xref: /openbmc/linux/drivers/usb/chipidea/udc.c (revision 22dfe6574b6f24d7739d3b6b2df5547253ec7d5d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * udc.c - ChipIdea UDC driver
4  *
5  * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
6  *
7  * Author: David Lopo
8  */
9 
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmapool.h>
13 #include <linux/err.h>
14 #include <linux/irqreturn.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/usb/ch9.h>
20 #include <linux/usb/gadget.h>
21 #include <linux/usb/otg-fsm.h>
22 #include <linux/usb/chipidea.h>
23 
24 #include "ci.h"
25 #include "udc.h"
26 #include "bits.h"
27 #include "otg.h"
28 #include "otg_fsm.h"
29 
30 /* control endpoint description */
31 static const struct usb_endpoint_descriptor
32 ctrl_endpt_out_desc = {
33 	.bLength         = USB_DT_ENDPOINT_SIZE,
34 	.bDescriptorType = USB_DT_ENDPOINT,
35 
36 	.bEndpointAddress = USB_DIR_OUT,
37 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
38 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
39 };
40 
41 static const struct usb_endpoint_descriptor
42 ctrl_endpt_in_desc = {
43 	.bLength         = USB_DT_ENDPOINT_SIZE,
44 	.bDescriptorType = USB_DT_ENDPOINT,
45 
46 	.bEndpointAddress = USB_DIR_IN,
47 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
48 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
49 };
50 
51 /**
52  * hw_ep_bit: calculates the bit number
53  * @num: endpoint number
54  * @dir: endpoint direction
55  *
56  * This function returns bit number
57  */
58 static inline int hw_ep_bit(int num, int dir)
59 {
60 	return num + ((dir == TX) ? 16 : 0);
61 }
62 
63 static inline int ep_to_bit(struct ci_hdrc *ci, int n)
64 {
65 	int fill = 16 - ci->hw_ep_max / 2;
66 
67 	if (n >= ci->hw_ep_max / 2)
68 		n += fill;
69 
70 	return n;
71 }
72 
73 /**
74  * hw_device_state: enables/disables interrupts (execute without interruption)
75  * @ci: the controller
76  * @dma: 0 => disable, !0 => enable and set dma engine
77  *
78  * This function returns an error code
79  */
80 static int hw_device_state(struct ci_hdrc *ci, u32 dma)
81 {
82 	if (dma) {
83 		hw_write(ci, OP_ENDPTLISTADDR, ~0, dma);
84 		/* interrupt, error, port change, reset, sleep/suspend */
85 		hw_write(ci, OP_USBINTR, ~0,
86 			     USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI);
87 	} else {
88 		hw_write(ci, OP_USBINTR, ~0, 0);
89 	}
90 	return 0;
91 }
92 
93 /**
94  * hw_ep_flush: flush endpoint fifo (execute without interruption)
95  * @ci: the controller
96  * @num: endpoint number
97  * @dir: endpoint direction
98  *
99  * This function returns an error code
100  */
101 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir)
102 {
103 	int n = hw_ep_bit(num, dir);
104 
105 	do {
106 		/* flush any pending transfer */
107 		hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n));
108 		while (hw_read(ci, OP_ENDPTFLUSH, BIT(n)))
109 			cpu_relax();
110 	} while (hw_read(ci, OP_ENDPTSTAT, BIT(n)));
111 
112 	return 0;
113 }
114 
115 /**
116  * hw_ep_disable: disables endpoint (execute without interruption)
117  * @ci: the controller
118  * @num: endpoint number
119  * @dir: endpoint direction
120  *
121  * This function returns an error code
122  */
123 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir)
124 {
125 	hw_write(ci, OP_ENDPTCTRL + num,
126 		 (dir == TX) ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
127 	return 0;
128 }
129 
130 /**
131  * hw_ep_enable: enables endpoint (execute without interruption)
132  * @ci: the controller
133  * @num:  endpoint number
134  * @dir:  endpoint direction
135  * @type: endpoint type
136  *
137  * This function returns an error code
138  */
139 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type)
140 {
141 	u32 mask, data;
142 
143 	if (dir == TX) {
144 		mask  = ENDPTCTRL_TXT;  /* type    */
145 		data  = type << __ffs(mask);
146 
147 		mask |= ENDPTCTRL_TXS;  /* unstall */
148 		mask |= ENDPTCTRL_TXR;  /* reset data toggle */
149 		data |= ENDPTCTRL_TXR;
150 		mask |= ENDPTCTRL_TXE;  /* enable  */
151 		data |= ENDPTCTRL_TXE;
152 	} else {
153 		mask  = ENDPTCTRL_RXT;  /* type    */
154 		data  = type << __ffs(mask);
155 
156 		mask |= ENDPTCTRL_RXS;  /* unstall */
157 		mask |= ENDPTCTRL_RXR;  /* reset data toggle */
158 		data |= ENDPTCTRL_RXR;
159 		mask |= ENDPTCTRL_RXE;  /* enable  */
160 		data |= ENDPTCTRL_RXE;
161 	}
162 	hw_write(ci, OP_ENDPTCTRL + num, mask, data);
163 	return 0;
164 }
165 
166 /**
167  * hw_ep_get_halt: return endpoint halt status
168  * @ci: the controller
169  * @num: endpoint number
170  * @dir: endpoint direction
171  *
172  * This function returns 1 if endpoint halted
173  */
174 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir)
175 {
176 	u32 mask = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
177 
178 	return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0;
179 }
180 
181 /**
182  * hw_ep_prime: primes endpoint (execute without interruption)
183  * @ci: the controller
184  * @num:     endpoint number
185  * @dir:     endpoint direction
186  * @is_ctrl: true if control endpoint
187  *
188  * This function returns an error code
189  */
190 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl)
191 {
192 	int n = hw_ep_bit(num, dir);
193 
194 	/* Synchronize before ep prime */
195 	wmb();
196 
197 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
198 		return -EAGAIN;
199 
200 	hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n));
201 
202 	while (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
203 		cpu_relax();
204 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
205 		return -EAGAIN;
206 
207 	/* status shoult be tested according with manual but it doesn't work */
208 	return 0;
209 }
210 
211 /**
212  * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
213  *                 without interruption)
214  * @ci: the controller
215  * @num:   endpoint number
216  * @dir:   endpoint direction
217  * @value: true => stall, false => unstall
218  *
219  * This function returns an error code
220  */
221 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value)
222 {
223 	if (value != 0 && value != 1)
224 		return -EINVAL;
225 
226 	do {
227 		enum ci_hw_regs reg = OP_ENDPTCTRL + num;
228 		u32 mask_xs = (dir == TX) ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
229 		u32 mask_xr = (dir == TX) ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
230 
231 		/* data toggle - reserved for EP0 but it's in ESS */
232 		hw_write(ci, reg, mask_xs|mask_xr,
233 			  value ? mask_xs : mask_xr);
234 	} while (value != hw_ep_get_halt(ci, num, dir));
235 
236 	return 0;
237 }
238 
239 /**
240  * hw_is_port_high_speed: test if port is high speed
241  *
242  * This function returns true if high speed port
243  */
244 static int hw_port_is_high_speed(struct ci_hdrc *ci)
245 {
246 	return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) :
247 		hw_read(ci, OP_PORTSC, PORTSC_HSP);
248 }
249 
250 /**
251  * hw_test_and_clear_complete: test & clear complete status (execute without
252  *                             interruption)
253  * @ci: the controller
254  * @n: endpoint number
255  *
256  * This function returns complete status
257  */
258 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n)
259 {
260 	n = ep_to_bit(ci, n);
261 	return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n));
262 }
263 
264 /**
265  * hw_test_and_clear_intr_active: test & clear active interrupts (execute
266  *                                without interruption)
267  *
268  * This function returns active interrutps
269  */
270 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci)
271 {
272 	u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci);
273 
274 	hw_write(ci, OP_USBSTS, ~0, reg);
275 	return reg;
276 }
277 
278 /**
279  * hw_test_and_clear_setup_guard: test & clear setup guard (execute without
280  *                                interruption)
281  *
282  * This function returns guard value
283  */
284 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci)
285 {
286 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0);
287 }
288 
289 /**
290  * hw_test_and_set_setup_guard: test & set setup guard (execute without
291  *                              interruption)
292  *
293  * This function returns guard value
294  */
295 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci)
296 {
297 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
298 }
299 
300 /**
301  * hw_usb_set_address: configures USB address (execute without interruption)
302  * @ci: the controller
303  * @value: new USB address
304  *
305  * This function explicitly sets the address, without the "USBADRA" (advance)
306  * feature, which is not supported by older versions of the controller.
