1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * (C) Copyright Linus Torvalds 1999 4 * (C) Copyright Johannes Erdfelt 1999-2001 5 * (C) Copyright Andreas Gal 1999 6 * (C) Copyright Gregory P. Smith 1999 7 * (C) Copyright Deti Fliegl 1999 8 * (C) Copyright Randy Dunlap 2000 9 * (C) Copyright David Brownell 2000-2002 10 */ 11 12 #include <linux/bcd.h> 13 #include <linux/module.h> 14 #include <linux/version.h> 15 #include <linux/kernel.h> 16 #include <linux/sched/task_stack.h> 17 #include <linux/slab.h> 18 #include <linux/completion.h> 19 #include <linux/utsname.h> 20 #include <linux/mm.h> 21 #include <asm/io.h> 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/mutex.h> 25 #include <asm/irq.h> 26 #include <asm/byteorder.h> 27 #include <asm/unaligned.h> 28 #include <linux/platform_device.h> 29 #include <linux/workqueue.h> 30 #include <linux/pm_runtime.h> 31 #include <linux/types.h> 32 #include <linux/genalloc.h> 33 #include <linux/io.h> 34 #include <linux/kcov.h> 35 36 #include <linux/phy/phy.h> 37 #include <linux/usb.h> 38 #include <linux/usb/hcd.h> 39 #include <linux/usb/otg.h> 40 41 #include "usb.h" 42 #include "phy.h" 43 44 45 /*-------------------------------------------------------------------------*/ 46 47 /* 48 * USB Host Controller Driver framework 49 * 50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing 51 * HCD-specific behaviors/bugs. 52 * 53 * This does error checks, tracks devices and urbs, and delegates to a 54 * "hc_driver" only for code (and data) that really needs to know about 55 * hardware differences. That includes root hub registers, i/o queues, 56 * and so on ... but as little else as possible. 57 * 58 * Shared code includes most of the "root hub" code (these are emulated, 59 * though each HC's hardware works differently) and PCI glue, plus request 60 * tracking overhead. The HCD code should only block on spinlocks or on 61 * hardware handshaking; blocking on software events (such as other kernel 62 * threads releasing resources, or completing actions) is all generic. 63 * 64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD", 65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used 66 * only by the hub driver ... and that neither should be seen or used by 67 * usb client device drivers. 68 * 69 * Contributors of ideas or unattributed patches include: David Brownell, 70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ... 71 * 72 * HISTORY: 73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some 74 * associated cleanup. "usb_hcd" still != "usb_bus". 75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel. 76 */ 77 78 /*-------------------------------------------------------------------------*/ 79 80 /* Keep track of which host controller drivers are loaded */ 81 unsigned long usb_hcds_loaded; 82 EXPORT_SYMBOL_GPL(usb_hcds_loaded); 83 84 /* host controllers we manage */ 85 DEFINE_IDR (usb_bus_idr); 86 EXPORT_SYMBOL_GPL (usb_bus_idr); 87 88 /* used when allocating bus numbers */ 89 #define USB_MAXBUS 64 90 91 /* used when updating list of hcds */ 92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */ 93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock); 94 95 /* used for controlling access to virtual root hubs */ 96 static DEFINE_SPINLOCK(hcd_root_hub_lock); 97 98 /* used when updating an endpoint's URB list */ 99 static DEFINE_SPINLOCK(hcd_urb_list_lock); 100 101 /* used to protect against unlinking URBs after the device is gone */ 102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock); 103 104 /* wait queue for synchronous unlinks */ 105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue); 106 107 /*-------------------------------------------------------------------------*/ 108 109 /* 110 * Sharable chunks of root hub code. 111 */ 112 113 /*-------------------------------------------------------------------------*/ 114 #define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR) 115 #define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL) 116 117 /* usb 3.1 root hub device descriptor */ 118 static const u8 usb31_rh_dev_descriptor[18] = { 119 0x12, /* __u8 bLength; */ 120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */ 122 123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 124 0x00, /* __u8 bDeviceSubClass; */ 125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */ 126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 127 128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 131 132 0x03, /* __u8 iManufacturer; */ 133 0x02, /* __u8 iProduct; */ 134 0x01, /* __u8 iSerialNumber; */ 135 0x01 /* __u8 bNumConfigurations; */ 136 }; 137 138 /* usb 3.0 root hub device descriptor */ 139 static const u8 usb3_rh_dev_descriptor[18] = { 140 0x12, /* __u8 bLength; */ 141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */ 143 144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 145 0x00, /* __u8 bDeviceSubClass; */ 146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */ 147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */ 148 149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */ 151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 152 153 0x03, /* __u8 iManufacturer; */ 154 0x02, /* __u8 iProduct; */ 155 0x01, /* __u8 iSerialNumber; */ 156 0x01 /* __u8 bNumConfigurations; */ 157 }; 158 159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */ 160 static const u8 usb25_rh_dev_descriptor[18] = { 161 0x12, /* __u8 bLength; */ 162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */ 164 165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 166 0x00, /* __u8 bDeviceSubClass; */ 167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */ 169 170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 173 174 0x03, /* __u8 iManufacturer; */ 175 0x02, /* __u8 iProduct; */ 176 0x01, /* __u8 iSerialNumber; */ 177 0x01 /* __u8 bNumConfigurations; */ 178 }; 179 180 /* usb 2.0 root hub device descriptor */ 181 static const u8 usb2_rh_dev_descriptor[18] = { 182 0x12, /* __u8 bLength; */ 183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */ 185 186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 187 0x00, /* __u8 bDeviceSubClass; */ 188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */ 189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 190 191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */ 193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 194 195 0x03, /* __u8 iManufacturer; */ 196 0x02, /* __u8 iProduct; */ 197 0x01, /* __u8 iSerialNumber; */ 198 0x01 /* __u8 bNumConfigurations; */ 199 }; 200 201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */ 202 203 /* usb 1.1 root hub device descriptor */ 204 static const u8 usb11_rh_dev_descriptor[18] = { 205 0x12, /* __u8 bLength; */ 206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */ 207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */ 208 209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */ 210 0x00, /* __u8 bDeviceSubClass; */ 211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */ 212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */ 213 214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */ 215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */ 216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */ 217 218 0x03, /* __u8 iManufacturer; */ 219 0x02, /* __u8 iProduct; */ 220 0x01, /* __u8 iSerialNumber; */ 221 0x01 /* __u8 bNumConfigurations; */ 222 }; 223 224 225 /*-------------------------------------------------------------------------*/ 226 227 /* Configuration descriptors for our root hubs */ 228 229 static const u8 fs_rh_config_descriptor[] = { 230 231 /* one configuration */ 232 0x09, /* __u8 bLength; */ 233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 234 0x19, 0x00, /* __le16 wTotalLength; */ 235 0x01, /* __u8 bNumInterfaces; (1) */ 236 0x01, /* __u8 bConfigurationValue; */ 237 0x00, /* __u8 iConfiguration; */ 238 0xc0, /* __u8 bmAttributes; 239 Bit 7: must be set, 240 6: Self-powered, 241 5: Remote wakeup, 242 4..0: resvd */ 243 0x00, /* __u8 MaxPower; */ 244 245 /* USB 1.1: 246 * USB 2.0, single TT organization (mandatory): 247 * one interface, protocol 0 248 * 249 * USB 2.0, multiple TT organization (optional): 250 * two interfaces, protocols 1 (like single TT) 251 * and 2 (multiple TT mode) ... config is 252 * sometimes settable 253 * NOT IMPLEMENTED 254 */ 255 256 /* one interface */ 257 0x09, /* __u8 if_bLength; */ 258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 259 0x00, /* __u8 if_bInterfaceNumber; */ 260 0x00, /* __u8 if_bAlternateSetting; */ 261 0x01, /* __u8 if_bNumEndpoints; */ 262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 263 0x00, /* __u8 if_bInterfaceSubClass; */ 264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 265 0x00, /* __u8 if_iInterface; */ 266 267 /* one endpoint (status change endpoint) */ 268 0x07, /* __u8 ep_bLength; */ 269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 271 0x03, /* __u8 ep_bmAttributes; Interrupt */ 272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */ 273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */ 274 }; 275 276 static const u8 hs_rh_config_descriptor[] = { 277 278 /* one configuration */ 279 0x09, /* __u8 bLength; */ 280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 281 0x19, 0x00, /* __le16 wTotalLength; */ 282 0x01, /* __u8 bNumInterfaces; (1) */ 283 0x01, /* __u8 bConfigurationValue; */ 284 0x00, /* __u8 iConfiguration; */ 285 0xc0, /* __u8 bmAttributes; 286 Bit 7: must be set, 287 6: Self-powered, 288 5: Remote wakeup, 289 4..0: resvd */ 290 0x00, /* __u8 MaxPower; */ 291 292 /* USB 1.1: 293 * USB 2.0, single TT organization (mandatory): 294 * one interface, protocol 0 295 * 296 * USB 2.0, multiple TT organization (optional): 297 * two interfaces, protocols 1 (like single TT) 298 * and 2 (multiple TT mode) ... config is 299 * sometimes settable 300 * NOT IMPLEMENTED 301 */ 302 303 /* one interface */ 304 0x09, /* __u8 if_bLength; */ 305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 306 0x00, /* __u8 if_bInterfaceNumber; */ 307 0x00, /* __u8 if_bAlternateSetting; */ 308 0x01, /* __u8 if_bNumEndpoints; */ 309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 310 0x00, /* __u8 if_bInterfaceSubClass; */ 311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */ 312 0x00, /* __u8 if_iInterface; */ 313 314 /* one endpoint (status change endpoint) */ 315 0x07, /* __u8 ep_bLength; */ 316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 318 0x03, /* __u8 ep_bmAttributes; Interrupt */ 319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 320 * see hub.c:hub_configure() for details. */ 321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 323 }; 324 325 static const u8 ss_rh_config_descriptor[] = { 326 /* one configuration */ 327 0x09, /* __u8 bLength; */ 328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */ 329 0x1f, 0x00, /* __le16 wTotalLength; */ 330 0x01, /* __u8 bNumInterfaces; (1) */ 331 0x01, /* __u8 bConfigurationValue; */ 332 0x00, /* __u8 iConfiguration; */ 333 0xc0, /* __u8 bmAttributes; 334 Bit 7: must be set, 335 6: Self-powered, 336 5: Remote wakeup, 337 4..0: resvd */ 338 0x00, /* __u8 MaxPower; */ 339 340 /* one interface */ 341 0x09, /* __u8 if_bLength; */ 342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */ 343 0x00, /* __u8 if_bInterfaceNumber; */ 344 0x00, /* __u8 if_bAlternateSetting; */ 345 0x01, /* __u8 if_bNumEndpoints; */ 346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */ 347 0x00, /* __u8 if_bInterfaceSubClass; */ 348 0x00, /* __u8 if_bInterfaceProtocol; */ 349 0x00, /* __u8 if_iInterface; */ 350 351 /* one endpoint (status change endpoint) */ 352 0x07, /* __u8 ep_bLength; */ 353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */ 354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */ 355 0x03, /* __u8 ep_bmAttributes; Interrupt */ 356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) 357 * see hub.c:hub_configure() for details. */ 358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00, 359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */ 360 361 /* one SuperSpeed endpoint companion descriptor */ 362 0x06, /* __u8 ss_bLength */ 363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */ 364 /* Companion */ 365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */ 366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */ 367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */ 368 }; 369 370 /* authorized_default behaviour: 371 * -1 is authorized for all devices except wireless (old behaviour) 372 * 0 is unauthorized for all devices 373 * 1 is authorized for all devices 374 * 2 is authorized for internal devices 375 */ 376 #define USB_AUTHORIZE_WIRED -1 377 #define USB_AUTHORIZE_NONE 0 378 #define USB_AUTHORIZE_ALL 1 379 #define USB_AUTHORIZE_INTERNAL 2 380 381 static int authorized_default = USB_AUTHORIZE_WIRED; 382 module_param(authorized_default, int, S_IRUGO|S_IWUSR); 383 MODULE_PARM_DESC(authorized_default, 384 "Default USB device authorization: 0 is not authorized, 1 is " 385 "authorized, 2 is authorized for internal devices, -1 is " 386 "authorized except for wireless USB (default, old behaviour)"); 387 /*-------------------------------------------------------------------------*/ 388 389 /** 390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors 391 * @s: Null-terminated ASCII (actually ISO-8859-1) string 392 * @buf: Buffer for USB string descriptor (header + UTF-16LE) 393 * @len: Length (in bytes; may be odd) of descriptor buffer. 