1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Universal Flash Storage Host controller driver Core 4 * Copyright (C) 2011-2013 Samsung India Software Operations 5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved. 6 * 7 * Authors: 8 * Santosh Yaraganavi <santosh.sy@samsung.com> 9 * Vinayak Holikatti <h.vinayak@samsung.com> 10 */ 11 12 #include <linux/async.h> 13 #include <linux/devfreq.h> 14 #include <linux/nls.h> 15 #include <linux/of.h> 16 #include <linux/bitfield.h> 17 #include <linux/blk-pm.h> 18 #include <linux/blkdev.h> 19 #include <linux/clk.h> 20 #include <linux/delay.h> 21 #include <linux/interrupt.h> 22 #include <linux/module.h> 23 #include <linux/regulator/consumer.h> 24 #include <linux/sched/clock.h> 25 #include <linux/iopoll.h> 26 #include <scsi/scsi_cmnd.h> 27 #include <scsi/scsi_dbg.h> 28 #include <scsi/scsi_driver.h> 29 #include <scsi/scsi_eh.h> 30 #include "ufshcd-priv.h" 31 #include <ufs/ufs_quirks.h> 32 #include <ufs/unipro.h> 33 #include "ufs-sysfs.h" 34 #include "ufs-debugfs.h" 35 #include "ufs-fault-injection.h" 36 #include "ufs_bsg.h" 37 #include "ufshcd-crypto.h" 38 #include <asm/unaligned.h> 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/ufs.h> 42 43 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\ 44 UTP_TASK_REQ_COMPL |\ 45 UFSHCD_ERROR_MASK) 46 47 #define UFSHCD_ENABLE_MCQ_INTRS (UTP_TASK_REQ_COMPL |\ 48 UFSHCD_ERROR_MASK |\ 49 MCQ_CQ_EVENT_STATUS) 50 51 52 /* UIC command timeout, unit: ms */ 53 #define UIC_CMD_TIMEOUT 500 54 55 /* NOP OUT retries waiting for NOP IN response */ 56 #define NOP_OUT_RETRIES 10 57 /* Timeout after 50 msecs if NOP OUT hangs without response */ 58 #define NOP_OUT_TIMEOUT 50 /* msecs */ 59 60 /* Query request retries */ 61 #define QUERY_REQ_RETRIES 3 62 /* Query request timeout */ 63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */ 64 65 /* Advanced RPMB request timeout */ 66 #define ADVANCED_RPMB_REQ_TIMEOUT 3000 /* 3 seconds */ 67 68 /* Task management command timeout */ 69 #define TM_CMD_TIMEOUT 100 /* msecs */ 70 71 /* maximum number of retries for a general UIC command */ 72 #define UFS_UIC_COMMAND_RETRIES 3 73 74 /* maximum number of link-startup retries */ 75 #define DME_LINKSTARTUP_RETRIES 3 76 77 /* maximum number of reset retries before giving up */ 78 #define MAX_HOST_RESET_RETRIES 5 79 80 /* Maximum number of error handler retries before giving up */ 81 #define MAX_ERR_HANDLER_RETRIES 5 82 83 /* Expose the flag value from utp_upiu_query.value */ 84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF 85 86 /* Interrupt aggregation default timeout, unit: 40us */ 87 #define INT_AGGR_DEF_TO 0x02 88 89 /* default delay of autosuspend: 2000 ms */ 90 #define RPM_AUTOSUSPEND_DELAY_MS 2000 91 92 /* Default delay of RPM device flush delayed work */ 93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000 94 95 /* Default value of wait time before gating device ref clock */ 96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */ 97 98 /* Polling time to wait for fDeviceInit */ 99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */ 100 101 /* UFSHC 4.0 compliant HC support this mode. */ 102 static bool use_mcq_mode = true; 103 104 static bool is_mcq_supported(struct ufs_hba *hba) 105 { 106 return hba->mcq_sup && use_mcq_mode; 107 } 108 109 module_param(use_mcq_mode, bool, 0644); 110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default"); 111 112 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \ 113 ({ \ 114 int _ret; \ 115 if (_on) \ 116 _ret = ufshcd_enable_vreg(_dev, _vreg); \ 117 else \ 118 _ret = ufshcd_disable_vreg(_dev, _vreg); \ 119 _ret; \ 120 }) 121 122 #define ufshcd_hex_dump(prefix_str, buf, len) do { \ 123 size_t __len = (len); \ 124 print_hex_dump(KERN_ERR, prefix_str, \ 125 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\ 126 16, 4, buf, __len, false); \ 127 } while (0) 128 129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len, 130 const char *prefix) 131 { 132 u32 *regs; 133 size_t pos; 134 135 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */ 136 return -EINVAL; 137 138 regs = kzalloc(len, GFP_ATOMIC); 139 if (!regs) 140 return -ENOMEM; 141 142 for (pos = 0; pos < len; pos += 4) { 143 if (offset == 0 && 144 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER && 145 pos <= REG_UIC_ERROR_CODE_DME) 146 continue; 147 regs[pos / 4] = ufshcd_readl(hba, offset + pos); 148 } 149 150 ufshcd_hex_dump(prefix, regs, len); 151 kfree(regs); 152 153 return 0; 154 } 155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs); 156 157 enum { 158 UFSHCD_MAX_CHANNEL = 0, 159 UFSHCD_MAX_ID = 1, 160 UFSHCD_CMD_PER_LUN = 32 - UFSHCD_NUM_RESERVED, 161 UFSHCD_CAN_QUEUE = 32 - UFSHCD_NUM_RESERVED, 162 }; 163 164 static const char *const ufshcd_state_name[] = { 165 [UFSHCD_STATE_RESET] = "reset", 166 [UFSHCD_STATE_OPERATIONAL] = "operational", 167 [UFSHCD_STATE_ERROR] = "error", 168 [UFSHCD_STATE_EH_SCHEDULED_FATAL] = "eh_fatal", 169 [UFSHCD_STATE_EH_SCHEDULED_NON_FATAL] = "eh_non_fatal", 170 }; 171 172 /* UFSHCD error handling flags */ 173 enum { 174 UFSHCD_EH_IN_PROGRESS = (1 << 0), 175 }; 176 177 /* UFSHCD UIC layer error flags */ 178 enum { 179 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */ 180 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */ 181 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */ 182 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */ 183 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */ 184 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */ 185 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */ 186 }; 187 188 #define ufshcd_set_eh_in_progress(h) \ 189 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS) 190 #define ufshcd_eh_in_progress(h) \ 191 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS) 192 #define ufshcd_clear_eh_in_progress(h) \ 193 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS) 194 195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = { 196 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 197 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 198 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE}, 199 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 200 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE}, 201 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE}, 202 /* 203 * For DeepSleep, the link is first put in hibern8 and then off. 204 * Leaving the link in hibern8 is not supported. 205 */ 206 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE}, 207 }; 208 209 static inline enum ufs_dev_pwr_mode 210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl) 211 { 212 return ufs_pm_lvl_states[lvl].dev_state; 213 } 214 215 static inline enum uic_link_state 216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl) 217 { 218 return ufs_pm_lvl_states[lvl].link_state; 219 } 220 221 static inline enum ufs_pm_level 222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state, 223 enum uic_link_state link_state) 224 { 225 enum ufs_pm_level lvl; 226 227 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) { 228 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) && 229 (ufs_pm_lvl_states[lvl].link_state == link_state)) 230 return lvl; 231 } 232 233 /* if no match found, return the level 0 */ 234 return UFS_PM_LVL_0; 235 } 236 237 static const struct ufs_dev_quirk ufs_fixups[] = { 238 /* UFS cards deviations table */ 239 { .wmanufacturerid = UFS_VENDOR_MICRON, 240 .model = UFS_ANY_MODEL, 241 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 242 { .wmanufacturerid = UFS_VENDOR_SAMSUNG, 243 .model = UFS_ANY_MODEL, 244 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM | 245 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE | 246 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS }, 247 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 248 .model = UFS_ANY_MODEL, 249 .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME }, 250 { .wmanufacturerid = UFS_VENDOR_SKHYNIX, 251 .model = "hB8aL1" /*H28U62301AMR*/, 252 .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME }, 253 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 254 .model = UFS_ANY_MODEL, 255 .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM }, 256 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 257 .model = "THGLF2G9C8KBADG", 258 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 259 { .wmanufacturerid = UFS_VENDOR_TOSHIBA, 260 .model = "THGLF2G9D8KBADG", 261 .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE }, 262 {} 263 }; 264 265 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba); 266 static void ufshcd_async_scan(void *data, async_cookie_t cookie); 267 static int ufshcd_reset_and_restore(struct ufs_hba *hba); 268 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd); 269 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag); 270 static void ufshcd_hba_exit(struct ufs_hba *hba); 271 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params); 272 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on); 273 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba); 274 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba); 275 static void ufshcd_resume_clkscaling(struct ufs_hba *hba); 276 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba); 277 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba); 278 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up); 279 static irqreturn_t ufshcd_intr(int irq, void *__hba); 280 static int ufshcd_change_power_mode(struct ufs_hba *hba, 281 struct ufs_pa_layer_attr *pwr_mode); 282 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on); 283 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on); 284 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 285 struct ufs_vreg *vreg); 286 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 287 bool enable); 288 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba); 289 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba); 290 291 static inline void ufshcd_enable_irq(struct ufs_hba *hba) 292 { 293 if (!hba->is_irq_enabled) { 294 enable_irq(hba->irq); 295 hba->is_irq_enabled = true; 296 } 297 } 298 299 static inline void ufshcd_disable_irq(struct ufs_hba *hba) 300 { 301 if (hba->is_irq_enabled) { 302 disable_irq(hba->irq); 303 hba->is_irq_enabled = false; 304 } 305 } 306 307 static void ufshcd_configure_wb(struct ufs_hba *hba) 308 { 309 if (!ufshcd_is_wb_allowed(hba)) 310 return; 311 312 ufshcd_wb_toggle(hba, true); 313 314 ufshcd_wb_toggle_buf_flush_during_h8(hba, true); 315 316 if (ufshcd_is_wb_buf_flush_allowed(hba)) 317 ufshcd_wb_toggle_buf_flush(hba, true); 318 } 319 320 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba) 321 { 322 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt)) 323 scsi_unblock_requests(hba->host); 324 } 325 326 static void ufshcd_scsi_block_requests(struct ufs_hba *hba) 327 { 328 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1) 329 scsi_block_requests(hba->host); 330 } 331 332 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag, 333 enum ufs_trace_str_t str_t) 334 { 335 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr; 336 struct utp_upiu_header *header; 337 338 if (!trace_ufshcd_upiu_enabled()) 339 return; 340 341 if (str_t == UFS_CMD_SEND) 342 header = &rq->header; 343 else 344 header = &hba->lrb[tag].ucd_rsp_ptr->header; 345 346 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb, 347 UFS_TSF_CDB); 348 } 349 350 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba, 351 enum ufs_trace_str_t str_t, 352 struct utp_upiu_req *rq_rsp) 353 { 354 if (!trace_ufshcd_upiu_enabled()) 355 return; 356 357 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header, 358 &rq_rsp->qr, UFS_TSF_OSF); 359 } 360 361 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag, 362 enum ufs_trace_str_t str_t) 363 { 364 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag]; 365 366 if (!trace_ufshcd_upiu_enabled()) 367 return; 368 369 if (str_t == UFS_TM_SEND) 370 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 371 &descp->upiu_req.req_header, 372 &descp->upiu_req.input_param1, 373 UFS_TSF_TM_INPUT); 374 else 375 trace_ufshcd_upiu(dev_name(hba->dev), str_t, 376 &descp->upiu_rsp.rsp_header, 377 &descp->upiu_rsp.output_param1, 378 UFS_TSF_TM_OUTPUT); 379 } 380 381 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba, 382 const struct uic_command *ucmd, 383 enum ufs_trace_str_t str_t) 384 { 385 u32 cmd; 386 387 if (!trace_ufshcd_uic_command_enabled()) 388 return; 389 390 if (str_t == UFS_CMD_SEND) 391 cmd = ucmd->command; 392 else 393 cmd = ufshcd_readl(hba, REG_UIC_COMMAND); 394 395 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd, 396 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1), 397 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2), 398 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3)); 399 } 400 401 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag, 402 enum ufs_trace_str_t str_t) 403 { 404 u64 lba = 0; 405 u8 opcode = 0, group_id = 0; 406 u32 doorbell = 0; 407 u32 intr; 408 int hwq_id = -1; 409 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 410 struct scsi_cmnd *cmd = lrbp->cmd; 411 struct request *rq = scsi_cmd_to_rq(cmd); 412 int transfer_len = -1; 413 414 if (!cmd) 415 return; 416 417 /* trace UPIU also */ 418 ufshcd_add_cmd_upiu_trace(hba, tag, str_t); 419 if (!trace_ufshcd_command_enabled()) 420 return; 421 422 opcode = cmd->cmnd[0]; 423 424 if (opcode == READ_10 || opcode == WRITE_10) { 425 /* 426 * Currently we only fully trace read(10) and write(10) commands 427 */ 428 transfer_len = 429 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len); 430 lba = scsi_get_lba(cmd); 431 if (opcode == WRITE_10) 432 group_id = lrbp->cmd->cmnd[6]; 433 } else if (opcode == UNMAP) { 434 /* 435 * The number of Bytes to be unmapped beginning with the lba. 436 */ 437 transfer_len = blk_rq_bytes(rq); 438 lba = scsi_get_lba(cmd); 439 } 440 441 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 442 443 if (is_mcq_enabled(hba)) { 444 struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq); 445 446 hwq_id = hwq->id; 447 } else { 448 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 449 } 450 trace_ufshcd_command(dev_name(hba->dev), str_t, tag, 451 doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id); 452 } 453 454 static void ufshcd_print_clk_freqs(struct ufs_hba *hba) 455 { 456 struct ufs_clk_info *clki; 457 struct list_head *head = &hba->clk_list_head; 458 459 if (list_empty(head)) 460 return; 461 462 list_for_each_entry(clki, head, list) { 463 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq && 464 clki->max_freq) 465 dev_err(hba->dev, "clk: %s, rate: %u\n", 466 clki->name, clki->curr_freq); 467 } 468 } 469 470 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id, 471 const char *err_name) 472 { 473 int i; 474 bool found = false; 475 const struct ufs_event_hist *e; 476 477 if (id >= UFS_EVT_CNT) 478 return; 479 480 e = &hba->ufs_stats.event[id]; 481 482 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) { 483 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH; 484 485 if (e->tstamp[p] == 0) 486 continue; 487 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p, 488 e->val[p], div_u64(e->tstamp[p], 1000)); 489 found = true; 490 } 491 492 if (!found) 493 dev_err(hba->dev, "No record of %s\n", err_name); 494 else 495 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt); 496 } 497 498 static void ufshcd_print_evt_hist(struct ufs_hba *hba) 499 { 500 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 501 502 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err"); 503 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err"); 504 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err"); 505 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err"); 506 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err"); 507 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR, 508 "auto_hibern8_err"); 509 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err"); 510 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL, 511 "link_startup_fail"); 512 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail"); 513 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR, 514 "suspend_fail"); 515 ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail"); 516 ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR, 517 "wlun suspend_fail"); 518 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset"); 519 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset"); 520 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort"); 521 522 ufshcd_vops_dbg_register_dump(hba); 523 } 524 525 static 526 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt) 527 { 528 const struct ufshcd_lrb *lrbp; 529 int prdt_length; 530 531 lrbp = &hba->lrb[tag]; 532 533 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n", 534 tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000)); 535 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n", 536 tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000)); 537 dev_err(hba->dev, 538 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n", 539 tag, (u64)lrbp->utrd_dma_addr); 540 541 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr, 542 sizeof(struct utp_transfer_req_desc)); 543 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag, 544 (u64)lrbp->ucd_req_dma_addr); 545 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr, 546 sizeof(struct utp_upiu_req)); 547 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag, 548 (u64)lrbp->ucd_rsp_dma_addr); 549 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr, 550 sizeof(struct utp_upiu_rsp)); 551 552 prdt_length = le16_to_cpu( 553 lrbp->utr_descriptor_ptr->prd_table_length); 554 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 555 prdt_length /= ufshcd_sg_entry_size(hba); 556 557 dev_err(hba->dev, 558 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n", 559 tag, prdt_length, 560 (u64)lrbp->ucd_prdt_dma_addr); 561 562 if (pr_prdt) 563 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr, 564 ufshcd_sg_entry_size(hba) * prdt_length); 565 } 566 567 static bool ufshcd_print_tr_iter(struct request *req, void *priv) 568 { 569 struct scsi_device *sdev = req->q->queuedata; 570 struct Scsi_Host *shost = sdev->host; 571 struct ufs_hba *hba = shost_priv(shost); 572 573 ufshcd_print_tr(hba, req->tag, *(bool *)priv); 574 575 return true; 576 } 577 578 /** 579 * ufshcd_print_trs_all - print trs for all started requests. 580 * @hba: per-adapter instance. 581 * @pr_prdt: need to print prdt or not. 582 */ 583 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt) 584 { 585 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt); 586 } 587 588 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap) 589 { 590 int tag; 591 592 for_each_set_bit(tag, &bitmap, hba->nutmrs) { 593 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag]; 594 595 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag); 596 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp)); 597 } 598 } 599 600 static void ufshcd_print_host_state(struct ufs_hba *hba) 601 { 602 const struct scsi_device *sdev_ufs = hba->ufs_device_wlun; 603 604 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state); 605 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n", 606 hba->outstanding_reqs, hba->outstanding_tasks); 607 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n", 608 hba->saved_err, hba->saved_uic_err); 609 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n", 610 hba->curr_dev_pwr_mode, hba->uic_link_state); 611 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n", 612 hba->pm_op_in_progress, hba->is_sys_suspended); 613 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n", 614 hba->auto_bkops_enabled, hba->host->host_self_blocked); 615 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state); 616 dev_err(hba->dev, 617 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n", 618 div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000), 619 hba->ufs_stats.hibern8_exit_cnt); 620 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n", 621 div_u64(hba->ufs_stats.last_intr_ts, 1000), 622 hba->ufs_stats.last_intr_status); 623 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n", 624 hba->eh_flags, hba->req_abort_count); 625 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n", 626 hba->ufs_version, hba->capabilities, hba->caps); 627 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks, 628 hba->dev_quirks); 629 if (sdev_ufs) 630 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n", 631 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev); 632 633 ufshcd_print_clk_freqs(hba); 634 } 635 636 /** 637 * ufshcd_print_pwr_info - print power params as saved in hba 638 * power info 639 * @hba: per-adapter instance 640 */ 641 static void ufshcd_print_pwr_info(struct ufs_hba *hba) 642 { 643 static const char * const names[] = { 644 "INVALID MODE", 645 "FAST MODE", 646 "SLOW_MODE", 647 "INVALID MODE", 648 "FASTAUTO_MODE", 649 "SLOWAUTO_MODE", 650 "INVALID MODE", 651 }; 652 653 /* 654 * Using dev_dbg to avoid messages during runtime PM to avoid 655 * never-ending cycles of messages written back to storage by user space 656 * causing runtime resume, causing more messages and so on. 657 */ 658 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n", 659 __func__, 660 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx, 661 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx, 662 names[hba->pwr_info.pwr_rx], 663 names[hba->pwr_info.pwr_tx], 664 hba->pwr_info.hs_rate); 665 } 666 667 static void ufshcd_device_reset(struct ufs_hba *hba) 668 { 669 int err; 670 671 err = ufshcd_vops_device_reset(hba); 672 673 if (!err) { 674 ufshcd_set_ufs_dev_active(hba); 675 if (ufshcd_is_wb_allowed(hba)) { 676 hba->dev_info.wb_enabled = false; 677 hba->dev_info.wb_buf_flush_enabled = false; 678 } 679 } 680 if (err != -EOPNOTSUPP) 681 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err); 682 } 683 684 void ufshcd_delay_us(unsigned long us, unsigned long tolerance) 685 { 686 if (!us) 687 return; 688 689 if (us < 10) 690 udelay(us); 691 else 692 usleep_range(us, us + tolerance); 693 } 694 EXPORT_SYMBOL_GPL(ufshcd_delay_us); 695 696 /** 697 * ufshcd_wait_for_register - wait for register value to change 698 * @hba: per-adapter interface 699 * @reg: mmio register offset 700 * @mask: mask to apply to the read register value 701 * @val: value to wait for 702 * @interval_us: polling interval in microseconds 703 * @timeout_ms: timeout in milliseconds 704 * 705 * Return: -ETIMEDOUT on error, zero on success. 706 */ 707 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask, 708 u32 val, unsigned long interval_us, 709 unsigned long timeout_ms) 710 { 711 int err = 0; 712 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 713 714 /* ignore bits that we don't intend to wait on */ 715 val = val & mask; 716 717 while ((ufshcd_readl(hba, reg) & mask) != val) { 718 usleep_range(interval_us, interval_us + 50); 719 if (time_after(jiffies, timeout)) { 720 if ((ufshcd_readl(hba, reg) & mask) != val) 721 err = -ETIMEDOUT; 722 break; 723 } 724 } 725 726 return err; 727 } 728 729 /** 730 * ufshcd_get_intr_mask - Get the interrupt bit mask 731 * @hba: Pointer to adapter instance 732 * 733 * Return: interrupt bit mask per version 734 */ 735 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba) 736 { 737 if (hba->ufs_version == ufshci_version(1, 0)) 738 return INTERRUPT_MASK_ALL_VER_10; 739 if (hba->ufs_version <= ufshci_version(2, 0)) 740 return INTERRUPT_MASK_ALL_VER_11; 741 742 return INTERRUPT_MASK_ALL_VER_21; 743 } 744 745 /** 746 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA 747 * @hba: Pointer to adapter instance 748 * 749 * Return: UFSHCI version supported by the controller 750 */ 751 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba) 752 { 753 u32 ufshci_ver; 754 755 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION) 756 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba); 757 else 758 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION); 759 760 /* 761 * UFSHCI v1.x uses a different version scheme, in order 762 * to allow the use of comparisons with the ufshci_version 763 * function, we convert it to the same scheme as ufs 2.0+. 764 */ 765 if (ufshci_ver & 0x00010000) 766 return ufshci_version(1, ufshci_ver & 0x00000100); 767 768 return ufshci_ver; 769 } 770 771 /** 772 * ufshcd_is_device_present - Check if any device connected to 773 * the host controller 774 * @hba: pointer to adapter instance 775 * 776 * Return: true if device present, false if no device detected 777 */ 778 static inline bool ufshcd_is_device_present(struct ufs_hba *hba) 779 { 780 return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT; 781 } 782 783 /** 784 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status 785 * @lrbp: pointer to local command reference block 786 * @cqe: pointer to the completion queue entry 787 * 788 * This function is used to get the OCS field from UTRD 789 * 790 * Return: the OCS field in the UTRD. 791 */ 792 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp, 793 struct cq_entry *cqe) 794 { 795 if (cqe) 796 return le32_to_cpu(cqe->status) & MASK_OCS; 797 798 return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS; 799 } 800 801 /** 802 * ufshcd_utrl_clear() - Clear requests from the controller request list. 803 * @hba: per adapter instance 804 * @mask: mask with one bit set for each request to be cleared 805 */ 806 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask) 807 { 808 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 809 mask = ~mask; 810 /* 811 * From the UFSHCI specification: "UTP Transfer Request List CLear 812 * Register (UTRLCLR): This field is bit significant. Each bit 813 * corresponds to a slot in the UTP Transfer Request List, where bit 0 814 * corresponds to request slot 0. A bit in this field is set to ‘0’ 815 * by host software to indicate to the host controller that a transfer 816 * request slot is cleared. The host controller 817 * shall free up any resources associated to the request slot 818 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The 819 * host software indicates no change to request slots by setting the 820 * associated bits in this field to ‘1’. Bits in this field shall only 821 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’." 822 */ 823 ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR); 824 } 825 826 /** 827 * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register 828 * @hba: per adapter instance 829 * @pos: position of the bit to be cleared 830 */ 831 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos) 832 { 833 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR) 834 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 835 else 836 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR); 837 } 838 839 /** 840 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY 841 * @reg: Register value of host controller status 842 * 843 * Return: 0 on success; a positive value if failed. 844 */ 845 static inline int ufshcd_get_lists_status(u32 reg) 846 { 847 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY); 848 } 849 850 /** 851 * ufshcd_get_uic_cmd_result - Get the UIC command result 852 * @hba: Pointer to adapter instance 853 * 854 * This function gets the result of UIC command completion 855 * 856 * Return: 0 on success; non-zero value on error. 857 */ 858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba) 859 { 860 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) & 861 MASK_UIC_COMMAND_RESULT; 862 } 863 864 /** 865 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command 866 * @hba: Pointer to adapter instance 867 * 868 * This function gets UIC command argument3 869 * 870 * Return: 0 on success; non-zero value on error. 871 */ 872 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba) 873 { 874 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3); 875 } 876 877 /** 878 * ufshcd_get_req_rsp - returns the TR response transaction type 879 * @ucd_rsp_ptr: pointer to response UPIU 880 * 881 * Return: UPIU type. 882 */ 883 static inline enum upiu_response_transaction 884 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr) 885 { 886 return ucd_rsp_ptr->header.transaction_code; 887 } 888 889 /** 890 * ufshcd_is_exception_event - Check if the device raised an exception event 891 * @ucd_rsp_ptr: pointer to response UPIU 892 * 893 * The function checks if the device raised an exception event indicated in 894 * the Device Information field of response UPIU. 895 * 896 * Return: true if exception is raised, false otherwise. 897 */ 898 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr) 899 { 900 return ucd_rsp_ptr->header.device_information & 1; 901 } 902 903 /** 904 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values. 905 * @hba: per adapter instance 906 */ 907 static inline void 908 ufshcd_reset_intr_aggr(struct ufs_hba *hba) 909 { 910 ufshcd_writel(hba, INT_AGGR_ENABLE | 911 INT_AGGR_COUNTER_AND_TIMER_RESET, 912 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 913 } 914 915 /** 916 * ufshcd_config_intr_aggr - Configure interrupt aggregation values. 917 * @hba: per adapter instance 918 * @cnt: Interrupt aggregation counter threshold 919 * @tmout: Interrupt aggregation timeout value 920 */ 921 static inline void 922 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout) 923 { 924 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE | 925 INT_AGGR_COUNTER_THLD_VAL(cnt) | 926 INT_AGGR_TIMEOUT_VAL(tmout), 927 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 928 } 929 930 /** 931 * ufshcd_disable_intr_aggr - Disables interrupt aggregation. 932 * @hba: per adapter instance 933 */ 934 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba) 935 { 936 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL); 937 } 938 939 /** 940 * ufshcd_enable_run_stop_reg - Enable run-stop registers, 941 * When run-stop registers are set to 1, it indicates the 942 * host controller that it can process the requests 943 * @hba: per adapter instance 944 */ 945 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba) 946 { 947 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT, 948 REG_UTP_TASK_REQ_LIST_RUN_STOP); 949 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT, 950 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP); 951 } 952 953 /** 954 * ufshcd_hba_start - Start controller initialization sequence 955 * @hba: per adapter instance 956 */ 957 static inline void ufshcd_hba_start(struct ufs_hba *hba) 958 { 959 u32 val = CONTROLLER_ENABLE; 960 961 if (ufshcd_crypto_enable(hba)) 962 val |= CRYPTO_GENERAL_ENABLE; 963 964 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE); 965 } 966 967 /** 968 * ufshcd_is_hba_active - Get controller state 969 * @hba: per adapter instance 970 * 971 * Return: true if and only if the controller is active. 972 */ 973 bool ufshcd_is_hba_active(struct ufs_hba *hba) 974 { 975 return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE; 976 } 977 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active); 978 979 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba) 980 { 981 /* HCI version 1.0 and 1.1 supports UniPro 1.41 */ 982 if (hba->ufs_version <= ufshci_version(1, 1)) 983 return UFS_UNIPRO_VER_1_41; 984 else 985 return UFS_UNIPRO_VER_1_6; 986 } 987 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver); 988 989 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba) 990 { 991 /* 992 * If both host and device support UniPro ver1.6 or later, PA layer 993 * parameters tuning happens during link startup itself. 994 * 995 * We can manually tune PA layer parameters if either host or device 996 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning 997 * logic simple, we will only do manual tuning if local unipro version 998 * doesn't support ver1.6 or later. 999 */ 1000 return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6; 1001 } 1002 1003 /** 1004 * ufshcd_set_clk_freq - set UFS controller clock frequencies 1005 * @hba: per adapter instance 1006 * @scale_up: If True, set max possible frequency othewise set low frequency 1007 * 1008 * Return: 0 if successful; < 0 upon failure. 1009 */ 1010 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up) 1011 { 1012 int ret = 0; 1013 struct ufs_clk_info *clki; 1014 struct list_head *head = &hba->clk_list_head; 1015 1016 if (list_empty(head)) 1017 goto out; 1018 1019 list_for_each_entry(clki, head, list) { 1020 if (!IS_ERR_OR_NULL(clki->clk)) { 1021 if (scale_up && clki->max_freq) { 1022 if (clki->curr_freq == clki->max_freq) 1023 continue; 1024 1025 ret = clk_set_rate(clki->clk, clki->max_freq); 1026 if (ret) { 1027 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1028 __func__, clki->name, 1029 clki->max_freq, ret); 1030 break; 1031 } 1032 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1033 "scaled up", clki->name, 1034 clki->curr_freq, 1035 clki->max_freq); 1036 1037 clki->curr_freq = clki->max_freq; 1038 1039 } else if (!scale_up && clki->min_freq) { 1040 if (clki->curr_freq == clki->min_freq) 1041 continue; 1042 1043 ret = clk_set_rate(clki->clk, clki->min_freq); 1044 if (ret) { 1045 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 1046 __func__, clki->name, 1047 clki->min_freq, ret); 1048 break; 1049 } 1050 trace_ufshcd_clk_scaling(dev_name(hba->dev), 1051 "scaled down", clki->name, 1052 clki->curr_freq, 1053 clki->min_freq); 1054 clki->curr_freq = clki->min_freq; 1055 } 1056 } 1057 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__, 1058 clki->name, clk_get_rate(clki->clk)); 1059 } 1060 1061 out: 1062 return ret; 1063 } 1064 1065 /** 1066 * ufshcd_scale_clks - scale up or scale down UFS controller clocks 1067 * @hba: per adapter instance 1068 * @scale_up: True if scaling up and false if scaling down 1069 * 1070 * Return: 0 if successful; < 0 upon failure. 1071 */ 1072 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up) 1073 { 1074 int ret = 0; 1075 ktime_t start = ktime_get(); 1076 1077 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE); 1078 if (ret) 1079 goto out; 1080 1081 ret = ufshcd_set_clk_freq(hba, scale_up); 1082 if (ret) 1083 goto out; 1084 1085 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE); 1086 if (ret) 1087 ufshcd_set_clk_freq(hba, !scale_up); 1088 1089 out: 1090 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1091 (scale_up ? "up" : "down"), 1092 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1093 return ret; 1094 } 1095 1096 /** 1097 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not 1098 * @hba: per adapter instance 1099 * @scale_up: True if scaling up and false if scaling down 1100 * 1101 * Return: true if scaling is required, false otherwise. 1102 */ 1103 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba, 1104 bool scale_up) 1105 { 1106 struct ufs_clk_info *clki; 1107 struct list_head *head = &hba->clk_list_head; 1108 1109 if (list_empty(head)) 1110 return false; 1111 1112 list_for_each_entry(clki, head, list) { 1113 if (!IS_ERR_OR_NULL(clki->clk)) { 1114 if (scale_up && clki->max_freq) { 1115 if (clki->curr_freq == clki->max_freq) 1116 continue; 1117 return true; 1118 } else if (!scale_up && clki->min_freq) { 1119 if (clki->curr_freq == clki->min_freq) 1120 continue; 1121 return true; 1122 } 1123 } 1124 } 1125 1126 return false; 1127 } 1128 1129 /* 1130 * Determine the number of pending commands by counting the bits in the SCSI 1131 * device budget maps. This approach has been selected because a bit is set in 1132 * the budget map before scsi_host_queue_ready() checks the host_self_blocked 1133 * flag. The host_self_blocked flag can be modified by calling 1134 * scsi_block_requests() or scsi_unblock_requests(). 1135 */ 1136 static u32 ufshcd_pending_cmds(struct ufs_hba *hba) 1137 { 1138 const struct scsi_device *sdev; 1139 u32 pending = 0; 1140 1141 lockdep_assert_held(hba->host->host_lock); 1142 __shost_for_each_device(sdev, hba->host) 1143 pending += sbitmap_weight(&sdev->budget_map); 1144 1145 return pending; 1146 } 1147 1148 /* 1149 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1150 * has expired. 1151 * 1152 * Return: 0 upon success; -EBUSY upon timeout. 1153 */ 1154 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba, 1155 u64 wait_timeout_us) 1156 { 1157 unsigned long flags; 1158 int ret = 0; 1159 u32 tm_doorbell; 1160 u32 tr_pending; 1161 bool timeout = false, do_last_check = false; 1162 ktime_t start; 1163 1164 ufshcd_hold(hba); 1165 spin_lock_irqsave(hba->host->host_lock, flags); 1166 /* 1167 * Wait for all the outstanding tasks/transfer requests. 1168 * Verify by checking the doorbell registers are clear. 1169 */ 1170 start = ktime_get(); 1171 do { 1172 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) { 1173 ret = -EBUSY; 1174 goto out; 1175 } 1176 1177 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 1178 tr_pending = ufshcd_pending_cmds(hba); 1179 if (!tm_doorbell && !tr_pending) { 1180 timeout = false; 1181 break; 1182 } else if (do_last_check) { 1183 break; 1184 } 1185 1186 spin_unlock_irqrestore(hba->host->host_lock, flags); 1187 io_schedule_timeout(msecs_to_jiffies(20)); 1188 if (ktime_to_us(ktime_sub(ktime_get(), start)) > 1189 wait_timeout_us) { 1190 timeout = true; 1191 /* 1192 * We might have scheduled out for long time so make 1193 * sure to check if doorbells are cleared by this time 1194 * or not. 1195 */ 1196 do_last_check = true; 1197 } 1198 spin_lock_irqsave(hba->host->host_lock, flags); 1199 } while (tm_doorbell || tr_pending); 1200 1201 if (timeout) { 1202 dev_err(hba->dev, 1203 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n", 1204 __func__, tm_doorbell, tr_pending); 1205 ret = -EBUSY; 1206 } 1207 out: 1208 spin_unlock_irqrestore(hba->host->host_lock, flags); 1209 ufshcd_release(hba); 1210 return ret; 1211 } 1212 1213 /** 1214 * ufshcd_scale_gear - scale up/down UFS gear 1215 * @hba: per adapter instance 1216 * @scale_up: True for scaling up gear and false for scaling down 1217 * 1218 * Return: 0 for success; -EBUSY if scaling can't happen at this time; 1219 * non-zero for any other errors. 1220 */ 1221 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up) 1222 { 1223 int ret = 0; 1224 struct ufs_pa_layer_attr new_pwr_info; 1225 1226 if (scale_up) { 1227 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info, 1228 sizeof(struct ufs_pa_layer_attr)); 1229 } else { 1230 memcpy(&new_pwr_info, &hba->pwr_info, 1231 sizeof(struct ufs_pa_layer_attr)); 1232 1233 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear || 1234 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) { 1235 /* save the current power mode */ 1236 memcpy(&hba->clk_scaling.saved_pwr_info, 1237 &hba->pwr_info, 1238 sizeof(struct ufs_pa_layer_attr)); 1239 1240 /* scale down gear */ 1241 new_pwr_info.gear_tx = hba->clk_scaling.min_gear; 1242 new_pwr_info.gear_rx = hba->clk_scaling.min_gear; 1243 } 1244 } 1245 1246 /* check if the power mode needs to be changed or not? */ 1247 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info); 1248 if (ret) 1249 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)", 1250 __func__, ret, 1251 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx, 1252 new_pwr_info.gear_tx, new_pwr_info.gear_rx); 1253 1254 return ret; 1255 } 1256 1257 /* 1258 * Wait until all pending SCSI commands and TMFs have finished or the timeout 1259 * has expired. 