xref: /openbmc/linux/drivers/usb/chipidea/udc.c (revision 0565f49cfe937640c2347f6d7f40ad2f4e4f088b)
1 /*
2  * udc.c - ChipIdea UDC driver
3  *
4  * Copyright (C) 2008 Chipidea - MIPS Technologies, Inc. All rights reserved.
5  *
6  * Author: David Lopo
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #include <linux/delay.h>
14 #include <linux/device.h>
15 #include <linux/dmapool.h>
16 #include <linux/err.h>
17 #include <linux/irqreturn.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/usb/ch9.h>
22 #include <linux/usb/gadget.h>
23 #include <linux/usb/otg-fsm.h>
24 #include <linux/usb/chipidea.h>
25 
26 #include "ci.h"
27 #include "udc.h"
28 #include "bits.h"
29 #include "otg.h"
30 #include "otg_fsm.h"
31 
32 /* control endpoint description */
33 static const struct usb_endpoint_descriptor
34 ctrl_endpt_out_desc = {
35 	.bLength         = USB_DT_ENDPOINT_SIZE,
36 	.bDescriptorType = USB_DT_ENDPOINT,
37 
38 	.bEndpointAddress = USB_DIR_OUT,
39 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
40 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
41 };
42 
43 static const struct usb_endpoint_descriptor
44 ctrl_endpt_in_desc = {
45 	.bLength         = USB_DT_ENDPOINT_SIZE,
46 	.bDescriptorType = USB_DT_ENDPOINT,
47 
48 	.bEndpointAddress = USB_DIR_IN,
49 	.bmAttributes    = USB_ENDPOINT_XFER_CONTROL,
50 	.wMaxPacketSize  = cpu_to_le16(CTRL_PAYLOAD_MAX),
51 };
52 
53 /**
54  * hw_ep_bit: calculates the bit number
55  * @num: endpoint number
56  * @dir: endpoint direction
57  *
58  * This function returns bit number
59  */
60 static inline int hw_ep_bit(int num, int dir)
61 {
62 	return num + (dir ? 16 : 0);
63 }
64 
65 static inline int ep_to_bit(struct ci_hdrc *ci, int n)
66 {
67 	int fill = 16 - ci->hw_ep_max / 2;
68 
69 	if (n >= ci->hw_ep_max / 2)
70 		n += fill;
71 
72 	return n;
73 }
74 
75 /**
76  * hw_device_state: enables/disables interrupts (execute without interruption)
77  * @dma: 0 => disable, !0 => enable and set dma engine
78  *
79  * This function returns an error code
80  */
81 static int hw_device_state(struct ci_hdrc *ci, u32 dma)
82 {
83 	if (dma) {
84 		hw_write(ci, OP_ENDPTLISTADDR, ~0, dma);
85 		/* interrupt, error, port change, reset, sleep/suspend */
86 		hw_write(ci, OP_USBINTR, ~0,
87 			     USBi_UI|USBi_UEI|USBi_PCI|USBi_URI|USBi_SLI);
88 	} else {
89 		hw_write(ci, OP_USBINTR, ~0, 0);
90 	}
91 	return 0;
92 }
93 
94 /**
95  * hw_ep_flush: flush endpoint fifo (execute without interruption)
96  * @num: endpoint number
97  * @dir: endpoint direction
98  *
99  * This function returns an error code
100  */
101 static int hw_ep_flush(struct ci_hdrc *ci, int num, int dir)
102 {
103 	int n = hw_ep_bit(num, dir);
104 
105 	do {
106 		/* flush any pending transfer */
107 		hw_write(ci, OP_ENDPTFLUSH, ~0, BIT(n));
108 		while (hw_read(ci, OP_ENDPTFLUSH, BIT(n)))
109 			cpu_relax();
110 	} while (hw_read(ci, OP_ENDPTSTAT, BIT(n)));
111 
112 	return 0;
113 }
114 
115 /**
116  * hw_ep_disable: disables endpoint (execute without interruption)
117  * @num: endpoint number
118  * @dir: endpoint direction
119  *
120  * This function returns an error code
121  */
122 static int hw_ep_disable(struct ci_hdrc *ci, int num, int dir)
123 {
124 	hw_ep_flush(ci, num, dir);
125 	hw_write(ci, OP_ENDPTCTRL + num,
126 		 dir ? ENDPTCTRL_TXE : ENDPTCTRL_RXE, 0);
127 	return 0;
128 }
129 
130 /**
131  * hw_ep_enable: enables endpoint (execute without interruption)
132  * @num:  endpoint number
133  * @dir:  endpoint direction
134  * @type: endpoint type
135  *
136  * This function returns an error code
137  */
138 static int hw_ep_enable(struct ci_hdrc *ci, int num, int dir, int type)
139 {
140 	u32 mask, data;
141 
142 	if (dir) {
143 		mask  = ENDPTCTRL_TXT;  /* type    */
144 		data  = type << __ffs(mask);
145 
146 		mask |= ENDPTCTRL_TXS;  /* unstall */
147 		mask |= ENDPTCTRL_TXR;  /* reset data toggle */
148 		data |= ENDPTCTRL_TXR;
149 		mask |= ENDPTCTRL_TXE;  /* enable  */
150 		data |= ENDPTCTRL_TXE;
151 	} else {
152 		mask  = ENDPTCTRL_RXT;  /* type    */
153 		data  = type << __ffs(mask);
154 
155 		mask |= ENDPTCTRL_RXS;  /* unstall */
156 		mask |= ENDPTCTRL_RXR;  /* reset data toggle */
157 		data |= ENDPTCTRL_RXR;
158 		mask |= ENDPTCTRL_RXE;  /* enable  */
159 		data |= ENDPTCTRL_RXE;
160 	}
161 	hw_write(ci, OP_ENDPTCTRL + num, mask, data);
162 	return 0;
163 }
164 
165 /**
166  * hw_ep_get_halt: return endpoint halt status
167  * @num: endpoint number
168  * @dir: endpoint direction
169  *
170  * This function returns 1 if endpoint halted
171  */
172 static int hw_ep_get_halt(struct ci_hdrc *ci, int num, int dir)
173 {
174 	u32 mask = dir ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
175 
176 	return hw_read(ci, OP_ENDPTCTRL + num, mask) ? 1 : 0;
177 }
178 
179 /**
180  * hw_ep_prime: primes endpoint (execute without interruption)
181  * @num:     endpoint number
182  * @dir:     endpoint direction
183  * @is_ctrl: true if control endpoint
184  *
185  * This function returns an error code
186  */
187 static int hw_ep_prime(struct ci_hdrc *ci, int num, int dir, int is_ctrl)
188 {
189 	int n = hw_ep_bit(num, dir);
190 
191 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
192 		return -EAGAIN;
193 
194 	hw_write(ci, OP_ENDPTPRIME, ~0, BIT(n));
195 
196 	while (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
197 		cpu_relax();
198 	if (is_ctrl && dir == RX && hw_read(ci, OP_ENDPTSETUPSTAT, BIT(num)))
199 		return -EAGAIN;
200 
201 	/* status shoult be tested according with manual but it doesn't work */
202 	return 0;
203 }
204 
205 /**
206  * hw_ep_set_halt: configures ep halt & resets data toggle after clear (execute
207  *                 without interruption)
208  * @num:   endpoint number
209  * @dir:   endpoint direction
210  * @value: true => stall, false => unstall
211  *
212  * This function returns an error code
213  */
214 static int hw_ep_set_halt(struct ci_hdrc *ci, int num, int dir, int value)
215 {
216 	if (value != 0 && value != 1)
217 		return -EINVAL;
218 
219 	do {
220 		enum ci_hw_regs reg = OP_ENDPTCTRL + num;
221 		u32 mask_xs = dir ? ENDPTCTRL_TXS : ENDPTCTRL_RXS;
222 		u32 mask_xr = dir ? ENDPTCTRL_TXR : ENDPTCTRL_RXR;
223 
224 		/* data toggle - reserved for EP0 but it's in ESS */
225 		hw_write(ci, reg, mask_xs|mask_xr,
226 			  value ? mask_xs : mask_xr);
227 	} while (value != hw_ep_get_halt(ci, num, dir));
228 
229 	return 0;
230 }
231 
232 /**
233  * hw_is_port_high_speed: test if port is high speed
234  *
235  * This function returns true if high speed port
236  */
237 static int hw_port_is_high_speed(struct ci_hdrc *ci)
238 {
239 	return ci->hw_bank.lpm ? hw_read(ci, OP_DEVLC, DEVLC_PSPD) :
240 		hw_read(ci, OP_PORTSC, PORTSC_HSP);
241 }
242 
243 /**
244  * hw_test_and_clear_complete: test & clear complete status (execute without
245  *                             interruption)
246  * @n: endpoint number
247  *
248  * This function returns complete status
249  */
250 static int hw_test_and_clear_complete(struct ci_hdrc *ci, int n)
251 {
252 	n = ep_to_bit(ci, n);
253 	return hw_test_and_clear(ci, OP_ENDPTCOMPLETE, BIT(n));
254 }
255 
256 /**
257  * hw_test_and_clear_intr_active: test & clear active interrupts (execute
258  *                                without interruption)
259  *
260  * This function returns active interrutps
261  */
262 static u32 hw_test_and_clear_intr_active(struct ci_hdrc *ci)
263 {
264 	u32 reg = hw_read_intr_status(ci) & hw_read_intr_enable(ci);
265 
266 	hw_write(ci, OP_USBSTS, ~0, reg);
267 	return reg;
268 }
269 
270 /**
271  * hw_test_and_clear_setup_guard: test & clear setup guard (execute without
272  *                                interruption)
273  *
274  * This function returns guard value
275  */
276 static int hw_test_and_clear_setup_guard(struct ci_hdrc *ci)
277 {
278 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, 0);
279 }
280 
281 /**
282  * hw_test_and_set_setup_guard: test & set setup guard (execute without
283  *                              interruption)
284  *
285  * This function returns guard value
286  */
287 static int hw_test_and_set_setup_guard(struct ci_hdrc *ci)
288 {
289 	return hw_test_and_write(ci, OP_USBCMD, USBCMD_SUTW, USBCMD_SUTW);
290 }
291 
292 /**
293  * hw_usb_set_address: configures USB address (execute without interruption)
294  * @value: new USB address
295  *
296  * This function explicitly sets the address, without the "USBADRA" (advance)
297  * feature, which is not supported by older versions of the controller.