394 * 395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len, 396 * whichever is less. 397 * 398 * Note: 399 * USB String descriptors can contain at most 126 characters; input 400 * strings longer than that are truncated. 401 */ 402 static unsigned 403 ascii2desc(char const *s, u8 *buf, unsigned len) 404 { 405 unsigned n, t = 2 + 2*strlen(s); 406 407 if (t > 254) 408 t = 254; /* Longest possible UTF string descriptor */ 409 if (len > t) 410 len = t; 411 412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */ 413 414 n = len; 415 while (n--) { 416 *buf++ = t; 417 if (!n--) 418 break; 419 *buf++ = t >> 8; 420 t = (unsigned char)*s++; 421 } 422 return len; 423 } 424 425 /** 426 * rh_string() - provides string descriptors for root hub 427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor) 428 * @hcd: the host controller for this root hub 429 * @data: buffer for output packet 430 * @len: length of the provided buffer 431 * 432 * Produces either a manufacturer, product or serial number string for the 433 * virtual root hub device. 434 * 435 * Return: The number of bytes filled in: the length of the descriptor or 436 * of the provided buffer, whichever is less. 437 */ 438 static unsigned 439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len) 440 { 441 char buf[100]; 442 char const *s; 443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04}; 444 445 /* language ids */ 446 switch (id) { 447 case 0: 448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */ 449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */ 450 if (len > 4) 451 len = 4; 452 memcpy(data, langids, len); 453 return len; 454 case 1: 455 /* Serial number */ 456 s = hcd->self.bus_name; 457 break; 458 case 2: 459 /* Product name */ 460 s = hcd->product_desc; 461 break; 462 case 3: 463 /* Manufacturer */ 464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname, 465 init_utsname()->release, hcd->driver->description); 466 s = buf; 467 break; 468 default: 469 /* Can't happen; caller guarantees it */ 470 return 0; 471 } 472 473 return ascii2desc(s, data, len); 474 } 475 476 477 /* Root hub control transfers execute synchronously */ 478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb) 479 { 480 struct usb_ctrlrequest *cmd; 481 u16 typeReq, wValue, wIndex, wLength; 482 u8 *ubuf = urb->transfer_buffer; 483 unsigned len = 0; 484 int status; 485 u8 patch_wakeup = 0; 486 u8 patch_protocol = 0; 487 u16 tbuf_size; 488 u8 *tbuf = NULL; 489 const u8 *bufp; 490 491 might_sleep(); 492 493 spin_lock_irq(&hcd_root_hub_lock); 494 status = usb_hcd_link_urb_to_ep(hcd, urb); 495 spin_unlock_irq(&hcd_root_hub_lock); 496 if (status) 497 return status; 498 urb->hcpriv = hcd; /* Indicate it's queued */ 499 500 cmd = (struct usb_ctrlrequest *) urb->setup_packet; 501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest; 502 wValue = le16_to_cpu (cmd->wValue); 503 wIndex = le16_to_cpu (cmd->wIndex); 504 wLength = le16_to_cpu (cmd->wLength); 505 506 if (wLength > urb->transfer_buffer_length) 507 goto error; 508 509 /* 510 * tbuf should be at least as big as the 511 * USB hub descriptor. 512 */ 513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength); 514 tbuf = kzalloc(tbuf_size, GFP_KERNEL); 515 if (!tbuf) { 516 status = -ENOMEM; 517 goto err_alloc; 518 } 519 520 bufp = tbuf; 521 522 523 urb->actual_length = 0; 524 switch (typeReq) { 525 526 /* DEVICE REQUESTS */ 527 528 /* The root hub's remote wakeup enable bit is implemented using 529 * driver model wakeup flags. If this system supports wakeup 530 * through USB, userspace may change the default "allow wakeup" 531 * policy through sysfs or these calls. 532 * 533 * Most root hubs support wakeup from downstream devices, for 534 * runtime power management (disabling USB clocks and reducing 535 * VBUS power usage). However, not all of them do so; silicon, 536 * board, and BIOS bugs here are not uncommon, so these can't 537 * be treated quite like external hubs. 538 * 539 * Likewise, not all root hubs will pass wakeup events upstream, 540 * to wake up the whole system. So don't assume root hub and 541 * controller capabilities are identical. 542 */ 543 544 case DeviceRequest | USB_REQ_GET_STATUS: 545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev) 546 << USB_DEVICE_REMOTE_WAKEUP) 547 | (1 << USB_DEVICE_SELF_POWERED); 548 tbuf[1] = 0; 549 len = 2; 550 break; 551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: 552 if (wValue == USB_DEVICE_REMOTE_WAKEUP) 553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0); 554 else 555 goto error; 556 break; 557 case DeviceOutRequest | USB_REQ_SET_FEATURE: 558 if (device_can_wakeup(&hcd->self.root_hub->dev) 559 && wValue == USB_DEVICE_REMOTE_WAKEUP) 560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1); 561 else 562 goto error; 563 break; 564 case DeviceRequest | USB_REQ_GET_CONFIGURATION: 565 tbuf[0] = 1; 566 len = 1; 567 fallthrough; 568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: 569 break; 570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 571 switch (wValue & 0xff00) { 572 case USB_DT_DEVICE << 8: 573 switch (hcd->speed) { 574 case HCD_USB32: 575 case HCD_USB31: 576 bufp = usb31_rh_dev_descriptor; 577 break; 578 case HCD_USB3: 579 bufp = usb3_rh_dev_descriptor; 580 break; 581 case HCD_USB25: 582 bufp = usb25_rh_dev_descriptor; 583 break; 584 case HCD_USB2: 585 bufp = usb2_rh_dev_descriptor; 586 break; 587 case HCD_USB11: 588 bufp = usb11_rh_dev_descriptor; 589 break; 590 default: 591 goto error; 592 } 593 len = 18; 594 if (hcd->has_tt) 595 patch_protocol = 1; 596 break; 597 case USB_DT_CONFIG << 8: 598 switch (hcd->speed) { 599 case HCD_USB32: 600 case HCD_USB31: 601 case HCD_USB3: 602 bufp = ss_rh_config_descriptor; 603 len = sizeof ss_rh_config_descriptor; 604 break; 605 case HCD_USB25: 606 case HCD_USB2: 607 bufp = hs_rh_config_descriptor; 608 len = sizeof hs_rh_config_descriptor; 609 break; 610 case HCD_USB11: 611 bufp = fs_rh_config_descriptor; 612 len = sizeof fs_rh_config_descriptor; 613 break; 614 default: 615 goto error; 616 } 617 if (device_can_wakeup(&hcd->self.root_hub->dev)) 618 patch_wakeup = 1; 619 break; 620 case USB_DT_STRING << 8: 621 if ((wValue & 0xff) < 4) 622 urb->actual_length = rh_string(wValue & 0xff, 623 hcd, ubuf, wLength); 624 else /* unsupported IDs --> "protocol stall" */ 625 goto error; 626 break; 627 case USB_DT_BOS << 8: 628 goto nongeneric; 629 default: 630 goto error; 631 } 632 break; 633 case DeviceRequest | USB_REQ_GET_INTERFACE: 634 tbuf[0] = 0; 635 len = 1; 636 fallthrough; 637 case DeviceOutRequest | USB_REQ_SET_INTERFACE: 638 break; 639 case DeviceOutRequest | USB_REQ_SET_ADDRESS: 640 /* wValue == urb->dev->devaddr */ 641 dev_dbg (hcd->self.controller, "root hub device address %d\n", 642 wValue); 643 break; 644 645 /* INTERFACE REQUESTS (no defined feature/status flags) */ 646 647 /* ENDPOINT REQUESTS */ 648 649 case EndpointRequest | USB_REQ_GET_STATUS: 650 /* ENDPOINT_HALT flag */ 651 tbuf[0] = 0; 652 tbuf[1] = 0; 653 len = 2; 654 fallthrough; 655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE: 656 case EndpointOutRequest | USB_REQ_SET_FEATURE: 657 dev_dbg (hcd->self.controller, "no endpoint features yet\n"); 658 break; 659 660 /* CLASS REQUESTS (and errors) */ 661 662 default: 663 nongeneric: 664 /* non-generic request */ 665 switch (typeReq) { 666 case GetHubStatus: 667 len = 4; 668 break; 669 case GetPortStatus: 670 if (wValue == HUB_PORT_STATUS) 671 len = 4; 672 else 673 /* other port status types return 8 bytes */ 674 len = 8; 675 break; 676 case GetHubDescriptor: 677 len = sizeof (struct usb_hub_descriptor); 678 break; 679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR: 680 /* len is returned by hub_control */ 681 break; 682 } 683 status = hcd->driver->hub_control (hcd, 684 typeReq, wValue, wIndex, 685 tbuf, wLength); 686 687 if (typeReq == GetHubDescriptor) 688 usb_hub_adjust_deviceremovable(hcd->self.root_hub, 689 (struct usb_hub_descriptor *)tbuf); 690 break; 691 error: 692 /* "protocol stall" on error */ 693 status = -EPIPE; 694 } 695 696 if (status < 0) { 697 len = 0; 698 if (status != -EPIPE) { 699 dev_dbg (hcd->self.controller, 700 "CTRL: TypeReq=0x%x val=0x%x " 701 "idx=0x%x len=%d ==> %d\n", 702 typeReq, wValue, wIndex, 703 wLength, status); 704 } 705 } else if (status > 0) { 706 /* hub_control may return the length of data copied. */ 707 len = status; 708 status = 0; 709 } 710 if (len) { 711 if (urb->transfer_buffer_length < len) 712 len = urb->transfer_buffer_length; 713 urb->actual_length = len; 714 /* always USB_DIR_IN, toward host */ 715 memcpy (ubuf, bufp, len); 716 717 /* report whether RH hardware supports remote wakeup */ 718 if (patch_wakeup && 719 len > offsetof (struct usb_config_descriptor, 720 bmAttributes)) 721 ((struct usb_config_descriptor *)ubuf)->bmAttributes 722 |= USB_CONFIG_ATT_WAKEUP; 723 724 /* report whether RH hardware has an integrated TT */ 725 if (patch_protocol && 726 len > offsetof(struct usb_device_descriptor, 727 bDeviceProtocol)) 728 ((struct usb_device_descriptor *) ubuf)-> 729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT; 730 } 731 732 kfree(tbuf); 733 err_alloc: 734 735 /* any errors get returned through the urb completion */ 736 spin_lock_irq(&hcd_root_hub_lock); 737 usb_hcd_unlink_urb_from_ep(hcd, urb); 738 usb_hcd_giveback_urb(hcd, urb, status); 739 spin_unlock_irq(&hcd_root_hub_lock); 740 return 0; 741 } 742 743 /*-------------------------------------------------------------------------*/ 744 745 /* 746 * Root Hub interrupt transfers are polled using a timer if the 747 * driver requests it; otherwise the driver is responsible for 748 * calling usb_hcd_poll_rh_status() when an event occurs. 749 * 750 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details. 751 */ 752 void usb_hcd_poll_rh_status(struct usb_hcd *hcd) 753 { 754 struct urb *urb; 755 int length; 756 int status; 757 unsigned long flags; 758 char buffer[6]; /* Any root hubs with > 31 ports? */ 759 760 if (unlikely(!hcd->rh_pollable)) 761 return; 762 if (!hcd->uses_new_polling && !hcd->status_urb) 763 return; 764 765 length = hcd->driver->hub_status_data(hcd, buffer); 766 if (length > 0) { 767 768 /* try to complete the status urb */ 769 spin_lock_irqsave(&hcd_root_hub_lock, flags); 770 urb = hcd->status_urb; 771 if (urb) { 772 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 773 hcd->status_urb = NULL; 774 if (urb->transfer_buffer_length >= length) { 775 status = 0; 776 } else { 777 status = -EOVERFLOW; 778 length = urb->transfer_buffer_length; 779 } 780 urb->actual_length = length; 781 memcpy(urb->transfer_buffer, buffer, length); 782 783 usb_hcd_unlink_urb_from_ep(hcd, urb); 784 usb_hcd_giveback_urb(hcd, urb, status); 785 } else { 786 length = 0; 787 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags); 788 } 789 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 790 } 791 792 /* The USB 2.0 spec says 256 ms. This is close enough and won't 793 * exceed that limit if HZ is 100. The math is more clunky than 794 * maybe expected, this is to make sure that all timers for USB devices 795 * fire at the same time to give the CPU a break in between */ 796 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) : 797 (length == 0 && hcd->status_urb != NULL)) 798 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 799 } 800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status); 801 802 /* timer callback */ 803 static void rh_timer_func (struct timer_list *t) 804 { 805 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer); 806 807 usb_hcd_poll_rh_status(_hcd); 808 } 809 810 /*-------------------------------------------------------------------------*/ 811 812 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb) 813 { 814 int retval; 815 unsigned long flags; 816 unsigned len = 1 + (urb->dev->maxchild / 8); 817 818 spin_lock_irqsave (&hcd_root_hub_lock, flags); 819 if (hcd->status_urb || urb->transfer_buffer_length < len) { 820 dev_dbg (hcd->self.controller, "not queuing rh status urb\n"); 821 retval = -EINVAL; 822 goto done; 823 } 824 825 retval = usb_hcd_link_urb_to_ep(hcd, urb); 826 if (retval) 827 goto done; 828 829 hcd->status_urb = urb; 830 urb->hcpriv = hcd; /* indicate it's queued */ 831 if (!hcd->uses_new_polling) 832 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4)); 833 834 /* If a status change has already occurred, report it ASAP */ 835 else if (HCD_POLL_PENDING(hcd)) 836 mod_timer(&hcd->rh_timer, jiffies); 837 retval = 0; 838 done: 839 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 840 return retval; 841 } 842 843 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb) 844 { 845 if (usb_endpoint_xfer_int(&urb->ep->desc)) 846 return rh_queue_status (hcd, urb); 847 if (usb_endpoint_xfer_control(&urb->ep->desc)) 848 return rh_call_control (hcd, urb); 849 return -EINVAL; 850 } 851 852 /*-------------------------------------------------------------------------*/ 853 854 /* Unlinks of root-hub control URBs are legal, but they don't do anything 855 * since these URBs always execute synchronously. 