1260 * 1261 * Return: 0 upon success; -EBUSY upon timeout. 1262 */ 1263 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us) 1264 { 1265 int ret = 0; 1266 /* 1267 * make sure that there are no outstanding requests when 1268 * clock scaling is in progress 1269 */ 1270 blk_mq_quiesce_tagset(&hba->host->tag_set); 1271 mutex_lock(&hba->wb_mutex); 1272 down_write(&hba->clk_scaling_lock); 1273 1274 if (!hba->clk_scaling.is_allowed || 1275 ufshcd_wait_for_doorbell_clr(hba, timeout_us)) { 1276 ret = -EBUSY; 1277 up_write(&hba->clk_scaling_lock); 1278 mutex_unlock(&hba->wb_mutex); 1279 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1280 goto out; 1281 } 1282 1283 /* let's not get into low power until clock scaling is completed */ 1284 ufshcd_hold(hba); 1285 1286 out: 1287 return ret; 1288 } 1289 1290 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up) 1291 { 1292 up_write(&hba->clk_scaling_lock); 1293 1294 /* Enable Write Booster if we have scaled up else disable it */ 1295 if (ufshcd_enable_wb_if_scaling_up(hba) && !err) 1296 ufshcd_wb_toggle(hba, scale_up); 1297 1298 mutex_unlock(&hba->wb_mutex); 1299 1300 blk_mq_unquiesce_tagset(&hba->host->tag_set); 1301 ufshcd_release(hba); 1302 } 1303 1304 /** 1305 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear 1306 * @hba: per adapter instance 1307 * @scale_up: True for scaling up and false for scalin down 1308 * 1309 * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero 1310 * for any other errors. 1311 */ 1312 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up) 1313 { 1314 int ret = 0; 1315 1316 ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC); 1317 if (ret) 1318 return ret; 1319 1320 /* scale down the gear before scaling down clocks */ 1321 if (!scale_up) { 1322 ret = ufshcd_scale_gear(hba, false); 1323 if (ret) 1324 goto out_unprepare; 1325 } 1326 1327 ret = ufshcd_scale_clks(hba, scale_up); 1328 if (ret) { 1329 if (!scale_up) 1330 ufshcd_scale_gear(hba, true); 1331 goto out_unprepare; 1332 } 1333 1334 /* scale up the gear after scaling up clocks */ 1335 if (scale_up) { 1336 ret = ufshcd_scale_gear(hba, true); 1337 if (ret) { 1338 ufshcd_scale_clks(hba, false); 1339 goto out_unprepare; 1340 } 1341 } 1342 1343 out_unprepare: 1344 ufshcd_clock_scaling_unprepare(hba, ret, scale_up); 1345 return ret; 1346 } 1347 1348 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work) 1349 { 1350 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1351 clk_scaling.suspend_work); 1352 unsigned long irq_flags; 1353 1354 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1355 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) { 1356 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1357 return; 1358 } 1359 hba->clk_scaling.is_suspended = true; 1360 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1361 1362 __ufshcd_suspend_clkscaling(hba); 1363 } 1364 1365 static void ufshcd_clk_scaling_resume_work(struct work_struct *work) 1366 { 1367 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1368 clk_scaling.resume_work); 1369 unsigned long irq_flags; 1370 1371 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1372 if (!hba->clk_scaling.is_suspended) { 1373 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1374 return; 1375 } 1376 hba->clk_scaling.is_suspended = false; 1377 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1378 1379 devfreq_resume_device(hba->devfreq); 1380 } 1381 1382 static int ufshcd_devfreq_target(struct device *dev, 1383 unsigned long *freq, u32 flags) 1384 { 1385 int ret = 0; 1386 struct ufs_hba *hba = dev_get_drvdata(dev); 1387 ktime_t start; 1388 bool scale_up, sched_clk_scaling_suspend_work = false; 1389 struct list_head *clk_list = &hba->clk_list_head; 1390 struct ufs_clk_info *clki; 1391 unsigned long irq_flags; 1392 1393 if (!ufshcd_is_clkscaling_supported(hba)) 1394 return -EINVAL; 1395 1396 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list); 1397 /* Override with the closest supported frequency */ 1398 *freq = (unsigned long) clk_round_rate(clki->clk, *freq); 1399 spin_lock_irqsave(hba->host->host_lock, irq_flags); 1400 if (ufshcd_eh_in_progress(hba)) { 1401 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1402 return 0; 1403 } 1404 1405 if (!hba->clk_scaling.active_reqs) 1406 sched_clk_scaling_suspend_work = true; 1407 1408 if (list_empty(clk_list)) { 1409 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1410 goto out; 1411 } 1412 1413 /* Decide based on the rounded-off frequency and update */ 1414 scale_up = *freq == clki->max_freq; 1415 if (!scale_up) 1416 *freq = clki->min_freq; 1417 /* Update the frequency */ 1418 if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) { 1419 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1420 ret = 0; 1421 goto out; /* no state change required */ 1422 } 1423 spin_unlock_irqrestore(hba->host->host_lock, irq_flags); 1424 1425 start = ktime_get(); 1426 ret = ufshcd_devfreq_scale(hba, scale_up); 1427 1428 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev), 1429 (scale_up ? "up" : "down"), 1430 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 1431 1432 out: 1433 if (sched_clk_scaling_suspend_work) 1434 queue_work(hba->clk_scaling.workq, 1435 &hba->clk_scaling.suspend_work); 1436 1437 return ret; 1438 } 1439 1440 static int ufshcd_devfreq_get_dev_status(struct device *dev, 1441 struct devfreq_dev_status *stat) 1442 { 1443 struct ufs_hba *hba = dev_get_drvdata(dev); 1444 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 1445 unsigned long flags; 1446 struct list_head *clk_list = &hba->clk_list_head; 1447 struct ufs_clk_info *clki; 1448 ktime_t curr_t; 1449 1450 if (!ufshcd_is_clkscaling_supported(hba)) 1451 return -EINVAL; 1452 1453 memset(stat, 0, sizeof(*stat)); 1454 1455 spin_lock_irqsave(hba->host->host_lock, flags); 1456 curr_t = ktime_get(); 1457 if (!scaling->window_start_t) 1458 goto start_window; 1459 1460 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1461 /* 1462 * If current frequency is 0, then the ondemand governor considers 1463 * there's no initial frequency set. And it always requests to set 1464 * to max. frequency. 1465 */ 1466 stat->current_frequency = clki->curr_freq; 1467 if (scaling->is_busy_started) 1468 scaling->tot_busy_t += ktime_us_delta(curr_t, 1469 scaling->busy_start_t); 1470 1471 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t); 1472 stat->busy_time = scaling->tot_busy_t; 1473 start_window: 1474 scaling->window_start_t = curr_t; 1475 scaling->tot_busy_t = 0; 1476 1477 if (scaling->active_reqs) { 1478 scaling->busy_start_t = curr_t; 1479 scaling->is_busy_started = true; 1480 } else { 1481 scaling->busy_start_t = 0; 1482 scaling->is_busy_started = false; 1483 } 1484 spin_unlock_irqrestore(hba->host->host_lock, flags); 1485 return 0; 1486 } 1487 1488 static int ufshcd_devfreq_init(struct ufs_hba *hba) 1489 { 1490 struct list_head *clk_list = &hba->clk_list_head; 1491 struct ufs_clk_info *clki; 1492 struct devfreq *devfreq; 1493 int ret; 1494 1495 /* Skip devfreq if we don't have any clocks in the list */ 1496 if (list_empty(clk_list)) 1497 return 0; 1498 1499 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1500 dev_pm_opp_add(hba->dev, clki->min_freq, 0); 1501 dev_pm_opp_add(hba->dev, clki->max_freq, 0); 1502 1503 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile, 1504 &hba->vps->ondemand_data); 1505 devfreq = devfreq_add_device(hba->dev, 1506 &hba->vps->devfreq_profile, 1507 DEVFREQ_GOV_SIMPLE_ONDEMAND, 1508 &hba->vps->ondemand_data); 1509 if (IS_ERR(devfreq)) { 1510 ret = PTR_ERR(devfreq); 1511 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret); 1512 1513 dev_pm_opp_remove(hba->dev, clki->min_freq); 1514 dev_pm_opp_remove(hba->dev, clki->max_freq); 1515 return ret; 1516 } 1517 1518 hba->devfreq = devfreq; 1519 1520 return 0; 1521 } 1522 1523 static void ufshcd_devfreq_remove(struct ufs_hba *hba) 1524 { 1525 struct list_head *clk_list = &hba->clk_list_head; 1526 struct ufs_clk_info *clki; 1527 1528 if (!hba->devfreq) 1529 return; 1530 1531 devfreq_remove_device(hba->devfreq); 1532 hba->devfreq = NULL; 1533 1534 clki = list_first_entry(clk_list, struct ufs_clk_info, list); 1535 dev_pm_opp_remove(hba->dev, clki->min_freq); 1536 dev_pm_opp_remove(hba->dev, clki->max_freq); 1537 } 1538 1539 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1540 { 1541 unsigned long flags; 1542 1543 devfreq_suspend_device(hba->devfreq); 1544 spin_lock_irqsave(hba->host->host_lock, flags); 1545 hba->clk_scaling.window_start_t = 0; 1546 spin_unlock_irqrestore(hba->host->host_lock, flags); 1547 } 1548 1549 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba) 1550 { 1551 unsigned long flags; 1552 bool suspend = false; 1553 1554 cancel_work_sync(&hba->clk_scaling.suspend_work); 1555 cancel_work_sync(&hba->clk_scaling.resume_work); 1556 1557 spin_lock_irqsave(hba->host->host_lock, flags); 1558 if (!hba->clk_scaling.is_suspended) { 1559 suspend = true; 1560 hba->clk_scaling.is_suspended = true; 1561 } 1562 spin_unlock_irqrestore(hba->host->host_lock, flags); 1563 1564 if (suspend) 1565 __ufshcd_suspend_clkscaling(hba); 1566 } 1567 1568 static void ufshcd_resume_clkscaling(struct ufs_hba *hba) 1569 { 1570 unsigned long flags; 1571 bool resume = false; 1572 1573 spin_lock_irqsave(hba->host->host_lock, flags); 1574 if (hba->clk_scaling.is_suspended) { 1575 resume = true; 1576 hba->clk_scaling.is_suspended = false; 1577 } 1578 spin_unlock_irqrestore(hba->host->host_lock, flags); 1579 1580 if (resume) 1581 devfreq_resume_device(hba->devfreq); 1582 } 1583 1584 static ssize_t ufshcd_clkscale_enable_show(struct device *dev, 1585 struct device_attribute *attr, char *buf) 1586 { 1587 struct ufs_hba *hba = dev_get_drvdata(dev); 1588 1589 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled); 1590 } 1591 1592 static ssize_t ufshcd_clkscale_enable_store(struct device *dev, 1593 struct device_attribute *attr, const char *buf, size_t count) 1594 { 1595 struct ufs_hba *hba = dev_get_drvdata(dev); 1596 u32 value; 1597 int err = 0; 1598 1599 if (kstrtou32(buf, 0, &value)) 1600 return -EINVAL; 1601 1602 down(&hba->host_sem); 1603 if (!ufshcd_is_user_access_allowed(hba)) { 1604 err = -EBUSY; 1605 goto out; 1606 } 1607 1608 value = !!value; 1609 if (value == hba->clk_scaling.is_enabled) 1610 goto out; 1611 1612 ufshcd_rpm_get_sync(hba); 1613 ufshcd_hold(hba); 1614 1615 hba->clk_scaling.is_enabled = value; 1616 1617 if (value) { 1618 ufshcd_resume_clkscaling(hba); 1619 } else { 1620 ufshcd_suspend_clkscaling(hba); 1621 err = ufshcd_devfreq_scale(hba, true); 1622 if (err) 1623 dev_err(hba->dev, "%s: failed to scale clocks up %d\n", 1624 __func__, err); 1625 } 1626 1627 ufshcd_release(hba); 1628 ufshcd_rpm_put_sync(hba); 1629 out: 1630 up(&hba->host_sem); 1631 return err ? err : count; 1632 } 1633 1634 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba) 1635 { 1636 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show; 1637 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store; 1638 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr); 1639 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable"; 1640 hba->clk_scaling.enable_attr.attr.mode = 0644; 1641 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr)) 1642 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n"); 1643 } 1644 1645 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba) 1646 { 1647 if (hba->clk_scaling.enable_attr.attr.name) 1648 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr); 1649 } 1650 1651 static void ufshcd_init_clk_scaling(struct ufs_hba *hba) 1652 { 1653 char wq_name[sizeof("ufs_clkscaling_00")]; 1654 1655 if (!ufshcd_is_clkscaling_supported(hba)) 1656 return; 1657 1658 if (!hba->clk_scaling.min_gear) 1659 hba->clk_scaling.min_gear = UFS_HS_G1; 1660 1661 INIT_WORK(&hba->clk_scaling.suspend_work, 1662 ufshcd_clk_scaling_suspend_work); 1663 INIT_WORK(&hba->clk_scaling.resume_work, 1664 ufshcd_clk_scaling_resume_work); 1665 1666 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d", 1667 hba->host->host_no); 1668 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name); 1669 1670 hba->clk_scaling.is_initialized = true; 1671 } 1672 1673 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba) 1674 { 1675 if (!hba->clk_scaling.is_initialized) 1676 return; 1677 1678 ufshcd_remove_clk_scaling_sysfs(hba); 1679 destroy_workqueue(hba->clk_scaling.workq); 1680 ufshcd_devfreq_remove(hba); 1681 hba->clk_scaling.is_initialized = false; 1682 } 1683 1684 static void ufshcd_ungate_work(struct work_struct *work) 1685 { 1686 int ret; 1687 unsigned long flags; 1688 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1689 clk_gating.ungate_work); 1690 1691 cancel_delayed_work_sync(&hba->clk_gating.gate_work); 1692 1693 spin_lock_irqsave(hba->host->host_lock, flags); 1694 if (hba->clk_gating.state == CLKS_ON) { 1695 spin_unlock_irqrestore(hba->host->host_lock, flags); 1696 return; 1697 } 1698 1699 spin_unlock_irqrestore(hba->host->host_lock, flags); 1700 ufshcd_hba_vreg_set_hpm(hba); 1701 ufshcd_setup_clocks(hba, true); 1702 1703 ufshcd_enable_irq(hba); 1704 1705 /* Exit from hibern8 */ 1706 if (ufshcd_can_hibern8_during_gating(hba)) { 1707 /* Prevent gating in this path */ 1708 hba->clk_gating.is_suspended = true; 1709 if (ufshcd_is_link_hibern8(hba)) { 1710 ret = ufshcd_uic_hibern8_exit(hba); 1711 if (ret) 1712 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 1713 __func__, ret); 1714 else 1715 ufshcd_set_link_active(hba); 1716 } 1717 hba->clk_gating.is_suspended = false; 1718 } 1719 } 1720 1721 /** 1722 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release. 1723 * Also, exit from hibern8 mode and set the link as active. 1724 * @hba: per adapter instance 1725 */ 1726 void ufshcd_hold(struct ufs_hba *hba) 1727 { 1728 bool flush_result; 1729 unsigned long flags; 1730 1731 if (!ufshcd_is_clkgating_allowed(hba) || 1732 !hba->clk_gating.is_initialized) 1733 return; 1734 spin_lock_irqsave(hba->host->host_lock, flags); 1735 hba->clk_gating.active_reqs++; 1736 1737 start: 1738 switch (hba->clk_gating.state) { 1739 case CLKS_ON: 1740 /* 1741 * Wait for the ungate work to complete if in progress. 1742 * Though the clocks may be in ON state, the link could 1743 * still be in hibner8 state if hibern8 is allowed 1744 * during clock gating. 1745 * Make sure we exit hibern8 state also in addition to 1746 * clocks being ON. 1747 */ 1748 if (ufshcd_can_hibern8_during_gating(hba) && 1749 ufshcd_is_link_hibern8(hba)) { 1750 spin_unlock_irqrestore(hba->host->host_lock, flags); 1751 flush_result = flush_work(&hba->clk_gating.ungate_work); 1752 if (hba->clk_gating.is_suspended && !flush_result) 1753 return; 1754 spin_lock_irqsave(hba->host->host_lock, flags); 1755 goto start; 1756 } 1757 break; 1758 case REQ_CLKS_OFF: 1759 if (cancel_delayed_work(&hba->clk_gating.gate_work)) { 1760 hba->clk_gating.state = CLKS_ON; 1761 trace_ufshcd_clk_gating(dev_name(hba->dev), 1762 hba->clk_gating.state); 1763 break; 1764 } 1765 /* 1766 * If we are here, it means gating work is either done or 1767 * currently running. Hence, fall through to cancel gating 1768 * work and to enable clocks. 1769 */ 1770 fallthrough; 1771 case CLKS_OFF: 1772 hba->clk_gating.state = REQ_CLKS_ON; 1773 trace_ufshcd_clk_gating(dev_name(hba->dev), 1774 hba->clk_gating.state); 1775 queue_work(hba->clk_gating.clk_gating_workq, 1776 &hba->clk_gating.ungate_work); 1777 /* 1778 * fall through to check if we should wait for this 1779 * work to be done or not. 1780 */ 1781 fallthrough; 1782 case REQ_CLKS_ON: 1783 spin_unlock_irqrestore(hba->host->host_lock, flags); 1784 flush_work(&hba->clk_gating.ungate_work); 1785 /* Make sure state is CLKS_ON before returning */ 1786 spin_lock_irqsave(hba->host->host_lock, flags); 1787 goto start; 1788 default: 1789 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n", 1790 __func__, hba->clk_gating.state); 1791 break; 1792 } 1793 spin_unlock_irqrestore(hba->host->host_lock, flags); 1794 } 1795 EXPORT_SYMBOL_GPL(ufshcd_hold); 1796 1797 static void ufshcd_gate_work(struct work_struct *work) 1798 { 1799 struct ufs_hba *hba = container_of(work, struct ufs_hba, 1800 clk_gating.gate_work.work); 1801 unsigned long flags; 1802 int ret; 1803 1804 spin_lock_irqsave(hba->host->host_lock, flags); 1805 /* 1806 * In case you are here to cancel this work the gating state 1807 * would be marked as REQ_CLKS_ON. In this case save time by 1808 * skipping the gating work and exit after changing the clock 1809 * state to CLKS_ON. 1810 */ 1811 if (hba->clk_gating.is_suspended || 1812 (hba->clk_gating.state != REQ_CLKS_OFF)) { 1813 hba->clk_gating.state = CLKS_ON; 1814 trace_ufshcd_clk_gating(dev_name(hba->dev), 1815 hba->clk_gating.state); 1816 goto rel_lock; 1817 } 1818 1819 if (hba->clk_gating.active_reqs 1820 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL 1821 || hba->outstanding_reqs || hba->outstanding_tasks 1822 || hba->active_uic_cmd || hba->uic_async_done) 1823 goto rel_lock; 1824 1825 spin_unlock_irqrestore(hba->host->host_lock, flags); 1826 1827 /* put the link into hibern8 mode before turning off clocks */ 1828 if (ufshcd_can_hibern8_during_gating(hba)) { 1829 ret = ufshcd_uic_hibern8_enter(hba); 1830 if (ret) { 1831 hba->clk_gating.state = CLKS_ON; 1832 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 1833 __func__, ret); 1834 trace_ufshcd_clk_gating(dev_name(hba->dev), 1835 hba->clk_gating.state); 1836 goto out; 1837 } 1838 ufshcd_set_link_hibern8(hba); 1839 } 1840 1841 ufshcd_disable_irq(hba); 1842 1843 ufshcd_setup_clocks(hba, false); 1844 1845 /* Put the host controller in low power mode if possible */ 1846 ufshcd_hba_vreg_set_lpm(hba); 1847 /* 1848 * In case you are here to cancel this work the gating state 1849 * would be marked as REQ_CLKS_ON. In this case keep the state 1850 * as REQ_CLKS_ON which would anyway imply that clocks are off 1851 * and a request to turn them on is pending. By doing this way, 1852 * we keep the state machine in tact and this would ultimately 1853 * prevent from doing cancel work multiple times when there are 1854 * new requests arriving before the current cancel work is done. 1855 */ 1856 spin_lock_irqsave(hba->host->host_lock, flags); 1857 if (hba->clk_gating.state == REQ_CLKS_OFF) { 1858 hba->clk_gating.state = CLKS_OFF; 1859 trace_ufshcd_clk_gating(dev_name(hba->dev), 1860 hba->clk_gating.state); 1861 } 1862 rel_lock: 1863 spin_unlock_irqrestore(hba->host->host_lock, flags); 1864 out: 1865 return; 1866 } 1867 1868 /* host lock must be held before calling this variant */ 1869 static void __ufshcd_release(struct ufs_hba *hba) 1870 { 1871 if (!ufshcd_is_clkgating_allowed(hba)) 1872 return; 1873 1874 hba->clk_gating.active_reqs--; 1875 1876 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended || 1877 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL || 1878 hba->outstanding_tasks || !hba->clk_gating.is_initialized || 1879 hba->active_uic_cmd || hba->uic_async_done || 1880 hba->clk_gating.state == CLKS_OFF) 1881 return; 1882 1883 hba->clk_gating.state = REQ_CLKS_OFF; 1884 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state); 1885 queue_delayed_work(hba->clk_gating.clk_gating_workq, 1886 &hba->clk_gating.gate_work, 1887 msecs_to_jiffies(hba->clk_gating.delay_ms)); 1888 } 1889 1890 void ufshcd_release(struct ufs_hba *hba) 1891 { 1892 unsigned long flags; 1893 1894 spin_lock_irqsave(hba->host->host_lock, flags); 1895 __ufshcd_release(hba); 1896 spin_unlock_irqrestore(hba->host->host_lock, flags); 1897 } 1898 EXPORT_SYMBOL_GPL(ufshcd_release); 1899 1900 static ssize_t ufshcd_clkgate_delay_show(struct device *dev, 1901 struct device_attribute *attr, char *buf) 1902 { 1903 struct ufs_hba *hba = dev_get_drvdata(dev); 1904 1905 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms); 1906 } 1907 1908 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value) 1909 { 1910 struct ufs_hba *hba = dev_get_drvdata(dev); 1911 unsigned long flags; 1912 1913 spin_lock_irqsave(hba->host->host_lock, flags); 1914 hba->clk_gating.delay_ms = value; 1915 spin_unlock_irqrestore(hba->host->host_lock, flags); 1916 } 1917 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set); 1918 1919 static ssize_t ufshcd_clkgate_delay_store(struct device *dev, 1920 struct device_attribute *attr, const char *buf, size_t count) 1921 { 1922 unsigned long value; 1923 1924 if (kstrtoul(buf, 0, &value)) 1925 return -EINVAL; 1926 1927 ufshcd_clkgate_delay_set(dev, value); 1928 return count; 1929 } 1930 1931 static ssize_t ufshcd_clkgate_enable_show(struct device *dev, 1932 struct device_attribute *attr, char *buf) 1933 { 1934 struct ufs_hba *hba = dev_get_drvdata(dev); 1935 1936 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled); 1937 } 1938 1939 static ssize_t ufshcd_clkgate_enable_store(struct device *dev, 1940 struct device_attribute *attr, const char *buf, size_t count) 1941 { 1942 struct ufs_hba *hba = dev_get_drvdata(dev); 1943 unsigned long flags; 1944 u32 value; 1945 1946 if (kstrtou32(buf, 0, &value)) 1947 return -EINVAL; 1948 1949 value = !!value; 1950 1951 spin_lock_irqsave(hba->host->host_lock, flags); 1952 if (value == hba->clk_gating.is_enabled) 1953 goto out; 1954 1955 if (value) 1956 __ufshcd_release(hba); 1957 else 1958 hba->clk_gating.active_reqs++; 1959 1960 hba->clk_gating.is_enabled = value; 1961 out: 1962 spin_unlock_irqrestore(hba->host->host_lock, flags); 1963 return count; 1964 } 1965 1966 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba) 1967 { 1968 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show; 1969 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store; 1970 sysfs_attr_init(&hba->clk_gating.delay_attr.attr); 1971 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms"; 1972 hba->clk_gating.delay_attr.attr.mode = 0644; 1973 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr)) 1974 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n"); 1975 1976 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show; 1977 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store; 1978 sysfs_attr_init(&hba->clk_gating.enable_attr.attr); 1979 hba->clk_gating.enable_attr.attr.name = "clkgate_enable"; 1980 hba->clk_gating.enable_attr.attr.mode = 0644; 1981 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr)) 1982 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n"); 1983 } 1984 1985 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba) 1986 { 1987 if (hba->clk_gating.delay_attr.attr.name) 1988 device_remove_file(hba->dev, &hba->clk_gating.delay_attr); 1989 if (hba->clk_gating.enable_attr.attr.name) 1990 device_remove_file(hba->dev, &hba->clk_gating.enable_attr); 1991 } 1992 1993 static void ufshcd_init_clk_gating(struct ufs_hba *hba) 1994 { 1995 char wq_name[sizeof("ufs_clk_gating_00")]; 1996 1997 if (!ufshcd_is_clkgating_allowed(hba)) 1998 return; 1999 2000 hba->clk_gating.state = CLKS_ON; 2001 2002 hba->clk_gating.delay_ms = 150; 2003 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work); 2004 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work); 2005 2006 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d", 2007 hba->host->host_no); 2008 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name, 2009 WQ_MEM_RECLAIM | WQ_HIGHPRI); 2010 2011 ufshcd_init_clk_gating_sysfs(hba); 2012 2013 hba->clk_gating.is_enabled = true; 2014 hba->clk_gating.is_initialized = true; 2015 } 2016 2017 static void ufshcd_exit_clk_gating(struct ufs_hba *hba) 2018 { 2019 if (!hba->clk_gating.is_initialized) 2020 return; 2021 2022 ufshcd_remove_clk_gating_sysfs(hba); 2023 2024 /* Ungate the clock if necessary. */ 2025 ufshcd_hold(hba); 2026 hba->clk_gating.is_initialized = false; 2027 ufshcd_release(hba); 2028 2029 destroy_workqueue(hba->clk_gating.clk_gating_workq); 2030 } 2031 2032 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba) 2033 { 2034 bool queue_resume_work = false; 2035 ktime_t curr_t = ktime_get(); 2036 unsigned long flags; 2037 2038 if (!ufshcd_is_clkscaling_supported(hba)) 2039 return; 2040 2041 spin_lock_irqsave(hba->host->host_lock, flags); 2042 if (!hba->clk_scaling.active_reqs++) 2043 queue_resume_work = true; 2044 2045 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) { 2046 spin_unlock_irqrestore(hba->host->host_lock, flags); 2047 return; 2048 } 2049 2050 if (queue_resume_work) 2051 queue_work(hba->clk_scaling.workq, 2052 &hba->clk_scaling.resume_work); 2053 2054 if (!hba->clk_scaling.window_start_t) { 2055 hba->clk_scaling.window_start_t = curr_t; 2056 hba->clk_scaling.tot_busy_t = 0; 2057 hba->clk_scaling.is_busy_started = false; 2058 } 2059 2060 if (!hba->clk_scaling.is_busy_started) { 2061 hba->clk_scaling.busy_start_t = curr_t; 2062 hba->clk_scaling.is_busy_started = true; 2063 } 2064 spin_unlock_irqrestore(hba->host->host_lock, flags); 2065 } 2066 2067 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba) 2068 { 2069 struct ufs_clk_scaling *scaling = &hba->clk_scaling; 2070 unsigned long flags; 2071 2072 if (!ufshcd_is_clkscaling_supported(hba)) 2073 return; 2074 2075 spin_lock_irqsave(hba->host->host_lock, flags); 2076 hba->clk_scaling.active_reqs--; 2077 if (!scaling->active_reqs && scaling->is_busy_started) { 2078 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(), 2079 scaling->busy_start_t)); 2080 scaling->busy_start_t = 0; 2081 scaling->is_busy_started = false; 2082 } 2083 spin_unlock_irqrestore(hba->host->host_lock, flags); 2084 } 2085 2086 static inline int ufshcd_monitor_opcode2dir(u8 opcode) 2087 { 2088 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16) 2089 return READ; 2090 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16) 2091 return WRITE; 2092 else 2093 return -EINVAL; 2094 } 2095 2096 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba, 2097 struct ufshcd_lrb *lrbp) 2098 { 2099 const struct ufs_hba_monitor *m = &hba->monitor; 2100 2101 return (m->enabled && lrbp && lrbp->cmd && 2102 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) && 2103 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp)); 2104 } 2105 2106 static void ufshcd_start_monitor(struct ufs_hba *hba, 2107 const struct ufshcd_lrb *lrbp) 2108 { 2109 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2110 unsigned long flags; 2111 2112 spin_lock_irqsave(hba->host->host_lock, flags); 2113 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0) 2114 hba->monitor.busy_start_ts[dir] = ktime_get(); 2115 spin_unlock_irqrestore(hba->host->host_lock, flags); 2116 } 2117 2118 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp) 2119 { 2120 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd); 2121 unsigned long flags; 2122 2123 spin_lock_irqsave(hba->host->host_lock, flags); 2124 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) { 2125 const struct request *req = scsi_cmd_to_rq(lrbp->cmd); 2126 struct ufs_hba_monitor *m = &hba->monitor; 2127 ktime_t now, inc, lat; 2128 2129 now = lrbp->compl_time_stamp; 2130 inc = ktime_sub(now, m->busy_start_ts[dir]); 2131 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc); 2132 m->nr_sec_rw[dir] += blk_rq_sectors(req); 2133 2134 /* Update latencies */ 2135 m->nr_req[dir]++; 2136 lat = ktime_sub(now, lrbp->issue_time_stamp); 2137 m->lat_sum[dir] += lat; 2138 if (m->lat_max[dir] < lat || !m->lat_max[dir]) 2139 m->lat_max[dir] = lat; 2140 if (m->lat_min[dir] > lat || !m->lat_min[dir]) 2141 m->lat_min[dir] = lat; 2142 2143 m->nr_queued[dir]--; 2144 /* Push forward the busy start of monitor */ 2145 m->busy_start_ts[dir] = now; 2146 } 2147 spin_unlock_irqrestore(hba->host->host_lock, flags); 2148 } 2149 2150 /** 2151 * ufshcd_send_command - Send SCSI or device management commands 2152 * @hba: per adapter instance 2153 * @task_tag: Task tag of the command 2154 * @hwq: pointer to hardware queue instance 2155 */ 2156 static inline 2157 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag, 2158 struct ufs_hw_queue *hwq) 2159 { 2160 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag]; 2161 unsigned long flags; 2162 2163 lrbp->issue_time_stamp = ktime_get(); 2164 lrbp->issue_time_stamp_local_clock = local_clock(); 2165 lrbp->compl_time_stamp = ktime_set(0, 0); 2166 lrbp->compl_time_stamp_local_clock = 0; 2167 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND); 2168 ufshcd_clk_scaling_start_busy(hba); 2169 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 2170 ufshcd_start_monitor(hba, lrbp); 2171 2172 if (is_mcq_enabled(hba)) { 2173 int utrd_size = sizeof(struct utp_transfer_req_desc); 2174 struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr; 2175 struct utp_transfer_req_desc *dest; 2176 2177 spin_lock(&hwq->sq_lock); 2178 dest = hwq->sqe_base_addr + hwq->sq_tail_slot; 2179 memcpy(dest, src, utrd_size); 2180 ufshcd_inc_sq_tail(hwq); 2181 spin_unlock(&hwq->sq_lock); 2182 } else { 2183 spin_lock_irqsave(&hba->outstanding_lock, flags); 2184 if (hba->vops && hba->vops->setup_xfer_req) 2185 hba->vops->setup_xfer_req(hba, lrbp->task_tag, 2186 !!lrbp->cmd); 2187 __set_bit(lrbp->task_tag, &hba->outstanding_reqs); 2188 ufshcd_writel(hba, 1 << lrbp->task_tag, 2189 REG_UTP_TRANSFER_REQ_DOOR_BELL); 2190 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 2191 } 2192 } 2193 2194 /** 2195 * ufshcd_copy_sense_data - Copy sense data in case of check condition 2196 * @lrbp: pointer to local reference block 2197 */ 2198 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp) 2199 { 2200 u8 *const sense_buffer = lrbp->cmd->sense_buffer; 2201 u16 resp_len; 2202 int len; 2203 2204 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length); 2205 if (sense_buffer && resp_len) { 2206 int len_to_copy; 2207 2208 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len); 2209 len_to_copy = min_t(int, UFS_SENSE_SIZE, len); 2210 2211 memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data, 2212 len_to_copy); 2213 } 2214 } 2215 2216 /** 2217 * ufshcd_copy_query_response() - Copy the Query Response and the data 2218 * descriptor 2219 * @hba: per adapter instance 2220 * @lrbp: pointer to local reference block 2221 * 2222 * Return: 0 upon success; < 0 upon failure. 2223 */ 2224 static 2225 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2226 { 2227 struct ufs_query_res *query_res = &hba->dev_cmd.query.response; 2228 2229 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE); 2230 2231 /* Get the descriptor */ 2232 if (hba->dev_cmd.query.descriptor && 2233 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) { 2234 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + 2235 GENERAL_UPIU_REQUEST_SIZE; 2236 u16 resp_len; 2237 u16 buf_len; 2238 2239 /* data segment length */ 2240 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 2241 .data_segment_length); 2242 buf_len = be16_to_cpu( 2243 hba->dev_cmd.query.request.upiu_req.length); 2244 if (likely(buf_len >= resp_len)) { 2245 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len); 2246 } else { 2247 dev_warn(hba->dev, 2248 "%s: rsp size %d is bigger than buffer size %d", 2249 __func__, resp_len, buf_len); 2250 return -EINVAL; 2251 } 2252 } 2253 2254 return 0; 2255 } 2256 2257 /** 2258 * ufshcd_hba_capabilities - Read controller capabilities 2259 * @hba: per adapter instance 2260 * 2261 * Return: 0 on success, negative on error. 2262 */ 2263 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba) 2264 { 2265 int err; 2266 2267 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES); 2268 if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS) 2269 hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT; 2270 2271 /* nutrs and nutmrs are 0 based values */ 2272 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1; 2273 hba->nutmrs = 2274 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1; 2275 hba->reserved_slot = hba->nutrs - 1; 2276 2277 /* Read crypto capabilities */ 2278 err = ufshcd_hba_init_crypto_capabilities(hba); 2279 if (err) { 2280 dev_err(hba->dev, "crypto setup failed\n"); 2281 return err; 2282 } 2283 2284 /* 2285 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and 2286 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which 2287 * means we can simply read values regardless of version. 2288 */ 2289 hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities); 2290 /* 2291 * 0h: legacy single doorbell support is available 2292 * 1h: indicate that legacy single doorbell support has been removed 2293 */ 2294 hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities); 2295 if (!hba->mcq_sup) 2296 return 0; 2297 2298 hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP); 2299 hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT, 2300 hba->mcq_capabilities); 2301 2302 return 0; 2303 } 2304 2305 /** 2306 * ufshcd_ready_for_uic_cmd - Check if controller is ready 2307 * to accept UIC commands 2308 * @hba: per adapter instance 2309 * 2310 * Return: true on success, else false. 2311 */ 2312 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba) 2313 { 2314 u32 val; 2315 int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY, 2316 500, UIC_CMD_TIMEOUT * 1000, false, hba, 2317 REG_CONTROLLER_STATUS); 2318 return ret == 0 ? true : false; 2319 } 2320 2321 /** 2322 * ufshcd_get_upmcrs - Get the power mode change request status 2323 * @hba: Pointer to adapter instance 2324 * 2325 * This function gets the UPMCRS field of HCS register 2326 * 2327 * Return: value of UPMCRS field. 2328 */ 2329 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba) 2330 { 2331 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7; 2332 } 2333 2334 /** 2335 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer 2336 * @hba: per adapter instance 2337 * @uic_cmd: UIC command 2338 */ 2339 static inline void 2340 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2341 { 2342 lockdep_assert_held(&hba->uic_cmd_mutex); 2343 2344 WARN_ON(hba->active_uic_cmd); 2345 2346 hba->active_uic_cmd = uic_cmd; 2347 2348 /* Write Args */ 2349 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1); 2350 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2); 2351 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3); 2352 2353 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND); 2354 2355 /* Write UIC Cmd */ 2356 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK, 2357 REG_UIC_COMMAND); 2358 } 2359 2360 /** 2361 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command 2362 * @hba: per adapter instance 2363 * @uic_cmd: UIC command 2364 * 2365 * Return: 0 only if success. 2366 */ 2367 static int 2368 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2369 { 2370 int ret; 2371 unsigned long flags; 2372 2373 lockdep_assert_held(&hba->uic_cmd_mutex); 2374 2375 if (wait_for_completion_timeout(&uic_cmd->done, 2376 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 2377 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2378 } else { 2379 ret = -ETIMEDOUT; 2380 dev_err(hba->dev, 2381 "uic cmd 0x%x with arg3 0x%x completion timeout\n", 2382 uic_cmd->command, uic_cmd->argument3); 2383 2384 if (!uic_cmd->cmd_active) { 2385 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n", 2386 __func__); 2387 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT; 2388 } 2389 } 2390 2391 spin_lock_irqsave(hba->host->host_lock, flags); 2392 hba->active_uic_cmd = NULL; 2393 spin_unlock_irqrestore(hba->host->host_lock, flags); 2394 2395 return ret; 2396 } 2397 2398 /** 2399 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2400 * @hba: per adapter instance 2401 * @uic_cmd: UIC command 2402 * 2403 * Return: 0 only if success. 2404 */ 2405 static int 2406 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2407 { 2408 lockdep_assert_held(&hba->uic_cmd_mutex); 2409 2410 if (!ufshcd_ready_for_uic_cmd(hba)) { 2411 dev_err(hba->dev, 2412 "Controller not ready to accept UIC commands\n"); 2413 return -EIO; 2414 } 2415 2416 init_completion(&uic_cmd->done); 2417 2418 uic_cmd->cmd_active = 1; 2419 ufshcd_dispatch_uic_cmd(hba, uic_cmd); 2420 2421 return 0; 2422 } 2423 2424 /** 2425 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result 2426 * @hba: per adapter instance 2427 * @uic_cmd: UIC command 2428 * 2429 * Return: 0 only if success. 2430 */ 2431 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 2432 { 2433 int ret; 2434 2435 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) 2436 return 0; 2437 2438 ufshcd_hold(hba); 2439 mutex_lock(&hba->uic_cmd_mutex); 2440 ufshcd_add_delay_before_dme_cmd(hba); 2441 2442 ret = __ufshcd_send_uic_cmd(hba, uic_cmd); 2443 if (!ret) 2444 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); 2445 2446 mutex_unlock(&hba->uic_cmd_mutex); 2447 2448 ufshcd_release(hba); 2449 return ret; 2450 } 2451 2452 /** 2453 * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format) 2454 * @hba: per-adapter instance 2455 * @lrbp: pointer to local reference block 2456 * @sg_entries: The number of sg lists actually used 2457 * @sg_list: Pointer to SG list 2458 */ 2459 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries, 2460 struct scatterlist *sg_list) 2461 { 2462 struct ufshcd_sg_entry *prd; 2463 struct scatterlist *sg; 2464 int i; 2465 2466 if (sg_entries) { 2467 2468 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) 2469 lrbp->utr_descriptor_ptr->prd_table_length = 2470 cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba)); 2471 else 2472 lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries); 2473 2474 prd = lrbp->ucd_prdt_ptr; 2475 2476 for_each_sg(sg_list, sg, sg_entries, i) { 2477 const unsigned int len = sg_dma_len(sg); 2478 2479 /* 2480 * From the UFSHCI spec: "Data Byte Count (DBC): A '0' 2481 * based value that indicates the length, in bytes, of 2482 * the data block. A maximum of length of 256KB may 2483 * exist for any entry. Bits 1:0 of this field shall be 2484 * 11b to indicate Dword granularity. A value of '3' 2485 * indicates 4 bytes, '7' indicates 8 bytes, etc." 2486 */ 2487 WARN_ONCE(len > SZ_256K, "len = %#x\n", len); 2488 prd->size = cpu_to_le32(len - 1); 2489 prd->addr = cpu_to_le64(sg->dma_address); 2490 prd->reserved = 0; 2491 prd = (void *)prd + ufshcd_sg_entry_size(hba); 2492 } 2493 } else { 2494 lrbp->utr_descriptor_ptr->prd_table_length = 0; 2495 } 2496 } 2497 2498 /** 2499 * ufshcd_map_sg - Map scatter-gather list to prdt 2500 * @hba: per adapter instance 2501 * @lrbp: pointer to local reference block 2502 * 2503 * Return: 0 in case of success, non-zero value in case of failure. 