298  */
299 static void hw_usb_set_address(struct ci_hdrc *ci, u8 value)
300 {
301 	hw_write(ci, OP_DEVICEADDR, DEVICEADDR_USBADR,
302 		 value << __ffs(DEVICEADDR_USBADR));
303 }
304 
305 /**
306  * hw_usb_reset: restart device after a bus reset (execute without
307  *               interruption)
308  *
309  * This function returns an error code
310  */
311 static int hw_usb_reset(struct ci_hdrc *ci)
312 {
313 	hw_usb_set_address(ci, 0);
314 
315 	/* ESS flushes only at end?!? */
316 	hw_write(ci, OP_ENDPTFLUSH,    ~0, ~0);
317 
318 	/* clear setup token semaphores */
319 	hw_write(ci, OP_ENDPTSETUPSTAT, 0,  0);
320 
321 	/* clear complete status */
322 	hw_write(ci, OP_ENDPTCOMPLETE,  0,  0);
323 
324 	/* wait until all bits cleared */
325 	while (hw_read(ci, OP_ENDPTPRIME, ~0))
326 		udelay(10);             /* not RTOS friendly */
327 
328 	/* reset all endpoints ? */
329 
330 	/* reset internal status and wait for further instructions
331 	   no need to verify the port reset status (ESS does it) */
332 
333 	return 0;
334 }
335 
336 /******************************************************************************
337  * UTIL block
338  *****************************************************************************/
339 
340 static int add_td_to_list(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq,
341 			  unsigned length)
342 {
343 	int i;
344 	u32 temp;
345 	struct td_node *lastnode, *node = kzalloc(sizeof(struct td_node),
346 						  GFP_ATOMIC);
347 
348 	if (node == NULL)
349 		return -ENOMEM;
350 
351 	node->ptr = dma_pool_zalloc(hwep->td_pool, GFP_ATOMIC,
352 				   &node->dma);
353 	if (node->ptr == NULL) {
354 		kfree(node);
355 		return -ENOMEM;
356 	}
357 
358 	node->ptr->token = cpu_to_le32(length << __ffs(TD_TOTAL_BYTES));
359 	node->ptr->token &= cpu_to_le32(TD_TOTAL_BYTES);
360 	node->ptr->token |= cpu_to_le32(TD_STATUS_ACTIVE);
361 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX) {
362 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
363 
364 		if (hwreq->req.length == 0
365 				|| hwreq->req.length % hwep->ep.maxpacket)
366 			mul++;
367 		node->ptr->token |= mul << __ffs(TD_MULTO);
368 	}
369 
370 	temp = (u32) (hwreq->req.dma + hwreq->req.actual);
371 	if (length) {
372 		node->ptr->page[0] = cpu_to_le32(temp);
373 		for (i = 1; i < TD_PAGE_COUNT; i++) {
374 			u32 page = temp + i * CI_HDRC_PAGE_SIZE;
375 			page &= ~TD_RESERVED_MASK;
376 			node->ptr->page[i] = cpu_to_le32(page);
377 		}
378 	}
379 
380 	hwreq->req.actual += length;
381 
382 	if (!list_empty(&hwreq->tds)) {
383 		/* get the last entry */
384 		lastnode = list_entry(hwreq->tds.prev,
385 				struct td_node, td);
386 		lastnode->ptr->next = cpu_to_le32(node->dma);
387 	}
388 
389 	INIT_LIST_HEAD(&node->td);
390 	list_add_tail(&node->td, &hwreq->tds);
391 
392 	return 0;
393 }
394 
395 /**
396  * _usb_addr: calculates endpoint address from direction & number
397  * @ep:  endpoint
398  */
399 static inline u8 _usb_addr(struct ci_hw_ep *ep)
400 {
401 	return ((ep->dir == TX) ? USB_ENDPOINT_DIR_MASK : 0) | ep->num;
402 }
403 
404 /**
405  * _hardware_enqueue: configures a request at hardware level
406  * @hwep:   endpoint
407  * @hwreq:  request
408  *
409  * This function returns an error code
410  */
411 static int _hardware_enqueue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
412 {
413 	struct ci_hdrc *ci = hwep->ci;
414 	int ret = 0;
415 	unsigned rest = hwreq->req.length;
416 	int pages = TD_PAGE_COUNT;
417 	struct td_node *firstnode, *lastnode;
418 
419 	/* don't queue twice */
420 	if (hwreq->req.status == -EALREADY)
421 		return -EALREADY;
422 
423 	hwreq->req.status = -EALREADY;
424 
425 	ret = usb_gadget_map_request(&ci->gadget, &hwreq->req, hwep->dir);
426 	if (ret)
427 		return ret;
428 
429 	/*
430 	 * The first buffer could be not page aligned.
431 	 * In that case we have to span into one extra td.
432 	 */
433 	if (hwreq->req.dma % PAGE_SIZE)
434 		pages--;
435 
436 	if (rest == 0) {
437 		ret = add_td_to_list(hwep, hwreq, 0);
438 		if (ret < 0)
439 			goto done;
440 	}
441 
442 	while (rest > 0) {
443 		unsigned count = min(hwreq->req.length - hwreq->req.actual,
444 					(unsigned)(pages * CI_HDRC_PAGE_SIZE));
445 		ret = add_td_to_list(hwep, hwreq, count);
446 		if (ret < 0)
447 			goto done;
448 
449 		rest -= count;
450 	}
451 
452 	if (hwreq->req.zero && hwreq->req.length && hwep->dir == TX
453 	    && (hwreq->req.length % hwep->ep.maxpacket == 0)) {
454 		ret = add_td_to_list(hwep, hwreq, 0);
455 		if (ret < 0)
456 			goto done;
457 	}
458 
459 	firstnode = list_first_entry(&hwreq->tds, struct td_node, td);
460 
461 	lastnode = list_entry(hwreq->tds.prev,
462 		struct td_node, td);
463 
464 	lastnode->ptr->next = cpu_to_le32(TD_TERMINATE);
465 	if (!hwreq->req.no_interrupt)
466 		lastnode->ptr->token |= cpu_to_le32(TD_IOC);
467 	wmb();
468 
469 	hwreq->req.actual = 0;
470 	if (!list_empty(&hwep->qh.queue)) {
471 		struct ci_hw_req *hwreqprev;
472 		int n = hw_ep_bit(hwep->num, hwep->dir);
473 		int tmp_stat;
474 		struct td_node *prevlastnode;
475 		u32 next = firstnode->dma & TD_ADDR_MASK;
476 
477 		hwreqprev = list_entry(hwep->qh.queue.prev,
478 				struct ci_hw_req, queue);
479 		prevlastnode = list_entry(hwreqprev->tds.prev,
480 				struct td_node, td);
481 
482 		prevlastnode->ptr->next = cpu_to_le32(next);
483 		wmb();
484 		if (hw_read(ci, OP_ENDPTPRIME, BIT(n)))
485 			goto done;
486 		do {
487 			hw_write(ci, OP_USBCMD, USBCMD_ATDTW, USBCMD_ATDTW);
488 			tmp_stat = hw_read(ci, OP_ENDPTSTAT, BIT(n));
489 		} while (!hw_read(ci, OP_USBCMD, USBCMD_ATDTW));
490 		hw_write(ci, OP_USBCMD, USBCMD_ATDTW, 0);
491 		if (tmp_stat)
492 			goto done;
493 	}
494 
495 	/*  QH configuration */
496 	hwep->qh.ptr->td.next = cpu_to_le32(firstnode->dma);
497 	hwep->qh.ptr->td.token &=
498 		cpu_to_le32(~(TD_STATUS_HALTED|TD_STATUS_ACTIVE));
499 
500 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == RX) {
501 		u32 mul = hwreq->req.length / hwep->ep.maxpacket;
502 
503 		if (hwreq->req.length == 0
504 				|| hwreq->req.length % hwep->ep.maxpacket)
505 			mul++;
506 		hwep->qh.ptr->cap |= mul << __ffs(QH_MULT);
507 	}
508 
509 	wmb();   /* synchronize before ep prime */
510 
511 	ret = hw_ep_prime(ci, hwep->num, hwep->dir,
512 			   hwep->type == USB_ENDPOINT_XFER_CONTROL);
513 done:
514 	return ret;
515 }
516 
517 /*
518  * free_pending_td: remove a pending request for the endpoint
519  * @hwep: endpoint
520  */
521 static void free_pending_td(struct ci_hw_ep *hwep)
522 {
523 	struct td_node *pending = hwep->pending_td;
524 
525 	dma_pool_free(hwep->td_pool, pending->ptr, pending->dma);
526 	hwep->pending_td = NULL;
527 	kfree(pending);
528 }
529 
530 static int reprime_dtd(struct ci_hdrc *ci, struct ci_hw_ep *hwep,
531 					   struct td_node *node)
532 {
533 	hwep->qh.ptr->td.next = node->dma;
534 	hwep->qh.ptr->td.token &=
535 		cpu_to_le32(~(TD_STATUS_HALTED | TD_STATUS_ACTIVE));
536 
537 	/* Synchronize before ep prime */
538 	wmb();
539 
540 	return hw_ep_prime(ci, hwep->num, hwep->dir,
541 				hwep->type == USB_ENDPOINT_XFER_CONTROL);
542 }
543 
544 /**
545  * _hardware_dequeue: handles a request at hardware level
546  * @gadget: gadget
547  * @hwep:   endpoint
548  *
549  * This function returns an error code
550  */
