1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Universal Flash Storage Host controller driver Core 4 * Copyright (C) 2011-2013 Samsung India Software Operations 5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. 6 * 7 * Authors: 8 * Santosh Yaraganavi <santosh.sy@samsung.com> 9 * Vinayak Holikatti <h.vinayak@samsung.com> 10 */ 11 12 #include <linux/async.h> 13 #include <linux/devfreq.h> 14 #include <linux/nls.h> 15 #include <linux/of.h> 16 #include <linux/bitfield.h> 17 #include <linux/blk-pm.h> 18 #include <linux/blkdev.h> 19 #include <linux/clk.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/regulator/consumer.h> 24 #include <linux/sched/clock.h> 25 #include <linux/iopoll.h> 26 #include <scsi/scsi_cmnd.h> 27 #include <scsi/scsi_dbg.h> 28 #include <scsi/scsi_driver.h> 29 #include <scsi/scsi_eh.h> 30 #include "ufshcd-priv.h" 31 #include <ufs/ufs_quirks.h> 32 #include <ufs/unipro.h> 33 #include "ufs-sysfs.h" 34 #include "ufs-debugfs.h" 35 #include "ufs-fault-injection.h" 36 #include "ufs_bsg.h" 37 #include "ufshcd-crypto.h" 38 #include <asm/unaligned.h> 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/ufs.h> 42 43 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\ 44 UTP_TASK_REQ_COMPL |\ 45 UFSHCD_ERROR_MASK) 46 47 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\ 48 UFSHCD_ERROR_MASK |\ 49 MCQ_CQ_EVENT_STATUS) 50 51 52 /* UIC command timeout, unit: ms */ 53 #define UIC_CMD_TIMEOUT 500 54 55 /* NOP OUT retries waiting for NOP IN response */ 56 #define NOP_OUT_RETRIES 10 57 /* Timeout after 50 msecs if NOP OUT hangs without response */ 58 #define NOP_OUT_TIMEOUT 50 /* msecs */ 59 60 /* Query request retries */ 61 #define QUERY_REQ_RETRIES 3 62 /* Query request timeout */ 63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */ 64 65 /* Advanced RPMB request timeout */ 66 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */ 67 68 /* Task management command timeout */ 69 #define TM_CMD_TIMEOUT 100 /* msecs */ 70 71 /* maximum number of retries for a general UIC command */ 72 #define UFS_UIC_COMMAND_RETRIES 3 73 74 /* maximum number of link-startup retries */ 75 #define DME_LINKSTARTUP_RETRIES 3 76 77 /* maximum number of reset retries before giving up */ 78 #define MAX_HOST_RESET_RETRIES 5 79 80 /* Maximum number of error handler retries before giving up */ 81 #define MAX_ERR_HANDLER_RETRIES 5 82 83 /* Expose the flag value from utp_upiu_query.value */ 84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF 85 86 /* Interrupt aggregation default timeout, unit: 40us */ 87 #define INT_AGGR_DEF_TO 0x02 88 89 /* default delay of autosuspend: 2000 ms */ 90 #define RPM_AUTOSUSPEND_DELAY_MS 2000 91 92 /* Default delay of RPM device flush delayed work */ 93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000 94 95 /* Default value of wait time before gating device ref clock */ 96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */ 97 98 /* Polling time to wait for fDeviceInit */ 99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */ 100 101 /* UFSHC 4.0 compliant HC support this mode. */ 102 static bool use_mcq_mode = true; 103 104 static bool is_mcq_supported(struct ufs_hba *hba) 105 { 106 return hba->mcq_sup && use_mcq_mode; 107 } 108 109 module_param(use_mcq_mode, bool, 0644); 110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default"); 111 112 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \ 113 ({ \ 114 int _ret; \ 115 if (_on) \ 116 _ret = ufshcd_enable_vreg(_dev, _vreg); \ 117 else \ 118 _ret = ufshcd_disable_vreg(_dev, _vreg); \ 119 _ret; \ 120 }) 121 122 #define ufshcd_hex_dump(prefix_str, buf, len) do { \ 123 size_t __len = (len); \ 124 print_hex_dump(KERN_ERR, prefix_str, \ 125 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\ 126 16, 4, buf, __len, false); \ 127 } while (0) 128 129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len, 130 const char *prefix) 131 { 132 u32 *regs; 133 size_t pos; 134 135 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */ 136 return -EINVAL; 137 138 regs = kzalloc(len, GFP_ATOMIC); 139 if (!regs) 140 return -ENOMEM; 141 142 for (pos = 0; pos < len; pos += 4) { 143 if (offset == 0 && 144 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER && 145 pos <= REG_UIC_ERROR_CODE_DME) 146 continue; 147 regs[pos / 4] = ufshcd_readl(hba, offset + pos); 148 } 149 150 ufshcd_hex_dump(prefix, regs, len); 151 kfree(regs); 152 153 return 0; 154 } 155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs); 156 157 enum { 158 UFSHCD_MAX_CHANNEL = 0, 159 UFSHCD_MAX_ID = 1, 160 UFSHCD_CMD_PER_LUN = 32 - UFSHCD_NUM_RESERVED, 161 UFSHCD_CAN_QUEUE = 32 - UFSHCD_NUM_RESERVED, 162 }; 163 164 static const char *const ufshcd_state_name[] = { 165 [UFSHCD_STATE_RESET] = "reset", 166 [UFSHCD_STATE_OPERATIONAL] = "operational", 167 [UFSHCD_STATE_ERROR] = "error", 168 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal", 169 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal", 170 }; 171 172 /* UFSHCD error handling flags */ 173 enum { 174 UFSHCD_EH_IN_PROGRESS = (1 << 0), 175 }; 176 177 /* UFSHCD UIC layer error flags */ 178 enum { 179 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */ 180 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */ 181 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */ 182 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */ 183 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */ 184 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */ 185 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */ 186 }; 187 188 #define ufshcd_set_eh_in_progress(h) \ 189 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS) 190 #define ufshcd_eh_in_progress(h) \ 191 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS) 192 #define ufshcd_clear_eh_in_progress(h) \ 193 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS) 194 195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = { 196 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 197 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 198 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 199 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 200 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 201 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE}, 202 /* 203 * For DeepSleep, the link is first put in hibern8 and then off. 204 * Leaving the link in hibern8 is not supported. 205 */ 206 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE}, 207 }; 208 209 static inline enum ufs_dev_pwr_mode 210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl) 211 { 212 return ufs_pm_lvl_states[lvl].dev_state; 213 } 214 215 static inline enum uic_link_state 216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl) 217 { 218 return ufs_pm_lvl_states[lvl].link_state; 219 } 220 221 static inline enum ufs_pm_level 222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state, 223 enum uic_link_state link_state) 224 { 225 enum ufs_pm_level lvl; 226 227 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) { 228 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) && 229 (ufs_pm_lvl_states[lvl].link_state == link_state)) 230 return lvl; 231 } 232 233 /* if no match found, return the level 0 */ 234 return UFS_PM_LVL_0; 235 } 236 237 static const struct ufs_dev_quirk ufs_fixups[] = { 238 /* UFS cards deviations table */ 239 { .wmanufacturerid = UFS_VENDOR_MICRON, 240 .model = UFS_ANY_MODEL, 241 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 242 { .wmanufacturerid = UFS_VENDOR_SAMSUNG, 243 .model = UFS_ANY_MODEL, 244 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | 245 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE | 246 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS }, 247 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 248 .model = UFS_ANY_MODEL, 249 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME }, 250 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 251 .model = "hB8aL1" /*H28U62301AMR*/, 252 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME }, 253 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 254 .model = UFS_ANY_MODEL, 255 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 256 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 257 .model = "THGLF2G9C8KBADG", 258 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 259 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 260 .model = "THGLF2G9D8KBADG", 261 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 262 {} 263 }; 264 265 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba); 266 static void ufshcd_async_scan(void *data, async_cookie_t cookie); 267 static int ufshcd_reset_and_restore(struct ufs_hba *hba); 268 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd); 269 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag); 270 static void ufshcd_hba_exit(struct ufs_hba *hba); 271 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params); 272 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on); 273 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba); 274 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba); 275 static void ufshcd_resume_clkscaling(struct ufs_hba *hba); 276 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba); 277 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba); 278 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up); 279 static irqreturn_t ufshcd_intr(int irq, void *__hba); 280 static int ufshcd_change_power_mode(struct ufs_hba *hba, 281 struct ufs_pa_layer_attr *pwr_mode); 282 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on); 283 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on); 284 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 285 struct ufs_vreg *vreg); 286 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 287 bool enable); 288 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba); 289 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba); 290 291 static inline void ufshcd_enable_irq(struct ufs_hba *hba) 292 { 293 if (!hba->is_irq_enabled) { 294 enable_irq(hba->irq); 295 hba->is_irq_enabled = true; 296 } 297 } 298 299 static inline void ufshcd_disable_irq(struct ufs_hba *hba) 300 { 301 if (hba->is_irq_enabled) { 302 disable_irq(hba->irq); 303 hba->is_irq_enabled = false; 304 } 305 } 306 307 static void ufshcd_configure_wb(struct ufs_hba *hba) 308 { 309 if (!ufshcd_is_wb_allowed(hba)) 310 return; 311 312 ufshcd_wb_toggle(hba, true); 313 314 ufshcd_wb_toggle_buf_flush_during_h8(hba, true); 315 316 if (ufshcd_is_wb_buf_flush_allowed(hba)) 317 ufshcd_wb_toggle_buf_flush(hba, true); 318 } 319 320 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba) 321 { 322 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt)) 323 scsi_unblock_requests(hba->host); 324 } 325 326 static void ufshcd_scsi_block_requests(struct ufs_hba *hba) 327 { 328 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1) 329 scsi_block_requests(hba->host); 330 } 331 332 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag, 333 enum ufs_trace_str_t str_t) 334 { 335 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr; 336 struct utp_upiu_header *header; 337 338 if (!trace_ufshcd_upiu_enabled()) 339 return; 340 341 if (str_t == UFS_CMD_SEND) 342 header = &rq->header; 343 else 344 header = &hba->lrb[tag].ucd_rsp_ptr->header; 345 346 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb, 347 UFS_TSF_CDB); 348 } 349 350 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, 351 enum ufs_trace_str_t str_t, 352 struct utp_upiu_req *rq_rsp) 353 { 354 if (!trace_ufshcd_upiu_enabled()) 355 return; 356 357 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header, 358 &rq_rsp->qr, UFS_TSF_OSF); 359 } 360 361 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag, 362 enum ufs_trace_str_t str_t) 363 { 364 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag]; 365 366 if (!trace_ufshcd_upiu_enabled()) 367 return; 368 369 if (str_t == UFS_TM_SEND) 370 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 371 &descp->upiu_req.req_header, 372 &descp->upiu_req.input_param1, 373 UFS_TSF_TM_INPUT); 374 else 375 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 376 &descp->upiu_rsp.rsp_header, 377 &descp->upiu_rsp.output_param1, 378 UFS_TSF_TM_OUTPUT); 379 } 380 381 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba, 382 const struct uic_command *ucmd, 383 enum ufs_trace_str_t str_t) 384 { 385 u32 cmd; 386 387 if (!trace_ufshcd_uic_command_enabled()) 388 return; 389 390 if (str_t == UFS_CMD_SEND) 391 cmd = ucmd->command; 392 else 393 cmd = ufshcd_readl(hba, REG_UIC_COMMAND); 394 395 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd, 396 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1), 397 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2), 398 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3)); 399 } 400 401 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag, 402 enum ufs_trace_str_t str_t) 403 { 404 u64 lba = 0; 405 u8 opcode = 0, group_id = 0; 406 u32 doorbell = 0; 407 u32 intr; 408 int hwq_id = -1; 409 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 410 struct scsi_cmnd *cmd = lrbp->cmd; 411 struct request *rq = scsi_cmd_to_rq(cmd); 412 int transfer_len = -1; 413 414 if (!cmd) 415 return; 416 417 /* trace UPIU also */ 418 ufshcd_add_cmd_upiu_trace(hba, tag, str_t); 419 if (!trace_ufshcd_command_enabled()) 420 return; 421 422 opcode = cmd->cmnd[0]; 423 424 if (opcode == READ_10 || opcode == WRITE_10) { 425 /* 426 * Currently we only fully trace read(10) and write(10) commands 427 */ 428 transfer_len = 429 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len); 430 lba = scsi_get_lba(cmd); 431 if (opcode == WRITE_10) 432 group_id = lrbp->cmd->cmnd[6]; 433 } else if (opcode == UNMAP) { 434 /* 435 * The number of Bytes to be unmapped beginning with the lba. 436 */ 437 transfer_len = blk_rq_bytes(rq); 438 lba = scsi_get_lba(cmd); 439 } 440 441 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 442 443 if (is_mcq_enabled(hba)) { 444 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq); 445 446 hwq_id = hwq->id; 447 } else { 448 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 449 } 450 trace_ufshcd_command(dev_name(hba->dev), str_t, tag, 451 doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id); 452 } 453 454 static void ufshcd_print_clk_freqs(struct ufs_hba *hba) 455 { 456 struct ufs_clk_info *clki; 457 struct list_head *head = &hba->clk_list_head; 458 459 if (list_empty(head)) 460 return; 461 462 list_for_each_entry(clki, head, list) { 463 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq && 464 clki->max_freq) 465 dev_err(hba->dev, "clk: %s, rate: %u\n", 466 clki->name, clki->curr_freq); 467 } 468 } 469 470 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id, 471 const char *err_name) 472 { 473 int i; 474 bool found = false; 475 const struct ufs_event_hist *e; 476 477 if (id >= UFS_EVT_CNT) 478 return; 479 480 e = &hba->ufs_stats.event[id]; 481 482 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) { 483 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH; 484 485 if (e->tstamp[p] == 0) 486 continue; 487 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p, 488 e->val[p], div_u64(e->tstamp[p], 1000)); 489 found = true; 490 } 491 492 if (!found) 493 dev_err(hba->dev, "No record of %s\n", err_name); 494 else 495 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt); 496 } 497 498 static void ufshcd_print_evt_hist(struct ufs_hba *hba) 499 { 500 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 501 502 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err"); 503 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err"); 504 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err"); 505 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err"); 506 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err"); 507 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR, 508 "auto_hibern8_err"); 509 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err"); 510 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL, 511 "link_startup_fail"); 512 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail"); 513 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR, 514 "suspend_fail"); 515 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail"); 516 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR, 517 "wlun suspend_fail"); 518 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset"); 519 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset"); 520 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort"); 521 522 ufshcd_vops_dbg_register_dump(hba); 523 } 524 525 static 526 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt) 527 { 528 const struct ufshcd_lrb *lrbp; 529 int prdt_length; 530 531 lrbp = &hba->lrb[tag]; 532 533 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", 534 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000)); 535 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", 536 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000)); 537 dev_err(hba->dev, 538 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n", 539 tag, (u64)lrbp->utrd_dma_addr); 540 541 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr, 542 sizeof(struct utp_transfer_req_desc)); 543 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag, 544 (u64)lrbp->ucd_req_dma_addr); 545 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr, 546 sizeof(struct utp_upiu_req)); 547 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag, 548 (u64)lrbp->ucd_rsp_dma_addr); 549 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr, 550 sizeof(struct utp_upiu_rsp)); 551 552 prdt_length = le16_to_cpu( 553 lrbp->utr_descriptor_ptr->prd_table_length); 554 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 555 prdt_length /= ufshcd_sg_entry_size(hba); 556 557 dev_err(hba->dev, 558 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n", 559 tag, prdt_length, 560 (u64)lrbp->ucd_prdt_dma_addr); 561 562 if (pr_prdt) 563 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr, 564 ufshcd_sg_entry_size(hba) * prdt_length); 565 } 566 567 static bool ufshcd_print_tr_iter(struct request *req, void *priv) 568 { 569 struct scsi_device *sdev = req->q->queuedata; 570 struct Scsi_Host *shost = sdev->host; 571 struct ufs_hba *hba = shost_priv(shost); 572 573 ufshcd_print_tr(hba, req->tag, *(bool *)priv); 574 575 return true; 576 } 577 578 /** 579 * ufshcd_print_trs_all - print trs for all started requests. 580 * @hba: per-adapter instance. 581 * @pr_prdt: need to print prdt or not. 582 */ 583 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt) 584 { 585 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt); 586 } 587 588 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap) 589 { 590 int tag; 591 592 for_each_set_bit(tag, &bitmap, hba->nutmrs) { 593 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag]; 594 595 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag); 596 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp)); 597 } 598 } 599 600 static void ufshcd_print_host_state(struct ufs_hba *hba) 601 { 602 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun; 603 604 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state); 605 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n", 606 hba->outstanding_reqs, hba->outstanding_tasks); 607 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n", 608 hba->saved_err, hba->saved_uic_err); 609 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n", 610 hba->curr_dev_pwr_mode, hba->uic_link_state); 611 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n", 612 hba->pm_op_in_progress, hba->is_sys_suspended); 613 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n", 614 hba->auto_bkops_enabled, hba->host->host_self_blocked); 615 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state); 616 dev_err(hba->dev, 617 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n", 618 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000), 619 hba->ufs_stats.hibern8_exit_cnt); 620 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n", 621 div_u64(hba->ufs_stats.last_intr_ts, 1000), 622 hba->ufs_stats.last_intr_status); 623 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n", 624 hba->eh_flags, hba->req_abort_count); 625 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n", 626 hba->ufs_version, hba->capabilities, hba->caps); 627 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks, 628 hba->dev_quirks); 629 if (sdev_ufs) 630 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n", 631 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev); 632 633 ufshcd_print_clk_freqs(hba); 634 } 635 636 /** 637 * ufshcd_print_pwr_info - print power params as saved in hba 638 * power info 639 * @hba: per-adapter instance 640 */ 641 static void ufshcd_print_pwr_info(struct ufs_hba *hba) 642 { 643 static const char * const names[] = { 644 "INVALID MODE", 645 "FAST MODE", 646 "SLOW_MODE", 647 "INVALID MODE", 648 "FASTAUTO_MODE", 649 "SLOWAUTO_MODE", 650 "INVALID MODE", 651 }; 652 653 /* 654 * Using dev_dbg to avoid messages during runtime PM to avoid 655 * never-ending cycles of messages written back to storage by user space 656 * causing runtime resume, causing more messages and so on. 657 */ 658 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n", 659 __func__, 660 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx, 661 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx, 662 names[hba->pwr_info.pwr_rx], 663 names[hba->pwr_info.pwr_tx], 664 hba->pwr_info.hs_rate); 665 } 666 667 static void ufshcd_device_reset(struct ufs_hba *hba) 668 { 669 int err; 670 671 err = ufshcd_vops_device_reset(hba); 672 673 if (!err) { 674 ufshcd_set_ufs_dev_active(hba); 675 if (ufshcd_is_wb_allowed(hba)) { 676 hba->dev_info.wb_enabled = false; 677 hba->dev_info.wb_buf_flush_enabled = false; 678 } 679 } 680 if (err != -EOPNOTSUPP) 681 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err); 682 } 683 684 void ufshcd_delay_us(unsigned long us, unsigned long tolerance) 685 { 686 if (!us) 687 return; 688 689 if (us < 10) 690 udelay(us); 691 else 692 usleep_range(us, us + tolerance); 693 } 694 EXPORT_SYMBOL_GPL(ufshcd_delay_us); 695 696 /** 697 * ufshcd_wait_for_register - wait for register value to change 698 * @hba: per-adapter interface 699 * @reg: mmio register offset 700 * @mask: mask to apply to the read register value 701 * @val: value to wait for 702 * @interval_us: polling interval in microseconds 703 * @timeout_ms: timeout in milliseconds 704 * 705 * Return: -ETIMEDOUT on error, zero on success. 706 */ 707 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, 708 u32 val, unsigned long interval_us, 709 unsigned long timeout_ms) 710 { 711 int err = 0; 712 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 713 714 /* ignore bits that we don't intend to wait on */ 715 val = val & mask; 716 717 while ((ufshcd_readl(hba, reg) & mask) != val) { 718 usleep_range(interval_us, interval_us + 50); 719 if (time_after(jiffies, timeout)) { 720 if ((ufshcd_readl(hba, reg) & mask) != val) 721 err = -ETIMEDOUT; 722 break; 723 } 724 } 725 726 return err; 727 } 728 729 /** 730 * ufshcd_get_intr_mask - Get the interrupt bit mask 731 * @hba: Pointer to adapter instance 732 * 733 * Return: interrupt bit mask per version 734 */ 735 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba) 736 { 737 if (hba->ufs_version == ufshci_version(1, 0)) 738 return INTERRUPT_MASK_ALL_VER_10; 739 if (hba->ufs_version <= ufshci_version(2, 0)) 740 return INTERRUPT_MASK_ALL_VER_11; 741 742 return INTERRUPT_MASK_ALL_VER_21; 743 } 744 745 /** 746 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA 747 * @hba: Pointer to adapter instance 748 * 749 * Return: UFSHCI version supported by the controller 750 */ 751 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) 752 { 753 u32 ufshci_ver; 754 755 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION) 756 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba); 757 else 758 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION); 759 760 /* 761 * UFSHCI v1.x uses a different version scheme, in order 762 * to allow the use of comparisons with the ufshci_version 763 * function, we convert it to the same scheme as ufs 2.0+. 764 */ 765 if (ufshci_ver & 0x00010000) 766 return ufshci_version(1, ufshci_ver & 0x00000100); 767 768 return ufshci_ver; 769 } 770 771 /** 772 * ufshcd_is_device_present - Check if any device connected to 773 * the host controller 774 * @hba: pointer to adapter instance 775 * 776 * Return: true if device present, false if no device detected 777 */ 778 static inline bool ufshcd_is_device_present(struct ufs_hba *hba) 779 { 780 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT; 781 } 782 783 /** 784 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status 785 * @lrbp: pointer to local command reference block 786 * @cqe: pointer to the completion queue entry 787 * 788 * This function is used to get the OCS field from UTRD 789 * 790 * Return: the OCS field in the UTRD. 791 */ 792 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp, 793 struct cq_entry *cqe) 794 { 795 if (cqe) 796 return le32_to_cpu(cqe->status) & MASK_OCS; 797 798 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS; 799 } 800 801 /** 802 * ufshcd_utrl_clear() - Clear requests from the controller request list. 803 * @hba: per adapter instance 804 * @mask: mask with one bit set for each request to be cleared 805 */ 806 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask) 807 { 808 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 809 mask = ~mask; 810 /* 811 * From the UFSHCI specification: "UTP Transfer Request List CLear 812 * Register (UTRLCLR): This field is bit significant. Each bit 813 * corresponds to a slot in the UTP Transfer Request List, where bit 0 814 * corresponds to request slot 0. A bit in this field is set to ‘0’ 815 * by host software to indicate to the host controller that a transfer 816 * request slot is cleared. The host controller 817 * shall free up any resources associated to the request slot 818 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The 819 * host software indicates no change to request slots by setting the 820 * associated bits in this field to ‘1’. Bits in this field shall only 821 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’." 822 */ 823 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR); 824 } 825 826 /** 827 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register 828 * @hba: per adapter instance 829 * @pos: position of the bit to be cleared 830 */ 831 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos) 832 { 833 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 834 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 835 else 836 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 837 } 838 839 /** 840 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY 841 * @reg: Register value of host controller status 842 * 843 * Return: 0 on success; a positive value if failed. 844 */ 845 static inline int ufshcd_get_lists_status(u32 reg) 846 { 847 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY); 848 } 849 850 /** 851 * ufshcd_get_uic_cmd_result - Get the UIC command result 852 * @hba: Pointer to adapter instance 853 * 854 * This function gets the result of UIC command completion 855 * 856 * Return: 0 on success; non-zero value on error. 857 */ 858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) 859 { 860 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) & 861 MASK_UIC_COMMAND_RESULT; 862 } 863 864 /** 865 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command 866 * @hba: Pointer to adapter instance 867 * 868 * This function gets UIC command argument3 869 * 870 * Return: 0 on success; non-zero value on error. 871 */ 872 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba) 873 { 874 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3); 875 } 876 877 /** 878 * ufshcd_get_req_rsp - returns the TR response transaction type 879 * @ucd_rsp_ptr: pointer to response UPIU 880 * 881 * Return: UPIU type. 882 */ 883 static inline enum upiu_response_transaction 884 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) 885 { 886 return ucd_rsp_ptr->header.transaction_code; 887 } 888 889 /** 890 * ufshcd_is_exception_event - Check if the device raised an exception event 891 * @ucd_rsp_ptr: pointer to response UPIU 892 * 893 * The function checks if the device raised an exception event indicated in 894 * the Device Information field of response UPIU. 895 * 896 * Return: true if exception is raised, false otherwise. 897 */ 898 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr) 899 { 900 return ucd_rsp_ptr->header.device_information & 1; 901 } 902 903 /** 904 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values. 905 * @hba: per adapter instance 906 */ 907 static inline void 908 ufshcd_reset_intr_aggr(struct ufs_hba *hba) 909 { 910 ufshcd_writel(hba, INT_AGGR_ENABLE | 911 INT_AGGR_COUNTER_AND_TIMER_RESET, 912 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 913 } 914 915 /** 916 * ufshcd_config_intr_aggr - Configure interrupt aggregation values. 917 * @hba: per adapter instance 918 * @cnt: Interrupt aggregation counter threshold 919 * @tmout: Interrupt aggregation timeout value 920 */ 921 static inline void 922 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout) 923 { 924 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE | 925 INT_AGGR_COUNTER_THLD_VAL(cnt) | 926 INT_AGGR_TIMEOUT_VAL(tmout), 927 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 928 } 929 930 /** 931 * ufshcd_disable_intr_aggr - Disables interrupt aggregation. 932 * @hba: per adapter instance 933 */ 934 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba) 935 { 936 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 937 } 938 939 /** 940 * ufshcd_enable_run_stop_reg - Enable run-stop registers, 941 * When run-stop registers are set to 1, it indicates the 942 * host controller that it can process the requests 943 * @hba: per adapter instance 944 */ 945 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) 946 { 947 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT, 948 REG_UTP_TASK_REQ_LIST_RUN_STOP); 949 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, 950 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP); 951 } 952 953 /** 954 * ufshcd_hba_start - Start controller initialization sequence 955 * @hba: per adapter instance 956 */ 957 static inline void ufshcd_hba_start(struct ufs_hba *hba) 958 { 959 u32 val = CONTROLLER_ENABLE; 960 961 if (ufshcd_crypto_enable(hba)) 962 val |= CRYPTO_GENERAL_ENABLE; 963 964 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE); 965 } 966 967 /** 968 * ufshcd_is_hba_active - Get controller state 969 * @hba: per adapter instance 970 * 971 * Return: true if and only if the controller is active. 972 */ 973 bool ufshcd_is_hba_active(struct ufs_hba *hba) 974 { 975 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE; 976 } 977 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active); 978 979 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba) 980 { 981 /* HCI version 1.0 and 1.1 supports UniPro 1.41 */ 982 if (hba->ufs_version <= ufshci_version(1, 1)) 983 return UFS_UNIPRO_VER_1_41; 984 else 985 return UFS_UNIPRO_VER_1_6; 986 } 987 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver); 988 989 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba) 990 { 991 /* 992 * If both host and device support UniPro ver1.6 or later, PA layer 993 * parameters tuning happens during link startup itself. 994 * 995 * We can manually tune PA layer parameters if either host or device 996 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning 997 * logic simple, we will only do manual tuning if local unipro version 998 * doesn't support ver1.6 or later. 999 */ 1000 return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6; 1001 } 1002 1003 /** 1004 * ufshcd_set_clk_freq - set UFS controller clock frequencies 1005 * @hba: per adapter instance 1006 * @scale_up: If True, set max possible frequency othewise set low frequency 1007 * 1008 * Return: 0 if successful; < 0 upon failure. 1009 */ 1010 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up) 1011 { 1012 int ret = 0; 1013 struct ufs_clk_info *clki; 1014 struct list_head *head = &hba->clk_list_head; 1015 1016 if (list_empty(head)) 1017 goto out; 1018 1019 list_for_each_entry(clki, head, list) { 1020 if (!IS_ERR_OR_NULL(clki->clk)) { 1021 if (scale_up && clki->max_freq) { 1022 if (clki->curr_freq == clki->max_freq) 1023 continue; 1024 1025 ret = clk_set_rate(clki->clk, clki->max_freq); 1026 if (ret) { 1027 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1028 __func__, clki->name, 1029 clki->max_freq, ret); 1030 break; 1031 } 1032 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1033 "scaled up", clki->name, 1034 clki->curr_freq, 1035 clki->max_freq); 1036 1037 clki->curr_freq = clki->max_freq; 1038 1039 } else if (!scale_up && clki->min_freq) { 1040 if (clki->curr_freq == clki->min_freq) 1041 continue; 1042 1043 ret = clk_set_rate(clki->clk, clki->min_freq); 1044 if (ret) { 1045 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1046 __func__, clki->name, 1047 clki->min_freq, ret); 1048 break; 1049 } 1050 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1051 "scaled down", clki->name, 1052 clki->curr_freq, 1053 clki->min_freq); 1054 clki->curr_freq = clki->min_freq; 1055 } 1056 } 1057 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__, 1058 clki->name, clk_get_rate(clki->clk)); 1059 } 1060 1061 out: 1062 return ret; 1063 } 1064 1065 /** 1066 * ufshcd_scale_clks - scale up or scale down UFS controller clocks 1067 * @hba: per adapter instance 1068 * @scale_up: True if scaling up and false if scaling down 1069 * 1070 * Return: 0 if successful; < 0 upon failure. 1071 */ 1072 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up) 1073 { 1074 int ret = 0; 1075 ktime_t start = ktime_get(); 1076 1077 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE); 1078 if (ret) 1079 goto out; 1080 1081 ret = ufshcd_set_clk_freq(hba, scale_up); 1082 if (ret) 1083 goto out; 1084 1085 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE); 1086 if (ret) 1087 ufshcd_set_clk_freq(hba, !scale_up); 1088 1089 out: 1090 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1091 (scale_up ? "up" : "down"), 1092 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1093 return ret; 1094 } 1095 1096 /** 1097 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not 1098 * @hba: per adapter instance 1099 * @scale_up: True if scaling up and false if scaling down 1100 * 1101 * Return: true if scaling is required, false otherwise. 1102 */ 1103 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba, 1104 bool scale_up) 1105 { 1106 struct ufs_clk_info *clki; 1107 struct list_head *head = &hba->clk_list_head; 1108 1109 if (list_empty(head)) 1110 return false; 1111 1112 list_for_each_entry(clki, head, list) { 1113 if (!IS_ERR_OR_NULL(clki->clk)) { 1114 if (scale_up && clki->max_freq) { 1115 if (clki->curr_freq == clki->max_freq) 1116 continue; 1117 return true; 1118 } else if (!scale_up && clki->min_freq) { 1119 if (clki->curr_freq == clki->min_freq) 1120 continue; 1121 return true; 1122 } 1123 } 1124 } 1125 1126 return false; 1127 } 1128 1129 /* 1130 * Determine the number of pending commands by counting the bits in the SCSI 1131 * device budget maps. This approach has been selected because a bit is set in 1132 * the budget map before scsi_host_queue_ready() checks the host_self_blocked 1133 * flag. The host_self_blocked flag can be modified by calling 1134 * scsi_block_requests() or scsi_unblock_requests(). 1135 */ 1136 static u32 ufshcd_pending_cmds(struct ufs_hba *hba) 1137 { 1138 const struct scsi_device *sdev; 1139 u32 pending = 0; 1140 1141 lockdep_assert_held(hba->host->host_lock); 1142 __shost_for_each_device(sdev, hba->host) 1143 pending += sbitmap_weight(&sdev->budget_map); 1144 1145 return pending; 1146 } 1147 1148 /* 1149 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1150 * has expired. 1151 * 1152 * Return: 0 upon success; -EBUSY upon timeout. 1153 */ 1154 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba, 1155 u64 wait_timeout_us) 1156 { 1157 unsigned long flags; 1158 int ret = 0; 1159 u32 tm_doorbell; 1160 u32 tr_pending; 1161 bool timeout = false, do_last_check = false; 1162 ktime_t start; 1163 1164 ufshcd_hold(hba); 1165 spin_lock_irqsave(hba->host->host_lock, flags); 1166 /* 1167 * Wait for all the outstanding tasks/transfer requests. 1168 * Verify by checking the doorbell registers are clear. 1169 */ 1170 start = ktime_get(); 1171 do { 1172 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) { 1173 ret = -EBUSY; 1174 goto out; 1175 } 1176 1177 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 1178 tr_pending = ufshcd_pending_cmds(hba); 1179 if (!tm_doorbell && !tr_pending) { 1180 timeout = false; 1181 break; 1182 } else if (do_last_check) { 1183 break; 1184 } 1185 1186 spin_unlock_irqrestore(hba->host->host_lock, flags); 1187 io_schedule_timeout(msecs_to_jiffies(20)); 1188 if (ktime_to_us(ktime_sub(ktime_get(), start)) > 1189 wait_timeout_us) { 1190 timeout = true; 1191 /* 1192 * We might have scheduled out for long time so make 1193 * sure to check if doorbells are cleared by this time 1194 * or not. 1195 */ 1196 do_last_check = true; 1197 } 1198 spin_lock_irqsave(hba->host->host_lock, flags); 1199 } while (tm_doorbell || tr_pending); 1200 1201 if (timeout) { 1202 dev_err(hba->dev, 1203 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n", 1204 __func__, tm_doorbell, tr_pending); 1205 ret = -EBUSY; 1206 } 1207 out: 1208 spin_unlock_irqrestore(hba->host->host_lock, flags); 1209 ufshcd_release(hba); 1210 return ret; 1211 } 1212 1213 /** 1214 * ufshcd_scale_gear - scale up/down UFS gear 1215 * @hba: per adapter instance 1216 * @scale_up: True for scaling up gear and false for scaling down 1217 * 1218 * Return: 0 for success; -EBUSY if scaling can't happen at this time; 1219 * non-zero for any other errors. 1220 */ 1221 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up) 1222 { 1223 int ret = 0; 1224 struct ufs_pa_layer_attr new_pwr_info; 1225 1226 if (scale_up) { 1227 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info, 1228 sizeof(struct ufs_pa_layer_attr)); 1229 } else { 1230 memcpy(&new_pwr_info, &hba->pwr_info, 1231 sizeof(struct ufs_pa_layer_attr)); 1232 1233 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear || 1234 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) { 1235 /* save the current power mode */ 1236 memcpy(&hba->clk_scaling.saved_pwr_info, 1237 &hba->pwr_info, 1238 sizeof(struct ufs_pa_layer_attr)); 1239 1240 /* scale down gear */ 1241 new_pwr_info.gear_tx = hba->clk_scaling.min_gear; 1242 new_pwr_info.gear_rx = hba->clk_scaling.min_gear; 1243 } 1244 } 1245 1246 /* check if the power mode needs to be changed or not? */ 1247 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info); 1248 if (ret) 1249 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)", 1250 __func__, ret, 1251 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx, 1252 new_pwr_info.gear_tx, new_pwr_info.gear_rx); 1253 1254 return ret; 1255 } 1256 1257 /* 1258 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1259 * has expired. 1260 * 1261 * Return: 0 upon success; -EBUSY upon timeout. 1262 */ 1263 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us) 1264 { 1265 int ret = 0; 1266 /* 1267 * make sure that there are no outstanding requests when 1268 * clock scaling is in progress 1269 */ 1270 blk_mq_quiesce_tagset(&hba->host->tag_set); 1271 mutex_lock(&hba->wb_mutex); 1272 down_write(&hba->clk_scaling_lock); 1273 1274 if (!hba->clk_scaling.is_allowed || 1275 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) { 1276 ret = -EBUSY; 1277 up_write(&hba->clk_scaling_lock); 1278 mutex_unlock(&hba->wb_mutex); 1279 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1280 goto out; 1281 } 1282 1283 /* let's not get into low power until clock scaling is completed */ 1284 ufshcd_hold(hba); 1285 1286 out: 1287 return ret; 1288 } 1289 1290 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up) 1291 { 1292 up_write(&hba->clk_scaling_lock); 1293 1294 /* Enable Write Booster if we have scaled up else disable it */ 1295 if (ufshcd_enable_wb_if_scaling_up(hba) && !err) 1296 ufshcd_wb_toggle(hba, scale_up); 1297 1298 mutex_unlock(&hba->wb_mutex); 1299 1300 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1301 ufshcd_release(hba); 1302 } 1303 1304 /** 1305 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear 1306 * @hba: per adapter instance 1307 * @scale_up: True for scaling up and false for scalin down 1308 * 1309 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero 1310 * for any other errors. 