. The effect is to reset most USB-related 1198 * state in the device, including interface altsettings (reset to zero), 1199 * endpoint halts (cleared), and data toggle (only for bulk and interrupt 1200 * endpoints). Other usbcore state is unchanged, including bindings of 1201 * usb device drivers to interfaces. 1202 * 1203 * Because this affects multiple interfaces, avoid using this with composite 1204 * (multi-interface) devices. Instead, the driver for each interface may 1205 * use usb_set_interface() on the interfaces it claims. Resetting the whole 1206 * configuration would affect other drivers' interfaces. 1207 * 1208 * The caller must own the device lock. 1209 * 1210 * Returns zero on success, else a negative error code. 1211 */ 1212 int usb_reset_configuration(struct usb_device *dev) 1213 { 1214 int i, retval; 1215 struct usb_host_config *config; 1216 1217 if (dev->state == USB_STATE_SUSPENDED) 1218 return -EHOSTUNREACH; 1219 1220 /* caller must have locked the device and must own 1221 * the usb bus readlock (so driver bindings are stable); 1222 * calls during probe() are fine 1223 */ 1224 1225 for (i = 1; i < 16; ++i) { 1226 usb_disable_endpoint(dev, i); 1227 usb_disable_endpoint(dev, i + USB_DIR_IN); 1228 } 1229 1230 config = dev->actconfig; 1231 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1232 USB_REQ_SET_CONFIGURATION, 0, 1233 config->desc.bConfigurationValue, 0, 1234 NULL, 0, USB_CTRL_SET_TIMEOUT); 1235 if (retval < 0) { 1236 usb_set_device_state(dev, USB_STATE_ADDRESS); 1237 return retval; 1238 } 1239 1240 dev->toggle[0] = dev->toggle[1] = 0; 1241 1242 /* re-init hc/hcd interface/endpoint state */ 1243 for (i = 0; i < config->desc.bNumInterfaces; i++) { 1244 struct usb_interface *intf = config->interface[i]; 1245 struct usb_host_interface *alt; 1246 1247 alt = usb_altnum_to_altsetting(intf, 0); 1248 1249 /* No altsetting 0? We'll assume the first altsetting. 1250 * We could use a GetInterface call, but if a device is 1251 * so non-compliant that it doesn't have altsetting 0 1252 * then I wouldn't trust its reply anyway. 1253 */ 1254 if (!alt) 1255 alt = &intf->altsetting[0]; 1256 1257 intf->cur_altsetting = alt; 1258 usb_enable_interface(dev, intf); 1259 } 1260 return 0; 1261 } 1262 1263 static void release_interface(struct device *dev) 1264 { 1265 struct usb_interface *intf = to_usb_interface(dev); 1266 struct usb_interface_cache *intfc = 1267 altsetting_to_usb_interface_cache(intf->altsetting); 1268 1269 kref_put(&intfc->ref, usb_release_interface_cache); 1270 kfree(intf); 1271 } 1272 1273 /* 1274 * usb_set_configuration - Makes a particular device setting be current 1275 * @dev: the device whose configuration is being updated 1276 * @configuration: the configuration being chosen. 1277 * Context: !in_interrupt(), caller owns the device lock 1278 * 1279 * This is used to enable non-default device modes. Not all devices 1280 * use this kind of configurability; many devices only have one 1281 * configuration. 1282 * 1283 * USB device configurations may affect Linux interoperability, 1284 * power consumption and the functionality available. For example, 1285 * the default configuration is limited to using 100mA of bus power, 1286 * so that when certain device functionality requires more power, 1287 * and the device is bus powered, that functionality should be in some 1288 * non-default device configuration. Other device modes may also be 1289 * reflected as configuration options, such as whether two ISDN 1290 * channels are available independently; and choosing between open 1291 * standard device protocols (like CDC) or proprietary ones. 1292 * 1293 * Note that USB has an additional level of device configurability, 1294 * associated with interfaces. That configurability is accessed using 1295 * usb_set_interface(). 1296 * 1297 * This call is synchronous. The calling context must be able to sleep, 1298 * must own the device lock, and must not hold the driver model's USB 1299 * bus rwsem; usb device driver probe() methods cannot use this routine. 1300 * 1301 * Returns zero on success, or else the status code returned by the 1302 * underlying call that failed. On succesful completion, each interface 1303 * in the original device configuration has been destroyed, and each one 1304 * in the new configuration has been probed by all relevant usb device 1305 * drivers currently known to the kernel. 1306 */ 1307 int usb_set_configuration(struct usb_device *dev, int configuration) 1308 { 1309 int i, ret; 1310 struct usb_host_config *cp = NULL; 1311 struct usb_interface **new_interfaces = NULL; 1312 int n, nintf; 1313 1314 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) { 1315 if (dev->config[i].desc.bConfigurationValue == configuration) { 1316 cp = &dev->config[i]; 1317 break; 1318 } 1319 } 1320 if ((!cp && configuration != 0)) 1321 return -EINVAL; 1322 1323 /* The USB spec says configuration 0 means unconfigured. 