551 static int _hardware_dequeue(struct ci_hw_ep *hwep, struct ci_hw_req *hwreq)
552 {
553 	u32 tmptoken;
554 	struct td_node *node, *tmpnode;
555 	unsigned remaining_length;
556 	unsigned actual = hwreq->req.length;
557 	struct ci_hdrc *ci = hwep->ci;
558 
559 	if (hwreq->req.status != -EALREADY)
560 		return -EINVAL;
561 
562 	hwreq->req.status = 0;
563 
564 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
565 		tmptoken = le32_to_cpu(node->ptr->token);
566 		if ((TD_STATUS_ACTIVE & tmptoken) != 0) {
567 			int n = hw_ep_bit(hwep->num, hwep->dir);
568 
569 			if (ci->rev == CI_REVISION_24)
570 				if (!hw_read(ci, OP_ENDPTSTAT, BIT(n)))
571 					reprime_dtd(ci, hwep, node);
572 			hwreq->req.status = -EALREADY;
573 			return -EBUSY;
574 		}
575 
576 		remaining_length = (tmptoken & TD_TOTAL_BYTES);
577 		remaining_length >>= __ffs(TD_TOTAL_BYTES);
578 		actual -= remaining_length;
579 
580 		hwreq->req.status = tmptoken & TD_STATUS;
581 		if ((TD_STATUS_HALTED & hwreq->req.status)) {
582 			hwreq->req.status = -EPIPE;
583 			break;
584 		} else if ((TD_STATUS_DT_ERR & hwreq->req.status)) {
585 			hwreq->req.status = -EPROTO;
586 			break;
587 		} else if ((TD_STATUS_TR_ERR & hwreq->req.status)) {
588 			hwreq->req.status = -EILSEQ;
589 			break;
590 		}
591 
592 		if (remaining_length) {
593 			if (hwep->dir) {
594 				hwreq->req.status = -EPROTO;
595 				break;
596 			}
597 		}
598 		/*
599 		 * As the hardware could still address the freed td
600 		 * which will run the udc unusable, the cleanup of the
601 		 * td has to be delayed by one.
602 		 */
603 		if (hwep->pending_td)
604 			free_pending_td(hwep);
605 
606 		hwep->pending_td = node;
607 		list_del_init(&node->td);
608 	}
609 
610 	usb_gadget_unmap_request(&hwep->ci->gadget, &hwreq->req, hwep->dir);
611 
612 	hwreq->req.actual += actual;
613 
614 	if (hwreq->req.status)
615 		return hwreq->req.status;
616 
617 	return hwreq->req.actual;
618 }
619 
620 /**
621  * _ep_nuke: dequeues all endpoint requests
622  * @hwep: endpoint
623  *
624  * This function returns an error code
625  * Caller must hold lock
626  */
627 static int _ep_nuke(struct ci_hw_ep *hwep)
628 __releases(hwep->lock)
629 __acquires(hwep->lock)
630 {
631 	struct td_node *node, *tmpnode;
632 	if (hwep == NULL)
633 		return -EINVAL;
634 
635 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
636 
637 	while (!list_empty(&hwep->qh.queue)) {
638 
639 		/* pop oldest request */
640 		struct ci_hw_req *hwreq = list_entry(hwep->qh.queue.next,
641 						     struct ci_hw_req, queue);
642 
643 		list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
644 			dma_pool_free(hwep->td_pool, node->ptr, node->dma);
645 			list_del_init(&node->td);
646 			node->ptr = NULL;
647 			kfree(node);
648 		}
649 
650 		list_del_init(&hwreq->queue);
651 		hwreq->req.status = -ESHUTDOWN;
652 
653 		if (hwreq->req.complete != NULL) {
654 			spin_unlock(hwep->lock);
655 			usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
656 			spin_lock(hwep->lock);
657 		}
658 	}
659 
660 	if (hwep->pending_td)
661 		free_pending_td(hwep);
662 
663 	return 0;
664 }
665 
666 static int _ep_set_halt(struct usb_ep *ep, int value, bool check_transfer)
667 {
668 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
669 	int direction, retval = 0;
670 	unsigned long flags;
671 
672 	if (ep == NULL || hwep->ep.desc == NULL)
673 		return -EINVAL;
674 
675 	if (usb_endpoint_xfer_isoc(hwep->ep.desc))
676 		return -EOPNOTSUPP;
677 
678 	spin_lock_irqsave(hwep->lock, flags);
679 
680 	if (value && hwep->dir == TX && check_transfer &&
681 		!list_empty(&hwep->qh.queue) &&
682 			!usb_endpoint_xfer_control(hwep->ep.desc)) {
683 		spin_unlock_irqrestore(hwep->lock, flags);
684 		return -EAGAIN;
685 	}
686 
687 	direction = hwep->dir;
688 	do {
689 		retval |= hw_ep_set_halt(hwep->ci, hwep->num, hwep->dir, value);
690 
691 		if (!value)
692 			hwep->wedge = 0;
693 
694 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
695 			hwep->dir = (hwep->dir == TX) ? RX : TX;
696 
697 	} while (hwep->dir != direction);
698 
699 	spin_unlock_irqrestore(hwep->lock, flags);
700 	return retval;
701 }
702 
703 
704 /**
705  * _gadget_stop_activity: stops all USB activity, flushes & disables all endpts
706  * @gadget: gadget
707  *
708  * This function returns an error code
709  */
710 static int _gadget_stop_activity(struct usb_gadget *gadget)
711 {
712 	struct usb_ep *ep;
713 	struct ci_hdrc    *ci = container_of(gadget, struct ci_hdrc, gadget);
714 	unsigned long flags;
715 
716 	spin_lock_irqsave(&ci->lock, flags);
717 	ci->gadget.speed = USB_SPEED_UNKNOWN;
718 	ci->remote_wakeup = 0;
719 	ci->suspended = 0;
720 	spin_unlock_irqrestore(&ci->lock, flags);
721 
722 	/* flush all endpoints */
723 	gadget_for_each_ep(ep, gadget) {
724 		usb_ep_fifo_flush(ep);
725 	}
726 	usb_ep_fifo_flush(&ci->ep0out->ep);
727 	usb_ep_fifo_flush(&ci->ep0in->ep);
728 
729 	/* make sure to disable all endpoints */
730 	gadget_for_each_ep(ep, gadget) {
731 		usb_ep_disable(ep);
732 	}
733 
734 	if (ci->status != NULL) {
735 		usb_ep_free_request(&ci->ep0in->ep, ci->status);
736 		ci->status = NULL;
737 	}
738 
739 	return 0;
740 }
741 
742 /******************************************************************************
743  * ISR block
744  *****************************************************************************/
745 /**
746  * isr_reset_handler: USB reset interrupt handler
747  * @ci: UDC device
748  *
749  * This function resets USB engine after a bus reset occurred
750  */
751 static void isr_reset_handler(struct ci_hdrc *ci)
752 __releases(ci->lock)
753 __acquires(ci->lock)
754 {
755 	int retval;
756 
757 	spin_unlock(&ci->lock);
758 	if (ci->gadget.speed != USB_SPEED_UNKNOWN)
759 		usb_gadget_udc_reset(&ci->gadget, ci->driver);
760 
761 	retval = _gadget_stop_activity(&ci->gadget);
762 	if (retval)
763 		goto done;
764 
765 	retval = hw_usb_reset(ci);
766 	if (retval)
767 		goto done;
768 
769 	ci->status = usb_ep_alloc_request(&ci->ep0in->ep, GFP_ATOMIC);
770 	if (ci->status == NULL)
771 		retval = -ENOMEM;
772 
773 done:
774 	spin_lock(&ci->lock);
775 
776 	if (retval)
777 		dev_err(ci->dev, "error: %i\n", retval);
778 }
779 
780 /**
781  * isr_get_status_complete: get_status request complete function
782  * @ep:  endpoint
783  * @req: request handled
784  *
785  * Caller must release lock
786  */
787 static void isr_get_status_complete(struct usb_ep *ep, struct usb_request *req)
788 {
789 	if (ep == NULL || req == NULL)
790 		return;
791 
792 	kfree(req->buf);
793 	usb_ep_free_request(ep, req);
794 }
795 
796 /**
797  * _ep_queue: queues (submits) an I/O request to an endpoint
798  * @ep:        endpoint
799  * @req:       request
800  * @gfp_flags: GFP flags (not used)
801  *
802  * Caller must hold lock
803  * This function returns an error code
804  */
805 static int _ep_queue(struct usb_ep *ep, struct usb_request *req,
806 		    gfp_t __maybe_unused gfp_flags)
807 {
808 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
809 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
810 	struct ci_hdrc *ci = hwep->ci;
811 	int retval = 0;
812 
813 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
814 		return -EINVAL;
815 
816 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
817 		if (req->length)
818 			hwep = (ci->ep0_dir == RX) ?