1311 */ 1312 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up) 1313 { 1314 int ret = 0; 1315 1316 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC); 1317 if (ret) 1318 return ret; 1319 1320 /* scale down the gear before scaling down clocks */ 1321 if (!scale_up) { 1322 ret = ufshcd_scale_gear(hba, false); 1323 if (ret) 1324 goto out_unprepare; 1325 } 1326 1327 ret = ufshcd_scale_clks(hba, scale_up); 1328 if (ret) { 1329 if (!scale_up) 1330 ufshcd_scale_gear(hba, true); 1331 goto out_unprepare; 1332 } 1333 1334 /* scale up the gear after scaling up clocks */ 1335 if (scale_up) { 1336 ret = ufshcd_scale_gear(hba, true); 1337 if (ret) { 1338 ufshcd_scale_clks(hba, false); 1339 goto out_unprepare; 1340 } 1341 } 1342 1343 out_unprepare: 1344 ufshcd_clock_scaling_unprepare(hba, ret, scale_up); 1345 return ret; 1346 } 1347 1348 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work) 1349 { 1350 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1351 clk_scaling.suspend_work); 1352 unsigned long irq_flags; 1353 1354 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1355 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) { 1356 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1357 return; 1358 } 1359 hba->clk_scaling.is_suspended = true; 1360 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1361 1362 __ufshcd_suspend_clkscaling(hba); 1363 } 1364 1365 static void ufshcd_clk_scaling_resume_work(struct work_struct *work) 1366 { 1367 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1368 clk_scaling.resume_work); 1369 unsigned long irq_flags; 1370 1371 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1372 if (!hba->clk_scaling.is_suspended) { 1373 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1374 return; 1375 } 1376 hba->clk_scaling.is_suspended = false; 1377 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1378 1379 devfreq_resume_device(hba->devfreq); 1380 } 1381 1382 static int ufshcd_devfreq_target(struct device *dev, 1383 unsigned long *freq, u32 flags) 1384 { 1385 int ret = 0; 1386 struct ufs_hba *hba = dev_get_drvdata(dev); 1387 ktime_t start; 1388 bool scale_up, sched_clk_scaling_suspend_work = false; 1389 struct list_head *clk_list = &hba->clk_list_head; 1390 struct ufs_clk_info *clki; 1391 unsigned long irq_flags; 1392 1393 if (!ufshcd_is_clkscaling_supported(hba)) 1394 return -EINVAL; 1395 1396 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list); 1397 /* Override with the closest supported frequency */ 1398 *freq = (unsigned long) clk_round_rate(clki->clk, *freq); 1399 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1400 if (ufshcd_eh_in_progress(hba)) { 1401 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1402 return 0; 1403 } 1404 1405 if (!hba->clk_scaling.active_reqs) 1406 sched_clk_scaling_suspend_work = true; 1407 1408 if (list_empty(clk_list)) { 1409 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1410 goto out; 1411 } 1412 1413 /* Decide based on the rounded-off frequency and update */ 1414 scale_up = *freq == clki->max_freq; 1415 if (!scale_up) 1416 *freq = clki->min_freq; 1417 /* Update the frequency */ 1418 if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) { 1419 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1420 ret = 0; 1421 goto out; /* no state change required */ 1422 } 1423 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1424 1425 start = ktime_get(); 1426 ret = ufshcd_devfreq_scale(hba, scale_up); 1427 1428 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1429 (scale_up ? "up" : "down"), 1430 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1431 1432 out: 1433 if (sched_clk_scaling_suspend_work) 1434 queue_work(hba->clk_scaling.workq, 1435 &hba->clk_scaling.suspend_work); 1436 1437 return ret; 1438 } 1439 1440 static int ufshcd_devfreq_get_dev_status(struct device *dev, 1441 struct devfreq_dev_status *stat) 1442 { 1443 struct ufs_hba *hba = dev_get_drvdata(dev); 1444 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 1445 unsigned long flags; 1446 struct list_head *clk_list = &hba->clk_list_head; 1447 struct ufs_clk_info *clki; 1448 ktime_t curr_t; 1449 1450 if (!ufshcd_is_clkscaling_supported(hba)) 1451 return -EINVAL; 1452 1453 memset(stat, 0, sizeof(*stat)); 1454 1455 spin_lock_irqsave(hba->host->host_lock, flags); 1456 curr_t = ktime_get(); 1457 if (!scaling->window_start_t) 1458 goto start_window; 1459 1460 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1461 /* 1462 * If current frequency is 0, then the ondemand governor considers 1463 * there's no initial frequency set. And it always requests to set 1464 * to max. frequency. 1465 */ 1466 stat->current_frequency = clki->curr_freq; 1467 if (scaling->is_busy_started) 1468 scaling->tot_busy_t += ktime_us_delta(curr_t, 1469 scaling->busy_start_t); 1470 1471 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t); 1472 stat->busy_time = scaling->tot_busy_t; 1473 start_window: 1474 scaling->window_start_t = curr_t; 1475 scaling->tot_busy_t = 0; 1476 1477 if (scaling->active_reqs) { 1478 scaling->busy_start_t = curr_t; 1479 scaling->is_busy_started = true; 1480 } else { 1481 scaling->busy_start_t = 0; 1482 scaling->is_busy_started = false; 1483 } 1484 spin_unlock_irqrestore(hba->host->host_lock, flags); 1485 return 0; 1486 } 1487 1488 static int ufshcd_devfreq_init(struct ufs_hba *hba) 1489 { 1490 struct list_head *clk_list = &hba->clk_list_head; 1491 struct ufs_clk_info *clki; 1492 struct devfreq *devfreq; 1493 int ret; 1494 1495 /* Skip devfreq if we don't have any clocks in the list */ 1496 if (list_empty(clk_list)) 1497 return 0; 1498 1499 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1500 dev_pm_opp_add(hba->dev, clki->min_freq, 0); 1501 dev_pm_opp_add(hba->dev, clki->max_freq, 0); 1502 1503 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile, 1504 &hba->vps->ondemand_data); 1505 devfreq = devfreq_add_device(hba->dev, 1506 &hba->vps->devfreq_profile, 1507 DEVFREQ_GOV_SIMPLE_ONDEMAND, 1508 &hba->vps->ondemand_data); 1509 if (IS_ERR(devfreq)) { 1510 ret = PTR_ERR(devfreq); 1511 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret); 1512 1513 dev_pm_opp_remove(hba->dev, clki->min_freq); 1514 dev_pm_opp_remove(hba->dev, clki->max_freq); 1515 return ret; 1516 } 1517 1518 hba->devfreq = devfreq; 1519 1520 return 0; 1521 } 1522 1523 static void ufshcd_devfreq_remove(struct ufs_hba *hba) 1524 { 1525 struct list_head *clk_list = &hba->clk_list_head; 1526 struct ufs_clk_info *clki; 1527 1528 if (!hba->devfreq) 1529 return; 1530 1531 devfreq_remove_device(hba->devfreq); 1532 hba->devfreq = NULL; 1533 1534 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1535 dev_pm_opp_remove(hba->dev, clki->min_freq); 1536 dev_pm_opp_remove(hba->dev, clki->max_freq); 1537 } 1538 1539 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1540 { 1541 unsigned long flags; 1542 1543 devfreq_suspend_device(hba->devfreq); 1544 spin_lock_irqsave(hba->host->host_lock, flags); 1545 hba->clk_scaling.window_start_t = 0; 1546 spin_unlock_irqrestore(hba->host->host_lock, flags); 1547 } 1548 1549 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1550 { 1551 unsigned long flags; 1552 bool suspend = false; 1553 1554 cancel_work_sync(&hba->clk_scaling.suspend_work); 1555 cancel_work_sync(&hba->clk_scaling.resume_work); 1556 1557 spin_lock_irqsave(hba->host->host_lock, flags); 1558 if (!hba->clk_scaling.is_suspended) { 1559 suspend = true; 1560 hba->clk_scaling.is_suspended = true; 1561 } 1562 spin_unlock_irqrestore(hba->host->host_lock, flags); 1563 1564 if (suspend) 1565 __ufshcd_suspend_clkscaling(hba); 1566 } 1567 1568 static void ufshcd_resume_clkscaling(struct ufs_hba *hba) 1569 { 1570 unsigned long flags; 1571 bool resume = false; 1572 1573 spin_lock_irqsave(hba->host->host_lock, flags); 1574 if (hba->clk_scaling.is_suspended) { 1575 resume = true; 1576 hba->clk_scaling.is_suspended = false; 1577 } 1578 spin_unlock_irqrestore(hba->host->host_lock, flags); 1579 1580 if (resume) 1581 devfreq_resume_device(hba->devfreq); 1582 } 1583 1584 static ssize_t ufshcd_clkscale_enable_show(struct device *dev, 1585 struct device_attribute *attr, char *buf) 1586 { 1587 struct ufs_hba *hba = dev_get_drvdata(dev); 1588 1589 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled); 1590 } 1591 1592 static ssize_t ufshcd_clkscale_enable_store(struct device *dev, 1593 struct device_attribute *attr, const char *buf, size_t count) 1594 { 1595 struct ufs_hba *hba = dev_get_drvdata(dev); 1596 u32 value; 1597 int err = 0; 1598 1599 if (kstrtou32(buf, 0, &value)) 1600 return -EINVAL; 1601 1602 down(&hba->host_sem); 1603 if (!ufshcd_is_user_access_allowed(hba)) { 1604 err = -EBUSY; 1605 goto out; 1606 } 1607 1608 value = !!value; 1609 if (value == hba->clk_scaling.is_enabled) 1610 goto out; 1611 1612 ufshcd_rpm_get_sync(hba); 1613 ufshcd_hold(hba); 1614 1615 hba->clk_scaling.is_enabled = value; 1616 1617 if (value) { 1618 ufshcd_resume_clkscaling(hba); 1619 } else { 1620 ufshcd_suspend_clkscaling(hba); 1621 err = ufshcd_devfreq_scale(hba, true); 1622 if (err) 1623 dev_err(hba->dev, "%s: failed to scale clocks up %d\n", 1624 __func__, err); 1625 } 1626 1627 ufshcd_release(hba); 1628 ufshcd_rpm_put_sync(hba); 1629 out: 1630 up(&hba->host_sem); 1631 return err ? err : count; 1632 } 1633 1634 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba) 1635 { 1636 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show; 1637 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store; 1638 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr); 1639 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable"; 1640 hba->clk_scaling.enable_attr.attr.mode = 0644; 1641 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr)) 1642 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n"); 1643 } 1644 1645 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba) 1646 { 1647 if (hba->clk_scaling.enable_attr.attr.name) 1648 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr); 1649 } 1650 1651 static void ufshcd_init_clk_scaling(struct ufs_hba *hba) 1652 { 1653 char wq_name[sizeof("ufs_clkscaling_00")]; 1654 1655 if (!ufshcd_is_clkscaling_supported(hba)) 1656 return; 1657 1658 if (!hba->clk_scaling.min_gear) 1659 hba->clk_scaling.min_gear = UFS_HS_G1; 1660 1661 INIT_WORK(&hba->clk_scaling.suspend_work, 1662 ufshcd_clk_scaling_suspend_work); 1663 INIT_WORK(&hba->clk_scaling.resume_work, 1664 ufshcd_clk_scaling_resume_work); 1665 1666 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d", 1667 hba->host->host_no); 1668 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name); 1669 1670 hba->clk_scaling.is_initialized = true; 1671 } 1672 1673 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba) 1674 { 1675 if (!hba->clk_scaling.is_initialized) 1676 return; 1677 1678 ufshcd_remove_clk_scaling_sysfs(hba); 1679 destroy_workqueue(hba->clk_scaling.workq); 1680 ufshcd_devfreq_remove(hba); 1681 hba->clk_scaling.is_initialized = false; 1682 } 1683 1684 static void ufshcd_ungate_work(struct work_struct *work) 1685 { 1686 int ret; 1687 unsigned long flags; 1688 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1689 clk_gating.ungate_work); 1690 1691 cancel_delayed_work_sync(&hba->clk_gating.gate_work); 1692 1693 spin_lock_irqsave(hba->host->host_lock, flags); 1694 if (hba->clk_gating.state == CLKS_ON) { 1695 spin_unlock_irqrestore(hba->host->host_lock, flags); 1696 return; 1697 } 1698 1699 spin_unlock_irqrestore(hba->host->host_lock, flags); 1700 ufshcd_hba_vreg_set_hpm(hba); 1701 ufshcd_setup_clocks(hba, true); 1702 1703 ufshcd_enable_irq(hba); 1704 1705 /* Exit from hibern8 */ 1706 if (ufshcd_can_hibern8_during_gating(hba)) { 1707 /* Prevent gating in this path */ 1708 hba->clk_gating.is_suspended = true; 1709 if (ufshcd_is_link_hibern8(hba)) { 1710 ret = ufshcd_uic_hibern8_exit(hba); 1711 if (ret) 1712 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 1713 __func__, ret); 1714 else 1715 ufshcd_set_link_active(hba); 1716 } 1717 hba->clk_gating.is_suspended = false; 1718 } 1719 } 1720 1721 /** 1722 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release. 1723 * Also, exit from hibern8 mode and set the link as active. 1724 * @hba: per adapter instance 1725 */ 1726 void ufshcd_hold(struct ufs_hba *hba) 1727 { 1728 bool flush_result; 1729 unsigned long flags; 1730 1731 if (!ufshcd_is_clkgating_allowed(hba) || 1732 !hba->clk_gating.is_initialized) 1733 return; 1734 spin_lock_irqsave(hba->host->host_lock, flags); 1735 hba->clk_gating.active_reqs++; 1736 1737 start: 1738 switch (hba->clk_gating.state) { 1739 case CLKS_ON: 1740 /* 1741 * Wait for the ungate work to complete if in progress. 1742 * Though the clocks may be in ON state, the link could 1743 * still be in hibner8 state if hibern8 is allowed 1744 * during clock gating. 1745 * Make sure we exit hibern8 state also in addition to 1746 * clocks being ON. 1747 */ 1748 if (ufshcd_can_hibern8_during_gating(hba) && 1749 ufshcd_is_link_hibern8(hba)) { 1750 spin_unlock_irqrestore(hba->host->host_lock, flags); 1751 flush_result = flush_work(&hba->clk_gating.ungate_work); 1752 if (hba->clk_gating.is_suspended && !flush_result) 1753 return; 1754 spin_lock_irqsave(hba->host->host_lock, flags); 1755 goto start; 1756 } 1757 break; 1758 case REQ_CLKS_OFF: 1759 if (cancel_delayed_work(&hba->clk_gating.gate_work)) { 1760 hba->clk_gating.state = CLKS_ON; 1761 trace_ufshcd_clk_gating(dev_name(hba->dev), 1762 hba->clk_gating.state); 1763 break; 1764 } 1765 /* 1766 * If we are here, it means gating work is either done or 1767 * currently running. Hence, fall through to cancel gating 1768 * work and to enable clocks. 1769 */ 1770 fallthrough; 1771 case CLKS_OFF: 1772 hba->clk_gating.state = REQ_CLKS_ON; 1773 trace_ufshcd_clk_gating(dev_name(hba->dev), 1774 hba->clk_gating.state); 1775 queue_work(hba->clk_gating.clk_gating_workq, 1776 &hba->clk_gating.ungate_work); 1777 /* 1778 * fall through to check if we should wait for this 1779 * work to be done or not. 1780 */ 1781 fallthrough; 1782 case REQ_CLKS_ON: 1783 spin_unlock_irqrestore(hba->host->host_lock, flags); 1784 flush_work(&hba->clk_gating.ungate_work); 1785 /* Make sure state is CLKS_ON before returning */ 1786 spin_lock_irqsave(hba->host->host_lock, flags); 1787 goto start; 1788 default: 1789 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n", 1790 __func__, hba->clk_gating.state); 1791 break; 1792 } 1793 spin_unlock_irqrestore(hba->host->host_lock, flags); 1794 } 1795 EXPORT_SYMBOL_GPL(ufshcd_hold); 1796 1797 static void ufshcd_gate_work(struct work_struct *work) 1798 { 1799 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1800 clk_gating.gate_work.work); 1801 unsigned long flags; 1802 int ret; 1803 1804 spin_lock_irqsave(hba->host->host_lock, flags); 1805 /* 1806 * In case you are here to cancel this work the gating state 1807 * would be marked as REQ_CLKS_ON. In this case save time by 1808 * skipping the gating work and exit after changing the clock 1809 * state to CLKS_ON. 1810 */ 1811 if (hba->clk_gating.is_suspended || 1812 (hba->clk_gating.state != REQ_CLKS_OFF)) { 1813 hba->clk_gating.state = CLKS_ON; 1814 trace_ufshcd_clk_gating(dev_name(hba->dev), 1815 hba->clk_gating.state); 1816 goto rel_lock; 1817 } 1818 1819 if (hba->clk_gating.active_reqs 1820 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL 1821 || hba->outstanding_reqs || hba->outstanding_tasks 1822 || hba->active_uic_cmd || hba->uic_async_done) 1823 goto rel_lock; 1824 1825 spin_unlock_irqrestore(hba->host->host_lock, flags); 1826 1827 /* put the link into hibern8 mode before turning off clocks */ 1828 if (ufshcd_can_hibern8_during_gating(hba)) { 1829 ret = ufshcd_uic_hibern8_enter(hba); 1830 if (ret) { 1831 hba->clk_gating.state = CLKS_ON; 1832 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 1833 __func__, ret); 1834 trace_ufshcd_clk_gating(dev_name(hba->dev), 1835 hba->clk_gating.state); 1836 goto out; 1837 } 1838 ufshcd_set_link_hibern8(hba); 1839 } 1840 1841 ufshcd_disable_irq(hba); 1842 1843 ufshcd_setup_clocks(hba, false); 1844 1845 /* Put the host controller in low power mode if possible */ 1846 ufshcd_hba_vreg_set_lpm(hba); 1847 /* 1848 * In case you are here to cancel this work the gating state 1849 * would be marked as REQ_CLKS_ON. In this case keep the state 1850 * as REQ_CLKS_ON which would anyway imply that clocks are off 1851 * and a request to turn them on is pending. By doing this way, 1852 * we keep the state machine in tact and this would ultimately 1853 * prevent from doing cancel work multiple times when there are 1854 * new requests arriving before the current cancel work is done. 1855 */ 1856 spin_lock_irqsave(hba->host->host_lock, flags); 1857 if (hba->clk_gating.state == REQ_CLKS_OFF) { 1858 hba->clk_gating.state = CLKS_OFF; 1859 trace_ufshcd_clk_gating(dev_name(hba->dev), 1860 hba->clk_gating.state); 1861 } 1862 rel_lock: 1863 spin_unlock_irqrestore(hba->host->host_lock, flags); 1864 out: 1865 return; 1866 } 1867 1868 /* host lock must be held before calling this variant */ 1869 static void __ufshcd_release(struct ufs_hba *hba) 1870 { 1871 if (!ufshcd_is_clkgating_allowed(hba)) 1872 return; 1873 1874 hba->clk_gating.active_reqs--; 1875 1876 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended || 1877 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || 1878 hba->outstanding_tasks || !hba->clk_gating.is_initialized || 1879 hba->active_uic_cmd || hba->uic_async_done || 1880 hba->clk_gating.state == CLKS_OFF) 1881 return; 1882 1883 hba->clk_gating.state = REQ_CLKS_OFF; 1884 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); 1885 queue_delayed_work(hba->clk_gating.clk_gating_workq, 1886 &hba->clk_gating.gate_work, 1887 msecs_to_jiffies(hba->clk_gating.delay_ms)); 1888 } 1889 1890 void ufshcd_release(struct ufs_hba *hba) 1891 { 1892 unsigned long flags; 1893 1894 spin_lock_irqsave(hba->host->host_lock, flags); 1895 __ufshcd_release(hba); 1896 spin_unlock_irqrestore(hba->host->host_lock, flags); 1897 } 1898 EXPORT_SYMBOL_GPL(ufshcd_release); 1899 1900 static ssize_t ufshcd_clkgate_delay_show(struct device *dev, 1901 struct device_attribute *attr, char *buf) 1902 { 1903 struct ufs_hba *hba = dev_get_drvdata(dev); 1904 1905 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms); 1906 } 1907 1908 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value) 1909 { 1910 struct ufs_hba *hba = dev_get_drvdata(dev); 1911 unsigned long flags; 1912 1913 spin_lock_irqsave(hba->host->host_lock, flags); 1914 hba->clk_gating.delay_ms = value; 1915 spin_unlock_irqrestore(hba->host->host_lock, flags); 1916 } 1917 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set); 1918 1919 static ssize_t ufshcd_clkgate_delay_store(struct device *dev, 1920 struct device_attribute *attr, const char *buf, size_t count) 1921 { 1922 unsigned long value; 1923 1924 if (kstrtoul(buf, 0, &value)) 1925 return -EINVAL; 1926 1927 ufshcd_clkgate_delay_set(dev, value); 1928 return count; 1929 } 1930 1931 static ssize_t ufshcd_clkgate_enable_show(struct device *dev, 1932 struct device_attribute *attr, char *buf) 1933 { 1934 struct ufs_hba *hba = dev_get_drvdata(dev); 1935 1936 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled); 1937 } 1938 1939 static ssize_t ufshcd_clkgate_enable_store(struct device *dev, 1940 struct device_attribute *attr, const char *buf, size_t count) 1941 { 1942 struct ufs_hba *hba = dev_get_drvdata(dev); 1943 unsigned long flags; 1944 u32 value; 1945 1946 if (kstrtou32(buf, 0, &value)) 1947 return -EINVAL; 1948 1949 value = !!value; 1950 1951 spin_lock_irqsave(hba->host->host_lock, flags); 1952 if (value == hba->clk_gating.is_enabled) 1953 goto out; 1954 1955 if (value) 1956 __ufshcd_release(hba); 1957 else 1958 hba->clk_gating.active_reqs++; 1959 1960 hba->clk_gating.is_enabled = value; 1961 out: 1962 spin_unlock_irqrestore(hba->host->host_lock, flags); 1963 return count; 1964 } 1965 1966 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba) 1967 { 1968 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show; 1969 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store; 1970 sysfs_attr_init(&hba->clk_gating.delay_attr.attr); 1971 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms"; 1972 hba->clk_gating.delay_attr.attr.mode = 0644; 1973 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr)) 1974 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n"); 1975 1976 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show; 1977 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store; 1978 sysfs_attr_init(&hba->clk_gating.enable_attr.attr); 1979 hba->clk_gating.enable_attr.attr.name = "clkgate_enable"; 1980 hba->clk_gating.enable_attr.attr.mode = 0644; 1981 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr)) 1982 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n"); 1983 } 1984 1985 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba) 1986 { 1987 if (hba->clk_gating.delay_attr.attr.name) 1988 device_remove_file(hba->dev, &hba->clk_gating.delay_attr); 1989 if (hba->clk_gating.enable_attr.attr.name) 1990 device_remove_file(hba->dev, &hba->clk_gating.enable_attr); 1991 } 1992 1993 static void ufshcd_init_clk_gating(struct ufs_hba *hba) 1994 { 1995 char wq_name[sizeof("ufs_clk_gating_00")]; 1996 1997 if (!ufshcd_is_clkgating_allowed(hba)) 1998 return; 1999 2000 hba->clk_gating.state = CLKS_ON; 2001 2002 hba->clk_gating.delay_ms = 150; 2003 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work); 2004 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work); 2005 2006 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d", 2007 hba->host->host_no); 2008 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name, 2009 WQ_MEM_RECLAIM | WQ_HIGHPRI); 2010 2011 ufshcd_init_clk_gating_sysfs(hba); 2012 2013 hba->clk_gating.is_enabled = true; 2014 hba->clk_gating.is_initialized = true; 2015 } 2016 2017 static void ufshcd_exit_clk_gating(struct ufs_hba *hba) 2018 { 2019 if (!hba->clk_gating.is_initialized) 2020 return; 2021 2022 ufshcd_remove_clk_gating_sysfs(hba); 2023 2024 /* Ungate the clock if necessary. */ 2025 ufshcd_hold(hba); 2026 hba->clk_gating.is_initialized = false; 2027 ufshcd_release(hba); 2028 2029 destroy_workqueue(hba->clk_gating.clk_gating_workq); 2030 } 2031 2032 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba) 2033 { 2034 bool queue_resume_work = false; 2035 ktime_t curr_t = ktime_get(); 2036 unsigned long flags; 2037 2038 if (!ufshcd_is_clkscaling_supported(hba)) 2039 return; 2040 2041 spin_lock_irqsave(hba->host->host_lock, flags); 2042 if (!hba->clk_scaling.active_reqs++) 2043 queue_resume_work = true; 2044 2045 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) { 2046 spin_unlock_irqrestore(hba->host->host_lock, flags); 2047 return; 2048 } 2049 2050 if (queue_resume_work) 2051 queue_work(hba->clk_scaling.workq, 2052 &hba->clk_scaling.resume_work); 2053 2054 if (!hba->clk_scaling.window_start_t) { 2055 hba->clk_scaling.window_start_t = curr_t; 2056 hba->clk_scaling.tot_busy_t = 0; 2057 hba->clk_scaling.is_busy_started = false; 2058 } 2059 2060 if (!hba->clk_scaling.is_busy_started) { 2061 hba->clk_scaling.busy_start_t = curr_t; 2062 hba->clk_scaling.is_busy_started = true; 2063 } 2064 spin_unlock_irqrestore(hba->host->host_lock, flags); 2065 } 2066 2067 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba) 2068 { 2069 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 2070 unsigned long flags; 2071 2072 if (!ufshcd_is_clkscaling_supported(hba)) 2073 return; 2074 2075 spin_lock_irqsave(hba->host->host_lock, flags); 2076 hba->clk_scaling.active_reqs--; 2077 if (!scaling->active_reqs && scaling->is_busy_started) { 2078 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(), 2079 scaling->busy_start_t)); 2080 scaling->busy_start_t = 0; 2081 scaling->is_busy_started = false; 2082 } 2083 spin_unlock_irqrestore(hba->host->host_lock, flags); 2084 } 2085 2086 static inline int ufshcd_monitor_opcode2dir(u8 opcode) 2087 { 2088 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16) 2089 return READ; 2090 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16) 2091 return WRITE; 2092 else 2093 return -EINVAL; 2094 } 2095 2096 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba, 2097 struct ufshcd_lrb *lrbp) 2098 { 2099 const struct ufs_hba_monitor *m = &hba->monitor; 2100 2101 return (m->enabled && lrbp && lrbp->cmd && 2102 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) && 2103 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp)); 2104 } 2105 2106 static void ufshcd_start_monitor(struct ufs_hba *hba, 2107 const struct ufshcd_lrb *lrbp) 2108 { 2109 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2110 unsigned long flags; 2111 2112 spin_lock_irqsave(hba->host->host_lock, flags); 2113 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0) 2114 hba->monitor.busy_start_ts[dir] = ktime_get(); 2115 spin_unlock_irqrestore(hba->host->host_lock, flags); 2116 } 2117 2118 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp) 2119 { 2120 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2121 unsigned long flags; 2122 2123 spin_lock_irqsave(hba->host->host_lock, flags); 2124 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) { 2125 const struct request *req = scsi_cmd_to_rq(lrbp->cmd); 2126 struct ufs_hba_monitor *m = &hba->monitor; 2127 ktime_t now, inc, lat; 2128 2129 now = lrbp->compl_time_stamp; 2130 inc = ktime_sub(now, m->busy_start_ts[dir]); 2131 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc); 2132 m->nr_sec_rw[dir] += blk_rq_sectors(req); 2133 2134 /* Update latencies */ 2135 m->nr_req[dir]++; 2136 lat = ktime_sub(now, lrbp->issue_time_stamp); 2137 m->lat_sum[dir] += lat; 2138 if (m->lat_max[dir] < lat || !m->lat_max[dir]) 2139 m->lat_max[dir] = lat; 2140 if (m->lat_min[dir] > lat || !m->lat_min[dir]) 2141 m->lat_min[dir] = lat; 2142 2143 m->nr_queued[dir]--; 2144 /* Push forward the busy start of monitor */ 2145 m->busy_start_ts[dir] = now; 2146 } 2147 spin_unlock_irqrestore(hba->host->host_lock, flags); 2148 } 2149 2150 /** 2151 * ufshcd_send_command - Send SCSI or device management commands 2152 * @hba: per adapter instance 2153 * @task_tag: Task tag of the command 2154 * @hwq: pointer to hardware queue instance 2155 */ 2156 static inline 2157 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag, 2158 struct ufs_hw_queue *hwq) 2159 { 2160 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; 2161 unsigned long flags; 2162 2163 lrbp->issue_time_stamp = ktime_get(); 2164 lrbp->issue_time_stamp_local_clock = local_clock(); 2165 lrbp->compl_time_stamp = ktime_set(0, 0); 2166 lrbp->compl_time_stamp_local_clock = 0; 2167 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND); 2168 ufshcd_clk_scaling_start_busy(hba); 2169 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 2170 ufshcd_start_monitor(hba, lrbp); 2171 2172 if (is_mcq_enabled(hba)) { 2173 int utrd_size = sizeof(struct utp_transfer_req_desc); 2174 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr; 2175 struct utp_transfer_req_desc *dest; 2176 2177 spin_lock(&hwq->sq_lock); 2178 dest = hwq->sqe_base_addr + hwq->sq_tail_slot; 2179 memcpy(dest, src, utrd_size); 2180 ufshcd_inc_sq_tail(hwq); 2181 spin_unlock(&hwq->sq_lock); 2182 } else { 2183 spin_lock_irqsave(&hba->outstanding_lock, flags); 2184 if (hba->vops && hba->vops->setup_xfer_req) 2185 hba->vops->setup_xfer_req(hba, lrbp->task_tag, 2186 !!lrbp->cmd); 2187 __set_bit(lrbp->task_tag, &hba->outstanding_reqs); 2188 ufshcd_writel(hba, 1 << lrbp->task_tag, 2189 REG_UTP_TRANSFER_REQ_DOOR_BELL); 2190 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 2191 } 2192 } 2193 2194 /** 2195 * ufshcd_copy_sense_data - Copy sense data in case of check condition 2196 * @lrbp: pointer to local reference block 2197 */ 2198 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp) 2199 { 2200 u8 *const sense_buffer = lrbp->cmd->sense_buffer; 2201 u16 resp_len; 2202 int len; 2203 2204 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length); 2205 if (sense_buffer && resp_len) { 2206 int len_to_copy; 2207 2208 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len); 2209 len_to_copy = min_t(int, UFS_SENSE_SIZE, len); 2210 2211 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data, 2212 len_to_copy); 2213 } 2214 } 2215 2216 /** 2217 * ufshcd_copy_query_response() - Copy the Query Response and the data 2218 * descriptor 2219 * @hba: per adapter instance 2220 * @lrbp: pointer to local reference block 2221 * 2222 * Return: 0 upon success; < 0 upon failure. 2223 */ 2224 static 2225 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2226 { 2227 struct ufs_query_res *query_res = &hba->dev_cmd.query.response; 2228 2229 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); 2230 2231 /* Get the descriptor */ 2232 if (hba->dev_cmd.query.descriptor && 2233 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { 2234 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + 2235 GENERAL_UPIU_REQUEST_SIZE; 2236 u16 resp_len; 2237 u16 buf_len; 2238 2239 /* data segment length */ 2240 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 2241 .data_segment_length); 2242 buf_len = be16_to_cpu( 2243 hba->dev_cmd.query.request.upiu_req.length); 2244 if (likely(buf_len >= resp_len)) { 2245 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len); 2246 } else { 2247 dev_warn(hba->dev, 2248 "%s: rsp size %d is bigger than buffer size %d", 2249 __func__, resp_len, buf_len); 2250 return -EINVAL; 2251 } 2252 } 2253 2254 return 0; 2255 } 2256 2257 /** 2258 * ufshcd_hba_capabilities - Read controller capabilities 2259 * @hba: per adapter instance 2260 * 2261 * Return: 0 on success, negative on error. 2262 */ 2263 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba) 2264 { 2265 int err; 2266 2267 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); 2268 if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS) 2269 hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT; 2270 2271 /* nutrs and nutmrs are 0 based values */ 2272 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1; 2273 hba->nutmrs = 2274 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1; 2275 hba->reserved_slot = hba->nutrs - 1; 2276 2277 /* Read crypto capabilities */ 2278 err = ufshcd_hba_init_crypto_capabilities(hba); 2279 if (err) { 2280 dev_err(hba->dev, "crypto setup failed\n"); 2281 return err; 2282 } 2283 2284 /* 2285 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and 2286 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which 2287 * means we can simply read values regardless of version. 2288 */ 2289 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities); 2290 /* 2291 * 0h: legacy single doorbell support is available 2292 * 1h: indicate that legacy single doorbell support has been removed 2293 */ 2294 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities); 2295 if (!hba->mcq_sup) 2296 return 0; 2297 2298 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP); 2299 hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT, 2300 hba->mcq_capabilities); 2301 2302 return 0; 2303 } 2304 2305 /** 2306 * ufshcd_ready_for_uic_cmd - Check if controller is ready 2307 * to accept UIC commands 2308 * @hba: per adapter instance 2309 * 2310 * Return: true on success, else false. 2311 */ 2312 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba) 2313 { 2314 u32 val; 2315 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY, 2316 500, UIC_CMD_TIMEOUT * 1000, false, hba, 2317 REG_CONTROLLER_STATUS); 2318 return ret == 0 ? true : false; 2319 } 2320 2321 /** 2322 * ufshcd_get_upmcrs - Get the power mode change request status 2323 * @hba: Pointer to adapter instance 2324 * 2325 * This function gets the UPMCRS field of HCS register 2326 * 2327 * Return: value of UPMCRS field. 2328 */ 2329 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba) 2330 { 2331 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7; 2332 } 2333 2334 /** 2335 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer 2336 * @hba: per adapter instance 2337 * @uic_cmd: UIC command 2338 */ 2339 static inline void 2340 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2341 { 2342 lockdep_assert_held(&hba->uic_cmd_mutex); 2343 2344 WARN_ON(hba->active_uic_cmd); 2345 2346 hba->active_uic_cmd = uic_cmd; 2347 2348 /* Write Args */ 2349 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1); 2350 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2); 2351 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3); 2352 2353 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND); 2354 2355 /* Write UIC Cmd */ 2356 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK, 2357 REG_UIC_COMMAND); 2358 } 2359 2360 /** 2361 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command 2362 * @hba: per adapter instance 2363 * @uic_cmd: UIC command 2364 * 2365 * Return: 0 only if success. 2366 */ 2367 static int 2368 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2369 { 2370 int ret; 2371 unsigned long flags; 2372 2373 lockdep_assert_held(&hba->uic_cmd_mutex); 2374 2375 if (wait_for_completion_timeout(&uic_cmd->done, 2376 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 2377 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2378 } else { 2379 ret = -ETIMEDOUT; 2380 dev_err(hba->dev, 2381 "uic cmd 0x%x with arg3 0x%x completion timeout\n", 2382 uic_cmd->command, uic_cmd->argument3); 2383 2384 if (!uic_cmd->cmd_active) { 2385 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n", 2386 __func__); 2387 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2388 } 2389 } 2390 2391 spin_lock_irqsave(hba->host->host_lock, flags); 2392 hba->active_uic_cmd = NULL; 2393 spin_unlock_irqrestore(hba->host->host_lock, flags); 2394 2395 return ret; 2396 } 2397 2398 /** 2399 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2400 * @hba: per adapter instance 2401 * @uic_cmd: UIC command 2402 * @completion: initialize the completion only if this is set to true 2403 * 2404 * Return: 0 only if success. 2405 */ 2406 static int 2407 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd, 2408 bool completion) 2409 { 2410 lockdep_assert_held(&hba->uic_cmd_mutex); 2411 2412 if (!ufshcd_ready_for_uic_cmd(hba)) { 2413 dev_err(hba->dev, 2414 "Controller not ready to accept UIC commands\n"); 2415 return -EIO; 2416 } 2417 2418 if (completion) 2419 init_completion(&uic_cmd->done); 2420 2421 uic_cmd->cmd_active = 1; 2422 ufshcd_dispatch_uic_cmd(hba, uic_cmd); 2423 2424 return 0; 2425 } 2426 2427 /** 2428 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2429 * @hba: per adapter instance 2430 * @uic_cmd: UIC command 2431 * 2432 * Return: 0 only if success. 2433 */ 2434 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2435 { 2436 int ret; 2437 2438 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) 2439 return 0; 2440 2441 ufshcd_hold(hba); 2442 mutex_lock(&hba->uic_cmd_mutex); 2443 ufshcd_add_delay_before_dme_cmd(hba); 2444 2445 ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true); 2446 if (!ret) 2447 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); 2448 2449 mutex_unlock(&hba->uic_cmd_mutex); 2450 2451 ufshcd_release(hba); 2452 return ret; 2453 } 2454 2455 /** 2456 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format) 2457 * @hba: per-adapter instance 2458 * @lrbp: pointer to local reference block 2459 * @sg_entries: The number of sg lists actually used 2460 * @sg_list: Pointer to SG list 2461 */ 2462 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries, 2463 struct scatterlist *sg_list) 2464 { 2465 struct ufshcd_sg_entry *prd; 2466 struct scatterlist *sg; 2467 int i; 2468 2469 if (sg_entries) { 2470 2471 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 2472 lrbp->utr_descriptor_ptr->prd_table_length = 2473 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba)); 2474 else 2475 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries); 2476 2477 prd = lrbp->ucd_prdt_ptr; 2478 2479 for_each_sg(sg_list, sg, sg_entries, i) { 2480 const unsigned int len = sg_dma_len(sg); 2481 2482 /* 2483 * From the UFSHCI spec: "Data Byte Count (DBC): A '0' 2484 * based value that indicates the length, in bytes, of 2485 * the data block. A maximum of length of 256KB may 2486 * exist for any entry. Bits 1:0 of this field shall be 2487 * 11b to indicate Dword granularity. A value of '3' 2488 * indicates 4 bytes, '7' indicates 8 bytes, etc." 2489 */ 2490 WARN_ONCE(len > SZ_256K, "len = %#x\n", len); 2491 prd->size = cpu_to_le32(len - 1); 2492 prd->addr = cpu_to_le64(sg->dma_address); 2493 prd->reserved = 0; 2494 prd = (void *)prd + ufshcd_sg_entry_size(hba); 2495 } 2496 } else { 2497 lrbp->utr_descriptor_ptr->prd_table_length = 0; 2498 } 2499 } 2500 2501 /** 2502 * ufshcd_map_sg - Map scatter-gather list to prdt 2503 * @hba: per adapter instance 2504 * @lrbp: pointer to local reference block 2505 * 2506 * Return: 0 in case of success, non-zero value in case of failure. 2507 */ 2508 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2509 { 2510 struct scsi_cmnd *cmd = lrbp->cmd; 2511 int sg_segments = scsi_dma_map(cmd); 2512 2513 if (sg_segments < 0) 2514 return sg_segments; 2515 2516 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd)); 2517 2518 return 0; 2519 } 2520 2521 /** 2522 * ufshcd_enable_intr - enable interrupts 2523 * @hba: per adapter instance 2524 * @intrs: interrupt bits 2525 */ 2526 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs) 2527 { 2528 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2529 2530 if (hba->ufs_version == ufshci_version(1, 0)) { 2531 u32 rw; 2532 rw = set & INTERRUPT_MASK_RW_VER_10; 2533 set = rw | ((set ^ intrs) & intrs); 2534 } else { 2535 set |= intrs; 2536 } 2537 2538 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2539 } 2540 2541 /** 2542 * ufshcd_disable_intr - disable interrupts 2543 * @hba: per adapter instance 2544 * @intrs: interrupt bits 2545 */ 2546 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs) 2547 { 2548 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2549 2550 if (hba->ufs_version == ufshci_version(1, 0)) { 2551 u32 rw; 2552 rw = (set & INTERRUPT_MASK_RW_VER_10) & 2553 ~(intrs & INTERRUPT_MASK_RW_VER_10); 2554 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10); 2555 2556 } else { 2557 set &= ~intrs; 2558 } 2559 2560 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2561 } 2562 2563 /** 2564 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request 2565 * descriptor according to request 2566 * @lrbp: pointer to local reference block 2567 * @upiu_flags: flags required in the header 2568 * @cmd_dir: requests data direction 2569 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments) 2570 */ 2571 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags, 2572 enum dma_data_direction cmd_dir, int ehs_length) 2573 { 2574 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; 2575 struct request_desc_header *h = &req_desc->header; 2576 enum utp_data_direction data_direction; 2577 2578 *h = (typeof(*h)){ }; 2579 2580 if (cmd_dir == DMA_FROM_DEVICE) { 2581 data_direction = UTP_DEVICE_TO_HOST; 2582 *upiu_flags = UPIU_CMD_FLAGS_READ; 2583 } else if (cmd_dir == DMA_TO_DEVICE) { 2584 data_direction = UTP_HOST_TO_DEVICE; 2585 *upiu_flags = UPIU_CMD_FLAGS_WRITE; 2586 } else { 2587 data_direction = UTP_NO_DATA_TRANSFER; 2588 *upiu_flags = UPIU_CMD_FLAGS_NONE; 2589 } 2590 2591 h->command_type = lrbp->command_type; 2592 h->data_direction = data_direction; 2593 h->ehs_length = ehs_length; 2594 2595 if (lrbp->intr_cmd) 2596 h->interrupt = 1; 2597 2598 /* Prepare crypto related dwords */ 2599 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h); 2600 2601 /* 2602 * assigning invalid value for command status. Controller 2603 * updates OCS on command completion, with the command 2604 * status 2605 */ 2606 h->ocs = OCS_INVALID_COMMAND_STATUS; 2607 2608 req_desc->prd_table_length = 0; 2609 } 2610 2611 /** 2612 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc, 2613 * for scsi commands 2614 * @lrbp: local reference block pointer 2615 * @upiu_flags: flags 2616 */ 2617 static 2618 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags) 2619 { 2620 struct scsi_cmnd *cmd = lrbp->cmd; 2621 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2622 unsigned short cdb_len; 2623 2624 ucd_req_ptr->header = (struct utp_upiu_header){ 2625 .transaction_code = UPIU_TRANSACTION_COMMAND, 2626 .flags = upiu_flags, 2627 .lun = lrbp->lun, 2628 .task_tag = lrbp->task_tag, 2629 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI, 2630 }; 2631 2632 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length); 2633 2634 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE); 2635 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE); 2636 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len); 2637 2638 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2639 } 2640 2641 /** 2642 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request 2643 * @hba: UFS hba 2644 * @lrbp: local reference block pointer 2645 * @upiu_flags: flags 2646 */ 2647 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, 2648 struct ufshcd_lrb *lrbp, u8 upiu_flags) 2649 { 2650 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2651 struct ufs_query *query = &hba->dev_cmd.query; 2652 u16 len = be16_to_cpu(query->request.upiu_req.length); 2653 2654 /* Query request header */ 2655 ucd_req_ptr->header = (struct utp_upiu_header){ 2656 .transaction_code = UPIU_TRANSACTION_QUERY_REQ, 2657 .flags = upiu_flags, 2658 .lun = lrbp->lun, 2659 .task_tag = lrbp->task_tag, 2660 .query_function = query->request.query_func, 2661 /* Data segment length only need for WRITE_DESC */ 2662 .data_segment_length = 2663 query->request.upiu_req.opcode == 2664 UPIU_QUERY_OPCODE_WRITE_DESC ? 