307  */
308 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value)
309 {
310 	hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR,
311 		 value << __ffs(DEVICEADDR_USBADR));
312 }
313 
314 /**
315  * hw_usb_reset: restart device after a bus reset (execute without
316  *               interruption)
317  *
318  * This function returns an error code
319  */
320 static int hw_usb_reset(struct ci_hdrc *ci)
321 {
322 	hw_usb_set_address(ci, 0);
323 
324 	/* ESS flushes only at end?!? */
325 	hw_write(ci, OP_ENDPTFLUSH,    ~0, ~0);
326 
327 	/* clear setup token semaphores */
328 	hw_write(ci, OP_ENDPTSETUPSTAT, 0,  0);
329 
330 	/* clear complete status */
331 	hw_write(ci, OP_ENDPTCOMPLETE,  0,  0);
332 
333 	/* wait until all bits cleared */
334 	while (hw_read(ci, OP_ENDPTPRIME, ~0))
335 		udelay(10);             /* not RTOS friendly */
336 
337 	/* reset all endpoints ? */
338 
339 	/* reset internal status and wait for further instructions
340 	   no need to verify the port reset status (ESS does it) */
341 
342 	return 0;
343 }
344 
345 /******************************************************************************
346  * UTIL block
347  *****************************************************************************/
348 
349 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
350 			unsigned int length, struct scatterlist *s)
351 {
352 	int i;
353 	u32 temp;
354 	struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node),
355 						  GFP_ATOMIC);
356 
357 	if (node == NULL)
358 		return -ENOMEM;
359 
360 	node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC, &node->dma);
361 	if (node->ptr == NULL) {
362 		kfree(node);
363 		return -ENOMEM;
364 	}
365 
366 	node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES));
367 	node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES);
368 	node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE);
369 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) {
370 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
371 
372 		if (hwreq->req.length == 0
373 				|| hwreq->req.length % hwep->ep.maxpacket)
374 			mul++;
375 		node->ptr->token |= cpu_to_le32(mul << __ffs(TD_MULTO));
376 	}
377 
378 	if (s) {
379 		temp = (u32) (sg_dma_address(s) + hwreq->req.actual);
380 		node->td_remaining_size = CI_MAX_BUF_SIZE - length;
381 	} else {
382 		temp = (u32) (hwreq->req.dma + hwreq->req.actual);
383 	}
384 
385 	if (length) {
386 		node->ptr->page[0] = cpu_to_le32(temp);
387 		for (i = 1; i < TD_PAGE_COUNT; i++) {
388 			u32 page = temp + i * CI_HDRC_PAGE_SIZE;
389 			page &= ~TD_RESERVED_MASK;
390 			node->ptr->page[i] = cpu_to_le32(page);
391 		}
392 	}
393 
394 	hwreq->req.actual += length;
395 
396 	if (!list_empty(&hwreq->tds)) {
397 		/* get the last entry */
398 		lastnode = list_entry(hwreq->tds.prev,
399 				struct td_node, td);
400 		lastnode->ptr->next = cpu_to_le32(node->dma);
401 	}
402 
403 	INIT_LIST_HEAD(&node->td);
404 	list_add_tail(&node->td, &hwreq->tds);
405 
406 	return 0;
407 }
408 
409 /**
410  * _usb_addr: calculates endpoint address from direction & number
411  * @ep:  endpoint
412  */
413 static inline u8 _usb_addr(struct ci_hw_ep *ep)
414 {
415 	return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
416 }
417 
418 static int prepare_td_for_non_sg(struct ci_hw_ep *hwep,
419 		struct ci_hw_req *hwreq)
420 {
421 	unsigned int rest = hwreq->req.length;
422 	int pages = TD_PAGE_COUNT;
423 	int ret = 0;
424 
425 	if (rest == 0) {
426 		ret = add_td_to_list(hwep, hwreq, 0, NULL);
427 		if (ret < 0)
428 			return ret;
429 	}
430 
431 	/*
432 	 * The first buffer could be not page aligned.
433 	 * In that case we have to span into one extra td.
434 	 */
435 	if (hwreq->req.dma % PAGE_SIZE)
436 		pages--;
437 
438 	while (rest > 0) {
439 		unsigned int count = min(hwreq->req.length - hwreq->req.actual,
440 			(unsigned int)(pages * CI_HDRC_PAGE_SIZE));
441 
442 		ret = add_td_to_list(hwep, hwreq, count, NULL);
443 		if (ret < 0)
444 			return ret;
445 
446 		rest -= count;
447 	}
448 
449 	if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX
450 	    && (hwreq->req.length % hwep->ep.maxpacket == 0)) {
451 		ret = add_td_to_list(hwep, hwreq, 0, NULL);
452 		if (ret < 0)
453 			return ret;
454 	}
455 
456 	return ret;
457 }
458 
459 static int prepare_td_per_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
460 		struct scatterlist *s)
461 {
462 	unsigned int rest = sg_dma_len(s);
463 	int ret = 0;
464 
465 	hwreq->req.actual = 0;
466 	while (rest > 0) {
467 		unsigned int count = min_t(unsigned int, rest,
468 				CI_MAX_BUF_SIZE);
469 
470 		ret = add_td_to_list(hwep, hwreq, count, s);
471 		if (ret < 0)
472 			return ret;
473 
474 		rest -= count;
475 	}
476 
477 	return ret;
478 }
479 
480 static void ci_add_buffer_entry(struct td_node *node, struct scatterlist *s)
481 {
482 	int empty_td_slot_index = (CI_MAX_BUF_SIZE - node->td_remaining_size)
483 			/ CI_HDRC_PAGE_SIZE;
484 	int i;
485 
486 	node->ptr->token +=
487 		cpu_to_le32(sg_dma_len(s) << __ffs(TD_TOTAL_BYTES));
488 
489 	for (i = empty_td_slot_index; i < TD_PAGE_COUNT; i++) {
490 		u32 page = (u32) sg_dma_address(s) +
491 			(i - empty_td_slot_index) * CI_HDRC_PAGE_SIZE;
492 
493 		page &= ~TD_RESERVED_MASK;
494 		node->ptr->page[i] = cpu_to_le32(page);
495 	}
496 }
497 
498 static int prepare_td_for_sg(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
499 {
500 	struct usb_request *req = &hwreq->req;
501 	struct scatterlist *s = req->sg;
502 	int ret = 0, i = 0;
503 	struct td_node *node = NULL;
504 
505 	if (!s || req->zero || req->length == 0) {
506 		dev_err(hwep->ci->dev, "not supported operation for sg\n");
507 		return -EINVAL;
508 	}
509 
510 	while (i++ < req->num_mapped_sgs) {
511 		if (sg_dma_address(s) % PAGE_SIZE) {
512 			dev_err(hwep->ci->dev, "not page aligned sg buffer\n");
513 			return -EINVAL;
514 		}
515 
516 		if (node && (node->td_remaining_size >= sg_dma_len(s))) {
517 			ci_add_buffer_entry(node, s);
518 			node->td_remaining_size -= sg_dma_len(s);
519 		} else {
520 			ret = prepare_td_per_sg(hwep, hwreq, s);
521 			if (ret)
522 				return ret;
523 
524 			node = list_entry(hwreq->tds.prev,
525 				struct td_node, td);
526 		}
527 
528 		s = sg_next(s);
529 	}
530 
531 	return ret;
532 }
533 
534 /**
535  * _hardware_enqueue: configures a request at hardware level
536  * @hwep:   endpoint
537  * @hwreq:  request
538  *
539  * This function returns an error code
540  */
541 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
542 {
543 	struct ci_hdrc *ci = hwep->ci;
544 	int ret = 0;
545 	struct td_node *firstnode, *lastnode;
546 
547 	/* don't queue twice */
548 	if (hwreq->req.status == -EALREADY)
549 		return -EALREADY;
550 
551 	hwreq->req.status = -EALREADY;
552 
553 	ret = usb_gadget_map_request_by_dev(ci->dev->parent,
554 					    &hwreq->req, hwep->dir);
555 	if (ret)
556 		return ret;
557 
558 	if (hwreq->req.num_mapped_sgs)
559 		ret = prepare_td_for_sg(hwep, hwreq);
560 	else
561 		ret = prepare_td_for_non_sg(hwep, hwreq);
562 
563 	if (ret)
564 		return ret;
565 
566 	firstnode = list_first_entry(&hwreq->tds, struct td_node, td);
567 
568 	lastnode = list_entry(hwreq->tds.prev,
569 		struct td_node, td);
570 
571 	lastnode->ptr->next = cpu_to_le32(TD_TERMINATE);
572 	if (!hwreq->req.no_interrupt)
573 		lastnode->ptr->token |= cpu_to_le32(TD_IOC);
574 	wmb();
575 
576 	hwreq->req.actual = 0;
577 	if (!list_empty(&hwep->qh.queue)) {
578 		struct ci_hw_req *hwreqprev;
579 		int n = hw_ep_bit(hwep->num, hwep->dir);
580 		int tmp_stat;
581 		struct td_node *prevlastnode;
582 		u32 next = firstnode->dma & TD_ADDR_MASK;
583 
584 		hwreqprev = list_entry(hwep->qh.queue.prev,
585 				struct ci_hw_req, queue);
586 		prevlastnode = list_entry(hwreqprev->tds.prev,
587 				struct td_node, td);
588 
589 		prevlastnode->ptr->next = cpu_to_le32(next);
590 		wmb();
591 		if (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
592 			goto done;
593 		do {
594 			hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
595 			tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n));
596 		} while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW));
597 		hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0);
598 		if (tmp_stat)
599 			goto done;
600 	}
601 
602 	/*  QH configuration */
603 	hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma);
604 	hwep->qh.ptr->td.token &=
605 		cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE));
606 
607 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) {