819 			       ci->ep0out : ci->ep0in;
820 		if (!list_empty(&hwep->qh.queue)) {
821 			_ep_nuke(hwep);
822 			dev_warn(hwep->ci->dev, "endpoint ctrl %X nuked\n",
823 				 _usb_addr(hwep));
824 		}
825 	}
826 
827 	if (usb_endpoint_xfer_isoc(hwep->ep.desc) &&
828 	    hwreq->req.length > (1 + hwep->ep.mult) * hwep->ep.maxpacket) {
829 		dev_err(hwep->ci->dev, "request length too big for isochronous\n");
830 		return -EMSGSIZE;
831 	}
832 
833 	/* first nuke then test link, e.g. previous status has not sent */
834 	if (!list_empty(&hwreq->queue)) {
835 		dev_err(hwep->ci->dev, "request already in queue\n");
836 		return -EBUSY;
837 	}
838 
839 	/* push request */
840 	hwreq->req.status = -EINPROGRESS;
841 	hwreq->req.actual = 0;
842 
843 	retval = _hardware_enqueue(hwep, hwreq);
844 
845 	if (retval == -EALREADY)
846 		retval = 0;
847 	if (!retval)
848 		list_add_tail(&hwreq->queue, &hwep->qh.queue);
849 
850 	return retval;
851 }
852 
853 /**
854  * isr_get_status_response: get_status request response
855  * @ci: ci struct
856  * @setup: setup request packet
857  *
858  * This function returns an error code
859  */
860 static int isr_get_status_response(struct ci_hdrc *ci,
861 				   struct usb_ctrlrequest *setup)
862 __releases(hwep->lock)
863 __acquires(hwep->lock)
864 {
865 	struct ci_hw_ep *hwep = ci->ep0in;
866 	struct usb_request *req = NULL;
867 	gfp_t gfp_flags = GFP_ATOMIC;
868 	int dir, num, retval;
869 
870 	if (hwep == NULL || setup == NULL)
871 		return -EINVAL;
872 
873 	spin_unlock(hwep->lock);
874 	req = usb_ep_alloc_request(&hwep->ep, gfp_flags);
875 	spin_lock(hwep->lock);
876 	if (req == NULL)
877 		return -ENOMEM;
878 
879 	req->complete = isr_get_status_complete;
880 	req->length   = 2;
881 	req->buf      = kzalloc(req->length, gfp_flags);
882 	if (req->buf == NULL) {
883 		retval = -ENOMEM;
884 		goto err_free_req;
885 	}
886 
887 	if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
888 		*(u16 *)req->buf = (ci->remote_wakeup << 1) |
889 			ci->gadget.is_selfpowered;
890 	} else if ((setup->bRequestType & USB_RECIP_MASK) \
891 		   == USB_RECIP_ENDPOINT) {
892 		dir = (le16_to_cpu(setup->wIndex) & USB_ENDPOINT_DIR_MASK) ?
893 			TX : RX;
894 		num =  le16_to_cpu(setup->wIndex) & USB_ENDPOINT_NUMBER_MASK;
895 		*(u16 *)req->buf = hw_ep_get_halt(ci, num, dir);
896 	}
897 	/* else do nothing; reserved for future use */
898 
899 	retval = _ep_queue(&hwep->ep, req, gfp_flags);
900 	if (retval)
901 		goto err_free_buf;
902 
903 	return 0;
904 
905  err_free_buf:
906 	kfree(req->buf);
907  err_free_req:
908 	spin_unlock(hwep->lock);
909 	usb_ep_free_request(&hwep->ep, req);
910 	spin_lock(hwep->lock);
911 	return retval;
912 }
913 
914 /**
915  * isr_setup_status_complete: setup_status request complete function
916  * @ep:  endpoint
917  * @req: request handled
918  *
919  * Caller must release lock. Put the port in test mode if test mode
920  * feature is selected.
921  */
922 static void
923 isr_setup_status_complete(struct usb_ep *ep, struct usb_request *req)
924 {
925 	struct ci_hdrc *ci = req->context;
926 	unsigned long flags;
927 
928 	if (ci->setaddr) {
929 		hw_usb_set_address(ci, ci->address);
930 		ci->setaddr = false;
931 		if (ci->address)
932 			usb_gadget_set_state(&ci->gadget, USB_STATE_ADDRESS);
933 	}
934 
935 	spin_lock_irqsave(&ci->lock, flags);
936 	if (ci->test_mode)
937 		hw_port_test_set(ci, ci->test_mode);
938 	spin_unlock_irqrestore(&ci->lock, flags);
939 }
940 
941 /**
942  * isr_setup_status_phase: queues the status phase of a setup transation
943  * @ci: ci struct
944  *
945  * This function returns an error code
946  */
947 static int isr_setup_status_phase(struct ci_hdrc *ci)
948 {
949 	int retval;
950 	struct ci_hw_ep *hwep;
951 
952 	/*
953 	 * Unexpected USB controller behavior, caused by bad signal integrity
954 	 * or ground reference problems, can lead to isr_setup_status_phase
955 	 * being called with ci->status equal to NULL.
956 	 * If this situation occurs, you should review your USB hardware design.
957 	 */
958 	if (WARN_ON_ONCE(!ci->status))
959 		return -EPIPE;
960 
961 	hwep = (ci->ep0_dir == TX) ? ci->ep0out : ci->ep0in;
962 	ci->status->context = ci;
963 	ci->status->complete = isr_setup_status_complete;
964 
965 	retval = _ep_queue(&hwep->ep, ci->status, GFP_ATOMIC);
966 
967 	return retval;
968 }
969 
970 /**
971  * isr_tr_complete_low: transaction complete low level handler
972  * @hwep: endpoint
973  *
974  * This function returns an error code
975  * Caller must hold lock
976  */
977 static int isr_tr_complete_low(struct ci_hw_ep *hwep)
978 __releases(hwep->lock)
979 __acquires(hwep->lock)
980 {
981 	struct ci_hw_req *hwreq, *hwreqtemp;
982 	struct ci_hw_ep *hweptemp = hwep;
983 	int retval = 0;
984 
985 	list_for_each_entry_safe(hwreq, hwreqtemp, &hwep->qh.queue,
986 			queue) {
987 		retval = _hardware_dequeue(hwep, hwreq);
988 		if (retval < 0)
989 			break;
990 		list_del_init(&hwreq->queue);
991 		if (hwreq->req.complete != NULL) {
992 			spin_unlock(hwep->lock);
993 			if ((hwep->type == USB_ENDPOINT_XFER_CONTROL) &&
994 					hwreq->req.length)
995 				hweptemp = hwep->ci->ep0in;
996 			usb_gadget_giveback_request(&hweptemp->ep, &hwreq->req);
997 			spin_lock(hwep->lock);
998 		}
999 	}
1000 
1001 	if (retval == -EBUSY)
1002 		retval = 0;
1003 
1004 	return retval;
1005 }
1006 
1007 static int otg_a_alt_hnp_support(struct ci_hdrc *ci)
1008 {
1009 	dev_warn(&ci->gadget.dev,
1010 		"connect the device to an alternate port if you want HNP\n");
1011 	return isr_setup_status_phase(ci);
1012 }
1013 
1014 /**
1015  * isr_setup_packet_handler: setup packet handler
1016  * @ci: UDC descriptor
1017  *
1018  * This function handles setup packet
1019  */
1020 static void isr_setup_packet_handler(struct ci_hdrc *ci)
1021 __releases(ci->lock)
1022 __acquires(ci->lock)
1023 {
1024 	struct ci_hw_ep *hwep = &ci->ci_hw_ep[0];
1025 	struct usb_ctrlrequest req;
1026 	int type, num, dir, err = -EINVAL;
1027 	u8 tmode = 0;
1028 
1029 	/*
1030 	 * Flush data and handshake transactions of previous
1031 	 * setup packet.