2665 cpu_to_be16(len) : 2666 0, 2667 }; 2668 2669 /* Copy the Query Request buffer as is */ 2670 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, 2671 QUERY_OSF_SIZE); 2672 2673 /* Copy the Descriptor */ 2674 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) 2675 memcpy(ucd_req_ptr + 1, query->descriptor, len); 2676 2677 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2678 } 2679 2680 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp) 2681 { 2682 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2683 2684 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req)); 2685 2686 ucd_req_ptr->header = (struct utp_upiu_header){ 2687 .transaction_code = UPIU_TRANSACTION_NOP_OUT, 2688 .task_tag = lrbp->task_tag, 2689 }; 2690 2691 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2692 } 2693 2694 /** 2695 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU) 2696 * for Device Management Purposes 2697 * @hba: per adapter instance 2698 * @lrbp: pointer to local reference block 2699 * 2700 * Return: 0 upon success; < 0 upon failure. 2701 */ 2702 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba, 2703 struct ufshcd_lrb *lrbp) 2704 { 2705 u8 upiu_flags; 2706 int ret = 0; 2707 2708 if (hba->ufs_version <= ufshci_version(1, 1)) 2709 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; 2710 else 2711 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2712 2713 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0); 2714 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) 2715 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags); 2716 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) 2717 ufshcd_prepare_utp_nop_upiu(lrbp); 2718 else 2719 ret = -EINVAL; 2720 2721 return ret; 2722 } 2723 2724 /** 2725 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU) 2726 * for SCSI Purposes 2727 * @hba: per adapter instance 2728 * @lrbp: pointer to local reference block 2729 * 2730 * Return: 0 upon success; < 0 upon failure. 2731 */ 2732 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2733 { 2734 u8 upiu_flags; 2735 int ret = 0; 2736 2737 if (hba->ufs_version <= ufshci_version(1, 1)) 2738 lrbp->command_type = UTP_CMD_TYPE_SCSI; 2739 else 2740 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2741 2742 if (likely(lrbp->cmd)) { 2743 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0); 2744 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags); 2745 } else { 2746 ret = -EINVAL; 2747 } 2748 2749 return ret; 2750 } 2751 2752 /** 2753 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID 2754 * @upiu_wlun_id: UPIU W-LUN id 2755 * 2756 * Return: SCSI W-LUN id. 2757 */ 2758 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id) 2759 { 2760 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE; 2761 } 2762 2763 static inline bool is_device_wlun(struct scsi_device *sdev) 2764 { 2765 return sdev->lun == 2766 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN); 2767 } 2768 2769 /* 2770 * Associate the UFS controller queue with the default and poll HCTX types. 2771 * Initialize the mq_map[] arrays. 2772 */ 2773 static void ufshcd_map_queues(struct Scsi_Host *shost) 2774 { 2775 struct ufs_hba *hba = shost_priv(shost); 2776 int i, queue_offset = 0; 2777 2778 if (!is_mcq_supported(hba)) { 2779 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1; 2780 hba->nr_queues[HCTX_TYPE_READ] = 0; 2781 hba->nr_queues[HCTX_TYPE_POLL] = 1; 2782 hba->nr_hw_queues = 1; 2783 } 2784 2785 for (i = 0; i < shost->nr_maps; i++) { 2786 struct blk_mq_queue_map *map = &shost->tag_set.map[i]; 2787 2788 map->nr_queues = hba->nr_queues[i]; 2789 if (!map->nr_queues) 2790 continue; 2791 map->queue_offset = queue_offset; 2792 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba)) 2793 map->queue_offset = 0; 2794 2795 blk_mq_map_queues(map); 2796 queue_offset += map->nr_queues; 2797 } 2798 } 2799 2800 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i) 2801 { 2802 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr + 2803 i * ufshcd_get_ucd_size(hba); 2804 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr; 2805 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr + 2806 i * ufshcd_get_ucd_size(hba); 2807 u16 response_offset = offsetof(struct utp_transfer_cmd_desc, 2808 response_upiu); 2809 u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table); 2810 2811 lrb->utr_descriptor_ptr = utrdlp + i; 2812 lrb->utrd_dma_addr = hba->utrdl_dma_addr + 2813 i * sizeof(struct utp_transfer_req_desc); 2814 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu; 2815 lrb->ucd_req_dma_addr = cmd_desc_element_addr; 2816 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu; 2817 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset; 2818 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table; 2819 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset; 2820 } 2821 2822 /** 2823 * ufshcd_queuecommand - main entry point for SCSI requests 2824 * @host: SCSI host pointer 2825 * @cmd: command from SCSI Midlayer 2826 * 2827 * Return: 0 for success, non-zero in case of failure. 2828 */ 2829 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) 2830 { 2831 struct ufs_hba *hba = shost_priv(host); 2832 int tag = scsi_cmd_to_rq(cmd)->tag; 2833 struct ufshcd_lrb *lrbp; 2834 int err = 0; 2835 struct ufs_hw_queue *hwq = NULL; 2836 2837 WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag); 2838 2839 switch (hba->ufshcd_state) { 2840 case UFSHCD_STATE_OPERATIONAL: 2841 break; 2842 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL: 2843 /* 2844 * SCSI error handler can call ->queuecommand() while UFS error 2845 * handler is in progress. Error interrupts could change the 2846 * state from UFSHCD_STATE_RESET to 2847 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests 2848 * being issued in that case. 2849 */ 2850 if (ufshcd_eh_in_progress(hba)) { 2851 err = SCSI_MLQUEUE_HOST_BUSY; 2852 goto out; 2853 } 2854 break; 2855 case UFSHCD_STATE_EH_SCHEDULED_FATAL: 2856 /* 2857 * pm_runtime_get_sync() is used at error handling preparation 2858 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's 2859 * PM ops, it can never be finished if we let SCSI layer keep 2860 * retrying it, which gets err handler stuck forever. Neither 2861 * can we let the scsi cmd pass through, because UFS is in bad 2862 * state, the scsi cmd may eventually time out, which will get 2863 * err handler blocked for too long. So, just fail the scsi cmd 2864 * sent from PM ops, err handler can recover PM error anyways. 2865 */ 2866 if (hba->pm_op_in_progress) { 2867 hba->force_reset = true; 2868 set_host_byte(cmd, DID_BAD_TARGET); 2869 scsi_done(cmd); 2870 goto out; 2871 } 2872 fallthrough; 2873 case UFSHCD_STATE_RESET: 2874 err = SCSI_MLQUEUE_HOST_BUSY; 2875 goto out; 2876 case UFSHCD_STATE_ERROR: 2877 set_host_byte(cmd, DID_ERROR); 2878 scsi_done(cmd); 2879 goto out; 2880 } 2881 2882 hba->req_abort_count = 0; 2883 2884 ufshcd_hold(hba); 2885 2886 lrbp = &hba->lrb[tag]; 2887 lrbp->cmd = cmd; 2888 lrbp->task_tag = tag; 2889 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 2890 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba); 2891 2892 ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp); 2893 2894 lrbp->req_abort_skip = false; 2895 2896 ufshcd_comp_scsi_upiu(hba, lrbp); 2897 2898 err = ufshcd_map_sg(hba, lrbp); 2899 if (err) { 2900 ufshcd_release(hba); 2901 goto out; 2902 } 2903 2904 if (is_mcq_enabled(hba)) 2905 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 2906 2907 ufshcd_send_command(hba, tag, hwq); 2908 2909 out: 2910 if (ufs_trigger_eh()) { 2911 unsigned long flags; 2912 2913 spin_lock_irqsave(hba->host->host_lock, flags); 2914 ufshcd_schedule_eh_work(hba); 2915 spin_unlock_irqrestore(hba->host->host_lock, flags); 2916 } 2917 2918 return err; 2919 } 2920 2921 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, 2922 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag) 2923 { 2924 lrbp->cmd = NULL; 2925 lrbp->task_tag = tag; 2926 lrbp->lun = 0; /* device management cmd is not specific to any LUN */ 2927 lrbp->intr_cmd = true; /* No interrupt aggregation */ 2928 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 2929 hba->dev_cmd.type = cmd_type; 2930 2931 return ufshcd_compose_devman_upiu(hba, lrbp); 2932 } 2933 2934 /* 2935 * Check with the block layer if the command is inflight 2936 * @cmd: command to check. 2937 * 2938 * Return: true if command is inflight; false if not. 2939 */ 2940 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd) 2941 { 2942 struct request *rq; 2943 2944 if (!cmd) 2945 return false; 2946 2947 rq = scsi_cmd_to_rq(cmd); 2948 if (!blk_mq_request_started(rq)) 2949 return false; 2950 2951 return true; 2952 } 2953 2954 /* 2955 * Clear the pending command in the controller and wait until 2956 * the controller confirms that the command has been cleared. 2957 * @hba: per adapter instance 2958 * @task_tag: The tag number of the command to be cleared. 2959 */ 2960 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag) 2961 { 2962 u32 mask; 2963 unsigned long flags; 2964 int err; 2965 2966 if (is_mcq_enabled(hba)) { 2967 /* 2968 * MCQ mode. Clean up the MCQ resources similar to 2969 * what the ufshcd_utrl_clear() does for SDB mode. 2970 */ 2971 err = ufshcd_mcq_sq_cleanup(hba, task_tag); 2972 if (err) { 2973 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n", 2974 __func__, task_tag, err); 2975 return err; 2976 } 2977 return 0; 2978 } 2979 2980 mask = 1U << task_tag; 2981 2982 /* clear outstanding transaction before retry */ 2983 spin_lock_irqsave(hba->host->host_lock, flags); 2984 ufshcd_utrl_clear(hba, mask); 2985 spin_unlock_irqrestore(hba->host->host_lock, flags); 2986 2987 /* 2988 * wait for h/w to clear corresponding bit in door-bell. 2989 * max. wait is 1 sec. 2990 */ 2991 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL, 2992 mask, ~mask, 1000, 1000); 2993 } 2994 2995 /** 2996 * ufshcd_dev_cmd_completion() - handles device management command responses 2997 * @hba: per adapter instance 2998 * @lrbp: pointer to local reference block 2999 * 3000 * Return: 0 upon success; < 0 upon failure. 3001 */ 3002 static int 3003 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 3004 { 3005 enum upiu_response_transaction resp; 3006 int err = 0; 3007 3008 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 3009 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); 3010 3011 switch (resp) { 3012 case UPIU_TRANSACTION_NOP_IN: 3013 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) { 3014 err = -EINVAL; 3015 dev_err(hba->dev, "%s: unexpected response %x\n", 3016 __func__, resp); 3017 } 3018 break; 3019 case UPIU_TRANSACTION_QUERY_RSP: { 3020 u8 response = lrbp->ucd_rsp_ptr->header.response; 3021 3022 if (response == 0) 3023 err = ufshcd_copy_query_response(hba, lrbp); 3024 break; 3025 } 3026 case UPIU_TRANSACTION_REJECT_UPIU: 3027 /* TODO: handle Reject UPIU Response */ 3028 err = -EPERM; 3029 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n", 3030 __func__); 3031 break; 3032 case UPIU_TRANSACTION_RESPONSE: 3033 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) { 3034 err = -EINVAL; 3035 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp); 3036 } 3037 break; 3038 default: 3039 err = -EINVAL; 3040 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n", 3041 __func__, resp); 3042 break; 3043 } 3044 3045 return err; 3046 } 3047 3048 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba, 3049 struct ufshcd_lrb *lrbp, int max_timeout) 3050 { 3051 unsigned long time_left = msecs_to_jiffies(max_timeout); 3052 unsigned long flags; 3053 bool pending; 3054 int err; 3055 3056 retry: 3057 time_left = wait_for_completion_timeout(hba->dev_cmd.complete, 3058 time_left); 3059 3060 if (likely(time_left)) { 3061 /* 3062 * The completion handler called complete() and the caller of 3063 * this function still owns the @lrbp tag so the code below does 3064 * not trigger any race conditions. 3065 */ 3066 hba->dev_cmd.complete = NULL; 3067 err = ufshcd_get_tr_ocs(lrbp, NULL); 3068 if (!err) 3069 err = ufshcd_dev_cmd_completion(hba, lrbp); 3070 } else { 3071 err = -ETIMEDOUT; 3072 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n", 3073 __func__, lrbp->task_tag); 3074 3075 /* MCQ mode */ 3076 if (is_mcq_enabled(hba)) { 3077 /* successfully cleared the command, retry if needed */ 3078 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) 3079 err = -EAGAIN; 3080 hba->dev_cmd.complete = NULL; 3081 return err; 3082 } 3083 3084 /* SDB mode */ 3085 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) { 3086 /* successfully cleared the command, retry if needed */ 3087 err = -EAGAIN; 3088 /* 3089 * Since clearing the command succeeded we also need to 3090 * clear the task tag bit from the outstanding_reqs 3091 * variable. 3092 */ 3093 spin_lock_irqsave(&hba->outstanding_lock, flags); 3094 pending = test_bit(lrbp->task_tag, 3095 &hba->outstanding_reqs); 3096 if (pending) { 3097 hba->dev_cmd.complete = NULL; 3098 __clear_bit(lrbp->task_tag, 3099 &hba->outstanding_reqs); 3100 } 3101 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3102 3103 if (!pending) { 3104 /* 3105 * The completion handler ran while we tried to 3106 * clear the command. 3107 */ 3108 time_left = 1; 3109 goto retry; 3110 } 3111 } else { 3112 dev_err(hba->dev, "%s: failed to clear tag %d\n", 3113 __func__, lrbp->task_tag); 3114 3115 spin_lock_irqsave(&hba->outstanding_lock, flags); 3116 pending = test_bit(lrbp->task_tag, 3117 &hba->outstanding_reqs); 3118 if (pending) 3119 hba->dev_cmd.complete = NULL; 3120 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3121 3122 if (!pending) { 3123 /* 3124 * The completion handler ran while we tried to 3125 * clear the command. 3126 */ 3127 time_left = 1; 3128 goto retry; 3129 } 3130 } 3131 } 3132 3133 return err; 3134 } 3135 3136 /** 3137 * ufshcd_exec_dev_cmd - API for sending device management requests 3138 * @hba: UFS hba 3139 * @cmd_type: specifies the type (NOP, Query...) 3140 * @timeout: timeout in milliseconds 3141 * 3142 * Return: 0 upon success; < 0 upon failure. 3143 * 3144 * NOTE: Since there is only one available tag for device management commands, 3145 * it is expected you hold the hba->dev_cmd.lock mutex. 3146 */ 3147 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, 3148 enum dev_cmd_type cmd_type, int timeout) 3149 { 3150 DECLARE_COMPLETION_ONSTACK(wait); 3151 const u32 tag = hba->reserved_slot; 3152 struct ufshcd_lrb *lrbp; 3153 int err; 3154 3155 /* Protects use of hba->reserved_slot. */ 3156 lockdep_assert_held(&hba->dev_cmd.lock); 3157 3158 down_read(&hba->clk_scaling_lock); 3159 3160 lrbp = &hba->lrb[tag]; 3161 lrbp->cmd = NULL; 3162 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag); 3163 if (unlikely(err)) 3164 goto out; 3165 3166 hba->dev_cmd.complete = &wait; 3167 3168 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 3169 3170 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 3171 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout); 3172 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 3173 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 3174 3175 out: 3176 up_read(&hba->clk_scaling_lock); 3177 return err; 3178 } 3179 3180 /** 3181 * ufshcd_init_query() - init the query response and request parameters 3182 * @hba: per-adapter instance 3183 * @request: address of the request pointer to be initialized 3184 * @response: address of the response pointer to be initialized 3185 * @opcode: operation to perform 3186 * @idn: flag idn to access 3187 * @index: LU number to access 3188 * @selector: query/flag/descriptor further identification 3189 */ 3190 static inline void ufshcd_init_query(struct ufs_hba *hba, 3191 struct ufs_query_req **request, struct ufs_query_res **response, 3192 enum query_opcode opcode, u8 idn, u8 index, u8 selector) 3193 { 3194 *request = &hba->dev_cmd.query.request; 3195 *response = &hba->dev_cmd.query.response; 3196 memset(*request, 0, sizeof(struct ufs_query_req)); 3197 memset(*response, 0, sizeof(struct ufs_query_res)); 3198 (*request)->upiu_req.opcode = opcode; 3199 (*request)->upiu_req.idn = idn; 3200 (*request)->upiu_req.index = index; 3201 (*request)->upiu_req.selector = selector; 3202 } 3203 3204 static int ufshcd_query_flag_retry(struct ufs_hba *hba, 3205 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res) 3206 { 3207 int ret; 3208 int retries; 3209 3210 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) { 3211 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res); 3212 if (ret) 3213 dev_dbg(hba->dev, 3214 "%s: failed with error %d, retries %d\n", 3215 __func__, ret, retries); 3216 else 3217 break; 3218 } 3219 3220 if (ret) 3221 dev_err(hba->dev, 3222 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n", 3223 __func__, opcode, idn, ret, retries); 3224 return ret; 3225 } 3226 3227 /** 3228 * ufshcd_query_flag() - API function for sending flag query requests 3229 * @hba: per-adapter instance 3230 * @opcode: flag query to perform 3231 * @idn: flag idn to access 3232 * @index: flag index to access 3233 * @flag_res: the flag value after the query request completes 3234 * 3235 * Return: 0 for success, non-zero in case of failure. 3236 */ 3237 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, 3238 enum flag_idn idn, u8 index, bool *flag_res) 3239 { 3240 struct ufs_query_req *request = NULL; 3241 struct ufs_query_res *response = NULL; 3242 int err, selector = 0; 3243 int timeout = QUERY_REQ_TIMEOUT; 3244 3245 BUG_ON(!hba); 3246 3247 ufshcd_hold(hba); 3248 mutex_lock(&hba->dev_cmd.lock); 3249 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3250 selector); 3251 3252 switch (opcode) { 3253 case UPIU_QUERY_OPCODE_SET_FLAG: 3254 case UPIU_QUERY_OPCODE_CLEAR_FLAG: 3255 case UPIU_QUERY_OPCODE_TOGGLE_FLAG: 3256 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3257 break; 3258 case UPIU_QUERY_OPCODE_READ_FLAG: 3259 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3260 if (!flag_res) { 3261 /* No dummy reads */ 3262 dev_err(hba->dev, "%s: Invalid argument for read request\n", 3263 __func__); 3264 err = -EINVAL; 3265 goto out_unlock; 3266 } 3267 break; 3268 default: 3269 dev_err(hba->dev, 3270 "%s: Expected query flag opcode but got = %d\n", 3271 __func__, opcode); 3272 err = -EINVAL; 3273 goto out_unlock; 3274 } 3275 3276 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout); 3277 3278 if (err) { 3279 dev_err(hba->dev, 3280 "%s: Sending flag query for idn %d failed, err = %d\n", 3281 __func__, idn, err); 3282 goto out_unlock; 3283 } 3284 3285 if (flag_res) 3286 *flag_res = (be32_to_cpu(response->upiu_res.value) & 3287 MASK_QUERY_UPIU_FLAG_LOC) & 0x1; 3288 3289 out_unlock: 3290 mutex_unlock(&hba->dev_cmd.lock); 3291 ufshcd_release(hba); 3292 return err; 3293 } 3294 3295 /** 3296 * ufshcd_query_attr - API function for sending attribute requests 3297 * @hba: per-adapter instance 3298 * @opcode: attribute opcode 3299 * @idn: attribute idn to access 3300 * @index: index field 3301 * @selector: selector field 3302 * @attr_val: the attribute value after the query request completes 3303 * 3304 * Return: 0 for success, non-zero in case of failure. 3305 */ 3306 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode, 3307 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) 3308 { 3309 struct ufs_query_req *request = NULL; 3310 struct ufs_query_res *response = NULL; 3311 int err; 3312 3313 BUG_ON(!hba); 3314 3315 if (!attr_val) { 3316 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n", 3317 __func__, opcode); 3318 return -EINVAL; 3319 } 3320 3321 ufshcd_hold(hba); 3322 3323 mutex_lock(&hba->dev_cmd.lock); 3324 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3325 selector); 3326 3327 switch (opcode) { 3328 case UPIU_QUERY_OPCODE_WRITE_ATTR: 3329 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3330 request->upiu_req.value = cpu_to_be32(*attr_val); 3331 break; 3332 case UPIU_QUERY_OPCODE_READ_ATTR: 3333 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3334 break; 3335 default: 3336 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n", 3337 __func__, opcode); 3338 err = -EINVAL; 3339 goto out_unlock; 3340 } 3341 3342 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3343 3344 if (err) { 3345 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3346 __func__, opcode, idn, index, err); 3347 goto out_unlock; 3348 } 3349 3350 *attr_val = be32_to_cpu(response->upiu_res.value); 3351 3352 out_unlock: 3353 mutex_unlock(&hba->dev_cmd.lock); 3354 ufshcd_release(hba); 3355 return err; 3356 } 3357 3358 /** 3359 * ufshcd_query_attr_retry() - API function for sending query 3360 * attribute with retries 3361 * @hba: per-adapter instance 3362 * @opcode: attribute opcode 3363 * @idn: attribute idn to access 3364 * @index: index field 3365 * @selector: selector field 3366 * @attr_val: the attribute value after the query request 3367 * completes 3368 * 3369 * Return: 0 for success, non-zero in case of failure. 3370 */ 3371 int ufshcd_query_attr_retry(struct ufs_hba *hba, 3372 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, 3373 u32 *attr_val) 3374 { 3375 int ret = 0; 3376 u32 retries; 3377 3378 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3379 ret = ufshcd_query_attr(hba, opcode, idn, index, 3380 selector, attr_val); 3381 if (ret) 3382 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", 3383 __func__, ret, retries); 3384 else 3385 break; 3386 } 3387 3388 if (ret) 3389 dev_err(hba->dev, 3390 "%s: query attribute, idn %d, failed with error %d after %d retries\n", 3391 __func__, idn, ret, QUERY_REQ_RETRIES); 3392 return ret; 3393 } 3394 3395 static int __ufshcd_query_descriptor(struct ufs_hba *hba, 3396 enum query_opcode opcode, enum desc_idn idn, u8 index, 3397 u8 selector, u8 *desc_buf, int *buf_len) 3398 { 3399 struct ufs_query_req *request = NULL; 3400 struct ufs_query_res *response = NULL; 3401 int err; 3402 3403 BUG_ON(!hba); 3404 3405 if (!desc_buf) { 3406 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n", 3407 __func__, opcode); 3408 return -EINVAL; 3409 } 3410 3411 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) { 3412 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n", 3413 __func__, *buf_len); 3414 return -EINVAL; 3415 } 3416 3417 ufshcd_hold(hba); 3418 3419 mutex_lock(&hba->dev_cmd.lock); 3420 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3421 selector); 3422 hba->dev_cmd.query.descriptor = desc_buf; 3423 request->upiu_req.length = cpu_to_be16(*buf_len); 3424 3425 switch (opcode) { 3426 case UPIU_QUERY_OPCODE_WRITE_DESC: 3427 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3428 break; 3429 case UPIU_QUERY_OPCODE_READ_DESC: 3430 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3431 break; 3432 default: 3433 dev_err(hba->dev, 3434 "%s: Expected query descriptor opcode but got = 0x%.2x\n", 3435 __func__, opcode); 3436 err = -EINVAL; 3437 goto out_unlock; 3438 } 3439 3440 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3441 3442 if (err) { 3443 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3444 __func__, opcode, idn, index, err); 3445 goto out_unlock; 3446 } 3447 3448 *buf_len = be16_to_cpu(response->upiu_res.length); 3449 3450 out_unlock: 3451 hba->dev_cmd.query.descriptor = NULL; 3452 mutex_unlock(&hba->dev_cmd.lock); 3453 ufshcd_release(hba); 3454 return err; 3455 } 3456 3457 /** 3458 * ufshcd_query_descriptor_retry - API function for sending descriptor requests 3459 * @hba: per-adapter instance 3460 * @opcode: attribute opcode 3461 * @idn: attribute idn to access 3462 * @index: index field 3463 * @selector: selector field 3464 * @desc_buf: the buffer that contains the descriptor 3465 * @buf_len: length parameter passed to the device 3466 * 3467 * The buf_len parameter will contain, on return, the length parameter 3468 * received on the response. 3469 * 3470 * Return: 0 for success, non-zero in case of failure. 3471 */ 3472 int ufshcd_query_descriptor_retry(struct ufs_hba *hba, 3473 enum query_opcode opcode, 3474 enum desc_idn idn, u8 index, 3475 u8 selector, 3476 u8 *desc_buf, int *buf_len) 3477 { 3478 int err; 3479 int retries; 3480 3481 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3482 err = __ufshcd_query_descriptor(hba, opcode, idn, index, 3483 selector, desc_buf, buf_len); 3484 if (!err || err == -EINVAL) 3485 break; 3486 } 3487 3488 return err; 3489 } 3490 3491 /** 3492 * ufshcd_read_desc_param - read the specified descriptor parameter 3493 * @hba: Pointer to adapter instance 3494 * @desc_id: descriptor idn value 3495 * @desc_index: descriptor index 3496 * @param_offset: offset of the parameter to read 3497 * @param_read_buf: pointer to buffer where parameter would be read 3498 * @param_size: sizeof(param_read_buf) 3499 * 3500 * Return: 0 in case of success, non-zero otherwise. 3501 */ 3502 int ufshcd_read_desc_param(struct ufs_hba *hba, 3503 enum desc_idn desc_id, 3504 int desc_index, 3505 u8 param_offset, 3506 u8 *param_read_buf, 3507 u8 param_size) 3508 { 3509 int ret; 3510 u8 *desc_buf; 3511 int buff_len = QUERY_DESC_MAX_SIZE; 3512 bool is_kmalloc = true; 3513 3514 /* Safety check */ 3515 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size) 3516 return -EINVAL; 3517 3518 /* Check whether we need temp memory */ 3519 if (param_offset != 0 || param_size < buff_len) { 3520 desc_buf = kzalloc(buff_len, GFP_KERNEL); 3521 if (!desc_buf) 3522 return -ENOMEM; 3523 } else { 3524 desc_buf = param_read_buf; 3525 is_kmalloc = false; 3526 } 3527 3528 /* Request for full descriptor */ 3529 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC, 3530 desc_id, desc_index, 0, 3531 desc_buf, &buff_len); 3532 if (ret) { 3533 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n", 3534 __func__, desc_id, desc_index, param_offset, ret); 3535 goto out; 3536 } 3537 3538 /* Update descriptor length */ 3539 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET]; 3540 3541 if (param_offset >= buff_len) { 3542 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n", 3543 __func__, param_offset, desc_id, buff_len); 3544 ret = -EINVAL; 3545 goto out; 3546 } 3547 3548 /* Sanity check */ 3549 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) { 3550 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n", 3551 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]); 3552 ret = -EINVAL; 3553 goto out; 3554 } 3555 3556 if (is_kmalloc) { 3557 /* Make sure we don't copy more data than available */ 3558 if (param_offset >= buff_len) 3559 ret = -EINVAL; 3560 else 3561 memcpy(param_read_buf, &desc_buf[param_offset], 3562 min_t(u32, param_size, buff_len - param_offset)); 3563 } 3564 out: 3565 if (is_kmalloc) 3566 kfree(desc_buf); 3567 return ret; 3568 } 3569 3570 /** 3571 * struct uc_string_id - unicode string 3572 * 3573 * @len: size of this descriptor inclusive 3574 * @type: descriptor type 3575 * @uc: unicode string character 3576 */ 3577 struct uc_string_id { 3578 u8 len; 3579 u8 type; 3580 wchar_t uc[]; 3581 } __packed; 3582 3583 /* replace non-printable or non-ASCII characters with spaces */ 3584 static inline char ufshcd_remove_non_printable(u8 ch) 3585 { 3586 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' '; 3587 } 3588 3589 /** 3590 * ufshcd_read_string_desc - read string descriptor 3591 * @hba: pointer to adapter instance 3592 * @desc_index: descriptor index 3593 * @buf: pointer to buffer where descriptor would be read, 3594 * the caller should free the memory. 3595 * @ascii: if true convert from unicode to ascii characters 3596 * null terminated string. 3597 * 3598 * Return: 3599 * * string size on success. 3600 * * -ENOMEM: on allocation failure 3601 * * -EINVAL: on a wrong parameter 3602 */ 3603 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, 3604 u8 **buf, bool ascii) 3605 { 3606 struct uc_string_id *uc_str; 3607 u8 *str; 3608 int ret; 3609 3610 if (!buf) 3611 return -EINVAL; 3612 3613 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 3614 if (!uc_str) 3615 return -ENOMEM; 3616 3617 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0, 3618 (u8 *)uc_str, QUERY_DESC_MAX_SIZE); 3619 if (ret < 0) { 3620 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n", 3621 QUERY_REQ_RETRIES, ret); 3622 str = NULL; 3623 goto out; 3624 } 3625 3626 if (uc_str->len <= QUERY_DESC_HDR_SIZE) { 3627 dev_dbg(hba->dev, "String Desc is of zero length\n"); 3628 str = NULL; 3629 ret = 0; 3630 goto out; 3631 } 3632 3633 if (ascii) { 3634 ssize_t ascii_len; 3635 int i; 3636 /* remove header and divide by 2 to move from UTF16 to UTF8 */ 3637 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1; 3638 str = kzalloc(ascii_len, GFP_KERNEL); 3639 if (!str) { 3640 ret = -ENOMEM; 3641 goto out; 3642 } 3643 3644 /* 3645 * the descriptor contains string in UTF16 format 3646 * we need to convert to utf-8 so it can be displayed 3647 */ 3648 ret = utf16s_to_utf8s(uc_str->uc, 3649 uc_str->len - QUERY_DESC_HDR_SIZE, 3650 UTF16_BIG_ENDIAN, str, ascii_len - 1); 3651 3652 /* replace non-printable or non-ASCII characters with spaces */ 3653 for (i = 0; i < ret; i++) 3654 str[i] = ufshcd_remove_non_printable(str[i]); 3655 3656 str[ret++] = '\0'; 3657 3658 } else { 3659 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL); 3660 if (!str) { 3661 ret = -ENOMEM; 3662 goto out; 3663 } 3664 ret = uc_str->len; 3665 } 3666 out: 3667 *buf = str; 3668 kfree(uc_str); 3669 return ret; 3670 } 3671 3672 /** 3673 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter 3674 * @hba: Pointer to adapter instance 3675 * @lun: lun id 3676 * @param_offset: offset of the parameter to read 3677 * @param_read_buf: pointer to buffer where parameter would be read 3678 * @param_size: sizeof(param_read_buf) 3679 * 3680 * Return: 0 in case of success, non-zero otherwise. 3681 */ 3682 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba, 3683 int lun, 3684 enum unit_desc_param param_offset, 3685 u8 *param_read_buf, 3686 u32 param_size) 3687 { 3688 /* 3689 * Unit descriptors are only available for general purpose LUs (LUN id 3690 * from 0 to 7) and RPMB Well known LU. 3691 */ 3692 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) 3693 return -EOPNOTSUPP; 3694 3695 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun, 3696 param_offset, param_read_buf, param_size); 3697 } 3698 3699 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba) 3700 { 3701 int err = 0; 3702 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3703 3704 if (hba->dev_info.wspecversion >= 0x300) { 3705 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 3706 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0, 3707 &gating_wait); 3708 if (err) 3709 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n", 3710 err, gating_wait); 3711 3712 if (gating_wait == 0) { 3713 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3714 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n", 3715 gating_wait); 3716 } 3717 3718 hba->dev_info.clk_gating_wait_us = gating_wait; 3719 } 3720 3721 return err; 3722 } 3723 3724 /** 3725 * ufshcd_memory_alloc - allocate memory for host memory space data structures 3726 * @hba: per adapter instance 3727 * 3728 * 1. Allocate DMA memory for Command Descriptor array 3729 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT 3730 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL). 3731 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List 3732 * (UTMRDL) 3733 * 4. Allocate memory for local reference block(lrb). 3734 * 3735 * Return: 0 for success, non-zero in case of failure. 3736 */ 3737 static int ufshcd_memory_alloc(struct ufs_hba *hba) 3738 { 3739 size_t utmrdl_size, utrdl_size, ucdl_size; 3740 3741 /* Allocate memory for UTP command descriptors */ 3742 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs; 3743 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev, 3744 ucdl_size, 3745 &hba->ucdl_dma_addr, 3746 GFP_KERNEL); 3747 3748 /* 3749 * UFSHCI requires UTP command descriptor to be 128 byte aligned. 3750 */ 3751 if (!hba->ucdl_base_addr || 3752 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) { 3753 dev_err(hba->dev, 3754 "Command Descriptor Memory allocation failed\n"); 3755 goto out; 3756 } 3757 3758 /* 3759 * Allocate memory for UTP Transfer descriptors 3760 * UFSHCI requires 1KB alignment of UTRD 3761 */ 3762 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); 3763 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev, 3764 utrdl_size, 3765 &hba->utrdl_dma_addr, 3766 GFP_KERNEL); 3767 if (!hba->utrdl_base_addr || 3768 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) { 3769 dev_err(hba->dev, 3770 "Transfer Descriptor Memory allocation failed\n"); 3771 goto out; 3772 } 3773 3774 /* 3775 * Skip utmrdl allocation; it may have been 3776 * allocated during first pass and not released during 3777 * MCQ memory allocation. 3778 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq() 3779 */ 3780 if (hba->utmrdl_base_addr) 3781 goto skip_utmrdl; 3782 /* 3783 * Allocate memory for UTP Task Management descriptors 3784 * UFSHCI requires 1KB alignment of UTMRD 3785 */ 3786 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; 3787 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev, 3788 utmrdl_size, 3789 &hba->utmrdl_dma_addr, 3790 GFP_KERNEL); 3791 if (!hba->utmrdl_base_addr || 3792 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) { 3793 dev_err(hba->dev, 3794 "Task Management Descriptor Memory allocation failed\n"); 3795 goto out; 3796 } 3797 3798 skip_utmrdl: 3799 /* Allocate memory for local reference block */ 3800 hba->lrb = devm_kcalloc(hba->dev, 3801 hba->nutrs, sizeof(struct ufshcd_lrb), 3802 GFP_KERNEL); 3803 if (!hba->lrb) { 3804 dev_err(hba->dev, "LRB Memory allocation failed\n"); 3805 goto out; 3806 } 3807 return 0; 3808 out: 3809 return -ENOMEM; 3810 } 3811 3812 /** 3813 * ufshcd_host_memory_configure - configure local reference block with 3814 * memory offsets 3815 * @hba: per adapter instance 3816 * 3817 * Configure Host memory space 3818 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA 3819 * address. 3820 * 2. Update each UTRD with Response UPIU offset, Response UPIU length 3821 * and PRDT offset. 3822 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT 3823 * into local reference block. 3824 */ 3825 static void ufshcd_host_memory_configure(struct ufs_hba *hba) 3826 { 3827 struct utp_transfer_req_desc *utrdlp; 3828 dma_addr_t cmd_desc_dma_addr; 3829 dma_addr_t cmd_desc_element_addr; 3830 u16 response_offset; 3831 u16 prdt_offset; 3832 int cmd_desc_size; 3833 int i; 3834 3835 utrdlp = hba->utrdl_base_addr; 3836 3837 response_offset = 3838 offsetof(struct utp_transfer_cmd_desc, response_upiu); 3839 prdt_offset = 3840 offsetof(struct utp_transfer_cmd_desc, prd_table); 3841 3842 cmd_desc_size = ufshcd_get_ucd_size(hba); 3843 cmd_desc_dma_addr = hba->ucdl_dma_addr; 3844 3845 for (i = 0; i < hba->nutrs; i++) { 3846 /* Configure UTRD with command descriptor base address */ 3847 cmd_desc_element_addr = 3848 (cmd_desc_dma_addr + (cmd_desc_size * i)); 3849 utrdlp[i].command_desc_base_addr = 3850 cpu_to_le64(cmd_desc_element_addr); 3851 3852 /* Response upiu and prdt offset should be in double words */ 3853 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) { 3854 utrdlp[i].response_upiu_offset = 3855 cpu_to_le16(response_offset); 3856 utrdlp[i].prd_table_offset = 3857 cpu_to_le16(prdt_offset); 3858 utrdlp[i].response_upiu_length = 3859 cpu_to_le16(ALIGNED_UPIU_SIZE); 3860 } else { 3861 utrdlp[i].response_upiu_offset = 3862 cpu_to_le16(response_offset >> 2); 3863 utrdlp[i].prd_table_offset = 3864 cpu_to_le16(prdt_offset >> 2); 3865 utrdlp[i].response_upiu_length = 3866 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2); 3867 } 3868 3869 ufshcd_init_lrb(hba, &hba->lrb[i], i); 3870 } 3871 } 3872 3873 /** 3874 * ufshcd_dme_link_startup - Notify Unipro to perform link startup 3875 * @hba: per adapter instance 3876 * 3877 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer, 3878 * in order to initialize the Unipro link startup procedure. 3879 * Once the Unipro links are up, the device connected to the controller 3880 * is detected. 3881 * 3882 * Return: 0 on success, non-zero value on failure. 3883 */ 3884 static int ufshcd_dme_link_startup(struct ufs_hba *hba) 3885 { 3886 struct uic_command uic_cmd = {0}; 3887 int ret; 3888 3889 uic_cmd.command = UIC_CMD_DME_LINK_STARTUP; 3890 3891 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3892 if (ret) 3893 dev_dbg(hba->dev, 3894 "dme-link-startup: error code %d\n", ret); 3895 return ret; 3896 } 3897 /** 3898 * ufshcd_dme_reset - UIC command for DME_RESET 3899 * @hba: per adapter instance 3900 * 3901 * DME_RESET command is issued in order to reset UniPro stack. 3902 * This function now deals with cold reset. 3903 * 3904 * Return: 0 on success, non-zero value on failure. 3905 */ 3906 static int ufshcd_dme_reset(struct ufs_hba *hba) 3907 { 3908 struct uic_command uic_cmd = {0}; 3909 int ret; 3910 3911 uic_cmd.command = UIC_CMD_DME_RESET; 3912 3913 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3914 if (ret) 3915 dev_err(hba->dev, 3916 "dme-reset: error code %d\n", ret); 3917 3918 return ret; 3919 } 3920 3921 int ufshcd_dme_configure_adapt(struct ufs_hba *hba, 3922 int agreed_gear, 3923 int adapt_val) 3924 { 3925 int ret; 3926 3927 if (agreed_gear < UFS_HS_G4) 3928 adapt_val = PA_NO_ADAPT; 3929 3930 ret = ufshcd_dme_set(hba, 3931 UIC_ARG_MIB(PA_TXHSADAPTTYPE), 3932 adapt_val); 3933 return ret; 3934 } 3935 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt); 3936 3937 /** 3938 * ufshcd_dme_enable - UIC command for DME_ENABLE 3939 * @hba: per adapter instance 3940 * 3941 * DME_ENABLE command is issued in order to enable UniPro stack. 3942 * 3943 * Return: 0 on success, non-zero value on failure. 3944 */ 3945 static int ufshcd_dme_enable(struct ufs_hba *hba) 3946 { 3947 struct uic_command uic_cmd = {0}; 3948 int ret; 3949 3950 uic_cmd.command = UIC_CMD_DME_ENABLE; 3951 3952 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3953 if (ret) 3954 dev_err(hba->dev, 3955 "dme-enable: error code %d\n", ret); 3956 3957 return ret; 3958 } 3959 3960 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba) 3961 { 3962 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000 3963 unsigned long min_sleep_time_us; 3964 3965 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS)) 3966 return; 3967 3968 /* 3969 * last_dme_cmd_tstamp will be 0 only for 1st call to 3970 * this function 3971 */ 3972 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) { 3973 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US; 3974 } else { 3975 unsigned long delta = 3976 (unsigned long) ktime_to_us( 3977 ktime_sub(ktime_get(), 3978 hba->last_dme_cmd_tstamp)); 3979 3980 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US) 3981 min_sleep_time_us = 3982 MIN_DELAY_BEFORE_DME_CMDS_US - delta; 3983 else 3984 min_sleep_time_us = 0; /* no more delay required */ 3985 } 3986 3987 if (min_sleep_time_us > 0) { 3988 /* allow sleep for extra 50us if needed */ 3989 usleep_range(min_sleep_time_us, min_sleep_time_us + 50); 3990 } 3991 3992 /* update the last_dme_cmd_tstamp */ 3993 hba->last_dme_cmd_tstamp = ktime_get(); 3994 } 3995 3996 /** 3997 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET 3998 * @hba: per adapter instance 3999 * @attr_sel: uic command argument1 4000 * @attr_set: attribute set type as uic command argument2 4001 * @mib_val: setting value as uic command argument3 4002 * @peer: indicate whether peer or local 4003 * 4004 * Return: 0 on success, non-zero value on failure. 4005 */ 4006 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, 4007 u8 attr_set, u32 mib_val, u8 peer) 4008 { 4009 struct uic_command uic_cmd = {0}; 4010 static const char *const action[] = { 4011 "dme-set", 4012 "dme-peer-set" 4013 }; 4014 const char *set = action[!!peer]; 4015 int ret; 4016 int retries = UFS_UIC_COMMAND_RETRIES; 4017 4018 uic_cmd.command = peer ? 