2504 */ 2505 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2506 { 2507 struct scsi_cmnd *cmd = lrbp->cmd; 2508 int sg_segments = scsi_dma_map(cmd); 2509 2510 if (sg_segments < 0) 2511 return sg_segments; 2512 2513 ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd)); 2514 2515 return 0; 2516 } 2517 2518 /** 2519 * ufshcd_enable_intr - enable interrupts 2520 * @hba: per adapter instance 2521 * @intrs: interrupt bits 2522 */ 2523 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs) 2524 { 2525 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2526 2527 if (hba->ufs_version == ufshci_version(1, 0)) { 2528 u32 rw; 2529 rw = set & INTERRUPT_MASK_RW_VER_10; 2530 set = rw | ((set ^ intrs) & intrs); 2531 } else { 2532 set |= intrs; 2533 } 2534 2535 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2536 } 2537 2538 /** 2539 * ufshcd_disable_intr - disable interrupts 2540 * @hba: per adapter instance 2541 * @intrs: interrupt bits 2542 */ 2543 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs) 2544 { 2545 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 2546 2547 if (hba->ufs_version == ufshci_version(1, 0)) { 2548 u32 rw; 2549 rw = (set & INTERRUPT_MASK_RW_VER_10) & 2550 ~(intrs & INTERRUPT_MASK_RW_VER_10); 2551 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10); 2552 2553 } else { 2554 set &= ~intrs; 2555 } 2556 2557 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE); 2558 } 2559 2560 /** 2561 * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request 2562 * descriptor according to request 2563 * @lrbp: pointer to local reference block 2564 * @upiu_flags: flags required in the header 2565 * @cmd_dir: requests data direction 2566 * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments) 2567 */ 2568 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags, 2569 enum dma_data_direction cmd_dir, int ehs_length) 2570 { 2571 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr; 2572 struct request_desc_header *h = &req_desc->header; 2573 enum utp_data_direction data_direction; 2574 2575 *h = (typeof(*h)){ }; 2576 2577 if (cmd_dir == DMA_FROM_DEVICE) { 2578 data_direction = UTP_DEVICE_TO_HOST; 2579 *upiu_flags = UPIU_CMD_FLAGS_READ; 2580 } else if (cmd_dir == DMA_TO_DEVICE) { 2581 data_direction = UTP_HOST_TO_DEVICE; 2582 *upiu_flags = UPIU_CMD_FLAGS_WRITE; 2583 } else { 2584 data_direction = UTP_NO_DATA_TRANSFER; 2585 *upiu_flags = UPIU_CMD_FLAGS_NONE; 2586 } 2587 2588 h->command_type = lrbp->command_type; 2589 h->data_direction = data_direction; 2590 h->ehs_length = ehs_length; 2591 2592 if (lrbp->intr_cmd) 2593 h->interrupt = 1; 2594 2595 /* Prepare crypto related dwords */ 2596 ufshcd_prepare_req_desc_hdr_crypto(lrbp, h); 2597 2598 /* 2599 * assigning invalid value for command status. Controller 2600 * updates OCS on command completion, with the command 2601 * status 2602 */ 2603 h->ocs = OCS_INVALID_COMMAND_STATUS; 2604 2605 req_desc->prd_table_length = 0; 2606 } 2607 2608 /** 2609 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc, 2610 * for scsi commands 2611 * @lrbp: local reference block pointer 2612 * @upiu_flags: flags 2613 */ 2614 static 2615 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags) 2616 { 2617 struct scsi_cmnd *cmd = lrbp->cmd; 2618 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2619 unsigned short cdb_len; 2620 2621 ucd_req_ptr->header = (struct utp_upiu_header){ 2622 .transaction_code = UPIU_TRANSACTION_COMMAND, 2623 .flags = upiu_flags, 2624 .lun = lrbp->lun, 2625 .task_tag = lrbp->task_tag, 2626 .command_set_type = UPIU_COMMAND_SET_TYPE_SCSI, 2627 }; 2628 2629 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length); 2630 2631 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE); 2632 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE); 2633 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len); 2634 2635 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2636 } 2637 2638 /** 2639 * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request 2640 * @hba: UFS hba 2641 * @lrbp: local reference block pointer 2642 * @upiu_flags: flags 2643 */ 2644 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba, 2645 struct ufshcd_lrb *lrbp, u8 upiu_flags) 2646 { 2647 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2648 struct ufs_query *query = &hba->dev_cmd.query; 2649 u16 len = be16_to_cpu(query->request.upiu_req.length); 2650 2651 /* Query request header */ 2652 ucd_req_ptr->header = (struct utp_upiu_header){ 2653 .transaction_code = UPIU_TRANSACTION_QUERY_REQ, 2654 .flags = upiu_flags, 2655 .lun = lrbp->lun, 2656 .task_tag = lrbp->task_tag, 2657 .query_function = query->request.query_func, 2658 /* Data segment length only need for WRITE_DESC */ 2659 .data_segment_length = 2660 query->request.upiu_req.opcode == 2661 UPIU_QUERY_OPCODE_WRITE_DESC ? 2662 cpu_to_be16(len) : 2663 0, 2664 }; 2665 2666 /* Copy the Query Request buffer as is */ 2667 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req, 2668 QUERY_OSF_SIZE); 2669 2670 /* Copy the Descriptor */ 2671 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC) 2672 memcpy(ucd_req_ptr + 1, query->descriptor, len); 2673 2674 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2675 } 2676 2677 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp) 2678 { 2679 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr; 2680 2681 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req)); 2682 2683 ucd_req_ptr->header = (struct utp_upiu_header){ 2684 .transaction_code = UPIU_TRANSACTION_NOP_OUT, 2685 .task_tag = lrbp->task_tag, 2686 }; 2687 2688 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 2689 } 2690 2691 /** 2692 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU) 2693 * for Device Management Purposes 2694 * @hba: per adapter instance 2695 * @lrbp: pointer to local reference block 2696 * 2697 * Return: 0 upon success; < 0 upon failure. 2698 */ 2699 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba, 2700 struct ufshcd_lrb *lrbp) 2701 { 2702 u8 upiu_flags; 2703 int ret = 0; 2704 2705 if (hba->ufs_version <= ufshci_version(1, 1)) 2706 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; 2707 else 2708 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2709 2710 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0); 2711 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY) 2712 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags); 2713 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP) 2714 ufshcd_prepare_utp_nop_upiu(lrbp); 2715 else 2716 ret = -EINVAL; 2717 2718 return ret; 2719 } 2720 2721 /** 2722 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU) 2723 * for SCSI Purposes 2724 * @hba: per adapter instance 2725 * @lrbp: pointer to local reference block 2726 * 2727 * Return: 0 upon success; < 0 upon failure. 2728 */ 2729 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 2730 { 2731 u8 upiu_flags; 2732 int ret = 0; 2733 2734 if (hba->ufs_version <= ufshci_version(1, 1)) 2735 lrbp->command_type = UTP_CMD_TYPE_SCSI; 2736 else 2737 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 2738 2739 if (likely(lrbp->cmd)) { 2740 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0); 2741 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags); 2742 } else { 2743 ret = -EINVAL; 2744 } 2745 2746 return ret; 2747 } 2748 2749 /** 2750 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID 2751 * @upiu_wlun_id: UPIU W-LUN id 2752 * 2753 * Return: SCSI W-LUN id. 2754 */ 2755 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id) 2756 { 2757 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE; 2758 } 2759 2760 static inline bool is_device_wlun(struct scsi_device *sdev) 2761 { 2762 return sdev->lun == 2763 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN); 2764 } 2765 2766 /* 2767 * Associate the UFS controller queue with the default and poll HCTX types. 2768 * Initialize the mq_map[] arrays. 2769 */ 2770 static void ufshcd_map_queues(struct Scsi_Host *shost) 2771 { 2772 struct ufs_hba *hba = shost_priv(shost); 2773 int i, queue_offset = 0; 2774 2775 if (!is_mcq_supported(hba)) { 2776 hba->nr_queues[HCTX_TYPE_DEFAULT] = 1; 2777 hba->nr_queues[HCTX_TYPE_READ] = 0; 2778 hba->nr_queues[HCTX_TYPE_POLL] = 1; 2779 hba->nr_hw_queues = 1; 2780 } 2781 2782 for (i = 0; i < shost->nr_maps; i++) { 2783 struct blk_mq_queue_map *map = &shost->tag_set.map[i]; 2784 2785 map->nr_queues = hba->nr_queues[i]; 2786 if (!map->nr_queues) 2787 continue; 2788 map->queue_offset = queue_offset; 2789 if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba)) 2790 map->queue_offset = 0; 2791 2792 blk_mq_map_queues(map); 2793 queue_offset += map->nr_queues; 2794 } 2795 } 2796 2797 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i) 2798 { 2799 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr + 2800 i * ufshcd_get_ucd_size(hba); 2801 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr; 2802 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr + 2803 i * ufshcd_get_ucd_size(hba); 2804 u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset); 2805 u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset); 2806 2807 lrb->utr_descriptor_ptr = utrdlp + i; 2808 lrb->utrd_dma_addr = hba->utrdl_dma_addr + 2809 i * sizeof(struct utp_transfer_req_desc); 2810 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu; 2811 lrb->ucd_req_dma_addr = cmd_desc_element_addr; 2812 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu; 2813 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset; 2814 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table; 2815 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset; 2816 } 2817 2818 /** 2819 * ufshcd_queuecommand - main entry point for SCSI requests 2820 * @host: SCSI host pointer 2821 * @cmd: command from SCSI Midlayer 2822 * 2823 * Return: 0 for success, non-zero in case of failure. 2824 */ 2825 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd) 2826 { 2827 struct ufs_hba *hba = shost_priv(host); 2828 int tag = scsi_cmd_to_rq(cmd)->tag; 2829 struct ufshcd_lrb *lrbp; 2830 int err = 0; 2831 struct ufs_hw_queue *hwq = NULL; 2832 2833 WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag); 2834 2835 switch (hba->ufshcd_state) { 2836 case UFSHCD_STATE_OPERATIONAL: 2837 break; 2838 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL: 2839 /* 2840 * SCSI error handler can call ->queuecommand() while UFS error 2841 * handler is in progress. Error interrupts could change the 2842 * state from UFSHCD_STATE_RESET to 2843 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests 2844 * being issued in that case. 2845 */ 2846 if (ufshcd_eh_in_progress(hba)) { 2847 err = SCSI_MLQUEUE_HOST_BUSY; 2848 goto out; 2849 } 2850 break; 2851 case UFSHCD_STATE_EH_SCHEDULED_FATAL: 2852 /* 2853 * pm_runtime_get_sync() is used at error handling preparation 2854 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's 2855 * PM ops, it can never be finished if we let SCSI layer keep 2856 * retrying it, which gets err handler stuck forever. Neither 2857 * can we let the scsi cmd pass through, because UFS is in bad 2858 * state, the scsi cmd may eventually time out, which will get 2859 * err handler blocked for too long. So, just fail the scsi cmd 2860 * sent from PM ops, err handler can recover PM error anyways. 2861 */ 2862 if (hba->pm_op_in_progress) { 2863 hba->force_reset = true; 2864 set_host_byte(cmd, DID_BAD_TARGET); 2865 scsi_done(cmd); 2866 goto out; 2867 } 2868 fallthrough; 2869 case UFSHCD_STATE_RESET: 2870 err = SCSI_MLQUEUE_HOST_BUSY; 2871 goto out; 2872 case UFSHCD_STATE_ERROR: 2873 set_host_byte(cmd, DID_ERROR); 2874 scsi_done(cmd); 2875 goto out; 2876 } 2877 2878 hba->req_abort_count = 0; 2879 2880 ufshcd_hold(hba); 2881 2882 lrbp = &hba->lrb[tag]; 2883 lrbp->cmd = cmd; 2884 lrbp->task_tag = tag; 2885 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 2886 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba); 2887 2888 ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp); 2889 2890 lrbp->req_abort_skip = false; 2891 2892 ufshcd_comp_scsi_upiu(hba, lrbp); 2893 2894 err = ufshcd_map_sg(hba, lrbp); 2895 if (err) { 2896 ufshcd_release(hba); 2897 goto out; 2898 } 2899 2900 if (is_mcq_enabled(hba)) 2901 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd)); 2902 2903 ufshcd_send_command(hba, tag, hwq); 2904 2905 out: 2906 if (ufs_trigger_eh()) { 2907 unsigned long flags; 2908 2909 spin_lock_irqsave(hba->host->host_lock, flags); 2910 ufshcd_schedule_eh_work(hba); 2911 spin_unlock_irqrestore(hba->host->host_lock, flags); 2912 } 2913 2914 return err; 2915 } 2916 2917 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba, 2918 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag) 2919 { 2920 lrbp->cmd = NULL; 2921 lrbp->task_tag = tag; 2922 lrbp->lun = 0; /* device management cmd is not specific to any LUN */ 2923 lrbp->intr_cmd = true; /* No interrupt aggregation */ 2924 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 2925 hba->dev_cmd.type = cmd_type; 2926 2927 return ufshcd_compose_devman_upiu(hba, lrbp); 2928 } 2929 2930 /* 2931 * Check with the block layer if the command is inflight 2932 * @cmd: command to check. 2933 * 2934 * Return: true if command is inflight; false if not. 2935 */ 2936 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd) 2937 { 2938 struct request *rq; 2939 2940 if (!cmd) 2941 return false; 2942 2943 rq = scsi_cmd_to_rq(cmd); 2944 if (!blk_mq_request_started(rq)) 2945 return false; 2946 2947 return true; 2948 } 2949 2950 /* 2951 * Clear the pending command in the controller and wait until 2952 * the controller confirms that the command has been cleared. 2953 * @hba: per adapter instance 2954 * @task_tag: The tag number of the command to be cleared. 2955 */ 2956 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag) 2957 { 2958 u32 mask; 2959 unsigned long flags; 2960 int err; 2961 2962 if (is_mcq_enabled(hba)) { 2963 /* 2964 * MCQ mode. Clean up the MCQ resources similar to 2965 * what the ufshcd_utrl_clear() does for SDB mode. 2966 */ 2967 err = ufshcd_mcq_sq_cleanup(hba, task_tag); 2968 if (err) { 2969 dev_err(hba->dev, "%s: failed tag=%d. err=%d\n", 2970 __func__, task_tag, err); 2971 return err; 2972 } 2973 return 0; 2974 } 2975 2976 mask = 1U << task_tag; 2977 2978 /* clear outstanding transaction before retry */ 2979 spin_lock_irqsave(hba->host->host_lock, flags); 2980 ufshcd_utrl_clear(hba, mask); 2981 spin_unlock_irqrestore(hba->host->host_lock, flags); 2982 2983 /* 2984 * wait for h/w to clear corresponding bit in door-bell. 2985 * max. wait is 1 sec. 2986 */ 2987 return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL, 2988 mask, ~mask, 1000, 1000); 2989 } 2990 2991 /** 2992 * ufshcd_dev_cmd_completion() - handles device management command responses 2993 * @hba: per adapter instance 2994 * @lrbp: pointer to local reference block 2995 * 2996 * Return: 0 upon success; < 0 upon failure. 2997 */ 2998 static int 2999 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp) 3000 { 3001 enum upiu_response_transaction resp; 3002 int err = 0; 3003 3004 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 3005 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr); 3006 3007 switch (resp) { 3008 case UPIU_TRANSACTION_NOP_IN: 3009 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) { 3010 err = -EINVAL; 3011 dev_err(hba->dev, "%s: unexpected response %x\n", 3012 __func__, resp); 3013 } 3014 break; 3015 case UPIU_TRANSACTION_QUERY_RSP: { 3016 u8 response = lrbp->ucd_rsp_ptr->header.response; 3017 3018 if (response == 0) 3019 err = ufshcd_copy_query_response(hba, lrbp); 3020 break; 3021 } 3022 case UPIU_TRANSACTION_REJECT_UPIU: 3023 /* TODO: handle Reject UPIU Response */ 3024 err = -EPERM; 3025 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n", 3026 __func__); 3027 break; 3028 case UPIU_TRANSACTION_RESPONSE: 3029 if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) { 3030 err = -EINVAL; 3031 dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp); 3032 } 3033 break; 3034 default: 3035 err = -EINVAL; 3036 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n", 3037 __func__, resp); 3038 break; 3039 } 3040 3041 return err; 3042 } 3043 3044 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba, 3045 struct ufshcd_lrb *lrbp, int max_timeout) 3046 { 3047 unsigned long time_left = msecs_to_jiffies(max_timeout); 3048 unsigned long flags; 3049 bool pending; 3050 int err; 3051 3052 retry: 3053 time_left = wait_for_completion_timeout(hba->dev_cmd.complete, 3054 time_left); 3055 3056 if (likely(time_left)) { 3057 /* 3058 * The completion handler called complete() and the caller of 3059 * this function still owns the @lrbp tag so the code below does 3060 * not trigger any race conditions. 3061 */ 3062 hba->dev_cmd.complete = NULL; 3063 err = ufshcd_get_tr_ocs(lrbp, NULL); 3064 if (!err) 3065 err = ufshcd_dev_cmd_completion(hba, lrbp); 3066 } else { 3067 err = -ETIMEDOUT; 3068 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n", 3069 __func__, lrbp->task_tag); 3070 3071 /* MCQ mode */ 3072 if (is_mcq_enabled(hba)) { 3073 /* successfully cleared the command, retry if needed */ 3074 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) 3075 err = -EAGAIN; 3076 hba->dev_cmd.complete = NULL; 3077 return err; 3078 } 3079 3080 /* SDB mode */ 3081 if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) { 3082 /* successfully cleared the command, retry if needed */ 3083 err = -EAGAIN; 3084 /* 3085 * Since clearing the command succeeded we also need to 3086 * clear the task tag bit from the outstanding_reqs 3087 * variable. 3088 */ 3089 spin_lock_irqsave(&hba->outstanding_lock, flags); 3090 pending = test_bit(lrbp->task_tag, 3091 &hba->outstanding_reqs); 3092 if (pending) { 3093 hba->dev_cmd.complete = NULL; 3094 __clear_bit(lrbp->task_tag, 3095 &hba->outstanding_reqs); 3096 } 3097 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3098 3099 if (!pending) { 3100 /* 3101 * The completion handler ran while we tried to 3102 * clear the command. 3103 */ 3104 time_left = 1; 3105 goto retry; 3106 } 3107 } else { 3108 dev_err(hba->dev, "%s: failed to clear tag %d\n", 3109 __func__, lrbp->task_tag); 3110 3111 spin_lock_irqsave(&hba->outstanding_lock, flags); 3112 pending = test_bit(lrbp->task_tag, 3113 &hba->outstanding_reqs); 3114 if (pending) 3115 hba->dev_cmd.complete = NULL; 3116 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 3117 3118 if (!pending) { 3119 /* 3120 * The completion handler ran while we tried to 3121 * clear the command. 3122 */ 3123 time_left = 1; 3124 goto retry; 3125 } 3126 } 3127 } 3128 3129 return err; 3130 } 3131 3132 /** 3133 * ufshcd_exec_dev_cmd - API for sending device management requests 3134 * @hba: UFS hba 3135 * @cmd_type: specifies the type (NOP, Query...) 3136 * @timeout: timeout in milliseconds 3137 * 3138 * Return: 0 upon success; < 0 upon failure. 3139 * 3140 * NOTE: Since there is only one available tag for device management commands, 3141 * it is expected you hold the hba->dev_cmd.lock mutex. 3142 */ 3143 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba, 3144 enum dev_cmd_type cmd_type, int timeout) 3145 { 3146 DECLARE_COMPLETION_ONSTACK(wait); 3147 const u32 tag = hba->reserved_slot; 3148 struct ufshcd_lrb *lrbp; 3149 int err; 3150 3151 /* Protects use of hba->reserved_slot. */ 3152 lockdep_assert_held(&hba->dev_cmd.lock); 3153 3154 down_read(&hba->clk_scaling_lock); 3155 3156 lrbp = &hba->lrb[tag]; 3157 lrbp->cmd = NULL; 3158 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag); 3159 if (unlikely(err)) 3160 goto out; 3161 3162 hba->dev_cmd.complete = &wait; 3163 3164 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 3165 3166 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 3167 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout); 3168 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 3169 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 3170 3171 out: 3172 up_read(&hba->clk_scaling_lock); 3173 return err; 3174 } 3175 3176 /** 3177 * ufshcd_init_query() - init the query response and request parameters 3178 * @hba: per-adapter instance 3179 * @request: address of the request pointer to be initialized 3180 * @response: address of the response pointer to be initialized 3181 * @opcode: operation to perform 3182 * @idn: flag idn to access 3183 * @index: LU number to access 3184 * @selector: query/flag/descriptor further identification 3185 */ 3186 static inline void ufshcd_init_query(struct ufs_hba *hba, 3187 struct ufs_query_req **request, struct ufs_query_res **response, 3188 enum query_opcode opcode, u8 idn, u8 index, u8 selector) 3189 { 3190 *request = &hba->dev_cmd.query.request; 3191 *response = &hba->dev_cmd.query.response; 3192 memset(*request, 0, sizeof(struct ufs_query_req)); 3193 memset(*response, 0, sizeof(struct ufs_query_res)); 3194 (*request)->upiu_req.opcode = opcode; 3195 (*request)->upiu_req.idn = idn; 3196 (*request)->upiu_req.index = index; 3197 (*request)->upiu_req.selector = selector; 3198 } 3199 3200 static int ufshcd_query_flag_retry(struct ufs_hba *hba, 3201 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res) 3202 { 3203 int ret; 3204 int retries; 3205 3206 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) { 3207 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res); 3208 if (ret) 3209 dev_dbg(hba->dev, 3210 "%s: failed with error %d, retries %d\n", 3211 __func__, ret, retries); 3212 else 3213 break; 3214 } 3215 3216 if (ret) 3217 dev_err(hba->dev, 3218 "%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n", 3219 __func__, opcode, idn, ret, retries); 3220 return ret; 3221 } 3222 3223 /** 3224 * ufshcd_query_flag() - API function for sending flag query requests 3225 * @hba: per-adapter instance 3226 * @opcode: flag query to perform 3227 * @idn: flag idn to access 3228 * @index: flag index to access 3229 * @flag_res: the flag value after the query request completes 3230 * 3231 * Return: 0 for success, non-zero in case of failure. 3232 */ 3233 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode, 3234 enum flag_idn idn, u8 index, bool *flag_res) 3235 { 3236 struct ufs_query_req *request = NULL; 3237 struct ufs_query_res *response = NULL; 3238 int err, selector = 0; 3239 int timeout = QUERY_REQ_TIMEOUT; 3240 3241 BUG_ON(!hba); 3242 3243 ufshcd_hold(hba); 3244 mutex_lock(&hba->dev_cmd.lock); 3245 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3246 selector); 3247 3248 switch (opcode) { 3249 case UPIU_QUERY_OPCODE_SET_FLAG: 3250 case UPIU_QUERY_OPCODE_CLEAR_FLAG: 3251 case UPIU_QUERY_OPCODE_TOGGLE_FLAG: 3252 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3253 break; 3254 case UPIU_QUERY_OPCODE_READ_FLAG: 3255 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3256 if (!flag_res) { 3257 /* No dummy reads */ 3258 dev_err(hba->dev, "%s: Invalid argument for read request\n", 3259 __func__); 3260 err = -EINVAL; 3261 goto out_unlock; 3262 } 3263 break; 3264 default: 3265 dev_err(hba->dev, 3266 "%s: Expected query flag opcode but got = %d\n", 3267 __func__, opcode); 3268 err = -EINVAL; 3269 goto out_unlock; 3270 } 3271 3272 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout); 3273 3274 if (err) { 3275 dev_err(hba->dev, 3276 "%s: Sending flag query for idn %d failed, err = %d\n", 3277 __func__, idn, err); 3278 goto out_unlock; 3279 } 3280 3281 if (flag_res) 3282 *flag_res = (be32_to_cpu(response->upiu_res.value) & 3283 MASK_QUERY_UPIU_FLAG_LOC) & 0x1; 3284 3285 out_unlock: 3286 mutex_unlock(&hba->dev_cmd.lock); 3287 ufshcd_release(hba); 3288 return err; 3289 } 3290 3291 /** 3292 * ufshcd_query_attr - API function for sending attribute requests 3293 * @hba: per-adapter instance 3294 * @opcode: attribute opcode 3295 * @idn: attribute idn to access 3296 * @index: index field 3297 * @selector: selector field 3298 * @attr_val: the attribute value after the query request completes 3299 * 3300 * Return: 0 for success, non-zero in case of failure. 3301 */ 3302 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode, 3303 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val) 3304 { 3305 struct ufs_query_req *request = NULL; 3306 struct ufs_query_res *response = NULL; 3307 int err; 3308 3309 BUG_ON(!hba); 3310 3311 if (!attr_val) { 3312 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n", 3313 __func__, opcode); 3314 return -EINVAL; 3315 } 3316 3317 ufshcd_hold(hba); 3318 3319 mutex_lock(&hba->dev_cmd.lock); 3320 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3321 selector); 3322 3323 switch (opcode) { 3324 case UPIU_QUERY_OPCODE_WRITE_ATTR: 3325 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3326 request->upiu_req.value = cpu_to_be32(*attr_val); 3327 break; 3328 case UPIU_QUERY_OPCODE_READ_ATTR: 3329 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3330 break; 3331 default: 3332 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n", 3333 __func__, opcode); 3334 err = -EINVAL; 3335 goto out_unlock; 3336 } 3337 3338 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3339 3340 if (err) { 3341 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3342 __func__, opcode, idn, index, err); 3343 goto out_unlock; 3344 } 3345 3346 *attr_val = be32_to_cpu(response->upiu_res.value); 3347 3348 out_unlock: 3349 mutex_unlock(&hba->dev_cmd.lock); 3350 ufshcd_release(hba); 3351 return err; 3352 } 3353 3354 /** 3355 * ufshcd_query_attr_retry() - API function for sending query 3356 * attribute with retries 3357 * @hba: per-adapter instance 3358 * @opcode: attribute opcode 3359 * @idn: attribute idn to access 3360 * @index: index field 3361 * @selector: selector field 3362 * @attr_val: the attribute value after the query request 3363 * completes 3364 * 3365 * Return: 0 for success, non-zero in case of failure. 3366 */ 3367 int ufshcd_query_attr_retry(struct ufs_hba *hba, 3368 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector, 3369 u32 *attr_val) 3370 { 3371 int ret = 0; 3372 u32 retries; 3373 3374 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3375 ret = ufshcd_query_attr(hba, opcode, idn, index, 3376 selector, attr_val); 3377 if (ret) 3378 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n", 3379 __func__, ret, retries); 3380 else 3381 break; 3382 } 3383 3384 if (ret) 3385 dev_err(hba->dev, 3386 "%s: query attribute, idn %d, failed with error %d after %d retries\n", 3387 __func__, idn, ret, QUERY_REQ_RETRIES); 3388 return ret; 3389 } 3390 3391 static int __ufshcd_query_descriptor(struct ufs_hba *hba, 3392 enum query_opcode opcode, enum desc_idn idn, u8 index, 3393 u8 selector, u8 *desc_buf, int *buf_len) 3394 { 3395 struct ufs_query_req *request = NULL; 3396 struct ufs_query_res *response = NULL; 3397 int err; 3398 3399 BUG_ON(!hba); 3400 3401 if (!desc_buf) { 3402 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n", 3403 __func__, opcode); 3404 return -EINVAL; 3405 } 3406 3407 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) { 3408 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n", 3409 __func__, *buf_len); 3410 return -EINVAL; 3411 } 3412 3413 ufshcd_hold(hba); 3414 3415 mutex_lock(&hba->dev_cmd.lock); 3416 ufshcd_init_query(hba, &request, &response, opcode, idn, index, 3417 selector); 3418 hba->dev_cmd.query.descriptor = desc_buf; 3419 request->upiu_req.length = cpu_to_be16(*buf_len); 3420 3421 switch (opcode) { 3422 case UPIU_QUERY_OPCODE_WRITE_DESC: 3423 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 3424 break; 3425 case UPIU_QUERY_OPCODE_READ_DESC: 3426 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST; 3427 break; 3428 default: 3429 dev_err(hba->dev, 3430 "%s: Expected query descriptor opcode but got = 0x%.2x\n", 3431 __func__, opcode); 3432 err = -EINVAL; 3433 goto out_unlock; 3434 } 3435 3436 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 3437 3438 if (err) { 3439 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n", 3440 __func__, opcode, idn, index, err); 3441 goto out_unlock; 3442 } 3443 3444 *buf_len = be16_to_cpu(response->upiu_res.length); 3445 3446 out_unlock: 3447 hba->dev_cmd.query.descriptor = NULL; 3448 mutex_unlock(&hba->dev_cmd.lock); 3449 ufshcd_release(hba); 3450 return err; 3451 } 3452 3453 /** 3454 * ufshcd_query_descriptor_retry - API function for sending descriptor requests 3455 * @hba: per-adapter instance 3456 * @opcode: attribute opcode 3457 * @idn: attribute idn to access 3458 * @index: index field 3459 * @selector: selector field 3460 * @desc_buf: the buffer that contains the descriptor 3461 * @buf_len: length parameter passed to the device 3462 * 3463 * The buf_len parameter will contain, on return, the length parameter 3464 * received on the response. 3465 * 3466 * Return: 0 for success, non-zero in case of failure. 3467 */ 3468 int ufshcd_query_descriptor_retry(struct ufs_hba *hba, 3469 enum query_opcode opcode, 3470 enum desc_idn idn, u8 index, 3471 u8 selector, 3472 u8 *desc_buf, int *buf_len) 3473 { 3474 int err; 3475 int retries; 3476 3477 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) { 3478 err = __ufshcd_query_descriptor(hba, opcode, idn, index, 3479 selector, desc_buf, buf_len); 3480 if (!err || err == -EINVAL) 3481 break; 3482 } 3483 3484 return err; 3485 } 3486 3487 /** 3488 * ufshcd_read_desc_param - read the specified descriptor parameter 3489 * @hba: Pointer to adapter instance 3490 * @desc_id: descriptor idn value 3491 * @desc_index: descriptor index 3492 * @param_offset: offset of the parameter to read 3493 * @param_read_buf: pointer to buffer where parameter would be read 3494 * @param_size: sizeof(param_read_buf) 3495 * 3496 * Return: 0 in case of success, non-zero otherwise. 3497 */ 3498 int ufshcd_read_desc_param(struct ufs_hba *hba, 3499 enum desc_idn desc_id, 3500 int desc_index, 3501 u8 param_offset, 3502 u8 *param_read_buf, 3503 u8 param_size) 3504 { 3505 int ret; 3506 u8 *desc_buf; 3507 int buff_len = QUERY_DESC_MAX_SIZE; 3508 bool is_kmalloc = true; 3509 3510 /* Safety check */ 3511 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size) 3512 return -EINVAL; 3513 3514 /* Check whether we need temp memory */ 3515 if (param_offset != 0 || param_size < buff_len) { 3516 desc_buf = kzalloc(buff_len, GFP_KERNEL); 3517 if (!desc_buf) 3518 return -ENOMEM; 3519 } else { 3520 desc_buf = param_read_buf; 3521 is_kmalloc = false; 3522 } 3523 3524 /* Request for full descriptor */ 3525 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC, 3526 desc_id, desc_index, 0, 3527 desc_buf, &buff_len); 3528 if (ret) { 3529 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n", 3530 __func__, desc_id, desc_index, param_offset, ret); 3531 goto out; 3532 } 3533 3534 /* Update descriptor length */ 3535 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET]; 3536 3537 if (param_offset >= buff_len) { 3538 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n", 3539 __func__, param_offset, desc_id, buff_len); 3540 ret = -EINVAL; 3541 goto out; 3542 } 3543 3544 /* Sanity check */ 3545 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) { 3546 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n", 3547 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]); 3548 ret = -EINVAL; 3549 goto out; 3550 } 3551 3552 if (is_kmalloc) { 3553 /* Make sure we don't copy more data than available */ 3554 if (param_offset >= buff_len) 3555 ret = -EINVAL; 3556 else 3557 memcpy(param_read_buf, &desc_buf[param_offset], 3558 min_t(u32, param_size, buff_len - param_offset)); 3559 } 3560 out: 3561 if (is_kmalloc) 3562 kfree(desc_buf); 3563 return ret; 3564 } 3565 3566 /** 3567 * struct uc_string_id - unicode string 3568 * 3569 * @len: size of this descriptor inclusive 3570 * @type: descriptor type 3571 * @uc: unicode string character 3572 */ 3573 struct uc_string_id { 3574 u8 len; 3575 u8 type; 3576 wchar_t uc[]; 3577 } __packed; 3578 3579 /* replace non-printable or non-ASCII characters with spaces */ 3580 static inline char ufshcd_remove_non_printable(u8 ch) 3581 { 3582 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' '; 3583 } 3584 3585 /** 3586 * ufshcd_read_string_desc - read string descriptor 3587 * @hba: pointer to adapter instance 3588 * @desc_index: descriptor index 3589 * @buf: pointer to buffer where descriptor would be read, 3590 * the caller should free the memory. 3591 * @ascii: if true convert from unicode to ascii characters 3592 * null terminated string. 3593 * 3594 * Return: 3595 * * string size on success. 3596 * * -ENOMEM: on allocation failure 3597 * * -EINVAL: on a wrong parameter 3598 */ 3599 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index, 3600 u8 **buf, bool ascii) 3601 { 3602 struct uc_string_id *uc_str; 3603 u8 *str; 3604 int ret; 3605 3606 if (!buf) 3607 return -EINVAL; 3608 3609 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 3610 if (!uc_str) 3611 return -ENOMEM; 3612 3613 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0, 3614 (u8 *)uc_str, QUERY_DESC_MAX_SIZE); 3615 if (ret < 0) { 3616 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n", 3617 QUERY_REQ_RETRIES, ret); 3618 str = NULL; 3619 goto out; 3620 } 3621 3622 if (uc_str->len <= QUERY_DESC_HDR_SIZE) { 3623 dev_dbg(hba->dev, "String Desc is of zero length\n"); 3624 str = NULL; 3625 ret = 0; 3626 goto out; 3627 } 3628 3629 if (ascii) { 3630 ssize_t ascii_len; 3631 int i; 3632 /* remove header and divide by 2 to move from UTF16 to UTF8 */ 3633 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1; 3634 str = kzalloc(ascii_len, GFP_KERNEL); 3635 if (!str) { 3636 ret = -ENOMEM; 3637 goto out; 3638 } 3639 3640 /* 3641 * the descriptor contains string in UTF16 format 3642 * we need to convert to utf-8 so it can be displayed 3643 */ 3644 ret = utf16s_to_utf8s(uc_str->uc, 3645 uc_str->len - QUERY_DESC_HDR_SIZE, 3646 UTF16_BIG_ENDIAN, str, ascii_len - 1); 3647 3648 /* replace non-printable or non-ASCII characters with spaces */ 3649 for (i = 0; i < ret; i++) 3650 str[i] = ufshcd_remove_non_printable(str[i]); 3651 3652 str[ret++] = '\0'; 3653 3654 } else { 3655 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL); 3656 if (!str) { 3657 ret = -ENOMEM; 3658 goto out; 3659 } 3660 ret = uc_str->len; 3661 } 3662 out: 3663 *buf = str; 3664 kfree(uc_str); 3665 return ret; 3666 } 3667 3668 /** 3669 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter 3670 * @hba: Pointer to adapter instance 3671 * @lun: lun id 3672 * @param_offset: offset of the parameter to read 3673 * @param_read_buf: pointer to buffer where parameter would be read 3674 * @param_size: sizeof(param_read_buf) 3675 * 3676 * Return: 0 in case of success, non-zero otherwise. 3677 */ 3678 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba, 3679 int lun, 3680 enum unit_desc_param param_offset, 3681 u8 *param_read_buf, 3682 u32 param_size) 3683 { 3684 /* 3685 * Unit descriptors are only available for general purpose LUs (LUN id 3686 * from 0 to 7) and RPMB Well known LU. 3687 */ 3688 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun)) 3689 return -EOPNOTSUPP; 3690 3691 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun, 3692 param_offset, param_read_buf, param_size); 3693 } 3694 3695 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba) 3696 { 3697 int err = 0; 3698 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3699 3700 if (hba->dev_info.wspecversion >= 0x300) { 3701 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 3702 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0, 3703 &gating_wait); 3704 if (err) 3705 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n", 3706 err, gating_wait); 3707 3708 if (gating_wait == 0) { 3709 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US; 3710 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n", 3711 gating_wait); 3712 } 3713 3714 hba->dev_info.clk_gating_wait_us = gating_wait; 3715 } 3716 3717 return err; 3718 } 3719 3720 /** 3721 * ufshcd_memory_alloc - allocate memory for host memory space data structures 3722 * @hba: per adapter instance 3723 * 3724 * 1. Allocate DMA memory for Command Descriptor array 3725 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT 3726 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL). 3727 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List 3728 * (UTMRDL) 3729 * 4. Allocate memory for local reference block(lrb). 3730 * 3731 * Return: 0 for success, non-zero in case of failure. 3732 */ 3733 static int ufshcd_memory_alloc(struct ufs_hba *hba) 3734 { 3735 size_t utmrdl_size, utrdl_size, ucdl_size; 3736 3737 /* Allocate memory for UTP command descriptors */ 3738 ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs; 3739 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev, 3740 ucdl_size, 3741 &hba->ucdl_dma_addr, 3742 GFP_KERNEL); 3743 3744 /* 3745 * UFSHCI requires UTP command descriptor to be 128 byte aligned. 3746 */ 3747 if (!hba->ucdl_base_addr || 3748 WARN_ON(hba->ucdl_dma_addr & (128 - 1))) { 3749 dev_err(hba->dev, 3750 "Command Descriptor Memory allocation failed\n"); 3751 goto out; 3752 } 3753 3754 /* 3755 * Allocate memory for UTP Transfer descriptors 3756 * UFSHCI requires 1KB alignment of UTRD 3757 */ 3758 utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs); 3759 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev, 3760 utrdl_size, 3761 &hba->utrdl_dma_addr, 3762 GFP_KERNEL); 3763 if (!hba->utrdl_base_addr || 3764 WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) { 3765 dev_err(hba->dev, 3766 "Transfer Descriptor Memory allocation failed\n"); 3767 goto out; 3768 } 3769 3770 /* 3771 * Skip utmrdl allocation; it may have been 3772 * allocated during first pass and not released during 3773 * MCQ memory allocation. 3774 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq() 3775 */ 3776 if (hba->utmrdl_base_addr) 3777 goto skip_utmrdl; 3778 /* 3779 * Allocate memory for UTP Task Management descriptors 3780 * UFSHCI requires 1KB alignment of UTMRD 3781 */ 3782 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs; 3783 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev, 3784 utmrdl_size, 3785 &hba->utmrdl_dma_addr, 3786 GFP_KERNEL); 3787 if (!hba->utmrdl_base_addr || 3788 WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) { 3789 dev_err(hba->dev, 3790 "Task Management Descriptor Memory allocation failed\n"); 3791 goto out; 3792 } 3793 3794 skip_utmrdl: 3795 /* Allocate memory for local reference block */ 3796 hba->lrb = devm_kcalloc(hba->dev, 3797 hba->nutrs, sizeof(struct ufshcd_lrb), 3798 GFP_KERNEL); 3799 if (!hba->lrb) { 3800 dev_err(hba->dev, "LRB Memory allocation failed\n"); 3801 goto out; 3802 } 3803 return 0; 3804 out: 3805 return -ENOMEM; 3806 } 3807 3808 /** 3809 * ufshcd_host_memory_configure - configure local reference block with 3810 * memory offsets 3811 * @hba: per adapter instance 3812 * 3813 * Configure Host memory space 3814 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA 3815 * address. 3816 * 2. Update each UTRD with Response UPIU offset, Response UPIU length 3817 * and PRDT offset. 3818 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT 3819 * into local reference block. 3820 */ 3821 static void ufshcd_host_memory_configure(struct ufs_hba *hba) 3822 { 3823 struct utp_transfer_req_desc *utrdlp; 3824 dma_addr_t cmd_desc_dma_addr; 3825 dma_addr_t cmd_desc_element_addr; 3826 u16 response_offset; 3827 u16 prdt_offset; 3828 int cmd_desc_size; 3829 int i; 3830 3831 utrdlp = hba->utrdl_base_addr; 3832 3833 response_offset = 3834 offsetof(struct utp_transfer_cmd_desc, response_upiu); 3835 prdt_offset = 3836 offsetof(struct utp_transfer_cmd_desc, prd_table); 3837 3838 cmd_desc_size = ufshcd_get_ucd_size(hba); 3839 cmd_desc_dma_addr = hba->ucdl_dma_addr; 3840 3841 for (i = 0; i < hba->nutrs; i++) { 3842 /* Configure UTRD with command descriptor base address */ 3843 cmd_desc_element_addr = 3844 (cmd_desc_dma_addr + (cmd_desc_size * i)); 3845 utrdlp[i].command_desc_base_addr = 3846 cpu_to_le64(cmd_desc_element_addr); 3847 3848 /* Response upiu and prdt offset should be in double words */ 3849 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) { 3850 utrdlp[i].response_upiu_offset = 3851 cpu_to_le16(response_offset); 3852 utrdlp[i].prd_table_offset = 3853 cpu_to_le16(prdt_offset); 3854 utrdlp[i].response_upiu_length = 3855 cpu_to_le16(ALIGNED_UPIU_SIZE); 3856 } else { 3857 utrdlp[i].response_upiu_offset = 3858 cpu_to_le16(response_offset >> 2); 3859 utrdlp[i].prd_table_offset = 3860 cpu_to_le16(prdt_offset >> 2); 3861 utrdlp[i].response_upiu_length = 3862 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2); 3863 } 3864 3865 ufshcd_init_lrb(hba, &hba->lrb[i], i); 3866 } 3867 } 3868 3869 /** 3870 * ufshcd_dme_link_startup - Notify Unipro to perform link startup 3871 * @hba: per adapter instance 3872 * 3873 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer, 3874 * in order to initialize the Unipro link startup procedure. 