1032 	 */
1033 	_ep_nuke(ci->ep0out);
1034 	_ep_nuke(ci->ep0in);
1035 
1036 	/* read_setup_packet */
1037 	do {
1038 		hw_test_and_set_setup_guard(ci);
1039 		memcpy(&req, &hwep->qh.ptr->setup, sizeof(req));
1040 	} while (!hw_test_and_clear_setup_guard(ci));
1041 
1042 	type = req.bRequestType;
1043 
1044 	ci->ep0_dir = (type & USB_DIR_IN) ? TX : RX;
1045 
1046 	switch (req.bRequest) {
1047 	case USB_REQ_CLEAR_FEATURE:
1048 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1049 				le16_to_cpu(req.wValue) ==
1050 				USB_ENDPOINT_HALT) {
1051 			if (req.wLength != 0)
1052 				break;
1053 			num  = le16_to_cpu(req.wIndex);
1054 			dir = num & USB_ENDPOINT_DIR_MASK;
1055 			num &= USB_ENDPOINT_NUMBER_MASK;
1056 			if (dir) /* TX */
1057 				num += ci->hw_ep_max / 2;
1058 			if (!ci->ci_hw_ep[num].wedge) {
1059 				spin_unlock(&ci->lock);
1060 				err = usb_ep_clear_halt(
1061 					&ci->ci_hw_ep[num].ep);
1062 				spin_lock(&ci->lock);
1063 				if (err)
1064 					break;
1065 			}
1066 			err = isr_setup_status_phase(ci);
1067 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE) &&
1068 				le16_to_cpu(req.wValue) ==
1069 				USB_DEVICE_REMOTE_WAKEUP) {
1070 			if (req.wLength != 0)
1071 				break;
1072 			ci->remote_wakeup = 0;
1073 			err = isr_setup_status_phase(ci);
1074 		} else {
1075 			goto delegate;
1076 		}
1077 		break;
1078 	case USB_REQ_GET_STATUS:
1079 		if ((type != (USB_DIR_IN|USB_RECIP_DEVICE) ||
1080 			le16_to_cpu(req.wIndex) == OTG_STS_SELECTOR) &&
1081 		    type != (USB_DIR_IN|USB_RECIP_ENDPOINT) &&
1082 		    type != (USB_DIR_IN|USB_RECIP_INTERFACE))
1083 			goto delegate;
1084 		if (le16_to_cpu(req.wLength) != 2 ||
1085 		    le16_to_cpu(req.wValue)  != 0)
1086 			break;
1087 		err = isr_get_status_response(ci, &req);
1088 		break;
1089 	case USB_REQ_SET_ADDRESS:
1090 		if (type != (USB_DIR_OUT|USB_RECIP_DEVICE))
1091 			goto delegate;
1092 		if (le16_to_cpu(req.wLength) != 0 ||
1093 		    le16_to_cpu(req.wIndex)  != 0)
1094 			break;
1095 		ci->address = (u8)le16_to_cpu(req.wValue);
1096 		ci->setaddr = true;
1097 		err = isr_setup_status_phase(ci);
1098 		break;
1099 	case USB_REQ_SET_FEATURE:
1100 		if (type == (USB_DIR_OUT|USB_RECIP_ENDPOINT) &&
1101 				le16_to_cpu(req.wValue) ==
1102 				USB_ENDPOINT_HALT) {
1103 			if (req.wLength != 0)
1104 				break;
1105 			num  = le16_to_cpu(req.wIndex);
1106 			dir = num & USB_ENDPOINT_DIR_MASK;
1107 			num &= USB_ENDPOINT_NUMBER_MASK;
1108 			if (dir) /* TX */
1109 				num += ci->hw_ep_max / 2;
1110 
1111 			spin_unlock(&ci->lock);
1112 			err = _ep_set_halt(&ci->ci_hw_ep[num].ep, 1, false);
1113 			spin_lock(&ci->lock);
1114 			if (!err)
1115 				isr_setup_status_phase(ci);
1116 		} else if (type == (USB_DIR_OUT|USB_RECIP_DEVICE)) {
1117 			if (req.wLength != 0)
1118 				break;
1119 			switch (le16_to_cpu(req.wValue)) {
1120 			case USB_DEVICE_REMOTE_WAKEUP:
1121 				ci->remote_wakeup = 1;
1122 				err = isr_setup_status_phase(ci);
1123 				break;
1124 			case USB_DEVICE_TEST_MODE:
1125 				tmode = le16_to_cpu(req.wIndex) >> 8;
1126 				switch (tmode) {
1127 				case TEST_J:
1128 				case TEST_K:
1129 				case TEST_SE0_NAK:
1130 				case TEST_PACKET:
1131 				case TEST_FORCE_EN:
1132 					ci->test_mode = tmode;
1133 					err = isr_setup_status_phase(
1134 							ci);
1135 					break;
1136 				default:
1137 					break;
1138 				}
1139 				break;
1140 			case USB_DEVICE_B_HNP_ENABLE:
1141 				if (ci_otg_is_fsm_mode(ci)) {
1142 					ci->gadget.b_hnp_enable = 1;
1143 					err = isr_setup_status_phase(
1144 							ci);
1145 				}
1146 				break;
1147 			case USB_DEVICE_A_ALT_HNP_SUPPORT:
1148 				if (ci_otg_is_fsm_mode(ci))
1149 					err = otg_a_alt_hnp_support(ci);
1150 				break;
1151 			case USB_DEVICE_A_HNP_SUPPORT:
1152 				if (ci_otg_is_fsm_mode(ci)) {
1153 					ci->gadget.a_hnp_support = 1;
1154 					err = isr_setup_status_phase(
1155 							ci);
1156 				}
1157 				break;
1158 			default:
1159 				goto delegate;
1160 			}
1161 		} else {
1162 			goto delegate;
1163 		}
1164 		break;
1165 	default:
1166 delegate:
1167 		if (req.wLength == 0)   /* no data phase */
1168 			ci->ep0_dir = TX;
1169 
1170 		spin_unlock(&ci->lock);
1171 		err = ci->driver->setup(&ci->gadget, &req);
1172 		spin_lock(&ci->lock);
1173 		break;
1174 	}
1175 
1176 	if (err < 0) {
1177 		spin_unlock(&ci->lock);
1178 		if (_ep_set_halt(&hwep->ep, 1, false))
1179 			dev_err(ci->dev, "error: _ep_set_halt\n");
1180 		spin_lock(&ci->lock);
1181 	}
1182 }
1183 
1184 /**
1185  * isr_tr_complete_handler: transaction complete interrupt handler
1186  * @ci: UDC descriptor
1187  *
1188  * This function handles traffic events
1189  */
1190 static void isr_tr_complete_handler(struct ci_hdrc *ci)
1191 __releases(ci->lock)
1192 __acquires(ci->lock)
1193 {
1194 	unsigned i;
1195 	int err;
1196 
1197 	for (i = 0; i < ci->hw_ep_max; i++) {
1198 		struct ci_hw_ep *hwep  = &ci->ci_hw_ep[i];
1199 
1200 		if (hwep->ep.desc == NULL)
1201 			continue;   /* not configured */
1202 
1203 		if (hw_test_and_clear_complete(ci, i)) {
1204 			err = isr_tr_complete_low(hwep);
1205 			if (hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1206 				if (err > 0)   /* needs status phase */
1207 					err = isr_setup_status_phase(ci);
1208 				if (err < 0) {
1209 					spin_unlock(&ci->lock);
1210 					if (_ep_set_halt(&hwep->ep, 1, false))
1211 						dev_err(ci->dev,
1212 						"error: _ep_set_halt\n");
1213 					spin_lock(&ci->lock);
1214 				}
1215 			}
1216 		}
1217 
1218 		/* Only handle setup packet below */
1219 		if (i == 0 &&
1220 			hw_test_and_clear(ci, OP_ENDPTSETUPSTAT, BIT(0)))
1221 			isr_setup_packet_handler(ci);
1222 	}
1223 }
1224 
1225 /******************************************************************************
1226  * ENDPT block
1227  *****************************************************************************/
1228 /**
1229  * ep_enable: configure endpoint, making it usable
1230  *
1231  * Check usb_ep_enable() at "usb_gadget.h" for details
1232  */
1233 static int ep_enable(struct usb_ep *ep,
1234 		     const struct usb_endpoint_descriptor *desc)
1235 {
1236 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1237 	int retval = 0;
1238 	unsigned long flags;
1239 	u32 cap = 0;
1240 
1241 	if (ep == NULL || desc == NULL)
1242 		return -EINVAL;
1243 
1244 	spin_lock_irqsave(hwep->lock, flags);
1245 
1246 	/* only internal SW should enable ctrl endpts */
1247 
1248 	if (!list_empty(&hwep->qh.queue)) {
1249 		dev_warn(hwep->ci->dev, "enabling a non-empty endpoint!\n");
1250 		spin_unlock_irqrestore(hwep->lock, flags);
1251 		return -EBUSY;
1252 	}
1253 
1254 	hwep->ep.desc = desc;
1255 
1256 	hwep->dir  = usb_endpoint_dir_in(desc) ? TX : RX;
1257 	hwep->num  = usb_endpoint_num(desc);
1258 	hwep->type = usb_endpoint_type(desc);
1259 
1260 	hwep->ep.maxpacket = usb_endpoint_maxp(desc) & 0x07ff;
1261 	hwep->ep.mult = QH_ISO_MULT(usb_endpoint_maxp(desc));
1262 
1263 	if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1264 		cap |= QH_IOS;
1265 
1266 	cap |= QH_ZLT;
1267 	cap |= (hwep->ep.maxpacket << __ffs(QH_MAX_PKT)) & QH_MAX_PKT;
1268 	/*
1269 	 * For ISO-TX, we set mult at QH as the largest value, and use
1270 	 * MultO at TD as real mult value.