856 */ 857 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status) 858 { 859 unsigned long flags; 860 int rc; 861 862 spin_lock_irqsave(&hcd_root_hub_lock, flags); 863 rc = usb_hcd_check_unlink_urb(hcd, urb, status); 864 if (rc) 865 goto done; 866 867 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */ 868 ; /* Do nothing */ 869 870 } else { /* Status URB */ 871 if (!hcd->uses_new_polling) 872 del_timer (&hcd->rh_timer); 873 if (urb == hcd->status_urb) { 874 hcd->status_urb = NULL; 875 usb_hcd_unlink_urb_from_ep(hcd, urb); 876 usb_hcd_giveback_urb(hcd, urb, status); 877 } 878 } 879 done: 880 spin_unlock_irqrestore(&hcd_root_hub_lock, flags); 881 return rc; 882 } 883 884 885 /*-------------------------------------------------------------------------*/ 886 887 /** 888 * usb_bus_init - shared initialization code 889 * @bus: the bus structure being initialized 890 * 891 * This code is used to initialize a usb_bus structure, memory for which is 892 * separately managed. 893 */ 894 static void usb_bus_init (struct usb_bus *bus) 895 { 896 memset (&bus->devmap, 0, sizeof(struct usb_devmap)); 897 898 bus->devnum_next = 1; 899 900 bus->root_hub = NULL; 901 bus->busnum = -1; 902 bus->bandwidth_allocated = 0; 903 bus->bandwidth_int_reqs = 0; 904 bus->bandwidth_isoc_reqs = 0; 905 mutex_init(&bus->devnum_next_mutex); 906 } 907 908 /*-------------------------------------------------------------------------*/ 909 910 /** 911 * usb_register_bus - registers the USB host controller with the usb core 912 * @bus: pointer to the bus to register 913 * 914 * Context: task context, might sleep. 915 * 916 * Assigns a bus number, and links the controller into usbcore data 917 * structures so that it can be seen by scanning the bus list. 918 * 919 * Return: 0 if successful. A negative error code otherwise. 920 */ 921 static int usb_register_bus(struct usb_bus *bus) 922 { 923 int result = -E2BIG; 924 int busnum; 925 926 mutex_lock(&usb_bus_idr_lock); 927 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL); 928 if (busnum < 0) { 929 pr_err("%s: failed to get bus number\n", usbcore_name); 930 goto error_find_busnum; 931 } 932 bus->busnum = busnum; 933 mutex_unlock(&usb_bus_idr_lock); 934 935 usb_notify_add_bus(bus); 936 937 dev_info (bus->controller, "new USB bus registered, assigned bus " 938 "number %d\n", bus->busnum); 939 return 0; 940 941 error_find_busnum: 942 mutex_unlock(&usb_bus_idr_lock); 943 return result; 944 } 945 946 /** 947 * usb_deregister_bus - deregisters the USB host controller 948 * @bus: pointer to the bus to deregister 949 * 950 * Context: task context, might sleep. 951 * 952 * Recycles the bus number, and unlinks the controller from usbcore data 953 * structures so that it won't be seen by scanning the bus list. 954 */ 955 static void usb_deregister_bus (struct usb_bus *bus) 956 { 957 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum); 958 959 /* 960 * NOTE: make sure that all the devices are removed by the 961 * controller code, as well as having it call this when cleaning 962 * itself up 963 */ 964 mutex_lock(&usb_bus_idr_lock); 965 idr_remove(&usb_bus_idr, bus->busnum); 966 mutex_unlock(&usb_bus_idr_lock); 967 968 usb_notify_remove_bus(bus); 969 } 970 971 /** 972 * register_root_hub - called by usb_add_hcd() to register a root hub 973 * @hcd: host controller for this root hub 974 * 975 * This function registers the root hub with the USB subsystem. It sets up 976 * the device properly in the device tree and then calls usb_new_device() 977 * to register the usb device. It also assigns the root hub's USB address 978 * (always 1). 979 * 980 * Return: 0 if successful. A negative error code otherwise. 981 */ 982 static int register_root_hub(struct usb_hcd *hcd) 983 { 984 struct device *parent_dev = hcd->self.controller; 985 struct usb_device *usb_dev = hcd->self.root_hub; 986 struct usb_device_descriptor *descr; 987 const int devnum = 1; 988 int retval; 989 990 usb_dev->devnum = devnum; 991 usb_dev->bus->devnum_next = devnum + 1; 992 set_bit (devnum, usb_dev->bus->devmap.devicemap); 993 usb_set_device_state(usb_dev, USB_STATE_ADDRESS); 994 995 mutex_lock(&usb_bus_idr_lock); 996 997 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64); 998 descr = usb_get_device_descriptor(usb_dev); 999 if (IS_ERR(descr)) { 1000 retval = PTR_ERR(descr); 1001 mutex_unlock(&usb_bus_idr_lock); 1002 dev_dbg (parent_dev, "can't read %s device descriptor %d\n", 1003 dev_name(&usb_dev->dev), retval); 1004 return retval; 1005 } 1006 usb_dev->descriptor = *descr; 1007 kfree(descr); 1008 1009 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) { 1010 retval = usb_get_bos_descriptor(usb_dev); 1011 if (!retval) { 1012 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev); 1013 } else if (usb_dev->speed >= USB_SPEED_SUPER) { 1014 mutex_unlock(&usb_bus_idr_lock); 1015 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n", 1016 dev_name(&usb_dev->dev), retval); 1017 return retval; 1018 } 1019 } 1020 1021 retval = usb_new_device (usb_dev); 1022 if (retval) { 1023 dev_err (parent_dev, "can't register root hub for %s, %d\n", 1024 dev_name(&usb_dev->dev), retval); 1025 } else { 1026 spin_lock_irq (&hcd_root_hub_lock); 1027 hcd->rh_registered = 1; 1028 spin_unlock_irq (&hcd_root_hub_lock); 1029 1030 /* Did the HC die before the root hub was registered? */ 1031 if (HCD_DEAD(hcd)) 1032 usb_hc_died (hcd); /* This time clean up */ 1033 } 1034 mutex_unlock(&usb_bus_idr_lock); 1035 1036 return retval; 1037 } 1038 1039 /* 1040 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal 1041 * @bus: the bus which the root hub belongs to 1042 * @portnum: the port which is being resumed 1043 * 1044 * HCDs should call this function when they know that a resume signal is 1045 * being sent to a root-hub port. The root hub will be prevented from 1046 * going into autosuspend until usb_hcd_end_port_resume() is called. 1047 * 1048 * The bus's private lock must be held by the caller. 1049 */ 1050 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum) 1051 { 1052 unsigned bit = 1 << portnum; 1053 1054 if (!(bus->resuming_ports & bit)) { 1055 bus->resuming_ports |= bit; 1056 pm_runtime_get_noresume(&bus->root_hub->dev); 1057 } 1058 } 1059 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume); 1060 1061 /* 1062 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal 1063 * @bus: the bus which the root hub belongs to 1064 * @portnum: the port which is being resumed 1065 * 1066 * HCDs should call this function when they know that a resume signal has 1067 * stopped being sent to a root-hub port. The root hub will be allowed to 1068 * autosuspend again. 1069 * 1070 * The bus's private lock must be held by the caller. 1071 */ 1072 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum) 1073 { 1074 unsigned bit = 1 << portnum; 1075 1076 if (bus->resuming_ports & bit) { 1077 bus->resuming_ports &= ~bit; 1078 pm_runtime_put_noidle(&bus->root_hub->dev); 1079 } 1080 } 1081 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume); 1082 1083 /*-------------------------------------------------------------------------*/ 1084 1085 /** 1086 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds 1087 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH} 1088 * @is_input: true iff the transaction sends data to the host 1089 * @isoc: true for isochronous transactions, false for interrupt ones 1090 * @bytecount: how many bytes in the transaction. 1091 * 1092 * Return: Approximate bus time in nanoseconds for a periodic transaction. 1093 * 1094 * Note: 1095 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be 1096 * scheduled in software, this function is only used for such scheduling. 1097 */ 1098 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount) 1099 { 1100 unsigned long tmp; 1101 1102 switch (speed) { 1103 case USB_SPEED_LOW: /* INTR only */ 1104 if (is_input) { 1105 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L; 1106 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1107 } else { 1108 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L; 1109 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp; 1110 } 1111 case USB_SPEED_FULL: /* ISOC or INTR */ 1112 if (isoc) { 1113 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1114 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp; 1115 } else { 1116 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L; 1117 return 9107L + BW_HOST_DELAY + tmp; 1118 } 1119 case USB_SPEED_HIGH: /* ISOC or INTR */ 1120 /* FIXME adjust for input vs output */ 1121 if (isoc) 1122 tmp = HS_NSECS_ISO (bytecount); 1123 else 1124 tmp = HS_NSECS (bytecount); 1125 return tmp; 1126 default: 1127 pr_debug ("%s: bogus device speed!\n", usbcore_name); 1128 return -1; 1129 } 1130 } 1131 EXPORT_SYMBOL_GPL(usb_calc_bus_time); 1132 1133 1134 /*-------------------------------------------------------------------------*/ 1135 1136 /* 1137 * Generic HC operations. 1138 */ 1139 1140 /*-------------------------------------------------------------------------*/ 1141 1142 /** 1143 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue 1144 * @hcd: host controller to which @urb was submitted 1145 * @urb: URB being submitted 1146 * 1147 * Host controller drivers should call this routine in their enqueue() 1148 * method. The HCD's private spinlock must be held and interrupts must 1149 * be disabled. The actions carried out here are required for URB 1150 * submission, as well as for endpoint shutdown and for usb_kill_urb. 1151 * 1152 * Return: 0 for no error, otherwise a negative error code (in which case 1153 * the enqueue() method must fail). If no error occurs but enqueue() fails 1154 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing 1155 * the private spinlock and returning. 1156 */ 1157 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb) 1158 { 1159 int rc = 0; 1160 1161 spin_lock(&hcd_urb_list_lock); 1162 1163 /* Check that the URB isn't being killed */ 1164 if (unlikely(atomic_read(&urb->reject))) { 1165 rc = -EPERM; 1166 goto done; 1167 } 1168 1169 if (unlikely(!urb->ep->enabled)) { 1170 rc = -ENOENT; 1171 goto done; 1172 } 1173 1174 if (unlikely(!urb->dev->can_submit)) { 1175 rc = -EHOSTUNREACH; 1176 goto done; 1177 } 1178 1179 /* 1180 * Check the host controller's state and add the URB to the 1181 * endpoint's queue. 1182 */ 1183 if (HCD_RH_RUNNING(hcd)) { 1184 urb->unlinked = 0; 1185 list_add_tail(&urb->urb_list, &urb->ep->urb_list); 1186 } else { 1187 rc = -ESHUTDOWN; 1188 goto done; 1189 } 1190 done: 1191 spin_unlock(&hcd_urb_list_lock); 1192 return rc; 1193 } 1194 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep); 1195 1196 /** 1197 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked 1198 * @hcd: host controller to which @urb was submitted 1199 * @urb: URB being checked for unlinkability 1200 * @status: error code to store in @urb if the unlink succeeds 1201 * 1202 * Host controller drivers should call this routine in their dequeue() 1203 * method. The HCD's private spinlock must be held and interrupts must 1204 * be disabled. The actions carried out here are required for making 1205 * sure than an unlink is valid. 