3875 * Once the Unipro links are up, the device connected to the controller 3876 * is detected. 3877 * 3878 * Return: 0 on success, non-zero value on failure. 3879 */ 3880 static int ufshcd_dme_link_startup(struct ufs_hba *hba) 3881 { 3882 struct uic_command uic_cmd = {0}; 3883 int ret; 3884 3885 uic_cmd.command = UIC_CMD_DME_LINK_STARTUP; 3886 3887 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3888 if (ret) 3889 dev_dbg(hba->dev, 3890 "dme-link-startup: error code %d\n", ret); 3891 return ret; 3892 } 3893 /** 3894 * ufshcd_dme_reset - UIC command for DME_RESET 3895 * @hba: per adapter instance 3896 * 3897 * DME_RESET command is issued in order to reset UniPro stack. 3898 * This function now deals with cold reset. 3899 * 3900 * Return: 0 on success, non-zero value on failure. 3901 */ 3902 static int ufshcd_dme_reset(struct ufs_hba *hba) 3903 { 3904 struct uic_command uic_cmd = {0}; 3905 int ret; 3906 3907 uic_cmd.command = UIC_CMD_DME_RESET; 3908 3909 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3910 if (ret) 3911 dev_err(hba->dev, 3912 "dme-reset: error code %d\n", ret); 3913 3914 return ret; 3915 } 3916 3917 int ufshcd_dme_configure_adapt(struct ufs_hba *hba, 3918 int agreed_gear, 3919 int adapt_val) 3920 { 3921 int ret; 3922 3923 if (agreed_gear < UFS_HS_G4) 3924 adapt_val = PA_NO_ADAPT; 3925 3926 ret = ufshcd_dme_set(hba, 3927 UIC_ARG_MIB(PA_TXHSADAPTTYPE), 3928 adapt_val); 3929 return ret; 3930 } 3931 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt); 3932 3933 /** 3934 * ufshcd_dme_enable - UIC command for DME_ENABLE 3935 * @hba: per adapter instance 3936 * 3937 * DME_ENABLE command is issued in order to enable UniPro stack. 3938 * 3939 * Return: 0 on success, non-zero value on failure. 3940 */ 3941 static int ufshcd_dme_enable(struct ufs_hba *hba) 3942 { 3943 struct uic_command uic_cmd = {0}; 3944 int ret; 3945 3946 uic_cmd.command = UIC_CMD_DME_ENABLE; 3947 3948 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 3949 if (ret) 3950 dev_err(hba->dev, 3951 "dme-enable: error code %d\n", ret); 3952 3953 return ret; 3954 } 3955 3956 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba) 3957 { 3958 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000 3959 unsigned long min_sleep_time_us; 3960 3961 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS)) 3962 return; 3963 3964 /* 3965 * last_dme_cmd_tstamp will be 0 only for 1st call to 3966 * this function 3967 */ 3968 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) { 3969 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US; 3970 } else { 3971 unsigned long delta = 3972 (unsigned long) ktime_to_us( 3973 ktime_sub(ktime_get(), 3974 hba->last_dme_cmd_tstamp)); 3975 3976 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US) 3977 min_sleep_time_us = 3978 MIN_DELAY_BEFORE_DME_CMDS_US - delta; 3979 else 3980 min_sleep_time_us = 0; /* no more delay required */ 3981 } 3982 3983 if (min_sleep_time_us > 0) { 3984 /* allow sleep for extra 50us if needed */ 3985 usleep_range(min_sleep_time_us, min_sleep_time_us + 50); 3986 } 3987 3988 /* update the last_dme_cmd_tstamp */ 3989 hba->last_dme_cmd_tstamp = ktime_get(); 3990 } 3991 3992 /** 3993 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET 3994 * @hba: per adapter instance 3995 * @attr_sel: uic command argument1 3996 * @attr_set: attribute set type as uic command argument2 3997 * @mib_val: setting value as uic command argument3 3998 * @peer: indicate whether peer or local 3999 * 4000 * Return: 0 on success, non-zero value on failure. 4001 */ 4002 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel, 4003 u8 attr_set, u32 mib_val, u8 peer) 4004 { 4005 struct uic_command uic_cmd = {0}; 4006 static const char *const action[] = { 4007 "dme-set", 4008 "dme-peer-set" 4009 }; 4010 const char *set = action[!!peer]; 4011 int ret; 4012 int retries = UFS_UIC_COMMAND_RETRIES; 4013 4014 uic_cmd.command = peer ? 4015 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET; 4016 uic_cmd.argument1 = attr_sel; 4017 uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set); 4018 uic_cmd.argument3 = mib_val; 4019 4020 do { 4021 /* for peer attributes we retry upon failure */ 4022 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4023 if (ret) 4024 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n", 4025 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret); 4026 } while (ret && peer && --retries); 4027 4028 if (ret) 4029 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n", 4030 set, UIC_GET_ATTR_ID(attr_sel), mib_val, 4031 UFS_UIC_COMMAND_RETRIES - retries); 4032 4033 return ret; 4034 } 4035 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr); 4036 4037 /** 4038 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET 4039 * @hba: per adapter instance 4040 * @attr_sel: uic command argument1 4041 * @mib_val: the value of the attribute as returned by the UIC command 4042 * @peer: indicate whether peer or local 4043 * 4044 * Return: 0 on success, non-zero value on failure. 4045 */ 4046 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel, 4047 u32 *mib_val, u8 peer) 4048 { 4049 struct uic_command uic_cmd = {0}; 4050 static const char *const action[] = { 4051 "dme-get", 4052 "dme-peer-get" 4053 }; 4054 const char *get = action[!!peer]; 4055 int ret; 4056 int retries = UFS_UIC_COMMAND_RETRIES; 4057 struct ufs_pa_layer_attr orig_pwr_info; 4058 struct ufs_pa_layer_attr temp_pwr_info; 4059 bool pwr_mode_change = false; 4060 4061 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) { 4062 orig_pwr_info = hba->pwr_info; 4063 temp_pwr_info = orig_pwr_info; 4064 4065 if (orig_pwr_info.pwr_tx == FAST_MODE || 4066 orig_pwr_info.pwr_rx == FAST_MODE) { 4067 temp_pwr_info.pwr_tx = FASTAUTO_MODE; 4068 temp_pwr_info.pwr_rx = FASTAUTO_MODE; 4069 pwr_mode_change = true; 4070 } else if (orig_pwr_info.pwr_tx == SLOW_MODE || 4071 orig_pwr_info.pwr_rx == SLOW_MODE) { 4072 temp_pwr_info.pwr_tx = SLOWAUTO_MODE; 4073 temp_pwr_info.pwr_rx = SLOWAUTO_MODE; 4074 pwr_mode_change = true; 4075 } 4076 if (pwr_mode_change) { 4077 ret = ufshcd_change_power_mode(hba, &temp_pwr_info); 4078 if (ret) 4079 goto out; 4080 } 4081 } 4082 4083 uic_cmd.command = peer ? 4084 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET; 4085 uic_cmd.argument1 = attr_sel; 4086 4087 do { 4088 /* for peer attributes we retry upon failure */ 4089 ret = ufshcd_send_uic_cmd(hba, &uic_cmd); 4090 if (ret) 4091 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n", 4092 get, UIC_GET_ATTR_ID(attr_sel), ret); 4093 } while (ret && peer && --retries); 4094 4095 if (ret) 4096 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n", 4097 get, UIC_GET_ATTR_ID(attr_sel), 4098 UFS_UIC_COMMAND_RETRIES - retries); 4099 4100 if (mib_val && !ret) 4101 *mib_val = uic_cmd.argument3; 4102 4103 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE) 4104 && pwr_mode_change) 4105 ufshcd_change_power_mode(hba, &orig_pwr_info); 4106 out: 4107 return ret; 4108 } 4109 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr); 4110 4111 /** 4112 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power 4113 * state) and waits for it to take effect. 4114 * 4115 * @hba: per adapter instance 4116 * @cmd: UIC command to execute 4117 * 4118 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER & 4119 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host 4120 * and device UniPro link and hence it's final completion would be indicated by 4121 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in 4122 * addition to normal UIC command completion Status (UCCS). This function only 4123 * returns after the relevant status bits indicate the completion. 4124 * 4125 * Return: 0 on success, non-zero value on failure. 4126 */ 4127 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd) 4128 { 4129 DECLARE_COMPLETION_ONSTACK(uic_async_done); 4130 unsigned long flags; 4131 u8 status; 4132 int ret; 4133 bool reenable_intr = false; 4134 4135 mutex_lock(&hba->uic_cmd_mutex); 4136 ufshcd_add_delay_before_dme_cmd(hba); 4137 4138 spin_lock_irqsave(hba->host->host_lock, flags); 4139 if (ufshcd_is_link_broken(hba)) { 4140 ret = -ENOLINK; 4141 goto out_unlock; 4142 } 4143 hba->uic_async_done = &uic_async_done; 4144 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) { 4145 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL); 4146 /* 4147 * Make sure UIC command completion interrupt is disabled before 4148 * issuing UIC command. 4149 */ 4150 ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 4151 reenable_intr = true; 4152 } 4153 spin_unlock_irqrestore(hba->host->host_lock, flags); 4154 ret = __ufshcd_send_uic_cmd(hba, cmd); 4155 if (ret) { 4156 dev_err(hba->dev, 4157 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n", 4158 cmd->command, cmd->argument3, ret); 4159 goto out; 4160 } 4161 4162 if (!wait_for_completion_timeout(hba->uic_async_done, 4163 msecs_to_jiffies(UIC_CMD_TIMEOUT))) { 4164 dev_err(hba->dev, 4165 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n", 4166 cmd->command, cmd->argument3); 4167 4168 if (!cmd->cmd_active) { 4169 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n", 4170 __func__); 4171 goto check_upmcrs; 4172 } 4173 4174 ret = -ETIMEDOUT; 4175 goto out; 4176 } 4177 4178 check_upmcrs: 4179 status = ufshcd_get_upmcrs(hba); 4180 if (status != PWR_LOCAL) { 4181 dev_err(hba->dev, 4182 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n", 4183 cmd->command, status); 4184 ret = (status != PWR_OK) ? status : -1; 4185 } 4186 out: 4187 if (ret) { 4188 ufshcd_print_host_state(hba); 4189 ufshcd_print_pwr_info(hba); 4190 ufshcd_print_evt_hist(hba); 4191 } 4192 4193 spin_lock_irqsave(hba->host->host_lock, flags); 4194 hba->active_uic_cmd = NULL; 4195 hba->uic_async_done = NULL; 4196 if (reenable_intr) 4197 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL); 4198 if (ret) { 4199 ufshcd_set_link_broken(hba); 4200 ufshcd_schedule_eh_work(hba); 4201 } 4202 out_unlock: 4203 spin_unlock_irqrestore(hba->host->host_lock, flags); 4204 mutex_unlock(&hba->uic_cmd_mutex); 4205 4206 return ret; 4207 } 4208 4209 /** 4210 * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result 4211 * @hba: per adapter instance 4212 * @uic_cmd: UIC command 4213 * 4214 * Return: 0 only if success. 4215 */ 4216 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd) 4217 { 4218 int ret; 4219 4220 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD) 4221 return 0; 4222 4223 ufshcd_hold(hba); 4224 4225 if (uic_cmd->argument1 == UIC_ARG_MIB(PA_PWRMODE) && 4226 uic_cmd->command == UIC_CMD_DME_SET) { 4227 ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd); 4228 goto out; 4229 } 4230 4231 mutex_lock(&hba->uic_cmd_mutex); 4232 ufshcd_add_delay_before_dme_cmd(hba); 4233 4234 ret = __ufshcd_send_uic_cmd(hba, uic_cmd); 4235 if (!ret) 4236 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd); 4237 4238 mutex_unlock(&hba->uic_cmd_mutex); 4239 4240 out: 4241 ufshcd_release(hba); 4242 return ret; 4243 } 4244 4245 /** 4246 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage 4247 * using DME_SET primitives. 4248 * @hba: per adapter instance 4249 * @mode: powr mode value 4250 * 4251 * Return: 0 on success, non-zero value on failure. 4252 */ 4253 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode) 4254 { 4255 struct uic_command uic_cmd = {0}; 4256 int ret; 4257 4258 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) { 4259 ret = ufshcd_dme_set(hba, 4260 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1); 4261 if (ret) { 4262 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n", 4263 __func__, ret); 4264 goto out; 4265 } 4266 } 4267 4268 uic_cmd.command = UIC_CMD_DME_SET; 4269 uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE); 4270 uic_cmd.argument3 = mode; 4271 ufshcd_hold(hba); 4272 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4273 ufshcd_release(hba); 4274 4275 out: 4276 return ret; 4277 } 4278 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode); 4279 4280 int ufshcd_link_recovery(struct ufs_hba *hba) 4281 { 4282 int ret; 4283 unsigned long flags; 4284 4285 spin_lock_irqsave(hba->host->host_lock, flags); 4286 hba->ufshcd_state = UFSHCD_STATE_RESET; 4287 ufshcd_set_eh_in_progress(hba); 4288 spin_unlock_irqrestore(hba->host->host_lock, flags); 4289 4290 /* Reset the attached device */ 4291 ufshcd_device_reset(hba); 4292 4293 ret = ufshcd_host_reset_and_restore(hba); 4294 4295 spin_lock_irqsave(hba->host->host_lock, flags); 4296 if (ret) 4297 hba->ufshcd_state = UFSHCD_STATE_ERROR; 4298 ufshcd_clear_eh_in_progress(hba); 4299 spin_unlock_irqrestore(hba->host->host_lock, flags); 4300 4301 if (ret) 4302 dev_err(hba->dev, "%s: link recovery failed, err %d", 4303 __func__, ret); 4304 4305 return ret; 4306 } 4307 EXPORT_SYMBOL_GPL(ufshcd_link_recovery); 4308 4309 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba) 4310 { 4311 int ret; 4312 struct uic_command uic_cmd = {0}; 4313 ktime_t start = ktime_get(); 4314 4315 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE); 4316 4317 uic_cmd.command = UIC_CMD_DME_HIBER_ENTER; 4318 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4319 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter", 4320 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4321 4322 if (ret) 4323 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n", 4324 __func__, ret); 4325 else 4326 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, 4327 POST_CHANGE); 4328 4329 return ret; 4330 } 4331 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter); 4332 4333 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba) 4334 { 4335 struct uic_command uic_cmd = {0}; 4336 int ret; 4337 ktime_t start = ktime_get(); 4338 4339 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE); 4340 4341 uic_cmd.command = UIC_CMD_DME_HIBER_EXIT; 4342 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd); 4343 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit", 4344 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 4345 4346 if (ret) { 4347 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n", 4348 __func__, ret); 4349 } else { 4350 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, 4351 POST_CHANGE); 4352 hba->ufs_stats.last_hibern8_exit_tstamp = local_clock(); 4353 hba->ufs_stats.hibern8_exit_cnt++; 4354 } 4355 4356 return ret; 4357 } 4358 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit); 4359 4360 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit) 4361 { 4362 unsigned long flags; 4363 bool update = false; 4364 4365 if (!ufshcd_is_auto_hibern8_supported(hba)) 4366 return; 4367 4368 spin_lock_irqsave(hba->host->host_lock, flags); 4369 if (hba->ahit != ahit) { 4370 hba->ahit = ahit; 4371 update = true; 4372 } 4373 spin_unlock_irqrestore(hba->host->host_lock, flags); 4374 4375 if (update && 4376 !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) { 4377 ufshcd_rpm_get_sync(hba); 4378 ufshcd_hold(hba); 4379 ufshcd_auto_hibern8_enable(hba); 4380 ufshcd_release(hba); 4381 ufshcd_rpm_put_sync(hba); 4382 } 4383 } 4384 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update); 4385 4386 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba) 4387 { 4388 if (!ufshcd_is_auto_hibern8_supported(hba)) 4389 return; 4390 4391 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER); 4392 } 4393 4394 /** 4395 * ufshcd_init_pwr_info - setting the POR (power on reset) 4396 * values in hba power info 4397 * @hba: per-adapter instance 4398 */ 4399 static void ufshcd_init_pwr_info(struct ufs_hba *hba) 4400 { 4401 hba->pwr_info.gear_rx = UFS_PWM_G1; 4402 hba->pwr_info.gear_tx = UFS_PWM_G1; 4403 hba->pwr_info.lane_rx = UFS_LANE_1; 4404 hba->pwr_info.lane_tx = UFS_LANE_1; 4405 hba->pwr_info.pwr_rx = SLOWAUTO_MODE; 4406 hba->pwr_info.pwr_tx = SLOWAUTO_MODE; 4407 hba->pwr_info.hs_rate = 0; 4408 } 4409 4410 /** 4411 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device 4412 * @hba: per-adapter instance 4413 * 4414 * Return: 0 upon success; < 0 upon failure. 4415 */ 4416 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba) 4417 { 4418 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info; 4419 4420 if (hba->max_pwr_info.is_valid) 4421 return 0; 4422 4423 if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) { 4424 pwr_info->pwr_tx = FASTAUTO_MODE; 4425 pwr_info->pwr_rx = FASTAUTO_MODE; 4426 } else { 4427 pwr_info->pwr_tx = FAST_MODE; 4428 pwr_info->pwr_rx = FAST_MODE; 4429 } 4430 pwr_info->hs_rate = PA_HS_MODE_B; 4431 4432 /* Get the connected lane count */ 4433 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES), 4434 &pwr_info->lane_rx); 4435 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4436 &pwr_info->lane_tx); 4437 4438 if (!pwr_info->lane_rx || !pwr_info->lane_tx) { 4439 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n", 4440 __func__, 4441 pwr_info->lane_rx, 4442 pwr_info->lane_tx); 4443 return -EINVAL; 4444 } 4445 4446 /* 4447 * First, get the maximum gears of HS speed. 4448 * If a zero value, it means there is no HSGEAR capability. 4449 * Then, get the maximum gears of PWM speed. 4450 */ 4451 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx); 4452 if (!pwr_info->gear_rx) { 4453 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4454 &pwr_info->gear_rx); 4455 if (!pwr_info->gear_rx) { 4456 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n", 4457 __func__, pwr_info->gear_rx); 4458 return -EINVAL; 4459 } 4460 pwr_info->pwr_rx = SLOW_MODE; 4461 } 4462 4463 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), 4464 &pwr_info->gear_tx); 4465 if (!pwr_info->gear_tx) { 4466 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR), 4467 &pwr_info->gear_tx); 4468 if (!pwr_info->gear_tx) { 4469 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n", 4470 __func__, pwr_info->gear_tx); 4471 return -EINVAL; 4472 } 4473 pwr_info->pwr_tx = SLOW_MODE; 4474 } 4475 4476 hba->max_pwr_info.is_valid = true; 4477 return 0; 4478 } 4479 4480 static int ufshcd_change_power_mode(struct ufs_hba *hba, 4481 struct ufs_pa_layer_attr *pwr_mode) 4482 { 4483 int ret; 4484 4485 /* if already configured to the requested pwr_mode */ 4486 if (!hba->force_pmc && 4487 pwr_mode->gear_rx == hba->pwr_info.gear_rx && 4488 pwr_mode->gear_tx == hba->pwr_info.gear_tx && 4489 pwr_mode->lane_rx == hba->pwr_info.lane_rx && 4490 pwr_mode->lane_tx == hba->pwr_info.lane_tx && 4491 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx && 4492 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx && 4493 pwr_mode->hs_rate == hba->pwr_info.hs_rate) { 4494 dev_dbg(hba->dev, "%s: power already configured\n", __func__); 4495 return 0; 4496 } 4497 4498 /* 4499 * Configure attributes for power mode change with below. 4500 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION, 4501 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION, 4502 * - PA_HSSERIES 4503 */ 4504 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx); 4505 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES), 4506 pwr_mode->lane_rx); 4507 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4508 pwr_mode->pwr_rx == FAST_MODE) 4509 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true); 4510 else 4511 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false); 4512 4513 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx); 4514 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES), 4515 pwr_mode->lane_tx); 4516 if (pwr_mode->pwr_tx == FASTAUTO_MODE || 4517 pwr_mode->pwr_tx == FAST_MODE) 4518 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true); 4519 else 4520 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false); 4521 4522 if (pwr_mode->pwr_rx == FASTAUTO_MODE || 4523 pwr_mode->pwr_tx == FASTAUTO_MODE || 4524 pwr_mode->pwr_rx == FAST_MODE || 4525 pwr_mode->pwr_tx == FAST_MODE) 4526 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES), 4527 pwr_mode->hs_rate); 4528 4529 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) { 4530 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0), 4531 DL_FC0ProtectionTimeOutVal_Default); 4532 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1), 4533 DL_TC0ReplayTimeOutVal_Default); 4534 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2), 4535 DL_AFC0ReqTimeOutVal_Default); 4536 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3), 4537 DL_FC1ProtectionTimeOutVal_Default); 4538 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4), 4539 DL_TC1ReplayTimeOutVal_Default); 4540 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5), 4541 DL_AFC1ReqTimeOutVal_Default); 4542 4543 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal), 4544 DL_FC0ProtectionTimeOutVal_Default); 4545 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal), 4546 DL_TC0ReplayTimeOutVal_Default); 4547 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal), 4548 DL_AFC0ReqTimeOutVal_Default); 4549 } 4550 4551 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4 4552 | pwr_mode->pwr_tx); 4553 4554 if (ret) { 4555 dev_err(hba->dev, 4556 "%s: power mode change failed %d\n", __func__, ret); 4557 } else { 4558 memcpy(&hba->pwr_info, pwr_mode, 4559 sizeof(struct ufs_pa_layer_attr)); 4560 } 4561 4562 return ret; 4563 } 4564 4565 /** 4566 * ufshcd_config_pwr_mode - configure a new power mode 4567 * @hba: per-adapter instance 4568 * @desired_pwr_mode: desired power configuration 4569 * 4570 * Return: 0 upon success; < 0 upon failure. 4571 */ 4572 int ufshcd_config_pwr_mode(struct ufs_hba *hba, 4573 struct ufs_pa_layer_attr *desired_pwr_mode) 4574 { 4575 struct ufs_pa_layer_attr final_params = { 0 }; 4576 int ret; 4577 4578 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE, 4579 desired_pwr_mode, &final_params); 4580 4581 if (ret) 4582 memcpy(&final_params, desired_pwr_mode, sizeof(final_params)); 4583 4584 ret = ufshcd_change_power_mode(hba, &final_params); 4585 4586 if (!ret) 4587 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL, 4588 &final_params); 4589 4590 return ret; 4591 } 4592 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode); 4593 4594 /** 4595 * ufshcd_complete_dev_init() - checks device readiness 4596 * @hba: per-adapter instance 4597 * 4598 * Set fDeviceInit flag and poll until device toggles it. 4599 * 4600 * Return: 0 upon success; < 0 upon failure. 4601 */ 4602 static int ufshcd_complete_dev_init(struct ufs_hba *hba) 4603 { 4604 int err; 4605 bool flag_res = true; 4606 ktime_t timeout; 4607 4608 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 4609 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL); 4610 if (err) { 4611 dev_err(hba->dev, 4612 "%s: setting fDeviceInit flag failed with error %d\n", 4613 __func__, err); 4614 goto out; 4615 } 4616 4617 /* Poll fDeviceInit flag to be cleared */ 4618 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT); 4619 do { 4620 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG, 4621 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res); 4622 if (!flag_res) 4623 break; 4624 usleep_range(500, 1000); 4625 } while (ktime_before(ktime_get(), timeout)); 4626 4627 if (err) { 4628 dev_err(hba->dev, 4629 "%s: reading fDeviceInit flag failed with error %d\n", 4630 __func__, err); 4631 } else if (flag_res) { 4632 dev_err(hba->dev, 4633 "%s: fDeviceInit was not cleared by the device\n", 4634 __func__); 4635 err = -EBUSY; 4636 } 4637 out: 4638 return err; 4639 } 4640 4641 /** 4642 * ufshcd_make_hba_operational - Make UFS controller operational 4643 * @hba: per adapter instance 4644 * 4645 * To bring UFS host controller to operational state, 4646 * 1. Enable required interrupts 4647 * 2. Configure interrupt aggregation 4648 * 3. Program UTRL and UTMRL base address 4649 * 4. Configure run-stop-registers 4650 * 4651 * Return: 0 on success, non-zero value on failure. 4652 */ 4653 int ufshcd_make_hba_operational(struct ufs_hba *hba) 4654 { 4655 int err = 0; 4656 u32 reg; 4657 4658 /* Enable required interrupts */ 4659 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS); 4660 4661 /* Configure interrupt aggregation */ 4662 if (ufshcd_is_intr_aggr_allowed(hba)) 4663 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO); 4664 else 4665 ufshcd_disable_intr_aggr(hba); 4666 4667 /* Configure UTRL and UTMRL base address registers */ 4668 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 4669 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 4670 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 4671 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 4672 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 4673 REG_UTP_TASK_REQ_LIST_BASE_L); 4674 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 4675 REG_UTP_TASK_REQ_LIST_BASE_H); 4676 4677 /* 4678 * Make sure base address and interrupt setup are updated before 4679 * enabling the run/stop registers below. 4680 */ 4681 wmb(); 4682 4683 /* 4684 * UCRDY, UTMRLDY and UTRLRDY bits must be 1 4685 */ 4686 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS); 4687 if (!(ufshcd_get_lists_status(reg))) { 4688 ufshcd_enable_run_stop_reg(hba); 4689 } else { 4690 dev_err(hba->dev, 4691 "Host controller not ready to process requests"); 4692 err = -EIO; 4693 } 4694 4695 return err; 4696 } 4697 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational); 4698 4699 /** 4700 * ufshcd_hba_stop - Send controller to reset state 4701 * @hba: per adapter instance 4702 */ 4703 void ufshcd_hba_stop(struct ufs_hba *hba) 4704 { 4705 unsigned long flags; 4706 int err; 4707 4708 /* 4709 * Obtain the host lock to prevent that the controller is disabled 4710 * while the UFS interrupt handler is active on another CPU. 4711 */ 4712 spin_lock_irqsave(hba->host->host_lock, flags); 4713 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE); 4714 spin_unlock_irqrestore(hba->host->host_lock, flags); 4715 4716 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE, 4717 CONTROLLER_ENABLE, CONTROLLER_DISABLE, 4718 10, 1); 4719 if (err) 4720 dev_err(hba->dev, "%s: Controller disable failed\n", __func__); 4721 } 4722 EXPORT_SYMBOL_GPL(ufshcd_hba_stop); 4723 4724 /** 4725 * ufshcd_hba_execute_hce - initialize the controller 4726 * @hba: per adapter instance 4727 * 4728 * The controller resets itself and controller firmware initialization 4729 * sequence kicks off. When controller is ready it will set 4730 * the Host Controller Enable bit to 1. 4731 * 4732 * Return: 0 on success, non-zero value on failure. 4733 */ 4734 static int ufshcd_hba_execute_hce(struct ufs_hba *hba) 4735 { 4736 int retry_outer = 3; 4737 int retry_inner; 4738 4739 start: 4740 if (ufshcd_is_hba_active(hba)) 4741 /* change controller state to "reset state" */ 4742 ufshcd_hba_stop(hba); 4743 4744 /* UniPro link is disabled at this point */ 4745 ufshcd_set_link_off(hba); 4746 4747 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4748 4749 /* start controller initialization sequence */ 4750 ufshcd_hba_start(hba); 4751 4752 /* 4753 * To initialize a UFS host controller HCE bit must be set to 1. 4754 * During initialization the HCE bit value changes from 1->0->1. 4755 * When the host controller completes initialization sequence 4756 * it sets the value of HCE bit to 1. The same HCE bit is read back 4757 * to check if the controller has completed initialization sequence. 4758 * So without this delay the value HCE = 1, set in the previous 4759 * instruction might be read back. 4760 * This delay can be changed based on the controller. 4761 */ 4762 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100); 4763 4764 /* wait for the host controller to complete initialization */ 4765 retry_inner = 50; 4766 while (!ufshcd_is_hba_active(hba)) { 4767 if (retry_inner) { 4768 retry_inner--; 4769 } else { 4770 dev_err(hba->dev, 4771 "Controller enable failed\n"); 4772 if (retry_outer) { 4773 retry_outer--; 4774 goto start; 4775 } 4776 return -EIO; 4777 } 4778 usleep_range(1000, 1100); 4779 } 4780 4781 /* enable UIC related interrupts */ 4782 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4783 4784 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4785 4786 return 0; 4787 } 4788 4789 int ufshcd_hba_enable(struct ufs_hba *hba) 4790 { 4791 int ret; 4792 4793 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) { 4794 ufshcd_set_link_off(hba); 4795 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE); 4796 4797 /* enable UIC related interrupts */ 4798 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK); 4799 ret = ufshcd_dme_reset(hba); 4800 if (ret) { 4801 dev_err(hba->dev, "DME_RESET failed\n"); 4802 return ret; 4803 } 4804 4805 ret = ufshcd_dme_enable(hba); 4806 if (ret) { 4807 dev_err(hba->dev, "Enabling DME failed\n"); 4808 return ret; 4809 } 4810 4811 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE); 4812 } else { 4813 ret = ufshcd_hba_execute_hce(hba); 4814 } 4815 4816 return ret; 4817 } 4818 EXPORT_SYMBOL_GPL(ufshcd_hba_enable); 4819 4820 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer) 4821 { 4822 int tx_lanes = 0, i, err = 0; 4823 4824 if (!peer) 4825 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4826 &tx_lanes); 4827 else 4828 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES), 4829 &tx_lanes); 4830 for (i = 0; i < tx_lanes; i++) { 4831 if (!peer) 4832 err = ufshcd_dme_set(hba, 4833 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4834 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4835 0); 4836 else 4837 err = ufshcd_dme_peer_set(hba, 4838 UIC_ARG_MIB_SEL(TX_LCC_ENABLE, 4839 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)), 4840 0); 4841 if (err) { 4842 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d", 4843 __func__, peer, i, err); 4844 break; 4845 } 4846 } 4847 4848 return err; 4849 } 4850 4851 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba) 4852 { 4853 return ufshcd_disable_tx_lcc(hba, true); 4854 } 4855 4856 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val) 4857 { 4858 struct ufs_event_hist *e; 4859 4860 if (id >= UFS_EVT_CNT) 4861 return; 4862 4863 e = &hba->ufs_stats.event[id]; 4864 e->val[e->pos] = val; 4865 e->tstamp[e->pos] = local_clock(); 4866 e->cnt += 1; 4867 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH; 4868 4869 ufshcd_vops_event_notify(hba, id, &val); 4870 } 4871 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist); 4872 4873 /** 4874 * ufshcd_link_startup - Initialize unipro link startup 4875 * @hba: per adapter instance 4876 * 4877 * Return: 0 for success, non-zero in case of failure. 4878 */ 4879 static int ufshcd_link_startup(struct ufs_hba *hba) 4880 { 4881 int ret; 4882 int retries = DME_LINKSTARTUP_RETRIES; 4883 bool link_startup_again = false; 4884 4885 /* 4886 * If UFS device isn't active then we will have to issue link startup 4887 * 2 times to make sure the device state move to active. 4888 */ 4889 if (!ufshcd_is_ufs_dev_active(hba)) 4890 link_startup_again = true; 4891 4892 link_startup: 4893 do { 4894 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE); 4895 4896 ret = ufshcd_dme_link_startup(hba); 4897 4898 /* check if device is detected by inter-connect layer */ 4899 if (!ret && !ufshcd_is_device_present(hba)) { 4900 ufshcd_update_evt_hist(hba, 4901 UFS_EVT_LINK_STARTUP_FAIL, 4902 0); 4903 dev_err(hba->dev, "%s: Device not present\n", __func__); 4904 ret = -ENXIO; 4905 goto out; 4906 } 4907 4908 /* 4909 * DME link lost indication is only received when link is up, 4910 * but we can't be sure if the link is up until link startup 4911 * succeeds. So reset the local Uni-Pro and try again. 4912 */ 4913 if (ret && retries && ufshcd_hba_enable(hba)) { 4914 ufshcd_update_evt_hist(hba, 4915 UFS_EVT_LINK_STARTUP_FAIL, 4916 (u32)ret); 4917 goto out; 4918 } 4919 } while (ret && retries--); 4920 4921 if (ret) { 4922 /* failed to get the link up... retire */ 4923 ufshcd_update_evt_hist(hba, 4924 UFS_EVT_LINK_STARTUP_FAIL, 4925 (u32)ret); 4926 goto out; 4927 } 4928 4929 if (link_startup_again) { 4930 link_startup_again = false; 4931 retries = DME_LINKSTARTUP_RETRIES; 4932 goto link_startup; 4933 } 4934 4935 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */ 4936 ufshcd_init_pwr_info(hba); 4937 ufshcd_print_pwr_info(hba); 4938 4939 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) { 4940 ret = ufshcd_disable_device_tx_lcc(hba); 4941 if (ret) 4942 goto out; 4943 } 4944 4945 /* Include any host controller configuration via UIC commands */ 4946 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE); 4947 if (ret) 4948 goto out; 4949 4950 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */ 4951 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 4952 ret = ufshcd_make_hba_operational(hba); 4953 out: 4954 if (ret) { 4955 dev_err(hba->dev, "link startup failed %d\n", ret); 4956 ufshcd_print_host_state(hba); 4957 ufshcd_print_pwr_info(hba); 4958 ufshcd_print_evt_hist(hba); 4959 } 4960 return ret; 4961 } 4962 4963 /** 4964 * ufshcd_verify_dev_init() - Verify device initialization 4965 * @hba: per-adapter instance 4966 * 4967 * Send NOP OUT UPIU and wait for NOP IN response to check whether the 4968 * device Transport Protocol (UTP) layer is ready after a reset. 4969 * If the UTP layer at the device side is not initialized, it may 4970 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT 4971 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations. 4972 * 4973 * Return: 0 upon success; < 0 upon failure. 4974 */ 4975 static int ufshcd_verify_dev_init(struct ufs_hba *hba) 4976 { 4977 int err = 0; 4978 int retries; 4979 4980 ufshcd_hold(hba); 4981 mutex_lock(&hba->dev_cmd.lock); 4982 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) { 4983 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP, 4984 hba->nop_out_timeout); 4985 4986 if (!err || err == -ETIMEDOUT) 4987 break; 4988 4989 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err); 4990 } 4991 mutex_unlock(&hba->dev_cmd.lock); 4992 ufshcd_release(hba); 4993 4994 if (err) 4995 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err); 4996 return err; 4997 } 4998 4999 /** 5000 * ufshcd_setup_links - associate link b/w device wlun and other luns 5001 * @sdev: pointer to SCSI device 5002 * @hba: pointer to ufs hba 5003 */ 5004 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev) 5005 { 5006 struct device_link *link; 5007 5008 /* 5009 * Device wlun is the supplier & rest of the luns are consumers. 5010 * This ensures that device wlun suspends after all other luns. 5011 */ 5012 if (hba->ufs_device_wlun) { 5013 link = device_link_add(&sdev->sdev_gendev, 5014 &hba->ufs_device_wlun->sdev_gendev, 5015 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE); 5016 if (!link) { 5017 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n", 5018 dev_name(&hba->ufs_device_wlun->sdev_gendev)); 5019 return; 5020 } 5021 hba->luns_avail--; 5022 /* Ignore REPORT_LUN wlun probing */ 5023 if (hba->luns_avail == 1) { 5024 ufshcd_rpm_put(hba); 5025 return; 5026 } 5027 } else { 5028 /* 5029 * Device wlun is probed. The assumption is that WLUNs are 5030 * scanned before other LUNs. 5031 */ 5032 hba->luns_avail--; 5033 } 5034 } 5035 5036 /** 5037 * ufshcd_lu_init - Initialize the relevant parameters of the LU 5038 * @hba: per-adapter instance 5039 * @sdev: pointer to SCSI device 5040 */ 5041 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev) 5042 { 5043 int len = QUERY_DESC_MAX_SIZE; 5044 u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun); 5045 u8 lun_qdepth = hba->nutrs; 5046 u8 *desc_buf; 5047 int ret; 5048 5049 desc_buf = kzalloc(len, GFP_KERNEL); 5050 if (!desc_buf) 5051 goto set_qdepth; 5052 5053 ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len); 5054 if (ret < 0) { 5055 if (ret == -EOPNOTSUPP) 5056 /* If LU doesn't support unit descriptor, its queue depth is set to 1 */ 5057 lun_qdepth = 1; 5058 kfree(desc_buf); 5059 goto set_qdepth; 5060 } 5061 5062 if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) { 5063 /* 5064 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will 5065 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth 5066 */ 5067 lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs); 5068 } 5069 /* 5070 * According to UFS device specification, the write protection mode is only supported by 5071 * normal LU, not supported by WLUN. 5072 */ 5073 if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported && 5074 !hba->dev_info.is_lu_power_on_wp && 5075 desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP) 5076 hba->dev_info.is_lu_power_on_wp = true; 5077 5078 /* In case of RPMB LU, check if advanced RPMB mode is enabled */ 5079 if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN && 5080 desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4)) 5081 hba->dev_info.b_advanced_rpmb_en = true; 5082 5083 5084 kfree(desc_buf); 5085 set_qdepth: 5086 /* 5087 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose 5088 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue. 5089 */ 5090 dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth); 5091 scsi_change_queue_depth(sdev, lun_qdepth); 5092 } 5093 5094 /** 5095 * ufshcd_slave_alloc - handle initial SCSI device configurations 5096 * @sdev: pointer to SCSI device 5097 * 5098 * Return: success. 5099 */ 5100 static int ufshcd_slave_alloc(struct scsi_device *sdev) 5101 { 5102 struct ufs_hba *hba; 5103 5104 hba = shost_priv(sdev->host); 5105 5106 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */ 5107 sdev->use_10_for_ms = 1; 5108 5109 /* DBD field should be set to 1 in mode sense(10) */ 5110 sdev->set_dbd_for_ms = 1; 5111 5112 /* allow SCSI layer to restart the device in case of errors */ 5113 sdev->allow_restart = 1; 5114 5115 /* REPORT SUPPORTED OPERATION CODES is not supported */ 5116 sdev->no_report_opcodes = 1; 5117 5118 /* WRITE_SAME command is not supported */ 5119 sdev->no_write_same = 1; 5120 5121 ufshcd_lu_init(hba, sdev); 5122 5123 ufshcd_setup_links(hba, sdev); 5124 5125 return 0; 5126 } 5127 5128 /** 5129 * ufshcd_change_queue_depth - change queue depth 5130 * @sdev: pointer to SCSI device 5131 * @depth: required depth to set 5132 * 5133 * Change queue depth and make sure the max. limits are not crossed. 5134 * 5135 * Return: new queue depth. 5136 */ 5137 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth) 5138 { 5139 return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue)); 5140 } 5141 5142 /** 5143 * ufshcd_slave_configure - adjust SCSI device configurations 5144 * @sdev: pointer to SCSI device 5145 * 5146 * Return: 0 (success). 5147 */ 5148 static int ufshcd_slave_configure(struct scsi_device *sdev) 5149 { 5150 struct ufs_hba *hba = shost_priv(sdev->host); 5151 struct request_queue *q = sdev->request_queue; 5152 5153 blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1); 5154 if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT) 5155 blk_queue_update_dma_alignment(q, SZ_4K - 1); 5156 /* 5157 * Block runtime-pm until all consumers are added. 