4019 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET; 4020 uic_cmd.argument1 = attr_sel; 4021 uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set); 4022 uic_cmd.argument3 = mib_val; 4023 4024 do { 4025 /* for peer attributes we retry upon failure */ 4026 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4027 if (ret) 4028 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n", 4029 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret); 4030 } while (ret && peer && --retries); 4031 4032 if (ret) 4033 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n", 4034 set, UIC_GET_ATTR_ID(attr_sel), mib_val, 4035 UFS_UIC_COMMAND_RETRIES - retries); 4036 4037 return ret; 4038 } 4039 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr); 4040 4041 /** 4042 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET 4043 * @hba: per adapter instance 4044 * @attr_sel: uic command argument1 4045 * @mib_val: the value of the attribute as returned by the UIC command 4046 * @peer: indicate whether peer or local 4047 * 4048 * Return: 0 on success, non-zero value on failure. 4049 */ 4050 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, 4051 u32 *mib_val, u8 peer) 4052 { 4053 struct uic_command uic_cmd = {0}; 4054 static const char *const action[] = { 4055 "dme-get", 4056 "dme-peer-get" 4057 }; 4058 const char *get = action[!!peer]; 4059 int ret; 4060 int retries = UFS_UIC_COMMAND_RETRIES; 4061 struct ufs_pa_layer_attr orig_pwr_info; 4062 struct ufs_pa_layer_attr temp_pwr_info; 4063 bool pwr_mode_change = false; 4064 4065 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) { 4066 orig_pwr_info = hba->pwr_info; 4067 temp_pwr_info = orig_pwr_info; 4068 4069 if (orig_pwr_info.pwr_tx == FAST_MODE || 4070 orig_pwr_info.pwr_rx == FAST_MODE) { 4071 temp_pwr_info.pwr_tx = FASTAUTO_MODE; 4072 temp_pwr_info.pwr_rx = FASTAUTO_MODE; 4073 pwr_mode_change = true; 4074 } else if (orig_pwr_info.pwr_tx == SLOW_MODE || 4075 orig_pwr_info.pwr_rx == SLOW_MODE) { 4076 temp_pwr_info.pwr_tx = SLOWAUTO_MODE; 4077 temp_pwr_info.pwr_rx = SLOWAUTO_MODE; 4078 pwr_mode_change = true; 4079 } 4080 if (pwr_mode_change) { 4081 ret = ufshcd_change_power_mode(hba, &temp_pwr_info); 4082 if (ret) 4083 goto out; 4084 } 4085 } 4086 4087 uic_cmd.command = peer ? 4088 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET; 4089 uic_cmd.argument1 = attr_sel; 4090 4091 do { 4092 /* for peer attributes we retry upon failure */ 4093 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4094 if (ret) 4095 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n", 4096 get, UIC_GET_ATTR_ID(attr_sel), ret); 4097 } while (ret && peer && --retries); 4098 4099 if (ret) 4100 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n", 4101 get, UIC_GET_ATTR_ID(attr_sel), 4102 UFS_UIC_COMMAND_RETRIES - retries); 4103 4104 if (mib_val && !ret) 4105 *mib_val = uic_cmd.argument3; 4106 4107 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE) 4108 && pwr_mode_change) 4109 ufshcd_change_power_mode(hba, &orig_pwr_info); 4110 out: 4111 return ret; 4112 } 4113 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr); 4114 4115 /** 4116 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power 4117 * state) and waits for it to take effect. 4118 * 4119 * @hba: per adapter instance 4120 * @cmd: UIC command to execute 4121 * 4122 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER & 4123 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host 4124 * and device UniPro link and hence it's final completion would be indicated by 4125 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in 4126 * addition to normal UIC command completion Status (UCCS). This function only 4127 * returns after the relevant status bits indicate the completion. 4128 * 4129 * Return: 0 on success, non-zero value on failure. 4130 */ 4131 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd) 4132 { 4133 DECLARE_COMPLETION_ONSTACK(uic_async_done); 4134 unsigned long flags; 4135 u8 status; 4136 int ret; 4137 bool reenable_intr = false; 4138 4139 mutex_lock(&hba->uic_cmd_mutex); 4140 ufshcd_add_delay_before_dme_cmd(hba); 4141 4142 spin_lock_irqsave(hba->host->host_lock, flags); 4143 if (ufshcd_is_link_broken(hba)) { 4144 ret = -ENOLINK; 4145 goto out_unlock; 4146 } 4147 hba->uic_async_done = &uic_async_done; 4148 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) { 4149 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL); 4150 /* 4151 * Make sure UIC command completion interrupt is disabled before 4152 * issuing UIC command. 4153 */ 4154 ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 4155 reenable_intr = true; 4156 } 4157 spin_unlock_irqrestore(hba->host->host_lock, flags); 4158 ret = __ufshcd_send_uic_cmd(hba, cmd, false); 4159 if (ret) { 4160 dev_err(hba->dev, 4161 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n", 4162 cmd->command, cmd->argument3, ret); 4163 goto out; 4164 } 4165 4166 if (!wait_for_completion_timeout(hba->uic_async_done, 4167 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 4168 dev_err(hba->dev, 4169 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n", 4170 cmd->command, cmd->argument3); 4171 4172 if (!cmd->cmd_active) { 4173 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n", 4174 __func__); 4175 goto check_upmcrs; 4176 } 4177 4178 ret = -ETIMEDOUT; 4179 goto out; 4180 } 4181 4182 check_upmcrs: 4183 status = ufshcd_get_upmcrs(hba); 4184 if (status != PWR_LOCAL) { 4185 dev_err(hba->dev, 4186 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n", 4187 cmd->command, status); 4188 ret = (status != PWR_OK) ? status : -1; 4189 } 4190 out: 4191 if (ret) { 4192 ufshcd_print_host_state(hba); 4193 ufshcd_print_pwr_info(hba); 4194 ufshcd_print_evt_hist(hba); 4195 } 4196 4197 spin_lock_irqsave(hba->host->host_lock, flags); 4198 hba->active_uic_cmd = NULL; 4199 hba->uic_async_done = NULL; 4200 if (reenable_intr) 4201 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL); 4202 if (ret) { 4203 ufshcd_set_link_broken(hba); 4204 ufshcd_schedule_eh_work(hba); 4205 } 4206 out_unlock: 4207 spin_unlock_irqrestore(hba->host->host_lock, flags); 4208 mutex_unlock(&hba->uic_cmd_mutex); 4209 4210 return ret; 4211 } 4212 4213 /** 4214 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage 4215 * using DME_SET primitives. 4216 * @hba: per adapter instance 4217 * @mode: powr mode value 4218 * 4219 * Return: 0 on success, non-zero value on failure. 4220 */ 4221 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode) 4222 { 4223 struct uic_command uic_cmd = {0}; 4224 int ret; 4225 4226 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) { 4227 ret = ufshcd_dme_set(hba, 4228 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1); 4229 if (ret) { 4230 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n", 4231 __func__, ret); 4232 goto out; 4233 } 4234 } 4235 4236 uic_cmd.command = UIC_CMD_DME_SET; 4237 uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE); 4238 uic_cmd.argument3 = mode; 4239 ufshcd_hold(hba); 4240 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4241 ufshcd_release(hba); 4242 4243 out: 4244 return ret; 4245 } 4246 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode); 4247 4248 int ufshcd_link_recovery(struct ufs_hba *hba) 4249 { 4250 int ret; 4251 unsigned long flags; 4252 4253 spin_lock_irqsave(hba->host->host_lock, flags); 4254 hba->ufshcd_state = UFSHCD_STATE_RESET; 4255 ufshcd_set_eh_in_progress(hba); 4256 spin_unlock_irqrestore(hba->host->host_lock, flags); 4257 4258 /* Reset the attached device */ 4259 ufshcd_device_reset(hba); 4260 4261 ret = ufshcd_host_reset_and_restore(hba); 4262 4263 spin_lock_irqsave(hba->host->host_lock, flags); 4264 if (ret) 4265 hba->ufshcd_state = UFSHCD_STATE_ERROR; 4266 ufshcd_clear_eh_in_progress(hba); 4267 spin_unlock_irqrestore(hba->host->host_lock, flags); 4268 4269 if (ret) 4270 dev_err(hba->dev, "%s: link recovery failed, err %d", 4271 __func__, ret); 4272 4273 return ret; 4274 } 4275 EXPORT_SYMBOL_GPL(ufshcd_link_recovery); 4276 4277 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba) 4278 { 4279 int ret; 4280 struct uic_command uic_cmd = {0}; 4281 ktime_t start = ktime_get(); 4282 4283 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE); 4284 4285 uic_cmd.command = UIC_CMD_DME_HIBER_ENTER; 4286 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4287 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter", 4288 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4289 4290 if (ret) 4291 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n", 4292 __func__, ret); 4293 else 4294 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, 4295 POST_CHANGE); 4296 4297 return ret; 4298 } 4299 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter); 4300 4301 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba) 4302 { 4303 struct uic_command uic_cmd = {0}; 4304 int ret; 4305 ktime_t start = ktime_get(); 4306 4307 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE); 4308 4309 uic_cmd.command = UIC_CMD_DME_HIBER_EXIT; 4310 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4311 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit", 4312 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4313 4314 if (ret) { 4315 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n", 4316 __func__, ret); 4317 } else { 4318 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, 4319 POST_CHANGE); 4320 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock(); 4321 hba->ufs_stats.hibern8_exit_cnt++; 4322 } 4323 4324 return ret; 4325 } 4326 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit); 4327 4328 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit) 4329 { 4330 unsigned long flags; 4331 bool update = false; 4332 4333 if (!ufshcd_is_auto_hibern8_supported(hba)) 4334 return; 4335 4336 spin_lock_irqsave(hba->host->host_lock, flags); 4337 if (hba->ahit != ahit) { 4338 hba->ahit = ahit; 4339 update = true; 4340 } 4341 spin_unlock_irqrestore(hba->host->host_lock, flags); 4342 4343 if (update && 4344 !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) { 4345 ufshcd_rpm_get_sync(hba); 4346 ufshcd_hold(hba); 4347 ufshcd_auto_hibern8_enable(hba); 4348 ufshcd_release(hba); 4349 ufshcd_rpm_put_sync(hba); 4350 } 4351 } 4352 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update); 4353 4354 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba) 4355 { 4356 if (!ufshcd_is_auto_hibern8_supported(hba)) 4357 return; 4358 4359 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 4360 } 4361 4362 /** 4363 * ufshcd_init_pwr_info - setting the POR (power on reset) 4364 * values in hba power info 4365 * @hba: per-adapter instance 4366 */ 4367 static void ufshcd_init_pwr_info(struct ufs_hba *hba) 4368 { 4369 hba->pwr_info.gear_rx = UFS_PWM_G1; 4370 hba->pwr_info.gear_tx = UFS_PWM_G1; 4371 hba->pwr_info.lane_rx = UFS_LANE_1; 4372 hba->pwr_info.lane_tx = UFS_LANE_1; 4373 hba->pwr_info.pwr_rx = SLOWAUTO_MODE; 4374 hba->pwr_info.pwr_tx = SLOWAUTO_MODE; 4375 hba->pwr_info.hs_rate = 0; 4376 } 4377 4378 /** 4379 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device 4380 * @hba: per-adapter instance 4381 * 4382 * Return: 0 upon success; < 0 upon failure. 4383 */ 4384 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba) 4385 { 4386 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info; 4387 4388 if (hba->max_pwr_info.is_valid) 4389 return 0; 4390 4391 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) { 4392 pwr_info->pwr_tx = FASTAUTO_MODE; 4393 pwr_info->pwr_rx = FASTAUTO_MODE; 4394 } else { 4395 pwr_info->pwr_tx = FAST_MODE; 4396 pwr_info->pwr_rx = FAST_MODE; 4397 } 4398 pwr_info->hs_rate = PA_HS_MODE_B; 4399 4400 /* Get the connected lane count */ 4401 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES), 4402 &pwr_info->lane_rx); 4403 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4404 &pwr_info->lane_tx); 4405 4406 if (!pwr_info->lane_rx || !pwr_info->lane_tx) { 4407 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n", 4408 __func__, 4409 pwr_info->lane_rx, 4410 pwr_info->lane_tx); 4411 return -EINVAL; 4412 } 4413 4414 /* 4415 * First, get the maximum gears of HS speed. 4416 * If a zero value, it means there is no HSGEAR capability. 4417 * Then, get the maximum gears of PWM speed. 4418 */ 4419 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx); 4420 if (!pwr_info->gear_rx) { 4421 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4422 &pwr_info->gear_rx); 4423 if (!pwr_info->gear_rx) { 4424 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n", 4425 __func__, pwr_info->gear_rx); 4426 return -EINVAL; 4427 } 4428 pwr_info->pwr_rx = SLOW_MODE; 4429 } 4430 4431 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), 4432 &pwr_info->gear_tx); 4433 if (!pwr_info->gear_tx) { 4434 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4435 &pwr_info->gear_tx); 4436 if (!pwr_info->gear_tx) { 4437 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n", 4438 __func__, pwr_info->gear_tx); 4439 return -EINVAL; 4440 } 4441 pwr_info->pwr_tx = SLOW_MODE; 4442 } 4443 4444 hba->max_pwr_info.is_valid = true; 4445 return 0; 4446 } 4447 4448 static int ufshcd_change_power_mode(struct ufs_hba *hba, 4449 struct ufs_pa_layer_attr *pwr_mode) 4450 { 4451 int ret; 4452 4453 /* if already configured to the requested pwr_mode */ 4454 if (!hba->force_pmc && 4455 pwr_mode->gear_rx == hba->pwr_info.gear_rx && 4456 pwr_mode->gear_tx == hba->pwr_info.gear_tx && 4457 pwr_mode->lane_rx == hba->pwr_info.lane_rx && 4458 pwr_mode->lane_tx == hba->pwr_info.lane_tx && 4459 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx && 4460 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx && 4461 pwr_mode->hs_rate == hba->pwr_info.hs_rate) { 4462 dev_dbg(hba->dev, "%s: power already configured\n", __func__); 4463 return 0; 4464 } 4465 4466 /* 4467 * Configure attributes for power mode change with below. 4468 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION, 4469 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION, 4470 * - PA_HSSERIES 4471 */ 4472 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx); 4473 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), 4474 pwr_mode->lane_rx); 4475 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4476 pwr_mode->pwr_rx == FAST_MODE) 4477 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true); 4478 else 4479 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false); 4480 4481 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx); 4482 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), 4483 pwr_mode->lane_tx); 4484 if (pwr_mode->pwr_tx == FASTAUTO_MODE || 4485 pwr_mode->pwr_tx == FAST_MODE) 4486 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true); 4487 else 4488 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false); 4489 4490 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4491 pwr_mode->pwr_tx == FASTAUTO_MODE || 4492 pwr_mode->pwr_rx == FAST_MODE || 4493 pwr_mode->pwr_tx == FAST_MODE) 4494 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), 4495 pwr_mode->hs_rate); 4496 4497 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) { 4498 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 4499 DL_FC0ProtectionTimeOutVal_Default); 4500 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 4501 DL_TC0ReplayTimeOutVal_Default); 4502 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 4503 DL_AFC0ReqTimeOutVal_Default); 4504 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3), 4505 DL_FC1ProtectionTimeOutVal_Default); 4506 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4), 4507 DL_TC1ReplayTimeOutVal_Default); 4508 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5), 4509 DL_AFC1ReqTimeOutVal_Default); 4510 4511 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal), 4512 DL_FC0ProtectionTimeOutVal_Default); 4513 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal), 4514 DL_TC0ReplayTimeOutVal_Default); 4515 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal), 4516 DL_AFC0ReqTimeOutVal_Default); 4517 } 4518 4519 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 4520 | pwr_mode->pwr_tx); 4521 4522 if (ret) { 4523 dev_err(hba->dev, 4524 "%s: power mode change failed %d\n", __func__, ret); 4525 } else { 4526 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL, 4527 pwr_mode); 4528 4529 memcpy(&hba->pwr_info, pwr_mode, 4530 sizeof(struct ufs_pa_layer_attr)); 4531 } 4532 4533 return ret; 4534 } 4535 4536 /** 4537 * ufshcd_config_pwr_mode - configure a new power mode 4538 * @hba: per-adapter instance 4539 * @desired_pwr_mode: desired power configuration 4540 * 4541 * Return: 0 upon success; < 0 upon failure. 4542 */ 4543 int ufshcd_config_pwr_mode(struct ufs_hba *hba, 4544 struct ufs_pa_layer_attr *desired_pwr_mode) 4545 { 4546 struct ufs_pa_layer_attr final_params = { 0 }; 4547 int ret; 4548 4549 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE, 4550 desired_pwr_mode, &final_params); 4551 4552 if (ret) 4553 memcpy(&final_params, desired_pwr_mode, sizeof(final_params)); 4554 4555 ret = ufshcd_change_power_mode(hba, &final_params); 4556 4557 return ret; 4558 } 4559 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode); 4560 4561 /** 4562 * ufshcd_complete_dev_init() - checks device readiness 4563 * @hba: per-adapter instance 4564 * 4565 * Set fDeviceInit flag and poll until device toggles it. 4566 * 4567 * Return: 0 upon success; < 0 upon failure. 4568 */ 4569 static int ufshcd_complete_dev_init(struct ufs_hba *hba) 4570 { 4571 int err; 4572 bool flag_res = true; 4573 ktime_t timeout; 4574 4575 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 4576 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL); 4577 if (err) { 4578 dev_err(hba->dev, 4579 "%s: setting fDeviceInit flag failed with error %d\n", 4580 __func__, err); 4581 goto out; 4582 } 4583 4584 /* Poll fDeviceInit flag to be cleared */ 4585 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT); 4586 do { 4587 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, 4588 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res); 4589 if (!flag_res) 4590 break; 4591 usleep_range(500, 1000); 4592 } while (ktime_before(ktime_get(), timeout)); 4593 4594 if (err) { 4595 dev_err(hba->dev, 4596 "%s: reading fDeviceInit flag failed with error %d\n", 4597 __func__, err); 4598 } else if (flag_res) { 4599 dev_err(hba->dev, 4600 "%s: fDeviceInit was not cleared by the device\n", 4601 __func__); 4602 err = -EBUSY; 4603 } 4604 out: 4605 return err; 4606 } 4607 4608 /** 4609 * ufshcd_make_hba_operational - Make UFS controller operational 4610 * @hba: per adapter instance 4611 * 4612 * To bring UFS host controller to operational state, 4613 * 1. Enable required interrupts 4614 * 2. Configure interrupt aggregation 4615 * 3. Program UTRL and UTMRL base address 4616 * 4. Configure run-stop-registers 4617 * 4618 * Return: 0 on success, non-zero value on failure. 4619 */ 4620 int ufshcd_make_hba_operational(struct ufs_hba *hba) 4621 { 4622 int err = 0; 4623 u32 reg; 4624 4625 /* Enable required interrupts */ 4626 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS); 4627 4628 /* Configure interrupt aggregation */ 4629 if (ufshcd_is_intr_aggr_allowed(hba)) 4630 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO); 4631 else 4632 ufshcd_disable_intr_aggr(hba); 4633 4634 /* Configure UTRL and UTMRL base address registers */ 4635 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 4636 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 4637 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 4638 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 4639 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 4640 REG_UTP_TASK_REQ_LIST_BASE_L); 4641 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 4642 REG_UTP_TASK_REQ_LIST_BASE_H); 4643 4644 /* 4645 * Make sure base address and interrupt setup are updated before 4646 * enabling the run/stop registers below. 4647 */ 4648 wmb(); 4649 4650 /* 4651 * UCRDY, UTMRLDY and UTRLRDY bits must be 1 4652 */ 4653 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS); 4654 if (!(ufshcd_get_lists_status(reg))) { 4655 ufshcd_enable_run_stop_reg(hba); 4656 } else { 4657 dev_err(hba->dev, 4658 "Host controller not ready to process requests"); 4659 err = -EIO; 4660 } 4661 4662 return err; 4663 } 4664 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational); 4665 4666 /** 4667 * ufshcd_hba_stop - Send controller to reset state 4668 * @hba: per adapter instance 4669 */ 4670 void ufshcd_hba_stop(struct ufs_hba *hba) 4671 { 4672 unsigned long flags; 4673 int err; 4674 4675 /* 4676 * Obtain the host lock to prevent that the controller is disabled 4677 * while the UFS interrupt handler is active on another CPU. 4678 */ 4679 spin_lock_irqsave(hba->host->host_lock, flags); 4680 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE); 4681 spin_unlock_irqrestore(hba->host->host_lock, flags); 4682 4683 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, 4684 CONTROLLER_ENABLE, CONTROLLER_DISABLE, 4685 10, 1); 4686 if (err) 4687 dev_err(hba->dev, "%s: Controller disable failed\n", __func__); 4688 } 4689 EXPORT_SYMBOL_GPL(ufshcd_hba_stop); 4690 4691 /** 4692 * ufshcd_hba_execute_hce - initialize the controller 4693 * @hba: per adapter instance 4694 * 4695 * The controller resets itself and controller firmware initialization 4696 * sequence kicks off. When controller is ready it will set 4697 * the Host Controller Enable bit to 1. 4698 * 4699 * Return: 0 on success, non-zero value on failure. 4700 */ 4701 static int ufshcd_hba_execute_hce(struct ufs_hba *hba) 4702 { 4703 int retry_outer = 3; 4704 int retry_inner; 4705 4706 start: 4707 if (ufshcd_is_hba_active(hba)) 4708 /* change controller state to "reset state" */ 4709 ufshcd_hba_stop(hba); 4710 4711 /* UniPro link is disabled at this point */ 4712 ufshcd_set_link_off(hba); 4713 4714 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4715 4716 /* start controller initialization sequence */ 4717 ufshcd_hba_start(hba); 4718 4719 /* 4720 * To initialize a UFS host controller HCE bit must be set to 1. 4721 * During initialization the HCE bit value changes from 1->0->1. 4722 * When the host controller completes initialization sequence 4723 * it sets the value of HCE bit to 1. The same HCE bit is read back 4724 * to check if the controller has completed initialization sequence. 4725 * So without this delay the value HCE = 1, set in the previous 4726 * instruction might be read back. 4727 * This delay can be changed based on the controller. 4728 */ 4729 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100); 4730 4731 /* wait for the host controller to complete initialization */ 4732 retry_inner = 50; 4733 while (!ufshcd_is_hba_active(hba)) { 4734 if (retry_inner) { 4735 retry_inner--; 4736 } else { 4737 dev_err(hba->dev, 4738 "Controller enable failed\n"); 4739 if (retry_outer) { 4740 retry_outer--; 4741 goto start; 4742 } 4743 return -EIO; 4744 } 4745 usleep_range(1000, 1100); 4746 } 4747 4748 /* enable UIC related interrupts */ 4749 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4750 4751 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4752 4753 return 0; 4754 } 4755 4756 int ufshcd_hba_enable(struct ufs_hba *hba) 4757 { 4758 int ret; 4759 4760 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) { 4761 ufshcd_set_link_off(hba); 4762 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4763 4764 /* enable UIC related interrupts */ 4765 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4766 ret = ufshcd_dme_reset(hba); 4767 if (ret) { 4768 dev_err(hba->dev, "DME_RESET failed\n"); 4769 return ret; 4770 } 4771 4772 ret = ufshcd_dme_enable(hba); 4773 if (ret) { 4774 dev_err(hba->dev, "Enabling DME failed\n"); 4775 return ret; 4776 } 4777 4778 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4779 } else { 4780 ret = ufshcd_hba_execute_hce(hba); 4781 } 4782 4783 return ret; 4784 } 4785 EXPORT_SYMBOL_GPL(ufshcd_hba_enable); 4786 4787 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer) 4788 { 4789 int tx_lanes = 0, i, err = 0; 4790 4791 if (!peer) 4792 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4793 &tx_lanes); 4794 else 4795 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4796 &tx_lanes); 4797 for (i = 0; i < tx_lanes; i++) { 4798 if (!peer) 4799 err = ufshcd_dme_set(hba, 4800 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4801 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4802 0); 4803 else 4804 err = ufshcd_dme_peer_set(hba, 4805 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4806 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4807 0); 4808 if (err) { 4809 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d", 4810 __func__, peer, i, err); 4811 break; 4812 } 4813 } 4814 4815 return err; 4816 } 4817 4818 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba) 4819 { 4820 return ufshcd_disable_tx_lcc(hba, true); 4821 } 4822 4823 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val) 4824 { 4825 struct ufs_event_hist *e; 4826 4827 if (id >= UFS_EVT_CNT) 4828 return; 4829 4830 e = &hba->ufs_stats.event[id]; 4831 e->val[e->pos] = val; 4832 e->tstamp[e->pos] = local_clock(); 4833 e->cnt += 1; 4834 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH; 4835 4836 ufshcd_vops_event_notify(hba, id, &val); 4837 } 4838 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist); 4839 4840 /** 4841 * ufshcd_link_startup - Initialize unipro link startup 4842 * @hba: per adapter instance 4843 * 4844 * Return: 0 for success, non-zero in case of failure. 4845 */ 4846 static int ufshcd_link_startup(struct ufs_hba *hba) 4847 { 4848 int ret; 4849 int retries = DME_LINKSTARTUP_RETRIES; 4850 bool link_startup_again = false; 4851 4852 /* 4853 * If UFS device isn't active then we will have to issue link startup 4854 * 2 times to make sure the device state move to active. 4855 */ 4856 if (!ufshcd_is_ufs_dev_active(hba)) 4857 link_startup_again = true; 4858 4859 link_startup: 4860 do { 4861 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE); 4862 4863 ret = ufshcd_dme_link_startup(hba); 4864 4865 /* check if device is detected by inter-connect layer */ 4866 if (!ret && !ufshcd_is_device_present(hba)) { 4867 ufshcd_update_evt_hist(hba, 4868 UFS_EVT_LINK_STARTUP_FAIL, 4869 0); 4870 dev_err(hba->dev, "%s: Device not present\n", __func__); 4871 ret = -ENXIO; 4872 goto out; 4873 } 4874 4875 /* 4876 * DME link lost indication is only received when link is up, 4877 * but we can't be sure if the link is up until link startup 4878 * succeeds. So reset the local Uni-Pro and try again. 4879 */ 4880 if (ret && retries && ufshcd_hba_enable(hba)) { 4881 ufshcd_update_evt_hist(hba, 4882 UFS_EVT_LINK_STARTUP_FAIL, 4883 (u32)ret); 4884 goto out; 4885 } 4886 } while (ret && retries--); 4887 4888 if (ret) { 4889 /* failed to get the link up... retire */ 4890 ufshcd_update_evt_hist(hba, 4891 UFS_EVT_LINK_STARTUP_FAIL, 4892 (u32)ret); 4893 goto out; 4894 } 4895 4896 if (link_startup_again) { 4897 link_startup_again = false; 4898 retries = DME_LINKSTARTUP_RETRIES; 4899 goto link_startup; 4900 } 4901 4902 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */ 4903 ufshcd_init_pwr_info(hba); 4904 ufshcd_print_pwr_info(hba); 4905 4906 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) { 4907 ret = ufshcd_disable_device_tx_lcc(hba); 4908 if (ret) 4909 goto out; 4910 } 4911 4912 /* Include any host controller configuration via UIC commands */ 4913 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE); 4914 if (ret) 4915 goto out; 4916 4917 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */ 4918 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 4919 ret = ufshcd_make_hba_operational(hba); 4920 out: 4921 if (ret) { 4922 dev_err(hba->dev, "link startup failed %d\n", ret); 4923 ufshcd_print_host_state(hba); 4924 ufshcd_print_pwr_info(hba); 4925 ufshcd_print_evt_hist(hba); 4926 } 4927 return ret; 4928 } 4929 4930 /** 4931 * ufshcd_verify_dev_init() - Verify device initialization 4932 * @hba: per-adapter instance 4933 * 4934 * Send NOP OUT UPIU and wait for NOP IN response to check whether the 4935 * device Transport Protocol (UTP) layer is ready after a reset. 4936 * If the UTP layer at the device side is not initialized, it may 4937 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT 4938 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations. 4939 * 4940 * Return: 0 upon success; < 0 upon failure. 4941 */ 4942 static int ufshcd_verify_dev_init(struct ufs_hba *hba) 4943 { 4944 int err = 0; 4945 int retries; 4946 4947 ufshcd_hold(hba); 4948 mutex_lock(&hba->dev_cmd.lock); 4949 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) { 4950 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP, 4951 hba->nop_out_timeout); 4952 4953 if (!err || err == -ETIMEDOUT) 4954 break; 4955 4956 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err); 4957 } 4958 mutex_unlock(&hba->dev_cmd.lock); 4959 ufshcd_release(hba); 4960 4961 if (err) 4962 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err); 4963 return err; 4964 } 4965 4966 /** 4967 * ufshcd_setup_links - associate link b/w device wlun and other luns 4968 * @sdev: pointer to SCSI device 4969 * @hba: pointer to ufs hba 4970 */ 4971 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev) 4972 { 4973 struct device_link *link; 4974 4975 /* 4976 * Device wlun is the supplier & rest of the luns are consumers. 4977 * This ensures that device wlun suspends after all other luns. 4978 */ 4979 if (hba->ufs_device_wlun) { 4980 link = device_link_add(&sdev->sdev_gendev, 4981 &hba->ufs_device_wlun->sdev_gendev, 4982 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); 4983 if (!link) { 4984 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n", 4985 dev_name(&hba->ufs_device_wlun->sdev_gendev)); 4986 return; 4987 } 4988 hba->luns_avail--; 4989 /* Ignore REPORT_LUN wlun probing */ 4990 if (hba->luns_avail == 1) { 4991 ufshcd_rpm_put(hba); 4992 return; 4993 } 4994 } else { 4995 /* 4996 * Device wlun is probed. The assumption is that WLUNs are 4997 * scanned before other LUNs. 4998 */ 4999 hba->luns_avail--; 5000 } 5001 } 5002 5003 /** 5004 * ufshcd_lu_init - Initialize the relevant parameters of the LU 5005 * @hba: per-adapter instance 5006 * @sdev: pointer to SCSI device 5007 */ 5008 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev) 5009 { 5010 int len = QUERY_DESC_MAX_SIZE; 5011 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 5012 u8 lun_qdepth = hba->nutrs; 5013 u8 *desc_buf; 5014 int ret; 5015 5016 desc_buf = kzalloc(len, GFP_KERNEL); 5017 if (!desc_buf) 5018 goto set_qdepth; 5019 5020 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len); 5021 if (ret < 0) { 5022 if (ret == -EOPNOTSUPP) 5023 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */ 5024 lun_qdepth = 1; 5025 kfree(desc_buf); 5026 goto set_qdepth; 5027 } 5028 5029 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) { 5030 /* 5031 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will 5032 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth 5033 */ 5034 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs); 5035 } 5036 /* 5037 * According to UFS device specification, the write protection mode is only supported by 5038 * normal LU, not supported by WLUN. 5039 */ 5040 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported && 5041 !hba->dev_info.is_lu_power_on_wp && 5042 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP) 5043 hba->dev_info.is_lu_power_on_wp = true; 5044 5045 /* In case of RPMB LU, check if advanced RPMB mode is enabled */ 5046 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN && 5047 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4)) 5048 hba->dev_info.b_advanced_rpmb_en = true; 5049 5050 5051 kfree(desc_buf); 5052 set_qdepth: 5053 /* 5054 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose 5055 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue. 5056 */ 5057 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth); 5058 scsi_change_queue_depth(sdev, lun_qdepth); 5059 } 5060 5061 /** 5062 * ufshcd_slave_alloc - handle initial SCSI device configurations 5063 * @sdev: pointer to SCSI device 5064 * 5065 * Return: success. 5066 */ 5067 static int ufshcd_slave_alloc(struct scsi_device *sdev) 5068 { 5069 struct ufs_hba *hba; 5070 5071 hba = shost_priv(sdev->host); 5072 5073 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */ 5074 sdev->use_10_for_ms = 1; 5075 5076 /* DBD field should be set to 1 in mode sense(10) */ 5077 sdev->set_dbd_for_ms = 1; 5078 5079 /* allow SCSI layer to restart the device in case of errors */ 5080 sdev->allow_restart = 1; 5081 5082 /* REPORT SUPPORTED OPERATION CODES is not supported */ 5083 sdev->no_report_opcodes = 1; 5084 5085 /* WRITE_SAME command is not supported */ 5086 sdev->no_write_same = 1; 5087 5088 ufshcd_lu_init(hba, sdev); 5089 5090 ufshcd_setup_links(hba, sdev); 5091 5092 return 0; 5093 } 5094 5095 /** 5096 * ufshcd_change_queue_depth - change queue depth 5097 * @sdev: pointer to SCSI device 5098 * @depth: required depth to set 5099 * 5100 * Change queue depth and make sure the max. limits are not crossed. 5101 * 5102 * Return: new queue depth. 5103 */ 5104 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth) 5105 { 5106 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue)); 5107 } 5108 5109 /** 5110 * ufshcd_slave_configure - adjust SCSI device configurations 5111 * @sdev: pointer to SCSI device 5112 * 5113 * Return: 0 (success). 5114 */ 5115 static int ufshcd_slave_configure(struct scsi_device *sdev) 5116 { 5117 struct ufs_hba *hba = shost_priv(sdev->host); 5118 struct request_queue *q = sdev->request_queue; 5119 5120 blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1); 5121 if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT) 5122 blk_queue_update_dma_alignment(q, SZ_4K - 1); 5123 /* 5124 * Block runtime-pm until all consumers are added. 5125 * Refer ufshcd_setup_links(). 5126 */ 5127 if (is_device_wlun(sdev)) 5128 pm_runtime_get_noresume(&sdev->sdev_gendev); 5129 else if (ufshcd_is_rpm_autosuspend_allowed(hba)) 5130 sdev->rpm_autosuspend = 1; 5131 /* 5132 * Do not print messages during runtime PM to avoid never-ending cycles 5133 * of messages written back to storage by user space causing runtime 5134 * resume, causing more messages and so on. 5135 */ 5136 sdev->silence_suspend = 1; 5137 5138 ufshcd_crypto_register(hba, q); 5139 5140 return 0; 5141 } 5142 5143 /** 5144 * ufshcd_slave_destroy - remove SCSI device configurations 5145 * @sdev: pointer to SCSI device 5146 */ 5147 static void ufshcd_slave_destroy(struct scsi_device *sdev) 5148 { 5149 struct ufs_hba *hba; 5150 unsigned long flags; 5151 5152 hba = shost_priv(sdev->host); 5153 5154 /* Drop the reference as it won't be needed anymore */ 5155 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) { 5156 spin_lock_irqsave(hba->host->host_lock, flags); 5157 hba->ufs_device_wlun = NULL; 5158 spin_unlock_irqrestore(hba->host->host_lock, flags); 5159 } else if (hba->ufs_device_wlun) { 5160 struct device *supplier = NULL; 5161 5162 /* Ensure UFS Device WLUN exists and does not disappear */ 5163 spin_lock_irqsave(hba->host->host_lock, flags); 5164 if (hba->ufs_device_wlun) { 5165 supplier = &hba->ufs_device_wlun->sdev_gendev; 5166 get_device(supplier); 5167 } 5168 spin_unlock_irqrestore(hba->host->host_lock, flags); 5169 5170 if (supplier) { 5171 /* 5172 * If a LUN fails to probe (e.g. absent BOOT WLUN), the 5173 * device will not have been registered but can still 5174 * have a device link holding a reference to the device. 5175 */ 5176 device_link_remove(&sdev->sdev_gendev, supplier); 5177 put_device(supplier); 5178 } 5179 } 5180 } 5181 5182 /** 5183 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status 5184 * @lrbp: pointer to local reference block of completed command 5185 * @scsi_status: SCSI command status 5186 * 5187 * Return: value base on SCSI command status. 5188 */ 5189 static inline int 5190 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status) 5191 { 5192 int result = 0; 5193 5194 switch (scsi_status) { 5195 case SAM_STAT_CHECK_CONDITION: 5196 ufshcd_copy_sense_data(lrbp); 5197 fallthrough; 5198 case SAM_STAT_GOOD: 5199 result |= DID_OK << 16 | scsi_status; 5200 break; 5201 case SAM_STAT_TASK_SET_FULL: 5202 case SAM_STAT_BUSY: 5203 case SAM_STAT_TASK_ABORTED: 5204 ufshcd_copy_sense_data(lrbp); 5205 result |= scsi_status; 5206 break; 5207 default: 5208 result |= DID_ERROR << 16; 5209 break; 5210 } /* end of switch */ 5211 5212 return result; 5213 } 5214 5215 /** 5216 * ufshcd_transfer_rsp_status - Get overall status of the response 5217 * @hba: per adapter instance 5218 * @lrbp: pointer to local reference block of completed command 5219 * @cqe: pointer to the completion queue entry 5220 * 5221 * Return: result of the command to notify SCSI midlayer. 5222 */ 5223 static inline int 5224 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 5225 struct cq_entry *cqe) 5226 { 5227 int result = 0; 5228 int scsi_status; 5229 enum utp_ocs ocs; 5230 u8 upiu_flags; 5231 u32 resid; 5232 5233 upiu_flags = lrbp->ucd_rsp_ptr->header.flags; 5234 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count); 5235 /* 5236 * Test !overflow instead of underflow to support UFS devices that do 5237 * not set either flag. 5238 */ 5239 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW)) 5240 scsi_set_resid(lrbp->cmd, resid); 5241 5242 /* overall command status of utrd */ 5243 ocs = ufshcd_get_tr_ocs(lrbp, cqe); 5244 5245 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) { 5246 if (lrbp->ucd_rsp_ptr->header.response || 5247 lrbp->ucd_rsp_ptr->header.status) 5248 ocs = OCS_SUCCESS; 5249 } 5250 5251 switch (ocs) { 5252 case OCS_SUCCESS: 5253 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 5254 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) { 5255 case UPIU_TRANSACTION_RESPONSE: 5256 /* 5257 * get the result based on SCSI status response 5258 * to notify the SCSI midlayer of the command status 5259 */ 5260 scsi_status = lrbp->ucd_rsp_ptr->header.status; 5261 result = ufshcd_scsi_cmd_status(lrbp, scsi_status); 5262 5263 /* 5264 * Currently we are only supporting BKOPs exception 5265 * events hence we can ignore BKOPs exception event 5266 * during power management callbacks. BKOPs exception 5267 * event is not expected to be raised in runtime suspend 5268 * callback as it allows the urgent bkops. 5269 * During system suspend, we are anyway forcefully 5270 * disabling the bkops and if urgent bkops is needed 5271 * it will be enabled on system resume. Long term 5272 * solution could be to abort the system suspend if 5273 * UFS device needs urgent BKOPs. 