608 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
609 
610 		if (hwreq->req.length == 0
611 				|| hwreq->req.length % hwep->ep.maxpacket)
612 			mul++;
613 		hwep->qh.ptr->cap |= cpu_to_le32(mul << __ffs(QH_MULT));
614 	}
615 
616 	ret = hw_ep_prime(ci, hwep->num, hwep->dir,
617 			   hwep->type == USB_ENDPOINT_XFER_CONTROL);
618 done:
619 	return ret;
620 }
621 
622 /**
623  * free_pending_td: remove a pending request for the endpoint
624  * @ci: the controller
625  * @hwep: endpoint
626  */
627 static void free_pending_td(struct ci_hw_ep *hwep)
628 {
629 	struct td_node *pending = hwep->pending_td;
630 
631 	dma_pool_free(hwep->td_pool, pending->ptr, pending->dma);
632 	hwep->pending_td = NULL;
633 	kfree(pending);
634 }
635 
636 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
637 					   struct td_node *node)
638 {
639 	hwep->qh.ptr->td.next = cpu_to_le32(node->dma);
640 	hwep->qh.ptr->td.token &=
641 		cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE));
642 
643 	return hw_ep_prime(ci, hwep->num, hwep->dir,
644 				hwep->type == USB_ENDPOINT_XFER_CONTROL);
645 }
646 
647 /**
648  * _hardware_dequeue: handles a request at hardware level
649  * @gadget: gadget
650  * @hwep:   endpoint
651  *
652  * This function returns an error code
653  */
654 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
655 {
656 	u32 tmptoken;
657 	struct td_node *node, *tmpnode;
658 	unsigned remaining_length;
659 	unsigned actual = hwreq->req.length;
660 	struct ci_hdrc *ci = hwep->ci;
661 
662 	if (hwreq->req.status != -EALREADY)
663 		return -EINVAL;
664 
665 	hwreq->req.status = 0;
666 
667 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
668 		tmptoken = le32_to_cpu(node->ptr->token);
669 		if ((TD_STATUS_ACTIVE & tmptoken) != 0) {
670 			int n = hw_ep_bit(hwep->num, hwep->dir);
671 
672 			if (ci->rev == CI_REVISION_24)
673 				if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
674 					reprime_dtd(ci, hwep, node);
675 			hwreq->req.status = -EALREADY;
676 			return -EBUSY;
677 		}
678 
679 		remaining_length = (tmptoken & TD_TOTAL_BYTES);
680 		remaining_length >>= __ffs(TD_TOTAL_BYTES);
681 		actual -= remaining_length;
682 
683 		hwreq->req.status = tmptoken & TD_STATUS;
684 		if ((TD_STATUS_HALTED & hwreq->req.status)) {
685 			hwreq->req.status = -EPIPE;
686 			break;
687 		} else if ((TD_STATUS_DT_ERR & hwreq->req.status)) {
688 			hwreq->req.status = -EPROTO;
689 			break;
690 		} else if ((TD_STATUS_TR_ERR & hwreq->req.status)) {
691 			hwreq->req.status = -EILSEQ;
692 			break;
693 		}
694 
695 		if (remaining_length) {
696 			if (hwep->dir == TX) {
697 				hwreq->req.status = -EPROTO;
698 				break;
699 			}
700 		}
701 		/*
702 		 * As the hardware could still address the freed td
703 		 * which will run the udc unusable, the cleanup of the
704 		 * td has to be delayed by one.
705 		 */
706 		if (hwep->pending_td)
707 			free_pending_td(hwep);
708 
709 		hwep->pending_td = node;
710 		list_del_init(&node->td);
711 	}
712 
713 	usb_gadget_unmap_request_by_dev(hwep->ci->dev->parent,
714 					&hwreq->req, hwep->dir);
715 
716 	hwreq->req.actual += actual;
717 
718 	if (hwreq->req.status)
719 		return hwreq->req.status;
720 
721 	return hwreq->req.actual;
722 }
723 
724 /**
725  * _ep_nuke: dequeues all endpoint requests
726  * @hwep: endpoint
727  *
728  * This function returns an error code
729  * Caller must hold lock
730  */
731 static int _ep_nuke(struct ci_hw_ep *hwep)
732 __releases(hwep->lock)
733 __acquires(hwep->lock)
734 {
735 	struct td_node *node, *tmpnode;
736 	if (hwep == NULL)
737 		return -EINVAL;
738 
739 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
740 
741 	while (!list_empty(&hwep->qh.queue)) {
742 
743 		/* pop oldest request */
744 		struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next,
745 						     struct ci_hw_req, queue);
746 
747 		list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
748 			dma_pool_free(hwep->td_pool, node->ptr, node->dma);
749 			list_del_init(&node->td);
750 			node->ptr = NULL;
751 			kfree(node);
752 		}
753 
754 		list_del_init(&hwreq->queue);
755 		hwreq->req.status = -ESHUTDOWN;
756 
757 		if (hwreq->req.complete != NULL) {
758 			spin_unlock(hwep->lock);
759 			usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
760 			spin_lock(hwep->lock);
761 		}
762 	}
763 
764 	if (hwep->pending_td)
765 		free_pending_td(hwep);
766 
767 	return 0;
768 }
769 
770 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer)
771 {
772 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
773 	int direction, retval = 0;
774 	unsigned long flags;
775 
776 	if (ep == NULL || hwep->ep.desc == NULL)
777 		return -EINVAL;
778 
779 	if (usb_endpoint_xfer_isoc(hwep->ep.desc))
780 		return -EOPNOTSUPP;
781 
782 	spin_lock_irqsave(hwep->lock, flags);
783 
784 	if (value && hwep->dir == TX && check_transfer &&
785 		!list_empty(&hwep->qh.queue) &&
786 			!usb_endpoint_xfer_control(hwep->ep.desc)) {
787 		spin_unlock_irqrestore(hwep->lock, flags);
788 		return -EAGAIN;
789 	}
790 
791 	direction = hwep->dir;
792 	do {
793 		retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value);
794 
795 		if (!value)
796 			hwep->wedge = 0;
797 
798 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
799 			hwep->dir = (hwep->dir == TX) ? RX : TX;
800 
801 	} while (hwep->dir != direction);
802 
803 	spin_unlock_irqrestore(hwep->lock, flags);
804 	return retval;
805 }
806 
807 
808 /**
809  * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
810  * @gadget: gadget
811  *
812  * This function returns an error code
813  */
814 static int _gadget_stop_activity(struct usb_gadget *gadget)
815 {
816 	struct usb_ep *ep;
817 	struct ci_hdrc    *ci = container_of(gadget, struct ci_hdrc, gadget);
818 	unsigned long flags;
819 
820 	/* flush all endpoints */
821 	gadget_for_each_ep(ep, gadget) {
822 		usb_ep_fifo_flush(ep);
823 	}
824 	usb_ep_fifo_flush(&ci->ep0out->ep);
825 	usb_ep_fifo_flush(&ci->ep0in->ep);
826 
827 	/* make sure to disable all endpoints */
828 	gadget_for_each_ep(ep, gadget) {
829 		usb_ep_disable(ep);
830 	}
831 
832 	if (ci->status != NULL) {
833 		usb_ep_free_request(&ci->ep0in->ep, ci->status);
834 		ci->status = NULL;
835 	}
836 
837 	spin_lock_irqsave(&ci->lock, flags);
838 	ci->gadget.speed = USB_SPEED_UNKNOWN;
839 	ci->remote_wakeup = 0;
840 	ci->suspended = 0;
841 	spin_unlock_irqrestore(&ci->lock, flags);
842 
843 	return 0;
844 }
845 
846 /******************************************************************************
847  * ISR block
848  *****************************************************************************/
849 /**
850  * isr_reset_handler: USB reset interrupt handler
851  * @ci: UDC device
852  *
853  * This function resets USB engine after a bus reset occurred
854  */
855 static void isr_reset_handler(struct ci_hdrc *ci)
856 __releases(ci->lock)
857 __acquires(ci->lock)
858 {
859 	int retval;
860 
861 	spin_unlock(&ci->lock);
862 	if (ci->gadget.speed != USB_SPEED_UNKNOWN)
863 		usb_gadget_udc_reset(&ci->gadget, ci->driver);
864 
865 	retval = _gadget_stop_activity(&ci->gadget);
866 	if (retval)
867 		goto done;
868 
869 	retval = hw_usb_reset(ci);
870 	if (retval)
871 		goto done;
872 
873 	ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC);
874 	if (ci->status == NULL)
875 		retval = -ENOMEM;
876 
877 done:
878 	spin_lock(&ci->lock);
879 
880 	if (retval)
881 		dev_err(ci->dev, "error: %i\n", retval);
882 }
883 
884 /**
885  * isr_get_status_complete: get_status request complete function
886  * @ep:  endpoint
887  * @req: request handled
888  *
889  * Caller must release lock
890  */
891 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
892 {
893 	if (ep == NULL || req == NULL)
894 		return;
895 
896 	kfree(req->buf);
897 	usb_ep_free_request(ep, req);
898 }
899 
900 /**
901  * _ep_queue: queues (submits) an I/O request to an endpoint
902  * @ep:        endpoint
903  * @req:       request
904  * @gfp_flags: GFP flags (not used)
905  *
906  * Caller must hold lock
907  * This function returns an error code
908  */
909 static int _ep_queue(struct usb_ep *ep, struct usb_request *req,
910 		    gfp_t __maybe_unused gfp_flags)
911 {
912 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
913 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
914 	struct ci_hdrc *ci = hwep->ci;
915 	int retval = 0;
916 
917 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
918 		return -EINVAL;
919 
920 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
921 		if (req->length)
922 			hwep = (ci->ep0_dir == RX) ?