1206 * 1207 * Return: 0 for no error, otherwise a negative error code (in which case 1208 * the dequeue() method must fail). The possible error codes are: 1209 * 1210 * -EIDRM: @urb was not submitted or has already completed. 1211 * The completion function may not have been called yet. 1212 * 1213 * -EBUSY: @urb has already been unlinked. 1214 */ 1215 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb, 1216 int status) 1217 { 1218 struct list_head *tmp; 1219 1220 /* insist the urb is still queued */ 1221 list_for_each(tmp, &urb->ep->urb_list) { 1222 if (tmp == &urb->urb_list) 1223 break; 1224 } 1225 if (tmp != &urb->urb_list) 1226 return -EIDRM; 1227 1228 /* Any status except -EINPROGRESS means something already started to 1229 * unlink this URB from the hardware. So there's no more work to do. 1230 */ 1231 if (urb->unlinked) 1232 return -EBUSY; 1233 urb->unlinked = status; 1234 return 0; 1235 } 1236 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb); 1237 1238 /** 1239 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue 1240 * @hcd: host controller to which @urb was submitted 1241 * @urb: URB being unlinked 1242 * 1243 * Host controller drivers should call this routine before calling 1244 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and 1245 * interrupts must be disabled. The actions carried out here are required 1246 * for URB completion. 1247 */ 1248 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb) 1249 { 1250 /* clear all state linking urb to this dev (and hcd) */ 1251 spin_lock(&hcd_urb_list_lock); 1252 list_del_init(&urb->urb_list); 1253 spin_unlock(&hcd_urb_list_lock); 1254 } 1255 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); 1256 1257 /* 1258 * Some usb host controllers can only perform dma using a small SRAM area, 1259 * or have restrictions on addressable DRAM. 1260 * The usb core itself is however optimized for host controllers that can dma 1261 * using regular system memory - like pci devices doing bus mastering. 1262 * 1263 * To support host controllers with limited dma capabilities we provide dma 1264 * bounce buffers. This feature can be enabled by initializing 1265 * hcd->localmem_pool using usb_hcd_setup_local_mem(). 1266 * 1267 * The initialized hcd->localmem_pool then tells the usb code to allocate all 1268 * data for dma using the genalloc API. 1269 * 1270 * So, to summarize... 1271 * 1272 * - We need "local" memory, canonical example being 1273 * a small SRAM on a discrete controller being the 1274 * only memory that the controller can read ... 1275 * (a) "normal" kernel memory is no good, and 1276 * (b) there's not enough to share 1277 * 1278 * - So we use that, even though the primary requirement 1279 * is that the memory be "local" (hence addressable 1280 * by that device), not "coherent". 1281 * 1282 */ 1283 1284 static int hcd_alloc_coherent(struct usb_bus *bus, 1285 gfp_t mem_flags, dma_addr_t *dma_handle, 1286 void **vaddr_handle, size_t size, 1287 enum dma_data_direction dir) 1288 { 1289 unsigned char *vaddr; 1290 1291 if (*vaddr_handle == NULL) { 1292 WARN_ON_ONCE(1); 1293 return -EFAULT; 1294 } 1295 1296 vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long), 1297 mem_flags, dma_handle); 1298 if (!vaddr) 1299 return -ENOMEM; 1300 1301 /* 1302 * Store the virtual address of the buffer at the end 1303 * of the allocated dma buffer. The size of the buffer 1304 * may be uneven so use unaligned functions instead 1305 * of just rounding up. It makes sense to optimize for 1306 * memory footprint over access speed since the amount 1307 * of memory available for dma may be limited. 1308 */ 1309 put_unaligned((unsigned long)*vaddr_handle, 1310 (unsigned long *)(vaddr + size)); 1311 1312 if (dir == DMA_TO_DEVICE) 1313 memcpy(vaddr, *vaddr_handle, size); 1314 1315 *vaddr_handle = vaddr; 1316 return 0; 1317 } 1318 1319 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle, 1320 void **vaddr_handle, size_t size, 1321 enum dma_data_direction dir) 1322 { 1323 unsigned char *vaddr = *vaddr_handle; 1324 1325 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size)); 1326 1327 if (dir == DMA_FROM_DEVICE) 1328 memcpy(vaddr, *vaddr_handle, size); 1329 1330 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle); 1331 1332 *vaddr_handle = vaddr; 1333 *dma_handle = 0; 1334 } 1335 1336 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb) 1337 { 1338 if (IS_ENABLED(CONFIG_HAS_DMA) && 1339 (urb->transfer_flags & URB_SETUP_MAP_SINGLE)) 1340 dma_unmap_single(hcd->self.sysdev, 1341 urb->setup_dma, 1342 sizeof(struct usb_ctrlrequest), 1343 DMA_TO_DEVICE); 1344 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL) 1345 hcd_free_coherent(urb->dev->bus, 1346 &urb->setup_dma, 1347 (void **) &urb->setup_packet, 1348 sizeof(struct usb_ctrlrequest), 1349 DMA_TO_DEVICE); 1350 1351 /* Make it safe to call this routine more than once */ 1352 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL); 1353 } 1354 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma); 1355 1356 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1357 { 1358 if (hcd->driver->unmap_urb_for_dma) 1359 hcd->driver->unmap_urb_for_dma(hcd, urb); 1360 else 1361 usb_hcd_unmap_urb_for_dma(hcd, urb); 1362 } 1363 1364 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) 1365 { 1366 enum dma_data_direction dir; 1367 1368 usb_hcd_unmap_urb_setup_for_dma(hcd, urb); 1369 1370 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1371 if (IS_ENABLED(CONFIG_HAS_DMA) && 1372 (urb->transfer_flags & URB_DMA_MAP_SG)) 1373 dma_unmap_sg(hcd->self.sysdev, 1374 urb->sg, 1375 urb->num_sgs, 1376 dir); 1377 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1378 (urb->transfer_flags & URB_DMA_MAP_PAGE)) 1379 dma_unmap_page(hcd->self.sysdev, 1380 urb->transfer_dma, 1381 urb->transfer_buffer_length, 1382 dir); 1383 else if (IS_ENABLED(CONFIG_HAS_DMA) && 1384 (urb->transfer_flags & URB_DMA_MAP_SINGLE)) 1385 dma_unmap_single(hcd->self.sysdev, 1386 urb->transfer_dma, 1387 urb->transfer_buffer_length, 1388 dir); 1389 else if (urb->transfer_flags & URB_MAP_LOCAL) 1390 hcd_free_coherent(urb->dev->bus, 1391 &urb->transfer_dma, 1392 &urb->transfer_buffer, 1393 urb->transfer_buffer_length, 1394 dir); 1395 1396 /* Make it safe to call this routine more than once */ 1397 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE | 1398 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL); 1399 } 1400 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma); 1401 1402 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1403 gfp_t mem_flags) 1404 { 1405 if (hcd->driver->map_urb_for_dma) 1406 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags); 1407 else 1408 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); 1409 } 1410 1411 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, 1412 gfp_t mem_flags) 1413 { 1414 enum dma_data_direction dir; 1415 int ret = 0; 1416 1417 /* Map the URB's buffers for DMA access. 1418 * Lower level HCD code should use *_dma exclusively, 1419 * unless it uses pio or talks to another transport, 1420 * or uses the provided scatter gather list for bulk. 1421 */ 1422 1423 if (usb_endpoint_xfer_control(&urb->ep->desc)) { 1424 if (hcd->self.uses_pio_for_control) 1425 return ret; 1426 if (hcd->localmem_pool) { 1427 ret = hcd_alloc_coherent( 1428 urb->dev->bus, mem_flags, 1429 &urb->setup_dma, 1430 (void **)&urb->setup_packet, 1431 sizeof(struct usb_ctrlrequest), 1432 DMA_TO_DEVICE); 1433 if (ret) 1434 return ret; 1435 urb->transfer_flags |= URB_SETUP_MAP_LOCAL; 1436 } else if (hcd_uses_dma(hcd)) { 1437 if (object_is_on_stack(urb->setup_packet)) { 1438 WARN_ONCE(1, "setup packet is on stack\n"); 1439 return -EAGAIN; 1440 } 1441 1442 urb->setup_dma = dma_map_single( 1443 hcd->self.sysdev, 1444 urb->setup_packet, 1445 sizeof(struct usb_ctrlrequest), 1446 DMA_TO_DEVICE); 1447 if (dma_mapping_error(hcd->self.sysdev, 1448 urb->setup_dma)) 1449 return -EAGAIN; 1450 urb->transfer_flags |= URB_SETUP_MAP_SINGLE; 1451 } 1452 } 1453 1454 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE; 1455 if (urb->transfer_buffer_length != 0 1456 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) { 1457 if (hcd->localmem_pool) { 1458 ret = hcd_alloc_coherent( 1459 urb->dev->bus, mem_flags, 1460 &urb->transfer_dma, 1461 &urb->transfer_buffer, 1462 urb->transfer_buffer_length, 1463 dir); 1464 if (ret == 0) 1465 urb->transfer_flags |= URB_MAP_LOCAL; 1466 } else if (hcd_uses_dma(hcd)) { 1467 if (urb->num_sgs) { 1468 int n; 1469 1470 /* We don't support sg for isoc transfers ! */ 1471 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) { 1472 WARN_ON(1); 1473 return -EINVAL; 1474 } 1475 1476 n = dma_map_sg( 1477 hcd->self.sysdev, 1478 urb->sg, 1479 urb->num_sgs, 1480 dir); 1481 if (!n) 1482 ret = -EAGAIN; 1483 else 1484 urb->transfer_flags |= URB_DMA_MAP_SG; 1485 urb->num_mapped_sgs = n; 1486 if (n != urb->num_sgs) 1487 urb->transfer_flags |= 1488 URB_DMA_SG_COMBINED; 1489 } else if (urb->sg) { 1490 struct scatterlist *sg = urb->sg; 1491 urb->transfer_dma = dma_map_page( 1492 hcd->self.sysdev, 1493 sg_page(sg), 1494 sg->offset, 1495 urb->transfer_buffer_length, 1496 dir); 1497 if (dma_mapping_error(hcd->self.sysdev, 1498 urb->transfer_dma)) 1499 ret = -EAGAIN; 1500 else 1501 urb->transfer_flags |= URB_DMA_MAP_PAGE; 1502 } else if (object_is_on_stack(urb->transfer_buffer)) { 1503 WARN_ONCE(1, "transfer buffer is on stack\n"); 1504 ret = -EAGAIN; 1505 } else { 1506 urb->transfer_dma = dma_map_single( 1507 hcd->self.sysdev, 1508 urb->transfer_buffer, 1509 urb->transfer_buffer_length, 1510 dir); 1511 if (dma_mapping_error(hcd->self.sysdev, 1512 urb->transfer_dma)) 1513 ret = -EAGAIN; 1514 else 1515 urb->transfer_flags |= URB_DMA_MAP_SINGLE; 1516 } 1517 } 1518 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE | 1519 URB_SETUP_MAP_LOCAL))) 1520 usb_hcd_unmap_urb_for_dma(hcd, urb); 1521 } 1522 return ret; 1523 } 1524 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma); 1525 1526 /*-------------------------------------------------------------------------*/ 1527 1528 /* may be called in any context with a valid urb->dev usecount 1529 * caller surrenders "ownership" of urb 1530 * expects usb_submit_urb() to have sanity checked and conditioned all 1531 * inputs in the urb 1532 */ 1533 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags) 1534 { 1535 int status; 1536 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1537 1538 /* increment urb's reference count as part of giving it to the HCD 1539 * (which will control it). HCD guarantees that it either returns 1540 * an error or calls giveback(), but not both. 1541 */ 1542 usb_get_urb(urb); 1543 atomic_inc(&urb->use_count); 1544 atomic_inc(&urb->dev->urbnum); 1545 usbmon_urb_submit(&hcd->self, urb); 1546 1547 /* NOTE requirements on root-hub callers (usbfs and the hub 1548 * driver, for now): URBs' urb->transfer_buffer must be 1549 * valid and usb_buffer_{sync,unmap}() not be needed, since 1550 * they could clobber root hub response data. Also, control 1551 * URBs must be submitted in process context with interrupts 1552 * enabled. 1553 */ 1554 1555 if (is_root_hub(urb->dev)) { 1556 status = rh_urb_enqueue(hcd, urb); 1557 } else { 1558 status = map_urb_for_dma(hcd, urb, mem_flags); 1559 if (likely(status == 0)) { 1560 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags); 1561 if (unlikely(status)) 1562 unmap_urb_for_dma(hcd, urb); 1563 } 1564 } 1565 1566 if (unlikely(status)) { 1567 usbmon_urb_submit_error(&hcd->self, urb, status); 1568 urb->hcpriv = NULL; 1569 INIT_LIST_HEAD(&urb->urb_list); 1570 atomic_dec(&urb->use_count); 1571 /* 1572 * Order the write of urb->use_count above before the read 1573 * of urb->reject below. Pairs with the memory barriers in 1574 * usb_kill_urb() and usb_poison_urb(). 1575 */ 1576 smp_mb__after_atomic(); 1577 1578 atomic_dec(&urb->dev->urbnum); 1579 if (atomic_read(&urb->reject)) 1580 wake_up(&usb_kill_urb_queue); 1581 usb_put_urb(urb); 1582 } 1583 return status; 1584 } 1585 1586 /*-------------------------------------------------------------------------*/ 1587 1588 /* this makes the hcd giveback() the urb more quickly, by kicking it 1589 * off hardware queues (which may take a while) and returning it as 1590 * soon as practical. we've already set up the urb's return status, 1591 * but we can't know if the callback completed already. 