5274 */ 5275 if (!hba->pm_op_in_progress && 5276 !ufshcd_eh_in_progress(hba) && 5277 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr)) 5278 /* Flushed in suspend */ 5279 schedule_work(&hba->eeh_work); 5280 break; 5281 case UPIU_TRANSACTION_REJECT_UPIU: 5282 /* TODO: handle Reject UPIU Response */ 5283 result = DID_ERROR << 16; 5284 dev_err(hba->dev, 5285 "Reject UPIU not fully implemented\n"); 5286 break; 5287 default: 5288 dev_err(hba->dev, 5289 "Unexpected request response code = %x\n", 5290 result); 5291 result = DID_ERROR << 16; 5292 break; 5293 } 5294 break; 5295 case OCS_ABORTED: 5296 result |= DID_ABORT << 16; 5297 break; 5298 case OCS_INVALID_COMMAND_STATUS: 5299 result |= DID_REQUEUE << 16; 5300 break; 5301 case OCS_INVALID_CMD_TABLE_ATTR: 5302 case OCS_INVALID_PRDT_ATTR: 5303 case OCS_MISMATCH_DATA_BUF_SIZE: 5304 case OCS_MISMATCH_RESP_UPIU_SIZE: 5305 case OCS_PEER_COMM_FAILURE: 5306 case OCS_FATAL_ERROR: 5307 case OCS_DEVICE_FATAL_ERROR: 5308 case OCS_INVALID_CRYPTO_CONFIG: 5309 case OCS_GENERAL_CRYPTO_ERROR: 5310 default: 5311 result |= DID_ERROR << 16; 5312 dev_err(hba->dev, 5313 "OCS error from controller = %x for tag %d\n", 5314 ocs, lrbp->task_tag); 5315 ufshcd_print_evt_hist(hba); 5316 ufshcd_print_host_state(hba); 5317 break; 5318 } /* end of switch */ 5319 5320 if ((host_byte(result) != DID_OK) && 5321 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) 5322 ufshcd_print_tr(hba, lrbp->task_tag, true); 5323 return result; 5324 } 5325 5326 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba, 5327 u32 intr_mask) 5328 { 5329 if (!ufshcd_is_auto_hibern8_supported(hba) || 5330 !ufshcd_is_auto_hibern8_enabled(hba)) 5331 return false; 5332 5333 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK)) 5334 return false; 5335 5336 if (hba->active_uic_cmd && 5337 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER || 5338 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT)) 5339 return false; 5340 5341 return true; 5342 } 5343 5344 /** 5345 * ufshcd_uic_cmd_compl - handle completion of uic command 5346 * @hba: per adapter instance 5347 * @intr_status: interrupt status generated by the controller 5348 * 5349 * Return: 5350 * IRQ_HANDLED - If interrupt is valid 5351 * IRQ_NONE - If invalid interrupt 5352 */ 5353 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status) 5354 { 5355 irqreturn_t retval = IRQ_NONE; 5356 5357 spin_lock(hba->host->host_lock); 5358 if (ufshcd_is_auto_hibern8_error(hba, intr_status)) 5359 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status); 5360 5361 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) { 5362 hba->active_uic_cmd->argument2 |= 5363 ufshcd_get_uic_cmd_result(hba); 5364 hba->active_uic_cmd->argument3 = 5365 ufshcd_get_dme_attr_val(hba); 5366 if (!hba->uic_async_done) 5367 hba->active_uic_cmd->cmd_active = 0; 5368 complete(&hba->active_uic_cmd->done); 5369 retval = IRQ_HANDLED; 5370 } 5371 5372 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) { 5373 hba->active_uic_cmd->cmd_active = 0; 5374 complete(hba->uic_async_done); 5375 retval = IRQ_HANDLED; 5376 } 5377 5378 if (retval == IRQ_HANDLED) 5379 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd, 5380 UFS_CMD_COMP); 5381 spin_unlock(hba->host->host_lock); 5382 return retval; 5383 } 5384 5385 /* Release the resources allocated for processing a SCSI command. */ 5386 void ufshcd_release_scsi_cmd(struct ufs_hba *hba, 5387 struct ufshcd_lrb *lrbp) 5388 { 5389 struct scsi_cmnd *cmd = lrbp->cmd; 5390 5391 scsi_dma_unmap(cmd); 5392 ufshcd_release(hba); 5393 ufshcd_clk_scaling_update_busy(hba); 5394 } 5395 5396 /** 5397 * ufshcd_compl_one_cqe - handle a completion queue entry 5398 * @hba: per adapter instance 5399 * @task_tag: the task tag of the request to be completed 5400 * @cqe: pointer to the completion queue entry 5401 */ 5402 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag, 5403 struct cq_entry *cqe) 5404 { 5405 struct ufshcd_lrb *lrbp; 5406 struct scsi_cmnd *cmd; 5407 enum utp_ocs ocs; 5408 5409 lrbp = &hba->lrb[task_tag]; 5410 lrbp->compl_time_stamp = ktime_get(); 5411 cmd = lrbp->cmd; 5412 if (cmd) { 5413 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 5414 ufshcd_update_monitor(hba, lrbp); 5415 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP); 5416 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe); 5417 ufshcd_release_scsi_cmd(hba, lrbp); 5418 /* Do not touch lrbp after scsi done */ 5419 scsi_done(cmd); 5420 } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE || 5421 lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) { 5422 if (hba->dev_cmd.complete) { 5423 if (cqe) { 5424 ocs = le32_to_cpu(cqe->status) & MASK_OCS; 5425 lrbp->utr_descriptor_ptr->header.ocs = ocs; 5426 } 5427 complete(hba->dev_cmd.complete); 5428 ufshcd_clk_scaling_update_busy(hba); 5429 } 5430 } 5431 } 5432 5433 /** 5434 * __ufshcd_transfer_req_compl - handle SCSI and query command completion 5435 * @hba: per adapter instance 5436 * @completed_reqs: bitmask that indicates which requests to complete 5437 */ 5438 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba, 5439 unsigned long completed_reqs) 5440 { 5441 int tag; 5442 5443 for_each_set_bit(tag, &completed_reqs, hba->nutrs) 5444 ufshcd_compl_one_cqe(hba, tag, NULL); 5445 } 5446 5447 /* Any value that is not an existing queue number is fine for this constant. */ 5448 enum { 5449 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1 5450 }; 5451 5452 static void ufshcd_clear_polled(struct ufs_hba *hba, 5453 unsigned long *completed_reqs) 5454 { 5455 int tag; 5456 5457 for_each_set_bit(tag, completed_reqs, hba->nutrs) { 5458 struct scsi_cmnd *cmd = hba->lrb[tag].cmd; 5459 5460 if (!cmd) 5461 continue; 5462 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED) 5463 __clear_bit(tag, completed_reqs); 5464 } 5465 } 5466 5467 /* 5468 * Return: > 0 if one or more commands have been completed or 0 if no 5469 * requests have been completed. 5470 */ 5471 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num) 5472 { 5473 struct ufs_hba *hba = shost_priv(shost); 5474 unsigned long completed_reqs, flags; 5475 u32 tr_doorbell; 5476 struct ufs_hw_queue *hwq; 5477 5478 if (is_mcq_enabled(hba)) { 5479 hwq = &hba->uhq[queue_num]; 5480 5481 return ufshcd_mcq_poll_cqe_lock(hba, hwq); 5482 } 5483 5484 spin_lock_irqsave(&hba->outstanding_lock, flags); 5485 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 5486 completed_reqs = ~tr_doorbell & hba->outstanding_reqs; 5487 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs, 5488 "completed: %#lx; outstanding: %#lx\n", completed_reqs, 5489 hba->outstanding_reqs); 5490 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) { 5491 /* Do not complete polled requests from interrupt context. */ 5492 ufshcd_clear_polled(hba, &completed_reqs); 5493 } 5494 hba->outstanding_reqs &= ~completed_reqs; 5495 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 5496 5497 if (completed_reqs) 5498 __ufshcd_transfer_req_compl(hba, completed_reqs); 5499 5500 return completed_reqs != 0; 5501 } 5502 5503 /** 5504 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is 5505 * invoked from the error handler context or ufshcd_host_reset_and_restore() 5506 * to complete the pending transfers and free the resources associated with 5507 * the scsi command. 5508 * 5509 * @hba: per adapter instance 5510 * @force_compl: This flag is set to true when invoked 5511 * from ufshcd_host_reset_and_restore() in which case it requires special 5512 * handling because the host controller has been reset by ufshcd_hba_stop(). 5513 */ 5514 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba, 5515 bool force_compl) 5516 { 5517 struct ufs_hw_queue *hwq; 5518 struct ufshcd_lrb *lrbp; 5519 struct scsi_cmnd *cmd; 5520 unsigned long flags; 5521 u32 hwq_num, utag; 5522 int tag; 5523 5524 for (tag = 0; tag < hba->nutrs; tag++) { 5525 lrbp = &hba->lrb[tag]; 5526 cmd = lrbp->cmd; 5527 if (!ufshcd_cmd_inflight(cmd) || 5528 test_bit(SCMD_STATE_COMPLETE, &cmd->state)) 5529 continue; 5530 5531 utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd)); 5532 hwq_num = blk_mq_unique_tag_to_hwq(utag); 5533 hwq = &hba->uhq[hwq_num]; 5534 5535 if (force_compl) { 5536 ufshcd_mcq_compl_all_cqes_lock(hba, hwq); 5537 /* 5538 * For those cmds of which the cqes are not present 5539 * in the cq, complete them explicitly. 5540 */ 5541 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) { 5542 spin_lock_irqsave(&hwq->cq_lock, flags); 5543 set_host_byte(cmd, DID_REQUEUE); 5544 ufshcd_release_scsi_cmd(hba, lrbp); 5545 scsi_done(cmd); 5546 spin_unlock_irqrestore(&hwq->cq_lock, flags); 5547 } 5548 } else { 5549 ufshcd_mcq_poll_cqe_lock(hba, hwq); 5550 } 5551 } 5552 } 5553 5554 /** 5555 * ufshcd_transfer_req_compl - handle SCSI and query command completion 5556 * @hba: per adapter instance 5557 * 5558 * Return: 5559 * IRQ_HANDLED - If interrupt is valid 5560 * IRQ_NONE - If invalid interrupt 5561 */ 5562 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba) 5563 { 5564 /* Resetting interrupt aggregation counters first and reading the 5565 * DOOR_BELL afterward allows us to handle all the completed requests. 5566 * In order to prevent other interrupts starvation the DB is read once 5567 * after reset. The down side of this solution is the possibility of 5568 * false interrupt if device completes another request after resetting 5569 * aggregation and before reading the DB. 5570 */ 5571 if (ufshcd_is_intr_aggr_allowed(hba) && 5572 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR)) 5573 ufshcd_reset_intr_aggr(hba); 5574 5575 if (ufs_fail_completion()) 5576 return IRQ_HANDLED; 5577 5578 /* 5579 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we 5580 * do not want polling to trigger spurious interrupt complaints. 5581 */ 5582 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT); 5583 5584 return IRQ_HANDLED; 5585 } 5586 5587 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask) 5588 { 5589 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 5590 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, 5591 &ee_ctrl_mask); 5592 } 5593 5594 int ufshcd_write_ee_control(struct ufs_hba *hba) 5595 { 5596 int err; 5597 5598 mutex_lock(&hba->ee_ctrl_mutex); 5599 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask); 5600 mutex_unlock(&hba->ee_ctrl_mutex); 5601 if (err) 5602 dev_err(hba->dev, "%s: failed to write ee control %d\n", 5603 __func__, err); 5604 return err; 5605 } 5606 5607 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, 5608 const u16 *other_mask, u16 set, u16 clr) 5609 { 5610 u16 new_mask, ee_ctrl_mask; 5611 int err = 0; 5612 5613 mutex_lock(&hba->ee_ctrl_mutex); 5614 new_mask = (*mask & ~clr) | set; 5615 ee_ctrl_mask = new_mask | *other_mask; 5616 if (ee_ctrl_mask != hba->ee_ctrl_mask) 5617 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask); 5618 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */ 5619 if (!err) { 5620 hba->ee_ctrl_mask = ee_ctrl_mask; 5621 *mask = new_mask; 5622 } 5623 mutex_unlock(&hba->ee_ctrl_mutex); 5624 return err; 5625 } 5626 5627 /** 5628 * ufshcd_disable_ee - disable exception event 5629 * @hba: per-adapter instance 5630 * @mask: exception event to disable 5631 * 5632 * Disables exception event in the device so that the EVENT_ALERT 5633 * bit is not set. 5634 * 5635 * Return: zero on success, non-zero error value on failure. 5636 */ 5637 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask) 5638 { 5639 return ufshcd_update_ee_drv_mask(hba, 0, mask); 5640 } 5641 5642 /** 5643 * ufshcd_enable_ee - enable exception event 5644 * @hba: per-adapter instance 5645 * @mask: exception event to enable 5646 * 5647 * Enable corresponding exception event in the device to allow 5648 * device to alert host in critical scenarios. 5649 * 5650 * Return: zero on success, non-zero error value on failure. 5651 */ 5652 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask) 5653 { 5654 return ufshcd_update_ee_drv_mask(hba, mask, 0); 5655 } 5656 5657 /** 5658 * ufshcd_enable_auto_bkops - Allow device managed BKOPS 5659 * @hba: per-adapter instance 5660 * 5661 * Allow device to manage background operations on its own. Enabling 5662 * this might lead to inconsistent latencies during normal data transfers 5663 * as the device is allowed to manage its own way of handling background 5664 * operations. 5665 * 5666 * Return: zero on success, non-zero on failure. 5667 */ 5668 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba) 5669 { 5670 int err = 0; 5671 5672 if (hba->auto_bkops_enabled) 5673 goto out; 5674 5675 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 5676 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5677 if (err) { 5678 dev_err(hba->dev, "%s: failed to enable bkops %d\n", 5679 __func__, err); 5680 goto out; 5681 } 5682 5683 hba->auto_bkops_enabled = true; 5684 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled"); 5685 5686 /* No need of URGENT_BKOPS exception from the device */ 5687 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5688 if (err) 5689 dev_err(hba->dev, "%s: failed to disable exception event %d\n", 5690 __func__, err); 5691 out: 5692 return err; 5693 } 5694 5695 /** 5696 * ufshcd_disable_auto_bkops - block device in doing background operations 5697 * @hba: per-adapter instance 5698 * 5699 * Disabling background operations improves command response latency but 5700 * has drawback of device moving into critical state where the device is 5701 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the 5702 * host is idle so that BKOPS are managed effectively without any negative 5703 * impacts. 5704 * 5705 * Return: zero on success, non-zero on failure. 5706 */ 5707 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba) 5708 { 5709 int err = 0; 5710 5711 if (!hba->auto_bkops_enabled) 5712 goto out; 5713 5714 /* 5715 * If host assisted BKOPs is to be enabled, make sure 5716 * urgent bkops exception is allowed. 5717 */ 5718 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS); 5719 if (err) { 5720 dev_err(hba->dev, "%s: failed to enable exception event %d\n", 5721 __func__, err); 5722 goto out; 5723 } 5724 5725 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG, 5726 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5727 if (err) { 5728 dev_err(hba->dev, "%s: failed to disable bkops %d\n", 5729 __func__, err); 5730 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5731 goto out; 5732 } 5733 5734 hba->auto_bkops_enabled = false; 5735 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled"); 5736 hba->is_urgent_bkops_lvl_checked = false; 5737 out: 5738 return err; 5739 } 5740 5741 /** 5742 * ufshcd_force_reset_auto_bkops - force reset auto bkops state 5743 * @hba: per adapter instance 5744 * 5745 * After a device reset the device may toggle the BKOPS_EN flag 5746 * to default value. The s/w tracking variables should be updated 5747 * as well. This function would change the auto-bkops state based on 5748 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND. 5749 */ 5750 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba) 5751 { 5752 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) { 5753 hba->auto_bkops_enabled = false; 5754 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS; 5755 ufshcd_enable_auto_bkops(hba); 5756 } else { 5757 hba->auto_bkops_enabled = true; 5758 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS; 5759 ufshcd_disable_auto_bkops(hba); 5760 } 5761 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT; 5762 hba->is_urgent_bkops_lvl_checked = false; 5763 } 5764 5765 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status) 5766 { 5767 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5768 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status); 5769 } 5770 5771 /** 5772 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status 5773 * @hba: per-adapter instance 5774 * @status: bkops_status value 5775 * 5776 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn 5777 * flag in the device to permit background operations if the device 5778 * bkops_status is greater than or equal to "status" argument passed to 5779 * this function, disable otherwise. 5780 * 5781 * Return: 0 for success, non-zero in case of failure. 5782 * 5783 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag 5784 * to know whether auto bkops is enabled or disabled after this function 5785 * returns control to it. 5786 */ 5787 static int ufshcd_bkops_ctrl(struct ufs_hba *hba, 5788 enum bkops_status status) 5789 { 5790 int err; 5791 u32 curr_status = 0; 5792 5793 err = ufshcd_get_bkops_status(hba, &curr_status); 5794 if (err) { 5795 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5796 __func__, err); 5797 goto out; 5798 } else if (curr_status > BKOPS_STATUS_MAX) { 5799 dev_err(hba->dev, "%s: invalid BKOPS status %d\n", 5800 __func__, curr_status); 5801 err = -EINVAL; 5802 goto out; 5803 } 5804 5805 if (curr_status >= status) 5806 err = ufshcd_enable_auto_bkops(hba); 5807 else 5808 err = ufshcd_disable_auto_bkops(hba); 5809 out: 5810 return err; 5811 } 5812 5813 /** 5814 * ufshcd_urgent_bkops - handle urgent bkops exception event 5815 * @hba: per-adapter instance 5816 * 5817 * Enable fBackgroundOpsEn flag in the device to permit background 5818 * operations. 5819 * 5820 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled 5821 * and negative error value for any other failure. 5822 * 5823 * Return: 0 upon success; < 0 upon failure. 5824 */ 5825 static int ufshcd_urgent_bkops(struct ufs_hba *hba) 5826 { 5827 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl); 5828 } 5829 5830 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status) 5831 { 5832 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5833 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status); 5834 } 5835 5836 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba) 5837 { 5838 int err; 5839 u32 curr_status = 0; 5840 5841 if (hba->is_urgent_bkops_lvl_checked) 5842 goto enable_auto_bkops; 5843 5844 err = ufshcd_get_bkops_status(hba, &curr_status); 5845 if (err) { 5846 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5847 __func__, err); 5848 goto out; 5849 } 5850 5851 /* 5852 * We are seeing that some devices are raising the urgent bkops 5853 * exception events even when BKOPS status doesn't indicate performace 5854 * impacted or critical. Handle these device by determining their urgent 5855 * bkops status at runtime. 5856 */ 5857 if (curr_status < BKOPS_STATUS_PERF_IMPACT) { 5858 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n", 5859 __func__, curr_status); 5860 /* update the current status as the urgent bkops level */ 5861 hba->urgent_bkops_lvl = curr_status; 5862 hba->is_urgent_bkops_lvl_checked = true; 5863 } 5864 5865 enable_auto_bkops: 5866 err = ufshcd_enable_auto_bkops(hba); 5867 out: 5868 if (err < 0) 5869 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n", 5870 __func__, err); 5871 } 5872 5873 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status) 5874 { 5875 u32 value; 5876 5877 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5878 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value)) 5879 return; 5880 5881 dev_info(hba->dev, "exception Tcase %d\n", value - 80); 5882 5883 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP); 5884 5885 /* 5886 * A placeholder for the platform vendors to add whatever additional 5887 * steps required 5888 */ 5889 } 5890 5891 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn) 5892 { 5893 u8 index; 5894 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG : 5895 UPIU_QUERY_OPCODE_CLEAR_FLAG; 5896 5897 index = ufshcd_wb_get_query_index(hba); 5898 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL); 5899 } 5900 5901 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable) 5902 { 5903 int ret; 5904 5905 if (!ufshcd_is_wb_allowed(hba) || 5906 hba->dev_info.wb_enabled == enable) 5907 return 0; 5908 5909 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN); 5910 if (ret) { 5911 dev_err(hba->dev, "%s: Write Booster %s failed %d\n", 5912 __func__, enable ? "enabling" : "disabling", ret); 5913 return ret; 5914 } 5915 5916 hba->dev_info.wb_enabled = enable; 5917 dev_dbg(hba->dev, "%s: Write Booster %s\n", 5918 __func__, enable ? "enabled" : "disabled"); 5919 5920 return ret; 5921 } 5922 5923 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 5924 bool enable) 5925 { 5926 int ret; 5927 5928 ret = __ufshcd_wb_toggle(hba, enable, 5929 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8); 5930 if (ret) { 5931 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n", 5932 __func__, enable ? "enabling" : "disabling", ret); 5933 return; 5934 } 5935 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n", 5936 __func__, enable ? "enabled" : "disabled"); 5937 } 5938 5939 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable) 5940 { 5941 int ret; 5942 5943 if (!ufshcd_is_wb_allowed(hba) || 5944 hba->dev_info.wb_buf_flush_enabled == enable) 5945 return 0; 5946 5947 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN); 5948 if (ret) { 5949 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n", 5950 __func__, enable ? "enabling" : "disabling", ret); 5951 return ret; 5952 } 5953 5954 hba->dev_info.wb_buf_flush_enabled = enable; 5955 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n", 5956 __func__, enable ? "enabled" : "disabled"); 5957 5958 return ret; 5959 } 5960 5961 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba, 5962 u32 avail_buf) 5963 { 5964 u32 cur_buf; 5965 int ret; 5966 u8 index; 5967 5968 index = ufshcd_wb_get_query_index(hba); 5969 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5970 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE, 5971 index, 0, &cur_buf); 5972 if (ret) { 5973 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n", 5974 __func__, ret); 5975 return false; 5976 } 5977 5978 if (!cur_buf) { 5979 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n", 5980 cur_buf); 5981 return false; 5982 } 5983 /* Let it continue to flush when available buffer exceeds threshold */ 5984 return avail_buf < hba->vps->wb_flush_threshold; 5985 } 5986 5987 static void ufshcd_wb_force_disable(struct ufs_hba *hba) 5988 { 5989 if (ufshcd_is_wb_buf_flush_allowed(hba)) 5990 ufshcd_wb_toggle_buf_flush(hba, false); 5991 5992 ufshcd_wb_toggle_buf_flush_during_h8(hba, false); 5993 ufshcd_wb_toggle(hba, false); 5994 hba->caps &= ~UFSHCD_CAP_WB_EN; 5995 5996 dev_info(hba->dev, "%s: WB force disabled\n", __func__); 5997 } 5998 5999 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba) 6000 { 6001 u32 lifetime; 6002 int ret; 6003 u8 index; 6004 6005 index = ufshcd_wb_get_query_index(hba); 6006 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6007 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST, 6008 index, 0, &lifetime); 6009 if (ret) { 6010 dev_err(hba->dev, 6011 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n", 6012 __func__, ret); 6013 return false; 6014 } 6015 6016 if (lifetime == UFS_WB_EXCEED_LIFETIME) { 6017 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n", 6018 __func__, lifetime); 6019 return false; 6020 } 6021 6022 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n", 6023 __func__, lifetime); 6024 6025 return true; 6026 } 6027 6028 static bool ufshcd_wb_need_flush(struct ufs_hba *hba) 6029 { 6030 int ret; 6031 u32 avail_buf; 6032 u8 index; 6033 6034 if (!ufshcd_is_wb_allowed(hba)) 6035 return false; 6036 6037 if (!ufshcd_is_wb_buf_lifetime_available(hba)) { 6038 ufshcd_wb_force_disable(hba); 6039 return false; 6040 } 6041 6042 /* 6043 * The ufs device needs the vcc to be ON to flush. 6044 * With user-space reduction enabled, it's enough to enable flush 6045 * by checking only the available buffer. The threshold 6046 * defined here is > 90% full. 6047 * With user-space preserved enabled, the current-buffer 6048 * should be checked too because the wb buffer size can reduce 6049 * when disk tends to be full. This info is provided by current 6050 * buffer (dCurrentWriteBoosterBufferSize). There's no point in 6051 * keeping vcc on when current buffer is empty. 6052 */ 6053 index = ufshcd_wb_get_query_index(hba); 6054 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6055 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE, 6056 index, 0, &avail_buf); 6057 if (ret) { 6058 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n", 6059 __func__, ret); 6060 return false; 6061 } 6062 6063 if (!hba->dev_info.b_presrv_uspc_en) 6064 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10); 6065 6066 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf); 6067 } 6068 6069 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work) 6070 { 6071 struct ufs_hba *hba = container_of(to_delayed_work(work), 6072 struct ufs_hba, 6073 rpm_dev_flush_recheck_work); 6074 /* 6075 * To prevent unnecessary VCC power drain after device finishes 6076 * WriteBooster buffer flush or Auto BKOPs, force runtime resume 6077 * after a certain delay to recheck the threshold by next runtime 6078 * suspend. 6079 */ 6080 ufshcd_rpm_get_sync(hba); 6081 ufshcd_rpm_put_sync(hba); 6082 } 6083 6084 /** 6085 * ufshcd_exception_event_handler - handle exceptions raised by device 6086 * @work: pointer to work data 6087 * 6088 * Read bExceptionEventStatus attribute from the device and handle the 6089 * exception event accordingly. 6090 */ 6091 static void ufshcd_exception_event_handler(struct work_struct *work) 6092 { 6093 struct ufs_hba *hba; 6094 int err; 6095 u32 status = 0; 6096 hba = container_of(work, struct ufs_hba, eeh_work); 6097 6098 ufshcd_scsi_block_requests(hba); 6099 err = ufshcd_get_ee_status(hba, &status); 6100 if (err) { 6101 dev_err(hba->dev, "%s: failed to get exception status %d\n", 6102 __func__, err); 6103 goto out; 6104 } 6105 6106 trace_ufshcd_exception_event(dev_name(hba->dev), status); 6107 6108 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS) 6109 ufshcd_bkops_exception_event_handler(hba); 6110 6111 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP) 6112 ufshcd_temp_exception_event_handler(hba, status); 6113 6114 ufs_debugfs_exception_event(hba, status); 6115 out: 6116 ufshcd_scsi_unblock_requests(hba); 6117 } 6118 6119 /* Complete requests that have door-bell cleared */ 6120 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl) 6121 { 6122 if (is_mcq_enabled(hba)) 6123 ufshcd_mcq_compl_pending_transfer(hba, force_compl); 6124 else 6125 ufshcd_transfer_req_compl(hba); 6126 6127 ufshcd_tmc_handler(hba); 6128 } 6129 6130 /** 6131 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is 6132 * to recover from the DL NAC errors or not. 6133 * @hba: per-adapter instance 6134 * 6135 * Return: true if error handling is required, false otherwise. 6136 */ 6137 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba) 6138 { 6139 unsigned long flags; 6140 bool err_handling = true; 6141 6142 spin_lock_irqsave(hba->host->host_lock, flags); 6143 /* 6144 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the 6145 * device fatal error and/or DL NAC & REPLAY timeout errors. 6146 */ 6147 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR)) 6148 goto out; 6149 6150 if ((hba->saved_err & DEVICE_FATAL_ERROR) || 6151 ((hba->saved_err & UIC_ERROR) && 6152 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR))) 6153 goto out; 6154 6155 if ((hba->saved_err & UIC_ERROR) && 6156 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) { 6157 int err; 6158 /* 6159 * wait for 50ms to see if we can get any other errors or not. 6160 */ 6161 spin_unlock_irqrestore(hba->host->host_lock, flags); 6162 msleep(50); 6163 spin_lock_irqsave(hba->host->host_lock, flags); 6164 6165 /* 6166 * now check if we have got any other severe errors other than 6167 * DL NAC error? 6168 */ 6169 if ((hba->saved_err & INT_FATAL_ERRORS) || 6170 ((hba->saved_err & UIC_ERROR) && 6171 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))) 6172 goto out; 6173 6174 /* 6175 * As DL NAC is the only error received so far, send out NOP 6176 * command to confirm if link is still active or not. 6177 * - If we don't get any response then do error recovery. 6178 * - If we get response then clear the DL NAC error bit. 6179 */ 6180 6181 spin_unlock_irqrestore(hba->host->host_lock, flags); 6182 err = ufshcd_verify_dev_init(hba); 6183 spin_lock_irqsave(hba->host->host_lock, flags); 6184 6185 if (err) 6186 goto out; 6187 6188 /* Link seems to be alive hence ignore the DL NAC errors */ 6189 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR) 6190 hba->saved_err &= ~UIC_ERROR; 6191 /* clear NAC error */ 6192 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6193 if (!hba->saved_uic_err) 6194 err_handling = false; 6195 } 6196 out: 6197 spin_unlock_irqrestore(hba->host->host_lock, flags); 6198 return err_handling; 6199 } 6200 6201 /* host lock must be held before calling this func */ 6202 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba) 6203 { 6204 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) || 6205 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)); 6206 } 6207 6208 void ufshcd_schedule_eh_work(struct ufs_hba *hba) 6209 { 6210 lockdep_assert_held(hba->host->host_lock); 6211 6212 /* handle fatal errors only when link is not in error state */ 6213 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6214 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6215 ufshcd_is_saved_err_fatal(hba)) 6216 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL; 6217 else 6218 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL; 6219 queue_work(hba->eh_wq, &hba->eh_work); 6220 } 6221 } 6222 6223 static void ufshcd_force_error_recovery(struct ufs_hba *hba) 6224 { 6225 spin_lock_irq(hba->host->host_lock); 6226 hba->force_reset = true; 6227 ufshcd_schedule_eh_work(hba); 6228 spin_unlock_irq(hba->host->host_lock); 6229 } 6230 6231 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow) 6232 { 6233 mutex_lock(&hba->wb_mutex); 6234 down_write(&hba->clk_scaling_lock); 6235 hba->clk_scaling.is_allowed = allow; 6236 up_write(&hba->clk_scaling_lock); 6237 mutex_unlock(&hba->wb_mutex); 6238 } 6239 6240 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend) 6241 { 6242 if (suspend) { 6243 if (hba->clk_scaling.is_enabled) 6244 ufshcd_suspend_clkscaling(hba); 6245 ufshcd_clk_scaling_allow(hba, false); 6246 } else { 6247 ufshcd_clk_scaling_allow(hba, true); 6248 if (hba->clk_scaling.is_enabled) 6249 ufshcd_resume_clkscaling(hba); 6250 } 6251 } 6252 6253 static void ufshcd_err_handling_prepare(struct ufs_hba *hba) 6254 { 6255 ufshcd_rpm_get_sync(hba); 6256 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) || 6257 hba->is_sys_suspended) { 6258 enum ufs_pm_op pm_op; 6259 6260 /* 6261 * Don't assume anything of resume, if 6262 * resume fails, irq and clocks can be OFF, and powers 6263 * can be OFF or in LPM. 6264 */ 6265 ufshcd_setup_hba_vreg(hba, true); 6266 ufshcd_enable_irq(hba); 6267 ufshcd_setup_vreg(hba, true); 6268 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 6269 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 6270 ufshcd_hold(hba); 6271 if (!ufshcd_is_clkgating_allowed(hba)) 6272 ufshcd_setup_clocks(hba, true); 6273 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM; 6274 ufshcd_vops_resume(hba, pm_op); 6275 } else { 6276 ufshcd_hold(hba); 6277 if (ufshcd_is_clkscaling_supported(hba) && 6278 hba->clk_scaling.is_enabled) 6279 ufshcd_suspend_clkscaling(hba); 6280 ufshcd_clk_scaling_allow(hba, false); 6281 } 6282 ufshcd_scsi_block_requests(hba); 6283 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */ 6284 blk_mq_wait_quiesce_done(&hba->host->tag_set); 6285 cancel_work_sync(&hba->eeh_work); 6286 } 6287 6288 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba) 6289 { 6290 ufshcd_scsi_unblock_requests(hba); 6291 ufshcd_release(hba); 6292 if (ufshcd_is_clkscaling_supported(hba)) 6293 ufshcd_clk_scaling_suspend(hba, false); 6294 ufshcd_rpm_put(hba); 6295 } 6296 6297 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba) 6298 { 6299 return (!hba->is_powered || hba->shutting_down || 6300 !hba->ufs_device_wlun || 6301 hba->ufshcd_state == UFSHCD_STATE_ERROR || 6302 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset || 6303 ufshcd_is_link_broken(hba)))); 6304 } 6305 6306 #ifdef CONFIG_PM 6307 static void ufshcd_recover_pm_error(struct ufs_hba *hba) 6308 { 6309 struct Scsi_Host *shost = hba->host; 6310 struct scsi_device *sdev; 6311 struct request_queue *q; 6312 int ret; 6313 6314 hba->is_sys_suspended = false; 6315 /* 6316 * Set RPM status of wlun device to RPM_ACTIVE, 6317 * this also clears its runtime error. 6318 */ 6319 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev); 6320 6321 /* hba device might have a runtime error otherwise */ 6322 if (ret) 6323 ret = pm_runtime_set_active(hba->dev); 6324 /* 6325 * If wlun device had runtime error, we also need to resume those 6326 * consumer scsi devices in case any of them has failed to be 6327 * resumed due to supplier runtime resume failure. This is to unblock 6328 * blk_queue_enter in case there are bios waiting inside it. 6329 */ 6330 if (!ret) { 6331 shost_for_each_device(sdev, shost) { 6332 q = sdev->request_queue; 6333 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 6334 q->rpm_status == RPM_SUSPENDING)) 6335 pm_request_resume(q->dev); 6336 } 6337 } 6338 } 6339 #else 6340 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba) 6341 { 6342 } 6343 #endif 6344 6345 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba) 6346 { 6347 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info; 6348 u32 mode; 6349 6350 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode); 6351 6352 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK)) 6353 return true; 6354 6355 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK)) 6356 return true; 6357 6358 return false; 6359 } 6360 6361 static bool ufshcd_abort_one(struct request *rq, void *priv) 6362 { 6363 int *ret = priv; 6364 u32 tag = rq->tag; 6365 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 6366 struct scsi_device *sdev = cmd->device; 6367 struct Scsi_Host *shost = sdev->host; 6368 struct ufs_hba *hba = shost_priv(shost); 6369 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 6370 struct ufs_hw_queue *hwq; 6371 unsigned long flags; 6372 6373 *ret = ufshcd_try_to_abort_task(hba, tag); 6374 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag, 6375 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1, 6376 *ret ? "failed" : "succeeded"); 6377 6378 /* Release cmd in MCQ mode if abort succeeds */ 6379 if (is_mcq_enabled(hba) && (*ret == 0)) { 6380 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); 6381 if (!hwq) 6382 return 0; 6383 spin_lock_irqsave(&hwq->cq_lock, flags); 6384 if (ufshcd_cmd_inflight(lrbp->cmd)) 6385 ufshcd_release_scsi_cmd(hba, lrbp); 6386 spin_unlock_irqrestore(&hwq->cq_lock, flags); 6387 } 6388 6389 return *ret == 0; 6390 } 6391 6392 /** 6393 * ufshcd_abort_all - Abort all pending commands. 6394 * @hba: Host bus adapter pointer. 6395 * 6396 * Return: true if and only if the host controller needs to be reset. 6397 */ 6398 static bool ufshcd_abort_all(struct ufs_hba *hba) 6399 { 6400 int tag, ret = 0; 6401 6402 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret); 6403 if (ret) 6404 goto out; 6405 6406 /* Clear pending task management requests */ 6407 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) { 6408 ret = ufshcd_clear_tm_cmd(hba, tag); 6409 if (ret) 6410 goto out; 6411 } 6412 6413 out: 6414 /* Complete the requests that are cleared by s/w */ 6415 ufshcd_complete_requests(hba, false); 6416 6417 return ret != 0; 6418 } 6419 6420 /** 6421 * ufshcd_err_handler - handle UFS errors that require s/w attention 6422 * @work: pointer to work structure 6423 */ 6424 static void ufshcd_err_handler(struct work_struct *work) 6425 { 6426 int retries = MAX_ERR_HANDLER_RETRIES; 6427 struct ufs_hba *hba; 6428 unsigned long flags; 6429 bool needs_restore; 6430 bool needs_reset; 6431 int pmc_err; 6432 6433 hba = container_of(work, struct ufs_hba, eh_work); 6434 6435 dev_info(hba->dev, 6436 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n", 6437 __func__, ufshcd_state_name[hba->ufshcd_state], 6438 hba->is_powered, hba->shutting_down, hba->saved_err, 6439 hba->saved_uic_err, hba->force_reset, 6440 ufshcd_is_link_broken(hba) ? "; link is broken" : ""); 6441 6442 down(&hba->host_sem); 6443 spin_lock_irqsave(hba->host->host_lock, flags); 6444 if (ufshcd_err_handling_should_stop(hba)) { 6445 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6446 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6447 spin_unlock_irqrestore(hba->host->host_lock, flags); 6448 up(&hba->host_sem); 6449 return; 6450 } 6451 ufshcd_set_eh_in_progress(hba); 6452 spin_unlock_irqrestore(hba->host->host_lock, flags); 6453 ufshcd_err_handling_prepare(hba); 6454 /* Complete requests that have door-bell cleared by h/w */ 6455 ufshcd_complete_requests(hba, false); 6456 spin_lock_irqsave(hba->host->host_lock, flags); 6457 again: 6458 needs_restore = false; 6459 needs_reset = false; 6460 6461 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6462 hba->ufshcd_state = UFSHCD_STATE_RESET; 6463 /* 6464 * A full reset and restore might have happened after preparation 6465 * is finished, double check whether we should stop. 6466 */ 6467 if (ufshcd_err_handling_should_stop(hba)) 6468 goto skip_err_handling; 6469 6470 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) && 6471 !hba->force_reset) { 6472 bool ret; 6473 6474 spin_unlock_irqrestore(hba->host->host_lock, flags); 6475 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */ 6476 ret = ufshcd_quirk_dl_nac_errors(hba); 6477 spin_lock_irqsave(hba->host->host_lock, flags); 6478 if (!ret && ufshcd_err_handling_should_stop(hba)) 6479 goto skip_err_handling; 6480 } 6481 6482 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6483 (hba->saved_uic_err && 6484 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6485 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR); 6486 6487 spin_unlock_irqrestore(hba->host->host_lock, flags); 6488 ufshcd_print_host_state(hba); 6489 ufshcd_print_pwr_info(hba); 6490 ufshcd_print_evt_hist(hba); 6491 ufshcd_print_tmrs(hba, hba->outstanding_tasks); 6492 ufshcd_print_trs_all(hba, pr_prdt); 6493 spin_lock_irqsave(hba->host->host_lock, flags); 6494 } 6495 6496 /* 6497 * if host reset is required then skip clearing the pending 6498 * transfers forcefully because they will get cleared during 6499 * host reset and restore 6500 */ 6501 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6502 ufshcd_is_saved_err_fatal(hba) || 6503 ((hba->saved_err & UIC_ERROR) && 6504 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR | 6505 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) { 6506 needs_reset = true; 6507 goto do_reset; 6508 } 6509 6510 /* 6511 * If LINERESET was caught, UFS might have been put to PWM mode, 6512 * check if power mode restore is needed. 6513 */ 6514 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) { 6515 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6516 if (!hba->saved_uic_err) 6517 hba->saved_err &= ~UIC_ERROR; 6518 spin_unlock_irqrestore(hba->host->host_lock, flags); 6519 if (ufshcd_is_pwr_mode_restore_needed(hba)) 6520 needs_restore = true; 6521 spin_lock_irqsave(hba->host->host_lock, flags); 6522 if (!hba->saved_err && !needs_restore) 6523 goto skip_err_handling; 6524 } 6525 6526 hba->silence_err_logs = true; 6527 /* release lock as clear command might sleep */ 6528 spin_unlock_irqrestore(hba->host->host_lock, flags); 6529 6530 needs_reset = ufshcd_abort_all(hba); 6531 6532 spin_lock_irqsave(hba->host->host_lock, flags); 6533 hba->silence_err_logs = false; 6534 if (needs_reset) 6535 goto do_reset; 6536 6537 /* 6538 * After all reqs and tasks are cleared from doorbell, 6539 * now it is safe to retore power mode. 6540 */ 6541 if (needs_restore) { 6542 spin_unlock_irqrestore(hba->host->host_lock, flags); 6543 /* 6544 * Hold the scaling lock just in case dev cmds 6545 * are sent via bsg and/or sysfs. 6546 */ 6547 down_write(&hba->clk_scaling_lock); 6548 hba->force_pmc = true; 6549 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info)); 6550 if (pmc_err) { 6551 needs_reset = true; 6552 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n", 6553 __func__, pmc_err); 6554 } 6555 hba->force_pmc = false; 6556 ufshcd_print_pwr_info(hba); 6557 up_write(&hba->clk_scaling_lock); 6558 spin_lock_irqsave(hba->host->host_lock, flags); 6559 } 6560 6561 do_reset: 6562 /* Fatal errors need reset */ 6563 if (needs_reset) { 6564 int err; 6565 6566 hba->force_reset = false; 6567 spin_unlock_irqrestore(hba->host->host_lock, flags); 6568 err = ufshcd_reset_and_restore(hba); 6569 if (err) 6570 dev_err(hba->dev, "%s: reset and restore failed with err %d\n", 6571 __func__, err); 6572 else 6573 ufshcd_recover_pm_error(hba); 6574 spin_lock_irqsave(hba->host->host_lock, flags); 6575 } 6576 6577 skip_err_handling: 6578 if (!needs_reset) { 6579 if (hba->ufshcd_state == UFSHCD_STATE_RESET) 6580 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6581 if (hba->saved_err || hba->saved_uic_err) 6582 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x", 6583 __func__, hba->saved_err, hba->saved_uic_err); 6584 } 6585 /* Exit in an operational state or dead */ 6586 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 6587 hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6588 if (--retries) 6589 goto again; 6590 hba->ufshcd_state = UFSHCD_STATE_ERROR; 6591 } 6592 ufshcd_clear_eh_in_progress(hba); 6593 spin_unlock_irqrestore(hba->host->host_lock, flags); 6594 ufshcd_err_handling_unprepare(hba); 6595 up(&hba->host_sem); 6596 6597 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__, 6598 ufshcd_state_name[hba->ufshcd_state]); 6599 } 6600 6601 /** 6602 * ufshcd_update_uic_error - check and set fatal UIC error flags. 6603 * @hba: per-adapter instance 6604 * 6605 * Return: 6606 * IRQ_HANDLED - If interrupt is valid 6607 * IRQ_NONE - If invalid interrupt 6608 */ 6609 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba) 6610 { 6611 u32 reg; 6612 irqreturn_t retval = IRQ_NONE; 6613 6614 /* PHY layer error */ 6615 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 6616 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) && 6617 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) { 6618 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg); 6619 /* 6620 * To know whether this error is fatal or not, DB timeout 6621 * must be checked but this error is handled separately. 6622 */ 6623 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK) 6624 dev_dbg(hba->dev, "%s: UIC Lane error reported\n", 6625 __func__); 6626 6627 /* Got a LINERESET indication. */ 6628 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) { 6629 struct uic_command *cmd = NULL; 6630 6631 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR; 6632 if (hba->uic_async_done && hba->active_uic_cmd) 6633 cmd = hba->active_uic_cmd; 6634 /* 6635 * Ignore the LINERESET during power mode change 6636 * operation via DME_SET command. 