5158 * Refer ufshcd_setup_links(). 5159 */ 5160 if (is_device_wlun(sdev)) 5161 pm_runtime_get_noresume(&sdev->sdev_gendev); 5162 else if (ufshcd_is_rpm_autosuspend_allowed(hba)) 5163 sdev->rpm_autosuspend = 1; 5164 /* 5165 * Do not print messages during runtime PM to avoid never-ending cycles 5166 * of messages written back to storage by user space causing runtime 5167 * resume, causing more messages and so on. 5168 */ 5169 sdev->silence_suspend = 1; 5170 5171 ufshcd_crypto_register(hba, q); 5172 5173 return 0; 5174 } 5175 5176 /** 5177 * ufshcd_slave_destroy - remove SCSI device configurations 5178 * @sdev: pointer to SCSI device 5179 */ 5180 static void ufshcd_slave_destroy(struct scsi_device *sdev) 5181 { 5182 struct ufs_hba *hba; 5183 unsigned long flags; 5184 5185 hba = shost_priv(sdev->host); 5186 5187 /* Drop the reference as it won't be needed anymore */ 5188 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) { 5189 spin_lock_irqsave(hba->host->host_lock, flags); 5190 hba->ufs_device_wlun = NULL; 5191 spin_unlock_irqrestore(hba->host->host_lock, flags); 5192 } else if (hba->ufs_device_wlun) { 5193 struct device *supplier = NULL; 5194 5195 /* Ensure UFS Device WLUN exists and does not disappear */ 5196 spin_lock_irqsave(hba->host->host_lock, flags); 5197 if (hba->ufs_device_wlun) { 5198 supplier = &hba->ufs_device_wlun->sdev_gendev; 5199 get_device(supplier); 5200 } 5201 spin_unlock_irqrestore(hba->host->host_lock, flags); 5202 5203 if (supplier) { 5204 /* 5205 * If a LUN fails to probe (e.g. absent BOOT WLUN), the 5206 * device will not have been registered but can still 5207 * have a device link holding a reference to the device. 5208 */ 5209 device_link_remove(&sdev->sdev_gendev, supplier); 5210 put_device(supplier); 5211 } 5212 } 5213 } 5214 5215 /** 5216 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status 5217 * @lrbp: pointer to local reference block of completed command 5218 * @scsi_status: SCSI command status 5219 * 5220 * Return: value base on SCSI command status. 5221 */ 5222 static inline int 5223 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status) 5224 { 5225 int result = 0; 5226 5227 switch (scsi_status) { 5228 case SAM_STAT_CHECK_CONDITION: 5229 ufshcd_copy_sense_data(lrbp); 5230 fallthrough; 5231 case SAM_STAT_GOOD: 5232 result |= DID_OK << 16 | scsi_status; 5233 break; 5234 case SAM_STAT_TASK_SET_FULL: 5235 case SAM_STAT_BUSY: 5236 case SAM_STAT_TASK_ABORTED: 5237 ufshcd_copy_sense_data(lrbp); 5238 result |= scsi_status; 5239 break; 5240 default: 5241 result |= DID_ERROR << 16; 5242 break; 5243 } /* end of switch */ 5244 5245 return result; 5246 } 5247 5248 /** 5249 * ufshcd_transfer_rsp_status - Get overall status of the response 5250 * @hba: per adapter instance 5251 * @lrbp: pointer to local reference block of completed command 5252 * @cqe: pointer to the completion queue entry 5253 * 5254 * Return: result of the command to notify SCSI midlayer. 5255 */ 5256 static inline int 5257 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, 5258 struct cq_entry *cqe) 5259 { 5260 int result = 0; 5261 int scsi_status; 5262 enum utp_ocs ocs; 5263 u8 upiu_flags; 5264 u32 resid; 5265 5266 upiu_flags = lrbp->ucd_rsp_ptr->header.flags; 5267 resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count); 5268 /* 5269 * Test !overflow instead of underflow to support UFS devices that do 5270 * not set either flag. 5271 */ 5272 if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW)) 5273 scsi_set_resid(lrbp->cmd, resid); 5274 5275 /* overall command status of utrd */ 5276 ocs = ufshcd_get_tr_ocs(lrbp, cqe); 5277 5278 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) { 5279 if (lrbp->ucd_rsp_ptr->header.response || 5280 lrbp->ucd_rsp_ptr->header.status) 5281 ocs = OCS_SUCCESS; 5282 } 5283 5284 switch (ocs) { 5285 case OCS_SUCCESS: 5286 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 5287 switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) { 5288 case UPIU_TRANSACTION_RESPONSE: 5289 /* 5290 * get the result based on SCSI status response 5291 * to notify the SCSI midlayer of the command status 5292 */ 5293 scsi_status = lrbp->ucd_rsp_ptr->header.status; 5294 result = ufshcd_scsi_cmd_status(lrbp, scsi_status); 5295 5296 /* 5297 * Currently we are only supporting BKOPs exception 5298 * events hence we can ignore BKOPs exception event 5299 * during power management callbacks. BKOPs exception 5300 * event is not expected to be raised in runtime suspend 5301 * callback as it allows the urgent bkops. 5302 * During system suspend, we are anyway forcefully 5303 * disabling the bkops and if urgent bkops is needed 5304 * it will be enabled on system resume. Long term 5305 * solution could be to abort the system suspend if 5306 * UFS device needs urgent BKOPs. 5307 */ 5308 if (!hba->pm_op_in_progress && 5309 !ufshcd_eh_in_progress(hba) && 5310 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr)) 5311 /* Flushed in suspend */ 5312 schedule_work(&hba->eeh_work); 5313 break; 5314 case UPIU_TRANSACTION_REJECT_UPIU: 5315 /* TODO: handle Reject UPIU Response */ 5316 result = DID_ERROR << 16; 5317 dev_err(hba->dev, 5318 "Reject UPIU not fully implemented\n"); 5319 break; 5320 default: 5321 dev_err(hba->dev, 5322 "Unexpected request response code = %x\n", 5323 result); 5324 result = DID_ERROR << 16; 5325 break; 5326 } 5327 break; 5328 case OCS_ABORTED: 5329 result |= DID_ABORT << 16; 5330 break; 5331 case OCS_INVALID_COMMAND_STATUS: 5332 result |= DID_REQUEUE << 16; 5333 break; 5334 case OCS_INVALID_CMD_TABLE_ATTR: 5335 case OCS_INVALID_PRDT_ATTR: 5336 case OCS_MISMATCH_DATA_BUF_SIZE: 5337 case OCS_MISMATCH_RESP_UPIU_SIZE: 5338 case OCS_PEER_COMM_FAILURE: 5339 case OCS_FATAL_ERROR: 5340 case OCS_DEVICE_FATAL_ERROR: 5341 case OCS_INVALID_CRYPTO_CONFIG: 5342 case OCS_GENERAL_CRYPTO_ERROR: 5343 default: 5344 result |= DID_ERROR << 16; 5345 dev_err(hba->dev, 5346 "OCS error from controller = %x for tag %d\n", 5347 ocs, lrbp->task_tag); 5348 ufshcd_print_evt_hist(hba); 5349 ufshcd_print_host_state(hba); 5350 break; 5351 } /* end of switch */ 5352 5353 if ((host_byte(result) != DID_OK) && 5354 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs) 5355 ufshcd_print_tr(hba, lrbp->task_tag, true); 5356 return result; 5357 } 5358 5359 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba, 5360 u32 intr_mask) 5361 { 5362 if (!ufshcd_is_auto_hibern8_supported(hba) || 5363 !ufshcd_is_auto_hibern8_enabled(hba)) 5364 return false; 5365 5366 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK)) 5367 return false; 5368 5369 if (hba->active_uic_cmd && 5370 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER || 5371 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT)) 5372 return false; 5373 5374 return true; 5375 } 5376 5377 /** 5378 * ufshcd_uic_cmd_compl - handle completion of uic command 5379 * @hba: per adapter instance 5380 * @intr_status: interrupt status generated by the controller 5381 * 5382 * Return: 5383 * IRQ_HANDLED - If interrupt is valid 5384 * IRQ_NONE - If invalid interrupt 5385 */ 5386 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status) 5387 { 5388 irqreturn_t retval = IRQ_NONE; 5389 5390 spin_lock(hba->host->host_lock); 5391 if (ufshcd_is_auto_hibern8_error(hba, intr_status)) 5392 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status); 5393 5394 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) { 5395 hba->active_uic_cmd->argument2 |= 5396 ufshcd_get_uic_cmd_result(hba); 5397 hba->active_uic_cmd->argument3 = 5398 ufshcd_get_dme_attr_val(hba); 5399 if (!hba->uic_async_done) 5400 hba->active_uic_cmd->cmd_active = 0; 5401 complete(&hba->active_uic_cmd->done); 5402 retval = IRQ_HANDLED; 5403 } 5404 5405 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) { 5406 hba->active_uic_cmd->cmd_active = 0; 5407 complete(hba->uic_async_done); 5408 retval = IRQ_HANDLED; 5409 } 5410 5411 if (retval == IRQ_HANDLED) 5412 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd, 5413 UFS_CMD_COMP); 5414 spin_unlock(hba->host->host_lock); 5415 return retval; 5416 } 5417 5418 /* Release the resources allocated for processing a SCSI command. */ 5419 void ufshcd_release_scsi_cmd(struct ufs_hba *hba, 5420 struct ufshcd_lrb *lrbp) 5421 { 5422 struct scsi_cmnd *cmd = lrbp->cmd; 5423 5424 scsi_dma_unmap(cmd); 5425 ufshcd_release(hba); 5426 ufshcd_clk_scaling_update_busy(hba); 5427 } 5428 5429 /** 5430 * ufshcd_compl_one_cqe - handle a completion queue entry 5431 * @hba: per adapter instance 5432 * @task_tag: the task tag of the request to be completed 5433 * @cqe: pointer to the completion queue entry 5434 */ 5435 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag, 5436 struct cq_entry *cqe) 5437 { 5438 struct ufshcd_lrb *lrbp; 5439 struct scsi_cmnd *cmd; 5440 enum utp_ocs ocs; 5441 5442 lrbp = &hba->lrb[task_tag]; 5443 lrbp->compl_time_stamp = ktime_get(); 5444 cmd = lrbp->cmd; 5445 if (cmd) { 5446 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp))) 5447 ufshcd_update_monitor(hba, lrbp); 5448 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP); 5449 cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe); 5450 ufshcd_release_scsi_cmd(hba, lrbp); 5451 /* Do not touch lrbp after scsi done */ 5452 scsi_done(cmd); 5453 } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE || 5454 lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) { 5455 if (hba->dev_cmd.complete) { 5456 if (cqe) { 5457 ocs = le32_to_cpu(cqe->status) & MASK_OCS; 5458 lrbp->utr_descriptor_ptr->header.ocs = ocs; 5459 } 5460 complete(hba->dev_cmd.complete); 5461 ufshcd_clk_scaling_update_busy(hba); 5462 } 5463 } 5464 } 5465 5466 /** 5467 * __ufshcd_transfer_req_compl - handle SCSI and query command completion 5468 * @hba: per adapter instance 5469 * @completed_reqs: bitmask that indicates which requests to complete 5470 */ 5471 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba, 5472 unsigned long completed_reqs) 5473 { 5474 int tag; 5475 5476 for_each_set_bit(tag, &completed_reqs, hba->nutrs) 5477 ufshcd_compl_one_cqe(hba, tag, NULL); 5478 } 5479 5480 /* Any value that is not an existing queue number is fine for this constant. */ 5481 enum { 5482 UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1 5483 }; 5484 5485 static void ufshcd_clear_polled(struct ufs_hba *hba, 5486 unsigned long *completed_reqs) 5487 { 5488 int tag; 5489 5490 for_each_set_bit(tag, completed_reqs, hba->nutrs) { 5491 struct scsi_cmnd *cmd = hba->lrb[tag].cmd; 5492 5493 if (!cmd) 5494 continue; 5495 if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED) 5496 __clear_bit(tag, completed_reqs); 5497 } 5498 } 5499 5500 /* 5501 * Return: > 0 if one or more commands have been completed or 0 if no 5502 * requests have been completed. 5503 */ 5504 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num) 5505 { 5506 struct ufs_hba *hba = shost_priv(shost); 5507 unsigned long completed_reqs, flags; 5508 u32 tr_doorbell; 5509 struct ufs_hw_queue *hwq; 5510 5511 if (is_mcq_enabled(hba)) { 5512 hwq = &hba->uhq[queue_num]; 5513 5514 return ufshcd_mcq_poll_cqe_lock(hba, hwq); 5515 } 5516 5517 spin_lock_irqsave(&hba->outstanding_lock, flags); 5518 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 5519 completed_reqs = ~tr_doorbell & hba->outstanding_reqs; 5520 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs, 5521 "completed: %#lx; outstanding: %#lx\n", completed_reqs, 5522 hba->outstanding_reqs); 5523 if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) { 5524 /* Do not complete polled requests from interrupt context. */ 5525 ufshcd_clear_polled(hba, &completed_reqs); 5526 } 5527 hba->outstanding_reqs &= ~completed_reqs; 5528 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 5529 5530 if (completed_reqs) 5531 __ufshcd_transfer_req_compl(hba, completed_reqs); 5532 5533 return completed_reqs != 0; 5534 } 5535 5536 /** 5537 * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is 5538 * invoked from the error handler context or ufshcd_host_reset_and_restore() 5539 * to complete the pending transfers and free the resources associated with 5540 * the scsi command. 5541 * 5542 * @hba: per adapter instance 5543 * @force_compl: This flag is set to true when invoked 5544 * from ufshcd_host_reset_and_restore() in which case it requires special 5545 * handling because the host controller has been reset by ufshcd_hba_stop(). 5546 */ 5547 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba, 5548 bool force_compl) 5549 { 5550 struct ufs_hw_queue *hwq; 5551 struct ufshcd_lrb *lrbp; 5552 struct scsi_cmnd *cmd; 5553 unsigned long flags; 5554 u32 hwq_num, utag; 5555 int tag; 5556 5557 for (tag = 0; tag < hba->nutrs; tag++) { 5558 lrbp = &hba->lrb[tag]; 5559 cmd = lrbp->cmd; 5560 if (!ufshcd_cmd_inflight(cmd) || 5561 test_bit(SCMD_STATE_COMPLETE, &cmd->state)) 5562 continue; 5563 5564 utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd)); 5565 hwq_num = blk_mq_unique_tag_to_hwq(utag); 5566 hwq = &hba->uhq[hwq_num]; 5567 5568 if (force_compl) { 5569 ufshcd_mcq_compl_all_cqes_lock(hba, hwq); 5570 /* 5571 * For those cmds of which the cqes are not present 5572 * in the cq, complete them explicitly. 5573 */ 5574 if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) { 5575 spin_lock_irqsave(&hwq->cq_lock, flags); 5576 set_host_byte(cmd, DID_REQUEUE); 5577 ufshcd_release_scsi_cmd(hba, lrbp); 5578 scsi_done(cmd); 5579 spin_unlock_irqrestore(&hwq->cq_lock, flags); 5580 } 5581 } else { 5582 ufshcd_mcq_poll_cqe_lock(hba, hwq); 5583 } 5584 } 5585 } 5586 5587 /** 5588 * ufshcd_transfer_req_compl - handle SCSI and query command completion 5589 * @hba: per adapter instance 5590 * 5591 * Return: 5592 * IRQ_HANDLED - If interrupt is valid 5593 * IRQ_NONE - If invalid interrupt 5594 */ 5595 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba) 5596 { 5597 /* Resetting interrupt aggregation counters first and reading the 5598 * DOOR_BELL afterward allows us to handle all the completed requests. 5599 * In order to prevent other interrupts starvation the DB is read once 5600 * after reset. The down side of this solution is the possibility of 5601 * false interrupt if device completes another request after resetting 5602 * aggregation and before reading the DB. 5603 */ 5604 if (ufshcd_is_intr_aggr_allowed(hba) && 5605 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR)) 5606 ufshcd_reset_intr_aggr(hba); 5607 5608 if (ufs_fail_completion()) 5609 return IRQ_HANDLED; 5610 5611 /* 5612 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we 5613 * do not want polling to trigger spurious interrupt complaints. 5614 */ 5615 ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT); 5616 5617 return IRQ_HANDLED; 5618 } 5619 5620 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask) 5621 { 5622 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 5623 QUERY_ATTR_IDN_EE_CONTROL, 0, 0, 5624 &ee_ctrl_mask); 5625 } 5626 5627 int ufshcd_write_ee_control(struct ufs_hba *hba) 5628 { 5629 int err; 5630 5631 mutex_lock(&hba->ee_ctrl_mutex); 5632 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask); 5633 mutex_unlock(&hba->ee_ctrl_mutex); 5634 if (err) 5635 dev_err(hba->dev, "%s: failed to write ee control %d\n", 5636 __func__, err); 5637 return err; 5638 } 5639 5640 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, 5641 const u16 *other_mask, u16 set, u16 clr) 5642 { 5643 u16 new_mask, ee_ctrl_mask; 5644 int err = 0; 5645 5646 mutex_lock(&hba->ee_ctrl_mutex); 5647 new_mask = (*mask & ~clr) | set; 5648 ee_ctrl_mask = new_mask | *other_mask; 5649 if (ee_ctrl_mask != hba->ee_ctrl_mask) 5650 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask); 5651 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */ 5652 if (!err) { 5653 hba->ee_ctrl_mask = ee_ctrl_mask; 5654 *mask = new_mask; 5655 } 5656 mutex_unlock(&hba->ee_ctrl_mutex); 5657 return err; 5658 } 5659 5660 /** 5661 * ufshcd_disable_ee - disable exception event 5662 * @hba: per-adapter instance 5663 * @mask: exception event to disable 5664 * 5665 * Disables exception event in the device so that the EVENT_ALERT 5666 * bit is not set. 5667 * 5668 * Return: zero on success, non-zero error value on failure. 5669 */ 5670 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask) 5671 { 5672 return ufshcd_update_ee_drv_mask(hba, 0, mask); 5673 } 5674 5675 /** 5676 * ufshcd_enable_ee - enable exception event 5677 * @hba: per-adapter instance 5678 * @mask: exception event to enable 5679 * 5680 * Enable corresponding exception event in the device to allow 5681 * device to alert host in critical scenarios. 5682 * 5683 * Return: zero on success, non-zero error value on failure. 5684 */ 5685 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask) 5686 { 5687 return ufshcd_update_ee_drv_mask(hba, mask, 0); 5688 } 5689 5690 /** 5691 * ufshcd_enable_auto_bkops - Allow device managed BKOPS 5692 * @hba: per-adapter instance 5693 * 5694 * Allow device to manage background operations on its own. Enabling 5695 * this might lead to inconsistent latencies during normal data transfers 5696 * as the device is allowed to manage its own way of handling background 5697 * operations. 5698 * 5699 * Return: zero on success, non-zero on failure. 5700 */ 5701 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba) 5702 { 5703 int err = 0; 5704 5705 if (hba->auto_bkops_enabled) 5706 goto out; 5707 5708 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG, 5709 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5710 if (err) { 5711 dev_err(hba->dev, "%s: failed to enable bkops %d\n", 5712 __func__, err); 5713 goto out; 5714 } 5715 5716 hba->auto_bkops_enabled = true; 5717 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled"); 5718 5719 /* No need of URGENT_BKOPS exception from the device */ 5720 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5721 if (err) 5722 dev_err(hba->dev, "%s: failed to disable exception event %d\n", 5723 __func__, err); 5724 out: 5725 return err; 5726 } 5727 5728 /** 5729 * ufshcd_disable_auto_bkops - block device in doing background operations 5730 * @hba: per-adapter instance 5731 * 5732 * Disabling background operations improves command response latency but 5733 * has drawback of device moving into critical state where the device is 5734 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the 5735 * host is idle so that BKOPS are managed effectively without any negative 5736 * impacts. 5737 * 5738 * Return: zero on success, non-zero on failure. 5739 */ 5740 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba) 5741 { 5742 int err = 0; 5743 5744 if (!hba->auto_bkops_enabled) 5745 goto out; 5746 5747 /* 5748 * If host assisted BKOPs is to be enabled, make sure 5749 * urgent bkops exception is allowed. 5750 */ 5751 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS); 5752 if (err) { 5753 dev_err(hba->dev, "%s: failed to enable exception event %d\n", 5754 __func__, err); 5755 goto out; 5756 } 5757 5758 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG, 5759 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL); 5760 if (err) { 5761 dev_err(hba->dev, "%s: failed to disable bkops %d\n", 5762 __func__, err); 5763 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS); 5764 goto out; 5765 } 5766 5767 hba->auto_bkops_enabled = false; 5768 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled"); 5769 hba->is_urgent_bkops_lvl_checked = false; 5770 out: 5771 return err; 5772 } 5773 5774 /** 5775 * ufshcd_force_reset_auto_bkops - force reset auto bkops state 5776 * @hba: per adapter instance 5777 * 5778 * After a device reset the device may toggle the BKOPS_EN flag 5779 * to default value. The s/w tracking variables should be updated 5780 * as well. This function would change the auto-bkops state based on 5781 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND. 5782 */ 5783 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba) 5784 { 5785 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) { 5786 hba->auto_bkops_enabled = false; 5787 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS; 5788 ufshcd_enable_auto_bkops(hba); 5789 } else { 5790 hba->auto_bkops_enabled = true; 5791 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS; 5792 ufshcd_disable_auto_bkops(hba); 5793 } 5794 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT; 5795 hba->is_urgent_bkops_lvl_checked = false; 5796 } 5797 5798 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status) 5799 { 5800 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5801 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status); 5802 } 5803 5804 /** 5805 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status 5806 * @hba: per-adapter instance 5807 * @status: bkops_status value 5808 * 5809 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn 5810 * flag in the device to permit background operations if the device 5811 * bkops_status is greater than or equal to "status" argument passed to 5812 * this function, disable otherwise. 5813 * 5814 * Return: 0 for success, non-zero in case of failure. 5815 * 5816 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag 5817 * to know whether auto bkops is enabled or disabled after this function 5818 * returns control to it. 5819 */ 5820 static int ufshcd_bkops_ctrl(struct ufs_hba *hba, 5821 enum bkops_status status) 5822 { 5823 int err; 5824 u32 curr_status = 0; 5825 5826 err = ufshcd_get_bkops_status(hba, &curr_status); 5827 if (err) { 5828 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5829 __func__, err); 5830 goto out; 5831 } else if (curr_status > BKOPS_STATUS_MAX) { 5832 dev_err(hba->dev, "%s: invalid BKOPS status %d\n", 5833 __func__, curr_status); 5834 err = -EINVAL; 5835 goto out; 5836 } 5837 5838 if (curr_status >= status) 5839 err = ufshcd_enable_auto_bkops(hba); 5840 else 5841 err = ufshcd_disable_auto_bkops(hba); 5842 out: 5843 return err; 5844 } 5845 5846 /** 5847 * ufshcd_urgent_bkops - handle urgent bkops exception event 5848 * @hba: per-adapter instance 5849 * 5850 * Enable fBackgroundOpsEn flag in the device to permit background 5851 * operations. 5852 * 5853 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled 5854 * and negative error value for any other failure. 5855 * 5856 * Return: 0 upon success; < 0 upon failure. 5857 */ 5858 static int ufshcd_urgent_bkops(struct ufs_hba *hba) 5859 { 5860 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl); 5861 } 5862 5863 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status) 5864 { 5865 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5866 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status); 5867 } 5868 5869 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba) 5870 { 5871 int err; 5872 u32 curr_status = 0; 5873 5874 if (hba->is_urgent_bkops_lvl_checked) 5875 goto enable_auto_bkops; 5876 5877 err = ufshcd_get_bkops_status(hba, &curr_status); 5878 if (err) { 5879 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n", 5880 __func__, err); 5881 goto out; 5882 } 5883 5884 /* 5885 * We are seeing that some devices are raising the urgent bkops 5886 * exception events even when BKOPS status doesn't indicate performace 5887 * impacted or critical. Handle these device by determining their urgent 5888 * bkops status at runtime. 5889 */ 5890 if (curr_status < BKOPS_STATUS_PERF_IMPACT) { 5891 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n", 5892 __func__, curr_status); 5893 /* update the current status as the urgent bkops level */ 5894 hba->urgent_bkops_lvl = curr_status; 5895 hba->is_urgent_bkops_lvl_checked = true; 5896 } 5897 5898 enable_auto_bkops: 5899 err = ufshcd_enable_auto_bkops(hba); 5900 out: 5901 if (err < 0) 5902 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n", 5903 __func__, err); 5904 } 5905 5906 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status) 5907 { 5908 u32 value; 5909 5910 if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 5911 QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value)) 5912 return; 5913 5914 dev_info(hba->dev, "exception Tcase %d\n", value - 80); 5915 5916 ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP); 5917 5918 /* 5919 * A placeholder for the platform vendors to add whatever additional 5920 * steps required 5921 */ 5922 } 5923 5924 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn) 5925 { 5926 u8 index; 5927 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG : 5928 UPIU_QUERY_OPCODE_CLEAR_FLAG; 5929 5930 index = ufshcd_wb_get_query_index(hba); 5931 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL); 5932 } 5933 5934 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable) 5935 { 5936 int ret; 5937 5938 if (!ufshcd_is_wb_allowed(hba) || 5939 hba->dev_info.wb_enabled == enable) 5940 return 0; 5941 5942 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN); 5943 if (ret) { 5944 dev_err(hba->dev, "%s: Write Booster %s failed %d\n", 5945 __func__, enable ? "enabling" : "disabling", ret); 5946 return ret; 5947 } 5948 5949 hba->dev_info.wb_enabled = enable; 5950 dev_dbg(hba->dev, "%s: Write Booster %s\n", 5951 __func__, enable ? "enabled" : "disabled"); 5952 5953 return ret; 5954 } 5955 5956 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba, 5957 bool enable) 5958 { 5959 int ret; 5960 5961 ret = __ufshcd_wb_toggle(hba, enable, 5962 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8); 5963 if (ret) { 5964 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n", 5965 __func__, enable ? "enabling" : "disabling", ret); 5966 return; 5967 } 5968 dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n", 5969 __func__, enable ? "enabled" : "disabled"); 5970 } 5971 5972 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable) 5973 { 5974 int ret; 5975 5976 if (!ufshcd_is_wb_allowed(hba) || 5977 hba->dev_info.wb_buf_flush_enabled == enable) 5978 return 0; 5979 5980 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN); 5981 if (ret) { 5982 dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n", 5983 __func__, enable ? "enabling" : "disabling", ret); 5984 return ret; 5985 } 5986 5987 hba->dev_info.wb_buf_flush_enabled = enable; 5988 dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n", 5989 __func__, enable ? "enabled" : "disabled"); 5990 5991 return ret; 5992 } 5993 5994 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba, 5995 u32 avail_buf) 5996 { 5997 u32 cur_buf; 5998 int ret; 5999 u8 index; 6000 6001 index = ufshcd_wb_get_query_index(hba); 6002 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6003 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE, 6004 index, 0, &cur_buf); 6005 if (ret) { 6006 dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n", 6007 __func__, ret); 6008 return false; 6009 } 6010 6011 if (!cur_buf) { 6012 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n", 6013 cur_buf); 6014 return false; 6015 } 6016 /* Let it continue to flush when available buffer exceeds threshold */ 6017 return avail_buf < hba->vps->wb_flush_threshold; 6018 } 6019 6020 static void ufshcd_wb_force_disable(struct ufs_hba *hba) 6021 { 6022 if (ufshcd_is_wb_buf_flush_allowed(hba)) 6023 ufshcd_wb_toggle_buf_flush(hba, false); 6024 6025 ufshcd_wb_toggle_buf_flush_during_h8(hba, false); 6026 ufshcd_wb_toggle(hba, false); 6027 hba->caps &= ~UFSHCD_CAP_WB_EN; 6028 6029 dev_info(hba->dev, "%s: WB force disabled\n", __func__); 6030 } 6031 6032 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba) 6033 { 6034 u32 lifetime; 6035 int ret; 6036 u8 index; 6037 6038 index = ufshcd_wb_get_query_index(hba); 6039 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6040 QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST, 6041 index, 0, &lifetime); 6042 if (ret) { 6043 dev_err(hba->dev, 6044 "%s: bWriteBoosterBufferLifeTimeEst read failed %d\n", 6045 __func__, ret); 6046 return false; 6047 } 6048 6049 if (lifetime == UFS_WB_EXCEED_LIFETIME) { 6050 dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n", 6051 __func__, lifetime); 6052 return false; 6053 } 6054 6055 dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n", 6056 __func__, lifetime); 6057 6058 return true; 6059 } 6060 6061 static bool ufshcd_wb_need_flush(struct ufs_hba *hba) 6062 { 6063 int ret; 6064 u32 avail_buf; 6065 u8 index; 6066 6067 if (!ufshcd_is_wb_allowed(hba)) 6068 return false; 6069 6070 if (!ufshcd_is_wb_buf_lifetime_available(hba)) { 6071 ufshcd_wb_force_disable(hba); 6072 return false; 6073 } 6074 6075 /* 6076 * The ufs device needs the vcc to be ON to flush. 6077 * With user-space reduction enabled, it's enough to enable flush 6078 * by checking only the available buffer. The threshold 6079 * defined here is > 90% full. 6080 * With user-space preserved enabled, the current-buffer 6081 * should be checked too because the wb buffer size can reduce 6082 * when disk tends to be full. This info is provided by current 6083 * buffer (dCurrentWriteBoosterBufferSize). There's no point in 6084 * keeping vcc on when current buffer is empty. 6085 */ 6086 index = ufshcd_wb_get_query_index(hba); 6087 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 6088 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE, 6089 index, 0, &avail_buf); 6090 if (ret) { 6091 dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n", 6092 __func__, ret); 6093 return false; 6094 } 6095 6096 if (!hba->dev_info.b_presrv_uspc_en) 6097 return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10); 6098 6099 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf); 6100 } 6101 6102 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work) 6103 { 6104 struct ufs_hba *hba = container_of(to_delayed_work(work), 6105 struct ufs_hba, 6106 rpm_dev_flush_recheck_work); 6107 /* 6108 * To prevent unnecessary VCC power drain after device finishes 6109 * WriteBooster buffer flush or Auto BKOPs, force runtime resume 6110 * after a certain delay to recheck the threshold by next runtime 6111 * suspend. 6112 */ 6113 ufshcd_rpm_get_sync(hba); 6114 ufshcd_rpm_put_sync(hba); 6115 } 6116 6117 /** 6118 * ufshcd_exception_event_handler - handle exceptions raised by device 6119 * @work: pointer to work data 6120 * 6121 * Read bExceptionEventStatus attribute from the device and handle the 6122 * exception event accordingly. 6123 */ 6124 static void ufshcd_exception_event_handler(struct work_struct *work) 6125 { 6126 struct ufs_hba *hba; 6127 int err; 6128 u32 status = 0; 6129 hba = container_of(work, struct ufs_hba, eeh_work); 6130 6131 ufshcd_scsi_block_requests(hba); 6132 err = ufshcd_get_ee_status(hba, &status); 6133 if (err) { 6134 dev_err(hba->dev, "%s: failed to get exception status %d\n", 6135 __func__, err); 6136 goto out; 6137 } 6138 6139 trace_ufshcd_exception_event(dev_name(hba->dev), status); 6140 6141 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS) 6142 ufshcd_bkops_exception_event_handler(hba); 6143 6144 if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP) 6145 ufshcd_temp_exception_event_handler(hba, status); 6146 6147 ufs_debugfs_exception_event(hba, status); 6148 out: 6149 ufshcd_scsi_unblock_requests(hba); 6150 } 6151 6152 /* Complete requests that have door-bell cleared */ 6153 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl) 6154 { 6155 if (is_mcq_enabled(hba)) 6156 ufshcd_mcq_compl_pending_transfer(hba, force_compl); 6157 else 6158 ufshcd_transfer_req_compl(hba); 6159 6160 ufshcd_tmc_handler(hba); 6161 } 6162 6163 /** 6164 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is 6165 * to recover from the DL NAC errors or not. 6166 * @hba: per-adapter instance 6167 * 6168 * Return: true if error handling is required, false otherwise. 6169 */ 6170 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba) 6171 { 6172 unsigned long flags; 6173 bool err_handling = true; 6174 6175 spin_lock_irqsave(hba->host->host_lock, flags); 6176 /* 6177 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the 6178 * device fatal error and/or DL NAC & REPLAY timeout errors. 6179 */ 6180 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR)) 6181 goto out; 6182 6183 if ((hba->saved_err & DEVICE_FATAL_ERROR) || 6184 ((hba->saved_err & UIC_ERROR) && 6185 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR))) 6186 goto out; 6187 6188 if ((hba->saved_err & UIC_ERROR) && 6189 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) { 6190 int err; 6191 /* 6192 * wait for 50ms to see if we can get any other errors or not. 6193 */ 6194 spin_unlock_irqrestore(hba->host->host_lock, flags); 6195 msleep(50); 6196 spin_lock_irqsave(hba->host->host_lock, flags); 6197 6198 /* 6199 * now check if we have got any other severe errors other than 6200 * DL NAC error? 6201 */ 6202 if ((hba->saved_err & INT_FATAL_ERRORS) || 6203 ((hba->saved_err & UIC_ERROR) && 6204 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR))) 6205 goto out; 6206 6207 /* 6208 * As DL NAC is the only error received so far, send out NOP 6209 * command to confirm if link is still active or not. 6210 * - If we don't get any response then do error recovery. 6211 * - If we get response then clear the DL NAC error bit. 6212 */ 6213 6214 spin_unlock_irqrestore(hba->host->host_lock, flags); 6215 err = ufshcd_verify_dev_init(hba); 6216 spin_lock_irqsave(hba->host->host_lock, flags); 6217 6218 if (err) 6219 goto out; 6220 6221 /* Link seems to be alive hence ignore the DL NAC errors */ 6222 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR) 6223 hba->saved_err &= ~UIC_ERROR; 6224 /* clear NAC error */ 6225 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6226 if (!hba->saved_uic_err) 6227 err_handling = false; 6228 } 6229 out: 6230 spin_unlock_irqrestore(hba->host->host_lock, flags); 6231 return err_handling; 6232 } 6233 6234 /* host lock must be held before calling this func */ 6235 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba) 6236 { 6237 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) || 6238 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)); 6239 } 6240 6241 void ufshcd_schedule_eh_work(struct ufs_hba *hba) 6242 { 6243 lockdep_assert_held(hba->host->host_lock); 6244 6245 /* handle fatal errors only when link is not in error state */ 6246 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6247 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6248 ufshcd_is_saved_err_fatal(hba)) 6249 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL; 6250 else 6251 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL; 6252 queue_work(hba->eh_wq, &hba->eh_work); 6253 } 6254 } 6255 6256 static void ufshcd_force_error_recovery(struct ufs_hba *hba) 6257 { 6258 spin_lock_irq(hba->host->host_lock); 6259 hba->force_reset = true; 6260 ufshcd_schedule_eh_work(hba); 6261 spin_unlock_irq(hba->host->host_lock); 6262 } 6263 6264 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow) 6265 { 6266 mutex_lock(&hba->wb_mutex); 6267 down_write(&hba->clk_scaling_lock); 6268 hba->clk_scaling.is_allowed = allow; 6269 up_write(&hba->clk_scaling_lock); 6270 mutex_unlock(&hba->wb_mutex); 6271 } 6272 6273 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend) 6274 { 6275 if (suspend) { 6276 if (hba->clk_scaling.is_enabled) 6277 ufshcd_suspend_clkscaling(hba); 6278 ufshcd_clk_scaling_allow(hba, false); 6279 } else { 6280 ufshcd_clk_scaling_allow(hba, true); 6281 if (hba->clk_scaling.is_enabled) 6282 ufshcd_resume_clkscaling(hba); 6283 } 6284 } 6285 6286 static void ufshcd_err_handling_prepare(struct ufs_hba *hba) 6287 { 6288 ufshcd_rpm_get_sync(hba); 6289 if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) || 6290 hba->is_sys_suspended) { 6291 enum ufs_pm_op pm_op; 6292 6293 /* 6294 * Don't assume anything of resume, if 6295 * resume fails, irq and clocks can be OFF, and powers 6296 * can be OFF or in LPM. 6297 */ 6298 ufshcd_setup_hba_vreg(hba, true); 6299 ufshcd_enable_irq(hba); 6300 ufshcd_setup_vreg(hba, true); 6301 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 6302 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 6303 ufshcd_hold(hba); 6304 if (!ufshcd_is_clkgating_allowed(hba)) 6305 ufshcd_setup_clocks(hba, true); 6306 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM; 6307 ufshcd_vops_resume(hba, pm_op); 6308 } else { 6309 ufshcd_hold(hba); 6310 if (ufshcd_is_clkscaling_supported(hba) && 6311 hba->clk_scaling.is_enabled) 6312 ufshcd_suspend_clkscaling(hba); 6313 ufshcd_clk_scaling_allow(hba, false); 6314 } 6315 ufshcd_scsi_block_requests(hba); 6316 /* Wait for ongoing ufshcd_queuecommand() calls to finish. */ 6317 blk_mq_wait_quiesce_done(&hba->host->tag_set); 6318 cancel_work_sync(&hba->eeh_work); 6319 } 6320 6321 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba) 6322 { 6323 ufshcd_scsi_unblock_requests(hba); 6324 ufshcd_release(hba); 6325 if (ufshcd_is_clkscaling_supported(hba)) 6326 ufshcd_clk_scaling_suspend(hba, false); 6327 ufshcd_rpm_put(hba); 6328 } 6329 6330 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba) 6331 { 6332 return (!hba->is_powered || hba->shutting_down || 6333 !hba->ufs_device_wlun || 6334 hba->ufshcd_state == UFSHCD_STATE_ERROR || 6335 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset || 6336 ufshcd_is_link_broken(hba)))); 6337 } 6338 6339 #ifdef CONFIG_PM 6340 static void ufshcd_recover_pm_error(struct ufs_hba *hba) 6341 { 6342 struct Scsi_Host *shost = hba->host; 6343 struct scsi_device *sdev; 6344 struct request_queue *q; 6345 int ret; 6346 6347 hba->is_sys_suspended = false; 6348 /* 6349 * Set RPM status of wlun device to RPM_ACTIVE, 6350 * this also clears its runtime error. 6351 */ 6352 ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev); 6353 6354 /* hba device might have a runtime error otherwise */ 6355 if (ret) 6356 ret = pm_runtime_set_active(hba->dev); 6357 /* 6358 * If wlun device had runtime error, we also need to resume those 6359 * consumer scsi devices in case any of them has failed to be 6360 * resumed due to supplier runtime resume failure. This is to unblock 6361 * blk_queue_enter in case there are bios waiting inside it. 6362 */ 6363 if (!ret) { 6364 shost_for_each_device(sdev, shost) { 6365 q = sdev->request_queue; 6366 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 6367 q->rpm_status == RPM_SUSPENDING)) 6368 pm_request_resume(q->dev); 6369 } 6370 } 6371 } 6372 #else 6373 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba) 6374 { 6375 } 6376 #endif 6377 6378 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba) 6379 { 6380 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info; 6381 u32 mode; 6382 6383 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode); 6384 6385 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK)) 6386 return true; 6387 6388 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK)) 6389 return true; 6390 6391 return false; 6392 } 6393 6394 static bool ufshcd_abort_one(struct request *rq, void *priv) 6395 { 6396 int *ret = priv; 6397 u32 tag = rq->tag; 6398 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq); 6399 struct scsi_device *sdev = cmd->device; 6400 struct Scsi_Host *shost = sdev->host; 6401 struct ufs_hba *hba = shost_priv(shost); 6402 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 6403 struct ufs_hw_queue *hwq; 6404 unsigned long flags; 6405 6406 *ret = ufshcd_try_to_abort_task(hba, tag); 6407 dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag, 6408 hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1, 6409 *ret ? "failed" : "succeeded"); 6410 6411 /* Release cmd in MCQ mode if abort succeeds */ 6412 if (is_mcq_enabled(hba) && (*ret == 0)) { 6413 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); 6414 if (!hwq) 6415 return 0; 6416 spin_lock_irqsave(&hwq->cq_lock, flags); 6417 if (ufshcd_cmd_inflight(lrbp->cmd)) 6418 ufshcd_release_scsi_cmd(hba, lrbp); 6419 spin_unlock_irqrestore(&hwq->cq_lock, flags); 6420 } 6421 6422 return *ret == 0; 6423 } 6424 6425 /** 6426 * ufshcd_abort_all - Abort all pending commands. 