923 			       ci->ep0out : ci->ep0in;
924 		if (!list_empty(&hwep->qh.queue)) {
925 			_ep_nuke(hwep);
926 			dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n",
927 				 _usb_addr(hwep));
928 		}
929 	}
930 
931 	if (usb_endpoint_xfer_isoc(hwep->ep.desc) &&
932 	    hwreq->req.length > hwep->ep.mult * hwep->ep.maxpacket) {
933 		dev_err(hwep->ci->dev, "request length too big for isochronous\n");
934 		return -EMSGSIZE;
935 	}
936 
937 	/* first nuke then test link, e.g. previous status has not sent */
938 	if (!list_empty(&hwreq->queue)) {
939 		dev_err(hwep->ci->dev, "request already in queue\n");
940 		return -EBUSY;
941 	}
942 
943 	/* push request */
944 	hwreq->req.status = -EINPROGRESS;
945 	hwreq->req.actual = 0;
946 
947 	retval = _hardware_enqueue(hwep, hwreq);
948 
949 	if (retval == -EALREADY)
950 		retval = 0;
951 	if (!retval)
952 		list_add_tail(&hwreq->queue, &hwep->qh.queue);
953 
954 	return retval;
955 }
956 
957 /**
958  * isr_get_status_response: get_status request response
959  * @ci: ci struct
960  * @setup: setup request packet
961  *
962  * This function returns an error code
963  */
964 static int isr_get_status_response(struct ci_hdrc *ci,
965 				   struct usb_ctrlrequest *setup)
966 __releases(hwep->lock)
967 __acquires(hwep->lock)
968 {
969 	struct ci_hw_ep *hwep = ci->ep0in;
970 	struct usb_request *req = NULL;
971 	gfp_t gfp_flags = GFP_ATOMIC;
972 	int dir, num, retval;
973 
974 	if (hwep == NULL || setup == NULL)
975 		return -EINVAL;
976 
977 	spin_unlock(hwep->lock);
978 	req = usb_ep_alloc_request(&hwep->ep, gfp_flags);
979 	spin_lock(hwep->lock);
980 	if (req == NULL)
981 		return -ENOMEM;
982 
983 	req->complete = isr_get_status_complete;
984 	req->length   = 2;
985 	req->buf      = kzalloc(req->length, gfp_flags);
986 	if (req->buf == NULL) {
987 		retval = -ENOMEM;
988 		goto err_free_req;
989 	}
990 
991 	if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
992 		*(u16 *)req->buf = (ci->remote_wakeup << 1) |
993 			ci->gadget.is_selfpowered;
994 	} else if ((setup->bRequestType & USB_RECIP_MASK) \
995 		   == USB_RECIP_ENDPOINT) {
996 		dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
997 			TX : RX;
998 		num =  le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
999 		*(u16 *)req->buf = hw_ep_get_halt(ci, num, dir);
1000 	}
1001 	/* else do nothing; reserved for future use */
1002 
1003 	retval = _ep_queue(&hwep->ep, req, gfp_flags);
1004 	if (retval)
1005 		goto err_free_buf;
1006 
1007 	return 0;
1008 
1009  err_free_buf:
1010 	kfree(req->buf);
1011  err_free_req:
1012 	spin_unlock(hwep->lock);
1013 	usb_ep_free_request(&hwep->ep, req);
1014 	spin_lock(hwep->lock);
1015 	return retval;
1016 }
1017 
1018 /**
1019  * isr_setup_status_complete: setup_status request complete function
1020  * @ep:  endpoint
1021  * @req: request handled
1022  *
1023  * Caller must release lock. Put the port in test mode if test mode
1024  * feature is selected.
1025  */
1026 static void
1027 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
1028 {
1029 	struct ci_hdrc *ci = req->context;
1030 	unsigned long flags;
1031 
1032 	if (ci->setaddr) {
1033 		hw_usb_set_address(ci, ci->address);
1034 		ci->setaddr = false;
1035 		if (ci->address)
1036 			usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS);
1037 	}
1038 
1039 	spin_lock_irqsave(&ci->lock, flags);
1040 	if (ci->test_mode)
1041 		hw_port_test_set(ci, ci->test_mode);
1042 	spin_unlock_irqrestore(&ci->lock, flags);
1043 }
1044 
1045 /**
1046  * isr_setup_status_phase: queues the status phase of a setup transation
1047  * @ci: ci struct
1048  *
1049  * This function returns an error code
1050  */
1051 static int isr_setup_status_phase(struct ci_hdrc *ci)
1052 {
1053 	struct ci_hw_ep *hwep;
1054 
1055 	/*
1056 	 * Unexpected USB controller behavior, caused by bad signal integrity
1057 	 * or ground reference problems, can lead to isr_setup_status_phase
1058 	 * being called with ci->status equal to NULL.
1059 	 * If this situation occurs, you should review your USB hardware design.
1060 	 */
1061 	if (WARN_ON_ONCE(!ci->status))
1062 		return -EPIPE;
1063 
1064 	hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in;
1065 	ci->status->context = ci;
1066 	ci->status->complete = isr_setup_status_complete;
1067 
1068 	return _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC);
1069 }
1070 
1071 /**
1072  * isr_tr_complete_low: transaction complete low level handler
1073  * @hwep: endpoint
1074  *
1075  * This function returns an error code
1076  * Caller must hold lock
1077  */
1078 static int isr_tr_complete_low(struct ci_hw_ep *hwep)
1079 __releases(hwep->lock)
1080 __acquires(hwep->lock)
1081 {
1082 	struct ci_hw_req *hwreq, *hwreqtemp;
1083 	struct ci_hw_ep *hweptemp = hwep;
1084 	int retval = 0;
1085 
1086 	list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue,
1087 			queue) {
1088 		retval = _hardware_dequeue(hwep, hwreq);
1089 		if (retval < 0)
1090 			break;
1091 		list_del_init(&hwreq->queue);
1092 		if (hwreq->req.complete != NULL) {
1093 			spin_unlock(hwep->lock);
1094 			if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) &&
1095 					hwreq->req.length)
1096 				hweptemp = hwep->ci->ep0in;
1097 			usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req);
1098 			spin_lock(hwep->lock);
1099 		}
1100 	}
1101 
1102 	if (retval == -EBUSY)
1103 		retval = 0;
1104 
1105 	return retval;
1106 }
1107 
1108 static int otg_a_alt_hnp_support(struct ci_hdrc *ci)
1109 {
1110 	dev_warn(&ci->gadget.dev,
1111 		"connect the device to an alternate port if you want HNP\n");
1112 	return isr_setup_status_phase(ci);
1113 }
1114 
1115 /**
1116  * isr_setup_packet_handler: setup packet handler
1117  * @ci: UDC descriptor
1118  *
1119  * This function handles setup packet
1120  */
1121 static void isr_setup_packet_handler(struct ci_hdrc *ci)
1122 __releases(ci->lock)
1123 __acquires(ci->lock)
1124 {
1125 	struct ci_hw_ep *hwep = &ci->ci_hw_ep[0];
1126 	struct usb_ctrlrequest req;
1127 	int type, num, dir, err = -EINVAL;
1128 	u8 tmode = 0;
1129 
1130 	/*
1131 	 * Flush data and handshake transactions of previous
1132 	 * setup packet.