1271 	 */
1272 	if (hwep->type == USB_ENDPOINT_XFER_ISOC && hwep->dir == TX)
1273 		cap |= 3 << __ffs(QH_MULT);
1274 
1275 	hwep->qh.ptr->cap = cpu_to_le32(cap);
1276 
1277 	hwep->qh.ptr->td.next |= cpu_to_le32(TD_TERMINATE);   /* needed? */
1278 
1279 	if (hwep->num != 0 && hwep->type == USB_ENDPOINT_XFER_CONTROL) {
1280 		dev_err(hwep->ci->dev, "Set control xfer at non-ep0\n");
1281 		retval = -EINVAL;
1282 	}
1283 
1284 	/*
1285 	 * Enable endpoints in the HW other than ep0 as ep0
1286 	 * is always enabled
1287 	 */
1288 	if (hwep->num)
1289 		retval |= hw_ep_enable(hwep->ci, hwep->num, hwep->dir,
1290 				       hwep->type);
1291 
1292 	spin_unlock_irqrestore(hwep->lock, flags);
1293 	return retval;
1294 }
1295 
1296 /**
1297  * ep_disable: endpoint is no longer usable
1298  *
1299  * Check usb_ep_disable() at "usb_gadget.h" for details
1300  */
1301 static int ep_disable(struct usb_ep *ep)
1302 {
1303 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1304 	int direction, retval = 0;
1305 	unsigned long flags;
1306 
1307 	if (ep == NULL)
1308 		return -EINVAL;
1309 	else if (hwep->ep.desc == NULL)
1310 		return -EBUSY;
1311 
1312 	spin_lock_irqsave(hwep->lock, flags);
1313 
1314 	/* only internal SW should disable ctrl endpts */
1315 
1316 	direction = hwep->dir;
1317 	do {
1318 		retval |= _ep_nuke(hwep);
1319 		retval |= hw_ep_disable(hwep->ci, hwep->num, hwep->dir);
1320 
1321 		if (hwep->type == USB_ENDPOINT_XFER_CONTROL)
1322 			hwep->dir = (hwep->dir == TX) ? RX : TX;
1323 
1324 	} while (hwep->dir != direction);
1325 
1326 	hwep->ep.desc = NULL;
1327 
1328 	spin_unlock_irqrestore(hwep->lock, flags);
1329 	return retval;
1330 }
1331 
1332 /**
1333  * ep_alloc_request: allocate a request object to use with this endpoint
1334  *
1335  * Check usb_ep_alloc_request() at "usb_gadget.h" for details
1336  */
1337 static struct usb_request *ep_alloc_request(struct usb_ep *ep, gfp_t gfp_flags)
1338 {
1339 	struct ci_hw_req *hwreq = NULL;
1340 
1341 	if (ep == NULL)
1342 		return NULL;
1343 
1344 	hwreq = kzalloc(sizeof(struct ci_hw_req), gfp_flags);
1345 	if (hwreq != NULL) {
1346 		INIT_LIST_HEAD(&hwreq->queue);
1347 		INIT_LIST_HEAD(&hwreq->tds);
1348 	}
1349 
1350 	return (hwreq == NULL) ? NULL : &hwreq->req;
1351 }
1352 
1353 /**
1354  * ep_free_request: frees a request object
1355  *
1356  * Check usb_ep_free_request() at "usb_gadget.h" for details
1357  */
1358 static void ep_free_request(struct usb_ep *ep, struct usb_request *req)
1359 {
1360 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1361 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1362 	struct td_node *node, *tmpnode;
1363 	unsigned long flags;
1364 
1365 	if (ep == NULL || req == NULL) {
1366 		return;
1367 	} else if (!list_empty(&hwreq->queue)) {
1368 		dev_err(hwep->ci->dev, "freeing queued request\n");
1369 		return;
1370 	}
1371 
1372 	spin_lock_irqsave(hwep->lock, flags);
1373 
1374 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1375 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1376 		list_del_init(&node->td);
1377 		node->ptr = NULL;
1378 		kfree(node);
1379 	}
1380 
1381 	kfree(hwreq);
1382 
1383 	spin_unlock_irqrestore(hwep->lock, flags);
1384 }
1385 
1386 /**
1387  * ep_queue: queues (submits) an I/O request to an endpoint
1388  *
1389  * Check usb_ep_queue()* at usb_gadget.h" for details
1390  */
1391 static int ep_queue(struct usb_ep *ep, struct usb_request *req,
1392 		    gfp_t __maybe_unused gfp_flags)
1393 {
1394 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1395 	int retval = 0;
1396 	unsigned long flags;
1397 
1398 	if (ep == NULL || req == NULL || hwep->ep.desc == NULL)
1399 		return -EINVAL;
1400 
1401 	spin_lock_irqsave(hwep->lock, flags);
1402 	retval = _ep_queue(ep, req, gfp_flags);
1403 	spin_unlock_irqrestore(hwep->lock, flags);
1404 	return retval;
1405 }
1406 
1407 /**
1408  * ep_dequeue: dequeues (cancels, unlinks) an I/O request from an endpoint
1409  *
1410  * Check usb_ep_dequeue() at "usb_gadget.h" for details
1411  */
1412 static int ep_dequeue(struct usb_ep *ep, struct usb_request *req)
1413 {
1414 	struct ci_hw_ep  *hwep  = container_of(ep,  struct ci_hw_ep, ep);
1415 	struct ci_hw_req *hwreq = container_of(req, struct ci_hw_req, req);
1416 	unsigned long flags;
1417 	struct td_node *node, *tmpnode;
1418 
1419 	if (ep == NULL || req == NULL || hwreq->req.status != -EALREADY ||
1420 		hwep->ep.desc == NULL || list_empty(&hwreq->queue) ||
1421 		list_empty(&hwep->qh.queue))
1422 		return -EINVAL;
1423 
1424 	spin_lock_irqsave(hwep->lock, flags);
1425 
1426 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1427 
1428 	list_for_each_entry_safe(node, tmpnode, &hwreq->tds, td) {
1429 		dma_pool_free(hwep->td_pool, node->ptr, node->dma);
1430 		list_del(&node->td);
1431 		kfree(node);
1432 	}
1433 
1434 	/* pop request */
1435 	list_del_init(&hwreq->queue);
1436 
1437 	usb_gadget_unmap_request(&hwep->ci->gadget, req, hwep->dir);
1438 
1439 	req->status = -ECONNRESET;
1440 
1441 	if (hwreq->req.complete != NULL) {
1442 		spin_unlock(hwep->lock);
1443 		usb_gadget_giveback_request(&hwep->ep, &hwreq->req);
1444 		spin_lock(hwep->lock);
1445 	}
1446 
1447 	spin_unlock_irqrestore(hwep->lock, flags);
1448 	return 0;
1449 }
1450 
1451 /**
1452  * ep_set_halt: sets the endpoint halt feature
1453  *
1454  * Check usb_ep_set_halt() at "usb_gadget.h" for details
1455  */
1456 static int ep_set_halt(struct usb_ep *ep, int value)
1457 {
1458 	return _ep_set_halt(ep, value, true);
1459 }
1460 
1461 /**
1462  * ep_set_wedge: sets the halt feature and ignores clear requests
1463  *
1464  * Check usb_ep_set_wedge() at "usb_gadget.h" for details
1465  */
1466 static int ep_set_wedge(struct usb_ep *ep)
1467 {
1468 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1469 	unsigned long flags;
1470 
1471 	if (ep == NULL || hwep->ep.desc == NULL)
1472 		return -EINVAL;
1473 
1474 	spin_lock_irqsave(hwep->lock, flags);
1475 	hwep->wedge = 1;
1476 	spin_unlock_irqrestore(hwep->lock, flags);
1477 
1478 	return usb_ep_set_halt(ep);
1479 }
1480 
1481 /**
1482  * ep_fifo_flush: flushes contents of a fifo
1483  *
1484  * Check usb_ep_fifo_flush() at "usb_gadget.h" for details
1485  */
1486 static void ep_fifo_flush(struct usb_ep *ep)
1487 {
1488 	struct ci_hw_ep *hwep = container_of(ep, struct ci_hw_ep, ep);
1489 	unsigned long flags;
1490 
1491 	if (ep == NULL) {
1492 		dev_err(hwep->ci->dev, "%02X: -EINVAL\n", _usb_addr(hwep));
1493 		return;
1494 	}
1495 
1496 	spin_lock_irqsave(hwep->lock, flags);
1497 
1498 	hw_ep_flush(hwep->ci, hwep->num, hwep->dir);
1499 
1500 	spin_unlock_irqrestore(hwep->lock, flags);
1501 }
1502 
1503 /**
1504  * Endpoint-specific part of the API to the USB controller hardware
1505  * Check "usb_gadget.h" for details
1506  */
1507 static const struct usb_ep_ops usb_ep_ops = {
1508 	.enable	       = ep_enable,
1509 	.disable       = ep_disable,
1510 	.alloc_request = ep_alloc_request,
1511 	.free_request  = ep_free_request,
1512 	.queue	       = ep_queue,
1513 	.dequeue       = ep_dequeue,
1514 	.set_halt      = ep_set_halt,
1515 	.set_wedge     = ep_set_wedge,
1516 	.fifo_flush    = ep_fifo_flush,
1517 };
1518 
1519 /******************************************************************************
1520  * GADGET block
1521  *****************************************************************************/
1522 static int ci_udc_vbus_session(struct usb_gadget *_gadget, int is_active)
1523 {
1524 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1525 	unsigned long flags;
1526 	int gadget_ready = 0;
1527 
1528 	spin_lock_irqsave(&ci->lock, flags);
1529 	ci->vbus_active = is_active;
1530 	if (ci->driver)
1531 		gadget_ready = 1;
1532 	spin_unlock_irqrestore(&ci->lock, flags);
1533 
1534 	if (gadget_ready) {
1535 		if (is_active) {
1536 			pm_runtime_get_sync(&_gadget->dev);
1537 			hw_device_reset(ci);
1538 			hw_device_state(ci, ci->ep0out->qh.dma);
1539 			usb_gadget_set_state(_gadget, USB_STATE_POWERED);
1540 			usb_udc_vbus_handler(_gadget, true);
1541 		} else {
1542 			usb_udc_vbus_handler(_gadget, false);
1543 			if (ci->driver)
1544 				ci->driver->disconnect(&ci->gadget);
1545 			hw_device_state(ci, 0);
1546 			if (ci->platdata->notify_event)
1547 				ci->platdata->notify_event(ci,
1548 				CI_HDRC_CONTROLLER_STOPPED_EVENT);
1549 			_gadget_stop_activity(&ci->gadget);
1550 			pm_runtime_put_sync(&_gadget->dev);
1551 			usb_gadget_set_state(_gadget, USB_STATE_NOTATTACHED);
1552 		}
1553 	}
1554 
1555 	return 0;
1556 }
1557 
1558 static int ci_udc_wakeup(struct usb_gadget *_gadget)
1559 {
1560 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1561 	unsigned long flags;
1562 	int ret = 0;
1563 
1564 	spin_lock_irqsave(&ci->lock, flags);
1565 	if (!ci->remote_wakeup) {
1566 		ret = -EOPNOTSUPP;
1567 		goto out;
1568 	}
1569 	if (!hw_read(ci, OP_PORTSC, PORTSC_SUSP)) {
1570 		ret = -EINVAL;
1571 		goto out;
1572 	}
1573 	hw_write(ci, OP_PORTSC, PORTSC_FPR, PORTSC_FPR);
1574 out:
1575 	spin_unlock_irqrestore(&ci->lock, flags);
1576 	return ret;
1577 }
1578 
1579 static int ci_udc_vbus_draw(struct usb_gadget *_gadget, unsigned ma)
1580 {
1581 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1582 
1583 	if (ci->usb_phy)
1584 		return usb_phy_set_power(ci->usb_phy, ma);
1585 	return -ENOTSUPP;
1586 }
1587 
1588 static int ci_udc_selfpowered(struct usb_gadget *_gadget, int is_on)
1589 {
1590 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1591 	struct ci_hw_ep *hwep = ci->ep0in;
1592 	unsigned long flags;
1593 
1594 	spin_lock_irqsave(hwep->lock, flags);
1595 	_gadget->is_selfpowered = (is_on != 0);
1596 	spin_unlock_irqrestore(hwep->lock, flags);
1597 
1598 	return 0;
1599 }
1600 
1601 /* Change Data+ pullup status
1602  * this func is used by usb_gadget_connect/disconnet
1603  */
1604 static int ci_udc_pullup(struct usb_gadget *_gadget, int is_on)
1605 {
1606 	struct ci_hdrc *ci = container_of(_gadget, struct ci_hdrc, gadget);
1607 
1608 	/*
1609 	 * Data+ pullup controlled by OTG state machine in OTG fsm mode;
1610 	 * and don't touch Data+ in host mode for dual role config.