6427 * @hba: Host bus adapter pointer. 6428 * 6429 * Return: true if and only if the host controller needs to be reset. 6430 */ 6431 static bool ufshcd_abort_all(struct ufs_hba *hba) 6432 { 6433 int tag, ret = 0; 6434 6435 blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret); 6436 if (ret) 6437 goto out; 6438 6439 /* Clear pending task management requests */ 6440 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) { 6441 ret = ufshcd_clear_tm_cmd(hba, tag); 6442 if (ret) 6443 goto out; 6444 } 6445 6446 out: 6447 /* Complete the requests that are cleared by s/w */ 6448 ufshcd_complete_requests(hba, false); 6449 6450 return ret != 0; 6451 } 6452 6453 /** 6454 * ufshcd_err_handler - handle UFS errors that require s/w attention 6455 * @work: pointer to work structure 6456 */ 6457 static void ufshcd_err_handler(struct work_struct *work) 6458 { 6459 int retries = MAX_ERR_HANDLER_RETRIES; 6460 struct ufs_hba *hba; 6461 unsigned long flags; 6462 bool needs_restore; 6463 bool needs_reset; 6464 int pmc_err; 6465 6466 hba = container_of(work, struct ufs_hba, eh_work); 6467 6468 dev_info(hba->dev, 6469 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n", 6470 __func__, ufshcd_state_name[hba->ufshcd_state], 6471 hba->is_powered, hba->shutting_down, hba->saved_err, 6472 hba->saved_uic_err, hba->force_reset, 6473 ufshcd_is_link_broken(hba) ? "; link is broken" : ""); 6474 6475 down(&hba->host_sem); 6476 spin_lock_irqsave(hba->host->host_lock, flags); 6477 if (ufshcd_err_handling_should_stop(hba)) { 6478 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6479 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6480 spin_unlock_irqrestore(hba->host->host_lock, flags); 6481 up(&hba->host_sem); 6482 return; 6483 } 6484 ufshcd_set_eh_in_progress(hba); 6485 spin_unlock_irqrestore(hba->host->host_lock, flags); 6486 ufshcd_err_handling_prepare(hba); 6487 /* Complete requests that have door-bell cleared by h/w */ 6488 ufshcd_complete_requests(hba, false); 6489 spin_lock_irqsave(hba->host->host_lock, flags); 6490 again: 6491 needs_restore = false; 6492 needs_reset = false; 6493 6494 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) 6495 hba->ufshcd_state = UFSHCD_STATE_RESET; 6496 /* 6497 * A full reset and restore might have happened after preparation 6498 * is finished, double check whether we should stop. 6499 */ 6500 if (ufshcd_err_handling_should_stop(hba)) 6501 goto skip_err_handling; 6502 6503 if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) && 6504 !hba->force_reset) { 6505 bool ret; 6506 6507 spin_unlock_irqrestore(hba->host->host_lock, flags); 6508 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */ 6509 ret = ufshcd_quirk_dl_nac_errors(hba); 6510 spin_lock_irqsave(hba->host->host_lock, flags); 6511 if (!ret && ufshcd_err_handling_should_stop(hba)) 6512 goto skip_err_handling; 6513 } 6514 6515 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6516 (hba->saved_uic_err && 6517 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6518 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR); 6519 6520 spin_unlock_irqrestore(hba->host->host_lock, flags); 6521 ufshcd_print_host_state(hba); 6522 ufshcd_print_pwr_info(hba); 6523 ufshcd_print_evt_hist(hba); 6524 ufshcd_print_tmrs(hba, hba->outstanding_tasks); 6525 ufshcd_print_trs_all(hba, pr_prdt); 6526 spin_lock_irqsave(hba->host->host_lock, flags); 6527 } 6528 6529 /* 6530 * if host reset is required then skip clearing the pending 6531 * transfers forcefully because they will get cleared during 6532 * host reset and restore 6533 */ 6534 if (hba->force_reset || ufshcd_is_link_broken(hba) || 6535 ufshcd_is_saved_err_fatal(hba) || 6536 ((hba->saved_err & UIC_ERROR) && 6537 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR | 6538 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) { 6539 needs_reset = true; 6540 goto do_reset; 6541 } 6542 6543 /* 6544 * If LINERESET was caught, UFS might have been put to PWM mode, 6545 * check if power mode restore is needed. 6546 */ 6547 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) { 6548 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6549 if (!hba->saved_uic_err) 6550 hba->saved_err &= ~UIC_ERROR; 6551 spin_unlock_irqrestore(hba->host->host_lock, flags); 6552 if (ufshcd_is_pwr_mode_restore_needed(hba)) 6553 needs_restore = true; 6554 spin_lock_irqsave(hba->host->host_lock, flags); 6555 if (!hba->saved_err && !needs_restore) 6556 goto skip_err_handling; 6557 } 6558 6559 hba->silence_err_logs = true; 6560 /* release lock as clear command might sleep */ 6561 spin_unlock_irqrestore(hba->host->host_lock, flags); 6562 6563 needs_reset = ufshcd_abort_all(hba); 6564 6565 spin_lock_irqsave(hba->host->host_lock, flags); 6566 hba->silence_err_logs = false; 6567 if (needs_reset) 6568 goto do_reset; 6569 6570 /* 6571 * After all reqs and tasks are cleared from doorbell, 6572 * now it is safe to retore power mode. 6573 */ 6574 if (needs_restore) { 6575 spin_unlock_irqrestore(hba->host->host_lock, flags); 6576 /* 6577 * Hold the scaling lock just in case dev cmds 6578 * are sent via bsg and/or sysfs. 6579 */ 6580 down_write(&hba->clk_scaling_lock); 6581 hba->force_pmc = true; 6582 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info)); 6583 if (pmc_err) { 6584 needs_reset = true; 6585 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n", 6586 __func__, pmc_err); 6587 } 6588 hba->force_pmc = false; 6589 ufshcd_print_pwr_info(hba); 6590 up_write(&hba->clk_scaling_lock); 6591 spin_lock_irqsave(hba->host->host_lock, flags); 6592 } 6593 6594 do_reset: 6595 /* Fatal errors need reset */ 6596 if (needs_reset) { 6597 int err; 6598 6599 hba->force_reset = false; 6600 spin_unlock_irqrestore(hba->host->host_lock, flags); 6601 err = ufshcd_reset_and_restore(hba); 6602 if (err) 6603 dev_err(hba->dev, "%s: reset and restore failed with err %d\n", 6604 __func__, err); 6605 else 6606 ufshcd_recover_pm_error(hba); 6607 spin_lock_irqsave(hba->host->host_lock, flags); 6608 } 6609 6610 skip_err_handling: 6611 if (!needs_reset) { 6612 if (hba->ufshcd_state == UFSHCD_STATE_RESET) 6613 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 6614 if (hba->saved_err || hba->saved_uic_err) 6615 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x", 6616 __func__, hba->saved_err, hba->saved_uic_err); 6617 } 6618 /* Exit in an operational state or dead */ 6619 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 6620 hba->ufshcd_state != UFSHCD_STATE_ERROR) { 6621 if (--retries) 6622 goto again; 6623 hba->ufshcd_state = UFSHCD_STATE_ERROR; 6624 } 6625 ufshcd_clear_eh_in_progress(hba); 6626 spin_unlock_irqrestore(hba->host->host_lock, flags); 6627 ufshcd_err_handling_unprepare(hba); 6628 up(&hba->host_sem); 6629 6630 dev_info(hba->dev, "%s finished; HBA state %s\n", __func__, 6631 ufshcd_state_name[hba->ufshcd_state]); 6632 } 6633 6634 /** 6635 * ufshcd_update_uic_error - check and set fatal UIC error flags. 6636 * @hba: per-adapter instance 6637 * 6638 * Return: 6639 * IRQ_HANDLED - If interrupt is valid 6640 * IRQ_NONE - If invalid interrupt 6641 */ 6642 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba) 6643 { 6644 u32 reg; 6645 irqreturn_t retval = IRQ_NONE; 6646 6647 /* PHY layer error */ 6648 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER); 6649 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) && 6650 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) { 6651 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg); 6652 /* 6653 * To know whether this error is fatal or not, DB timeout 6654 * must be checked but this error is handled separately. 6655 */ 6656 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK) 6657 dev_dbg(hba->dev, "%s: UIC Lane error reported\n", 6658 __func__); 6659 6660 /* Got a LINERESET indication. */ 6661 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) { 6662 struct uic_command *cmd = NULL; 6663 6664 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR; 6665 if (hba->uic_async_done && hba->active_uic_cmd) 6666 cmd = hba->active_uic_cmd; 6667 /* 6668 * Ignore the LINERESET during power mode change 6669 * operation via DME_SET command. 6670 */ 6671 if (cmd && (cmd->command == UIC_CMD_DME_SET)) 6672 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR; 6673 } 6674 retval |= IRQ_HANDLED; 6675 } 6676 6677 /* PA_INIT_ERROR is fatal and needs UIC reset */ 6678 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER); 6679 if ((reg & UIC_DATA_LINK_LAYER_ERROR) && 6680 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) { 6681 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg); 6682 6683 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT) 6684 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR; 6685 else if (hba->dev_quirks & 6686 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) { 6687 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED) 6688 hba->uic_error |= 6689 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR; 6690 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT) 6691 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR; 6692 } 6693 retval |= IRQ_HANDLED; 6694 } 6695 6696 /* UIC NL/TL/DME errors needs software retry */ 6697 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER); 6698 if ((reg & UIC_NETWORK_LAYER_ERROR) && 6699 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) { 6700 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg); 6701 hba->uic_error |= UFSHCD_UIC_NL_ERROR; 6702 retval |= IRQ_HANDLED; 6703 } 6704 6705 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER); 6706 if ((reg & UIC_TRANSPORT_LAYER_ERROR) && 6707 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) { 6708 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg); 6709 hba->uic_error |= UFSHCD_UIC_TL_ERROR; 6710 retval |= IRQ_HANDLED; 6711 } 6712 6713 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME); 6714 if ((reg & UIC_DME_ERROR) && 6715 (reg & UIC_DME_ERROR_CODE_MASK)) { 6716 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg); 6717 hba->uic_error |= UFSHCD_UIC_DME_ERROR; 6718 retval |= IRQ_HANDLED; 6719 } 6720 6721 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n", 6722 __func__, hba->uic_error); 6723 return retval; 6724 } 6725 6726 /** 6727 * ufshcd_check_errors - Check for errors that need s/w attention 6728 * @hba: per-adapter instance 6729 * @intr_status: interrupt status generated by the controller 6730 * 6731 * Return: 6732 * IRQ_HANDLED - If interrupt is valid 6733 * IRQ_NONE - If invalid interrupt 6734 */ 6735 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status) 6736 { 6737 bool queue_eh_work = false; 6738 irqreturn_t retval = IRQ_NONE; 6739 6740 spin_lock(hba->host->host_lock); 6741 hba->errors |= UFSHCD_ERROR_MASK & intr_status; 6742 6743 if (hba->errors & INT_FATAL_ERRORS) { 6744 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR, 6745 hba->errors); 6746 queue_eh_work = true; 6747 } 6748 6749 if (hba->errors & UIC_ERROR) { 6750 hba->uic_error = 0; 6751 retval = ufshcd_update_uic_error(hba); 6752 if (hba->uic_error) 6753 queue_eh_work = true; 6754 } 6755 6756 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) { 6757 dev_err(hba->dev, 6758 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n", 6759 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ? 6760 "Enter" : "Exit", 6761 hba->errors, ufshcd_get_upmcrs(hba)); 6762 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR, 6763 hba->errors); 6764 ufshcd_set_link_broken(hba); 6765 queue_eh_work = true; 6766 } 6767 6768 if (queue_eh_work) { 6769 /* 6770 * update the transfer error masks to sticky bits, let's do this 6771 * irrespective of current ufshcd_state. 6772 */ 6773 hba->saved_err |= hba->errors; 6774 hba->saved_uic_err |= hba->uic_error; 6775 6776 /* dump controller state before resetting */ 6777 if ((hba->saved_err & 6778 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) || 6779 (hba->saved_uic_err && 6780 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) { 6781 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n", 6782 __func__, hba->saved_err, 6783 hba->saved_uic_err); 6784 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, 6785 "host_regs: "); 6786 ufshcd_print_pwr_info(hba); 6787 } 6788 ufshcd_schedule_eh_work(hba); 6789 retval |= IRQ_HANDLED; 6790 } 6791 /* 6792 * if (!queue_eh_work) - 6793 * Other errors are either non-fatal where host recovers 6794 * itself without s/w intervention or errors that will be 6795 * handled by the SCSI core layer. 6796 */ 6797 hba->errors = 0; 6798 hba->uic_error = 0; 6799 spin_unlock(hba->host->host_lock); 6800 return retval; 6801 } 6802 6803 /** 6804 * ufshcd_tmc_handler - handle task management function completion 6805 * @hba: per adapter instance 6806 * 6807 * Return: 6808 * IRQ_HANDLED - If interrupt is valid 6809 * IRQ_NONE - If invalid interrupt 6810 */ 6811 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba) 6812 { 6813 unsigned long flags, pending, issued; 6814 irqreturn_t ret = IRQ_NONE; 6815 int tag; 6816 6817 spin_lock_irqsave(hba->host->host_lock, flags); 6818 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL); 6819 issued = hba->outstanding_tasks & ~pending; 6820 for_each_set_bit(tag, &issued, hba->nutmrs) { 6821 struct request *req = hba->tmf_rqs[tag]; 6822 struct completion *c = req->end_io_data; 6823 6824 complete(c); 6825 ret = IRQ_HANDLED; 6826 } 6827 spin_unlock_irqrestore(hba->host->host_lock, flags); 6828 6829 return ret; 6830 } 6831 6832 /** 6833 * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events 6834 * @hba: per adapter instance 6835 * 6836 * Return: IRQ_HANDLED if interrupt is handled. 6837 */ 6838 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba) 6839 { 6840 struct ufs_hw_queue *hwq; 6841 unsigned long outstanding_cqs; 6842 unsigned int nr_queues; 6843 int i, ret; 6844 u32 events; 6845 6846 ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs); 6847 if (ret) 6848 outstanding_cqs = (1U << hba->nr_hw_queues) - 1; 6849 6850 /* Exclude the poll queues */ 6851 nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL]; 6852 for_each_set_bit(i, &outstanding_cqs, nr_queues) { 6853 hwq = &hba->uhq[i]; 6854 6855 events = ufshcd_mcq_read_cqis(hba, i); 6856 if (events) 6857 ufshcd_mcq_write_cqis(hba, events, i); 6858 6859 if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS) 6860 ufshcd_mcq_poll_cqe_lock(hba, hwq); 6861 } 6862 6863 return IRQ_HANDLED; 6864 } 6865 6866 /** 6867 * ufshcd_sl_intr - Interrupt service routine 6868 * @hba: per adapter instance 6869 * @intr_status: contains interrupts generated by the controller 6870 * 6871 * Return: 6872 * IRQ_HANDLED - If interrupt is valid 6873 * IRQ_NONE - If invalid interrupt 6874 */ 6875 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status) 6876 { 6877 irqreturn_t retval = IRQ_NONE; 6878 6879 if (intr_status & UFSHCD_UIC_MASK) 6880 retval |= ufshcd_uic_cmd_compl(hba, intr_status); 6881 6882 if (intr_status & UFSHCD_ERROR_MASK || hba->errors) 6883 retval |= ufshcd_check_errors(hba, intr_status); 6884 6885 if (intr_status & UTP_TASK_REQ_COMPL) 6886 retval |= ufshcd_tmc_handler(hba); 6887 6888 if (intr_status & UTP_TRANSFER_REQ_COMPL) 6889 retval |= ufshcd_transfer_req_compl(hba); 6890 6891 if (intr_status & MCQ_CQ_EVENT_STATUS) 6892 retval |= ufshcd_handle_mcq_cq_events(hba); 6893 6894 return retval; 6895 } 6896 6897 /** 6898 * ufshcd_intr - Main interrupt service routine 6899 * @irq: irq number 6900 * @__hba: pointer to adapter instance 6901 * 6902 * Return: 6903 * IRQ_HANDLED - If interrupt is valid 6904 * IRQ_NONE - If invalid interrupt 6905 */ 6906 static irqreturn_t ufshcd_intr(int irq, void *__hba) 6907 { 6908 u32 intr_status, enabled_intr_status = 0; 6909 irqreturn_t retval = IRQ_NONE; 6910 struct ufs_hba *hba = __hba; 6911 int retries = hba->nutrs; 6912 6913 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6914 hba->ufs_stats.last_intr_status = intr_status; 6915 hba->ufs_stats.last_intr_ts = local_clock(); 6916 6917 /* 6918 * There could be max of hba->nutrs reqs in flight and in worst case 6919 * if the reqs get finished 1 by 1 after the interrupt status is 6920 * read, make sure we handle them by checking the interrupt status 6921 * again in a loop until we process all of the reqs before returning. 6922 */ 6923 while (intr_status && retries--) { 6924 enabled_intr_status = 6925 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 6926 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS); 6927 if (enabled_intr_status) 6928 retval |= ufshcd_sl_intr(hba, enabled_intr_status); 6929 6930 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS); 6931 } 6932 6933 if (enabled_intr_status && retval == IRQ_NONE && 6934 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) || 6935 hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) { 6936 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n", 6937 __func__, 6938 intr_status, 6939 hba->ufs_stats.last_intr_status, 6940 enabled_intr_status); 6941 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: "); 6942 } 6943 6944 return retval; 6945 } 6946 6947 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag) 6948 { 6949 int err = 0; 6950 u32 mask = 1 << tag; 6951 unsigned long flags; 6952 6953 if (!test_bit(tag, &hba->outstanding_tasks)) 6954 goto out; 6955 6956 spin_lock_irqsave(hba->host->host_lock, flags); 6957 ufshcd_utmrl_clear(hba, tag); 6958 spin_unlock_irqrestore(hba->host->host_lock, flags); 6959 6960 /* poll for max. 1 sec to clear door bell register by h/w */ 6961 err = ufshcd_wait_for_register(hba, 6962 REG_UTP_TASK_REQ_DOOR_BELL, 6963 mask, 0, 1000, 1000); 6964 6965 dev_err(hba->dev, "Clearing task management function with tag %d %s\n", 6966 tag, err < 0 ? "failed" : "succeeded"); 6967 6968 out: 6969 return err; 6970 } 6971 6972 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba, 6973 struct utp_task_req_desc *treq, u8 tm_function) 6974 { 6975 struct request_queue *q = hba->tmf_queue; 6976 struct Scsi_Host *host = hba->host; 6977 DECLARE_COMPLETION_ONSTACK(wait); 6978 struct request *req; 6979 unsigned long flags; 6980 int task_tag, err; 6981 6982 /* 6983 * blk_mq_alloc_request() is used here only to get a free tag. 6984 */ 6985 req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0); 6986 if (IS_ERR(req)) 6987 return PTR_ERR(req); 6988 6989 req->end_io_data = &wait; 6990 ufshcd_hold(hba); 6991 6992 spin_lock_irqsave(host->host_lock, flags); 6993 6994 task_tag = req->tag; 6995 WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n", 6996 task_tag); 6997 hba->tmf_rqs[req->tag] = req; 6998 treq->upiu_req.req_header.task_tag = task_tag; 6999 7000 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq)); 7001 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function); 7002 7003 /* send command to the controller */ 7004 __set_bit(task_tag, &hba->outstanding_tasks); 7005 7006 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL); 7007 /* Make sure that doorbell is committed immediately */ 7008 wmb(); 7009 7010 spin_unlock_irqrestore(host->host_lock, flags); 7011 7012 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND); 7013 7014 /* wait until the task management command is completed */ 7015 err = wait_for_completion_io_timeout(&wait, 7016 msecs_to_jiffies(TM_CMD_TIMEOUT)); 7017 if (!err) { 7018 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR); 7019 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n", 7020 __func__, tm_function); 7021 if (ufshcd_clear_tm_cmd(hba, task_tag)) 7022 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n", 7023 __func__, task_tag); 7024 err = -ETIMEDOUT; 7025 } else { 7026 err = 0; 7027 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq)); 7028 7029 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP); 7030 } 7031 7032 spin_lock_irqsave(hba->host->host_lock, flags); 7033 hba->tmf_rqs[req->tag] = NULL; 7034 __clear_bit(task_tag, &hba->outstanding_tasks); 7035 spin_unlock_irqrestore(hba->host->host_lock, flags); 7036 7037 ufshcd_release(hba); 7038 blk_mq_free_request(req); 7039 7040 return err; 7041 } 7042 7043 /** 7044 * ufshcd_issue_tm_cmd - issues task management commands to controller 7045 * @hba: per adapter instance 7046 * @lun_id: LUN ID to which TM command is sent 7047 * @task_id: task ID to which the TM command is applicable 7048 * @tm_function: task management function opcode 7049 * @tm_response: task management service response return value 7050 * 7051 * Return: non-zero value on error, zero on success. 7052 */ 7053 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id, 7054 u8 tm_function, u8 *tm_response) 7055 { 7056 struct utp_task_req_desc treq = { }; 7057 enum utp_ocs ocs_value; 7058 int err; 7059 7060 /* Configure task request descriptor */ 7061 treq.header.interrupt = 1; 7062 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7063 7064 /* Configure task request UPIU */ 7065 treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ; 7066 treq.upiu_req.req_header.lun = lun_id; 7067 treq.upiu_req.req_header.tm_function = tm_function; 7068 7069 /* 7070 * The host shall provide the same value for LUN field in the basic 7071 * header and for Input Parameter. 7072 */ 7073 treq.upiu_req.input_param1 = cpu_to_be32(lun_id); 7074 treq.upiu_req.input_param2 = cpu_to_be32(task_id); 7075 7076 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function); 7077 if (err == -ETIMEDOUT) 7078 return err; 7079 7080 ocs_value = treq.header.ocs & MASK_OCS; 7081 if (ocs_value != OCS_SUCCESS) 7082 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", 7083 __func__, ocs_value); 7084 else if (tm_response) 7085 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) & 7086 MASK_TM_SERVICE_RESP; 7087 return err; 7088 } 7089 7090 /** 7091 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests 7092 * @hba: per-adapter instance 7093 * @req_upiu: upiu request 7094 * @rsp_upiu: upiu reply 7095 * @desc_buff: pointer to descriptor buffer, NULL if NA 7096 * @buff_len: descriptor size, 0 if NA 7097 * @cmd_type: specifies the type (NOP, Query...) 7098 * @desc_op: descriptor operation 7099 * 7100 * Those type of requests uses UTP Transfer Request Descriptor - utrd. 7101 * Therefore, it "rides" the device management infrastructure: uses its tag and 7102 * tasks work queues. 7103 * 7104 * Since there is only one available tag for device management commands, 7105 * the caller is expected to hold the hba->dev_cmd.lock mutex. 7106 * 7107 * Return: 0 upon success; < 0 upon failure. 7108 */ 7109 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba, 7110 struct utp_upiu_req *req_upiu, 7111 struct utp_upiu_req *rsp_upiu, 7112 u8 *desc_buff, int *buff_len, 7113 enum dev_cmd_type cmd_type, 7114 enum query_opcode desc_op) 7115 { 7116 DECLARE_COMPLETION_ONSTACK(wait); 7117 const u32 tag = hba->reserved_slot; 7118 struct ufshcd_lrb *lrbp; 7119 int err = 0; 7120 u8 upiu_flags; 7121 7122 /* Protects use of hba->reserved_slot. */ 7123 lockdep_assert_held(&hba->dev_cmd.lock); 7124 7125 down_read(&hba->clk_scaling_lock); 7126 7127 lrbp = &hba->lrb[tag]; 7128 lrbp->cmd = NULL; 7129 lrbp->task_tag = tag; 7130 lrbp->lun = 0; 7131 lrbp->intr_cmd = true; 7132 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 7133 hba->dev_cmd.type = cmd_type; 7134 7135 if (hba->ufs_version <= ufshci_version(1, 1)) 7136 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE; 7137 else 7138 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 7139 7140 /* update the task tag in the request upiu */ 7141 req_upiu->header.task_tag = tag; 7142 7143 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0); 7144 7145 /* just copy the upiu request as it is */ 7146 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7147 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) { 7148 /* The Data Segment Area is optional depending upon the query 7149 * function value. for WRITE DESCRIPTOR, the data segment 7150 * follows right after the tsf. 7151 */ 7152 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len); 7153 *buff_len = 0; 7154 } 7155 7156 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7157 7158 hba->dev_cmd.complete = &wait; 7159 7160 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr); 7161 7162 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 7163 /* 7164 * ignore the returning value here - ufshcd_check_query_response is 7165 * bound to fail since dev_cmd.query and dev_cmd.type were left empty. 7166 * read the response directly ignoring all errors. 7167 */ 7168 ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT); 7169 7170 /* just copy the upiu response as it is */ 7171 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7172 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) { 7173 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu); 7174 u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header 7175 .data_segment_length); 7176 7177 if (*buff_len >= resp_len) { 7178 memcpy(desc_buff, descp, resp_len); 7179 *buff_len = resp_len; 7180 } else { 7181 dev_warn(hba->dev, 7182 "%s: rsp size %d is bigger than buffer size %d", 7183 __func__, resp_len, *buff_len); 7184 *buff_len = 0; 7185 err = -EINVAL; 7186 } 7187 } 7188 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP, 7189 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr); 7190 7191 up_read(&hba->clk_scaling_lock); 7192 return err; 7193 } 7194 7195 /** 7196 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands 7197 * @hba: per-adapter instance 7198 * @req_upiu: upiu request 7199 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands 7200 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target 7201 * @desc_buff: pointer to descriptor buffer, NULL if NA 7202 * @buff_len: descriptor size, 0 if NA 7203 * @desc_op: descriptor operation 7204 * 7205 * Supports UTP Transfer requests (nop and query), and UTP Task 7206 * Management requests. 7207 * It is up to the caller to fill the upiu conent properly, as it will 7208 * be copied without any further input validations. 7209 * 7210 * Return: 0 upon success; < 0 upon failure. 7211 */ 7212 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba, 7213 struct utp_upiu_req *req_upiu, 7214 struct utp_upiu_req *rsp_upiu, 7215 enum upiu_request_transaction msgcode, 7216 u8 *desc_buff, int *buff_len, 7217 enum query_opcode desc_op) 7218 { 7219 int err; 7220 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY; 7221 struct utp_task_req_desc treq = { }; 7222 enum utp_ocs ocs_value; 7223 u8 tm_f = req_upiu->header.tm_function; 7224 7225 switch (msgcode) { 7226 case UPIU_TRANSACTION_NOP_OUT: 7227 cmd_type = DEV_CMD_TYPE_NOP; 7228 fallthrough; 7229 case UPIU_TRANSACTION_QUERY_REQ: 7230 ufshcd_hold(hba); 7231 mutex_lock(&hba->dev_cmd.lock); 7232 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu, 7233 desc_buff, buff_len, 7234 cmd_type, desc_op); 7235 mutex_unlock(&hba->dev_cmd.lock); 7236 ufshcd_release(hba); 7237 7238 break; 7239 case UPIU_TRANSACTION_TASK_REQ: 7240 treq.header.interrupt = 1; 7241 treq.header.ocs = OCS_INVALID_COMMAND_STATUS; 7242 7243 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu)); 7244 7245 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f); 7246 if (err == -ETIMEDOUT) 7247 break; 7248 7249 ocs_value = treq.header.ocs & MASK_OCS; 7250 if (ocs_value != OCS_SUCCESS) { 7251 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__, 7252 ocs_value); 7253 break; 7254 } 7255 7256 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu)); 7257 7258 break; 7259 default: 7260 err = -EINVAL; 7261 7262 break; 7263 } 7264 7265 return err; 7266 } 7267 7268 /** 7269 * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request 7270 * @hba: per adapter instance 7271 * @req_upiu: upiu request 7272 * @rsp_upiu: upiu reply 7273 * @req_ehs: EHS field which contains Advanced RPMB Request Message 7274 * @rsp_ehs: EHS field which returns Advanced RPMB Response Message 7275 * @sg_cnt: The number of sg lists actually used 7276 * @sg_list: Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation 7277 * @dir: DMA direction 7278 * 7279 * Return: zero on success, non-zero on failure. 7280 */ 7281 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu, 7282 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs, 7283 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list, 7284 enum dma_data_direction dir) 7285 { 7286 DECLARE_COMPLETION_ONSTACK(wait); 7287 const u32 tag = hba->reserved_slot; 7288 struct ufshcd_lrb *lrbp; 7289 int err = 0; 7290 int result; 7291 u8 upiu_flags; 7292 u8 *ehs_data; 7293 u16 ehs_len; 7294 7295 /* Protects use of hba->reserved_slot. */ 7296 ufshcd_hold(hba); 7297 mutex_lock(&hba->dev_cmd.lock); 7298 down_read(&hba->clk_scaling_lock); 7299 7300 lrbp = &hba->lrb[tag]; 7301 lrbp->cmd = NULL; 7302 lrbp->task_tag = tag; 7303 lrbp->lun = UFS_UPIU_RPMB_WLUN; 7304 7305 lrbp->intr_cmd = true; 7306 ufshcd_prepare_lrbp_crypto(NULL, lrbp); 7307 hba->dev_cmd.type = DEV_CMD_TYPE_RPMB; 7308 7309 /* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */ 7310 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE; 7311 7312 /* 7313 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes 7314 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1, 7315 * HW controller takes EHS length from UTRD. 7316 */ 7317 if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED) 7318 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2); 7319 else 7320 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0); 7321 7322 /* update the task tag */ 7323 req_upiu->header.task_tag = tag; 7324 7325 /* copy the UPIU(contains CDB) request as it is */ 7326 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr)); 7327 /* Copy EHS, starting with byte32, immediately after the CDB package */ 7328 memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs)); 7329 7330 if (dir != DMA_NONE && sg_list) 7331 ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list); 7332 7333 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp)); 7334 7335 hba->dev_cmd.complete = &wait; 7336 7337 ufshcd_send_command(hba, tag, hba->dev_cmd_queue); 7338 7339 err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT); 7340 7341 if (!err) { 7342 /* Just copy the upiu response as it is */ 7343 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu)); 7344 /* Get the response UPIU result */ 7345 result = (lrbp->ucd_rsp_ptr->header.response << 8) | 7346 lrbp->ucd_rsp_ptr->header.status; 7347 7348 ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length; 7349 /* 7350 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data 7351 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB 7352 * Message is 02h 7353 */ 7354 if (ehs_len == 2 && rsp_ehs) { 7355 /* 7356 * ucd_rsp_ptr points to a buffer with a length of 512 bytes 7357 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32 7358 */ 7359 ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE; 7360 memcpy(rsp_ehs, ehs_data, ehs_len * 32); 7361 } 7362 } 7363 7364 up_read(&hba->clk_scaling_lock); 7365 mutex_unlock(&hba->dev_cmd.lock); 7366 ufshcd_release(hba); 7367 return err ? : result; 7368 } 7369 7370 /** 7371 * ufshcd_eh_device_reset_handler() - Reset a single logical unit. 7372 * @cmd: SCSI command pointer 7373 * 7374 * Return: SUCCESS or FAILED. 7375 */ 7376 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd) 7377 { 7378 unsigned long flags, pending_reqs = 0, not_cleared = 0; 7379 struct Scsi_Host *host; 7380 struct ufs_hba *hba; 7381 struct ufs_hw_queue *hwq; 7382 struct ufshcd_lrb *lrbp; 7383 u32 pos, not_cleared_mask = 0; 7384 int err; 7385 u8 resp = 0xF, lun; 7386 7387 host = cmd->device->host; 7388 hba = shost_priv(host); 7389 7390 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun); 7391 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp); 7392 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7393 if (!err) 7394 err = resp; 7395 goto out; 7396 } 7397 7398 if (is_mcq_enabled(hba)) { 7399 for (pos = 0; pos < hba->nutrs; pos++) { 7400 lrbp = &hba->lrb[pos]; 7401 if (ufshcd_cmd_inflight(lrbp->cmd) && 7402 lrbp->lun == lun) { 7403 ufshcd_clear_cmd(hba, pos); 7404 hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd)); 7405 ufshcd_mcq_poll_cqe_lock(hba, hwq); 7406 } 7407 } 7408 err = 0; 7409 goto out; 7410 } 7411 7412 /* clear the commands that were pending for corresponding LUN */ 7413 spin_lock_irqsave(&hba->outstanding_lock, flags); 7414 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) 7415 if (hba->lrb[pos].lun == lun) 7416 __set_bit(pos, &pending_reqs); 7417 hba->outstanding_reqs &= ~pending_reqs; 7418 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7419 7420 for_each_set_bit(pos, &pending_reqs, hba->nutrs) { 7421 if (ufshcd_clear_cmd(hba, pos) < 0) { 7422 spin_lock_irqsave(&hba->outstanding_lock, flags); 7423 not_cleared = 1U << pos & 7424 ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7425 hba->outstanding_reqs |= not_cleared; 7426 not_cleared_mask |= not_cleared; 7427 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7428 7429 dev_err(hba->dev, "%s: failed to clear request %d\n", 7430 __func__, pos); 7431 } 7432 } 7433 __ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask); 7434 7435 out: 7436 hba->req_abort_count = 0; 7437 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err); 7438 if (!err) { 7439 err = SUCCESS; 7440 } else { 7441 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7442 err = FAILED; 7443 } 7444 return err; 7445 } 7446 7447 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap) 7448 { 7449 struct ufshcd_lrb *lrbp; 7450 int tag; 7451 7452 for_each_set_bit(tag, &bitmap, hba->nutrs) { 7453 lrbp = &hba->lrb[tag]; 7454 lrbp->req_abort_skip = true; 7455 } 7456 } 7457 7458 /** 7459 * ufshcd_try_to_abort_task - abort a specific task 7460 * @hba: Pointer to adapter instance 7461 * @tag: Task tag/index to be aborted 7462 * 7463 * Abort the pending command in device by sending UFS_ABORT_TASK task management 7464 * command, and in host controller by clearing the door-bell register. There can 7465 * be race between controller sending the command to the device while abort is 7466 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is 7467 * really issued and then try to abort it. 7468 * 7469 * Return: zero on success, non-zero on failure. 7470 */ 7471 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag) 7472 { 7473 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7474 int err = 0; 7475 int poll_cnt; 7476 u8 resp = 0xF; 7477 u32 reg; 7478 7479 for (poll_cnt = 100; poll_cnt; poll_cnt--) { 7480 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7481 UFS_QUERY_TASK, &resp); 7482 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) { 7483 /* cmd pending in the device */ 7484 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n", 7485 __func__, tag); 7486 break; 7487 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7488 /* 7489 * cmd not pending in the device, check if it is 7490 * in transition. 7491 */ 7492 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n", 7493 __func__, tag); 7494 if (is_mcq_enabled(hba)) { 7495 /* MCQ mode */ 7496 if (ufshcd_cmd_inflight(lrbp->cmd)) { 7497 /* sleep for max. 200us same delay as in SDB mode */ 7498 usleep_range(100, 200); 7499 continue; 7500 } 7501 /* command completed already */ 7502 dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n", 7503 __func__, tag); 7504 goto out; 7505 } 7506 7507 /* Single Doorbell Mode */ 7508 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7509 if (reg & (1 << tag)) { 7510 /* sleep for max. 200us to stabilize */ 7511 usleep_range(100, 200); 7512 continue; 7513 } 7514 /* command completed already */ 7515 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n", 7516 __func__, tag); 7517 goto out; 7518 } else { 7519 dev_err(hba->dev, 7520 "%s: no response from device. tag = %d, err %d\n", 7521 __func__, tag, err); 7522 if (!err) 7523 err = resp; /* service response error */ 7524 goto out; 7525 } 7526 } 7527 7528 if (!poll_cnt) { 7529 err = -EBUSY; 7530 goto out; 7531 } 7532 7533 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag, 7534 UFS_ABORT_TASK, &resp); 7535 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) { 7536 if (!err) { 7537 err = resp; /* service response error */ 7538 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n", 7539 __func__, tag, err); 7540 } 7541 goto out; 7542 } 7543 7544 err = ufshcd_clear_cmd(hba, tag); 7545 if (err) 7546 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n", 7547 __func__, tag, err); 7548 7549 out: 7550 return err; 7551 } 7552 7553 /** 7554 * ufshcd_abort - scsi host template eh_abort_handler callback 7555 * @cmd: SCSI command pointer 7556 * 7557 * Return: SUCCESS or FAILED. 7558 */ 7559 static int ufshcd_abort(struct scsi_cmnd *cmd) 7560 { 7561 struct Scsi_Host *host = cmd->device->host; 7562 struct ufs_hba *hba = shost_priv(host); 7563 int tag = scsi_cmd_to_rq(cmd)->tag; 7564 struct ufshcd_lrb *lrbp = &hba->lrb[tag]; 7565 unsigned long flags; 7566 int err = FAILED; 7567 bool outstanding; 7568 u32 reg; 7569 7570 WARN_ONCE(tag < 0, "Invalid tag %d\n", tag); 7571 7572 ufshcd_hold(hba); 7573 7574 if (!is_mcq_enabled(hba)) { 7575 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL); 7576 if (!test_bit(tag, &hba->outstanding_reqs)) { 7577 /* If command is already aborted/completed, return FAILED. */ 7578 dev_err(hba->dev, 7579 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n", 7580 __func__, tag, hba->outstanding_reqs, reg); 7581 goto release; 7582 } 7583 } 7584 7585 /* Print Transfer Request of aborted task */ 7586 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag); 7587 7588 /* 7589 * Print detailed info about aborted request. 7590 * As more than one request might get aborted at the same time, 7591 * print full information only for the first aborted request in order 7592 * to reduce repeated printouts. For other aborted requests only print 7593 * basic details. 7594 */ 7595 scsi_print_command(cmd); 7596 if (!hba->req_abort_count) { 7597 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag); 7598 ufshcd_print_evt_hist(hba); 7599 ufshcd_print_host_state(hba); 7600 ufshcd_print_pwr_info(hba); 7601 ufshcd_print_tr(hba, tag, true); 7602 } else { 7603 ufshcd_print_tr(hba, tag, false); 7604 } 7605 hba->req_abort_count++; 7606 7607 if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) { 7608 /* only execute this code in single doorbell mode */ 7609 dev_err(hba->dev, 7610 "%s: cmd was completed, but without a notifying intr, tag = %d", 7611 __func__, tag); 7612 __ufshcd_transfer_req_compl(hba, 1UL << tag); 7613 goto release; 7614 } 7615 7616 /* 7617 * Task abort to the device W-LUN is illegal. When this command 7618 * will fail, due to spec violation, scsi err handling next step 7619 * will be to send LU reset which, again, is a spec violation. 