1133 	 */
1134 	_ep_nuke(ci->ep0out);
1135 	_ep_nuke(ci->ep0in);
1136 
1137 	/* read_setup_packet */
1138 	do {
1139 		hw_test_and_set_setup_guard(ci);
1140 		memcpy(&req, &hwep->qh.ptr->setup, sizeof(req));
1141 	} while (!hw_test_and_clear_setup_guard(ci));
1142 
1143 	type = req.bRequestType;
1144 
1145 	ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
1146 
1147 	switch (req.bRequest) {
1148 	case USB_REQ_CLEAR_FEATURE:
1149 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1150 				le16_to_cpu(req.wValue) ==
1151 				USB_ENDPOINT_HALT) {
1152 			if (req.wLength != 0)
1153 				break;
1154 			num  = le16_to_cpu(req.wIndex);
1155 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1156 			num &= USB_ENDPOINT_NUMBER_MASK;
1157 			if (dir == TX)
1158 				num += ci->hw_ep_max / 2;
1159 			if (!ci->ci_hw_ep[num].wedge) {
1160 				spin_unlock(&ci->lock);
1161 				err = usb_ep_clear_halt(
1162 					&ci->ci_hw_ep[num].ep);
1163 				spin_lock(&ci->lock);
1164 				if (err)
1165 					break;
1166 			}
1167 			err = isr_setup_status_phase(ci);
1168 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
1169 				le16_to_cpu(req.wValue) ==
1170 				USB_DEVICE_REMOTE_WAKEUP) {
1171 			if (req.wLength != 0)
1172 				break;
1173 			ci->remote_wakeup = 0;
1174 			err = isr_setup_status_phase(ci);
1175 		} else {
1176 			goto delegate;
1177 		}
1178 		break;
1179 	case USB_REQ_GET_STATUS:
1180 		if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) ||
1181 			le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) &&
1182 		    type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
1183 		    type != (USB_DIR_IN|USB_RECIP_INTERFACE))
1184 			goto delegate;
1185 		if (le16_to_cpu(req.wLength) != 2 ||
1186 		    le16_to_cpu(req.wValue)  != 0)
1187 			break;
1188 		err = isr_get_status_response(ci, &req);
1189 		break;
1190 	case USB_REQ_SET_ADDRESS:
1191 		if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
1192 			goto delegate;
1193 		if (le16_to_cpu(req.wLength) != 0 ||
1194 		    le16_to_cpu(req.wIndex)  != 0)
1195 			break;
1196 		ci->address = (u8)le16_to_cpu(req.wValue);
1197 		ci->setaddr = true;
1198 		err = isr_setup_status_phase(ci);
1199 		break;
1200 	case USB_REQ_SET_FEATURE:
1201 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1202 				le16_to_cpu(req.wValue) ==
1203 				USB_ENDPOINT_HALT) {
1204 			if (req.wLength != 0)
1205 				break;
1206 			num  = le16_to_cpu(req.wIndex);
1207 			dir = (num & USB_ENDPOINT_DIR_MASK) ? TX : RX;
1208 			num &= USB_ENDPOINT_NUMBER_MASK;
1209 			if (dir == TX)
1210 				num += ci->hw_ep_max / 2;
1211 
1212 			spin_unlock(&ci->lock);
1213 			err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false);
1214 			spin_lock(&ci->lock);
1215 			if (!err)
1216 				isr_setup_status_phase(ci);
1217 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
1218 			if (req.wLength != 0)
1219 				break;
1220 			switch (le16_to_cpu(req.wValue)) {
1221 			case USB_DEVICE_REMOTE_WAKEUP:
1222 				ci->remote_wakeup = 1;
1223 				err = isr_setup_status_phase(ci);
1224 				break;
1225 			case USB_DEVICE_TEST_MODE:
1226 				tmode = le16_to_cpu(req.wIndex) >> 8;
1227 				switch (tmode) {
1228 				case USB_TEST_J:
1229 				case USB_TEST_K:
1230 				case USB_TEST_SE0_NAK:
1231 				case USB_TEST_PACKET:
1232 				case USB_TEST_FORCE_ENABLE:
1233 					ci->test_mode = tmode;
1234 					err = isr_setup_status_phase(
1235 							ci);
1236 					break;
1237 				default:
1238 					break;
1239 				}
1240 				break;
1241 			case USB_DEVICE_B_HNP_ENABLE:
1242 				if (ci_otg_is_fsm_mode(ci)) {
1243 					ci->gadget.b_hnp_enable = 1;
1244 					err = isr_setup_status_phase(
1245 							ci);
1246 				}
1247 				break;
1248 			case USB_DEVICE_A_ALT_HNP_SUPPORT:
1249 				if (ci_otg_is_fsm_mode(ci))
1250 					err = otg_a_alt_hnp_support(ci);
1251 				break;
1252 			case USB_DEVICE_A_HNP_SUPPORT:
1253 				if (ci_otg_is_fsm_mode(ci)) {
1254 					ci->gadget.a_hnp_support = 1;
1255 					err = isr_setup_status_phase(
1256 							ci);
1257 				}
1258 				break;
1259 			default:
1260 				goto delegate;
1261 			}
1262 		} else {
1263 			goto delegate;
1264 		}
1265 		break;
1266 	default:
1267 delegate:
1268 		if (req.wLength == 0)   /* no data phase */
1269 			ci->ep0_dir = TX;
1270 
1271 		spin_unlock(&ci->lock);
1272 		err = ci->driver->setup(&ci->gadget, &req);
1273 		spin_lock(&ci->lock);
1274 		break;
1275 	}
1276 
1277 	if (err < 0) {
1278 		spin_unlock(&ci->lock);
1279 		if (_ep_set_halt(&hwep->ep, 1, false))
1280 			dev_err(ci->dev, "error: _ep_set_halt\n");
1281 		spin_lock(&ci->lock);
1282 	}
1283 }
1284 
1285 /**
1286  * isr_tr_complete_handler: transaction complete interrupt handler
1287  * @ci: UDC descriptor
1288  *
1289  * This function handles traffic events
1290  */
1291 static void isr_tr_complete_handler(struct ci_hdrc *ci)
1292 __releases(ci->lock)
1293 __acquires(ci->lock)
1294 {
1295 	unsigned i;
1296 	int err;
1297 
1298 	for (i = 0; i < ci->hw_ep_max; i++) {
1299 		struct ci_hw_ep *hwep  = &ci->ci_hw_ep[i];
1300 
1301 		if (hwep->ep.desc == NULL)
1302 			continue;   /* not configured */
1303 
1304 		if (hw_test_and_clear_complete(ci, i)) {
1305 			err = isr_tr_complete_low(hwep);
1306 			if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1307 				if (err > 0)   /* needs status phase */
1308 					err = isr_setup_status_phase(ci);
1309 				if (err < 0) {
1310 					spin_unlock(&ci->lock);
1311 					if (_ep_set_halt(&hwep->ep, 1, false))
1312 						dev_err(ci->dev,
1313 						"error: _ep_set_halt\n");
1314 					spin_lock(&ci->lock);
1315 				}
1316 			}
1317 		}
1318 
1319 		/* Only handle setup packet below */
1320 		if (i == 0 &&
1321 			hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0)))
1322 			isr_setup_packet_handler(ci);
1323 	}
1324 }
1325 
1326 /******************************************************************************
1327  * ENDPT block
1328  *****************************************************************************/
1329 /**
1330  * ep_enable: configure endpoint, making it usable
1331  *
1332  * Check usb_ep_enable() at "usb_gadget.h" for details
1333  */
1334 static int ep_enable(struct usb_ep *ep,
1335 		     const struct usb_endpoint_descriptor *desc)
1336 {
1337 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1338 	int retval = 0;
1339 	unsigned long flags;
1340 	u32 cap = 0;
1341 
1342 	if (ep == NULL || desc == NULL)
1343 		return -EINVAL;
1344 
1345 	spin_lock_irqsave(hwep->lock, flags);
1346 
1347 	/* only internal SW should enable ctrl endpts */
1348 
1349 	if (!list_empty(&hwep->qh.queue)) {
1350 		dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n");
1351 		spin_unlock_irqrestore(hwep->lock, flags);
1352 		return -EBUSY;
1353 	}
1354 
1355 	hwep->ep.desc = desc;
1356 
1357 	hwep->dir  = usb_endpoint_dir_in(desc) ? TX : RX;
1358 	hwep->num  = usb_endpoint_num(desc);
1359 	hwep->type = usb_endpoint_type(desc);
1360 
1361 	hwep->ep.maxpacket = usb_endpoint_maxp(desc);
1362 	hwep->ep.mult = usb_endpoint_maxp_mult(desc);
1363 
1364 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1365 		cap |= QH_IOS;
1366 
1367 	cap |= QH_ZLT;
1368 	cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT;
1369 	/*
1370 	 * For ISO-TX, we set mult at QH as the largest value, and use
1371 	 * MultO at TD as real mult value.