1611 	 */
1612 	if (ci_otg_is_fsm_mode(ci) || ci->role == CI_ROLE_HOST)
1613 		return 0;
1614 
1615 	pm_runtime_get_sync(&ci->gadget.dev);
1616 	if (is_on)
1617 		hw_write(ci, OP_USBCMD, USBCMD_RS, USBCMD_RS);
1618 	else
1619 		hw_write(ci, OP_USBCMD, USBCMD_RS, 0);
1620 	pm_runtime_put_sync(&ci->gadget.dev);
1621 
1622 	return 0;
1623 }
1624 
1625 static int ci_udc_start(struct usb_gadget *gadget,
1626 			 struct usb_gadget_driver *driver);
1627 static int ci_udc_stop(struct usb_gadget *gadget);
1628 /**
1629  * Device operations part of the API to the USB controller hardware,
1630  * which don't involve endpoints (or i/o)
1631  * Check  "usb_gadget.h" for details
1632  */
1633 static const struct usb_gadget_ops usb_gadget_ops = {
1634 	.vbus_session	= ci_udc_vbus_session,
1635 	.wakeup		= ci_udc_wakeup,
1636 	.set_selfpowered	= ci_udc_selfpowered,
1637 	.pullup		= ci_udc_pullup,
1638 	.vbus_draw	= ci_udc_vbus_draw,
1639 	.udc_start	= ci_udc_start,
1640 	.udc_stop	= ci_udc_stop,
1641 };
1642 
1643 static int init_eps(struct ci_hdrc *ci)
1644 {
1645 	int retval = 0, i, j;
1646 
1647 	for (i = 0; i < ci->hw_ep_max/2; i++)
1648 		for (j = RX; j <= TX; j++) {
1649 			int k = i + j * ci->hw_ep_max/2;
1650 			struct ci_hw_ep *hwep = &ci->ci_hw_ep[k];
1651 
1652 			scnprintf(hwep->name, sizeof(hwep->name), "ep%i%s", i,
1653 					(j == TX)  ? "in" : "out");
1654 
1655 			hwep->ci          = ci;
1656 			hwep->lock         = &ci->lock;
1657 			hwep->td_pool      = ci->td_pool;
1658 
1659 			hwep->ep.name      = hwep->name;
1660 			hwep->ep.ops       = &usb_ep_ops;
1661 
1662 			if (i == 0) {
1663 				hwep->ep.caps.type_control = true;
1664 			} else {
1665 				hwep->ep.caps.type_iso = true;
1666 				hwep->ep.caps.type_bulk = true;
1667 				hwep->ep.caps.type_int = true;
1668 			}
1669 
1670 			if (j == TX)
1671 				hwep->ep.caps.dir_in = true;
1672 			else
1673 				hwep->ep.caps.dir_out = true;
1674 
1675 			/*
1676 			 * for ep0: maxP defined in desc, for other
1677 			 * eps, maxP is set by epautoconfig() called
1678 			 * by gadget layer
1679 			 */
1680 			usb_ep_set_maxpacket_limit(&hwep->ep, (unsigned short)~0);
1681 
1682 			INIT_LIST_HEAD(&hwep->qh.queue);
1683 			hwep->qh.ptr = dma_pool_alloc(ci->qh_pool, GFP_KERNEL,
1684 						     &hwep->qh.dma);
1685 			if (hwep->qh.ptr == NULL)
1686 				retval = -ENOMEM;
1687 			else
1688 				memset(hwep->qh.ptr, 0, sizeof(*hwep->qh.ptr));
1689 
1690 			/*
1691 			 * set up shorthands for ep0 out and in endpoints,
1692 			 * don't add to gadget's ep_list
1693 			 */
1694 			if (i == 0) {
1695 				if (j == RX)
1696 					ci->ep0out = hwep;
1697 				else
1698 					ci->ep0in = hwep;
1699 
1700 				usb_ep_set_maxpacket_limit(&hwep->ep, CTRL_PAYLOAD_MAX);
1701 				continue;
1702 			}
1703 
1704 			list_add_tail(&hwep->ep.ep_list, &ci->gadget.ep_list);
1705 		}
1706 
1707 	return retval;
1708 }
1709 
1710 static void destroy_eps(struct ci_hdrc *ci)
1711 {
1712 	int i;
1713 
1714 	for (i = 0; i < ci->hw_ep_max; i++) {
1715 		struct ci_hw_ep *hwep = &ci->ci_hw_ep[i];
1716 
1717 		if (hwep->pending_td)
1718 			free_pending_td(hwep);
1719 		dma_pool_free(ci->qh_pool, hwep->qh.ptr, hwep->qh.dma);
1720 	}
1721 }
1722 
1723 /**
1724  * ci_udc_start: register a gadget driver
1725  * @gadget: our gadget
1726  * @driver: the driver being registered
1727  *
1728  * Interrupts are enabled here.