1592 */ 1593 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status) 1594 { 1595 int value; 1596 1597 if (is_root_hub(urb->dev)) 1598 value = usb_rh_urb_dequeue(hcd, urb, status); 1599 else { 1600 1601 /* The only reason an HCD might fail this call is if 1602 * it has not yet fully queued the urb to begin with. 1603 * Such failures should be harmless. */ 1604 value = hcd->driver->urb_dequeue(hcd, urb, status); 1605 } 1606 return value; 1607 } 1608 1609 /* 1610 * called in any context 1611 * 1612 * caller guarantees urb won't be recycled till both unlink() 1613 * and the urb's completion function return 1614 */ 1615 int usb_hcd_unlink_urb (struct urb *urb, int status) 1616 { 1617 struct usb_hcd *hcd; 1618 struct usb_device *udev = urb->dev; 1619 int retval = -EIDRM; 1620 unsigned long flags; 1621 1622 /* Prevent the device and bus from going away while 1623 * the unlink is carried out. If they are already gone 1624 * then urb->use_count must be 0, since disconnected 1625 * devices can't have any active URBs. 1626 */ 1627 spin_lock_irqsave(&hcd_urb_unlink_lock, flags); 1628 if (atomic_read(&urb->use_count) > 0) { 1629 retval = 0; 1630 usb_get_dev(udev); 1631 } 1632 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags); 1633 if (retval == 0) { 1634 hcd = bus_to_hcd(urb->dev->bus); 1635 retval = unlink1(hcd, urb, status); 1636 if (retval == 0) 1637 retval = -EINPROGRESS; 1638 else if (retval != -EIDRM && retval != -EBUSY) 1639 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n", 1640 urb, retval); 1641 usb_put_dev(udev); 1642 } 1643 return retval; 1644 } 1645 1646 /*-------------------------------------------------------------------------*/ 1647 1648 static void __usb_hcd_giveback_urb(struct urb *urb) 1649 { 1650 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus); 1651 struct usb_anchor *anchor = urb->anchor; 1652 int status = urb->unlinked; 1653 1654 urb->hcpriv = NULL; 1655 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) && 1656 urb->actual_length < urb->transfer_buffer_length && 1657 !status)) 1658 status = -EREMOTEIO; 1659 1660 unmap_urb_for_dma(hcd, urb); 1661 usbmon_urb_complete(&hcd->self, urb, status); 1662 usb_anchor_suspend_wakeups(anchor); 1663 usb_unanchor_urb(urb); 1664 if (likely(status == 0)) 1665 usb_led_activity(USB_LED_EVENT_HOST); 1666 1667 /* pass ownership to the completion handler */ 1668 urb->status = status; 1669 /* 1670 * This function can be called in task context inside another remote 1671 * coverage collection section, but kcov doesn't support that kind of 1672 * recursion yet. Only collect coverage in softirq context for now. 1673 */ 1674 kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum); 1675 urb->complete(urb); 1676 kcov_remote_stop_softirq(); 1677 1678 usb_anchor_resume_wakeups(anchor); 1679 atomic_dec(&urb->use_count); 1680 /* 1681 * Order the write of urb->use_count above before the read 1682 * of urb->reject below. Pairs with the memory barriers in 1683 * usb_kill_urb() and usb_poison_urb(). 1684 */ 1685 smp_mb__after_atomic(); 1686 1687 if (unlikely(atomic_read(&urb->reject))) 1688 wake_up(&usb_kill_urb_queue); 1689 usb_put_urb(urb); 1690 } 1691 1692 static void usb_giveback_urb_bh(struct tasklet_struct *t) 1693 { 1694 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh); 1695 struct list_head local_list; 1696 1697 spin_lock_irq(&bh->lock); 1698 bh->running = true; 1699 list_replace_init(&bh->head, &local_list); 1700 spin_unlock_irq(&bh->lock); 1701 1702 while (!list_empty(&local_list)) { 1703 struct urb *urb; 1704 1705 urb = list_entry(local_list.next, struct urb, urb_list); 1706 list_del_init(&urb->urb_list); 1707 bh->completing_ep = urb->ep; 1708 __usb_hcd_giveback_urb(urb); 1709 bh->completing_ep = NULL; 1710 } 1711 1712 /* 1713 * giveback new URBs next time to prevent this function 1714 * from not exiting for a long time. 1715 */ 1716 spin_lock_irq(&bh->lock); 1717 if (!list_empty(&bh->head)) { 1718 if (bh->high_prio) 1719 tasklet_hi_schedule(&bh->bh); 1720 else 1721 tasklet_schedule(&bh->bh); 1722 } 1723 bh->running = false; 1724 spin_unlock_irq(&bh->lock); 1725 } 1726 1727 /** 1728 * usb_hcd_giveback_urb - return URB from HCD to device driver 1729 * @hcd: host controller returning the URB 1730 * @urb: urb being returned to the USB device driver. 1731 * @status: completion status code for the URB. 1732 * 1733 * Context: atomic. The completion callback is invoked in caller's context. 1734 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet 1735 * context (except for URBs submitted to the root hub which always complete in 1736 * caller's context). 1737 * 1738 * This hands the URB from HCD to its USB device driver, using its 1739 * completion function. The HCD has freed all per-urb resources 1740 * (and is done using urb->hcpriv). It also released all HCD locks; 1741 * the device driver won't cause problems if it frees, modifies, 1742 * or resubmits this URB. 1743 * 1744 * If @urb was unlinked, the value of @status will be overridden by 1745 * @urb->unlinked. Erroneous short transfers are detected in case 1746 * the HCD hasn't checked for them. 1747 */ 1748 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status) 1749 { 1750 struct giveback_urb_bh *bh; 1751 bool running; 1752 1753 /* pass status to tasklet via unlinked */ 1754 if (likely(!urb->unlinked)) 1755 urb->unlinked = status; 1756 1757 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) { 1758 __usb_hcd_giveback_urb(urb); 1759 return; 1760 } 1761 1762 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) 1763 bh = &hcd->high_prio_bh; 1764 else 1765 bh = &hcd->low_prio_bh; 1766 1767 spin_lock(&bh->lock); 1768 list_add_tail(&urb->urb_list, &bh->head); 1769 running = bh->running; 1770 spin_unlock(&bh->lock); 1771 1772 if (running) 1773 ; 1774 else if (bh->high_prio) 1775 tasklet_hi_schedule(&bh->bh); 1776 else 1777 tasklet_schedule(&bh->bh); 1778 } 1779 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb); 1780 1781 /*-------------------------------------------------------------------------*/ 1782 1783 /* Cancel all URBs pending on this endpoint and wait for the endpoint's 1784 * queue to drain completely. The caller must first insure that no more 1785 * URBs can be submitted for this endpoint. 1786 */ 1787 void usb_hcd_flush_endpoint(struct usb_device *udev, 1788 struct usb_host_endpoint *ep) 1789 { 1790 struct usb_hcd *hcd; 1791 struct urb *urb; 1792 1793 if (!ep) 1794 return; 1795 might_sleep(); 1796 hcd = bus_to_hcd(udev->bus); 1797 1798 /* No more submits can occur */ 1799 spin_lock_irq(&hcd_urb_list_lock); 1800 rescan: 1801 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) { 1802 int is_in; 1803 1804 if (urb->unlinked) 1805 continue; 1806 usb_get_urb (urb); 1807 is_in = usb_urb_dir_in(urb); 1808 spin_unlock(&hcd_urb_list_lock); 1809 1810 /* kick hcd */ 1811 unlink1(hcd, urb, -ESHUTDOWN); 1812 dev_dbg (hcd->self.controller, 1813 "shutdown urb %pK ep%d%s-%s\n", 1814 urb, usb_endpoint_num(&ep->desc), 1815 is_in ? "in" : "out", 1816 usb_ep_type_string(usb_endpoint_type(&ep->desc))); 1817 usb_put_urb (urb); 1818 1819 /* list contents may have changed */ 1820 spin_lock(&hcd_urb_list_lock); 1821 goto rescan; 1822 } 1823 spin_unlock_irq(&hcd_urb_list_lock); 1824 1825 /* Wait until the endpoint queue is completely empty */ 1826 while (!list_empty (&ep->urb_list)) { 1827 spin_lock_irq(&hcd_urb_list_lock); 1828 1829 /* The list may have changed while we acquired the spinlock */ 1830 urb = NULL; 1831 if (!list_empty (&ep->urb_list)) { 1832 urb = list_entry (ep->urb_list.prev, struct urb, 1833 urb_list); 1834 usb_get_urb (urb); 1835 } 1836 spin_unlock_irq(&hcd_urb_list_lock); 1837 1838 if (urb) { 1839 usb_kill_urb (urb); 1840 usb_put_urb (urb); 1841 } 1842 } 1843 } 1844 1845 /** 1846 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds 1847 * the bus bandwidth 1848 * @udev: target &usb_device 1849 * @new_config: new configuration to install 1850 * @cur_alt: the current alternate interface setting 1851 * @new_alt: alternate interface setting that is being installed 1852 * 1853 * To change configurations, pass in the new configuration in new_config, 1854 * and pass NULL for cur_alt and new_alt. 1855 * 1856 * To reset a device's configuration (put the device in the ADDRESSED state), 1857 * pass in NULL for new_config, cur_alt, and new_alt. 1858 * 1859 * To change alternate interface settings, pass in NULL for new_config, 1860 * pass in the current alternate interface setting in cur_alt, 1861 * and pass in the new alternate interface setting in new_alt. 1862 * 1863 * Return: An error if the requested bandwidth change exceeds the 1864 * bus bandwidth or host controller internal resources. 1865 */ 1866 int usb_hcd_alloc_bandwidth(struct usb_device *udev, 1867 struct usb_host_config *new_config, 1868 struct usb_host_interface *cur_alt, 1869 struct usb_host_interface *new_alt) 1870 { 1871 int num_intfs, i, j; 1872 struct usb_host_interface *alt = NULL; 1873 int ret = 0; 1874 struct usb_hcd *hcd; 1875 struct usb_host_endpoint *ep; 1876 1877 hcd = bus_to_hcd(udev->bus); 1878 if (!hcd->driver->check_bandwidth) 1879 return 0; 1880 1881 /* Configuration is being removed - set configuration 0 */ 1882 if (!new_config && !cur_alt) { 1883 for (i = 1; i < 16; ++i) { 1884 ep = udev->ep_out[i]; 1885 if (ep) 1886 hcd->driver->drop_endpoint(hcd, udev, ep); 1887 ep = udev->ep_in[i]; 1888 if (ep) 1889 hcd->driver->drop_endpoint(hcd, udev, ep); 1890 } 1891 hcd->driver->check_bandwidth(hcd, udev); 1892 return 0; 1893 } 1894 /* Check if the HCD says there's enough bandwidth. Enable all endpoints 1895 * each interface's alt setting 0 and ask the HCD to check the bandwidth 1896 * of the bus. There will always be bandwidth for endpoint 0, so it's 1897 * ok to exclude it. 1898 */ 1899 if (new_config) { 1900 num_intfs = new_config->desc.bNumInterfaces; 1901 /* Remove endpoints (except endpoint 0, which is always on the 1902 * schedule) from the old config from the schedule 1903 */ 1904 for (i = 1; i < 16; ++i) { 1905 ep = udev->ep_out[i]; 1906 if (ep) { 1907 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1908 if (ret < 0) 1909 goto reset; 1910 } 1911 ep = udev->ep_in[i]; 1912 if (ep) { 1913 ret = hcd->driver->drop_endpoint(hcd, udev, ep); 1914 if (ret < 0) 1915 goto reset; 1916 } 1917 } 1918 for (i = 0; i < num_intfs; ++i) { 1919 struct usb_host_interface *first_alt; 1920 int iface_num; 1921 1922 first_alt = &new_config->intf_cache[i]->altsetting[0]; 1923 iface_num = first_alt->desc.bInterfaceNumber; 1924 /* Set up endpoints for alternate interface setting 0 */ 1925 alt = usb_find_alt_setting(new_config, iface_num, 0); 1926 if (!alt) 1927 /* No alt setting 0? Pick the first setting. */ 1928 alt = first_alt; 1929 1930 for (j = 0; j < alt->desc.bNumEndpoints; j++) { 1931 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]); 1932 if (ret < 0) 1933 goto reset; 1934 } 1935 } 1936 } 1937 if (cur_alt && new_alt) { 1938 struct usb_interface *iface = usb_ifnum_to_if(udev, 1939 cur_alt->desc.bInterfaceNumber); 1940 1941 if (!iface) 1942 return -EINVAL; 1943 if (iface->resetting_device) { 1944 /* 1945 * The USB core just reset the device, so the xHCI host 1946 * and the device will think alt setting 0 is installed. 1947 * However, the USB core will pass in the alternate 1948 * setting installed before the reset as cur_alt. Dig 1949 * out the alternate setting 0 structure, or the first 1950 * alternate setting if a broken device doesn't have alt 1951 * setting 0. 1952 */ 1953 cur_alt = usb_altnum_to_altsetting(iface, 0); 1954 if (!cur_alt) 1955 cur_alt = &iface->altsetting[0]; 1956 } 1957 1958 /* Drop all the endpoints in the current alt setting */ 1959 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) { 1960 ret = hcd->driver->drop_endpoint(hcd, udev, 1961 &cur_alt->endpoint[i]); 1962 if (ret < 0) 1963 goto reset; 1964 } 1965 /* Add all the endpoints in the new alt setting */ 1966 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) { 1967 ret = hcd->driver->add_endpoint(hcd, udev, 1968 &new_alt->endpoint[i]); 1969 if (ret < 0) 1970 goto reset; 1971 } 1972 } 1973 ret = hcd->driver->check_bandwidth(hcd, udev); 1974 reset: 1975 if (ret < 0) 1976 hcd->driver->reset_bandwidth(hcd, udev); 1977 return ret; 1978 } 1979 1980 /* Disables the endpoint: synchronizes with the hcd to make sure all 1981 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must 1982 * have been called previously. Use for set_configuration, set_interface, 1983 * driver removal, physical disconnect. 1984 * 1985 * example: a qh stored in ep->hcpriv, holding state related to endpoint 1986 * type, maxpacket size, toggle, halt status, and scheduling. 