1372 	 */
1373 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX)
1374 		cap |= 3 << __ffs(QH_MULT);
1375 
1376 	hwep->qh.ptr->cap = cpu_to_le32(cap);
1377 
1378 	hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE);   /* needed? */
1379 
1380 	if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1381 		dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n");
1382 		retval = -EINVAL;
1383 	}
1384 
1385 	/*
1386 	 * Enable endpoints in the HW other than ep0 as ep0
1387 	 * is always enabled
1388 	 */
1389 	if (hwep->num)
1390 		retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir,
1391 				       hwep->type);
1392 
1393 	spin_unlock_irqrestore(hwep->lock, flags);
1394 	return retval;
1395 }
1396 
1397 /**
1398  * ep_disable: endpoint is no longer usable
1399  *
1400  * Check usb_ep_disable() at "usb_gadget.h" for details
1401  */
1402 static int ep_disable(struct usb_ep *ep)
1403 {
1404 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1405 	int direction, retval = 0;
1406 	unsigned long flags;
1407 
1408 	if (ep == NULL)
1409 		return -EINVAL;
1410 	else if (hwep->ep.desc == NULL)
1411 		return -EBUSY;
1412 
1413 	spin_lock_irqsave(hwep->lock, flags);
1414 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1415 		spin_unlock_irqrestore(hwep->lock, flags);
1416 		return 0;
1417 	}
1418 
1419 	/* only internal SW should disable ctrl endpts */
1420 
1421 	direction = hwep->dir;
1422 	do {
1423 		retval |= _ep_nuke(hwep);
1424 		retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir);
1425 
1426 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1427 			hwep->dir = (hwep->dir == TX) ? RX : TX;
1428 
1429 	} while (hwep->dir != direction);
1430 
1431 	hwep->ep.desc = NULL;
1432 
1433 	spin_unlock_irqrestore(hwep->lock, flags);
1434 	return retval;
1435 }
1436 
1437 /**
1438  * ep_alloc_request: allocate a request object to use with this endpoint
1439  *
1440  * Check usb_ep_alloc_request() at "usb_gadget.h" for details
1441  */
1442 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
1443 {
1444 	struct ci_hw_req *hwreq = NULL;
1445 
1446 	if (ep == NULL)
1447 		return NULL;
1448 
1449 	hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags);
1450 	if (hwreq != NULL) {
1451 		INIT_LIST_HEAD(&hwreq->queue);
1452 		INIT_LIST_HEAD(&hwreq->tds);
1453 	}
1454 
1455 	return (hwreq == NULL) ? NULL : &hwreq->req;
1456 }
1457 
1458 /**
1459  * ep_free_request: frees a request object
1460  *
1461  * Check usb_ep_free_request() at "usb_gadget.h" for details
1462  */
1463 static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
1464 {
1465 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1466 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1467 	struct td_node *node, *tmpnode;
1468 	unsigned long flags;
1469 
1470 	if (ep == NULL || req == NULL) {
1471 		return;
1472 	} else if (!list_empty(&hwreq->queue)) {
1473 		dev_err(hwep->ci->dev, "freeing queued request\n");
1474 		return;
1475 	}
1476 
1477 	spin_lock_irqsave(hwep->lock, flags);
1478 
1479 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1480 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1481 		list_del_init(&node->td);
1482 		node->ptr = NULL;
1483 		kfree(node);
1484 	}
1485 
1486 	kfree(hwreq);
1487 
1488 	spin_unlock_irqrestore(hwep->lock, flags);
1489 }
1490 
1491 /**
1492  * ep_queue: queues (submits) an I/O request to an endpoint
1493  *
1494  * Check usb_ep_queue()* at usb_gadget.h" for details
1495  */
1496 static int ep_queue(struct usb_ep *ep, struct usb_request *req,
1497 		    gfp_t __maybe_unused gfp_flags)
1498 {
1499 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1500 	int retval = 0;
1501 	unsigned long flags;
1502 
1503 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1504 		return -EINVAL;
1505 
1506 	spin_lock_irqsave(hwep->lock, flags);
1507 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1508 		spin_unlock_irqrestore(hwep->lock, flags);
1509 		return 0;
1510 	}
1511 	retval = _ep_queue(ep, req, gfp_flags);
1512 	spin_unlock_irqrestore(hwep->lock, flags);
1513 	return retval;
1514 }
1515 
1516 /**
1517  * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
1518  *
1519  * Check usb_ep_dequeue() at "usb_gadget.h" for details
1520  */
1521 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
1522 {
1523 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1524 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1525 	unsigned long flags;
1526 	struct td_node *node, *tmpnode;
1527 
1528 	if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY ||
1529 		hwep->ep.desc == NULL || list_empty(&hwreq->queue) ||
1530 		list_empty(&hwep->qh.queue))
1531 		return -EINVAL;
1532 
1533 	spin_lock_irqsave(hwep->lock, flags);
1534 	if (hwep->ci->gadget.speed != USB_SPEED_UNKNOWN)
1535 		hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1536 
1537 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1538 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1539 		list_del(&node->td);
1540 		kfree(node);
1541 	}
1542 
1543 	/* pop request */
1544 	list_del_init(&hwreq->queue);
1545 
1546 	usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir);
1547 
1548 	req->status = -ECONNRESET;
1549 
1550 	if (hwreq->req.complete != NULL) {
1551 		spin_unlock(hwep->lock);
1552 		usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
1553 		spin_lock(hwep->lock);
1554 	}
1555 
1556 	spin_unlock_irqrestore(hwep->lock, flags);
1557 	return 0;
1558 }
1559 
1560 /**
1561  * ep_set_halt: sets the endpoint halt feature
1562  *
1563  * Check usb_ep_set_halt() at "usb_gadget.h" for details
1564  */
1565 static int ep_set_halt(struct usb_ep *ep, int value)
1566 {
1567 	return _ep_set_halt(ep, value, true);
1568 }
1569 
1570 /**
1571  * ep_set_wedge: sets the halt feature and ignores clear requests
1572  *
1573  * Check usb_ep_set_wedge() at "usb_gadget.h" for details
1574  */
1575 static int ep_set_wedge(struct usb_ep *ep)
1576 {
1577 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1578 	unsigned long flags;
1579 
1580 	if (ep == NULL || hwep->ep.desc == NULL)
1581 		return -EINVAL;
1582 
1583 	spin_lock_irqsave(hwep->lock, flags);
1584 	hwep->wedge = 1;
1585 	spin_unlock_irqrestore(hwep->lock, flags);
1586 
1587 	return usb_ep_set_halt(ep);
1588 }
1589 
1590 /**
1591  * ep_fifo_flush: flushes contents of a fifo
1592  *
1593  * Check usb_ep_fifo_flush() at "usb_gadget.h" for details
1594  */
1595 static void ep_fifo_flush(struct usb_ep *ep)
1596 {
1597 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1598 	unsigned long flags;
1599 
1600 	if (ep == NULL) {
1601 		dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep));
1602 		return;
1603 	}
1604 
1605 	spin_lock_irqsave(hwep->lock, flags);
1606 	if (hwep->ci->gadget.speed == USB_SPEED_UNKNOWN) {
1607 		spin_unlock_irqrestore(hwep->lock, flags);
1608 		return;
1609 	}
1610 
1611 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1612 
1613 	spin_unlock_irqrestore(hwep->lock, flags);
1614 }
1615 
1616 /**
1617  * Endpoint-specific part of the API to the USB controller hardware
1618  * Check "usb_gadget.h" for details
1619  */
1620 static const struct usb_ep_ops usb_ep_ops = {
1621 	.enable	       = ep_enable,
1622 	.disable       = ep_disable,
1623 	.alloc_request = ep_alloc_request,
1624 	.free_request  = ep_free_request,
1625 	.queue	       = ep_queue,
1626 	.dequeue       = ep_dequeue,
1627 	.set_halt      = ep_set_halt,
1628 	.set_wedge     = ep_set_wedge,
1629 	.fifo_flush    = ep_fifo_flush,
1630 };
1631 
1632 /******************************************************************************
1633  * GADGET block
1634  *****************************************************************************/
1635 /**
1636  * ci_hdrc_gadget_connect: caller makes sure gadget driver is binded
1637  */
1638 static void ci_hdrc_gadget_connect(struct usb_gadget *_gadget, int is_active)
1639 {
1640 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1641 
1642 	if (is_active) {
1643 		pm_runtime_get_sync(ci->dev);
1644 		hw_device_reset(ci);
1645 		spin_lock_irq(&ci->lock);
1646 		if (ci->driver) {
1647 			hw_device_state(ci, ci->ep0out->qh.dma);
1648 			usb_gadget_set_state(_gadget, USB_STATE_POWERED);
1649 			spin_unlock_irq(&ci->lock);
1650 			usb_udc_vbus_handler(_gadget, true);
1651 		} else {
1652 			spin_unlock_irq(&ci->lock);
1653 		}
1654 	} else {
1655 		usb_udc_vbus_handler(_gadget, false);
1656 		if (ci->driver)
1657 			ci->driver->disconnect(&ci->gadget);
1658 		hw_device_state(ci, 0);
1659 		if (ci->platdata->notify_event)
1660 			ci->platdata->notify_event(ci,
1661 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
1662 		_gadget_stop_activity(&ci->gadget);
1663 		pm_runtime_put_sync(ci->dev);
1664 		usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED);
1665 	}
1666 }
1667 
1668 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1669 {
1670 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1671 	unsigned long flags;
1672 	int ret = 0;
1673 
1674 	spin_lock_irqsave(&ci->lock, flags);
1675 	ci->vbus_active = is_active;
1676 	spin_unlock_irqrestore(&ci->lock, flags);
1677 
1678 	if (ci->usb_phy)
1679 		usb_phy_set_charger_state(ci->usb_phy, is_active ?