6637 */ 6638 if (cmd && (cmd->command == UIC_CMD_DME_SET)) 6639 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6640 } 6641 retval |= IRQ_HANDLED; 6642 } 6643 6644 /* PA_INIT_ERROR is fatal and needs UIC reset */ 6645 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER); 6646 if ((reg & UIC_DATA_LINK_LAYER_ERROR) && 6647 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) { 6648 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg); 6649 6650 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) 6651 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR; 6652 else if (hba->dev_quirks & 6653 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 6654 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED) 6655 hba->uic_error |= 6656 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6657 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT) 6658 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR; 6659 } 6660 retval |= IRQ_HANDLED; 6661 } 6662 6663 /* UIC NL/TL/DME errors needs software retry */ 6664 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER); 6665 if ((reg & UIC_NETWORK_LAYER_ERROR) && 6666 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) { 6667 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg); 6668 hba->uic_error |= UFSHCD_UIC_NL_ERROR; 6669 retval |= IRQ_HANDLED; 6670 } 6671 6672 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER); 6673 if ((reg & UIC_TRANSPORT_LAYER_ERROR) && 6674 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) { 6675 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg); 6676 hba->uic_error |= UFSHCD_UIC_TL_ERROR; 6677 retval |= IRQ_HANDLED; 6678 } 6679 6680 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME); 6681 if ((reg & UIC_DME_ERROR) && 6682 (reg & UIC_DME_ERROR_CODE_MASK)) { 6683 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg); 6684 hba->uic_error |= UFSHCD_UIC_DME_ERROR; 6685 retval |= IRQ_HANDLED; 6686 } 6687 6688 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n", 6689 __func__, hba->uic_error); 6690 return retval; 6691 } 6692 6693 /** 6694 * ufshcd_check_errors - Check for errors that need s/w attention 6695 * @hba: per-adapter instance 6696 * @intr_status: interrupt status generated by the controller 6697 * 6698 * Return: 6699 * IRQ_HANDLED - If interrupt is valid 6700 * IRQ_NONE - If invalid interrupt 6701 */ 6702 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status) 6703 { 6704 bool queue_eh_work = false; 6705 irqreturn_t retval = IRQ_NONE; 6706 6707 spin_lock(hba->host->host_lock); 6708 hba->errors |= UFSHCD_ERROR_MASK & intr_status; 6709 6710 if (hba->errors & INT_FATAL_ERRORS) { 6711 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR, 6712 hba->errors); 6713 queue_eh_work = true; 6714 } 6715 6716 if (hba->errors & UIC_ERROR) { 6717 hba->uic_error = 0; 6718 retval = ufshcd_update_uic_error(hba); 6719 if (hba->uic_error) 6720 queue_eh_work = true; 6721 } 6722 6723 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) { 6724 dev_err(hba->dev, 6725 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n", 6726 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ? 6727 "Enter" : "Exit", 6728 hba->errors, ufshcd_get_upmcrs(hba)); 6729 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR, 6730 hba->errors); 6731 ufshcd_set_link_broken(hba); 6732 queue_eh_work = true; 6733 } 6734 6735 if (queue_eh_work) { 6736 /* 6737 * update the transfer error masks to sticky bits, let's do this 6738 * irrespective of current ufshcd_state. 6739 */ 6740 hba->saved_err |= hba->errors; 6741 hba->saved_uic_err |= hba->uic_error; 6742 6743 /* dump controller state before resetting */ 6744 if ((hba->saved_err & 6745 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6746 (hba->saved_uic_err && 6747 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6748 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n", 6749 __func__, hba->saved_err, 6750 hba->saved_uic_err); 6751 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, 6752 "host_regs: "); 6753 ufshcd_print_pwr_info(hba); 6754 } 6755 ufshcd_schedule_eh_work(hba); 6756 retval |= IRQ_HANDLED; 6757 } 6758 /* 6759 * if (!queue_eh_work) - 6760 * Other errors are either non-fatal where host recovers 6761 * itself without s/w intervention or errors that will be 6762 * handled by the SCSI core layer. 6763 */ 6764 hba->errors = 0; 6765 hba->uic_error = 0; 6766 spin_unlock(hba->host->host_lock); 6767 return retval; 6768 } 6769 6770 /** 6771 * ufshcd_tmc_handler - handle task management function completion 6772 * @hba: per adapter instance 6773 * 6774 * Return: 6775 * IRQ_HANDLED - If interrupt is valid 6776 * IRQ_NONE - If invalid interrupt 6777 */ 6778 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba) 6779 { 6780 unsigned long flags, pending, issued; 6781 irqreturn_t ret = IRQ_NONE; 6782 int tag; 6783 6784 spin_lock_irqsave(hba->host->host_lock, flags); 6785 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 6786 issued = hba->outstanding_tasks & ~pending; 6787 for_each_set_bit(tag, &issued, hba->nutmrs) { 6788 struct request *req = hba->tmf_rqs[tag]; 6789 struct completion *c = req->end_io_data; 6790 6791 complete(c); 6792 ret = IRQ_HANDLED; 6793 } 6794 spin_unlock_irqrestore(hba->host->host_lock, flags); 6795 6796 return ret; 6797 } 6798 6799 /** 6800 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events 6801 * @hba: per adapter instance 6802 * 6803 * Return: IRQ_HANDLED if interrupt is handled. 6804 */ 6805 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba) 6806 { 6807 struct ufs_hw_queue *hwq; 6808 unsigned long outstanding_cqs; 6809 unsigned int nr_queues; 6810 int i, ret; 6811 u32 events; 6812 6813 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs); 6814 if (ret) 6815 outstanding_cqs = (1U << hba->nr_hw_queues) - 1; 6816 6817 /* Exclude the poll queues */ 6818 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]; 6819 for_each_set_bit(i, &outstanding_cqs, nr_queues) { 6820 hwq = &hba->uhq[i]; 6821 6822 events = ufshcd_mcq_read_cqis(hba, i); 6823 if (events) 6824 ufshcd_mcq_write_cqis(hba, events, i); 6825 6826 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS) 6827 ufshcd_mcq_poll_cqe_lock(hba, hwq); 6828 } 6829 6830 return IRQ_HANDLED; 6831 } 6832 6833 /** 6834 * ufshcd_sl_intr - Interrupt service routine 6835 * @hba: per adapter instance 6836 * @intr_status: contains interrupts generated by the controller 6837 * 6838 * Return: 6839 * IRQ_HANDLED - If interrupt is valid 6840 * IRQ_NONE - If invalid interrupt 6841 */ 6842 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status) 6843 { 6844 irqreturn_t retval = IRQ_NONE; 6845 6846 if (intr_status & UFSHCD_UIC_MASK) 6847 retval |= ufshcd_uic_cmd_compl(hba, intr_status); 6848 6849 if (intr_status & UFSHCD_ERROR_MASK || hba->errors) 6850 retval |= ufshcd_check_errors(hba, intr_status); 6851 6852 if (intr_status & UTP_TASK_REQ_COMPL) 6853 retval |= ufshcd_tmc_handler(hba); 6854 6855 if (intr_status & UTP_TRANSFER_REQ_COMPL) 6856 retval |= ufshcd_transfer_req_compl(hba); 6857 6858 if (intr_status & MCQ_CQ_EVENT_STATUS) 6859 retval |= ufshcd_handle_mcq_cq_events(hba); 6860 6861 return retval; 6862 } 6863 6864 /** 6865 * ufshcd_intr - Main interrupt service routine 6866 * @irq: irq number 6867 * @__hba: pointer to adapter instance 6868 * 6869 * Return: 6870 * IRQ_HANDLED - If interrupt is valid 6871 * IRQ_NONE - If invalid interrupt 6872 */ 6873 static irqreturn_t ufshcd_intr(int irq, void *__hba) 6874 { 6875 u32 intr_status, enabled_intr_status = 0; 6876 irqreturn_t retval = IRQ_NONE; 6877 struct ufs_hba *hba = __hba; 6878 int retries = hba->nutrs; 6879 6880 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6881 hba->ufs_stats.last_intr_status = intr_status; 6882 hba->ufs_stats.last_intr_ts = local_clock(); 6883 6884 /* 6885 * There could be max of hba->nutrs reqs in flight and in worst case 6886 * if the reqs get finished 1 by 1 after the interrupt status is 6887 * read, make sure we handle them by checking the interrupt status 6888 * again in a loop until we process all of the reqs before returning. 6889 */ 6890 while (intr_status && retries--) { 6891 enabled_intr_status = 6892 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 6893 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); 6894 if (enabled_intr_status) 6895 retval |= ufshcd_sl_intr(hba, enabled_intr_status); 6896 6897 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6898 } 6899 6900 if (enabled_intr_status && retval == IRQ_NONE && 6901 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) || 6902 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) { 6903 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n", 6904 __func__, 6905 intr_status, 6906 hba->ufs_stats.last_intr_status, 6907 enabled_intr_status); 6908 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 6909 } 6910 6911 return retval; 6912 } 6913 6914 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag) 6915 { 6916 int err = 0; 6917 u32 mask = 1 << tag; 6918 unsigned long flags; 6919 6920 if (!test_bit(tag, &hba->outstanding_tasks)) 6921 goto out; 6922 6923 spin_lock_irqsave(hba->host->host_lock, flags); 6924 ufshcd_utmrl_clear(hba, tag); 6925 spin_unlock_irqrestore(hba->host->host_lock, flags); 6926 6927 /* poll for max. 1 sec to clear door bell register by h/w */ 6928 err = ufshcd_wait_for_register(hba, 6929 REG_UTP_TASK_REQ_DOOR_BELL, 6930 mask, 0, 1000, 1000); 6931 6932 dev_err(hba->dev, "Clearing task management function with tag %d %s\n", 6933 tag, err < 0 ? "failed" : "succeeded"); 6934 6935 out: 6936 return err; 6937 } 6938 6939 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba, 6940 struct utp_task_req_desc *treq, u8 tm_function) 6941 { 6942 struct request_queue *q = hba->tmf_queue; 6943 struct Scsi_Host *host = hba->host; 6944 DECLARE_COMPLETION_ONSTACK(wait); 6945 struct request *req; 6946 unsigned long flags; 6947 int task_tag, err; 6948 6949 /* 6950 * blk_mq_alloc_request() is used here only to get a free tag. 6951 */ 6952 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0); 6953 if (IS_ERR(req)) 6954 return PTR_ERR(req); 6955 6956 req->end_io_data = &wait; 6957 ufshcd_hold(hba); 6958 6959 spin_lock_irqsave(host->host_lock, flags); 6960 6961 task_tag = req->tag; 6962 WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n", 6963 task_tag); 6964 hba->tmf_rqs[req->tag] = req; 6965 treq->upiu_req.req_header.task_tag = task_tag; 6966 6967 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq)); 6968 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function); 6969 6970 /* send command to the controller */ 6971 __set_bit(task_tag, &hba->outstanding_tasks); 6972 6973 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL); 6974 /* Make sure that doorbell is committed immediately */ 6975 wmb(); 6976 6977 spin_unlock_irqrestore(host->host_lock, flags); 6978 6979 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND); 6980 6981 /* wait until the task management command is completed */ 6982 err = wait_for_completion_io_timeout(&wait, 6983 msecs_to_jiffies(TM_CMD_TIMEOUT)); 6984 if (!err) { 6985 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR); 6986 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n", 6987 __func__, tm_function); 6988 if (ufshcd_clear_tm_cmd(hba, task_tag)) 6989 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n", 6990 __func__, task_tag); 6991 err = -ETIMEDOUT; 6992 } else { 6993 err = 0; 6994 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq)); 6995 6996 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP); 6997 } 6998 6999 spin_lock_irqsave(hba->host->host_lock, flags); 7000 hba->tmf_rqs[req->tag] = NULL; 7001 __clear_bit(task_tag, &hba->outstanding_tasks); 7002 spin_unlock_irqrestore(hba->host->host_lock, flags); 7003 7004 ufshcd_release(hba); 7005 blk_mq_free_request(req); 7006 7007 return err; 7008 } 7009 7010 /** 7011 * ufshcd_issue_tm_cmd - issues task management commands to controller 7012 * @hba: per adapter instance 7013 * @lun_id: LUN ID to which TM command is sent 7014 * @task_id: task ID to which the TM command is applicable 7015 * @tm_function: task management function opcode 7016 * @tm_response: task management service response return value 7017 * 7018 * Return: non-zero value on error, zero on success. 7019 */ 7020 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id, 7021 u8 tm_function, u8 *tm_response) 7022 { 7023 struct utp_task_req_desc treq = { }; 7024 enum utp_ocs ocs_value; 7025 int err; 7026 7027 /* Configure task request descriptor */ 7028 treq.header.interrupt = 1; 7029 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7030 7031 /* Configure task request UPIU */ 7032 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ; 7033 treq.upiu_req.req_header.lun = lun_id; 7034 treq.upiu_req.req_header.tm_function = tm_function; 7035 7036 /* 7037 * The host shall provide the same value for LUN field in the basic 7038 * header and for Input Parameter. 7039 */ 7040 treq.upiu_req.input_param1 = cpu_to_be32(lun_id); 7041 treq.upiu_req.input_param2 = cpu_to_be32(task_id); 7042 7043 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function); 7044 if (err == -ETIMEDOUT) 7045 return err; 7046 7047 ocs_value = treq.header.ocs & MASK_OCS; 7048 if (ocs_value != OCS_SUCCESS) 7049 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", 7050 __func__, ocs_value); 7051 else if (tm_response) 7052 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) & 7053 MASK_TM_SERVICE_RESP; 7054 return err; 7055 } 7056 7057 /** 7058 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests 7059 * @hba: per-adapter instance 7060 * @req_upiu: upiu request 7061 * @rsp_upiu: upiu reply 7062 * @desc_buff: pointer to descriptor buffer, NULL if NA 7063 * @buff_len: descriptor size, 0 if NA 7064 * @cmd_type: specifies the type (NOP, Query...) 7065 * @desc_op: descriptor operation 7066 * 7067 * Those type of requests uses UTP Transfer Request Descriptor - utrd. 7068 * Therefore, it "rides" the device management infrastructure: uses its tag and 7069 * tasks work queues. 7070 * 7071 * Since there is only one available tag for device management commands, 7072 * the caller is expected to hold the hba->dev_cmd.lock mutex. 7073 * 7074 * Return: 0 upon success; < 0 upon failure. 7075 */ 7076 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba, 7077 struct utp_upiu_req *req_upiu, 7078 struct utp_upiu_req *rsp_upiu, 7079 u8 *desc_buff, int *buff_len, 7080 enum dev_cmd_type cmd_type, 7081 enum query_opcode desc_op) 7082 { 7083 DECLARE_COMPLETION_ONSTACK(wait); 7084 const u32 tag = hba->reserved_slot; 7085 struct ufshcd_lrb *lrbp; 7086 int err = 0; 7087 u8 upiu_flags; 7088 7089 /* Protects use of hba->reserved_slot. */ 7090 lockdep_assert_held(&hba->dev_cmd.lock); 7091 7092 down_read(&hba->clk_scaling_lock); 7093 7094 lrbp = &hba->lrb[tag]; 7095 lrbp->cmd = NULL; 7096 lrbp->task_tag = tag; 7097 lrbp->lun = 0; 7098 lrbp->intr_cmd = true; 7099 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 7100 hba->dev_cmd.type = cmd_type; 7101 7102 if (hba->ufs_version <= ufshci_version(1, 1)) 7103 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; 7104 else 7105 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 7106 7107 /* update the task tag in the request upiu */ 7108 req_upiu->header.task_tag = tag; 7109 7110 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0); 7111 7112 /* just copy the upiu request as it is */ 7113 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7114 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) { 7115 /* The Data Segment Area is optional depending upon the query 7116 * function value. for WRITE DESCRIPTOR, the data segment 7117 * follows right after the tsf. 7118 */ 7119 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len); 7120 *buff_len = 0; 7121 } 7122 7123 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7124 7125 hba->dev_cmd.complete = &wait; 7126 7127 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 7128 7129 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 7130 /* 7131 * ignore the returning value here - ufshcd_check_query_response is 7132 * bound to fail since dev_cmd.query and dev_cmd.type were left empty. 7133 * read the response directly ignoring all errors. 7134 */ 7135 ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT); 7136 7137 /* just copy the upiu response as it is */ 7138 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7139 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) { 7140 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu); 7141 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 7142 .data_segment_length); 7143 7144 if (*buff_len >= resp_len) { 7145 memcpy(desc_buff, descp, resp_len); 7146 *buff_len = resp_len; 7147 } else { 7148 dev_warn(hba->dev, 7149 "%s: rsp size %d is bigger than buffer size %d", 7150 __func__, resp_len, *buff_len); 7151 *buff_len = 0; 7152 err = -EINVAL; 7153 } 7154 } 7155 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 7156 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 7157 7158 up_read(&hba->clk_scaling_lock); 7159 return err; 7160 } 7161 7162 /** 7163 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands 7164 * @hba: per-adapter instance 7165 * @req_upiu: upiu request 7166 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands 7167 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target 7168 * @desc_buff: pointer to descriptor buffer, NULL if NA 7169 * @buff_len: descriptor size, 0 if NA 7170 * @desc_op: descriptor operation 7171 * 7172 * Supports UTP Transfer requests (nop and query), and UTP Task 7173 * Management requests. 7174 * It is up to the caller to fill the upiu conent properly, as it will 7175 * be copied without any further input validations. 7176 * 7177 * Return: 0 upon success; < 0 upon failure. 7178 */ 7179 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba, 7180 struct utp_upiu_req *req_upiu, 7181 struct utp_upiu_req *rsp_upiu, 7182 enum upiu_request_transaction msgcode, 7183 u8 *desc_buff, int *buff_len, 7184 enum query_opcode desc_op) 7185 { 7186 int err; 7187 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY; 7188 struct utp_task_req_desc treq = { }; 7189 enum utp_ocs ocs_value; 7190 u8 tm_f = req_upiu->header.tm_function; 7191 7192 switch (msgcode) { 7193 case UPIU_TRANSACTION_NOP_OUT: 7194 cmd_type = DEV_CMD_TYPE_NOP; 7195 fallthrough; 7196 case UPIU_TRANSACTION_QUERY_REQ: 7197 ufshcd_hold(hba); 7198 mutex_lock(&hba->dev_cmd.lock); 7199 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu, 7200 desc_buff, buff_len, 7201 cmd_type, desc_op); 7202 mutex_unlock(&hba->dev_cmd.lock); 7203 ufshcd_release(hba); 7204 7205 break; 7206 case UPIU_TRANSACTION_TASK_REQ: 7207 treq.header.interrupt = 1; 7208 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7209 7210 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu)); 7211 7212 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f); 7213 if (err == -ETIMEDOUT) 7214 break; 7215 7216 ocs_value = treq.header.ocs & MASK_OCS; 7217 if (ocs_value != OCS_SUCCESS) { 7218 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__, 7219 ocs_value); 7220 break; 7221 } 7222 7223 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu)); 7224 7225 break; 7226 default: 7227 err = -EINVAL; 7228 7229 break; 7230 } 7231 7232 return err; 7233 } 7234 7235 /** 7236 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request 7237 * @hba: per adapter instance 7238 * @req_upiu: upiu request 7239 * @rsp_upiu: upiu reply 7240 * @req_ehs: EHS field which contains Advanced RPMB Request Message 7241 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message 7242 * @sg_cnt: The number of sg lists actually used 7243 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation 7244 * @dir: DMA direction 7245 * 7246 * Return: zero on success, non-zero on failure. 7247 */ 7248 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu, 7249 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs, 7250 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list, 7251 enum dma_data_direction dir) 7252 { 7253 DECLARE_COMPLETION_ONSTACK(wait); 7254 const u32 tag = hba->reserved_slot; 7255 struct ufshcd_lrb *lrbp; 7256 int err = 0; 7257 int result; 7258 u8 upiu_flags; 7259 u8 *ehs_data; 7260 u16 ehs_len; 7261 7262 /* Protects use of hba->reserved_slot. */ 7263 ufshcd_hold(hba); 7264 mutex_lock(&hba->dev_cmd.lock); 7265 down_read(&hba->clk_scaling_lock); 7266 7267 lrbp = &hba->lrb[tag]; 7268 lrbp->cmd = NULL; 7269 lrbp->task_tag = tag; 7270 lrbp->lun = UFS_UPIU_RPMB_WLUN; 7271 7272 lrbp->intr_cmd = true; 7273 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 7274 hba->dev_cmd.type = DEV_CMD_TYPE_RPMB; 7275 7276 /* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */ 7277 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 7278 7279 /* 7280 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes 7281 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1, 7282 * HW controller takes EHS length from UTRD. 7283 */ 7284 if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) 7285 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2); 7286 else 7287 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0); 7288 7289 /* update the task tag */ 7290 req_upiu->header.task_tag = tag; 7291 7292 /* copy the UPIU(contains CDB) request as it is */ 7293 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7294 /* Copy EHS, starting with byte32, immediately after the CDB package */ 7295 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs)); 7296 7297 if (dir != DMA_NONE && sg_list) 7298 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list); 7299 7300 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7301 7302 hba->dev_cmd.complete = &wait; 7303 7304 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 7305 7306 err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT); 7307 7308 if (!err) { 7309 /* Just copy the upiu response as it is */ 7310 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7311 /* Get the response UPIU result */ 7312 result = (lrbp->ucd_rsp_ptr->header.response << 8) | 7313 lrbp->ucd_rsp_ptr->header.status; 7314 7315 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length; 7316 /* 7317 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data 7318 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB 7319 * Message is 02h 7320 */ 7321 if (ehs_len == 2 && rsp_ehs) { 7322 /* 7323 * ucd_rsp_ptr points to a buffer with a length of 512 bytes 7324 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32 7325 */ 7326 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE; 7327 memcpy(rsp_ehs, ehs_data, ehs_len * 32); 7328 } 7329 } 7330 7331 up_read(&hba->clk_scaling_lock); 7332 mutex_unlock(&hba->dev_cmd.lock); 7333 ufshcd_release(hba); 7334 return err ? : result; 7335 } 7336 7337 /** 7338 * ufshcd_eh_device_reset_handler() - Reset a single logical unit. 7339 * @cmd: SCSI command pointer 7340 * 7341 * Return: SUCCESS or FAILED. 7342 */ 7343 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd) 7344 { 7345 unsigned long flags, pending_reqs = 0, not_cleared = 0; 7346 struct Scsi_Host *host; 7347 struct ufs_hba *hba; 7348 struct ufs_hw_queue *hwq; 7349 struct ufshcd_lrb *lrbp; 7350 u32 pos, not_cleared_mask = 0; 7351 int err; 7352 u8 resp = 0xF, lun; 7353 7354 host = cmd->device->host; 7355 hba = shost_priv(host); 7356 7357 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 7358 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp); 7359 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7360 if (!err) 7361 err = resp; 7362 goto out; 7363 } 7364 7365 if (is_mcq_enabled(hba)) { 7366 for (pos = 0; pos < hba->nutrs; pos++) { 7367 lrbp = &hba->lrb[pos]; 7368 if (ufshcd_cmd_inflight(lrbp->cmd) && 7369 lrbp->lun == lun) { 7370 ufshcd_clear_cmd(hba, pos); 7371 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); 7372 ufshcd_mcq_poll_cqe_lock(hba, hwq); 7373 } 7374 } 7375 err = 0; 7376 goto out; 7377 } 7378 7379 /* clear the commands that were pending for corresponding LUN */ 7380 spin_lock_irqsave(&hba->outstanding_lock, flags); 7381 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) 7382 if (hba->lrb[pos].lun == lun) 7383 __set_bit(pos, &pending_reqs); 7384 hba->outstanding_reqs &= ~pending_reqs; 7385 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7386 7387 for_each_set_bit(pos, &pending_reqs, hba->nutrs) { 7388 if (ufshcd_clear_cmd(hba, pos) < 0) { 7389 spin_lock_irqsave(&hba->outstanding_lock, flags); 7390 not_cleared = 1U << pos & 7391 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7392 hba->outstanding_reqs |= not_cleared; 7393 not_cleared_mask |= not_cleared; 7394 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7395 7396 dev_err(hba->dev, "%s: failed to clear request %d\n", 7397 __func__, pos); 7398 } 7399 } 7400 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask); 7401 7402 out: 7403 hba->req_abort_count = 0; 7404 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err); 7405 if (!err) { 7406 err = SUCCESS; 7407 } else { 7408 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7409 err = FAILED; 7410 } 7411 return err; 7412 } 7413 7414 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap) 7415 { 7416 struct ufshcd_lrb *lrbp; 7417 int tag; 7418 7419 for_each_set_bit(tag, &bitmap, hba->nutrs) { 7420 lrbp = &hba->lrb[tag]; 7421 lrbp->req_abort_skip = true; 7422 } 7423 } 7424 7425 /** 7426 * ufshcd_try_to_abort_task - abort a specific task 7427 * @hba: Pointer to adapter instance 7428 * @tag: Task tag/index to be aborted 7429 * 7430 * Abort the pending command in device by sending UFS_ABORT_TASK task management 7431 * command, and in host controller by clearing the door-bell register. There can 7432 * be race between controller sending the command to the device while abort is 7433 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is 7434 * really issued and then try to abort it. 7435 * 7436 * Return: zero on success, non-zero on failure. 7437 */ 7438 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag) 7439 { 7440 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7441 int err = 0; 7442 int poll_cnt; 7443 u8 resp = 0xF; 7444 u32 reg; 7445 7446 for (poll_cnt = 100; poll_cnt; poll_cnt--) { 7447 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7448 UFS_QUERY_TASK, &resp); 7449 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) { 7450 /* cmd pending in the device */ 7451 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n", 7452 __func__, tag); 7453 break; 7454 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7455 /* 7456 * cmd not pending in the device, check if it is 7457 * in transition. 7458 */ 7459 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n", 7460 __func__, tag); 7461 if (is_mcq_enabled(hba)) { 7462 /* MCQ mode */ 7463 if (ufshcd_cmd_inflight(lrbp->cmd)) { 7464 /* sleep for max. 200us same delay as in SDB mode */ 7465 usleep_range(100, 200); 7466 continue; 7467 } 7468 /* command completed already */ 7469 dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n", 7470 __func__, tag); 7471 goto out; 7472 } 7473 7474 /* Single Doorbell Mode */ 7475 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7476 if (reg & (1 << tag)) { 7477 /* sleep for max. 200us to stabilize */ 7478 usleep_range(100, 200); 7479 continue; 7480 } 7481 /* command completed already */ 7482 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n", 7483 __func__, tag); 7484 goto out; 7485 } else { 7486 dev_err(hba->dev, 7487 "%s: no response from device. tag = %d, err %d\n", 7488 __func__, tag, err); 7489 if (!err) 7490 err = resp; /* service response error */ 7491 goto out; 7492 } 7493 } 7494 7495 if (!poll_cnt) { 7496 err = -EBUSY; 7497 goto out; 7498 } 7499 7500 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7501 UFS_ABORT_TASK, &resp); 7502 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7503 if (!err) { 7504 err = resp; /* service response error */ 7505 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n", 7506 __func__, tag, err); 7507 } 7508 goto out; 7509 } 7510 7511 err = ufshcd_clear_cmd(hba, tag); 7512 if (err) 7513 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n", 7514 __func__, tag, err); 7515 7516 out: 7517 return err; 7518 } 7519 7520 /** 7521 * ufshcd_abort - scsi host template eh_abort_handler callback 7522 * @cmd: SCSI command pointer 7523 * 7524 * Return: SUCCESS or FAILED. 7525 */ 7526 static int ufshcd_abort(struct scsi_cmnd *cmd) 7527 { 7528 struct Scsi_Host *host = cmd->device->host; 7529 struct ufs_hba *hba = shost_priv(host); 7530 int tag = scsi_cmd_to_rq(cmd)->tag; 7531 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7532 unsigned long flags; 7533 int err = FAILED; 7534 bool outstanding; 7535 u32 reg; 7536 7537 WARN_ONCE(tag < 0, "Invalid tag %d\n", tag); 7538 7539 ufshcd_hold(hba); 7540 7541 if (!is_mcq_enabled(hba)) { 7542 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7543 if (!test_bit(tag, &hba->outstanding_reqs)) { 7544 /* If command is already aborted/completed, return FAILED. */ 7545 dev_err(hba->dev, 7546 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n", 7547 __func__, tag, hba->outstanding_reqs, reg); 7548 goto release; 7549 } 7550 } 7551 7552 /* Print Transfer Request of aborted task */ 7553 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag); 7554 7555 /* 7556 * Print detailed info about aborted request. 7557 * As more than one request might get aborted at the same time, 7558 * print full information only for the first aborted request in order 7559 * to reduce repeated printouts. For other aborted requests only print 7560 * basic details. 7561 */ 7562 scsi_print_command(cmd); 7563 if (!hba->req_abort_count) { 7564 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag); 7565 ufshcd_print_evt_hist(hba); 7566 ufshcd_print_host_state(hba); 7567 ufshcd_print_pwr_info(hba); 7568 ufshcd_print_tr(hba, tag, true); 7569 } else { 7570 ufshcd_print_tr(hba, tag, false); 7571 } 7572 hba->req_abort_count++; 7573 7574 if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) { 7575 /* only execute this code in single doorbell mode */ 7576 dev_err(hba->dev, 7577 "%s: cmd was completed, but without a notifying intr, tag = %d", 7578 __func__, tag); 7579 __ufshcd_transfer_req_compl(hba, 1UL << tag); 7580 goto release; 7581 } 7582 7583 /* 7584 * Task abort to the device W-LUN is illegal. When this command 7585 * will fail, due to spec violation, scsi err handling next step 7586 * will be to send LU reset which, again, is a spec violation. 7587 * To avoid these unnecessary/illegal steps, first we clean up 7588 * the lrb taken by this cmd and re-set it in outstanding_reqs, 7589 * then queue the eh_work and bail. 7590 */ 7591 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) { 7592 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun); 7593 7594 spin_lock_irqsave(host->host_lock, flags); 7595 hba->force_reset = true; 7596 ufshcd_schedule_eh_work(hba); 7597 spin_unlock_irqrestore(host->host_lock, flags); 7598 goto release; 7599 } 7600 7601 if (is_mcq_enabled(hba)) { 7602 /* MCQ mode. Branch off to handle abort for mcq mode */ 7603 err = ufshcd_mcq_abort(cmd); 7604 goto release; 7605 } 7606 7607 /* Skip task abort in case previous aborts failed and report failure */ 7608 if (lrbp->req_abort_skip) { 7609 dev_err(hba->dev, "%s: skipping abort\n", __func__); 7610 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7611 goto release; 7612 } 7613 7614 err = ufshcd_try_to_abort_task(hba, tag); 7615 if (err) { 7616 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7617 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7618 err = FAILED; 7619 goto release; 7620 } 7621 7622 /* 7623 * Clear the corresponding bit from outstanding_reqs since the command 7624 * has been aborted successfully. 7625 */ 7626 spin_lock_irqsave(&hba->outstanding_lock, flags); 7627 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs); 7628 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7629 7630 if (outstanding) 7631 ufshcd_release_scsi_cmd(hba, lrbp); 7632 7633 err = SUCCESS; 7634 7635 release: 7636 /* Matches the ufshcd_hold() call at the start of this function. */ 7637 ufshcd_release(hba); 7638 return err; 7639 } 7640 7641 /** 7642 * ufshcd_host_reset_and_restore - reset and restore host controller 7643 * @hba: per-adapter instance 7644 * 7645 * Note that host controller reset may issue DME_RESET to 7646 * local and remote (device) Uni-Pro stack and the attributes 7647 * are reset to default state. 7648 * 7649 * Return: zero on success, non-zero on failure. 7650 */ 7651 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba) 7652 { 7653 int err; 7654 7655 /* 7656 * Stop the host controller and complete the requests 7657 * cleared by h/w 7658 */ 7659 ufshcd_hba_stop(hba); 7660 hba->silence_err_logs = true; 7661 ufshcd_complete_requests(hba, true); 7662 hba->silence_err_logs = false; 7663 7664 /* scale up clocks to max frequency before full reinitialization */ 7665 ufshcd_scale_clks(hba, true); 7666 7667 err = ufshcd_hba_enable(hba); 7668 7669 /* Establish the link again and restore the device */ 7670 if (!err) 7671 err = ufshcd_probe_hba(hba, false); 7672 7673 if (err) 7674 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err); 7675 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err); 7676 return err; 7677 } 7678 7679 /** 7680 * ufshcd_reset_and_restore - reset and re-initialize host/device 7681 * @hba: per-adapter instance 7682 * 7683 * Reset and recover device, host and re-establish link. This 7684 * is helpful to recover the communication in fatal error conditions. 7685 * 7686 * Return: zero on success, non-zero on failure. 7687 */ 7688 static int ufshcd_reset_and_restore(struct ufs_hba *hba) 7689 { 7690 u32 saved_err = 0; 7691 u32 saved_uic_err = 0; 7692 int err = 0; 7693 unsigned long flags; 7694 int retries = MAX_HOST_RESET_RETRIES; 7695 7696 spin_lock_irqsave(hba->host->host_lock, flags); 7697 do { 7698 /* 7699 * This is a fresh start, cache and clear saved error first, 7700 * in case new error generated during reset and restore. 7701 */ 7702 saved_err |= hba->saved_err; 7703 saved_uic_err |= hba->saved_uic_err; 7704 hba->saved_err = 0; 7705 hba->saved_uic_err = 0; 7706 hba->force_reset = false; 7707 hba->ufshcd_state = UFSHCD_STATE_RESET; 7708 spin_unlock_irqrestore(hba->host->host_lock, flags); 7709 7710 /* Reset the attached device */ 7711 ufshcd_device_reset(hba); 7712 7713 err = ufshcd_host_reset_and_restore(hba); 7714 7715 spin_lock_irqsave(hba->host->host_lock, flags); 7716 if (err) 7717 continue; 7718 /* Do not exit unless operational or dead */ 7719 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 7720 hba->ufshcd_state != UFSHCD_STATE_ERROR && 7721 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL) 7722 err = -EAGAIN; 7723 } while (err && --retries); 7724 7725 /* 7726 * Inform scsi mid-layer that we did reset and allow to handle 7727 * Unit Attention properly. 7728 */ 7729 scsi_report_bus_reset(hba->host, 0); 7730 if (err) { 7731 hba->ufshcd_state = UFSHCD_STATE_ERROR; 7732 hba->saved_err |= saved_err; 7733 hba->saved_uic_err |= saved_uic_err; 7734 } 7735 spin_unlock_irqrestore(hba->host->host_lock, flags); 7736 7737 return err; 7738 } 7739 7740 /** 7741 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer 7742 * @cmd: SCSI command pointer 7743 * 7744 * Return: SUCCESS or FAILED. 7745 */ 7746 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd) 7747 { 7748 int err = SUCCESS; 7749 unsigned long flags; 7750 struct ufs_hba *hba; 7751 7752 hba = shost_priv(cmd->device->host); 7753 7754 spin_lock_irqsave(hba->host->host_lock, flags); 7755 hba->force_reset = true; 7756 ufshcd_schedule_eh_work(hba); 7757 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__); 7758 spin_unlock_irqrestore(hba->host->host_lock, flags); 7759 7760 flush_work(&hba->eh_work); 7761 7762 spin_lock_irqsave(hba->host->host_lock, flags); 7763 if (hba->ufshcd_state == UFSHCD_STATE_ERROR) 7764 err = FAILED; 7765 spin_unlock_irqrestore(hba->host->host_lock, flags); 7766 7767 return err; 7768 } 7769 7770 /** 7771 * ufshcd_get_max_icc_level - calculate the ICC level 7772 * @sup_curr_uA: max. current supported by the regulator 7773 * @start_scan: row at the desc table to start scan from 7774 * @buff: power descriptor buffer 7775 * 7776 * Return: calculated max ICC level for specific regulator. 7777 */ 7778 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, 7779 const char *buff) 7780 { 7781 int i; 7782 int curr_uA; 7783 u16 data; 7784 u16 unit; 7785 7786 for (i = start_scan; i >= 0; i--) { 7787 data = get_unaligned_be16(&buff[2 * i]); 7788 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >> 7789 ATTR_ICC_LVL_UNIT_OFFSET; 7790 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK; 7791 switch (unit) { 7792 case UFSHCD_NANO_AMP: 7793 curr_uA = curr_uA / 1000; 7794 break; 7795 case UFSHCD_MILI_AMP: 7796 curr_uA = curr_uA * 1000; 7797 break; 7798 case UFSHCD_AMP: 7799 curr_uA = curr_uA * 1000 * 1000; 7800 break; 7801 case UFSHCD_MICRO_AMP: 7802 default: 7803 break; 7804 } 7805 if (sup_curr_uA >= curr_uA) 7806 break; 7807 } 7808 if (i < 0) { 7809 i = 0; 7810 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i); 7811 } 7812 7813 return (u32)i; 7814 } 7815 7816 /** 7817 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level 7818 * In case regulators are not initialized we'll return 0 7819 * @hba: per-adapter instance 7820 * @desc_buf: power descriptor buffer to extract ICC levels from. 7821 * 7822 * Return: calculated ICC level. 7823 */ 7824 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba, 7825 const u8 *desc_buf) 7826 { 7827 u32 icc_level = 0; 7828 7829 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq || 7830 !hba->vreg_info.vccq2) { 7831 /* 7832 * Using dev_dbg to avoid messages during runtime PM to avoid 7833 * never-ending cycles of messages written back to storage by 7834 * user space causing runtime resume, causing more messages and 7835 * so on. 7836 */ 7837 dev_dbg(hba->dev, 7838 "%s: Regulator capability was not set, actvIccLevel=%d", 7839 __func__, icc_level); 7840 goto out; 7841 } 7842 7843 if (hba->vreg_info.vcc->max_uA) 7844 icc_level = ufshcd_get_max_icc_level( 7845 hba->vreg_info.vcc->max_uA, 7846 POWER_DESC_MAX_ACTV_ICC_LVLS - 1, 7847 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]); 7848 7849 if (hba->vreg_info.vccq->max_uA) 7850 icc_level = ufshcd_get_max_icc_level( 7851 hba->vreg_info.vccq->max_uA, 7852 icc_level, 7853 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]); 7854 7855 if (hba->vreg_info.vccq2->max_uA) 7856 icc_level = ufshcd_get_max_icc_level( 7857 hba->vreg_info.vccq2->max_uA, 7858 icc_level, 7859 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]); 7860 out: 7861 return icc_level; 7862 } 7863 7864 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba) 7865 { 7866 int ret; 7867 u8 *desc_buf; 7868 u32 icc_level; 7869 7870 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 7871 if (!desc_buf) 7872 return; 7873 7874 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0, 7875 desc_buf, QUERY_DESC_MAX_SIZE); 7876 if (ret) { 7877 dev_err(hba->dev, 7878 "%s: Failed reading power descriptor ret = %d", 7879 __func__, ret); 7880 goto out; 7881 } 7882 7883 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf); 7884 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level); 7885 7886 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 7887 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level); 7888 7889 if (ret) 7890 dev_err(hba->dev, 7891 "%s: Failed configuring bActiveICCLevel = %d ret = %d", 7892 __func__, icc_level, ret); 7893 7894 out: 7895 kfree(desc_buf); 7896 } 7897 7898 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev) 7899 { 7900 scsi_autopm_get_device(sdev); 7901 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev); 7902 if (sdev->rpm_autosuspend) 7903 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev, 7904 RPM_AUTOSUSPEND_DELAY_MS); 7905 scsi_autopm_put_device(sdev); 7906 } 7907 7908 /** 7909 * ufshcd_scsi_add_wlus - Adds required W-LUs 7910 * @hba: per-adapter instance 7911 * 7912 * UFS device specification requires the UFS devices to support 4 well known 7913 * logical units: 7914 * "REPORT_LUNS" (address: 01h) 7915 * "UFS Device" (address: 50h) 7916 * "RPMB" (address: 44h) 7917 * "BOOT" (address: 30h) 7918 * UFS device's power management needs to be controlled by "POWER CONDITION" 7919 * field of SSU (START STOP UNIT) command. But this "power condition" field 7920 * will take effect only when its sent to "UFS device" well known logical unit 7921 * hence we require the scsi_device instance to represent this logical unit in 7922 * order for the UFS host driver to send the SSU command for power management. 