1987 */ 1988 void usb_hcd_disable_endpoint(struct usb_device *udev, 1989 struct usb_host_endpoint *ep) 1990 { 1991 struct usb_hcd *hcd; 1992 1993 might_sleep(); 1994 hcd = bus_to_hcd(udev->bus); 1995 if (hcd->driver->endpoint_disable) 1996 hcd->driver->endpoint_disable(hcd, ep); 1997 } 1998 1999 /** 2000 * usb_hcd_reset_endpoint - reset host endpoint state 2001 * @udev: USB device. 2002 * @ep: the endpoint to reset. 2003 * 2004 * Resets any host endpoint state such as the toggle bit, sequence 2005 * number and current window. 2006 */ 2007 void usb_hcd_reset_endpoint(struct usb_device *udev, 2008 struct usb_host_endpoint *ep) 2009 { 2010 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2011 2012 if (hcd->driver->endpoint_reset) 2013 hcd->driver->endpoint_reset(hcd, ep); 2014 else { 2015 int epnum = usb_endpoint_num(&ep->desc); 2016 int is_out = usb_endpoint_dir_out(&ep->desc); 2017 int is_control = usb_endpoint_xfer_control(&ep->desc); 2018 2019 usb_settoggle(udev, epnum, is_out, 0); 2020 if (is_control) 2021 usb_settoggle(udev, epnum, !is_out, 0); 2022 } 2023 } 2024 2025 /** 2026 * usb_alloc_streams - allocate bulk endpoint stream IDs. 2027 * @interface: alternate setting that includes all endpoints. 2028 * @eps: array of endpoints that need streams. 2029 * @num_eps: number of endpoints in the array. 2030 * @num_streams: number of streams to allocate. 2031 * @mem_flags: flags hcd should use to allocate memory. 2032 * 2033 * Sets up a group of bulk endpoints to have @num_streams stream IDs available. 2034 * Drivers may queue multiple transfers to different stream IDs, which may 2035 * complete in a different order than they were queued. 2036 * 2037 * Return: On success, the number of allocated streams. On failure, a negative 2038 * error code. 2039 */ 2040 int usb_alloc_streams(struct usb_interface *interface, 2041 struct usb_host_endpoint **eps, unsigned int num_eps, 2042 unsigned int num_streams, gfp_t mem_flags) 2043 { 2044 struct usb_hcd *hcd; 2045 struct usb_device *dev; 2046 int i, ret; 2047 2048 dev = interface_to_usbdev(interface); 2049 hcd = bus_to_hcd(dev->bus); 2050 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams) 2051 return -EINVAL; 2052 if (dev->speed < USB_SPEED_SUPER) 2053 return -EINVAL; 2054 if (dev->state < USB_STATE_CONFIGURED) 2055 return -ENODEV; 2056 2057 for (i = 0; i < num_eps; i++) { 2058 /* Streams only apply to bulk endpoints. */ 2059 if (!usb_endpoint_xfer_bulk(&eps[i]->desc)) 2060 return -EINVAL; 2061 /* Re-alloc is not allowed */ 2062 if (eps[i]->streams) 2063 return -EINVAL; 2064 } 2065 2066 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps, 2067 num_streams, mem_flags); 2068 if (ret < 0) 2069 return ret; 2070 2071 for (i = 0; i < num_eps; i++) 2072 eps[i]->streams = ret; 2073 2074 return ret; 2075 } 2076 EXPORT_SYMBOL_GPL(usb_alloc_streams); 2077 2078 /** 2079 * usb_free_streams - free bulk endpoint stream IDs. 2080 * @interface: alternate setting that includes all endpoints. 2081 * @eps: array of endpoints to remove streams from. 2082 * @num_eps: number of endpoints in the array. 2083 * @mem_flags: flags hcd should use to allocate memory. 2084 * 2085 * Reverts a group of bulk endpoints back to not using stream IDs. 2086 * Can fail if we are given bad arguments, or HCD is broken. 2087 * 2088 * Return: 0 on success. On failure, a negative error code. 2089 */ 2090 int usb_free_streams(struct usb_interface *interface, 2091 struct usb_host_endpoint **eps, unsigned int num_eps, 2092 gfp_t mem_flags) 2093 { 2094 struct usb_hcd *hcd; 2095 struct usb_device *dev; 2096 int i, ret; 2097 2098 dev = interface_to_usbdev(interface); 2099 hcd = bus_to_hcd(dev->bus); 2100 if (dev->speed < USB_SPEED_SUPER) 2101 return -EINVAL; 2102 2103 /* Double-free is not allowed */ 2104 for (i = 0; i < num_eps; i++) 2105 if (!eps[i] || !eps[i]->streams) 2106 return -EINVAL; 2107 2108 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags); 2109 if (ret < 0) 2110 return ret; 2111 2112 for (i = 0; i < num_eps; i++) 2113 eps[i]->streams = 0; 2114 2115 return ret; 2116 } 2117 EXPORT_SYMBOL_GPL(usb_free_streams); 2118 2119 /* Protect against drivers that try to unlink URBs after the device 2120 * is gone, by waiting until all unlinks for @udev are finished. 2121 * Since we don't currently track URBs by device, simply wait until 2122 * nothing is running in the locked region of usb_hcd_unlink_urb(). 2123 */ 2124 void usb_hcd_synchronize_unlinks(struct usb_device *udev) 2125 { 2126 spin_lock_irq(&hcd_urb_unlink_lock); 2127 spin_unlock_irq(&hcd_urb_unlink_lock); 2128 } 2129 2130 /*-------------------------------------------------------------------------*/ 2131 2132 /* called in any context */ 2133 int usb_hcd_get_frame_number (struct usb_device *udev) 2134 { 2135 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2136 2137 if (!HCD_RH_RUNNING(hcd)) 2138 return -ESHUTDOWN; 2139 return hcd->driver->get_frame_number (hcd); 2140 } 2141 2142 /*-------------------------------------------------------------------------*/ 2143 #ifdef CONFIG_USB_HCD_TEST_MODE 2144 2145 static void usb_ehset_completion(struct urb *urb) 2146 { 2147 struct completion *done = urb->context; 2148 2149 complete(done); 2150 } 2151 /* 2152 * Allocate and initialize a control URB. This request will be used by the 2153 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages 2154 * of the GetDescriptor request are sent 15 seconds after the SETUP stage. 2155 * Return NULL if failed. 2156 */ 2157 static struct urb *request_single_step_set_feature_urb( 2158 struct usb_device *udev, 2159 void *dr, 2160 void *buf, 2161 struct completion *done) 2162 { 2163 struct urb *urb; 2164 struct usb_hcd *hcd = bus_to_hcd(udev->bus); 2165 2166 urb = usb_alloc_urb(0, GFP_KERNEL); 2167 if (!urb) 2168 return NULL; 2169 2170 urb->pipe = usb_rcvctrlpipe(udev, 0); 2171 2172 urb->ep = &udev->ep0; 2173 urb->dev = udev; 2174 urb->setup_packet = (void *)dr; 2175 urb->transfer_buffer = buf; 2176 urb->transfer_buffer_length = USB_DT_DEVICE_SIZE; 2177 urb->complete = usb_ehset_completion; 2178 urb->status = -EINPROGRESS; 2179 urb->actual_length = 0; 2180 urb->transfer_flags = URB_DIR_IN; 2181 usb_get_urb(urb); 2182 atomic_inc(&urb->use_count); 2183 atomic_inc(&urb->dev->urbnum); 2184 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) { 2185 usb_put_urb(urb); 2186 usb_free_urb(urb); 2187 return NULL; 2188 } 2189 2190 urb->context = done; 2191 return urb; 2192 } 2193 2194 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port) 2195 { 2196 int retval = -ENOMEM; 2197 struct usb_ctrlrequest *dr; 2198 struct urb *urb; 2199 struct usb_device *udev; 2200 struct usb_device_descriptor *buf; 2201 DECLARE_COMPLETION_ONSTACK(done); 2202 2203 /* Obtain udev of the rhub's child port */ 2204 udev = usb_hub_find_child(hcd->self.root_hub, port); 2205 if (!udev) { 2206 dev_err(hcd->self.controller, "No device attached to the RootHub\n"); 2207 return -ENODEV; 2208 } 2209 buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL); 2210 if (!buf) 2211 return -ENOMEM; 2212 2213 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL); 2214 if (!dr) { 2215 kfree(buf); 2216 return -ENOMEM; 2217 } 2218 2219 /* Fill Setup packet for GetDescriptor */ 2220 dr->bRequestType = USB_DIR_IN; 2221 dr->bRequest = USB_REQ_GET_DESCRIPTOR; 2222 dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8); 2223 dr->wIndex = 0; 2224 dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE); 2225 urb = request_single_step_set_feature_urb(udev, dr, buf, &done); 2226 if (!urb) 2227 goto cleanup; 2228 2229 /* Submit just the SETUP stage */ 2230 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1); 2231 if (retval) 2232 goto out1; 2233 if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) { 2234 usb_kill_urb(urb); 2235 retval = -ETIMEDOUT; 2236 dev_err(hcd->self.controller, 2237 "%s SETUP stage timed out on ep0\n", __func__); 2238 goto out1; 2239 } 2240 msleep(15 * 1000); 2241 2242 /* Complete remaining DATA and STATUS stages using the same URB */ 2243 urb->status = -EINPROGRESS; 2244 usb_get_urb(urb); 2245 atomic_inc(&urb->use_count); 2246 atomic_inc(&urb->dev->urbnum); 2247 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0); 2248 if (!retval && !wait_for_completion_timeout(&done, 2249 msecs_to_jiffies(2000))) { 2250 usb_kill_urb(urb); 2251 retval = -ETIMEDOUT; 2252 dev_err(hcd->self.controller, 2253 "%s IN stage timed out on ep0\n", __func__); 2254 } 2255 out1: 2256 usb_free_urb(urb); 2257 cleanup: 2258 kfree(dr); 2259 kfree(buf); 2260 return retval; 2261 } 2262 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature); 2263 #endif /* CONFIG_USB_HCD_TEST_MODE */ 2264 2265 /*-------------------------------------------------------------------------*/ 2266 2267 #ifdef CONFIG_PM 2268 2269 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg) 2270 { 2271 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2272 int status; 2273 int old_state = hcd->state; 2274 2275 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n", 2276 (PMSG_IS_AUTO(msg) ? "auto-" : ""), 2277 rhdev->do_remote_wakeup); 2278 if (HCD_DEAD(hcd)) { 2279 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend"); 2280 return 0; 2281 } 2282 2283 if (!hcd->driver->bus_suspend) { 2284 status = -ENOENT; 2285 } else { 2286 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2287 hcd->state = HC_STATE_QUIESCING; 2288 status = hcd->driver->bus_suspend(hcd); 2289 } 2290 if (status == 0) { 2291 usb_set_device_state(rhdev, USB_STATE_SUSPENDED); 2292 hcd->state = HC_STATE_SUSPENDED; 2293 2294 if (!PMSG_IS_AUTO(msg)) 2295 usb_phy_roothub_suspend(hcd->self.sysdev, 2296 hcd->phy_roothub); 2297 2298 /* Did we race with a root-hub wakeup event? */ 2299 if (rhdev->do_remote_wakeup) { 2300 char buffer[6]; 2301 2302 status = hcd->driver->hub_status_data(hcd, buffer); 2303 if (status != 0) { 2304 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n"); 2305 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME); 2306 status = -EBUSY; 2307 } 2308 } 2309 } else { 2310 spin_lock_irq(&hcd_root_hub_lock); 2311 if (!HCD_DEAD(hcd)) { 2312 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2313 hcd->state = old_state; 2314 } 2315 spin_unlock_irq(&hcd_root_hub_lock); 2316 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2317 "suspend", status); 2318 } 2319 return status; 2320 } 2321 2322 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg) 2323 { 2324 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus); 2325 int status; 2326 int old_state = hcd->state; 2327 2328 dev_dbg(&rhdev->dev, "usb %sresume\n", 2329 (PMSG_IS_AUTO(msg) ? "auto-" : "")); 2330 if (HCD_DEAD(hcd)) { 2331 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume"); 2332 return 0; 2333 } 2334 2335 if (!PMSG_IS_AUTO(msg)) { 2336 status = usb_phy_roothub_resume(hcd->self.sysdev, 2337 hcd->phy_roothub); 2338 if (status) 2339 return status; 2340 } 2341 2342 if (!hcd->driver->bus_resume) 2343 return -ENOENT; 2344 if (HCD_RH_RUNNING(hcd)) 2345 return 0; 2346 2347 hcd->state = HC_STATE_RESUMING; 2348 status = hcd->driver->bus_resume(hcd); 2349 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2350 if (status == 0) 2351 status = usb_phy_roothub_calibrate(hcd->phy_roothub); 2352 2353 if (status == 0) { 2354 struct usb_device *udev; 2355 int port1; 2356 2357 spin_lock_irq(&hcd_root_hub_lock); 2358 if (!HCD_DEAD(hcd)) { 2359 usb_set_device_state(rhdev, rhdev->actconfig 2360 ? USB_STATE_CONFIGURED 2361 : USB_STATE_ADDRESS); 2362 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2363 hcd->state = HC_STATE_RUNNING; 2364 } 2365 spin_unlock_irq(&hcd_root_hub_lock); 2366 2367 /* 2368 * Check whether any of the enabled ports on the root hub are 2369 * unsuspended. If they are then a TRSMRCY delay is needed 2370 * (this is what the USB-2 spec calls a "global resume"). 2371 * Otherwise we can skip the delay. 2372 */ 2373 usb_hub_for_each_child(rhdev, port1, udev) { 2374 if (udev->state != USB_STATE_NOTATTACHED && 2375 !udev->port_is_suspended) { 2376 usleep_range(10000, 11000); /* TRSMRCY */ 2377 break; 2378 } 2379 } 2380 } else { 2381 hcd->state = old_state; 2382 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub); 2383 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n", 2384 "resume", status); 2385 if (status != -ESHUTDOWN) 2386 usb_hc_died(hcd); 2387 } 2388 return status; 2389 } 2390 2391 /* Workqueue routine for root-hub remote wakeup */ 2392 static void hcd_resume_work(struct work_struct *work) 2393 { 2394 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work); 2395 struct usb_device *udev = hcd->self.root_hub; 2396 2397 usb_remote_wakeup(udev); 2398 } 2399 2400 /** 2401 * usb_hcd_resume_root_hub - called by HCD to resume its root hub 2402 * @hcd: host controller for this root hub 2403 * 2404 * The USB host controller calls this function when its root hub is 2405 * suspended (with the remote wakeup feature enabled) and a remote 2406 * wakeup request is received. The routine submits a workqueue request 2407 * to resume the root hub (that is, manage its downstream ports again). 