1680 			USB_CHARGER_PRESENT : USB_CHARGER_ABSENT);
1681 
1682 	if (ci->platdata->notify_event)
1683 		ret = ci->platdata->notify_event(ci,
1684 				CI_HDRC_CONTROLLER_VBUS_EVENT);
1685 
1686 	if (ci->driver)
1687 		ci_hdrc_gadget_connect(_gadget, is_active);
1688 
1689 	return ret;
1690 }
1691 
1692 static int ci_udc_wakeup(struct usb_gadget *_gadget)
1693 {
1694 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1695 	unsigned long flags;
1696 	int ret = 0;
1697 
1698 	spin_lock_irqsave(&ci->lock, flags);
1699 	if (ci->gadget.speed == USB_SPEED_UNKNOWN) {
1700 		spin_unlock_irqrestore(&ci->lock, flags);
1701 		return 0;
1702 	}
1703 	if (!ci->remote_wakeup) {
1704 		ret = -EOPNOTSUPP;
1705 		goto out;
1706 	}
1707 	if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) {
1708 		ret = -EINVAL;
1709 		goto out;
1710 	}
1711 	hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
1712 out:
1713 	spin_unlock_irqrestore(&ci->lock, flags);
1714 	return ret;
1715 }
1716 
1717 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma)
1718 {
1719 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1720 
1721 	if (ci->usb_phy)
1722 		return usb_phy_set_power(ci->usb_phy, ma);
1723 	return -ENOTSUPP;
1724 }
1725 
1726 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on)
1727 {
1728 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1729 	struct ci_hw_ep *hwep = ci->ep0in;
1730 	unsigned long flags;
1731 
1732 	spin_lock_irqsave(hwep->lock, flags);
1733 	_gadget->is_selfpowered = (is_on != 0);
1734 	spin_unlock_irqrestore(hwep->lock, flags);
1735 
1736 	return 0;
1737 }
1738 
1739 /* Change Data+ pullup status
1740  * this func is used by usb_gadget_connect/disconnect
1741  */
1742 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on)
1743 {
1744 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1745 
1746 	/*
1747 	 * Data+ pullup controlled by OTG state machine in OTG fsm mode;
1748 	 * and don't touch Data+ in host mode for dual role config.
1749 	 */
1750 	if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST)
1751 		return 0;
1752 
1753 	pm_runtime_get_sync(ci->dev);
1754 	if (is_on)
1755 		hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
1756 	else
1757 		hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
1758 	pm_runtime_put_sync(ci->dev);
1759 
1760 	return 0;
1761 }
1762 
1763 static int ci_udc_start(struct usb_gadget *gadget,
1764 			 struct usb_gadget_driver *driver);
1765 static int ci_udc_stop(struct usb_gadget *gadget);
1766 
1767 /* Match ISOC IN from the highest endpoint */
1768 static struct usb_ep *ci_udc_match_ep(struct usb_gadget *gadget,
1769 			      struct usb_endpoint_descriptor *desc,
1770 			      struct usb_ss_ep_comp_descriptor *comp_desc)
1771 {
1772 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1773 	struct usb_ep *ep;
1774 
1775 	if (usb_endpoint_xfer_isoc(desc) && usb_endpoint_dir_in(desc)) {
1776 		list_for_each_entry_reverse(ep, &ci->gadget.ep_list, ep_list) {
1777 			if (ep->caps.dir_in && !ep->claimed)
1778 				return ep;
1779 		}
1780 	}
1781 
1782 	return NULL;
1783 }
1784 
1785 /**
1786  * Device operations part of the API to the USB controller hardware,
1787  * which don't involve endpoints (or i/o)
1788  * Check  "usb_gadget.h" for details
1789  */
1790 static const struct usb_gadget_ops usb_gadget_ops = {
1791 	.vbus_session	= ci_udc_vbus_session,
1792 	.wakeup		= ci_udc_wakeup,
1793 	.set_selfpowered	= ci_udc_selfpowered,
1794 	.pullup		= ci_udc_pullup,
1795 	.vbus_draw	= ci_udc_vbus_draw,
1796 	.udc_start	= ci_udc_start,
1797 	.udc_stop	= ci_udc_stop,
1798 	.match_ep 	= ci_udc_match_ep,
1799 };
1800 
1801 static int init_eps(struct ci_hdrc *ci)
1802 {
1803 	int retval = 0, i, j;
1804 
1805 	for (i = 0; i < ci->hw_ep_max/2; i++)
1806 		for (j = RX; j <= TX; j++) {
1807 			int k = i + j * ci->hw_ep_max/2;
1808 			struct ci_hw_ep *hwep = &ci->ci_hw_ep[k];
1809 
1810 			scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i,
1811 					(j == TX)  ? "in" : "out");
1812 
1813 			hwep->ci          = ci;
1814 			hwep->lock         = &ci->lock;
1815 			hwep->td_pool      = ci->td_pool;
1816 
1817 			hwep->ep.name      = hwep->name;
1818 			hwep->ep.ops       = &usb_ep_ops;
1819 
1820 			if (i == 0) {
1821 				hwep->ep.caps.type_control = true;
1822 			} else {
1823 				hwep->ep.caps.type_iso = true;
1824 				hwep->ep.caps.type_bulk = true;
1825 				hwep->ep.caps.type_int = true;
1826 			}
1827 
1828 			if (j == TX)
1829 				hwep->ep.caps.dir_in = true;
1830 			else
1831 				hwep->ep.caps.dir_out = true;
1832 
1833 			/*
1834 			 * for ep0: maxP defined in desc, for other
1835 			 * eps, maxP is set by epautoconfig() called
1836 			 * by gadget layer
1837 			 */
1838 			usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0);
1839 
1840 			INIT_LIST_HEAD(&hwep->qh.queue);
1841 			hwep->qh.ptr = dma_pool_zalloc(ci->qh_pool, GFP_KERNEL,
1842 						       &hwep->qh.dma);
1843 			if (hwep->qh.ptr == NULL)
1844 				retval = -ENOMEM;
1845 
1846 			/*
1847 			 * set up shorthands for ep0 out and in endpoints,
1848 			 * don't add to gadget's ep_list
1849 			 */
1850 			if (i == 0) {
1851 				if (j == RX)
1852 					ci->ep0out = hwep;
1853 				else
1854 					ci->ep0in = hwep;
1855 
1856 				usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX);
1857 				continue;
1858 			}
1859 
1860 			list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list);
1861 		}
1862 
1863 	return retval;
1864 }
1865 
1866 static void destroy_eps(struct ci_hdrc *ci)
1867 {
1868 	int i;
1869 
1870 	for (i = 0; i < ci->hw_ep_max; i++) {
1871 		struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
1872 
1873 		if (hwep->pending_td)
1874 			free_pending_td(hwep);
1875 		dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma);
1876 	}
1877 }
1878 
1879 /**
1880  * ci_udc_start: register a gadget driver
1881  * @gadget: our gadget
1882  * @driver: the driver being registered
1883  *
1884  * Interrupts are enabled here.