7923 * 7924 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory 7925 * Block) LU so user space process can control this LU. User space may also 7926 * want to have access to BOOT LU. 7927 * 7928 * This function adds scsi device instances for each of all well known LUs 7929 * (except "REPORT LUNS" LU). 7930 * 7931 * Return: zero on success (all required W-LUs are added successfully), 7932 * non-zero error value on failure (if failed to add any of the required W-LU). 7933 */ 7934 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba) 7935 { 7936 int ret = 0; 7937 struct scsi_device *sdev_boot, *sdev_rpmb; 7938 7939 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0, 7940 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL); 7941 if (IS_ERR(hba->ufs_device_wlun)) { 7942 ret = PTR_ERR(hba->ufs_device_wlun); 7943 hba->ufs_device_wlun = NULL; 7944 goto out; 7945 } 7946 scsi_device_put(hba->ufs_device_wlun); 7947 7948 sdev_rpmb = __scsi_add_device(hba->host, 0, 0, 7949 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL); 7950 if (IS_ERR(sdev_rpmb)) { 7951 ret = PTR_ERR(sdev_rpmb); 7952 goto remove_ufs_device_wlun; 7953 } 7954 ufshcd_blk_pm_runtime_init(sdev_rpmb); 7955 scsi_device_put(sdev_rpmb); 7956 7957 sdev_boot = __scsi_add_device(hba->host, 0, 0, 7958 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL); 7959 if (IS_ERR(sdev_boot)) { 7960 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__); 7961 } else { 7962 ufshcd_blk_pm_runtime_init(sdev_boot); 7963 scsi_device_put(sdev_boot); 7964 } 7965 goto out; 7966 7967 remove_ufs_device_wlun: 7968 scsi_remove_device(hba->ufs_device_wlun); 7969 out: 7970 return ret; 7971 } 7972 7973 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf) 7974 { 7975 struct ufs_dev_info *dev_info = &hba->dev_info; 7976 u8 lun; 7977 u32 d_lu_wb_buf_alloc; 7978 u32 ext_ufs_feature; 7979 7980 if (!ufshcd_is_wb_allowed(hba)) 7981 return; 7982 7983 /* 7984 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or 7985 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES 7986 * enabled 7987 */ 7988 if (!(dev_info->wspecversion >= 0x310 || 7989 dev_info->wspecversion == 0x220 || 7990 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES))) 7991 goto wb_disabled; 7992 7993 ext_ufs_feature = get_unaligned_be32(desc_buf + 7994 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 7995 7996 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP)) 7997 goto wb_disabled; 7998 7999 /* 8000 * WB may be supported but not configured while provisioning. The spec 8001 * says, in dedicated wb buffer mode, a max of 1 lun would have wb 8002 * buffer configured. 8003 */ 8004 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE]; 8005 8006 dev_info->b_presrv_uspc_en = 8007 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN]; 8008 8009 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) { 8010 if (!get_unaligned_be32(desc_buf + 8011 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS)) 8012 goto wb_disabled; 8013 } else { 8014 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) { 8015 d_lu_wb_buf_alloc = 0; 8016 ufshcd_read_unit_desc_param(hba, 8017 lun, 8018 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS, 8019 (u8 *)&d_lu_wb_buf_alloc, 8020 sizeof(d_lu_wb_buf_alloc)); 8021 if (d_lu_wb_buf_alloc) { 8022 dev_info->wb_dedicated_lu = lun; 8023 break; 8024 } 8025 } 8026 8027 if (!d_lu_wb_buf_alloc) 8028 goto wb_disabled; 8029 } 8030 8031 if (!ufshcd_is_wb_buf_lifetime_available(hba)) 8032 goto wb_disabled; 8033 8034 return; 8035 8036 wb_disabled: 8037 hba->caps &= ~UFSHCD_CAP_WB_EN; 8038 } 8039 8040 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf) 8041 { 8042 struct ufs_dev_info *dev_info = &hba->dev_info; 8043 u32 ext_ufs_feature; 8044 u8 mask = 0; 8045 8046 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300) 8047 return; 8048 8049 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8050 8051 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF) 8052 mask |= MASK_EE_TOO_LOW_TEMP; 8053 8054 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF) 8055 mask |= MASK_EE_TOO_HIGH_TEMP; 8056 8057 if (mask) { 8058 ufshcd_enable_ee(hba, mask); 8059 ufs_hwmon_probe(hba, mask); 8060 } 8061 } 8062 8063 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf) 8064 { 8065 struct ufs_dev_info *dev_info = &hba->dev_info; 8066 u32 ext_ufs_feature; 8067 u32 ext_iid_en = 0; 8068 int err; 8069 8070 /* Only UFS-4.0 and above may support EXT_IID */ 8071 if (dev_info->wspecversion < 0x400) 8072 goto out; 8073 8074 ext_ufs_feature = get_unaligned_be32(desc_buf + 8075 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8076 if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP)) 8077 goto out; 8078 8079 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8080 QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en); 8081 if (err) 8082 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err); 8083 8084 out: 8085 dev_info->b_ext_iid_en = ext_iid_en; 8086 } 8087 8088 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, 8089 const struct ufs_dev_quirk *fixups) 8090 { 8091 const struct ufs_dev_quirk *f; 8092 struct ufs_dev_info *dev_info = &hba->dev_info; 8093 8094 if (!fixups) 8095 return; 8096 8097 for (f = fixups; f->quirk; f++) { 8098 if ((f->wmanufacturerid == dev_info->wmanufacturerid || 8099 f->wmanufacturerid == UFS_ANY_VENDOR) && 8100 ((dev_info->model && 8101 STR_PRFX_EQUAL(f->model, dev_info->model)) || 8102 !strcmp(f->model, UFS_ANY_MODEL))) 8103 hba->dev_quirks |= f->quirk; 8104 } 8105 } 8106 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks); 8107 8108 static void ufs_fixup_device_setup(struct ufs_hba *hba) 8109 { 8110 /* fix by general quirk table */ 8111 ufshcd_fixup_dev_quirks(hba, ufs_fixups); 8112 8113 /* allow vendors to fix quirks */ 8114 ufshcd_vops_fixup_dev_quirks(hba); 8115 } 8116 8117 static int ufs_get_device_desc(struct ufs_hba *hba) 8118 { 8119 int err; 8120 u8 model_index; 8121 u8 *desc_buf; 8122 struct ufs_dev_info *dev_info = &hba->dev_info; 8123 8124 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8125 if (!desc_buf) { 8126 err = -ENOMEM; 8127 goto out; 8128 } 8129 8130 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf, 8131 QUERY_DESC_MAX_SIZE); 8132 if (err) { 8133 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n", 8134 __func__, err); 8135 goto out; 8136 } 8137 8138 /* 8139 * getting vendor (manufacturerID) and Bank Index in big endian 8140 * format 8141 */ 8142 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 | 8143 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1]; 8144 8145 /* getting Specification Version in big endian format */ 8146 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 | 8147 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1]; 8148 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH]; 8149 8150 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME]; 8151 8152 err = ufshcd_read_string_desc(hba, model_index, 8153 &dev_info->model, SD_ASCII_STD); 8154 if (err < 0) { 8155 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n", 8156 __func__, err); 8157 goto out; 8158 } 8159 8160 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] + 8161 desc_buf[DEVICE_DESC_PARAM_NUM_WLU]; 8162 8163 ufs_fixup_device_setup(hba); 8164 8165 ufshcd_wb_probe(hba, desc_buf); 8166 8167 ufshcd_temp_notif_probe(hba, desc_buf); 8168 8169 if (hba->ext_iid_sup) 8170 ufshcd_ext_iid_probe(hba, desc_buf); 8171 8172 /* 8173 * ufshcd_read_string_desc returns size of the string 8174 * reset the error value 8175 */ 8176 err = 0; 8177 8178 out: 8179 kfree(desc_buf); 8180 return err; 8181 } 8182 8183 static void ufs_put_device_desc(struct ufs_hba *hba) 8184 { 8185 struct ufs_dev_info *dev_info = &hba->dev_info; 8186 8187 kfree(dev_info->model); 8188 dev_info->model = NULL; 8189 } 8190 8191 /** 8192 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro 8193 * @hba: per-adapter instance 8194 * 8195 * PA_TActivate parameter can be tuned manually if UniPro version is less than 8196 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's 8197 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce 8198 * the hibern8 exit latency. 8199 * 8200 * Return: zero on success, non-zero error value on failure. 8201 */ 8202 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba) 8203 { 8204 int ret = 0; 8205 u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate; 8206 8207 ret = ufshcd_dme_peer_get(hba, 8208 UIC_ARG_MIB_SEL( 8209 RX_MIN_ACTIVATETIME_CAPABILITY, 8210 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), 8211 &peer_rx_min_activatetime); 8212 if (ret) 8213 goto out; 8214 8215 /* make sure proper unit conversion is applied */ 8216 tuned_pa_tactivate = 8217 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US) 8218 / PA_TACTIVATE_TIME_UNIT_US); 8219 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8220 tuned_pa_tactivate); 8221 8222 out: 8223 return ret; 8224 } 8225 8226 /** 8227 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro 8228 * @hba: per-adapter instance 8229 * 8230 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than 8231 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's 8232 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY. 8233 * This optimal value can help reduce the hibern8 exit latency. 8234 * 8235 * Return: zero on success, non-zero error value on failure. 8236 */ 8237 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba) 8238 { 8239 int ret = 0; 8240 u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0; 8241 u32 max_hibern8_time, tuned_pa_hibern8time; 8242 8243 ret = ufshcd_dme_get(hba, 8244 UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY, 8245 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), 8246 &local_tx_hibern8_time_cap); 8247 if (ret) 8248 goto out; 8249 8250 ret = ufshcd_dme_peer_get(hba, 8251 UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY, 8252 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), 8253 &peer_rx_hibern8_time_cap); 8254 if (ret) 8255 goto out; 8256 8257 max_hibern8_time = max(local_tx_hibern8_time_cap, 8258 peer_rx_hibern8_time_cap); 8259 /* make sure proper unit conversion is applied */ 8260 tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US) 8261 / PA_HIBERN8_TIME_UNIT_US); 8262 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), 8263 tuned_pa_hibern8time); 8264 out: 8265 return ret; 8266 } 8267 8268 /** 8269 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is 8270 * less than device PA_TACTIVATE time. 8271 * @hba: per-adapter instance 8272 * 8273 * Some UFS devices require host PA_TACTIVATE to be lower than device 8274 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk 8275 * for such devices. 8276 * 8277 * Return: zero on success, non-zero error value on failure. 8278 */ 8279 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba) 8280 { 8281 int ret = 0; 8282 u32 granularity, peer_granularity; 8283 u32 pa_tactivate, peer_pa_tactivate; 8284 u32 pa_tactivate_us, peer_pa_tactivate_us; 8285 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100}; 8286 8287 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8288 &granularity); 8289 if (ret) 8290 goto out; 8291 8292 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8293 &peer_granularity); 8294 if (ret) 8295 goto out; 8296 8297 if ((granularity < PA_GRANULARITY_MIN_VAL) || 8298 (granularity > PA_GRANULARITY_MAX_VAL)) { 8299 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d", 8300 __func__, granularity); 8301 return -EINVAL; 8302 } 8303 8304 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) || 8305 (peer_granularity > PA_GRANULARITY_MAX_VAL)) { 8306 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d", 8307 __func__, peer_granularity); 8308 return -EINVAL; 8309 } 8310 8311 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate); 8312 if (ret) 8313 goto out; 8314 8315 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE), 8316 &peer_pa_tactivate); 8317 if (ret) 8318 goto out; 8319 8320 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1]; 8321 peer_pa_tactivate_us = peer_pa_tactivate * 8322 gran_to_us_table[peer_granularity - 1]; 8323 8324 if (pa_tactivate_us >= peer_pa_tactivate_us) { 8325 u32 new_peer_pa_tactivate; 8326 8327 new_peer_pa_tactivate = pa_tactivate_us / 8328 gran_to_us_table[peer_granularity - 1]; 8329 new_peer_pa_tactivate++; 8330 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8331 new_peer_pa_tactivate); 8332 } 8333 8334 out: 8335 return ret; 8336 } 8337 8338 static void ufshcd_tune_unipro_params(struct ufs_hba *hba) 8339 { 8340 if (ufshcd_is_unipro_pa_params_tuning_req(hba)) { 8341 ufshcd_tune_pa_tactivate(hba); 8342 ufshcd_tune_pa_hibern8time(hba); 8343 } 8344 8345 ufshcd_vops_apply_dev_quirks(hba); 8346 8347 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE) 8348 /* set 1ms timeout for PA_TACTIVATE */ 8349 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10); 8350 8351 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE) 8352 ufshcd_quirk_tune_host_pa_tactivate(hba); 8353 } 8354 8355 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba) 8356 { 8357 hba->ufs_stats.hibern8_exit_cnt = 0; 8358 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 8359 hba->req_abort_count = 0; 8360 } 8361 8362 static int ufshcd_device_geo_params_init(struct ufs_hba *hba) 8363 { 8364 int err; 8365 u8 *desc_buf; 8366 8367 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8368 if (!desc_buf) { 8369 err = -ENOMEM; 8370 goto out; 8371 } 8372 8373 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0, 8374 desc_buf, QUERY_DESC_MAX_SIZE); 8375 if (err) { 8376 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n", 8377 __func__, err); 8378 goto out; 8379 } 8380 8381 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1) 8382 hba->dev_info.max_lu_supported = 32; 8383 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0) 8384 hba->dev_info.max_lu_supported = 8; 8385 8386 out: 8387 kfree(desc_buf); 8388 return err; 8389 } 8390 8391 struct ufs_ref_clk { 8392 unsigned long freq_hz; 8393 enum ufs_ref_clk_freq val; 8394 }; 8395 8396 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = { 8397 {19200000, REF_CLK_FREQ_19_2_MHZ}, 8398 {26000000, REF_CLK_FREQ_26_MHZ}, 8399 {38400000, REF_CLK_FREQ_38_4_MHZ}, 8400 {52000000, REF_CLK_FREQ_52_MHZ}, 8401 {0, REF_CLK_FREQ_INVAL}, 8402 }; 8403 8404 static enum ufs_ref_clk_freq 8405 ufs_get_bref_clk_from_hz(unsigned long freq) 8406 { 8407 int i; 8408 8409 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++) 8410 if (ufs_ref_clk_freqs[i].freq_hz == freq) 8411 return ufs_ref_clk_freqs[i].val; 8412 8413 return REF_CLK_FREQ_INVAL; 8414 } 8415 8416 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk) 8417 { 8418 unsigned long freq; 8419 8420 freq = clk_get_rate(refclk); 8421 8422 hba->dev_ref_clk_freq = 8423 ufs_get_bref_clk_from_hz(freq); 8424 8425 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 8426 dev_err(hba->dev, 8427 "invalid ref_clk setting = %ld\n", freq); 8428 } 8429 8430 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba) 8431 { 8432 int err; 8433 u32 ref_clk; 8434 u32 freq = hba->dev_ref_clk_freq; 8435 8436 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8437 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk); 8438 8439 if (err) { 8440 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n", 8441 err); 8442 goto out; 8443 } 8444 8445 if (ref_clk == freq) 8446 goto out; /* nothing to update */ 8447 8448 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8449 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq); 8450 8451 if (err) { 8452 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n", 8453 ufs_ref_clk_freqs[freq].freq_hz); 8454 goto out; 8455 } 8456 8457 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n", 8458 ufs_ref_clk_freqs[freq].freq_hz); 8459 8460 out: 8461 return err; 8462 } 8463 8464 static int ufshcd_device_params_init(struct ufs_hba *hba) 8465 { 8466 bool flag; 8467 int ret; 8468 8469 /* Init UFS geometry descriptor related parameters */ 8470 ret = ufshcd_device_geo_params_init(hba); 8471 if (ret) 8472 goto out; 8473 8474 /* Check and apply UFS device quirks */ 8475 ret = ufs_get_device_desc(hba); 8476 if (ret) { 8477 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n", 8478 __func__, ret); 8479 goto out; 8480 } 8481 8482 ufshcd_get_ref_clk_gating_wait(hba); 8483 8484 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, 8485 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag)) 8486 hba->dev_info.f_power_on_wp_en = flag; 8487 8488 /* Probe maximum power mode co-supported by both UFS host and device */ 8489 if (ufshcd_get_max_pwr_mode(hba)) 8490 dev_err(hba->dev, 8491 "%s: Failed getting max supported power mode\n", 8492 __func__); 8493 out: 8494 return ret; 8495 } 8496 8497 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba) 8498 { 8499 int err; 8500 struct ufs_query_req *request = NULL; 8501 struct ufs_query_res *response = NULL; 8502 struct ufs_dev_info *dev_info = &hba->dev_info; 8503 struct utp_upiu_query_v4_0 *upiu_data; 8504 8505 if (dev_info->wspecversion < 0x400) 8506 return; 8507 8508 ufshcd_hold(hba); 8509 8510 mutex_lock(&hba->dev_cmd.lock); 8511 8512 ufshcd_init_query(hba, &request, &response, 8513 UPIU_QUERY_OPCODE_WRITE_ATTR, 8514 QUERY_ATTR_IDN_TIMESTAMP, 0, 0); 8515 8516 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 8517 8518 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req; 8519 8520 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3); 8521 8522 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 8523 8524 if (err) 8525 dev_err(hba->dev, "%s: failed to set timestamp %d\n", 8526 __func__, err); 8527 8528 mutex_unlock(&hba->dev_cmd.lock); 8529 ufshcd_release(hba); 8530 } 8531 8532 /** 8533 * ufshcd_add_lus - probe and add UFS logical units 8534 * @hba: per-adapter instance 8535 * 8536 * Return: 0 upon success; < 0 upon failure. 8537 */ 8538 static int ufshcd_add_lus(struct ufs_hba *hba) 8539 { 8540 int ret; 8541 8542 /* Add required well known logical units to scsi mid layer */ 8543 ret = ufshcd_scsi_add_wlus(hba); 8544 if (ret) 8545 goto out; 8546 8547 /* Initialize devfreq after UFS device is detected */ 8548 if (ufshcd_is_clkscaling_supported(hba)) { 8549 memcpy(&hba->clk_scaling.saved_pwr_info, 8550 &hba->pwr_info, 8551 sizeof(struct ufs_pa_layer_attr)); 8552 hba->clk_scaling.is_allowed = true; 8553 8554 ret = ufshcd_devfreq_init(hba); 8555 if (ret) 8556 goto out; 8557 8558 hba->clk_scaling.is_enabled = true; 8559 ufshcd_init_clk_scaling_sysfs(hba); 8560 } 8561 8562 ufs_bsg_probe(hba); 8563 scsi_scan_host(hba->host); 8564 8565 out: 8566 return ret; 8567 } 8568 8569 /* SDB - Single Doorbell */ 8570 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs) 8571 { 8572 size_t ucdl_size, utrdl_size; 8573 8574 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs; 8575 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr, 8576 hba->ucdl_dma_addr); 8577 8578 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs; 8579 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr, 8580 hba->utrdl_dma_addr); 8581 8582 devm_kfree(hba->dev, hba->lrb); 8583 } 8584 8585 static int ufshcd_alloc_mcq(struct ufs_hba *hba) 8586 { 8587 int ret; 8588 int old_nutrs = hba->nutrs; 8589 8590 ret = ufshcd_mcq_decide_queue_depth(hba); 8591 if (ret < 0) 8592 return ret; 8593 8594 hba->nutrs = ret; 8595 ret = ufshcd_mcq_init(hba); 8596 if (ret) 8597 goto err; 8598 8599 /* 8600 * Previously allocated memory for nutrs may not be enough in MCQ mode. 8601 * Number of supported tags in MCQ mode may be larger than SDB mode. 8602 */ 8603 if (hba->nutrs != old_nutrs) { 8604 ufshcd_release_sdb_queue(hba, old_nutrs); 8605 ret = ufshcd_memory_alloc(hba); 8606 if (ret) 8607 goto err; 8608 ufshcd_host_memory_configure(hba); 8609 } 8610 8611 ret = ufshcd_mcq_memory_alloc(hba); 8612 if (ret) 8613 goto err; 8614 8615 return 0; 8616 err: 8617 hba->nutrs = old_nutrs; 8618 return ret; 8619 } 8620 8621 static void ufshcd_config_mcq(struct ufs_hba *hba) 8622 { 8623 int ret; 8624 u32 intrs; 8625 8626 ret = ufshcd_mcq_vops_config_esi(hba); 8627 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : ""); 8628 8629 intrs = UFSHCD_ENABLE_MCQ_INTRS; 8630 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR) 8631 intrs &= ~MCQ_CQ_EVENT_STATUS; 8632 ufshcd_enable_intr(hba, intrs); 8633 ufshcd_mcq_make_queues_operational(hba); 8634 ufshcd_mcq_config_mac(hba, hba->nutrs); 8635 8636 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 8637 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED; 8638 8639 /* Select MCQ mode */ 8640 ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1, 8641 REG_UFS_MEM_CFG); 8642 hba->mcq_enabled = true; 8643 8644 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n", 8645 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT], 8646 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL], 8647 hba->nutrs); 8648 } 8649 8650 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params) 8651 { 8652 int ret; 8653 struct Scsi_Host *host = hba->host; 8654 8655 hba->ufshcd_state = UFSHCD_STATE_RESET; 8656 8657 ret = ufshcd_link_startup(hba); 8658 if (ret) 8659 return ret; 8660 8661 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION) 8662 return ret; 8663 8664 /* Debug counters initialization */ 8665 ufshcd_clear_dbg_ufs_stats(hba); 8666 8667 /* UniPro link is active now */ 8668 ufshcd_set_link_active(hba); 8669 8670 /* Reconfigure MCQ upon reset */ 8671 if (is_mcq_enabled(hba) && !init_dev_params) 8672 ufshcd_config_mcq(hba); 8673 8674 /* Verify device initialization by sending NOP OUT UPIU */ 8675 ret = ufshcd_verify_dev_init(hba); 8676 if (ret) 8677 return ret; 8678 8679 /* Initiate UFS initialization, and waiting until completion */ 8680 ret = ufshcd_complete_dev_init(hba); 8681 if (ret) 8682 return ret; 8683 8684 /* 8685 * Initialize UFS device parameters used by driver, these 8686 * parameters are associated with UFS descriptors. 8687 */ 8688 if (init_dev_params) { 8689 ret = ufshcd_device_params_init(hba); 8690 if (ret) 8691 return ret; 8692 if (is_mcq_supported(hba) && !hba->scsi_host_added) { 8693 ret = ufshcd_alloc_mcq(hba); 8694 if (!ret) { 8695 ufshcd_config_mcq(hba); 8696 } else { 8697 /* Continue with SDB mode */ 8698 use_mcq_mode = false; 8699 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n", 8700 ret); 8701 } 8702 ret = scsi_add_host(host, hba->dev); 8703 if (ret) { 8704 dev_err(hba->dev, "scsi_add_host failed\n"); 8705 return ret; 8706 } 8707 hba->scsi_host_added = true; 8708 } else if (is_mcq_supported(hba)) { 8709 /* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */ 8710 ufshcd_config_mcq(hba); 8711 } 8712 } 8713 8714 ufshcd_tune_unipro_params(hba); 8715 8716 /* UFS device is also active now */ 8717 ufshcd_set_ufs_dev_active(hba); 8718 ufshcd_force_reset_auto_bkops(hba); 8719 8720 ufshcd_set_timestamp_attr(hba); 8721 8722 /* Gear up to HS gear if supported */ 8723 if (hba->max_pwr_info.is_valid) { 8724 /* 8725 * Set the right value to bRefClkFreq before attempting to 8726 * switch to HS gears. 8727 */ 8728 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL) 8729 ufshcd_set_dev_ref_clk(hba); 8730 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); 8731 if (ret) { 8732 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", 8733 __func__, ret); 8734 return ret; 8735 } 8736 } 8737 8738 return 0; 8739 } 8740 8741 /** 8742 * ufshcd_probe_hba - probe hba to detect device and initialize it 8743 * @hba: per-adapter instance 8744 * @init_dev_params: whether or not to call ufshcd_device_params_init(). 8745 * 8746 * Execute link-startup and verify device initialization 8747 * 8748 * Return: 0 upon success; < 0 upon failure. 8749 */ 8750 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params) 8751 { 8752 ktime_t start = ktime_get(); 8753 unsigned long flags; 8754 int ret; 8755 8756 ret = ufshcd_device_init(hba, init_dev_params); 8757 if (ret) 8758 goto out; 8759 8760 if (!hba->pm_op_in_progress && 8761 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) { 8762 /* Reset the device and controller before doing reinit */ 8763 ufshcd_device_reset(hba); 8764 ufs_put_device_desc(hba); 8765 ufshcd_hba_stop(hba); 8766 ufshcd_vops_reinit_notify(hba); 8767 ret = ufshcd_hba_enable(hba); 8768 if (ret) { 8769 dev_err(hba->dev, "Host controller enable failed\n"); 8770 ufshcd_print_evt_hist(hba); 8771 ufshcd_print_host_state(hba); 8772 goto out; 8773 } 8774 8775 /* Reinit the device */ 8776 ret = ufshcd_device_init(hba, init_dev_params); 8777 if (ret) 8778 goto out; 8779 } 8780 8781 ufshcd_print_pwr_info(hba); 8782 8783 /* 8784 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec) 8785 * and for removable UFS card as well, hence always set the parameter. 8786 * Note: Error handler may issue the device reset hence resetting 8787 * bActiveICCLevel as well so it is always safe to set this here. 8788 */ 8789 ufshcd_set_active_icc_lvl(hba); 8790 8791 /* Enable UFS Write Booster if supported */ 8792 ufshcd_configure_wb(hba); 8793 8794 if (hba->ee_usr_mask) 8795 ufshcd_write_ee_control(hba); 8796 /* Enable Auto-Hibernate if configured */ 8797 ufshcd_auto_hibern8_enable(hba); 8798 8799 out: 8800 spin_lock_irqsave(hba->host->host_lock, flags); 8801 if (ret) 8802 hba->ufshcd_state = UFSHCD_STATE_ERROR; 8803 else if (hba->ufshcd_state == UFSHCD_STATE_RESET) 8804 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 8805 spin_unlock_irqrestore(hba->host->host_lock, flags); 8806 8807 trace_ufshcd_init(dev_name(hba->dev), ret, 8808 ktime_to_us(ktime_sub(ktime_get(), start)), 8809 hba->curr_dev_pwr_mode, hba->uic_link_state); 8810 return ret; 8811 } 8812 8813 /** 8814 * ufshcd_async_scan - asynchronous execution for probing hba 8815 * @data: data pointer to pass to this function 8816 * @cookie: cookie data 8817 */ 8818 static void ufshcd_async_scan(void *data, async_cookie_t cookie) 8819 { 8820 struct ufs_hba *hba = (struct ufs_hba *)data; 8821 int ret; 8822 8823 down(&hba->host_sem); 8824 /* Initialize hba, detect and initialize UFS device */ 8825 ret = ufshcd_probe_hba(hba, true); 8826 up(&hba->host_sem); 8827 if (ret) 8828 goto out; 8829 8830 /* Probe and add UFS logical units */ 8831 ret = ufshcd_add_lus(hba); 8832 8833 out: 8834 pm_runtime_put_sync(hba->dev); 8835 8836 if (ret) 8837 dev_err(hba->dev, "%s failed: %d\n", __func__, ret); 8838 } 8839 8840 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd) 8841 { 8842 struct ufs_hba *hba = shost_priv(scmd->device->host); 8843 8844 if (!hba->system_suspending) { 8845 /* Activate the error handler in the SCSI core. */ 8846 return SCSI_EH_NOT_HANDLED; 8847 } 8848 8849 /* 8850 * If we get here we know that no TMFs are outstanding and also that 8851 * the only pending command is a START STOP UNIT command. Handle the 8852 * timeout of that command directly to prevent a deadlock between 8853 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler(). 8854 */ 8855 ufshcd_link_recovery(hba); 8856 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n", 8857 __func__, hba->outstanding_tasks); 8858 8859 return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE; 8860 } 8861 8862 static const struct attribute_group *ufshcd_driver_groups[] = { 8863 &ufs_sysfs_unit_descriptor_group, 8864 &ufs_sysfs_lun_attributes_group, 8865 NULL, 8866 }; 8867 8868 static struct ufs_hba_variant_params ufs_hba_vps = { 8869 .hba_enable_delay_us = 1000, 8870 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40), 8871 .devfreq_profile.polling_ms = 100, 8872 .devfreq_profile.target = ufshcd_devfreq_target, 8873 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status, 8874 .ondemand_data.upthreshold = 70, 8875 .ondemand_data.downdifferential = 5, 8876 }; 8877 8878 static const struct scsi_host_template ufshcd_driver_template = { 8879 .module = THIS_MODULE, 8880 .name = UFSHCD, 8881 .proc_name = UFSHCD, 8882 .map_queues = ufshcd_map_queues, 8883 .queuecommand = ufshcd_queuecommand, 8884 .mq_poll = ufshcd_poll, 8885 .slave_alloc = ufshcd_slave_alloc, 8886 .slave_configure = ufshcd_slave_configure, 8887 .slave_destroy = ufshcd_slave_destroy, 8888 .change_queue_depth = ufshcd_change_queue_depth, 8889 .eh_abort_handler = ufshcd_abort, 8890 .eh_device_reset_handler = ufshcd_eh_device_reset_handler, 8891 .eh_host_reset_handler = ufshcd_eh_host_reset_handler, 8892 .eh_timed_out = ufshcd_eh_timed_out, 8893 .this_id = -1, 8894 .sg_tablesize = SG_ALL, 8895 .cmd_per_lun = UFSHCD_CMD_PER_LUN, 8896 .can_queue = UFSHCD_CAN_QUEUE, 8897 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX, 8898 .max_sectors = SZ_1M / SECTOR_SIZE, 8899 .max_host_blocked = 1, 8900 .track_queue_depth = 1, 8901 .skip_settle_delay = 1, 8902 .sdev_groups = ufshcd_driver_groups, 8903 .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS, 8904 }; 8905 8906 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg, 8907 int ua) 8908 { 8909 int ret; 8910 8911 if (!vreg) 8912 return 0; 8913 8914 /* 8915 * "set_load" operation shall be required on those regulators 8916 * which specifically configured current limitation. Otherwise 8917 * zero max_uA may cause unexpected behavior when regulator is 8918 * enabled or set as high power mode. 8919 */ 8920 if (!vreg->max_uA) 8921 return 0; 8922 8923 ret = regulator_set_load(vreg->reg, ua); 8924 if (ret < 0) { 8925 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n", 8926 __func__, vreg->name, ua, ret); 8927 } 8928 8929 return ret; 8930 } 8931 8932 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba, 8933 struct ufs_vreg *vreg) 8934 { 8935 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA); 8936 } 8937 8938 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 8939 struct ufs_vreg *vreg) 8940 { 8941 if (!vreg) 8942 return 0; 8943 8944 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA); 8945 } 8946 8947 static int ufshcd_config_vreg(struct device *dev, 8948 struct ufs_vreg *vreg, bool on) 8949 { 8950 if (regulator_count_voltages(vreg->reg) <= 0) 8951 return 0; 8952 8953 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0); 8954 } 8955 8956 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg) 8957 { 8958 int ret = 0; 8959 8960 if (!vreg || vreg->enabled) 8961 goto out; 8962 8963 ret = ufshcd_config_vreg(dev, vreg, true); 8964 if (!ret) 8965 ret = regulator_enable(vreg->reg); 8966 8967 if (!ret) 8968 vreg->enabled = true; 8969 else 8970 dev_err(dev, "%s: %s enable failed, err=%d\n", 8971 __func__, vreg->name, ret); 8972 out: 8973 return ret; 8974 } 8975 8976 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg) 8977 { 8978 int ret = 0; 8979 8980 if (!vreg || !vreg->enabled || vreg->always_on) 8981 goto out; 8982 8983 ret = regulator_disable(vreg->reg); 8984 8985 if (!ret) { 8986 /* ignore errors on applying disable config */ 8987 ufshcd_config_vreg(dev, vreg, false); 8988 vreg->enabled = false; 8989 } else { 8990 dev_err(dev, "%s: %s disable failed, err=%d\n", 8991 __func__, vreg->name, ret); 8992 } 8993 out: 8994 return ret; 8995 } 8996 8997 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on) 8998 { 8999 int ret = 0; 9000 struct device *dev = hba->dev; 9001 struct ufs_vreg_info *info = &hba->vreg_info; 9002 9003 ret = ufshcd_toggle_vreg(dev, info->vcc, on); 9004 if (ret) 9005 goto out; 9006 9007 ret = ufshcd_toggle_vreg(dev, info->vccq, on); 9008 if (ret) 9009 goto out; 9010 9011 ret = ufshcd_toggle_vreg(dev, info->vccq2, on); 9012 9013 out: 9014 if (ret) { 9015 ufshcd_toggle_vreg(dev, info->vccq2, false); 9016 ufshcd_toggle_vreg(dev, info->vccq, false); 9017 ufshcd_toggle_vreg(dev, info->vcc, false); 9018 } 9019 return ret; 9020 } 9021 9022 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on) 9023 { 9024 struct ufs_vreg_info *info = &hba->vreg_info; 9025 9026 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on); 9027 } 9028 9029 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg) 9030 { 9031 int ret = 0; 9032 9033 if (!vreg) 9034 goto out; 9035 9036 vreg->reg = devm_regulator_get(dev, vreg->name); 9037 if (IS_ERR(vreg->reg)) { 9038 ret = PTR_ERR(vreg->reg); 9039 dev_err(dev, "%s: %s get failed, err=%d\n", 9040 __func__, vreg->name, ret); 9041 } 9042 out: 9043 return ret; 9044 } 9045 EXPORT_SYMBOL_GPL(ufshcd_get_vreg); 9046 9047 static int ufshcd_init_vreg(struct ufs_hba *hba) 9048 { 9049 int ret = 0; 9050 struct device *dev = hba->dev; 9051 struct ufs_vreg_info *info = &hba->vreg_info; 9052 9053 ret = ufshcd_get_vreg(dev, info->vcc); 9054 if (ret) 9055 goto out; 9056 9057 ret = ufshcd_get_vreg(dev, info->vccq); 9058 if (!ret) 9059 ret = ufshcd_get_vreg(dev, info->vccq2); 9060 out: 9061 return ret; 9062 } 9063 9064 static int ufshcd_init_hba_vreg(struct ufs_hba *hba) 9065 { 9066 struct ufs_vreg_info *info = &hba->vreg_info; 9067 9068 return ufshcd_get_vreg(hba->dev, info->vdd_hba); 9069 } 9070 9071 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on) 9072 { 9073 int ret = 0; 9074 struct ufs_clk_info *clki; 9075 struct list_head *head = &hba->clk_list_head; 9076 unsigned long flags; 9077 ktime_t start = ktime_get(); 9078 bool clk_state_changed = false; 9079 9080 if (list_empty(head)) 9081 goto out; 9082 9083 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE); 9084 if (ret) 9085 return ret; 9086 9087 list_for_each_entry(clki, head, list) { 9088 if (!IS_ERR_OR_NULL(clki->clk)) { 9089 /* 9090 * Don't disable clocks which are needed 9091 * to keep the link active. 9092 */ 9093 if (ufshcd_is_link_active(hba) && 9094 clki->keep_link_active) 9095 continue; 9096 9097 clk_state_changed = on ^ clki->enabled; 9098 if (on && !clki->enabled) { 9099 ret = clk_prepare_enable(clki->clk); 9100 if (ret) { 9101 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n", 9102 __func__, clki->name, ret); 9103 goto out; 9104 } 9105 } else if (!on && clki->enabled) { 9106 clk_disable_unprepare(clki->clk); 9107 } 9108 clki->enabled = on; 9109 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__, 9110 clki->name, on ? "en" : "dis"); 9111 } 9112 } 9113 9114 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE); 9115 if (ret) 9116 return ret; 9117 9118 out: 9119 if (ret) { 9120 list_for_each_entry(clki, head, list) { 9121 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled) 9122 clk_disable_unprepare(clki->clk); 9123 } 9124 } else if (!ret && on) { 9125 spin_lock_irqsave(hba->host->host_lock, flags); 9126 hba->clk_gating.state = CLKS_ON; 9127 trace_ufshcd_clk_gating(dev_name(hba->dev), 9128 hba->clk_gating.state); 9129 spin_unlock_irqrestore(hba->host->host_lock, flags); 9130 } 9131 9132 if (clk_state_changed) 9133 trace_ufshcd_profile_clk_gating(dev_name(hba->dev), 9134 (on ? "on" : "off"), 9135 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 9136 return ret; 9137 } 9138 9139 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba) 9140 { 9141 u32 freq; 9142 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq); 9143 9144 if (ret) { 9145 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret); 9146 return REF_CLK_FREQ_INVAL; 9147 } 9148 9149 return ufs_get_bref_clk_from_hz(freq); 9150 } 9151 9152 static int ufshcd_init_clocks(struct ufs_hba *hba) 9153 { 9154 int ret = 0; 9155 struct ufs_clk_info *clki; 9156 struct device *dev = hba->dev; 9157 struct list_head *head = &hba->clk_list_head; 9158 9159 if (list_empty(head)) 9160 goto out; 9161 9162 list_for_each_entry(clki, head, list) { 9163 if (!clki->name) 9164 continue; 9165 9166 clki->clk = devm_clk_get(dev, clki->name); 9167 if (IS_ERR(clki->clk)) { 9168 ret = PTR_ERR(clki->clk); 9169 dev_err(dev, "%s: %s clk get failed, %d\n", 9170 __func__, clki->name, ret); 9171 goto out; 9172 } 9173 9174 /* 9175 * Parse device ref clk freq as per device tree "ref_clk". 9176 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL 9177 * in ufshcd_alloc_host(). 9178 */ 9179 if (!strcmp(clki->name, "ref_clk")) 9180 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk); 9181 9182 if (clki->max_freq) { 9183 ret = clk_set_rate(clki->clk, clki->max_freq); 9184 if (ret) { 9185 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 9186 __func__, clki->name, 9187 clki->max_freq, ret); 9188 goto out; 9189 } 9190 clki->curr_freq = clki->max_freq; 9191 } 9192 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__, 9193 clki->name, clk_get_rate(clki->clk)); 9194 } 9195 out: 9196 return ret; 9197 } 9198 9199 static int ufshcd_variant_hba_init(struct ufs_hba *hba) 9200 { 9201 int err = 0; 9202 9203 if (!hba->vops) 9204 goto out; 9205 9206 err = ufshcd_vops_init(hba); 9207 if (err) 9208 dev_err_probe(hba->dev, err, 9209 "%s: variant %s init failed with err %d\n", 9210 __func__, ufshcd_get_var_name(hba), err); 9211 out: 9212 return err; 9213 } 9214 9215 static void ufshcd_variant_hba_exit(struct ufs_hba *hba) 9216 { 9217 if (!hba->vops) 9218 return; 9219 9220 ufshcd_vops_exit(hba); 9221 } 9222 9223 static int ufshcd_hba_init(struct ufs_hba *hba) 9224 { 9225 int err; 9226 9227 /* 9228 * Handle host controller power separately from the UFS device power 9229 * rails as it will help controlling the UFS host controller power 9230 * collapse easily which is different than UFS device power collapse. 9231 * Also, enable the host controller power before we go ahead with rest 9232 * of the initialization here. 9233 */ 9234 err = ufshcd_init_hba_vreg(hba); 9235 if (err) 9236 goto out; 9237 9238 err = ufshcd_setup_hba_vreg(hba, true); 9239 if (err) 9240 goto out; 9241 9242 err = ufshcd_init_clocks(hba); 9243 if (err) 9244 goto out_disable_hba_vreg; 9245 9246 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 9247 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba); 9248 9249 err = ufshcd_setup_clocks(hba, true); 9250 if (err) 9251 goto out_disable_hba_vreg; 9252 9253 err = ufshcd_init_vreg(hba); 9254 if (err) 9255 goto out_disable_clks; 9256 9257 err = ufshcd_setup_vreg(hba, true); 9258 if (err) 9259 goto out_disable_clks; 9260 9261 err = ufshcd_variant_hba_init(hba); 9262 if (err) 9263 goto out_disable_vreg; 9264 9265 ufs_debugfs_hba_init(hba); 9266 9267 hba->is_powered = true; 9268 goto out; 9269 9270 out_disable_vreg: 9271 ufshcd_setup_vreg(hba, false); 9272 out_disable_clks: 9273 ufshcd_setup_clocks(hba, false); 9274 out_disable_hba_vreg: 9275 ufshcd_setup_hba_vreg(hba, false); 9276 out: 9277 return err; 9278 } 9279 9280 static void ufshcd_hba_exit(struct ufs_hba *hba) 9281 { 9282 if (hba->is_powered) { 9283 ufshcd_exit_clk_scaling(hba); 9284 ufshcd_exit_clk_gating(hba); 9285 if (hba->eh_wq) 9286 destroy_workqueue(hba->eh_wq); 9287 ufs_debugfs_hba_exit(hba); 9288 ufshcd_variant_hba_exit(hba); 9289 ufshcd_setup_vreg(hba, false); 9290 ufshcd_setup_clocks(hba, false); 9291 ufshcd_setup_hba_vreg(hba, false); 9292 hba->is_powered = false; 9293 ufs_put_device_desc(hba); 9294 } 9295 } 9296 9297 static int ufshcd_execute_start_stop(struct scsi_device *sdev, 9298 enum ufs_dev_pwr_mode pwr_mode, 9299 struct scsi_sense_hdr *sshdr) 9300 { 9301 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 }; 9302 const struct scsi_exec_args args = { 9303 .sshdr = sshdr, 9304 .req_flags = BLK_MQ_REQ_PM, 9305 .scmd_flags = SCMD_FAIL_IF_RECOVERING, 9306 }; 9307 9308 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL, 9309 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0, 9310 &args); 9311 } 9312 9313 /** 9314 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device 9315 * power mode 9316 * @hba: per adapter instance 9317 * @pwr_mode: device power mode to set 9318 * 9319 * Return: 0 if requested power mode is set successfully; 9320 * < 0 if failed to set the requested power mode. 9321 */ 9322 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba, 9323 enum ufs_dev_pwr_mode pwr_mode) 9324 { 9325 struct scsi_sense_hdr sshdr; 9326 struct scsi_device *sdp; 9327 unsigned long flags; 9328 int ret, retries; 9329 9330 spin_lock_irqsave(hba->host->host_lock, flags); 9331 sdp = hba->ufs_device_wlun; 9332 if (sdp && scsi_device_online(sdp)) 9333 ret = scsi_device_get(sdp); 9334 else 9335 ret = -ENODEV; 9336 spin_unlock_irqrestore(hba->host->host_lock, flags); 9337 9338 if (ret) 9339 return ret; 9340 9341 /* 9342 * If scsi commands fail, the scsi mid-layer schedules scsi error- 9343 * handling, which would wait for host to be resumed. Since we know 9344 * we are functional while we are here, skip host resume in error 9345 * handling context. 9346 */ 9347 hba->host->eh_noresume = 1; 9348 9349 /* 9350 * Current function would be generally called from the power management 9351 * callbacks hence set the RQF_PM flag so that it doesn't resume the 9352 * already suspended childs. 9353 */ 9354 for (retries = 3; retries > 0; --retries) { 9355 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr); 9356 /* 9357 * scsi_execute() only returns a negative value if the request 9358 * queue is dying. 