7620 * To avoid these unnecessary/illegal steps, first we clean up 7621 * the lrb taken by this cmd and re-set it in outstanding_reqs, 7622 * then queue the eh_work and bail. 7623 */ 7624 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) { 7625 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun); 7626 7627 spin_lock_irqsave(host->host_lock, flags); 7628 hba->force_reset = true; 7629 ufshcd_schedule_eh_work(hba); 7630 spin_unlock_irqrestore(host->host_lock, flags); 7631 goto release; 7632 } 7633 7634 if (is_mcq_enabled(hba)) { 7635 /* MCQ mode. Branch off to handle abort for mcq mode */ 7636 err = ufshcd_mcq_abort(cmd); 7637 goto release; 7638 } 7639 7640 /* Skip task abort in case previous aborts failed and report failure */ 7641 if (lrbp->req_abort_skip) { 7642 dev_err(hba->dev, "%s: skipping abort\n", __func__); 7643 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7644 goto release; 7645 } 7646 7647 err = ufshcd_try_to_abort_task(hba, tag); 7648 if (err) { 7649 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err); 7650 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs); 7651 err = FAILED; 7652 goto release; 7653 } 7654 7655 /* 7656 * Clear the corresponding bit from outstanding_reqs since the command 7657 * has been aborted successfully. 7658 */ 7659 spin_lock_irqsave(&hba->outstanding_lock, flags); 7660 outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs); 7661 spin_unlock_irqrestore(&hba->outstanding_lock, flags); 7662 7663 if (outstanding) 7664 ufshcd_release_scsi_cmd(hba, lrbp); 7665 7666 err = SUCCESS; 7667 7668 release: 7669 /* Matches the ufshcd_hold() call at the start of this function. */ 7670 ufshcd_release(hba); 7671 return err; 7672 } 7673 7674 /** 7675 * ufshcd_host_reset_and_restore - reset and restore host controller 7676 * @hba: per-adapter instance 7677 * 7678 * Note that host controller reset may issue DME_RESET to 7679 * local and remote (device) Uni-Pro stack and the attributes 7680 * are reset to default state. 7681 * 7682 * Return: zero on success, non-zero on failure. 7683 */ 7684 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba) 7685 { 7686 int err; 7687 7688 /* 7689 * Stop the host controller and complete the requests 7690 * cleared by h/w 7691 */ 7692 ufshcd_hba_stop(hba); 7693 hba->silence_err_logs = true; 7694 ufshcd_complete_requests(hba, true); 7695 hba->silence_err_logs = false; 7696 7697 /* scale up clocks to max frequency before full reinitialization */ 7698 ufshcd_scale_clks(hba, true); 7699 7700 err = ufshcd_hba_enable(hba); 7701 7702 /* Establish the link again and restore the device */ 7703 if (!err) 7704 err = ufshcd_probe_hba(hba, false); 7705 7706 if (err) 7707 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err); 7708 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err); 7709 return err; 7710 } 7711 7712 /** 7713 * ufshcd_reset_and_restore - reset and re-initialize host/device 7714 * @hba: per-adapter instance 7715 * 7716 * Reset and recover device, host and re-establish link. This 7717 * is helpful to recover the communication in fatal error conditions. 7718 * 7719 * Return: zero on success, non-zero on failure. 7720 */ 7721 static int ufshcd_reset_and_restore(struct ufs_hba *hba) 7722 { 7723 u32 saved_err = 0; 7724 u32 saved_uic_err = 0; 7725 int err = 0; 7726 unsigned long flags; 7727 int retries = MAX_HOST_RESET_RETRIES; 7728 7729 spin_lock_irqsave(hba->host->host_lock, flags); 7730 do { 7731 /* 7732 * This is a fresh start, cache and clear saved error first, 7733 * in case new error generated during reset and restore. 7734 */ 7735 saved_err |= hba->saved_err; 7736 saved_uic_err |= hba->saved_uic_err; 7737 hba->saved_err = 0; 7738 hba->saved_uic_err = 0; 7739 hba->force_reset = false; 7740 hba->ufshcd_state = UFSHCD_STATE_RESET; 7741 spin_unlock_irqrestore(hba->host->host_lock, flags); 7742 7743 /* Reset the attached device */ 7744 ufshcd_device_reset(hba); 7745 7746 err = ufshcd_host_reset_and_restore(hba); 7747 7748 spin_lock_irqsave(hba->host->host_lock, flags); 7749 if (err) 7750 continue; 7751 /* Do not exit unless operational or dead */ 7752 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL && 7753 hba->ufshcd_state != UFSHCD_STATE_ERROR && 7754 hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL) 7755 err = -EAGAIN; 7756 } while (err && --retries); 7757 7758 /* 7759 * Inform scsi mid-layer that we did reset and allow to handle 7760 * Unit Attention properly. 7761 */ 7762 scsi_report_bus_reset(hba->host, 0); 7763 if (err) { 7764 hba->ufshcd_state = UFSHCD_STATE_ERROR; 7765 hba->saved_err |= saved_err; 7766 hba->saved_uic_err |= saved_uic_err; 7767 } 7768 spin_unlock_irqrestore(hba->host->host_lock, flags); 7769 7770 return err; 7771 } 7772 7773 /** 7774 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer 7775 * @cmd: SCSI command pointer 7776 * 7777 * Return: SUCCESS or FAILED. 7778 */ 7779 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd) 7780 { 7781 int err = SUCCESS; 7782 unsigned long flags; 7783 struct ufs_hba *hba; 7784 7785 hba = shost_priv(cmd->device->host); 7786 7787 spin_lock_irqsave(hba->host->host_lock, flags); 7788 hba->force_reset = true; 7789 ufshcd_schedule_eh_work(hba); 7790 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__); 7791 spin_unlock_irqrestore(hba->host->host_lock, flags); 7792 7793 flush_work(&hba->eh_work); 7794 7795 spin_lock_irqsave(hba->host->host_lock, flags); 7796 if (hba->ufshcd_state == UFSHCD_STATE_ERROR) 7797 err = FAILED; 7798 spin_unlock_irqrestore(hba->host->host_lock, flags); 7799 7800 return err; 7801 } 7802 7803 /** 7804 * ufshcd_get_max_icc_level - calculate the ICC level 7805 * @sup_curr_uA: max. current supported by the regulator 7806 * @start_scan: row at the desc table to start scan from 7807 * @buff: power descriptor buffer 7808 * 7809 * Return: calculated max ICC level for specific regulator. 7810 */ 7811 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, 7812 const char *buff) 7813 { 7814 int i; 7815 int curr_uA; 7816 u16 data; 7817 u16 unit; 7818 7819 for (i = start_scan; i >= 0; i--) { 7820 data = get_unaligned_be16(&buff[2 * i]); 7821 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >> 7822 ATTR_ICC_LVL_UNIT_OFFSET; 7823 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK; 7824 switch (unit) { 7825 case UFSHCD_NANO_AMP: 7826 curr_uA = curr_uA / 1000; 7827 break; 7828 case UFSHCD_MILI_AMP: 7829 curr_uA = curr_uA * 1000; 7830 break; 7831 case UFSHCD_AMP: 7832 curr_uA = curr_uA * 1000 * 1000; 7833 break; 7834 case UFSHCD_MICRO_AMP: 7835 default: 7836 break; 7837 } 7838 if (sup_curr_uA >= curr_uA) 7839 break; 7840 } 7841 if (i < 0) { 7842 i = 0; 7843 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i); 7844 } 7845 7846 return (u32)i; 7847 } 7848 7849 /** 7850 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level 7851 * In case regulators are not initialized we'll return 0 7852 * @hba: per-adapter instance 7853 * @desc_buf: power descriptor buffer to extract ICC levels from. 7854 * 7855 * Return: calculated ICC level. 7856 */ 7857 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba, 7858 const u8 *desc_buf) 7859 { 7860 u32 icc_level = 0; 7861 7862 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq || 7863 !hba->vreg_info.vccq2) { 7864 /* 7865 * Using dev_dbg to avoid messages during runtime PM to avoid 7866 * never-ending cycles of messages written back to storage by 7867 * user space causing runtime resume, causing more messages and 7868 * so on. 7869 */ 7870 dev_dbg(hba->dev, 7871 "%s: Regulator capability was not set, actvIccLevel=%d", 7872 __func__, icc_level); 7873 goto out; 7874 } 7875 7876 if (hba->vreg_info.vcc->max_uA) 7877 icc_level = ufshcd_get_max_icc_level( 7878 hba->vreg_info.vcc->max_uA, 7879 POWER_DESC_MAX_ACTV_ICC_LVLS - 1, 7880 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]); 7881 7882 if (hba->vreg_info.vccq->max_uA) 7883 icc_level = ufshcd_get_max_icc_level( 7884 hba->vreg_info.vccq->max_uA, 7885 icc_level, 7886 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]); 7887 7888 if (hba->vreg_info.vccq2->max_uA) 7889 icc_level = ufshcd_get_max_icc_level( 7890 hba->vreg_info.vccq2->max_uA, 7891 icc_level, 7892 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]); 7893 out: 7894 return icc_level; 7895 } 7896 7897 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba) 7898 { 7899 int ret; 7900 u8 *desc_buf; 7901 u32 icc_level; 7902 7903 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 7904 if (!desc_buf) 7905 return; 7906 7907 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0, 7908 desc_buf, QUERY_DESC_MAX_SIZE); 7909 if (ret) { 7910 dev_err(hba->dev, 7911 "%s: Failed reading power descriptor ret = %d", 7912 __func__, ret); 7913 goto out; 7914 } 7915 7916 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf); 7917 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level); 7918 7919 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 7920 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level); 7921 7922 if (ret) 7923 dev_err(hba->dev, 7924 "%s: Failed configuring bActiveICCLevel = %d ret = %d", 7925 __func__, icc_level, ret); 7926 7927 out: 7928 kfree(desc_buf); 7929 } 7930 7931 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev) 7932 { 7933 scsi_autopm_get_device(sdev); 7934 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev); 7935 if (sdev->rpm_autosuspend) 7936 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev, 7937 RPM_AUTOSUSPEND_DELAY_MS); 7938 scsi_autopm_put_device(sdev); 7939 } 7940 7941 /** 7942 * ufshcd_scsi_add_wlus - Adds required W-LUs 7943 * @hba: per-adapter instance 7944 * 7945 * UFS device specification requires the UFS devices to support 4 well known 7946 * logical units: 7947 * "REPORT_LUNS" (address: 01h) 7948 * "UFS Device" (address: 50h) 7949 * "RPMB" (address: 44h) 7950 * "BOOT" (address: 30h) 7951 * UFS device's power management needs to be controlled by "POWER CONDITION" 7952 * field of SSU (START STOP UNIT) command. But this "power condition" field 7953 * will take effect only when its sent to "UFS device" well known logical unit 7954 * hence we require the scsi_device instance to represent this logical unit in 7955 * order for the UFS host driver to send the SSU command for power management. 7956 * 7957 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory 7958 * Block) LU so user space process can control this LU. User space may also 7959 * want to have access to BOOT LU. 7960 * 7961 * This function adds scsi device instances for each of all well known LUs 7962 * (except "REPORT LUNS" LU). 7963 * 7964 * Return: zero on success (all required W-LUs are added successfully), 7965 * non-zero error value on failure (if failed to add any of the required W-LU). 7966 */ 7967 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba) 7968 { 7969 int ret = 0; 7970 struct scsi_device *sdev_boot, *sdev_rpmb; 7971 7972 hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0, 7973 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL); 7974 if (IS_ERR(hba->ufs_device_wlun)) { 7975 ret = PTR_ERR(hba->ufs_device_wlun); 7976 hba->ufs_device_wlun = NULL; 7977 goto out; 7978 } 7979 scsi_device_put(hba->ufs_device_wlun); 7980 7981 sdev_rpmb = __scsi_add_device(hba->host, 0, 0, 7982 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL); 7983 if (IS_ERR(sdev_rpmb)) { 7984 ret = PTR_ERR(sdev_rpmb); 7985 goto remove_ufs_device_wlun; 7986 } 7987 ufshcd_blk_pm_runtime_init(sdev_rpmb); 7988 scsi_device_put(sdev_rpmb); 7989 7990 sdev_boot = __scsi_add_device(hba->host, 0, 0, 7991 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL); 7992 if (IS_ERR(sdev_boot)) { 7993 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__); 7994 } else { 7995 ufshcd_blk_pm_runtime_init(sdev_boot); 7996 scsi_device_put(sdev_boot); 7997 } 7998 goto out; 7999 8000 remove_ufs_device_wlun: 8001 scsi_remove_device(hba->ufs_device_wlun); 8002 out: 8003 return ret; 8004 } 8005 8006 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf) 8007 { 8008 struct ufs_dev_info *dev_info = &hba->dev_info; 8009 u8 lun; 8010 u32 d_lu_wb_buf_alloc; 8011 u32 ext_ufs_feature; 8012 8013 if (!ufshcd_is_wb_allowed(hba)) 8014 return; 8015 8016 /* 8017 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or 8018 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES 8019 * enabled 8020 */ 8021 if (!(dev_info->wspecversion >= 0x310 || 8022 dev_info->wspecversion == 0x220 || 8023 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES))) 8024 goto wb_disabled; 8025 8026 ext_ufs_feature = get_unaligned_be32(desc_buf + 8027 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8028 8029 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP)) 8030 goto wb_disabled; 8031 8032 /* 8033 * WB may be supported but not configured while provisioning. The spec 8034 * says, in dedicated wb buffer mode, a max of 1 lun would have wb 8035 * buffer configured. 8036 */ 8037 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE]; 8038 8039 dev_info->b_presrv_uspc_en = 8040 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN]; 8041 8042 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) { 8043 if (!get_unaligned_be32(desc_buf + 8044 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS)) 8045 goto wb_disabled; 8046 } else { 8047 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) { 8048 d_lu_wb_buf_alloc = 0; 8049 ufshcd_read_unit_desc_param(hba, 8050 lun, 8051 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS, 8052 (u8 *)&d_lu_wb_buf_alloc, 8053 sizeof(d_lu_wb_buf_alloc)); 8054 if (d_lu_wb_buf_alloc) { 8055 dev_info->wb_dedicated_lu = lun; 8056 break; 8057 } 8058 } 8059 8060 if (!d_lu_wb_buf_alloc) 8061 goto wb_disabled; 8062 } 8063 8064 if (!ufshcd_is_wb_buf_lifetime_available(hba)) 8065 goto wb_disabled; 8066 8067 return; 8068 8069 wb_disabled: 8070 hba->caps &= ~UFSHCD_CAP_WB_EN; 8071 } 8072 8073 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf) 8074 { 8075 struct ufs_dev_info *dev_info = &hba->dev_info; 8076 u32 ext_ufs_feature; 8077 u8 mask = 0; 8078 8079 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300) 8080 return; 8081 8082 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8083 8084 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF) 8085 mask |= MASK_EE_TOO_LOW_TEMP; 8086 8087 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF) 8088 mask |= MASK_EE_TOO_HIGH_TEMP; 8089 8090 if (mask) { 8091 ufshcd_enable_ee(hba, mask); 8092 ufs_hwmon_probe(hba, mask); 8093 } 8094 } 8095 8096 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf) 8097 { 8098 struct ufs_dev_info *dev_info = &hba->dev_info; 8099 u32 ext_ufs_feature; 8100 u32 ext_iid_en = 0; 8101 int err; 8102 8103 /* Only UFS-4.0 and above may support EXT_IID */ 8104 if (dev_info->wspecversion < 0x400) 8105 goto out; 8106 8107 ext_ufs_feature = get_unaligned_be32(desc_buf + 8108 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP); 8109 if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP)) 8110 goto out; 8111 8112 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8113 QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en); 8114 if (err) 8115 dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err); 8116 8117 out: 8118 dev_info->b_ext_iid_en = ext_iid_en; 8119 } 8120 8121 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, 8122 const struct ufs_dev_quirk *fixups) 8123 { 8124 const struct ufs_dev_quirk *f; 8125 struct ufs_dev_info *dev_info = &hba->dev_info; 8126 8127 if (!fixups) 8128 return; 8129 8130 for (f = fixups; f->quirk; f++) { 8131 if ((f->wmanufacturerid == dev_info->wmanufacturerid || 8132 f->wmanufacturerid == UFS_ANY_VENDOR) && 8133 ((dev_info->model && 8134 STR_PRFX_EQUAL(f->model, dev_info->model)) || 8135 !strcmp(f->model, UFS_ANY_MODEL))) 8136 hba->dev_quirks |= f->quirk; 8137 } 8138 } 8139 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks); 8140 8141 static void ufs_fixup_device_setup(struct ufs_hba *hba) 8142 { 8143 /* fix by general quirk table */ 8144 ufshcd_fixup_dev_quirks(hba, ufs_fixups); 8145 8146 /* allow vendors to fix quirks */ 8147 ufshcd_vops_fixup_dev_quirks(hba); 8148 } 8149 8150 static int ufs_get_device_desc(struct ufs_hba *hba) 8151 { 8152 int err; 8153 u8 model_index; 8154 u8 *desc_buf; 8155 struct ufs_dev_info *dev_info = &hba->dev_info; 8156 8157 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8158 if (!desc_buf) { 8159 err = -ENOMEM; 8160 goto out; 8161 } 8162 8163 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf, 8164 QUERY_DESC_MAX_SIZE); 8165 if (err) { 8166 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n", 8167 __func__, err); 8168 goto out; 8169 } 8170 8171 /* 8172 * getting vendor (manufacturerID) and Bank Index in big endian 8173 * format 8174 */ 8175 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 | 8176 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1]; 8177 8178 /* getting Specification Version in big endian format */ 8179 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 | 8180 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1]; 8181 dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH]; 8182 8183 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME]; 8184 8185 err = ufshcd_read_string_desc(hba, model_index, 8186 &dev_info->model, SD_ASCII_STD); 8187 if (err < 0) { 8188 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n", 8189 __func__, err); 8190 goto out; 8191 } 8192 8193 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] + 8194 desc_buf[DEVICE_DESC_PARAM_NUM_WLU]; 8195 8196 ufs_fixup_device_setup(hba); 8197 8198 ufshcd_wb_probe(hba, desc_buf); 8199 8200 ufshcd_temp_notif_probe(hba, desc_buf); 8201 8202 if (hba->ext_iid_sup) 8203 ufshcd_ext_iid_probe(hba, desc_buf); 8204 8205 /* 8206 * ufshcd_read_string_desc returns size of the string 8207 * reset the error value 8208 */ 8209 err = 0; 8210 8211 out: 8212 kfree(desc_buf); 8213 return err; 8214 } 8215 8216 static void ufs_put_device_desc(struct ufs_hba *hba) 8217 { 8218 struct ufs_dev_info *dev_info = &hba->dev_info; 8219 8220 kfree(dev_info->model); 8221 dev_info->model = NULL; 8222 } 8223 8224 /** 8225 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro 8226 * @hba: per-adapter instance 8227 * 8228 * PA_TActivate parameter can be tuned manually if UniPro version is less than 8229 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's 8230 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce 8231 * the hibern8 exit latency. 8232 * 8233 * Return: zero on success, non-zero error value on failure. 8234 */ 8235 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba) 8236 { 8237 int ret = 0; 8238 u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate; 8239 8240 ret = ufshcd_dme_peer_get(hba, 8241 UIC_ARG_MIB_SEL( 8242 RX_MIN_ACTIVATETIME_CAPABILITY, 8243 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), 8244 &peer_rx_min_activatetime); 8245 if (ret) 8246 goto out; 8247 8248 /* make sure proper unit conversion is applied */ 8249 tuned_pa_tactivate = 8250 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US) 8251 / PA_TACTIVATE_TIME_UNIT_US); 8252 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8253 tuned_pa_tactivate); 8254 8255 out: 8256 return ret; 8257 } 8258 8259 /** 8260 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro 8261 * @hba: per-adapter instance 8262 * 8263 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than 8264 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's 8265 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY. 8266 * This optimal value can help reduce the hibern8 exit latency. 8267 * 8268 * Return: zero on success, non-zero error value on failure. 8269 */ 8270 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba) 8271 { 8272 int ret = 0; 8273 u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0; 8274 u32 max_hibern8_time, tuned_pa_hibern8time; 8275 8276 ret = ufshcd_dme_get(hba, 8277 UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY, 8278 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)), 8279 &local_tx_hibern8_time_cap); 8280 if (ret) 8281 goto out; 8282 8283 ret = ufshcd_dme_peer_get(hba, 8284 UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY, 8285 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)), 8286 &peer_rx_hibern8_time_cap); 8287 if (ret) 8288 goto out; 8289 8290 max_hibern8_time = max(local_tx_hibern8_time_cap, 8291 peer_rx_hibern8_time_cap); 8292 /* make sure proper unit conversion is applied */ 8293 tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US) 8294 / PA_HIBERN8_TIME_UNIT_US); 8295 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME), 8296 tuned_pa_hibern8time); 8297 out: 8298 return ret; 8299 } 8300 8301 /** 8302 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is 8303 * less than device PA_TACTIVATE time. 8304 * @hba: per-adapter instance 8305 * 8306 * Some UFS devices require host PA_TACTIVATE to be lower than device 8307 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk 8308 * for such devices. 8309 * 8310 * Return: zero on success, non-zero error value on failure. 8311 */ 8312 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba) 8313 { 8314 int ret = 0; 8315 u32 granularity, peer_granularity; 8316 u32 pa_tactivate, peer_pa_tactivate; 8317 u32 pa_tactivate_us, peer_pa_tactivate_us; 8318 static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100}; 8319 8320 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8321 &granularity); 8322 if (ret) 8323 goto out; 8324 8325 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY), 8326 &peer_granularity); 8327 if (ret) 8328 goto out; 8329 8330 if ((granularity < PA_GRANULARITY_MIN_VAL) || 8331 (granularity > PA_GRANULARITY_MAX_VAL)) { 8332 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d", 8333 __func__, granularity); 8334 return -EINVAL; 8335 } 8336 8337 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) || 8338 (peer_granularity > PA_GRANULARITY_MAX_VAL)) { 8339 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d", 8340 __func__, peer_granularity); 8341 return -EINVAL; 8342 } 8343 8344 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate); 8345 if (ret) 8346 goto out; 8347 8348 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE), 8349 &peer_pa_tactivate); 8350 if (ret) 8351 goto out; 8352 8353 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1]; 8354 peer_pa_tactivate_us = peer_pa_tactivate * 8355 gran_to_us_table[peer_granularity - 1]; 8356 8357 if (pa_tactivate_us >= peer_pa_tactivate_us) { 8358 u32 new_peer_pa_tactivate; 8359 8360 new_peer_pa_tactivate = pa_tactivate_us / 8361 gran_to_us_table[peer_granularity - 1]; 8362 new_peer_pa_tactivate++; 8363 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 8364 new_peer_pa_tactivate); 8365 } 8366 8367 out: 8368 return ret; 8369 } 8370 8371 static void ufshcd_tune_unipro_params(struct ufs_hba *hba) 8372 { 8373 if (ufshcd_is_unipro_pa_params_tuning_req(hba)) { 8374 ufshcd_tune_pa_tactivate(hba); 8375 ufshcd_tune_pa_hibern8time(hba); 8376 } 8377 8378 ufshcd_vops_apply_dev_quirks(hba); 8379 8380 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE) 8381 /* set 1ms timeout for PA_TACTIVATE */ 8382 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10); 8383 8384 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE) 8385 ufshcd_quirk_tune_host_pa_tactivate(hba); 8386 } 8387 8388 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba) 8389 { 8390 hba->ufs_stats.hibern8_exit_cnt = 0; 8391 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0); 8392 hba->req_abort_count = 0; 8393 } 8394 8395 static int ufshcd_device_geo_params_init(struct ufs_hba *hba) 8396 { 8397 int err; 8398 u8 *desc_buf; 8399 8400 desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL); 8401 if (!desc_buf) { 8402 err = -ENOMEM; 8403 goto out; 8404 } 8405 8406 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0, 8407 desc_buf, QUERY_DESC_MAX_SIZE); 8408 if (err) { 8409 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n", 8410 __func__, err); 8411 goto out; 8412 } 8413 8414 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1) 8415 hba->dev_info.max_lu_supported = 32; 8416 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0) 8417 hba->dev_info.max_lu_supported = 8; 8418 8419 out: 8420 kfree(desc_buf); 8421 return err; 8422 } 8423 8424 struct ufs_ref_clk { 8425 unsigned long freq_hz; 8426 enum ufs_ref_clk_freq val; 8427 }; 8428 8429 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = { 8430 {19200000, REF_CLK_FREQ_19_2_MHZ}, 8431 {26000000, REF_CLK_FREQ_26_MHZ}, 8432 {38400000, REF_CLK_FREQ_38_4_MHZ}, 8433 {52000000, REF_CLK_FREQ_52_MHZ}, 8434 {0, REF_CLK_FREQ_INVAL}, 8435 }; 8436 8437 static enum ufs_ref_clk_freq 8438 ufs_get_bref_clk_from_hz(unsigned long freq) 8439 { 8440 int i; 8441 8442 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++) 8443 if (ufs_ref_clk_freqs[i].freq_hz == freq) 8444 return ufs_ref_clk_freqs[i].val; 8445 8446 return REF_CLK_FREQ_INVAL; 8447 } 8448 8449 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk) 8450 { 8451 unsigned long freq; 8452 8453 freq = clk_get_rate(refclk); 8454 8455 hba->dev_ref_clk_freq = 8456 ufs_get_bref_clk_from_hz(freq); 8457 8458 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 8459 dev_err(hba->dev, 8460 "invalid ref_clk setting = %ld\n", freq); 8461 } 8462 8463 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba) 8464 { 8465 int err; 8466 u32 ref_clk; 8467 u32 freq = hba->dev_ref_clk_freq; 8468 8469 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR, 8470 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk); 8471 8472 if (err) { 8473 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n", 8474 err); 8475 goto out; 8476 } 8477 8478 if (ref_clk == freq) 8479 goto out; /* nothing to update */ 8480 8481 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, 8482 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq); 8483 8484 if (err) { 8485 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n", 8486 ufs_ref_clk_freqs[freq].freq_hz); 8487 goto out; 8488 } 8489 8490 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n", 8491 ufs_ref_clk_freqs[freq].freq_hz); 8492 8493 out: 8494 return err; 8495 } 8496 8497 static int ufshcd_device_params_init(struct ufs_hba *hba) 8498 { 8499 bool flag; 8500 int ret; 8501 8502 /* Init UFS geometry descriptor related parameters */ 8503 ret = ufshcd_device_geo_params_init(hba); 8504 if (ret) 8505 goto out; 8506 8507 /* Check and apply UFS device quirks */ 8508 ret = ufs_get_device_desc(hba); 8509 if (ret) { 8510 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n", 8511 __func__, ret); 8512 goto out; 8513 } 8514 8515 ufshcd_get_ref_clk_gating_wait(hba); 8516 8517 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG, 8518 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag)) 8519 hba->dev_info.f_power_on_wp_en = flag; 8520 8521 /* Probe maximum power mode co-supported by both UFS host and device */ 8522 if (ufshcd_get_max_pwr_mode(hba)) 8523 dev_err(hba->dev, 8524 "%s: Failed getting max supported power mode\n", 8525 __func__); 8526 out: 8527 return ret; 8528 } 8529 8530 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba) 8531 { 8532 int err; 8533 struct ufs_query_req *request = NULL; 8534 struct ufs_query_res *response = NULL; 8535 struct ufs_dev_info *dev_info = &hba->dev_info; 8536 struct utp_upiu_query_v4_0 *upiu_data; 8537 8538 if (dev_info->wspecversion < 0x400) 8539 return; 8540 8541 ufshcd_hold(hba); 8542 8543 mutex_lock(&hba->dev_cmd.lock); 8544 8545 ufshcd_init_query(hba, &request, &response, 8546 UPIU_QUERY_OPCODE_WRITE_ATTR, 8547 QUERY_ATTR_IDN_TIMESTAMP, 0, 0); 8548 8549 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST; 8550 8551 upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req; 8552 8553 put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3); 8554 8555 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT); 8556 8557 if (err) 8558 dev_err(hba->dev, "%s: failed to set timestamp %d\n", 8559 __func__, err); 8560 8561 mutex_unlock(&hba->dev_cmd.lock); 8562 ufshcd_release(hba); 8563 } 8564 8565 /** 8566 * ufshcd_add_lus - probe and add UFS logical units 8567 * @hba: per-adapter instance 8568 * 8569 * Return: 0 upon success; < 0 upon failure. 8570 */ 8571 static int ufshcd_add_lus(struct ufs_hba *hba) 8572 { 8573 int ret; 8574 8575 /* Add required well known logical units to scsi mid layer */ 8576 ret = ufshcd_scsi_add_wlus(hba); 8577 if (ret) 8578 goto out; 8579 8580 /* Initialize devfreq after UFS device is detected */ 8581 if (ufshcd_is_clkscaling_supported(hba)) { 8582 memcpy(&hba->clk_scaling.saved_pwr_info, 8583 &hba->pwr_info, 8584 sizeof(struct ufs_pa_layer_attr)); 8585 hba->clk_scaling.is_allowed = true; 8586 8587 ret = ufshcd_devfreq_init(hba); 8588 if (ret) 8589 goto out; 8590 8591 hba->clk_scaling.is_enabled = true; 8592 ufshcd_init_clk_scaling_sysfs(hba); 8593 } 8594 8595 ufs_bsg_probe(hba); 8596 scsi_scan_host(hba->host); 8597 8598 out: 8599 return ret; 8600 } 8601 8602 /* SDB - Single Doorbell */ 8603 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs) 8604 { 8605 size_t ucdl_size, utrdl_size; 8606 8607 ucdl_size = ufshcd_get_ucd_size(hba) * nutrs; 8608 dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr, 8609 hba->ucdl_dma_addr); 8610 8611 utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs; 8612 dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr, 8613 hba->utrdl_dma_addr); 8614 8615 devm_kfree(hba->dev, hba->lrb); 8616 } 8617 8618 static int ufshcd_alloc_mcq(struct ufs_hba *hba) 8619 { 8620 int ret; 8621 int old_nutrs = hba->nutrs; 8622 8623 ret = ufshcd_mcq_decide_queue_depth(hba); 8624 if (ret < 0) 8625 return ret; 8626 8627 hba->nutrs = ret; 8628 ret = ufshcd_mcq_init(hba); 8629 if (ret) 8630 goto err; 8631 8632 /* 8633 * Previously allocated memory for nutrs may not be enough in MCQ mode. 8634 * Number of supported tags in MCQ mode may be larger than SDB mode. 8635 */ 8636 if (hba->nutrs != old_nutrs) { 8637 ufshcd_release_sdb_queue(hba, old_nutrs); 8638 ret = ufshcd_memory_alloc(hba); 8639 if (ret) 8640 goto err; 8641 ufshcd_host_memory_configure(hba); 8642 } 8643 8644 ret = ufshcd_mcq_memory_alloc(hba); 8645 if (ret) 8646 goto err; 8647 8648 return 0; 8649 err: 8650 hba->nutrs = old_nutrs; 8651 return ret; 8652 } 8653 8654 static void ufshcd_config_mcq(struct ufs_hba *hba) 8655 { 8656 int ret; 8657 u32 intrs; 8658 8659 ret = ufshcd_mcq_vops_config_esi(hba); 8660 dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : ""); 8661 8662 intrs = UFSHCD_ENABLE_MCQ_INTRS; 8663 if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR) 8664 intrs &= ~MCQ_CQ_EVENT_STATUS; 8665 ufshcd_enable_intr(hba, intrs); 8666 ufshcd_mcq_make_queues_operational(hba); 8667 ufshcd_mcq_config_mac(hba, hba->nutrs); 8668 8669 hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 8670 hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED; 8671 8672 /* Select MCQ mode */ 8673 ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1, 8674 REG_UFS_MEM_CFG); 8675 hba->mcq_enabled = true; 8676 8677 dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n", 8678 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT], 8679 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL], 8680 hba->nutrs); 8681 } 8682 8683 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params) 8684 { 8685 int ret; 8686 struct Scsi_Host *host = hba->host; 8687 8688 hba->ufshcd_state = UFSHCD_STATE_RESET; 8689 8690 ret = ufshcd_link_startup(hba); 8691 if (ret) 8692 return ret; 8693 8694 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION) 8695 return ret; 8696 8697 /* Debug counters initialization */ 8698 ufshcd_clear_dbg_ufs_stats(hba); 8699 8700 /* UniPro link is active now */ 8701 ufshcd_set_link_active(hba); 8702 8703 /* Reconfigure MCQ upon reset */ 8704 if (is_mcq_enabled(hba) && !init_dev_params) 8705 ufshcd_config_mcq(hba); 8706 8707 /* Verify device initialization by sending NOP OUT UPIU */ 8708 ret = ufshcd_verify_dev_init(hba); 8709 if (ret) 8710 return ret; 8711 8712 /* Initiate UFS initialization, and waiting until completion */ 8713 ret = ufshcd_complete_dev_init(hba); 8714 if (ret) 8715 return ret; 8716 8717 /* 8718 * Initialize UFS device parameters used by driver, these 8719 * parameters are associated with UFS descriptors. 8720 */ 8721 if (init_dev_params) { 8722 ret = ufshcd_device_params_init(hba); 8723 if (ret) 8724 return ret; 8725 if (is_mcq_supported(hba) && !hba->scsi_host_added) { 8726 ret = ufshcd_alloc_mcq(hba); 8727 if (!ret) { 8728 ufshcd_config_mcq(hba); 8729 } else { 8730 /* Continue with SDB mode */ 8731 use_mcq_mode = false; 8732 dev_err(hba->dev, "MCQ mode is disabled, err=%d\n", 8733 ret); 8734 } 8735 ret = scsi_add_host(host, hba->dev); 8736 if (ret) { 8737 dev_err(hba->dev, "scsi_add_host failed\n"); 8738 return ret; 8739 } 8740 hba->scsi_host_added = true; 8741 } else if (is_mcq_supported(hba)) { 8742 /* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */ 8743 ufshcd_config_mcq(hba); 8744 } 8745 } 8746 8747 ufshcd_tune_unipro_params(hba); 8748 8749 /* UFS device is also active now */ 8750 ufshcd_set_ufs_dev_active(hba); 8751 ufshcd_force_reset_auto_bkops(hba); 8752 8753 ufshcd_set_timestamp_attr(hba); 8754 8755 /* Gear up to HS gear if supported */ 8756 if (hba->max_pwr_info.is_valid) { 8757 /* 8758 * Set the right value to bRefClkFreq before attempting to 8759 * switch to HS gears. 8760 */ 8761 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL) 8762 ufshcd_set_dev_ref_clk(hba); 8763 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info); 8764 if (ret) { 8765 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n", 8766 __func__, ret); 8767 return ret; 8768 } 8769 } 8770 8771 return 0; 8772 } 8773 8774 /** 8775 * ufshcd_probe_hba - probe hba to detect device and initialize it 8776 * @hba: per-adapter instance 8777 * @init_dev_params: whether or not to call ufshcd_device_params_init(). 8778 * 8779 * Execute link-startup and verify device initialization 8780 * 8781 * Return: 0 upon success; < 0 upon failure. 8782 */ 8783 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params) 8784 { 8785 ktime_t start = ktime_get(); 8786 unsigned long flags; 8787 int ret; 8788 8789 ret = ufshcd_device_init(hba, init_dev_params); 8790 if (ret) 8791 goto out; 8792 8793 if (!hba->pm_op_in_progress && 8794 (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) { 8795 /* Reset the device and controller before doing reinit */ 8796 ufshcd_device_reset(hba); 8797 ufs_put_device_desc(hba); 8798 ufshcd_hba_stop(hba); 8799 ufshcd_vops_reinit_notify(hba); 8800 ret = ufshcd_hba_enable(hba); 8801 if (ret) { 8802 dev_err(hba->dev, "Host controller enable failed\n"); 8803 ufshcd_print_evt_hist(hba); 8804 ufshcd_print_host_state(hba); 8805 goto out; 8806 } 8807 8808 /* Reinit the device */ 8809 ret = ufshcd_device_init(hba, init_dev_params); 8810 if (ret) 8811 goto out; 8812 } 8813 8814 ufshcd_print_pwr_info(hba); 8815 8816 /* 8817 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec) 8818 * and for removable UFS card as well, hence always set the parameter. 8819 * Note: Error handler may issue the device reset hence resetting 8820 * bActiveICCLevel as well so it is always safe to set this here. 8821 */ 8822 ufshcd_set_active_icc_lvl(hba); 8823 8824 /* Enable UFS Write Booster if supported */ 8825 ufshcd_configure_wb(hba); 8826 8827 if (hba->ee_usr_mask) 8828 ufshcd_write_ee_control(hba); 8829 /* Enable Auto-Hibernate if configured */ 8830 ufshcd_auto_hibern8_enable(hba); 8831 8832 out: 8833 spin_lock_irqsave(hba->host->host_lock, flags); 8834 if (ret) 8835 hba->ufshcd_state = UFSHCD_STATE_ERROR; 8836 else if (hba->ufshcd_state == UFSHCD_STATE_RESET) 8837 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL; 8838 spin_unlock_irqrestore(hba->host->host_lock, flags); 8839 8840 trace_ufshcd_init(dev_name(hba->dev), ret, 8841 ktime_to_us(ktime_sub(ktime_get(), start)), 8842 hba->curr_dev_pwr_mode, hba->uic_link_state); 8843 return ret; 8844 } 8845 8846 /** 8847 * ufshcd_async_scan - asynchronous execution for probing hba 8848 * @data: data pointer to pass to this function 8849 * @cookie: cookie data 8850 */ 8851 static void ufshcd_async_scan(void *data, async_cookie_t cookie) 8852 { 8853 struct ufs_hba *hba = (struct ufs_hba *)data; 8854 int ret; 8855 8856 down(&hba->host_sem); 8857 /* Initialize hba, detect and initialize UFS device */ 8858 ret = ufshcd_probe_hba(hba, true); 8859 up(&hba->host_sem); 8860 if (ret) 8861 goto out; 8862 8863 /* Probe and add UFS logical units */ 8864 ret = ufshcd_add_lus(hba); 8865 8866 out: 8867 pm_runtime_put_sync(hba->dev); 8868 8869 if (ret) 8870 dev_err(hba->dev, "%s failed: %d\n", __func__, ret); 8871 } 8872 8873 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd) 8874 { 8875 struct ufs_hba *hba = shost_priv(scmd->device->host); 8876 8877 if (!hba->system_suspending) { 8878 /* Activate the error handler in the SCSI core. */ 8879 return SCSI_EH_NOT_HANDLED; 8880 } 8881 8882 /* 8883 * If we get here we know that no TMFs are outstanding and also that 8884 * the only pending command is a START STOP UNIT command. Handle the 8885 * timeout of that command directly to prevent a deadlock between 8886 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler(). 8887 */ 8888 ufshcd_link_recovery(hba); 8889 dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n", 8890 __func__, hba->outstanding_tasks); 8891 8892 return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE; 8893 } 8894 8895 static const struct attribute_group *ufshcd_driver_groups[] = { 8896 &ufs_sysfs_unit_descriptor_group, 8897 &ufs_sysfs_lun_attributes_group, 8898 NULL, 8899 }; 8900 8901 static struct ufs_hba_variant_params ufs_hba_vps = { 8902 .hba_enable_delay_us = 1000, 8903 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40), 8904 .devfreq_profile.polling_ms = 100, 8905 .devfreq_profile.target = ufshcd_devfreq_target, 8906 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status, 8907 .ondemand_data.upthreshold = 70, 8908 .ondemand_data.downdifferential = 5, 8909 }; 8910 8911 static const struct scsi_host_template ufshcd_driver_template = { 8912 .module = THIS_MODULE, 8913 .name = UFSHCD, 8914 .proc_name = UFSHCD, 8915 .map_queues = ufshcd_map_queues, 8916 .queuecommand = ufshcd_queuecommand, 8917 .mq_poll = ufshcd_poll, 8918 .slave_alloc = ufshcd_slave_alloc, 8919 .slave_configure = ufshcd_slave_configure, 8920 .slave_destroy = ufshcd_slave_destroy, 8921 .change_queue_depth = ufshcd_change_queue_depth, 8922 .eh_abort_handler = ufshcd_abort, 8923 .eh_device_reset_handler = ufshcd_eh_device_reset_handler, 8924 .eh_host_reset_handler = ufshcd_eh_host_reset_handler, 8925 .eh_timed_out = ufshcd_eh_timed_out, 8926 .this_id = -1, 8927 .sg_tablesize = SG_ALL, 8928 .cmd_per_lun = UFSHCD_CMD_PER_LUN, 8929 .can_queue = UFSHCD_CAN_QUEUE, 8930 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX, 8931 .max_sectors = SZ_1M / SECTOR_SIZE, 8932 .max_host_blocked = 1, 8933 .track_queue_depth = 1, 8934 .skip_settle_delay = 1, 8935 .sdev_groups = ufshcd_driver_groups, 8936 .