1885  */
1886 static int ci_udc_start(struct usb_gadget *gadget,
1887 			 struct usb_gadget_driver *driver)
1888 {
1889 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1890 	int retval;
1891 
1892 	if (driver->disconnect == NULL)
1893 		return -EINVAL;
1894 
1895 	ci->ep0out->ep.desc = &ctrl_endpt_out_desc;
1896 	retval = usb_ep_enable(&ci->ep0out->ep);
1897 	if (retval)
1898 		return retval;
1899 
1900 	ci->ep0in->ep.desc = &ctrl_endpt_in_desc;
1901 	retval = usb_ep_enable(&ci->ep0in->ep);
1902 	if (retval)
1903 		return retval;
1904 
1905 	ci->driver = driver;
1906 
1907 	/* Start otg fsm for B-device */
1908 	if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) {
1909 		ci_hdrc_otg_fsm_start(ci);
1910 		return retval;
1911 	}
1912 
1913 	if (ci->vbus_active)
1914 		ci_hdrc_gadget_connect(gadget, 1);
1915 	else
1916 		usb_udc_vbus_handler(&ci->gadget, false);
1917 
1918 	return retval;
1919 }
1920 
1921 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci)
1922 {
1923 	if (!ci_otg_is_fsm_mode(ci))
1924 		return;
1925 
1926 	mutex_lock(&ci->fsm.lock);
1927 	if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
1928 		ci->fsm.a_bidl_adis_tmout = 1;
1929 		ci_hdrc_otg_fsm_start(ci);
1930 	} else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
1931 		ci->fsm.protocol = PROTO_UNDEF;
1932 		ci->fsm.otg->state = OTG_STATE_UNDEFINED;
1933 	}
1934 	mutex_unlock(&ci->fsm.lock);
1935 }
1936 
1937 /**
1938  * ci_udc_stop: unregister a gadget driver
1939  */
1940 static int ci_udc_stop(struct usb_gadget *gadget)
1941 {
1942 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1943 	unsigned long flags;
1944 
1945 	spin_lock_irqsave(&ci->lock, flags);
1946 	ci->driver = NULL;
1947 
1948 	if (ci->vbus_active) {
1949 		hw_device_state(ci, 0);
1950 		spin_unlock_irqrestore(&ci->lock, flags);
1951 		if (ci->platdata->notify_event)
1952 			ci->platdata->notify_event(ci,
1953 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
1954 		_gadget_stop_activity(&ci->gadget);
1955 		spin_lock_irqsave(&ci->lock, flags);
1956 		pm_runtime_put(ci->dev);
1957 	}
1958 
1959 	spin_unlock_irqrestore(&ci->lock, flags);
1960 
1961 	ci_udc_stop_for_otg_fsm(ci);
1962 	return 0;
1963 }
1964 
1965 /******************************************************************************
1966  * BUS block
1967  *****************************************************************************/
1968 /**
1969  * udc_irq: ci interrupt handler
1970  *
1971  * This function returns IRQ_HANDLED if the IRQ has been handled
1972  * It locks access to registers
1973  */
1974 static irqreturn_t udc_irq(struct ci_hdrc *ci)
1975 {
1976 	irqreturn_t retval;
1977 	u32 intr;
1978 
1979 	if (ci == NULL)
1980 		return IRQ_HANDLED;
1981 
1982 	spin_lock(&ci->lock);
1983 
1984 	if (ci->platdata->flags & CI_HDRC_REGS_SHARED) {
1985 		if (hw_read(ci, OP_USBMODE, USBMODE_CM) !=
1986 				USBMODE_CM_DC) {
1987 			spin_unlock(&ci->lock);
1988 			return IRQ_NONE;
1989 		}
1990 	}
1991 	intr = hw_test_and_clear_intr_active(ci);
1992 
1993 	if (intr) {
1994 		/* order defines priority - do NOT change it */
1995 		if (USBi_URI & intr)
1996 			isr_reset_handler(ci);
1997 
1998 		if (USBi_PCI & intr) {
1999 			ci->gadget.speed = hw_port_is_high_speed(ci) ?
2000 				USB_SPEED_HIGH : USB_SPEED_FULL;
2001 			if (ci->suspended) {
2002 				if (ci->driver->resume) {
2003 					spin_unlock(&ci->lock);
2004 					ci->driver->resume(&ci->gadget);
2005 					spin_lock(&ci->lock);
2006 				}
2007 				ci->suspended = 0;
2008 				usb_gadget_set_state(&ci->gadget,
2009 						ci->resume_state);
2010 			}
2011 		}
2012 
2013 		if (USBi_UI  & intr)
2014 			isr_tr_complete_handler(ci);
2015 
2016 		if ((USBi_SLI & intr) && !(ci->suspended)) {
2017 			ci->suspended = 1;
2018 			ci->resume_state = ci->gadget.state;
2019 			if (ci->gadget.speed != USB_SPEED_UNKNOWN &&
2020 			    ci->driver->suspend) {
2021 				spin_unlock(&ci->lock);
2022 				ci->driver->suspend(&ci->gadget);
2023 				spin_lock(&ci->lock);
2024 			}
2025 			usb_gadget_set_state(&ci->gadget,
2026 					USB_STATE_SUSPENDED);
2027 		}
2028 		retval = IRQ_HANDLED;
2029 	} else {
2030 		retval = IRQ_NONE;
2031 	}
2032 	spin_unlock(&ci->lock);
2033 
2034 	return retval;
2035 }
2036 
2037 /**
2038  * udc_start: initialize gadget role
2039  * @ci: chipidea controller
2040  */
2041 static int udc_start(struct ci_hdrc *ci)
2042 {
2043 	struct device *dev = ci->dev;
2044 	struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps;
2045 	int retval = 0;
2046 
2047 	ci->gadget.ops          = &usb_gadget_ops;
2048 	ci->gadget.speed        = USB_SPEED_UNKNOWN;
2049 	ci->gadget.max_speed    = USB_SPEED_HIGH;
2050 	ci->gadget.name         = ci->platdata->name;
2051 	ci->gadget.otg_caps	= otg_caps;
2052 	ci->gadget.sg_supported = 1;
2053 
2054 	if (ci->platdata->flags & CI_HDRC_REQUIRES_ALIGNED_DMA)
2055 		ci->gadget.quirk_avoids_skb_reserve = 1;
2056 
2057 	if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support ||
2058 						otg_caps->adp_support))
2059 		ci->gadget.is_otg = 1;
2060 
2061 	INIT_LIST_HEAD(&ci->gadget.ep_list);
2062 
2063 	/* alloc resources */
2064 	ci->qh_pool = dma_pool_create("ci_hw_qh", dev->parent,
2065 				       sizeof(struct ci_hw_qh),
2066 				       64, CI_HDRC_PAGE_SIZE);
2067 	if (ci->qh_pool == NULL)
2068 		return -ENOMEM;
2069 
2070 	ci->td_pool = dma_pool_create("ci_hw_td", dev->parent,
2071 				       sizeof(struct ci_hw_td),
2072 				       64, CI_HDRC_PAGE_SIZE);
2073 	if (ci->td_pool == NULL) {
2074 		retval = -ENOMEM;
2075 		goto free_qh_pool;
2076 	}
2077 
2078 	retval = init_eps(ci);
2079 	if (retval)
2080 		goto free_pools;
2081 
2082 	ci->gadget.ep0 = &ci->ep0in->ep;
2083 
2084 	retval = usb_add_gadget_udc(dev, &ci->gadget);
2085 	if (retval)
2086 		goto destroy_eps;
2087 
2088 	return retval;
2089 
2090 destroy_eps:
2091 	destroy_eps(ci);
2092 free_pools:
2093 	dma_pool_destroy(ci->td_pool);
2094 free_qh_pool:
2095 	dma_pool_destroy(ci->qh_pool);
2096 	return retval;
2097 }
2098 
2099 /**
2100  * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC
2101  *
2102  * No interrupts active, the IRQ has been released
2103  */
2104 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci)
2105 {
2106 	if (!ci->roles[CI_ROLE_GADGET])
2107 		return;
2108 
2109 	usb_del_gadget_udc(&ci->gadget);
2110 
2111 	destroy_eps(ci);
2112 
2113 	dma_pool_destroy(ci->td_pool);
2114 	dma_pool_destroy(ci->qh_pool);
2115 }
2116 
2117 static int udc_id_switch_for_device(struct ci_hdrc *ci)
2118 {
2119 	if (ci->platdata->pins_device)
2120 		pinctrl_select_state(ci->platdata->pctl,
2121 				     ci->platdata->pins_device);
2122 
2123 	if (ci->is_otg)
2124 		/* Clear and enable BSV irq */
2125 		hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
2126 					OTGSC_BSVIS | OTGSC_BSVIE);
2127 
2128 	return 0;
2129 }
2130 
2131 static void udc_id_switch_for_host(struct ci_hdrc *ci)
2132 {
2133 	/*
2134 	 * host doesn't care B_SESSION_VALID event
2135 	 * so clear and disbale BSV irq
2136 	 */
2137 	if (ci->is_otg)
2138 		hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS);
2139 
2140 	ci->vbus_active = 0;
2141 
2142 	if (ci->platdata->pins_device && ci->platdata->pins_default)
2143 		pinctrl_select_state(ci->platdata->pctl,
2144 				     ci->platdata->pins_default);
2145 }
2146 
2147 /**
2148  * ci_hdrc_gadget_init - initialize device related bits
2149  * ci: the controller
2150  *
2151  * This function initializes the gadget, if the device is "device capable".
2152  */
2153 int ci_hdrc_gadget_init(struct ci_hdrc *ci)
2154 {
2155 	struct ci_role_driver *rdrv;
2156 	int ret;
2157 
2158 	if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC))
2159 		return -ENXIO;
2160 
2161 	rdrv = devm_kzalloc(ci->dev, sizeof(*rdrv), GFP_KERNEL);
2162 	if (!rdrv)
2163 		return -ENOMEM;
2164 
2165 	rdrv->start	= udc_id_switch_for_device;
2166 	rdrv->stop	= udc_id_switch_for_host;
2167 	rdrv->irq	= udc_irq;
2168 	rdrv->name	= "gadget";
2169 
2170 	ret = udc_start(ci);
2171 	if (!ret)
2172 		ci->roles[CI_ROLE_GADGET] = rdrv;
2173 
2174 	return ret;
2175 }
2176