2408 */ 2409 void usb_hcd_resume_root_hub (struct usb_hcd *hcd) 2410 { 2411 unsigned long flags; 2412 2413 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2414 if (hcd->rh_registered) { 2415 pm_wakeup_event(&hcd->self.root_hub->dev, 0); 2416 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags); 2417 queue_work(pm_wq, &hcd->wakeup_work); 2418 } 2419 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2420 } 2421 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub); 2422 2423 #endif /* CONFIG_PM */ 2424 2425 /*-------------------------------------------------------------------------*/ 2426 2427 #ifdef CONFIG_USB_OTG 2428 2429 /** 2430 * usb_bus_start_enum - start immediate enumeration (for OTG) 2431 * @bus: the bus (must use hcd framework) 2432 * @port_num: 1-based number of port; usually bus->otg_port 2433 * Context: atomic 2434 * 2435 * Starts enumeration, with an immediate reset followed later by 2436 * hub_wq identifying and possibly configuring the device. 2437 * This is needed by OTG controller drivers, where it helps meet 2438 * HNP protocol timing requirements for starting a port reset. 2439 * 2440 * Return: 0 if successful. 2441 */ 2442 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num) 2443 { 2444 struct usb_hcd *hcd; 2445 int status = -EOPNOTSUPP; 2446 2447 /* NOTE: since HNP can't start by grabbing the bus's address0_sem, 2448 * boards with root hubs hooked up to internal devices (instead of 2449 * just the OTG port) may need more attention to resetting... 2450 */ 2451 hcd = bus_to_hcd(bus); 2452 if (port_num && hcd->driver->start_port_reset) 2453 status = hcd->driver->start_port_reset(hcd, port_num); 2454 2455 /* allocate hub_wq shortly after (first) root port reset finishes; 2456 * it may issue others, until at least 50 msecs have passed. 2457 */ 2458 if (status == 0) 2459 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10)); 2460 return status; 2461 } 2462 EXPORT_SYMBOL_GPL(usb_bus_start_enum); 2463 2464 #endif 2465 2466 /*-------------------------------------------------------------------------*/ 2467 2468 /** 2469 * usb_hcd_irq - hook IRQs to HCD framework (bus glue) 2470 * @irq: the IRQ being raised 2471 * @__hcd: pointer to the HCD whose IRQ is being signaled 2472 * 2473 * If the controller isn't HALTed, calls the driver's irq handler. 2474 * Checks whether the controller is now dead. 2475 * 2476 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise. 2477 */ 2478 irqreturn_t usb_hcd_irq (int irq, void *__hcd) 2479 { 2480 struct usb_hcd *hcd = __hcd; 2481 irqreturn_t rc; 2482 2483 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) 2484 rc = IRQ_NONE; 2485 else if (hcd->driver->irq(hcd) == IRQ_NONE) 2486 rc = IRQ_NONE; 2487 else 2488 rc = IRQ_HANDLED; 2489 2490 return rc; 2491 } 2492 EXPORT_SYMBOL_GPL(usb_hcd_irq); 2493 2494 /*-------------------------------------------------------------------------*/ 2495 2496 /* Workqueue routine for when the root-hub has died. */ 2497 static void hcd_died_work(struct work_struct *work) 2498 { 2499 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work); 2500 static char *env[] = { 2501 "ERROR=DEAD", 2502 NULL 2503 }; 2504 2505 /* Notify user space that the host controller has died */ 2506 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env); 2507 } 2508 2509 /** 2510 * usb_hc_died - report abnormal shutdown of a host controller (bus glue) 2511 * @hcd: pointer to the HCD representing the controller 2512 * 2513 * This is called by bus glue to report a USB host controller that died 2514 * while operations may still have been pending. It's called automatically 2515 * by the PCI glue, so only glue for non-PCI busses should need to call it. 2516 * 2517 * Only call this function with the primary HCD. 2518 */ 2519 void usb_hc_died (struct usb_hcd *hcd) 2520 { 2521 unsigned long flags; 2522 2523 dev_err (hcd->self.controller, "HC died; cleaning up\n"); 2524 2525 spin_lock_irqsave (&hcd_root_hub_lock, flags); 2526 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2527 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2528 if (hcd->rh_registered) { 2529 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2530 2531 /* make hub_wq clean up old urbs and devices */ 2532 usb_set_device_state (hcd->self.root_hub, 2533 USB_STATE_NOTATTACHED); 2534 usb_kick_hub_wq(hcd->self.root_hub); 2535 } 2536 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) { 2537 hcd = hcd->shared_hcd; 2538 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2539 set_bit(HCD_FLAG_DEAD, &hcd->flags); 2540 if (hcd->rh_registered) { 2541 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2542 2543 /* make hub_wq clean up old urbs and devices */ 2544 usb_set_device_state(hcd->self.root_hub, 2545 USB_STATE_NOTATTACHED); 2546 usb_kick_hub_wq(hcd->self.root_hub); 2547 } 2548 } 2549 2550 /* Handle the case where this function gets called with a shared HCD */ 2551 if (usb_hcd_is_primary_hcd(hcd)) 2552 schedule_work(&hcd->died_work); 2553 else 2554 schedule_work(&hcd->primary_hcd->died_work); 2555 2556 spin_unlock_irqrestore (&hcd_root_hub_lock, flags); 2557 /* Make sure that the other roothub is also deallocated. */ 2558 } 2559 EXPORT_SYMBOL_GPL (usb_hc_died); 2560 2561 /*-------------------------------------------------------------------------*/ 2562 2563 static void init_giveback_urb_bh(struct giveback_urb_bh *bh) 2564 { 2565 2566 spin_lock_init(&bh->lock); 2567 INIT_LIST_HEAD(&bh->head); 2568 tasklet_setup(&bh->bh, usb_giveback_urb_bh); 2569 } 2570 2571 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver, 2572 struct device *sysdev, struct device *dev, const char *bus_name, 2573 struct usb_hcd *primary_hcd) 2574 { 2575 struct usb_hcd *hcd; 2576 2577 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL); 2578 if (!hcd) 2579 return NULL; 2580 if (primary_hcd == NULL) { 2581 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex), 2582 GFP_KERNEL); 2583 if (!hcd->address0_mutex) { 2584 kfree(hcd); 2585 dev_dbg(dev, "hcd address0 mutex alloc failed\n"); 2586 return NULL; 2587 } 2588 mutex_init(hcd->address0_mutex); 2589 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex), 2590 GFP_KERNEL); 2591 if (!hcd->bandwidth_mutex) { 2592 kfree(hcd->address0_mutex); 2593 kfree(hcd); 2594 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n"); 2595 return NULL; 2596 } 2597 mutex_init(hcd->bandwidth_mutex); 2598 dev_set_drvdata(dev, hcd); 2599 } else { 2600 mutex_lock(&usb_port_peer_mutex); 2601 hcd->address0_mutex = primary_hcd->address0_mutex; 2602 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex; 2603 hcd->primary_hcd = primary_hcd; 2604 primary_hcd->primary_hcd = primary_hcd; 2605 hcd->shared_hcd = primary_hcd; 2606 primary_hcd->shared_hcd = hcd; 2607 mutex_unlock(&usb_port_peer_mutex); 2608 } 2609 2610 kref_init(&hcd->kref); 2611 2612 usb_bus_init(&hcd->self); 2613 hcd->self.controller = dev; 2614 hcd->self.sysdev = sysdev; 2615 hcd->self.bus_name = bus_name; 2616 2617 timer_setup(&hcd->rh_timer, rh_timer_func, 0); 2618 #ifdef CONFIG_PM 2619 INIT_WORK(&hcd->wakeup_work, hcd_resume_work); 2620 #endif 2621 2622 INIT_WORK(&hcd->died_work, hcd_died_work); 2623 2624 hcd->driver = driver; 2625 hcd->speed = driver->flags & HCD_MASK; 2626 hcd->product_desc = (driver->product_desc) ? driver->product_desc : 2627 "USB Host Controller"; 2628 return hcd; 2629 } 2630 EXPORT_SYMBOL_GPL(__usb_create_hcd); 2631 2632 /** 2633 * usb_create_shared_hcd - create and initialize an HCD structure 2634 * @driver: HC driver that will use this hcd 2635 * @dev: device for this HC, stored in hcd->self.controller 2636 * @bus_name: value to store in hcd->self.bus_name 2637 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the 2638 * PCI device. Only allocate certain resources for the primary HCD 2639 * 2640 * Context: task context, might sleep. 2641 * 2642 * Allocate a struct usb_hcd, with extra space at the end for the 2643 * HC driver's private data. Initialize the generic members of the 2644 * hcd structure. 2645 * 2646 * Return: On success, a pointer to the created and initialized HCD structure. 2647 * On failure (e.g. if memory is unavailable), %NULL. 2648 */ 2649 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver, 2650 struct device *dev, const char *bus_name, 2651 struct usb_hcd *primary_hcd) 2652 { 2653 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd); 2654 } 2655 EXPORT_SYMBOL_GPL(usb_create_shared_hcd); 2656 2657 /** 2658 * usb_create_hcd - create and initialize an HCD structure 2659 * @driver: HC driver that will use this hcd 2660 * @dev: device for this HC, stored in hcd->self.controller 2661 * @bus_name: value to store in hcd->self.bus_name 2662 * 2663 * Context: task context, might sleep. 2664 * 2665 * Allocate a struct usb_hcd, with extra space at the end for the 2666 * HC driver's private data. Initialize the generic members of the 2667 * hcd structure. 2668 * 2669 * Return: On success, a pointer to the created and initialized HCD 2670 * structure. On failure (e.g. if memory is unavailable), %NULL. 2671 */ 2672 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver, 2673 struct device *dev, const char *bus_name) 2674 { 2675 return __usb_create_hcd(driver, dev, dev, bus_name, NULL); 2676 } 2677 EXPORT_SYMBOL_GPL(usb_create_hcd); 2678 2679 /* 2680 * Roothubs that share one PCI device must also share the bandwidth mutex. 2681 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is 2682 * deallocated. 2683 * 2684 * Make sure to deallocate the bandwidth_mutex only when the last HCD is 2685 * freed. When hcd_release() is called for either hcd in a peer set, 2686 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers. 2687 */ 2688 static void hcd_release(struct kref *kref) 2689 { 2690 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref); 2691 2692 mutex_lock(&usb_port_peer_mutex); 2693 if (hcd->shared_hcd) { 2694 struct usb_hcd *peer = hcd->shared_hcd; 2695 2696 peer->shared_hcd = NULL; 2697 peer->primary_hcd = NULL; 2698 } else { 2699 kfree(hcd->address0_mutex); 2700 kfree(hcd->bandwidth_mutex); 2701 } 2702 mutex_unlock(&usb_port_peer_mutex); 2703 kfree(hcd); 2704 } 2705 2706 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd) 2707 { 2708 if (hcd) 2709 kref_get (&hcd->kref); 2710 return hcd; 2711 } 2712 EXPORT_SYMBOL_GPL(usb_get_hcd); 2713 2714 void usb_put_hcd (struct usb_hcd *hcd) 2715 { 2716 if (hcd) 2717 kref_put (&hcd->kref, hcd_release); 2718 } 2719 EXPORT_SYMBOL_GPL(usb_put_hcd); 2720 2721 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd) 2722 { 2723 if (!hcd->primary_hcd) 2724 return 1; 2725 return hcd == hcd->primary_hcd; 2726 } 2727 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd); 2728 2729 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1) 2730 { 2731 if (!hcd->driver->find_raw_port_number) 2732 return port1; 2733 2734 return hcd->driver->find_raw_port_number(hcd, port1); 2735 } 2736 2737 static int usb_hcd_request_irqs(struct usb_hcd *hcd, 2738 unsigned int irqnum, unsigned long irqflags) 2739 { 2740 int retval; 2741 2742 if (hcd->driver->irq) { 2743 2744 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d", 2745 hcd->driver->description, hcd->self.busnum); 2746 retval = request_irq(irqnum, &usb_hcd_irq, irqflags, 2747 hcd->irq_descr, hcd); 2748 if (retval != 0) { 2749 dev_err(hcd->self.controller, 2750 "request interrupt %d failed\n", 2751 irqnum); 2752 return retval; 2753 } 2754 hcd->irq = irqnum; 2755 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum, 2756 (hcd->driver->flags & HCD_MEMORY) ? 2757 "io mem" : "io port", 2758 (unsigned long long)hcd->rsrc_start); 2759 } else { 2760 hcd->irq = 0; 2761 if (hcd->rsrc_start) 2762 dev_info(hcd->self.controller, "%s 0x%08llx\n", 2763 (hcd->driver->flags & HCD_MEMORY) ? 2764 "io mem" : "io port", 2765 (unsigned long long)hcd->rsrc_start); 2766 } 2767 return 0; 2768 } 2769 2770 /* 2771 * Before we free this root hub, flush in-flight peering attempts 2772 * and disable peer lookups 2773 */ 2774 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd) 2775 { 2776 struct usb_device *rhdev; 2777 2778 mutex_lock(&usb_port_peer_mutex); 2779 rhdev = hcd->self.root_hub; 2780 hcd->self.root_hub = NULL; 2781 mutex_unlock(&usb_port_peer_mutex); 2782 usb_put_dev(rhdev); 2783 } 2784 2785 /** 2786 * usb_stop_hcd - Halt the HCD 2787 * @hcd: the usb_hcd that has to be halted 2788 * 2789 * Stop the root-hub polling timer and invoke the HCD's ->stop callback. 