1324 * But if a device includes a configuration numbered 0, 1325 * we will accept it as a correctly configured state. 1326 */ 1327 if (cp && configuration == 0) 1328 dev_warn(&dev->dev, "config 0 descriptor??\n"); 1329 1330 if (dev->state == USB_STATE_SUSPENDED) 1331 return -EHOSTUNREACH; 1332 1333 /* Allocate memory for new interfaces before doing anything else, 1334 * so that if we run out then nothing will have changed. */ 1335 n = nintf = 0; 1336 if (cp) { 1337 nintf = cp->desc.bNumInterfaces; 1338 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces), 1339 GFP_KERNEL); 1340 if (!new_interfaces) { 1341 dev_err(&dev->dev, "Out of memory"); 1342 return -ENOMEM; 1343 } 1344 1345 for (; n < nintf; ++n) { 1346 new_interfaces[n] = kmalloc( 1347 sizeof(struct usb_interface), 1348 GFP_KERNEL); 1349 if (!new_interfaces[n]) { 1350 dev_err(&dev->dev, "Out of memory"); 1351 ret = -ENOMEM; 1352 free_interfaces: 1353 while (--n >= 0) 1354 kfree(new_interfaces[n]); 1355 kfree(new_interfaces); 1356 return ret; 1357 } 1358 } 1359 } 1360 1361 /* if it's already configured, clear out old state first. 1362 * getting rid of old interfaces means unbinding their drivers. 1363 */ 1364 if (dev->state != USB_STATE_ADDRESS) 1365 usb_disable_device (dev, 1); // Skip ep0 1366 1367 if ((ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0), 1368 USB_REQ_SET_CONFIGURATION, 0, configuration, 0, 1369 NULL, 0, USB_CTRL_SET_TIMEOUT)) < 0) 1370 goto free_interfaces; 1371 1372 dev->actconfig = cp; 1373 if (!cp) 1374 usb_set_device_state(dev, USB_STATE_ADDRESS); 1375 else { 1376 usb_set_device_state(dev, USB_STATE_CONFIGURED); 1377 1378 /* Initialize the new interface structures and the 1379 * hc/hcd/usbcore interface/endpoint state. 1380 */ 1381 for (i = 0; i < nintf; ++i) { 1382 struct usb_interface_cache *intfc; 1383 struct usb_interface *intf; 1384 struct usb_host_interface *alt; 1385 1386 cp->interface[i] = intf = new_interfaces[i]; 1387 memset(intf, 0, sizeof(*intf)); 1388 intfc = cp->intf_cache[i]; 1389 intf->altsetting = intfc->altsetting; 1390 intf->num_altsetting = intfc->num_altsetting; 1391 kref_get(&intfc->ref); 1392 1393 alt = usb_altnum_to_altsetting(intf, 0); 1394 1395 /* No altsetting 0? We'll assume the first altsetting. 1396 * We could use a GetInterface call, but if a device is 1397 * so non-compliant that it doesn't have altsetting 0 1398 * then I wouldn't trust its reply anyway. 1399 */ 1400 if (!alt) 1401 alt = &intf->altsetting[0]; 1402 1403 intf->cur_altsetting = alt; 1404 usb_enable_interface(dev, intf); 1405 intf->dev.parent = &dev->dev; 1406 intf->dev.driver = NULL; 1407 intf->dev.bus = &usb_bus_type; 1408 intf->dev.dma_mask = dev->dev.dma_mask; 1409 intf->dev.release = release_interface; 1410 device_initialize (&intf->dev); 1411 sprintf (&intf->dev.bus_id[0], "%d-%s:%d.%d", 1412 dev->bus->busnum, dev->devpath, 1413 configuration, 1414 alt->desc.bInterfaceNumber); 1415 } 1416 kfree(new_interfaces); 1417 1418 if ((cp->desc.iConfiguration) && 1419 (cp->string == NULL)) { 1420 cp->string = kmalloc(256, GFP_KERNEL); 1421 if (cp->string) 1422 usb_string(dev, cp->desc.iConfiguration, cp->string, 256); 1423 } 1424 1425 /* Now that all the interfaces are set up, register them 1426 * to trigger binding of drivers to interfaces. probe() 1427 * routines may install different altsettings and may 1428 * claim() any interfaces not yet bound. Many class drivers 1429 * need that: CDC, audio, video, etc. 1430 */ 1431 for (i = 0; i < nintf; ++i) { 1432 struct usb_interface *intf = cp->interface[i]; 1433 struct usb_interface_descriptor *desc; 1434 1435 desc = &intf->altsetting [0].desc; 1436 dev_dbg (&dev->dev, 1437 "adding %s (config #%d, interface %d)\n", 1438 intf->dev.bus_id, configuration, 1439 desc->bInterfaceNumber); 1440 ret = device_add (&intf->dev); 1441 if (ret != 0) { 1442 dev_err(&dev->dev, 1443 "device_add(%s) --> %d\n", 1444 intf->dev.bus_id, 1445 ret); 1446 continue; 1447 } 1448 if ((intf->cur_altsetting->desc.iInterface) && 1449 (intf->cur_altsetting->string == NULL)) { 1450 intf->cur_altsetting->string = kmalloc(256, GFP_KERNEL); 1451 if (intf->cur_altsetting->string) 1452 usb_string(dev, intf->cur_altsetting->desc.iInterface, 1453 intf->cur_altsetting->string, 256); 1454 } 1455 usb_create_sysfs_intf_files (intf); 1456 } 1457 } 1458 1459 return ret; 1460 } 1461 1462 // synchronous request completion model 1463 EXPORT_SYMBOL(usb_control_msg); 1464 EXPORT_SYMBOL(usb_bulk_msg); 1465 1466 EXPORT_SYMBOL(usb_sg_init); 1467 EXPORT_SYMBOL(usb_sg_cancel); 1468 EXPORT_SYMBOL(usb_sg_wait); 1469 1470 // synchronous control message convenience routines 1471 EXPORT_SYMBOL(usb_get_descriptor); 1472 EXPORT_SYMBOL(usb_get_status); 1473 EXPORT_SYMBOL(usb_get_string); 1474 EXPORT_SYMBOL(usb_string); 1475 1476 // synchronous calls that also maintain usbcore state 1477 EXPORT_SYMBOL(usb_clear_halt); 1478 EXPORT_SYMBOL(usb_reset_configuration); 1479 EXPORT_SYMBOL(usb_set_interface); 1480 1481