1729  */
1730 static int ci_udc_start(struct usb_gadget *gadget,
1731 			 struct usb_gadget_driver *driver)
1732 {
1733 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1734 	unsigned long flags;
1735 	int retval = -ENOMEM;
1736 
1737 	if (driver->disconnect == NULL)
1738 		return -EINVAL;
1739 
1740 
1741 	ci->ep0out->ep.desc = &ctrl_endpt_out_desc;
1742 	retval = usb_ep_enable(&ci->ep0out->ep);
1743 	if (retval)
1744 		return retval;
1745 
1746 	ci->ep0in->ep.desc = &ctrl_endpt_in_desc;
1747 	retval = usb_ep_enable(&ci->ep0in->ep);
1748 	if (retval)
1749 		return retval;
1750 
1751 	ci->driver = driver;
1752 
1753 	/* Start otg fsm for B-device */
1754 	if (ci_otg_is_fsm_mode(ci) && ci->fsm.id) {
1755 		ci_hdrc_otg_fsm_start(ci);
1756 		return retval;
1757 	}
1758 
1759 	pm_runtime_get_sync(&ci->gadget.dev);
1760 	if (ci->vbus_active) {
1761 		spin_lock_irqsave(&ci->lock, flags);
1762 		hw_device_reset(ci);
1763 	} else {
1764 		usb_udc_vbus_handler(&ci->gadget, false);
1765 		pm_runtime_put_sync(&ci->gadget.dev);
1766 		return retval;
1767 	}
1768 
1769 	retval = hw_device_state(ci, ci->ep0out->qh.dma);
1770 	spin_unlock_irqrestore(&ci->lock, flags);
1771 	if (retval)
1772 		pm_runtime_put_sync(&ci->gadget.dev);
1773 
1774 	return retval;
1775 }
1776 
1777 static void ci_udc_stop_for_otg_fsm(struct ci_hdrc *ci)
1778 {
1779 	if (!ci_otg_is_fsm_mode(ci))
1780 		return;
1781 
1782 	mutex_lock(&ci->fsm.lock);
1783 	if (ci->fsm.otg->state == OTG_STATE_A_PERIPHERAL) {
1784 		ci->fsm.a_bidl_adis_tmout = 1;
1785 		ci_hdrc_otg_fsm_start(ci);
1786 	} else if (ci->fsm.otg->state == OTG_STATE_B_PERIPHERAL) {
1787 		ci->fsm.protocol = PROTO_UNDEF;
1788 		ci->fsm.otg->state = OTG_STATE_UNDEFINED;
1789 	}
1790 	mutex_unlock(&ci->fsm.lock);
1791 }
1792 
1793 /**
1794  * ci_udc_stop: unregister a gadget driver
1795  */
1796 static int ci_udc_stop(struct usb_gadget *gadget)
1797 {
1798 	struct ci_hdrc *ci = container_of(gadget, struct ci_hdrc, gadget);
1799 	unsigned long flags;
1800 
1801 	spin_lock_irqsave(&ci->lock, flags);
1802 
1803 	if (ci->vbus_active) {
1804 		hw_device_state(ci, 0);
1805 		if (ci->platdata->notify_event)
1806 			ci->platdata->notify_event(ci,
1807 			CI_HDRC_CONTROLLER_STOPPED_EVENT);
1808 		spin_unlock_irqrestore(&ci->lock, flags);
1809 		_gadget_stop_activity(&ci->gadget);
1810 		spin_lock_irqsave(&ci->lock, flags);
1811 		pm_runtime_put(&ci->gadget.dev);
1812 	}
1813 
1814 	ci->driver = NULL;
1815 	spin_unlock_irqrestore(&ci->lock, flags);
1816 
1817 	ci_udc_stop_for_otg_fsm(ci);
1818 	return 0;
1819 }
1820 
1821 /******************************************************************************
1822  * BUS block
1823  *****************************************************************************/
1824 /**
1825  * udc_irq: ci interrupt handler
1826  *
1827  * This function returns IRQ_HANDLED if the IRQ has been handled
1828  * It locks access to registers
1829  */
1830 static irqreturn_t udc_irq(struct ci_hdrc *ci)
1831 {
1832 	irqreturn_t retval;
1833 	u32 intr;
1834 
1835 	if (ci == NULL)
1836 		return IRQ_HANDLED;
1837 
1838 	spin_lock(&ci->lock);
1839 
1840 	if (ci->platdata->flags & CI_HDRC_REGS_SHARED) {
1841 		if (hw_read(ci, OP_USBMODE, USBMODE_CM) !=
1842 				USBMODE_CM_DC) {
1843 			spin_unlock(&ci->lock);
1844 			return IRQ_NONE;
1845 		}
1846 	}
1847 	intr = hw_test_and_clear_intr_active(ci);
1848 
1849 	if (intr) {
1850 		/* order defines priority - do NOT change it */
1851 		if (USBi_URI & intr)
1852 			isr_reset_handler(ci);
1853 
1854 		if (USBi_PCI & intr) {
1855 			ci->gadget.speed = hw_port_is_high_speed(ci) ?
1856 				USB_SPEED_HIGH : USB_SPEED_FULL;
1857 			if (ci->suspended && ci->driver->resume) {
1858 				spin_unlock(&ci->lock);
1859 				ci->driver->resume(&ci->gadget);
1860 				spin_lock(&ci->lock);
1861 				ci->suspended = 0;
1862 			}
1863 		}
1864 
1865 		if (USBi_UI  & intr)
1866 			isr_tr_complete_handler(ci);
1867 
1868 		if (USBi_SLI & intr) {
1869 			if (ci->gadget.speed != USB_SPEED_UNKNOWN &&
1870 			    ci->driver->suspend) {
1871 				ci->suspended = 1;
1872 				spin_unlock(&ci->lock);
1873 				ci->driver->suspend(&ci->gadget);
1874 				usb_gadget_set_state(&ci->gadget,
1875 						USB_STATE_SUSPENDED);
1876 				spin_lock(&ci->lock);
1877 			}
1878 		}
1879 		retval = IRQ_HANDLED;
1880 	} else {
1881 		retval = IRQ_NONE;
1882 	}
1883 	spin_unlock(&ci->lock);
1884 
1885 	return retval;
1886 }
1887 
1888 /**
1889  * udc_start: initialize gadget role
1890  * @ci: chipidea controller
1891  */
1892 static int udc_start(struct ci_hdrc *ci)
1893 {
1894 	struct device *dev = ci->dev;
1895 	struct usb_otg_caps *otg_caps = &ci->platdata->ci_otg_caps;
1896 	int retval = 0;
1897 
1898 	spin_lock_init(&ci->lock);
1899 
1900 	ci->gadget.ops          = &usb_gadget_ops;
1901 	ci->gadget.speed        = USB_SPEED_UNKNOWN;
1902 	ci->gadget.max_speed    = USB_SPEED_HIGH;
1903 	ci->gadget.name         = ci->platdata->name;
1904 	ci->gadget.otg_caps	= otg_caps;
1905 
1906 	if (ci->is_otg && (otg_caps->hnp_support || otg_caps->srp_support ||
1907 						otg_caps->adp_support))
1908 		ci->gadget.is_otg = 1;
1909 
1910 	INIT_LIST_HEAD(&ci->gadget.ep_list);
1911 
1912 	/* alloc resources */
1913 	ci->qh_pool = dma_pool_create("ci_hw_qh", dev,
1914 				       sizeof(struct ci_hw_qh),
1915 				       64, CI_HDRC_PAGE_SIZE);
1916 	if (ci->qh_pool == NULL)
1917 		return -ENOMEM;
1918 
1919 	ci->td_pool = dma_pool_create("ci_hw_td", dev,
1920 				       sizeof(struct ci_hw_td),
1921 				       64, CI_HDRC_PAGE_SIZE);
1922 	if (ci->td_pool == NULL) {
1923 		retval = -ENOMEM;
1924 		goto free_qh_pool;
1925 	}
1926 
1927 	retval = init_eps(ci);
1928 	if (retval)
1929 		goto free_pools;
1930 
1931 	ci->gadget.ep0 = &ci->ep0in->ep;
1932 
1933 	retval = usb_add_gadget_udc(dev, &ci->gadget);
1934 	if (retval)
1935 		goto destroy_eps;
1936 
1937 	pm_runtime_no_callbacks(&ci->gadget.dev);
1938 	pm_runtime_enable(&ci->gadget.dev);
1939 
1940 	return retval;
1941 
1942 destroy_eps:
1943 	destroy_eps(ci);
1944 free_pools:
1945 	dma_pool_destroy(ci->td_pool);
1946 free_qh_pool:
1947 	dma_pool_destroy(ci->qh_pool);
1948 	return retval;
1949 }
1950 
1951 /**
1952  * ci_hdrc_gadget_destroy: parent remove must call this to remove UDC
1953  *
1954  * No interrupts active, the IRQ has been released
1955  */
1956 void ci_hdrc_gadget_destroy(struct ci_hdrc *ci)
1957 {
1958 	if (!ci->roles[CI_ROLE_GADGET])
1959 		return;
1960 
1961 	usb_del_gadget_udc(&ci->gadget);
1962 
1963 	destroy_eps(ci);
1964 
1965 	dma_pool_destroy(ci->td_pool);
1966 	dma_pool_destroy(ci->qh_pool);
1967 }
1968 
1969 static int udc_id_switch_for_device(struct ci_hdrc *ci)
1970 {
1971 	if (ci->is_otg)
1972 		/* Clear and enable BSV irq */
1973 		hw_write_otgsc(ci, OTGSC_BSVIS | OTGSC_BSVIE,
1974 					OTGSC_BSVIS | OTGSC_BSVIE);
1975 
1976 	return 0;
1977 }
1978 
1979 static void udc_id_switch_for_host(struct ci_hdrc *ci)
1980 {
1981 	/*
1982 	 * host doesn't care B_SESSION_VALID event
1983 	 * so clear and disbale BSV irq
1984 	 */
1985 	if (ci->is_otg)
1986 		hw_write_otgsc(ci, OTGSC_BSVIE | OTGSC_BSVIS, OTGSC_BSVIS);
1987 }
1988 
1989 /**
1990  * ci_hdrc_gadget_init - initialize device related bits
1991  * ci: the controller
1992  *
1993  * This function initializes the gadget, if the device is "device capable".
1994  */
1995 int ci_hdrc_gadget_init(struct ci_hdrc *ci)
1996 {
1997 	struct ci_role_driver *rdrv;
1998 
1999 	if (!hw_read(ci, CAP_DCCPARAMS, DCCPARAMS_DC))
2000 		return -ENXIO;
2001 
2002 	rdrv = devm_kzalloc(ci->dev, sizeof(struct ci_role_driver), GFP_KERNEL);
2003 	if (!rdrv)
2004 		return -ENOMEM;
2005 
2006 	rdrv->start	= udc_id_switch_for_device;
2007 	rdrv->stop	= udc_id_switch_for_host;
2008 	rdrv->irq	= udc_irq;
2009 	rdrv->name	= "gadget";
2010 	ci->roles[CI_ROLE_GADGET] = rdrv;
2011 
2012 	return udc_start(ci);
2013 }
2014