9359 */ 9360 if (ret <= 0) 9361 break; 9362 } 9363 if (ret) { 9364 sdev_printk(KERN_WARNING, sdp, 9365 "START_STOP failed for power mode: %d, result %x\n", 9366 pwr_mode, ret); 9367 if (ret > 0) { 9368 if (scsi_sense_valid(&sshdr)) 9369 scsi_print_sense_hdr(sdp, NULL, &sshdr); 9370 ret = -EIO; 9371 } 9372 } else { 9373 hba->curr_dev_pwr_mode = pwr_mode; 9374 } 9375 9376 scsi_device_put(sdp); 9377 hba->host->eh_noresume = 0; 9378 return ret; 9379 } 9380 9381 static int ufshcd_link_state_transition(struct ufs_hba *hba, 9382 enum uic_link_state req_link_state, 9383 bool check_for_bkops) 9384 { 9385 int ret = 0; 9386 9387 if (req_link_state == hba->uic_link_state) 9388 return 0; 9389 9390 if (req_link_state == UIC_LINK_HIBERN8_STATE) { 9391 ret = ufshcd_uic_hibern8_enter(hba); 9392 if (!ret) { 9393 ufshcd_set_link_hibern8(hba); 9394 } else { 9395 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9396 __func__, ret); 9397 goto out; 9398 } 9399 } 9400 /* 9401 * If autobkops is enabled, link can't be turned off because 9402 * turning off the link would also turn off the device, except in the 9403 * case of DeepSleep where the device is expected to remain powered. 9404 */ 9405 else if ((req_link_state == UIC_LINK_OFF_STATE) && 9406 (!check_for_bkops || !hba->auto_bkops_enabled)) { 9407 /* 9408 * Let's make sure that link is in low power mode, we are doing 9409 * this currently by putting the link in Hibern8. Otherway to 9410 * put the link in low power mode is to send the DME end point 9411 * to device and then send the DME reset command to local 9412 * unipro. But putting the link in hibern8 is much faster. 9413 * 9414 * Note also that putting the link in Hibern8 is a requirement 9415 * for entering DeepSleep. 9416 */ 9417 ret = ufshcd_uic_hibern8_enter(hba); 9418 if (ret) { 9419 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9420 __func__, ret); 9421 goto out; 9422 } 9423 /* 9424 * Change controller state to "reset state" which 9425 * should also put the link in off/reset state 9426 */ 9427 ufshcd_hba_stop(hba); 9428 /* 9429 * TODO: Check if we need any delay to make sure that 9430 * controller is reset 9431 */ 9432 ufshcd_set_link_off(hba); 9433 } 9434 9435 out: 9436 return ret; 9437 } 9438 9439 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba) 9440 { 9441 bool vcc_off = false; 9442 9443 /* 9444 * It seems some UFS devices may keep drawing more than sleep current 9445 * (atleast for 500us) from UFS rails (especially from VCCQ rail). 9446 * To avoid this situation, add 2ms delay before putting these UFS 9447 * rails in LPM mode. 9448 */ 9449 if (!ufshcd_is_link_active(hba) && 9450 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM) 9451 usleep_range(2000, 2100); 9452 9453 /* 9454 * If UFS device is either in UFS_Sleep turn off VCC rail to save some 9455 * power. 9456 * 9457 * If UFS device and link is in OFF state, all power supplies (VCC, 9458 * VCCQ, VCCQ2) can be turned off if power on write protect is not 9459 * required. If UFS link is inactive (Hibern8 or OFF state) and device 9460 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode. 9461 * 9462 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway 9463 * in low power state which would save some power. 9464 * 9465 * If Write Booster is enabled and the device needs to flush the WB 9466 * buffer OR if bkops status is urgent for WB, keep Vcc on. 9467 */ 9468 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9469 !hba->dev_info.is_lu_power_on_wp) { 9470 ufshcd_setup_vreg(hba, false); 9471 vcc_off = true; 9472 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9473 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9474 vcc_off = true; 9475 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) { 9476 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9477 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2); 9478 } 9479 } 9480 9481 /* 9482 * Some UFS devices require delay after VCC power rail is turned-off. 9483 */ 9484 if (vcc_off && hba->vreg_info.vcc && 9485 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM) 9486 usleep_range(5000, 5100); 9487 } 9488 9489 #ifdef CONFIG_PM 9490 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba) 9491 { 9492 int ret = 0; 9493 9494 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9495 !hba->dev_info.is_lu_power_on_wp) { 9496 ret = ufshcd_setup_vreg(hba, true); 9497 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9498 if (!ufshcd_is_link_active(hba)) { 9499 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 9500 if (ret) 9501 goto vcc_disable; 9502 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 9503 if (ret) 9504 goto vccq_lpm; 9505 } 9506 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true); 9507 } 9508 goto out; 9509 9510 vccq_lpm: 9511 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9512 vcc_disable: 9513 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9514 out: 9515 return ret; 9516 } 9517 #endif /* CONFIG_PM */ 9518 9519 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba) 9520 { 9521 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9522 ufshcd_setup_hba_vreg(hba, false); 9523 } 9524 9525 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba) 9526 { 9527 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9528 ufshcd_setup_hba_vreg(hba, true); 9529 } 9530 9531 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9532 { 9533 int ret = 0; 9534 bool check_for_bkops; 9535 enum ufs_pm_level pm_lvl; 9536 enum ufs_dev_pwr_mode req_dev_pwr_mode; 9537 enum uic_link_state req_link_state; 9538 9539 hba->pm_op_in_progress = true; 9540 if (pm_op != UFS_SHUTDOWN_PM) { 9541 pm_lvl = pm_op == UFS_RUNTIME_PM ? 9542 hba->rpm_lvl : hba->spm_lvl; 9543 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl); 9544 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl); 9545 } else { 9546 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE; 9547 req_link_state = UIC_LINK_OFF_STATE; 9548 } 9549 9550 /* 9551 * If we can't transition into any of the low power modes 9552 * just gate the clocks. 9553 */ 9554 ufshcd_hold(hba); 9555 hba->clk_gating.is_suspended = true; 9556 9557 if (ufshcd_is_clkscaling_supported(hba)) 9558 ufshcd_clk_scaling_suspend(hba, true); 9559 9560 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE && 9561 req_link_state == UIC_LINK_ACTIVE_STATE) { 9562 goto vops_suspend; 9563 } 9564 9565 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) && 9566 (req_link_state == hba->uic_link_state)) 9567 goto enable_scaling; 9568 9569 /* UFS device & link must be active before we enter in this function */ 9570 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) { 9571 /* Wait err handler finish or trigger err recovery */ 9572 if (!ufshcd_eh_in_progress(hba)) 9573 ufshcd_force_error_recovery(hba); 9574 ret = -EBUSY; 9575 goto enable_scaling; 9576 } 9577 9578 if (pm_op == UFS_RUNTIME_PM) { 9579 if (ufshcd_can_autobkops_during_suspend(hba)) { 9580 /* 9581 * The device is idle with no requests in the queue, 9582 * allow background operations if bkops status shows 9583 * that performance might be impacted. 9584 */ 9585 ret = ufshcd_urgent_bkops(hba); 9586 if (ret) { 9587 /* 9588 * If return err in suspend flow, IO will hang. 9589 * Trigger error handler and break suspend for 9590 * error recovery. 9591 */ 9592 ufshcd_force_error_recovery(hba); 9593 ret = -EBUSY; 9594 goto enable_scaling; 9595 } 9596 } else { 9597 /* make sure that auto bkops is disabled */ 9598 ufshcd_disable_auto_bkops(hba); 9599 } 9600 /* 9601 * If device needs to do BKOP or WB buffer flush during 9602 * Hibern8, keep device power mode as "active power mode" 9603 * and VCC supply. 9604 */ 9605 hba->dev_info.b_rpm_dev_flush_capable = 9606 hba->auto_bkops_enabled || 9607 (((req_link_state == UIC_LINK_HIBERN8_STATE) || 9608 ((req_link_state == UIC_LINK_ACTIVE_STATE) && 9609 ufshcd_is_auto_hibern8_enabled(hba))) && 9610 ufshcd_wb_need_flush(hba)); 9611 } 9612 9613 flush_work(&hba->eeh_work); 9614 9615 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9616 if (ret) 9617 goto enable_scaling; 9618 9619 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) { 9620 if (pm_op != UFS_RUNTIME_PM) 9621 /* ensure that bkops is disabled */ 9622 ufshcd_disable_auto_bkops(hba); 9623 9624 if (!hba->dev_info.b_rpm_dev_flush_capable) { 9625 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode); 9626 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9627 /* 9628 * If return err in suspend flow, IO will hang. 9629 * Trigger error handler and break suspend for 9630 * error recovery. 9631 */ 9632 ufshcd_force_error_recovery(hba); 9633 ret = -EBUSY; 9634 } 9635 if (ret) 9636 goto enable_scaling; 9637 } 9638 } 9639 9640 /* 9641 * In the case of DeepSleep, the device is expected to remain powered 9642 * with the link off, so do not check for bkops. 9643 */ 9644 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba); 9645 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops); 9646 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9647 /* 9648 * If return err in suspend flow, IO will hang. 9649 * Trigger error handler and break suspend for 9650 * error recovery. 9651 */ 9652 ufshcd_force_error_recovery(hba); 9653 ret = -EBUSY; 9654 } 9655 if (ret) 9656 goto set_dev_active; 9657 9658 vops_suspend: 9659 /* 9660 * Call vendor specific suspend callback. As these callbacks may access 9661 * vendor specific host controller register space call them before the 9662 * host clocks are ON. 9663 */ 9664 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9665 if (ret) 9666 goto set_link_active; 9667 goto out; 9668 9669 set_link_active: 9670 /* 9671 * Device hardware reset is required to exit DeepSleep. Also, for 9672 * DeepSleep, the link is off so host reset and restore will be done 9673 * further below. 9674 */ 9675 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9676 ufshcd_device_reset(hba); 9677 WARN_ON(!ufshcd_is_link_off(hba)); 9678 } 9679 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba)) 9680 ufshcd_set_link_active(hba); 9681 else if (ufshcd_is_link_off(hba)) 9682 ufshcd_host_reset_and_restore(hba); 9683 set_dev_active: 9684 /* Can also get here needing to exit DeepSleep */ 9685 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9686 ufshcd_device_reset(hba); 9687 ufshcd_host_reset_and_restore(hba); 9688 } 9689 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE)) 9690 ufshcd_disable_auto_bkops(hba); 9691 enable_scaling: 9692 if (ufshcd_is_clkscaling_supported(hba)) 9693 ufshcd_clk_scaling_suspend(hba, false); 9694 9695 hba->dev_info.b_rpm_dev_flush_capable = false; 9696 out: 9697 if (hba->dev_info.b_rpm_dev_flush_capable) { 9698 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work, 9699 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS)); 9700 } 9701 9702 if (ret) { 9703 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret); 9704 hba->clk_gating.is_suspended = false; 9705 ufshcd_release(hba); 9706 } 9707 hba->pm_op_in_progress = false; 9708 return ret; 9709 } 9710 9711 #ifdef CONFIG_PM 9712 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9713 { 9714 int ret; 9715 enum uic_link_state old_link_state = hba->uic_link_state; 9716 9717 hba->pm_op_in_progress = true; 9718 9719 /* 9720 * Call vendor specific resume callback. As these callbacks may access 9721 * vendor specific host controller register space call them when the 9722 * host clocks are ON. 9723 */ 9724 ret = ufshcd_vops_resume(hba, pm_op); 9725 if (ret) 9726 goto out; 9727 9728 /* For DeepSleep, the only supported option is to have the link off */ 9729 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba)); 9730 9731 if (ufshcd_is_link_hibern8(hba)) { 9732 ret = ufshcd_uic_hibern8_exit(hba); 9733 if (!ret) { 9734 ufshcd_set_link_active(hba); 9735 } else { 9736 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 9737 __func__, ret); 9738 goto vendor_suspend; 9739 } 9740 } else if (ufshcd_is_link_off(hba)) { 9741 /* 9742 * A full initialization of the host and the device is 9743 * required since the link was put to off during suspend. 9744 * Note, in the case of DeepSleep, the device will exit 9745 * DeepSleep due to device reset. 9746 */ 9747 ret = ufshcd_reset_and_restore(hba); 9748 /* 9749 * ufshcd_reset_and_restore() should have already 9750 * set the link state as active 9751 */ 9752 if (ret || !ufshcd_is_link_active(hba)) 9753 goto vendor_suspend; 9754 } 9755 9756 if (!ufshcd_is_ufs_dev_active(hba)) { 9757 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE); 9758 if (ret) 9759 goto set_old_link_state; 9760 ufshcd_set_timestamp_attr(hba); 9761 } 9762 9763 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) 9764 ufshcd_enable_auto_bkops(hba); 9765 else 9766 /* 9767 * If BKOPs operations are urgently needed at this moment then 9768 * keep auto-bkops enabled or else disable it. 9769 */ 9770 ufshcd_urgent_bkops(hba); 9771 9772 if (hba->ee_usr_mask) 9773 ufshcd_write_ee_control(hba); 9774 9775 if (ufshcd_is_clkscaling_supported(hba)) 9776 ufshcd_clk_scaling_suspend(hba, false); 9777 9778 if (hba->dev_info.b_rpm_dev_flush_capable) { 9779 hba->dev_info.b_rpm_dev_flush_capable = false; 9780 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work); 9781 } 9782 9783 /* Enable Auto-Hibernate if configured */ 9784 ufshcd_auto_hibern8_enable(hba); 9785 9786 goto out; 9787 9788 set_old_link_state: 9789 ufshcd_link_state_transition(hba, old_link_state, 0); 9790 vendor_suspend: 9791 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9792 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9793 out: 9794 if (ret) 9795 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret); 9796 hba->clk_gating.is_suspended = false; 9797 ufshcd_release(hba); 9798 hba->pm_op_in_progress = false; 9799 return ret; 9800 } 9801 9802 static int ufshcd_wl_runtime_suspend(struct device *dev) 9803 { 9804 struct scsi_device *sdev = to_scsi_device(dev); 9805 struct ufs_hba *hba; 9806 int ret; 9807 ktime_t start = ktime_get(); 9808 9809 hba = shost_priv(sdev->host); 9810 9811 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM); 9812 if (ret) 9813 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9814 9815 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret, 9816 ktime_to_us(ktime_sub(ktime_get(), start)), 9817 hba->curr_dev_pwr_mode, hba->uic_link_state); 9818 9819 return ret; 9820 } 9821 9822 static int ufshcd_wl_runtime_resume(struct device *dev) 9823 { 9824 struct scsi_device *sdev = to_scsi_device(dev); 9825 struct ufs_hba *hba; 9826 int ret = 0; 9827 ktime_t start = ktime_get(); 9828 9829 hba = shost_priv(sdev->host); 9830 9831 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM); 9832 if (ret) 9833 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9834 9835 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret, 9836 ktime_to_us(ktime_sub(ktime_get(), start)), 9837 hba->curr_dev_pwr_mode, hba->uic_link_state); 9838 9839 return ret; 9840 } 9841 #endif 9842 9843 #ifdef CONFIG_PM_SLEEP 9844 static int ufshcd_wl_suspend(struct device *dev) 9845 { 9846 struct scsi_device *sdev = to_scsi_device(dev); 9847 struct ufs_hba *hba; 9848 int ret = 0; 9849 ktime_t start = ktime_get(); 9850 9851 hba = shost_priv(sdev->host); 9852 down(&hba->host_sem); 9853 hba->system_suspending = true; 9854 9855 if (pm_runtime_suspended(dev)) 9856 goto out; 9857 9858 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM); 9859 if (ret) { 9860 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9861 up(&hba->host_sem); 9862 } 9863 9864 out: 9865 if (!ret) 9866 hba->is_sys_suspended = true; 9867 trace_ufshcd_wl_suspend(dev_name(dev), ret, 9868 ktime_to_us(ktime_sub(ktime_get(), start)), 9869 hba->curr_dev_pwr_mode, hba->uic_link_state); 9870 9871 return ret; 9872 } 9873 9874 static int ufshcd_wl_resume(struct device *dev) 9875 { 9876 struct scsi_device *sdev = to_scsi_device(dev); 9877 struct ufs_hba *hba; 9878 int ret = 0; 9879 ktime_t start = ktime_get(); 9880 9881 hba = shost_priv(sdev->host); 9882 9883 if (pm_runtime_suspended(dev)) 9884 goto out; 9885 9886 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM); 9887 if (ret) 9888 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9889 out: 9890 trace_ufshcd_wl_resume(dev_name(dev), ret, 9891 ktime_to_us(ktime_sub(ktime_get(), start)), 9892 hba->curr_dev_pwr_mode, hba->uic_link_state); 9893 if (!ret) 9894 hba->is_sys_suspended = false; 9895 hba->system_suspending = false; 9896 up(&hba->host_sem); 9897 return ret; 9898 } 9899 #endif 9900 9901 /** 9902 * ufshcd_suspend - helper function for suspend operations 9903 * @hba: per adapter instance 9904 * 9905 * This function will put disable irqs, turn off clocks 9906 * and set vreg and hba-vreg in lpm mode. 9907 * 9908 * Return: 0 upon success; < 0 upon failure. 9909 */ 9910 static int ufshcd_suspend(struct ufs_hba *hba) 9911 { 9912 int ret; 9913 9914 if (!hba->is_powered) 9915 return 0; 9916 /* 9917 * Disable the host irq as host controller as there won't be any 9918 * host controller transaction expected till resume. 9919 */ 9920 ufshcd_disable_irq(hba); 9921 ret = ufshcd_setup_clocks(hba, false); 9922 if (ret) { 9923 ufshcd_enable_irq(hba); 9924 return ret; 9925 } 9926 if (ufshcd_is_clkgating_allowed(hba)) { 9927 hba->clk_gating.state = CLKS_OFF; 9928 trace_ufshcd_clk_gating(dev_name(hba->dev), 9929 hba->clk_gating.state); 9930 } 9931 9932 ufshcd_vreg_set_lpm(hba); 9933 /* Put the host controller in low power mode if possible */ 9934 ufshcd_hba_vreg_set_lpm(hba); 9935 return ret; 9936 } 9937 9938 #ifdef CONFIG_PM 9939 /** 9940 * ufshcd_resume - helper function for resume operations 9941 * @hba: per adapter instance 9942 * 9943 * This function basically turns on the regulators, clocks and 9944 * irqs of the hba. 9945 * 9946 * Return: 0 for success and non-zero for failure. 9947 */ 9948 static int ufshcd_resume(struct ufs_hba *hba) 9949 { 9950 int ret; 9951 9952 if (!hba->is_powered) 9953 return 0; 9954 9955 ufshcd_hba_vreg_set_hpm(hba); 9956 ret = ufshcd_vreg_set_hpm(hba); 9957 if (ret) 9958 goto out; 9959 9960 /* Make sure clocks are enabled before accessing controller */ 9961 ret = ufshcd_setup_clocks(hba, true); 9962 if (ret) 9963 goto disable_vreg; 9964 9965 /* enable the host irq as host controller would be active soon */ 9966 ufshcd_enable_irq(hba); 9967 9968 goto out; 9969 9970 disable_vreg: 9971 ufshcd_vreg_set_lpm(hba); 9972 out: 9973 if (ret) 9974 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret); 9975 return ret; 9976 } 9977 #endif /* CONFIG_PM */ 9978 9979 #ifdef CONFIG_PM_SLEEP 9980 /** 9981 * ufshcd_system_suspend - system suspend callback 9982 * @dev: Device associated with the UFS controller. 9983 * 9984 * Executed before putting the system into a sleep state in which the contents 9985 * of main memory are preserved. 9986 * 9987 * Return: 0 for success and non-zero for failure. 9988 */ 9989 int ufshcd_system_suspend(struct device *dev) 9990 { 9991 struct ufs_hba *hba = dev_get_drvdata(dev); 9992 int ret = 0; 9993 ktime_t start = ktime_get(); 9994 9995 if (pm_runtime_suspended(hba->dev)) 9996 goto out; 9997 9998 ret = ufshcd_suspend(hba); 9999 out: 10000 trace_ufshcd_system_suspend(dev_name(hba->dev), ret, 10001 ktime_to_us(ktime_sub(ktime_get(), start)), 10002 hba->curr_dev_pwr_mode, hba->uic_link_state); 10003 return ret; 10004 } 10005 EXPORT_SYMBOL(ufshcd_system_suspend); 10006 10007 /** 10008 * ufshcd_system_resume - system resume callback 10009 * @dev: Device associated with the UFS controller. 10010 * 10011 * Executed after waking the system up from a sleep state in which the contents 10012 * of main memory were preserved. 10013 * 10014 * Return: 0 for success and non-zero for failure. 10015 */ 10016 int ufshcd_system_resume(struct device *dev) 10017 { 10018 struct ufs_hba *hba = dev_get_drvdata(dev); 10019 ktime_t start = ktime_get(); 10020 int ret = 0; 10021 10022 if (pm_runtime_suspended(hba->dev)) 10023 goto out; 10024 10025 ret = ufshcd_resume(hba); 10026 10027 out: 10028 trace_ufshcd_system_resume(dev_name(hba->dev), ret, 10029 ktime_to_us(ktime_sub(ktime_get(), start)), 10030 hba->curr_dev_pwr_mode, hba->uic_link_state); 10031 10032 return ret; 10033 } 10034 EXPORT_SYMBOL(ufshcd_system_resume); 10035 #endif /* CONFIG_PM_SLEEP */ 10036 10037 #ifdef CONFIG_PM 10038 /** 10039 * ufshcd_runtime_suspend - runtime suspend callback 10040 * @dev: Device associated with the UFS controller. 10041 * 10042 * Check the description of ufshcd_suspend() function for more details. 10043 * 10044 * Return: 0 for success and non-zero for failure. 10045 */ 10046 int ufshcd_runtime_suspend(struct device *dev) 10047 { 10048 struct ufs_hba *hba = dev_get_drvdata(dev); 10049 int ret; 10050 ktime_t start = ktime_get(); 10051 10052 ret = ufshcd_suspend(hba); 10053 10054 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret, 10055 ktime_to_us(ktime_sub(ktime_get(), start)), 10056 hba->curr_dev_pwr_mode, hba->uic_link_state); 10057 return ret; 10058 } 10059 EXPORT_SYMBOL(ufshcd_runtime_suspend); 10060 10061 /** 10062 * ufshcd_runtime_resume - runtime resume routine 10063 * @dev: Device associated with the UFS controller. 10064 * 10065 * This function basically brings controller 10066 * to active state. Following operations are done in this function: 10067 * 10068 * 1. Turn on all the controller related clocks 10069 * 2. Turn ON VCC rail 10070 * 10071 * Return: 0 upon success; < 0 upon failure. 10072 */ 10073 int ufshcd_runtime_resume(struct device *dev) 10074 { 10075 struct ufs_hba *hba = dev_get_drvdata(dev); 10076 int ret; 10077 ktime_t start = ktime_get(); 10078 10079 ret = ufshcd_resume(hba); 10080 10081 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret, 10082 ktime_to_us(ktime_sub(ktime_get(), start)), 10083 hba->curr_dev_pwr_mode, hba->uic_link_state); 10084 return ret; 10085 } 10086 EXPORT_SYMBOL(ufshcd_runtime_resume); 10087 #endif /* CONFIG_PM */ 10088 10089 static void ufshcd_wl_shutdown(struct device *dev) 10090 { 10091 struct scsi_device *sdev = to_scsi_device(dev); 10092 struct ufs_hba *hba = shost_priv(sdev->host); 10093 10094 down(&hba->host_sem); 10095 hba->shutting_down = true; 10096 up(&hba->host_sem); 10097 10098 /* Turn on everything while shutting down */ 10099 ufshcd_rpm_get_sync(hba); 10100 scsi_device_quiesce(sdev); 10101 shost_for_each_device(sdev, hba->host) { 10102 if (sdev == hba->ufs_device_wlun) 10103 continue; 10104 scsi_device_quiesce(sdev); 10105 } 10106 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10107 10108 /* 10109 * Next, turn off the UFS controller and the UFS regulators. Disable 10110 * clocks. 10111 */ 10112 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba)) 10113 ufshcd_suspend(hba); 10114 10115 hba->is_powered = false; 10116 } 10117 10118 /** 10119 * ufshcd_remove - de-allocate SCSI host and host memory space 10120 * data structure memory 10121 * @hba: per adapter instance 10122 */ 10123 void ufshcd_remove(struct ufs_hba *hba) 10124 { 10125 if (hba->ufs_device_wlun) 10126 ufshcd_rpm_get_sync(hba); 10127 ufs_hwmon_remove(hba); 10128 ufs_bsg_remove(hba); 10129 ufs_sysfs_remove_nodes(hba->dev); 10130 blk_mq_destroy_queue(hba->tmf_queue); 10131 blk_put_queue(hba->tmf_queue); 10132 blk_mq_free_tag_set(&hba->tmf_tag_set); 10133 scsi_remove_host(hba->host); 10134 /* disable interrupts */ 10135 ufshcd_disable_intr(hba, hba->intr_mask); 10136 ufshcd_hba_stop(hba); 10137 ufshcd_hba_exit(hba); 10138 } 10139 EXPORT_SYMBOL_GPL(ufshcd_remove); 10140 10141 #ifdef CONFIG_PM_SLEEP 10142 int ufshcd_system_freeze(struct device *dev) 10143 { 10144 10145 return ufshcd_system_suspend(dev); 10146 10147 } 10148 EXPORT_SYMBOL_GPL(ufshcd_system_freeze); 10149 10150 int ufshcd_system_restore(struct device *dev) 10151 { 10152 10153 struct ufs_hba *hba = dev_get_drvdata(dev); 10154 int ret; 10155 10156 ret = ufshcd_system_resume(dev); 10157 if (ret) 10158 return ret; 10159 10160 /* Configure UTRL and UTMRL base address registers */ 10161 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 10162 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 10163 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 10164 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 10165 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 10166 REG_UTP_TASK_REQ_LIST_BASE_L); 10167 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 10168 REG_UTP_TASK_REQ_LIST_BASE_H); 10169 /* 10170 * Make sure that UTRL and UTMRL base address registers 10171 * are updated with the latest queue addresses. Only after 10172 * updating these addresses, we can queue the new commands. 10173 */ 10174 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H); 10175 10176 return 0; 10177 10178 } 10179 EXPORT_SYMBOL_GPL(ufshcd_system_restore); 10180 10181 int ufshcd_system_thaw(struct device *dev) 10182 { 10183 return ufshcd_system_resume(dev); 10184 } 10185 EXPORT_SYMBOL_GPL(ufshcd_system_thaw); 10186 #endif /* CONFIG_PM_SLEEP */ 10187 10188 /** 10189 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA) 10190 * @hba: pointer to Host Bus Adapter (HBA) 10191 */ 10192 void ufshcd_dealloc_host(struct ufs_hba *hba) 10193 { 10194 scsi_host_put(hba->host); 10195 } 10196 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host); 10197 10198 /** 10199 * ufshcd_set_dma_mask - Set dma mask based on the controller 10200 * addressing capability 10201 * @hba: per adapter instance 10202 * 10203 * Return: 0 for success, non-zero for failure. 10204 */ 10205 static int ufshcd_set_dma_mask(struct ufs_hba *hba) 10206 { 10207 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) { 10208 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64))) 10209 return 0; 10210 } 10211 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32)); 10212 } 10213 10214 /** 10215 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA) 10216 * @dev: pointer to device handle 10217 * @hba_handle: driver private handle 10218 * 10219 * Return: 0 on success, non-zero value on failure. 10220 */ 10221 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle) 10222 { 10223 struct Scsi_Host *host; 10224 struct ufs_hba *hba; 10225 int err = 0; 10226 10227 if (!dev) { 10228 dev_err(dev, 10229 "Invalid memory reference for dev is NULL\n"); 10230 err = -ENODEV; 10231 goto out_error; 10232 } 10233 10234 host = scsi_host_alloc(&ufshcd_driver_template, 10235 sizeof(struct ufs_hba)); 10236 if (!host) { 10237 dev_err(dev, "scsi_host_alloc failed\n"); 10238 err = -ENOMEM; 10239 goto out_error; 10240 } 10241 host->nr_maps = HCTX_TYPE_POLL + 1; 10242 hba = shost_priv(host); 10243 hba->host = host; 10244 hba->dev = dev; 10245 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL; 10246 hba->nop_out_timeout = NOP_OUT_TIMEOUT; 10247 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry)); 10248 INIT_LIST_HEAD(&hba->clk_list_head); 10249 spin_lock_init(&hba->outstanding_lock); 10250 10251 *hba_handle = hba; 10252 10253 out_error: 10254 return err; 10255 } 10256 EXPORT_SYMBOL(ufshcd_alloc_host); 10257 10258 /* This function exists because blk_mq_alloc_tag_set() requires this. */ 10259 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx, 10260 const struct blk_mq_queue_data *qd) 10261 { 10262 WARN_ON_ONCE(true); 10263 return BLK_STS_NOTSUPP; 10264 } 10265 10266 static const struct blk_mq_ops ufshcd_tmf_ops = { 10267 .queue_rq = ufshcd_queue_tmf, 10268 }; 10269 10270 /** 10271 * ufshcd_init - Driver initialization routine 10272 * @hba: per-adapter instance 10273 * @mmio_base: base register address 10274 * @irq: Interrupt line of device 10275 * 10276 * Return: 0 on success, non-zero value on failure. 10277 */ 10278 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq) 10279 { 10280 int err; 10281 struct Scsi_Host *host = hba->host; 10282 struct device *dev = hba->dev; 10283 char eh_wq_name[sizeof("ufs_eh_wq_00")]; 10284 10285 /* 10286 * dev_set_drvdata() must be called before any callbacks are registered 10287 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon, 10288 * sysfs). 10289 */ 10290 dev_set_drvdata(dev, hba); 10291 10292 if (!mmio_base) { 10293 dev_err(hba->dev, 10294 "Invalid memory reference for mmio_base is NULL\n"); 10295 err = -ENODEV; 10296 goto out_error; 10297 } 10298 10299 hba->mmio_base = mmio_base; 10300 hba->irq = irq; 10301 hba->vps = &ufs_hba_vps; 10302 10303 err = ufshcd_hba_init(hba); 10304 if (err) 10305 goto out_error; 10306 10307 /* Read capabilities registers */ 10308 err = ufshcd_hba_capabilities(hba); 10309 if (err) 10310 goto out_disable; 10311 10312 /* Get UFS version supported by the controller */ 10313 hba->ufs_version = ufshcd_get_ufs_version(hba); 10314 10315 /* Get Interrupt bit mask per version */ 10316 hba->intr_mask = ufshcd_get_intr_mask(hba); 10317 10318 err = ufshcd_set_dma_mask(hba); 10319 if (err) { 10320 dev_err(hba->dev, "set dma mask failed\n"); 10321 goto out_disable; 10322 } 10323 10324 /* Allocate memory for host memory space */ 10325 err = ufshcd_memory_alloc(hba); 10326 if (err) { 10327 dev_err(hba->dev, "Memory allocation failed\n"); 10328 goto out_disable; 10329 } 10330 10331 /* Configure LRB */ 10332 ufshcd_host_memory_configure(hba); 10333 10334 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 10335 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED; 10336 host->max_id = UFSHCD_MAX_ID; 10337 host->max_lun = UFS_MAX_LUNS; 10338 host->max_channel = UFSHCD_MAX_CHANNEL; 10339 host->unique_id = host->host_no; 10340 host->max_cmd_len = UFS_CDB_SIZE; 10341 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING); 10342 10343 hba->max_pwr_info.is_valid = false; 10344 10345 /* Initialize work queues */ 10346 snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d", 10347 hba->host->host_no); 10348 hba->eh_wq = create_singlethread_workqueue(eh_wq_name); 10349 if (!hba->eh_wq) { 10350 dev_err(hba->dev, "%s: failed to create eh workqueue\n", 10351 __func__); 10352 err = -ENOMEM; 10353 goto out_disable; 10354 } 10355 INIT_WORK(&hba->eh_work, ufshcd_err_handler); 10356 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler); 10357 10358 sema_init(&hba->host_sem, 1); 10359 10360 /* Initialize UIC command mutex */ 10361 mutex_init(&hba->uic_cmd_mutex); 10362 10363 /* Initialize mutex for device management commands */ 10364 mutex_init(&hba->dev_cmd.lock); 10365 10366 /* Initialize mutex for exception event control */ 10367 mutex_init(&hba->ee_ctrl_mutex); 10368 10369 mutex_init(&hba->wb_mutex); 10370 init_rwsem(&hba->clk_scaling_lock); 10371 10372 ufshcd_init_clk_gating(hba); 10373 10374 ufshcd_init_clk_scaling(hba); 10375 10376 /* 10377 * In order to avoid any spurious interrupt immediately after 10378 * registering UFS controller interrupt handler, clear any pending UFS 10379 * interrupt status and disable all the UFS interrupts. 10380 */ 10381 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS), 10382 REG_INTERRUPT_STATUS); 10383 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE); 10384 /* 10385 * Make sure that UFS interrupts are disabled and any pending interrupt 10386 * status is cleared before registering UFS interrupt handler. 10387 */ 10388 ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 10389 10390 /* IRQ registration */ 10391 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba); 10392 if (err) { 10393 dev_err(hba->dev, "request irq failed\n"); 10394 goto out_disable; 10395 } else { 10396 hba->is_irq_enabled = true; 10397 } 10398 10399 if (!is_mcq_supported(hba)) { 10400 if (!hba->lsdb_sup) { 10401 dev_err(hba->dev, "%s: failed to initialize (legacy doorbell mode not supported)\n", 10402 __func__); 10403 err = -EINVAL; 10404 goto out_disable; 10405 } 10406 err = scsi_add_host(host, hba->dev); 10407 if (err) { 10408 dev_err(hba->dev, "scsi_add_host failed\n"); 10409 goto out_disable; 10410 } 10411 } 10412 10413 hba->tmf_tag_set = (struct blk_mq_tag_set) { 10414 .nr_hw_queues = 1, 10415 .queue_depth = hba->nutmrs, 10416 .ops = &ufshcd_tmf_ops, 10417 .flags = BLK_MQ_F_NO_SCHED, 10418 }; 10419 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set); 10420 if (err < 0) 10421 goto out_remove_scsi_host; 10422 hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set); 10423 if (IS_ERR(hba->tmf_queue)) { 10424 err = PTR_ERR(hba->tmf_queue); 10425 goto free_tmf_tag_set; 10426 } 10427 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs, 10428 sizeof(*hba->tmf_rqs), GFP_KERNEL); 10429 if (!hba->tmf_rqs) { 10430 err = -ENOMEM; 10431 goto free_tmf_queue; 10432 } 10433 10434 /* Reset the attached device */ 10435 ufshcd_device_reset(hba); 10436 10437 ufshcd_init_crypto(hba); 10438 10439 /* Host controller enable */ 10440 err = ufshcd_hba_enable(hba); 10441 if (err) { 10442 dev_err(hba->dev, "Host controller enable failed\n"); 10443 ufshcd_print_evt_hist(hba); 10444 ufshcd_print_host_state(hba); 10445 goto free_tmf_queue; 10446 } 10447 10448 /* 10449 * Set the default power management level for runtime and system PM. 10450 * Default power saving mode is to keep UFS link in Hibern8 state 10451 * and UFS device in sleep state. 10452 */ 10453 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10454 UFS_SLEEP_PWR_MODE, 10455 UIC_LINK_HIBERN8_STATE); 10456 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10457 UFS_SLEEP_PWR_MODE, 10458 UIC_LINK_HIBERN8_STATE); 10459 10460 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, 10461 ufshcd_rpm_dev_flush_recheck_work); 10462 10463 /* Set the default auto-hiberate idle timer value to 150 ms */ 10464 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) { 10465 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) | 10466 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3); 10467 } 10468 10469 /* Hold auto suspend until async scan completes */ 10470 pm_runtime_get_sync(dev); 10471 atomic_set(&hba->scsi_block_reqs_cnt, 0); 10472 /* 10473 * We are assuming that device wasn't put in sleep/power-down 10474 * state exclusively during the boot stage before kernel. 10475 * This assumption helps avoid doing link startup twice during 10476 * ufshcd_probe_hba(). 10477 */ 10478 ufshcd_set_ufs_dev_active(hba); 10479 10480 async_schedule(ufshcd_async_scan, hba); 10481 ufs_sysfs_add_nodes(hba->dev); 10482 10483 device_enable_async_suspend(dev); 10484 return 0; 10485 10486 free_tmf_queue: 10487 blk_mq_destroy_queue(hba->tmf_queue); 10488 blk_put_queue(hba->tmf_queue); 10489 free_tmf_tag_set: 10490 blk_mq_free_tag_set(&hba->tmf_tag_set); 10491 out_remove_scsi_host: 10492 scsi_remove_host(hba->host); 10493 out_disable: 10494 hba->is_irq_enabled = false; 10495 ufshcd_hba_exit(hba); 10496 out_error: 10497 return err; 10498 } 10499 EXPORT_SYMBOL_GPL(ufshcd_init); 10500 10501 void ufshcd_resume_complete(struct device *dev) 10502 { 10503 struct ufs_hba *hba = dev_get_drvdata(dev); 10504 10505 if (hba->complete_put) { 10506 ufshcd_rpm_put(hba); 10507 hba->complete_put = false; 10508 } 10509 } 10510 EXPORT_SYMBOL_GPL(ufshcd_resume_complete); 10511 10512 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba) 10513 { 10514 struct device *dev = &hba->ufs_device_wlun->sdev_gendev; 10515 enum ufs_dev_pwr_mode dev_pwr_mode; 10516 enum uic_link_state link_state; 10517 unsigned long flags; 10518 bool res; 10519 10520 spin_lock_irqsave(&dev->power.lock, flags); 10521 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl); 10522 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl); 10523 res = pm_runtime_suspended(dev) && 10524 hba->curr_dev_pwr_mode == dev_pwr_mode && 10525 hba->uic_link_state == link_state && 10526 !hba->dev_info.b_rpm_dev_flush_capable; 10527 spin_unlock_irqrestore(&dev->power.lock, flags); 10528 10529 return res; 10530 } 10531 10532 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm) 10533 { 10534 struct ufs_hba *hba = dev_get_drvdata(dev); 10535 int ret; 10536 10537 /* 10538 * SCSI assumes that runtime-pm and system-pm for scsi drivers 10539 * are same. And it doesn't wake up the device for system-suspend 10540 * if it's runtime suspended. But ufs doesn't follow that. 10541 * Refer ufshcd_resume_complete() 10542 */ 10543 if (hba->ufs_device_wlun) { 10544 /* Prevent runtime suspend */ 10545 ufshcd_rpm_get_noresume(hba); 10546 /* 10547 * Check if already runtime suspended in same state as system 10548 * suspend would be. 10549 */ 10550 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) { 10551 /* RPM state is not ok for SPM, so runtime resume */ 10552 ret = ufshcd_rpm_resume(hba); 10553 if (ret < 0 && ret != -EACCES) { 10554 ufshcd_rpm_put(hba); 10555 return ret; 10556 } 10557 } 10558 hba->complete_put = true; 10559 } 10560 return 0; 10561 } 10562 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare); 10563 10564 int ufshcd_suspend_prepare(struct device *dev) 10565 { 10566 return __ufshcd_suspend_prepare(dev, true); 10567 } 10568 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare); 10569 10570 #ifdef CONFIG_PM_SLEEP 10571 static int ufshcd_wl_poweroff(struct device *dev) 10572 { 10573 struct scsi_device *sdev = to_scsi_device(dev); 10574 struct ufs_hba *hba = shost_priv(sdev->host); 10575 10576 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10577 return 0; 10578 } 10579 #endif 10580 10581 static int ufshcd_wl_probe(struct device *dev) 10582 { 10583 struct scsi_device *sdev = to_scsi_device(dev); 10584 10585 if (!is_device_wlun(sdev)) 10586 return -ENODEV; 10587 10588 blk_pm_runtime_init(sdev->request_queue, dev); 10589 pm_runtime_set_autosuspend_delay(dev, 0); 10590 pm_runtime_allow(dev); 10591 10592 return 0; 10593 } 10594 10595 static int ufshcd_wl_remove(struct device *dev) 10596 { 10597 pm_runtime_forbid(dev); 10598 return 0; 10599 } 10600 10601 static const struct dev_pm_ops ufshcd_wl_pm_ops = { 10602 #ifdef CONFIG_PM_SLEEP 10603 .suspend = ufshcd_wl_suspend, 10604 .resume = ufshcd_wl_resume, 10605 .freeze = ufshcd_wl_suspend, 10606 .thaw = ufshcd_wl_resume, 10607 .poweroff = ufshcd_wl_poweroff, 10608 .restore = ufshcd_wl_resume, 10609 #endif 10610 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL) 10611 }; 10612 10613 static void ufshcd_check_header_layout(void) 10614 { 10615 /* 10616 * gcc compilers before version 10 cannot do constant-folding for 10617 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and 10618 * before. 10619 */ 10620 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000) 10621 return; 10622 10623 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10624 .cci = 3})[0] != 3); 10625 10626 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10627 .ehs_length = 2})[1] != 2); 10628 10629 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10630 .enable_crypto = 1})[2] 10631 != 0x80); 10632 10633 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){ 10634 .command_type = 5, 10635 .data_direction = 3, 10636 .interrupt = 1, 10637 })[3]) != ((5 << 4) | (3 << 1) | 1)); 10638 10639 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 10640 .dunl = cpu_to_le32(0xdeadbeef)})[1] != 10641 cpu_to_le32(0xdeadbeef)); 10642 10643 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10644 .ocs = 4})[8] != 4); 10645 10646 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10647 .cds = 5})[9] != 5); 10648 10649 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 10650 .dunu = cpu_to_le32(0xbadcafe)})[3] != 10651 cpu_to_le32(0xbadcafe)); 10652 10653 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 10654 .iid = 0xf })[4] != 0xf0); 10655 10656 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 10657 .command_set_type = 0xf })[4] != 0xf); 10658 } 10659 10660 /* 10661 * ufs_dev_wlun_template - describes ufs device wlun 10662 * ufs-device wlun - used to send pm commands 10663 * All luns are consumers of ufs-device wlun. 10664 * 10665 * Currently, no sd driver is present for wluns. 10666 * Hence the no specific pm operations are performed. 10667 * With ufs design, SSU should be sent to ufs-device wlun. 10668 * Hence register a scsi driver for ufs wluns only. 10669 */ 10670 static struct scsi_driver ufs_dev_wlun_template = { 10671 .gendrv = { 10672 .name = "ufs_device_wlun", 10673 .owner = THIS_MODULE, 10674 .probe = ufshcd_wl_probe, 10675 .remove = ufshcd_wl_remove, 10676 .pm = &ufshcd_wl_pm_ops, 10677 .shutdown = ufshcd_wl_shutdown, 10678 }, 10679 }; 10680 10681 static int __init ufshcd_core_init(void) 10682 { 10683 int ret; 10684 10685 ufshcd_check_header_layout(); 10686 10687 ufs_debugfs_init(); 10688 10689 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv); 10690 if (ret) 10691 ufs_debugfs_exit(); 10692 return ret; 10693 } 10694 10695 static void __exit ufshcd_core_exit(void) 10696 { 10697 ufs_debugfs_exit(); 10698 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv); 10699 } 10700 10701 module_init(ufshcd_core_init); 10702 module_exit(ufshcd_core_exit); 10703 10704 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>"); 10705 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>"); 10706 MODULE_DESCRIPTION("Generic UFS host controller driver Core"); 10707 MODULE_SOFTDEP("pre: governor_simpleondemand"); 10708 MODULE_LICENSE("GPL"); 10709