2790 */ 2791 static void usb_stop_hcd(struct usb_hcd *hcd) 2792 { 2793 hcd->rh_pollable = 0; 2794 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2795 del_timer_sync(&hcd->rh_timer); 2796 2797 hcd->driver->stop(hcd); 2798 hcd->state = HC_STATE_HALT; 2799 2800 /* In case the HCD restarted the timer, stop it again. */ 2801 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags); 2802 del_timer_sync(&hcd->rh_timer); 2803 } 2804 2805 /** 2806 * usb_add_hcd - finish generic HCD structure initialization and register 2807 * @hcd: the usb_hcd structure to initialize 2808 * @irqnum: Interrupt line to allocate 2809 * @irqflags: Interrupt type flags 2810 * 2811 * Finish the remaining parts of generic HCD initialization: allocate the 2812 * buffers of consistent memory, register the bus, request the IRQ line, 2813 * and call the driver's reset() and start() routines. 2814 */ 2815 int usb_add_hcd(struct usb_hcd *hcd, 2816 unsigned int irqnum, unsigned long irqflags) 2817 { 2818 int retval; 2819 struct usb_device *rhdev; 2820 struct usb_hcd *shared_hcd; 2821 2822 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) { 2823 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev); 2824 if (IS_ERR(hcd->phy_roothub)) 2825 return PTR_ERR(hcd->phy_roothub); 2826 2827 retval = usb_phy_roothub_init(hcd->phy_roothub); 2828 if (retval) 2829 return retval; 2830 2831 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2832 PHY_MODE_USB_HOST_SS); 2833 if (retval) 2834 retval = usb_phy_roothub_set_mode(hcd->phy_roothub, 2835 PHY_MODE_USB_HOST); 2836 if (retval) 2837 goto err_usb_phy_roothub_power_on; 2838 2839 retval = usb_phy_roothub_power_on(hcd->phy_roothub); 2840 if (retval) 2841 goto err_usb_phy_roothub_power_on; 2842 } 2843 2844 dev_info(hcd->self.controller, "%s\n", hcd->product_desc); 2845 2846 switch (authorized_default) { 2847 case USB_AUTHORIZE_NONE: 2848 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE; 2849 break; 2850 2851 case USB_AUTHORIZE_ALL: 2852 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL; 2853 break; 2854 2855 case USB_AUTHORIZE_INTERNAL: 2856 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL; 2857 break; 2858 2859 case USB_AUTHORIZE_WIRED: 2860 default: 2861 hcd->dev_policy = hcd->wireless ? 2862 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL; 2863 break; 2864 } 2865 2866 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags); 2867 2868 /* per default all interfaces are authorized */ 2869 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags); 2870 2871 /* HC is in reset state, but accessible. Now do the one-time init, 2872 * bottom up so that hcds can customize the root hubs before hub_wq 2873 * starts talking to them. (Note, bus id is assigned early too.) 2874 */ 2875 retval = hcd_buffer_create(hcd); 2876 if (retval != 0) { 2877 dev_dbg(hcd->self.sysdev, "pool alloc failed\n"); 2878 goto err_create_buf; 2879 } 2880 2881 retval = usb_register_bus(&hcd->self); 2882 if (retval < 0) 2883 goto err_register_bus; 2884 2885 rhdev = usb_alloc_dev(NULL, &hcd->self, 0); 2886 if (rhdev == NULL) { 2887 dev_err(hcd->self.sysdev, "unable to allocate root hub\n"); 2888 retval = -ENOMEM; 2889 goto err_allocate_root_hub; 2890 } 2891 mutex_lock(&usb_port_peer_mutex); 2892 hcd->self.root_hub = rhdev; 2893 mutex_unlock(&usb_port_peer_mutex); 2894 2895 rhdev->rx_lanes = 1; 2896 rhdev->tx_lanes = 1; 2897 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN; 2898 2899 switch (hcd->speed) { 2900 case HCD_USB11: 2901 rhdev->speed = USB_SPEED_FULL; 2902 break; 2903 case HCD_USB2: 2904 rhdev->speed = USB_SPEED_HIGH; 2905 break; 2906 case HCD_USB25: 2907 rhdev->speed = USB_SPEED_WIRELESS; 2908 break; 2909 case HCD_USB3: 2910 rhdev->speed = USB_SPEED_SUPER; 2911 break; 2912 case HCD_USB32: 2913 rhdev->rx_lanes = 2; 2914 rhdev->tx_lanes = 2; 2915 rhdev->ssp_rate = USB_SSP_GEN_2x2; 2916 rhdev->speed = USB_SPEED_SUPER_PLUS; 2917 break; 2918 case HCD_USB31: 2919 rhdev->ssp_rate = USB_SSP_GEN_2x1; 2920 rhdev->speed = USB_SPEED_SUPER_PLUS; 2921 break; 2922 default: 2923 retval = -EINVAL; 2924 goto err_set_rh_speed; 2925 } 2926 2927 /* wakeup flag init defaults to "everything works" for root hubs, 2928 * but drivers can override it in reset() if needed, along with 2929 * recording the overall controller's system wakeup capability. 2930 */ 2931 device_set_wakeup_capable(&rhdev->dev, 1); 2932 2933 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is 2934 * registered. But since the controller can die at any time, 2935 * let's initialize the flag before touching the hardware. 2936 */ 2937 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 2938 2939 /* "reset" is misnamed; its role is now one-time init. the controller 2940 * should already have been reset (and boot firmware kicked off etc). 2941 */ 2942 if (hcd->driver->reset) { 2943 retval = hcd->driver->reset(hcd); 2944 if (retval < 0) { 2945 dev_err(hcd->self.controller, "can't setup: %d\n", 2946 retval); 2947 goto err_hcd_driver_setup; 2948 } 2949 } 2950 hcd->rh_pollable = 1; 2951 2952 retval = usb_phy_roothub_calibrate(hcd->phy_roothub); 2953 if (retval) 2954 goto err_hcd_driver_setup; 2955 2956 /* NOTE: root hub and controller capabilities may not be the same */ 2957 if (device_can_wakeup(hcd->self.controller) 2958 && device_can_wakeup(&hcd->self.root_hub->dev)) 2959 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n"); 2960 2961 /* initialize tasklets */ 2962 init_giveback_urb_bh(&hcd->high_prio_bh); 2963 hcd->high_prio_bh.high_prio = true; 2964 init_giveback_urb_bh(&hcd->low_prio_bh); 2965 2966 /* enable irqs just before we start the controller, 2967 * if the BIOS provides legacy PCI irqs. 2968 */ 2969 if (usb_hcd_is_primary_hcd(hcd) && irqnum) { 2970 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags); 2971 if (retval) 2972 goto err_request_irq; 2973 } 2974 2975 hcd->state = HC_STATE_RUNNING; 2976 retval = hcd->driver->start(hcd); 2977 if (retval < 0) { 2978 dev_err(hcd->self.controller, "startup error %d\n", retval); 2979 goto err_hcd_driver_start; 2980 } 2981 2982 /* starting here, usbcore will pay attention to the shared HCD roothub */ 2983 shared_hcd = hcd->shared_hcd; 2984 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) { 2985 retval = register_root_hub(shared_hcd); 2986 if (retval != 0) 2987 goto err_register_root_hub; 2988 2989 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd)) 2990 usb_hcd_poll_rh_status(shared_hcd); 2991 } 2992 2993 /* starting here, usbcore will pay attention to this root hub */ 2994 if (!HCD_DEFER_RH_REGISTER(hcd)) { 2995 retval = register_root_hub(hcd); 2996 if (retval != 0) 2997 goto err_register_root_hub; 2998 2999 if (hcd->uses_new_polling && HCD_POLL_RH(hcd)) 3000 usb_hcd_poll_rh_status(hcd); 3001 } 3002 3003 return retval; 3004 3005 err_register_root_hub: 3006 usb_stop_hcd(hcd); 3007 err_hcd_driver_start: 3008 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0) 3009 free_irq(irqnum, hcd); 3010 err_request_irq: 3011 err_hcd_driver_setup: 3012 err_set_rh_speed: 3013 usb_put_invalidate_rhdev(hcd); 3014 err_allocate_root_hub: 3015 usb_deregister_bus(&hcd->self); 3016 err_register_bus: 3017 hcd_buffer_destroy(hcd); 3018 err_create_buf: 3019 usb_phy_roothub_power_off(hcd->phy_roothub); 3020 err_usb_phy_roothub_power_on: 3021 usb_phy_roothub_exit(hcd->phy_roothub); 3022 3023 return retval; 3024 } 3025 EXPORT_SYMBOL_GPL(usb_add_hcd); 3026 3027 /** 3028 * usb_remove_hcd - shutdown processing for generic HCDs 3029 * @hcd: the usb_hcd structure to remove 3030 * 3031 * Context: task context, might sleep. 3032 * 3033 * Disconnects the root hub, then reverses the effects of usb_add_hcd(), 3034 * invoking the HCD's stop() method. 3035 */ 3036 void usb_remove_hcd(struct usb_hcd *hcd) 3037 { 3038 struct usb_device *rhdev; 3039 bool rh_registered; 3040 3041 if (!hcd) { 3042 pr_debug("%s: hcd is NULL\n", __func__); 3043 return; 3044 } 3045 rhdev = hcd->self.root_hub; 3046 3047 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state); 3048 3049 usb_get_dev(rhdev); 3050 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags); 3051 if (HC_IS_RUNNING (hcd->state)) 3052 hcd->state = HC_STATE_QUIESCING; 3053 3054 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n"); 3055 spin_lock_irq (&hcd_root_hub_lock); 3056 rh_registered = hcd->rh_registered; 3057 hcd->rh_registered = 0; 3058 spin_unlock_irq (&hcd_root_hub_lock); 3059 3060 #ifdef CONFIG_PM 3061 cancel_work_sync(&hcd->wakeup_work); 3062 #endif 3063 cancel_work_sync(&hcd->died_work); 3064 3065 mutex_lock(&usb_bus_idr_lock); 3066 if (rh_registered) 3067 usb_disconnect(&rhdev); /* Sets rhdev to NULL */ 3068 mutex_unlock(&usb_bus_idr_lock); 3069 3070 /* 3071 * tasklet_kill() isn't needed here because: 3072 * - driver's disconnect() called from usb_disconnect() should 3073 * make sure its URBs are completed during the disconnect() 3074 * callback 3075 * 3076 * - it is too late to run complete() here since driver may have 3077 * been removed already now 3078 */ 3079 3080 /* Prevent any more root-hub status calls from the timer. 3081 * The HCD might still restart the timer (if a port status change 3082 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke 3083 * the hub_status_data() callback. 3084 */ 3085 usb_stop_hcd(hcd); 3086 3087 if (usb_hcd_is_primary_hcd(hcd)) { 3088 if (hcd->irq > 0) 3089 free_irq(hcd->irq, hcd); 3090 } 3091 3092 usb_deregister_bus(&hcd->self); 3093 hcd_buffer_destroy(hcd); 3094 3095 usb_phy_roothub_power_off(hcd->phy_roothub); 3096 usb_phy_roothub_exit(hcd->phy_roothub); 3097 3098 usb_put_invalidate_rhdev(hcd); 3099 hcd->flags = 0; 3100 } 3101 EXPORT_SYMBOL_GPL(usb_remove_hcd); 3102 3103 void 3104 usb_hcd_platform_shutdown(struct platform_device *dev) 3105 { 3106 struct usb_hcd *hcd = platform_get_drvdata(dev); 3107 3108 /* No need for pm_runtime_put(), we're shutting down */ 3109 pm_runtime_get_sync(&dev->dev); 3110 3111 if (hcd->driver->shutdown) 3112 hcd->driver->shutdown(hcd); 3113 } 3114 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); 3115 3116 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr, 3117 dma_addr_t dma, size_t size) 3118 { 3119 int err; 3120 void *local_mem; 3121 3122 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4, 3123 dev_to_node(hcd->self.sysdev), 3124 dev_name(hcd->self.sysdev)); 3125 if (IS_ERR(hcd->localmem_pool)) 3126 return PTR_ERR(hcd->localmem_pool); 3127 3128 /* 3129 * if a physical SRAM address was passed, map it, otherwise 3130 * allocate system memory as a buffer. 3131 */ 3132 if (phys_addr) 3133 local_mem = devm_memremap(hcd->self.sysdev, phys_addr, 3134 size, MEMREMAP_WC); 3135 else 3136 local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma, 3137 GFP_KERNEL, 3138 DMA_ATTR_WRITE_COMBINE); 3139 3140 if (IS_ERR_OR_NULL(local_mem)) { 3141 if (!local_mem) 3142 return -ENOMEM; 3143 3144 return PTR_ERR(local_mem); 3145 } 3146 3147 /* 3148 * Here we pass a dma_addr_t but the arg type is a phys_addr_t. 3149 * It's not backed by system memory and thus there's no kernel mapping 3150 * for it. 3151 */ 3152 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem, 3153 dma, size, dev_to_node(hcd->self.sysdev)); 3154 if (err < 0) { 3155 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n", 3156 err); 3157 return err; 3158 } 3159 3160 return 0; 3161 } 3162 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem); 3163 3164 /*-------------------------------------------------------------------------*/ 3165 3166 #if IS_ENABLED(CONFIG_USB_MON) 3167 3168 const struct usb_mon_operations *mon_ops; 3169 3170 /* 3171 * The registration is unlocked. 3172 * We do it this way because we do not want to lock in hot paths. 3173 * 3174 * Notice that the code is minimally error-proof. Because usbmon needs 3175 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first. 3176 */ 3177 3178 int usb_mon_register(const struct usb_mon_operations *ops) 3179 { 3180 3181 if (mon_ops) 3182 return -EBUSY; 3183 3184 mon_ops = ops; 3185 mb(); 3186 return 0; 3187 } 3188 EXPORT_SYMBOL_GPL (usb_mon_register); 3189 3190 void usb_mon_deregister (void) 3191 { 3192 3193 if (mon_ops == NULL) { 3194 printk(KERN_ERR "USB: monitor was not registered\n"); 3195 return; 3196 } 3197 mon_ops = NULL; 3198 mb(); 3199 } 3200 EXPORT_SYMBOL_GPL (usb_mon_deregister); 3201 3202 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */ 3203