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS, 8937 }; 8938 8939 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg, 8940 int ua) 8941 { 8942 int ret; 8943 8944 if (!vreg) 8945 return 0; 8946 8947 /* 8948 * "set_load" operation shall be required on those regulators 8949 * which specifically configured current limitation. Otherwise 8950 * zero max_uA may cause unexpected behavior when regulator is 8951 * enabled or set as high power mode. 8952 */ 8953 if (!vreg->max_uA) 8954 return 0; 8955 8956 ret = regulator_set_load(vreg->reg, ua); 8957 if (ret < 0) { 8958 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n", 8959 __func__, vreg->name, ua, ret); 8960 } 8961 8962 return ret; 8963 } 8964 8965 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba, 8966 struct ufs_vreg *vreg) 8967 { 8968 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA); 8969 } 8970 8971 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba, 8972 struct ufs_vreg *vreg) 8973 { 8974 if (!vreg) 8975 return 0; 8976 8977 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA); 8978 } 8979 8980 static int ufshcd_config_vreg(struct device *dev, 8981 struct ufs_vreg *vreg, bool on) 8982 { 8983 if (regulator_count_voltages(vreg->reg) <= 0) 8984 return 0; 8985 8986 return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0); 8987 } 8988 8989 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg) 8990 { 8991 int ret = 0; 8992 8993 if (!vreg || vreg->enabled) 8994 goto out; 8995 8996 ret = ufshcd_config_vreg(dev, vreg, true); 8997 if (!ret) 8998 ret = regulator_enable(vreg->reg); 8999 9000 if (!ret) 9001 vreg->enabled = true; 9002 else 9003 dev_err(dev, "%s: %s enable failed, err=%d\n", 9004 __func__, vreg->name, ret); 9005 out: 9006 return ret; 9007 } 9008 9009 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg) 9010 { 9011 int ret = 0; 9012 9013 if (!vreg || !vreg->enabled || vreg->always_on) 9014 goto out; 9015 9016 ret = regulator_disable(vreg->reg); 9017 9018 if (!ret) { 9019 /* ignore errors on applying disable config */ 9020 ufshcd_config_vreg(dev, vreg, false); 9021 vreg->enabled = false; 9022 } else { 9023 dev_err(dev, "%s: %s disable failed, err=%d\n", 9024 __func__, vreg->name, ret); 9025 } 9026 out: 9027 return ret; 9028 } 9029 9030 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on) 9031 { 9032 int ret = 0; 9033 struct device *dev = hba->dev; 9034 struct ufs_vreg_info *info = &hba->vreg_info; 9035 9036 ret = ufshcd_toggle_vreg(dev, info->vcc, on); 9037 if (ret) 9038 goto out; 9039 9040 ret = ufshcd_toggle_vreg(dev, info->vccq, on); 9041 if (ret) 9042 goto out; 9043 9044 ret = ufshcd_toggle_vreg(dev, info->vccq2, on); 9045 9046 out: 9047 if (ret) { 9048 ufshcd_toggle_vreg(dev, info->vccq2, false); 9049 ufshcd_toggle_vreg(dev, info->vccq, false); 9050 ufshcd_toggle_vreg(dev, info->vcc, false); 9051 } 9052 return ret; 9053 } 9054 9055 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on) 9056 { 9057 struct ufs_vreg_info *info = &hba->vreg_info; 9058 9059 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on); 9060 } 9061 9062 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg) 9063 { 9064 int ret = 0; 9065 9066 if (!vreg) 9067 goto out; 9068 9069 vreg->reg = devm_regulator_get(dev, vreg->name); 9070 if (IS_ERR(vreg->reg)) { 9071 ret = PTR_ERR(vreg->reg); 9072 dev_err(dev, "%s: %s get failed, err=%d\n", 9073 __func__, vreg->name, ret); 9074 } 9075 out: 9076 return ret; 9077 } 9078 EXPORT_SYMBOL_GPL(ufshcd_get_vreg); 9079 9080 static int ufshcd_init_vreg(struct ufs_hba *hba) 9081 { 9082 int ret = 0; 9083 struct device *dev = hba->dev; 9084 struct ufs_vreg_info *info = &hba->vreg_info; 9085 9086 ret = ufshcd_get_vreg(dev, info->vcc); 9087 if (ret) 9088 goto out; 9089 9090 ret = ufshcd_get_vreg(dev, info->vccq); 9091 if (!ret) 9092 ret = ufshcd_get_vreg(dev, info->vccq2); 9093 out: 9094 return ret; 9095 } 9096 9097 static int ufshcd_init_hba_vreg(struct ufs_hba *hba) 9098 { 9099 struct ufs_vreg_info *info = &hba->vreg_info; 9100 9101 return ufshcd_get_vreg(hba->dev, info->vdd_hba); 9102 } 9103 9104 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on) 9105 { 9106 int ret = 0; 9107 struct ufs_clk_info *clki; 9108 struct list_head *head = &hba->clk_list_head; 9109 unsigned long flags; 9110 ktime_t start = ktime_get(); 9111 bool clk_state_changed = false; 9112 9113 if (list_empty(head)) 9114 goto out; 9115 9116 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE); 9117 if (ret) 9118 return ret; 9119 9120 list_for_each_entry(clki, head, list) { 9121 if (!IS_ERR_OR_NULL(clki->clk)) { 9122 /* 9123 * Don't disable clocks which are needed 9124 * to keep the link active. 9125 */ 9126 if (ufshcd_is_link_active(hba) && 9127 clki->keep_link_active) 9128 continue; 9129 9130 clk_state_changed = on ^ clki->enabled; 9131 if (on && !clki->enabled) { 9132 ret = clk_prepare_enable(clki->clk); 9133 if (ret) { 9134 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n", 9135 __func__, clki->name, ret); 9136 goto out; 9137 } 9138 } else if (!on && clki->enabled) { 9139 clk_disable_unprepare(clki->clk); 9140 } 9141 clki->enabled = on; 9142 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__, 9143 clki->name, on ? "en" : "dis"); 9144 } 9145 } 9146 9147 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE); 9148 if (ret) 9149 return ret; 9150 9151 out: 9152 if (ret) { 9153 list_for_each_entry(clki, head, list) { 9154 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled) 9155 clk_disable_unprepare(clki->clk); 9156 } 9157 } else if (!ret && on) { 9158 spin_lock_irqsave(hba->host->host_lock, flags); 9159 hba->clk_gating.state = CLKS_ON; 9160 trace_ufshcd_clk_gating(dev_name(hba->dev), 9161 hba->clk_gating.state); 9162 spin_unlock_irqrestore(hba->host->host_lock, flags); 9163 } 9164 9165 if (clk_state_changed) 9166 trace_ufshcd_profile_clk_gating(dev_name(hba->dev), 9167 (on ? "on" : "off"), 9168 ktime_to_us(ktime_sub(ktime_get(), start)), ret); 9169 return ret; 9170 } 9171 9172 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba) 9173 { 9174 u32 freq; 9175 int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq); 9176 9177 if (ret) { 9178 dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret); 9179 return REF_CLK_FREQ_INVAL; 9180 } 9181 9182 return ufs_get_bref_clk_from_hz(freq); 9183 } 9184 9185 static int ufshcd_init_clocks(struct ufs_hba *hba) 9186 { 9187 int ret = 0; 9188 struct ufs_clk_info *clki; 9189 struct device *dev = hba->dev; 9190 struct list_head *head = &hba->clk_list_head; 9191 9192 if (list_empty(head)) 9193 goto out; 9194 9195 list_for_each_entry(clki, head, list) { 9196 if (!clki->name) 9197 continue; 9198 9199 clki->clk = devm_clk_get(dev, clki->name); 9200 if (IS_ERR(clki->clk)) { 9201 ret = PTR_ERR(clki->clk); 9202 dev_err(dev, "%s: %s clk get failed, %d\n", 9203 __func__, clki->name, ret); 9204 goto out; 9205 } 9206 9207 /* 9208 * Parse device ref clk freq as per device tree "ref_clk". 9209 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL 9210 * in ufshcd_alloc_host(). 9211 */ 9212 if (!strcmp(clki->name, "ref_clk")) 9213 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk); 9214 9215 if (clki->max_freq) { 9216 ret = clk_set_rate(clki->clk, clki->max_freq); 9217 if (ret) { 9218 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n", 9219 __func__, clki->name, 9220 clki->max_freq, ret); 9221 goto out; 9222 } 9223 clki->curr_freq = clki->max_freq; 9224 } 9225 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__, 9226 clki->name, clk_get_rate(clki->clk)); 9227 } 9228 out: 9229 return ret; 9230 } 9231 9232 static int ufshcd_variant_hba_init(struct ufs_hba *hba) 9233 { 9234 int err = 0; 9235 9236 if (!hba->vops) 9237 goto out; 9238 9239 err = ufshcd_vops_init(hba); 9240 if (err) 9241 dev_err_probe(hba->dev, err, 9242 "%s: variant %s init failed with err %d\n", 9243 __func__, ufshcd_get_var_name(hba), err); 9244 out: 9245 return err; 9246 } 9247 9248 static void ufshcd_variant_hba_exit(struct ufs_hba *hba) 9249 { 9250 if (!hba->vops) 9251 return; 9252 9253 ufshcd_vops_exit(hba); 9254 } 9255 9256 static int ufshcd_hba_init(struct ufs_hba *hba) 9257 { 9258 int err; 9259 9260 /* 9261 * Handle host controller power separately from the UFS device power 9262 * rails as it will help controlling the UFS host controller power 9263 * collapse easily which is different than UFS device power collapse. 9264 * Also, enable the host controller power before we go ahead with rest 9265 * of the initialization here. 9266 */ 9267 err = ufshcd_init_hba_vreg(hba); 9268 if (err) 9269 goto out; 9270 9271 err = ufshcd_setup_hba_vreg(hba, true); 9272 if (err) 9273 goto out; 9274 9275 err = ufshcd_init_clocks(hba); 9276 if (err) 9277 goto out_disable_hba_vreg; 9278 9279 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL) 9280 hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba); 9281 9282 err = ufshcd_setup_clocks(hba, true); 9283 if (err) 9284 goto out_disable_hba_vreg; 9285 9286 err = ufshcd_init_vreg(hba); 9287 if (err) 9288 goto out_disable_clks; 9289 9290 err = ufshcd_setup_vreg(hba, true); 9291 if (err) 9292 goto out_disable_clks; 9293 9294 err = ufshcd_variant_hba_init(hba); 9295 if (err) 9296 goto out_disable_vreg; 9297 9298 ufs_debugfs_hba_init(hba); 9299 9300 hba->is_powered = true; 9301 goto out; 9302 9303 out_disable_vreg: 9304 ufshcd_setup_vreg(hba, false); 9305 out_disable_clks: 9306 ufshcd_setup_clocks(hba, false); 9307 out_disable_hba_vreg: 9308 ufshcd_setup_hba_vreg(hba, false); 9309 out: 9310 return err; 9311 } 9312 9313 static void ufshcd_hba_exit(struct ufs_hba *hba) 9314 { 9315 if (hba->is_powered) { 9316 ufshcd_exit_clk_scaling(hba); 9317 ufshcd_exit_clk_gating(hba); 9318 if (hba->eh_wq) 9319 destroy_workqueue(hba->eh_wq); 9320 ufs_debugfs_hba_exit(hba); 9321 ufshcd_variant_hba_exit(hba); 9322 ufshcd_setup_vreg(hba, false); 9323 ufshcd_setup_clocks(hba, false); 9324 ufshcd_setup_hba_vreg(hba, false); 9325 hba->is_powered = false; 9326 ufs_put_device_desc(hba); 9327 } 9328 } 9329 9330 static int ufshcd_execute_start_stop(struct scsi_device *sdev, 9331 enum ufs_dev_pwr_mode pwr_mode, 9332 struct scsi_sense_hdr *sshdr) 9333 { 9334 const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 }; 9335 const struct scsi_exec_args args = { 9336 .sshdr = sshdr, 9337 .req_flags = BLK_MQ_REQ_PM, 9338 .scmd_flags = SCMD_FAIL_IF_RECOVERING, 9339 }; 9340 9341 return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL, 9342 /*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0, 9343 &args); 9344 } 9345 9346 /** 9347 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device 9348 * power mode 9349 * @hba: per adapter instance 9350 * @pwr_mode: device power mode to set 9351 * 9352 * Return: 0 if requested power mode is set successfully; 9353 * < 0 if failed to set the requested power mode. 9354 */ 9355 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba, 9356 enum ufs_dev_pwr_mode pwr_mode) 9357 { 9358 struct scsi_sense_hdr sshdr; 9359 struct scsi_device *sdp; 9360 unsigned long flags; 9361 int ret, retries; 9362 9363 spin_lock_irqsave(hba->host->host_lock, flags); 9364 sdp = hba->ufs_device_wlun; 9365 if (sdp && scsi_device_online(sdp)) 9366 ret = scsi_device_get(sdp); 9367 else 9368 ret = -ENODEV; 9369 spin_unlock_irqrestore(hba->host->host_lock, flags); 9370 9371 if (ret) 9372 return ret; 9373 9374 /* 9375 * If scsi commands fail, the scsi mid-layer schedules scsi error- 9376 * handling, which would wait for host to be resumed. Since we know 9377 * we are functional while we are here, skip host resume in error 9378 * handling context. 9379 */ 9380 hba->host->eh_noresume = 1; 9381 9382 /* 9383 * Current function would be generally called from the power management 9384 * callbacks hence set the RQF_PM flag so that it doesn't resume the 9385 * already suspended childs. 9386 */ 9387 for (retries = 3; retries > 0; --retries) { 9388 ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr); 9389 /* 9390 * scsi_execute() only returns a negative value if the request 9391 * queue is dying. 9392 */ 9393 if (ret <= 0) 9394 break; 9395 } 9396 if (ret) { 9397 sdev_printk(KERN_WARNING, sdp, 9398 "START_STOP failed for power mode: %d, result %x\n", 9399 pwr_mode, ret); 9400 if (ret > 0) { 9401 if (scsi_sense_valid(&sshdr)) 9402 scsi_print_sense_hdr(sdp, NULL, &sshdr); 9403 ret = -EIO; 9404 } 9405 } else { 9406 hba->curr_dev_pwr_mode = pwr_mode; 9407 } 9408 9409 scsi_device_put(sdp); 9410 hba->host->eh_noresume = 0; 9411 return ret; 9412 } 9413 9414 static int ufshcd_link_state_transition(struct ufs_hba *hba, 9415 enum uic_link_state req_link_state, 9416 bool check_for_bkops) 9417 { 9418 int ret = 0; 9419 9420 if (req_link_state == hba->uic_link_state) 9421 return 0; 9422 9423 if (req_link_state == UIC_LINK_HIBERN8_STATE) { 9424 ret = ufshcd_uic_hibern8_enter(hba); 9425 if (!ret) { 9426 ufshcd_set_link_hibern8(hba); 9427 } else { 9428 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9429 __func__, ret); 9430 goto out; 9431 } 9432 } 9433 /* 9434 * If autobkops is enabled, link can't be turned off because 9435 * turning off the link would also turn off the device, except in the 9436 * case of DeepSleep where the device is expected to remain powered. 9437 */ 9438 else if ((req_link_state == UIC_LINK_OFF_STATE) && 9439 (!check_for_bkops || !hba->auto_bkops_enabled)) { 9440 /* 9441 * Let's make sure that link is in low power mode, we are doing 9442 * this currently by putting the link in Hibern8. Otherway to 9443 * put the link in low power mode is to send the DME end point 9444 * to device and then send the DME reset command to local 9445 * unipro. But putting the link in hibern8 is much faster. 9446 * 9447 * Note also that putting the link in Hibern8 is a requirement 9448 * for entering DeepSleep. 9449 */ 9450 ret = ufshcd_uic_hibern8_enter(hba); 9451 if (ret) { 9452 dev_err(hba->dev, "%s: hibern8 enter failed %d\n", 9453 __func__, ret); 9454 goto out; 9455 } 9456 /* 9457 * Change controller state to "reset state" which 9458 * should also put the link in off/reset state 9459 */ 9460 ufshcd_hba_stop(hba); 9461 /* 9462 * TODO: Check if we need any delay to make sure that 9463 * controller is reset 9464 */ 9465 ufshcd_set_link_off(hba); 9466 } 9467 9468 out: 9469 return ret; 9470 } 9471 9472 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba) 9473 { 9474 bool vcc_off = false; 9475 9476 /* 9477 * It seems some UFS devices may keep drawing more than sleep current 9478 * (atleast for 500us) from UFS rails (especially from VCCQ rail). 9479 * To avoid this situation, add 2ms delay before putting these UFS 9480 * rails in LPM mode. 9481 */ 9482 if (!ufshcd_is_link_active(hba) && 9483 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM) 9484 usleep_range(2000, 2100); 9485 9486 /* 9487 * If UFS device is either in UFS_Sleep turn off VCC rail to save some 9488 * power. 9489 * 9490 * If UFS device and link is in OFF state, all power supplies (VCC, 9491 * VCCQ, VCCQ2) can be turned off if power on write protect is not 9492 * required. If UFS link is inactive (Hibern8 or OFF state) and device 9493 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode. 9494 * 9495 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway 9496 * in low power state which would save some power. 9497 * 9498 * If Write Booster is enabled and the device needs to flush the WB 9499 * buffer OR if bkops status is urgent for WB, keep Vcc on. 9500 */ 9501 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9502 !hba->dev_info.is_lu_power_on_wp) { 9503 ufshcd_setup_vreg(hba, false); 9504 vcc_off = true; 9505 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9506 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9507 vcc_off = true; 9508 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) { 9509 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9510 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2); 9511 } 9512 } 9513 9514 /* 9515 * Some UFS devices require delay after VCC power rail is turned-off. 9516 */ 9517 if (vcc_off && hba->vreg_info.vcc && 9518 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM) 9519 usleep_range(5000, 5100); 9520 } 9521 9522 #ifdef CONFIG_PM 9523 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba) 9524 { 9525 int ret = 0; 9526 9527 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) && 9528 !hba->dev_info.is_lu_power_on_wp) { 9529 ret = ufshcd_setup_vreg(hba, true); 9530 } else if (!ufshcd_is_ufs_dev_active(hba)) { 9531 if (!ufshcd_is_link_active(hba)) { 9532 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq); 9533 if (ret) 9534 goto vcc_disable; 9535 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2); 9536 if (ret) 9537 goto vccq_lpm; 9538 } 9539 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true); 9540 } 9541 goto out; 9542 9543 vccq_lpm: 9544 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq); 9545 vcc_disable: 9546 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false); 9547 out: 9548 return ret; 9549 } 9550 #endif /* CONFIG_PM */ 9551 9552 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba) 9553 { 9554 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9555 ufshcd_setup_hba_vreg(hba, false); 9556 } 9557 9558 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba) 9559 { 9560 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba)) 9561 ufshcd_setup_hba_vreg(hba, true); 9562 } 9563 9564 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9565 { 9566 int ret = 0; 9567 bool check_for_bkops; 9568 enum ufs_pm_level pm_lvl; 9569 enum ufs_dev_pwr_mode req_dev_pwr_mode; 9570 enum uic_link_state req_link_state; 9571 9572 hba->pm_op_in_progress = true; 9573 if (pm_op != UFS_SHUTDOWN_PM) { 9574 pm_lvl = pm_op == UFS_RUNTIME_PM ? 9575 hba->rpm_lvl : hba->spm_lvl; 9576 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl); 9577 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl); 9578 } else { 9579 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE; 9580 req_link_state = UIC_LINK_OFF_STATE; 9581 } 9582 9583 /* 9584 * If we can't transition into any of the low power modes 9585 * just gate the clocks. 9586 */ 9587 ufshcd_hold(hba); 9588 hba->clk_gating.is_suspended = true; 9589 9590 if (ufshcd_is_clkscaling_supported(hba)) 9591 ufshcd_clk_scaling_suspend(hba, true); 9592 9593 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE && 9594 req_link_state == UIC_LINK_ACTIVE_STATE) { 9595 goto vops_suspend; 9596 } 9597 9598 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) && 9599 (req_link_state == hba->uic_link_state)) 9600 goto enable_scaling; 9601 9602 /* UFS device & link must be active before we enter in this function */ 9603 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) { 9604 /* Wait err handler finish or trigger err recovery */ 9605 if (!ufshcd_eh_in_progress(hba)) 9606 ufshcd_force_error_recovery(hba); 9607 ret = -EBUSY; 9608 goto enable_scaling; 9609 } 9610 9611 if (pm_op == UFS_RUNTIME_PM) { 9612 if (ufshcd_can_autobkops_during_suspend(hba)) { 9613 /* 9614 * The device is idle with no requests in the queue, 9615 * allow background operations if bkops status shows 9616 * that performance might be impacted. 9617 */ 9618 ret = ufshcd_urgent_bkops(hba); 9619 if (ret) { 9620 /* 9621 * If return err in suspend flow, IO will hang. 9622 * Trigger error handler and break suspend for 9623 * error recovery. 9624 */ 9625 ufshcd_force_error_recovery(hba); 9626 ret = -EBUSY; 9627 goto enable_scaling; 9628 } 9629 } else { 9630 /* make sure that auto bkops is disabled */ 9631 ufshcd_disable_auto_bkops(hba); 9632 } 9633 /* 9634 * If device needs to do BKOP or WB buffer flush during 9635 * Hibern8, keep device power mode as "active power mode" 9636 * and VCC supply. 9637 */ 9638 hba->dev_info.b_rpm_dev_flush_capable = 9639 hba->auto_bkops_enabled || 9640 (((req_link_state == UIC_LINK_HIBERN8_STATE) || 9641 ((req_link_state == UIC_LINK_ACTIVE_STATE) && 9642 ufshcd_is_auto_hibern8_enabled(hba))) && 9643 ufshcd_wb_need_flush(hba)); 9644 } 9645 9646 flush_work(&hba->eeh_work); 9647 9648 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9649 if (ret) 9650 goto enable_scaling; 9651 9652 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) { 9653 if (pm_op != UFS_RUNTIME_PM) 9654 /* ensure that bkops is disabled */ 9655 ufshcd_disable_auto_bkops(hba); 9656 9657 if (!hba->dev_info.b_rpm_dev_flush_capable) { 9658 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode); 9659 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9660 /* 9661 * If return err in suspend flow, IO will hang. 9662 * Trigger error handler and break suspend for 9663 * error recovery. 9664 */ 9665 ufshcd_force_error_recovery(hba); 9666 ret = -EBUSY; 9667 } 9668 if (ret) 9669 goto enable_scaling; 9670 } 9671 } 9672 9673 /* 9674 * In the case of DeepSleep, the device is expected to remain powered 9675 * with the link off, so do not check for bkops. 9676 */ 9677 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba); 9678 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops); 9679 if (ret && pm_op != UFS_SHUTDOWN_PM) { 9680 /* 9681 * If return err in suspend flow, IO will hang. 9682 * Trigger error handler and break suspend for 9683 * error recovery. 9684 */ 9685 ufshcd_force_error_recovery(hba); 9686 ret = -EBUSY; 9687 } 9688 if (ret) 9689 goto set_dev_active; 9690 9691 vops_suspend: 9692 /* 9693 * Call vendor specific suspend callback. As these callbacks may access 9694 * vendor specific host controller register space call them before the 9695 * host clocks are ON. 9696 */ 9697 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9698 if (ret) 9699 goto set_link_active; 9700 goto out; 9701 9702 set_link_active: 9703 /* 9704 * Device hardware reset is required to exit DeepSleep. Also, for 9705 * DeepSleep, the link is off so host reset and restore will be done 9706 * further below. 9707 */ 9708 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9709 ufshcd_device_reset(hba); 9710 WARN_ON(!ufshcd_is_link_off(hba)); 9711 } 9712 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba)) 9713 ufshcd_set_link_active(hba); 9714 else if (ufshcd_is_link_off(hba)) 9715 ufshcd_host_reset_and_restore(hba); 9716 set_dev_active: 9717 /* Can also get here needing to exit DeepSleep */ 9718 if (ufshcd_is_ufs_dev_deepsleep(hba)) { 9719 ufshcd_device_reset(hba); 9720 ufshcd_host_reset_and_restore(hba); 9721 } 9722 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE)) 9723 ufshcd_disable_auto_bkops(hba); 9724 enable_scaling: 9725 if (ufshcd_is_clkscaling_supported(hba)) 9726 ufshcd_clk_scaling_suspend(hba, false); 9727 9728 hba->dev_info.b_rpm_dev_flush_capable = false; 9729 out: 9730 if (hba->dev_info.b_rpm_dev_flush_capable) { 9731 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work, 9732 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS)); 9733 } 9734 9735 if (ret) { 9736 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret); 9737 hba->clk_gating.is_suspended = false; 9738 ufshcd_release(hba); 9739 } 9740 hba->pm_op_in_progress = false; 9741 return ret; 9742 } 9743 9744 #ifdef CONFIG_PM 9745 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op) 9746 { 9747 int ret; 9748 enum uic_link_state old_link_state = hba->uic_link_state; 9749 9750 hba->pm_op_in_progress = true; 9751 9752 /* 9753 * Call vendor specific resume callback. As these callbacks may access 9754 * vendor specific host controller register space call them when the 9755 * host clocks are ON. 9756 */ 9757 ret = ufshcd_vops_resume(hba, pm_op); 9758 if (ret) 9759 goto out; 9760 9761 /* For DeepSleep, the only supported option is to have the link off */ 9762 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba)); 9763 9764 if (ufshcd_is_link_hibern8(hba)) { 9765 ret = ufshcd_uic_hibern8_exit(hba); 9766 if (!ret) { 9767 ufshcd_set_link_active(hba); 9768 } else { 9769 dev_err(hba->dev, "%s: hibern8 exit failed %d\n", 9770 __func__, ret); 9771 goto vendor_suspend; 9772 } 9773 } else if (ufshcd_is_link_off(hba)) { 9774 /* 9775 * A full initialization of the host and the device is 9776 * required since the link was put to off during suspend. 9777 * Note, in the case of DeepSleep, the device will exit 9778 * DeepSleep due to device reset. 9779 */ 9780 ret = ufshcd_reset_and_restore(hba); 9781 /* 9782 * ufshcd_reset_and_restore() should have already 9783 * set the link state as active 9784 */ 9785 if (ret || !ufshcd_is_link_active(hba)) 9786 goto vendor_suspend; 9787 } 9788 9789 if (!ufshcd_is_ufs_dev_active(hba)) { 9790 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE); 9791 if (ret) 9792 goto set_old_link_state; 9793 ufshcd_set_timestamp_attr(hba); 9794 } 9795 9796 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) 9797 ufshcd_enable_auto_bkops(hba); 9798 else 9799 /* 9800 * If BKOPs operations are urgently needed at this moment then 9801 * keep auto-bkops enabled or else disable it. 9802 */ 9803 ufshcd_urgent_bkops(hba); 9804 9805 if (hba->ee_usr_mask) 9806 ufshcd_write_ee_control(hba); 9807 9808 if (ufshcd_is_clkscaling_supported(hba)) 9809 ufshcd_clk_scaling_suspend(hba, false); 9810 9811 if (hba->dev_info.b_rpm_dev_flush_capable) { 9812 hba->dev_info.b_rpm_dev_flush_capable = false; 9813 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work); 9814 } 9815 9816 /* Enable Auto-Hibernate if configured */ 9817 ufshcd_auto_hibern8_enable(hba); 9818 9819 goto out; 9820 9821 set_old_link_state: 9822 ufshcd_link_state_transition(hba, old_link_state, 0); 9823 vendor_suspend: 9824 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE); 9825 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE); 9826 out: 9827 if (ret) 9828 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret); 9829 hba->clk_gating.is_suspended = false; 9830 ufshcd_release(hba); 9831 hba->pm_op_in_progress = false; 9832 return ret; 9833 } 9834 9835 static int ufshcd_wl_runtime_suspend(struct device *dev) 9836 { 9837 struct scsi_device *sdev = to_scsi_device(dev); 9838 struct ufs_hba *hba; 9839 int ret; 9840 ktime_t start = ktime_get(); 9841 9842 hba = shost_priv(sdev->host); 9843 9844 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM); 9845 if (ret) 9846 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9847 9848 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret, 9849 ktime_to_us(ktime_sub(ktime_get(), start)), 9850 hba->curr_dev_pwr_mode, hba->uic_link_state); 9851 9852 return ret; 9853 } 9854 9855 static int ufshcd_wl_runtime_resume(struct device *dev) 9856 { 9857 struct scsi_device *sdev = to_scsi_device(dev); 9858 struct ufs_hba *hba; 9859 int ret = 0; 9860 ktime_t start = ktime_get(); 9861 9862 hba = shost_priv(sdev->host); 9863 9864 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM); 9865 if (ret) 9866 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9867 9868 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret, 9869 ktime_to_us(ktime_sub(ktime_get(), start)), 9870 hba->curr_dev_pwr_mode, hba->uic_link_state); 9871 9872 return ret; 9873 } 9874 #endif 9875 9876 #ifdef CONFIG_PM_SLEEP 9877 static int ufshcd_wl_suspend(struct device *dev) 9878 { 9879 struct scsi_device *sdev = to_scsi_device(dev); 9880 struct ufs_hba *hba; 9881 int ret = 0; 9882 ktime_t start = ktime_get(); 9883 9884 hba = shost_priv(sdev->host); 9885 down(&hba->host_sem); 9886 hba->system_suspending = true; 9887 9888 if (pm_runtime_suspended(dev)) 9889 goto out; 9890 9891 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM); 9892 if (ret) { 9893 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9894 up(&hba->host_sem); 9895 } 9896 9897 out: 9898 if (!ret) 9899 hba->is_sys_suspended = true; 9900 trace_ufshcd_wl_suspend(dev_name(dev), ret, 9901 ktime_to_us(ktime_sub(ktime_get(), start)), 9902 hba->curr_dev_pwr_mode, hba->uic_link_state); 9903 9904 return ret; 9905 } 9906 9907 static int ufshcd_wl_resume(struct device *dev) 9908 { 9909 struct scsi_device *sdev = to_scsi_device(dev); 9910 struct ufs_hba *hba; 9911 int ret = 0; 9912 ktime_t start = ktime_get(); 9913 9914 hba = shost_priv(sdev->host); 9915 9916 if (pm_runtime_suspended(dev)) 9917 goto out; 9918 9919 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM); 9920 if (ret) 9921 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret); 9922 out: 9923 trace_ufshcd_wl_resume(dev_name(dev), ret, 9924 ktime_to_us(ktime_sub(ktime_get(), start)), 9925 hba->curr_dev_pwr_mode, hba->uic_link_state); 9926 if (!ret) 9927 hba->is_sys_suspended = false; 9928 hba->system_suspending = false; 9929 up(&hba->host_sem); 9930 return ret; 9931 } 9932 #endif 9933 9934 /** 9935 * ufshcd_suspend - helper function for suspend operations 9936 * @hba: per adapter instance 9937 * 9938 * This function will put disable irqs, turn off clocks 9939 * and set vreg and hba-vreg in lpm mode. 9940 * 9941 * Return: 0 upon success; < 0 upon failure. 9942 */ 9943 static int ufshcd_suspend(struct ufs_hba *hba) 9944 { 9945 int ret; 9946 9947 if (!hba->is_powered) 9948 return 0; 9949 /* 9950 * Disable the host irq as host controller as there won't be any 9951 * host controller transaction expected till resume. 9952 */ 9953 ufshcd_disable_irq(hba); 9954 ret = ufshcd_setup_clocks(hba, false); 9955 if (ret) { 9956 ufshcd_enable_irq(hba); 9957 return ret; 9958 } 9959 if (ufshcd_is_clkgating_allowed(hba)) { 9960 hba->clk_gating.state = CLKS_OFF; 9961 trace_ufshcd_clk_gating(dev_name(hba->dev), 9962 hba->clk_gating.state); 9963 } 9964 9965 ufshcd_vreg_set_lpm(hba); 9966 /* Put the host controller in low power mode if possible */ 9967 ufshcd_hba_vreg_set_lpm(hba); 9968 return ret; 9969 } 9970 9971 #ifdef CONFIG_PM 9972 /** 9973 * ufshcd_resume - helper function for resume operations 9974 * @hba: per adapter instance 9975 * 9976 * This function basically turns on the regulators, clocks and 9977 * irqs of the hba. 9978 * 9979 * Return: 0 for success and non-zero for failure. 9980 */ 9981 static int ufshcd_resume(struct ufs_hba *hba) 9982 { 9983 int ret; 9984 9985 if (!hba->is_powered) 9986 return 0; 9987 9988 ufshcd_hba_vreg_set_hpm(hba); 9989 ret = ufshcd_vreg_set_hpm(hba); 9990 if (ret) 9991 goto out; 9992 9993 /* Make sure clocks are enabled before accessing controller */ 9994 ret = ufshcd_setup_clocks(hba, true); 9995 if (ret) 9996 goto disable_vreg; 9997 9998 /* enable the host irq as host controller would be active soon */ 9999 ufshcd_enable_irq(hba); 10000 10001 goto out; 10002 10003 disable_vreg: 10004 ufshcd_vreg_set_lpm(hba); 10005 out: 10006 if (ret) 10007 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret); 10008 return ret; 10009 } 10010 #endif /* CONFIG_PM */ 10011 10012 #ifdef CONFIG_PM_SLEEP 10013 /** 10014 * ufshcd_system_suspend - system suspend callback 10015 * @dev: Device associated with the UFS controller. 10016 * 10017 * Executed before putting the system into a sleep state in which the contents 10018 * of main memory are preserved. 10019 * 10020 * Return: 0 for success and non-zero for failure. 10021 */ 10022 int ufshcd_system_suspend(struct device *dev) 10023 { 10024 struct ufs_hba *hba = dev_get_drvdata(dev); 10025 int ret = 0; 10026 ktime_t start = ktime_get(); 10027 10028 if (pm_runtime_suspended(hba->dev)) 10029 goto out; 10030 10031 ret = ufshcd_suspend(hba); 10032 out: 10033 trace_ufshcd_system_suspend(dev_name(hba->dev), ret, 10034 ktime_to_us(ktime_sub(ktime_get(), start)), 10035 hba->curr_dev_pwr_mode, hba->uic_link_state); 10036 return ret; 10037 } 10038 EXPORT_SYMBOL(ufshcd_system_suspend); 10039 10040 /** 10041 * ufshcd_system_resume - system resume callback 10042 * @dev: Device associated with the UFS controller. 10043 * 10044 * Executed after waking the system up from a sleep state in which the contents 10045 * of main memory were preserved. 10046 * 10047 * Return: 0 for success and non-zero for failure. 10048 */ 10049 int ufshcd_system_resume(struct device *dev) 10050 { 10051 struct ufs_hba *hba = dev_get_drvdata(dev); 10052 ktime_t start = ktime_get(); 10053 int ret = 0; 10054 10055 if (pm_runtime_suspended(hba->dev)) 10056 goto out; 10057 10058 ret = ufshcd_resume(hba); 10059 10060 out: 10061 trace_ufshcd_system_resume(dev_name(hba->dev), ret, 10062 ktime_to_us(ktime_sub(ktime_get(), start)), 10063 hba->curr_dev_pwr_mode, hba->uic_link_state); 10064 10065 return ret; 10066 } 10067 EXPORT_SYMBOL(ufshcd_system_resume); 10068 #endif /* CONFIG_PM_SLEEP */ 10069 10070 #ifdef CONFIG_PM 10071 /** 10072 * ufshcd_runtime_suspend - runtime suspend callback 10073 * @dev: Device associated with the UFS controller. 10074 * 10075 * Check the description of ufshcd_suspend() function for more details. 10076 * 10077 * Return: 0 for success and non-zero for failure. 10078 */ 10079 int ufshcd_runtime_suspend(struct device *dev) 10080 { 10081 struct ufs_hba *hba = dev_get_drvdata(dev); 10082 int ret; 10083 ktime_t start = ktime_get(); 10084 10085 ret = ufshcd_suspend(hba); 10086 10087 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret, 10088 ktime_to_us(ktime_sub(ktime_get(), start)), 10089 hba->curr_dev_pwr_mode, hba->uic_link_state); 10090 return ret; 10091 } 10092 EXPORT_SYMBOL(ufshcd_runtime_suspend); 10093 10094 /** 10095 * ufshcd_runtime_resume - runtime resume routine 10096 * @dev: Device associated with the UFS controller. 10097 * 10098 * This function basically brings controller 10099 * to active state. Following operations are done in this function: 10100 * 10101 * 1. Turn on all the controller related clocks 10102 * 2. Turn ON VCC rail 10103 * 10104 * Return: 0 upon success; < 0 upon failure. 10105 */ 10106 int ufshcd_runtime_resume(struct device *dev) 10107 { 10108 struct ufs_hba *hba = dev_get_drvdata(dev); 10109 int ret; 10110 ktime_t start = ktime_get(); 10111 10112 ret = ufshcd_resume(hba); 10113 10114 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret, 10115 ktime_to_us(ktime_sub(ktime_get(), start)), 10116 hba->curr_dev_pwr_mode, hba->uic_link_state); 10117 return ret; 10118 } 10119 EXPORT_SYMBOL(ufshcd_runtime_resume); 10120 #endif /* CONFIG_PM */ 10121 10122 static void ufshcd_wl_shutdown(struct device *dev) 10123 { 10124 struct scsi_device *sdev = to_scsi_device(dev); 10125 struct ufs_hba *hba = shost_priv(sdev->host); 10126 10127 down(&hba->host_sem); 10128 hba->shutting_down = true; 10129 up(&hba->host_sem); 10130 10131 /* Turn on everything while shutting down */ 10132 ufshcd_rpm_get_sync(hba); 10133 scsi_device_quiesce(sdev); 10134 shost_for_each_device(sdev, hba->host) { 10135 if (sdev == hba->ufs_device_wlun) 10136 continue; 10137 mutex_lock(&sdev->state_mutex); 10138 scsi_device_set_state(sdev, SDEV_OFFLINE); 10139 mutex_unlock(&sdev->state_mutex); 10140 } 10141 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10142 10143 /* 10144 * Next, turn off the UFS controller and the UFS regulators. Disable 10145 * clocks. 10146 */ 10147 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba)) 10148 ufshcd_suspend(hba); 10149 10150 hba->is_powered = false; 10151 } 10152 10153 /** 10154 * ufshcd_remove - de-allocate SCSI host and host memory space 10155 * data structure memory 10156 * @hba: per adapter instance 10157 */ 10158 void ufshcd_remove(struct ufs_hba *hba) 10159 { 10160 if (hba->ufs_device_wlun) 10161 ufshcd_rpm_get_sync(hba); 10162 ufs_hwmon_remove(hba); 10163 ufs_bsg_remove(hba); 10164 ufs_sysfs_remove_nodes(hba->dev); 10165 blk_mq_destroy_queue(hba->tmf_queue); 10166 blk_put_queue(hba->tmf_queue); 10167 blk_mq_free_tag_set(&hba->tmf_tag_set); 10168 if (hba->scsi_host_added) 10169 scsi_remove_host(hba->host); 10170 /* disable interrupts */ 10171 ufshcd_disable_intr(hba, hba->intr_mask); 10172 ufshcd_hba_stop(hba); 10173 ufshcd_hba_exit(hba); 10174 } 10175 EXPORT_SYMBOL_GPL(ufshcd_remove); 10176 10177 #ifdef CONFIG_PM_SLEEP 10178 int ufshcd_system_freeze(struct device *dev) 10179 { 10180 10181 return ufshcd_system_suspend(dev); 10182 10183 } 10184 EXPORT_SYMBOL_GPL(ufshcd_system_freeze); 10185 10186 int ufshcd_system_restore(struct device *dev) 10187 { 10188 10189 struct ufs_hba *hba = dev_get_drvdata(dev); 10190 int ret; 10191 10192 ret = ufshcd_system_resume(dev); 10193 if (ret) 10194 return ret; 10195 10196 /* Configure UTRL and UTMRL base address registers */ 10197 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr), 10198 REG_UTP_TRANSFER_REQ_LIST_BASE_L); 10199 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr), 10200 REG_UTP_TRANSFER_REQ_LIST_BASE_H); 10201 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr), 10202 REG_UTP_TASK_REQ_LIST_BASE_L); 10203 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr), 10204 REG_UTP_TASK_REQ_LIST_BASE_H); 10205 /* 10206 * Make sure that UTRL and UTMRL base address registers 10207 * are updated with the latest queue addresses. Only after 10208 * updating these addresses, we can queue the new commands. 10209 */ 10210 ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H); 10211 10212 return 0; 10213 10214 } 10215 EXPORT_SYMBOL_GPL(ufshcd_system_restore); 10216 10217 int ufshcd_system_thaw(struct device *dev) 10218 { 10219 return ufshcd_system_resume(dev); 10220 } 10221 EXPORT_SYMBOL_GPL(ufshcd_system_thaw); 10222 #endif /* CONFIG_PM_SLEEP */ 10223 10224 /** 10225 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA) 10226 * @hba: pointer to Host Bus Adapter (HBA) 10227 */ 10228 void ufshcd_dealloc_host(struct ufs_hba *hba) 10229 { 10230 scsi_host_put(hba->host); 10231 } 10232 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host); 10233 10234 /** 10235 * ufshcd_set_dma_mask - Set dma mask based on the controller 10236 * addressing capability 10237 * @hba: per adapter instance 10238 * 10239 * Return: 0 for success, non-zero for failure. 10240 */ 10241 static int ufshcd_set_dma_mask(struct ufs_hba *hba) 10242 { 10243 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) { 10244 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64))) 10245 return 0; 10246 } 10247 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32)); 10248 } 10249 10250 /** 10251 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA) 10252 * @dev: pointer to device handle 10253 * @hba_handle: driver private handle 10254 * 10255 * Return: 0 on success, non-zero value on failure. 10256 */ 10257 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle) 10258 { 10259 struct Scsi_Host *host; 10260 struct ufs_hba *hba; 10261 int err = 0; 10262 10263 if (!dev) { 10264 dev_err(dev, 10265 "Invalid memory reference for dev is NULL\n"); 10266 err = -ENODEV; 10267 goto out_error; 10268 } 10269 10270 host = scsi_host_alloc(&ufshcd_driver_template, 10271 sizeof(struct ufs_hba)); 10272 if (!host) { 10273 dev_err(dev, "scsi_host_alloc failed\n"); 10274 err = -ENOMEM; 10275 goto out_error; 10276 } 10277 host->nr_maps = HCTX_TYPE_POLL + 1; 10278 hba = shost_priv(host); 10279 hba->host = host; 10280 hba->dev = dev; 10281 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL; 10282 hba->nop_out_timeout = NOP_OUT_TIMEOUT; 10283 ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry)); 10284 INIT_LIST_HEAD(&hba->clk_list_head); 10285 spin_lock_init(&hba->outstanding_lock); 10286 10287 *hba_handle = hba; 10288 10289 out_error: 10290 return err; 10291 } 10292 EXPORT_SYMBOL(ufshcd_alloc_host); 10293 10294 /* This function exists because blk_mq_alloc_tag_set() requires this. */ 10295 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx, 10296 const struct blk_mq_queue_data *qd) 10297 { 10298 WARN_ON_ONCE(true); 10299 return BLK_STS_NOTSUPP; 10300 } 10301 10302 static const struct blk_mq_ops ufshcd_tmf_ops = { 10303 .queue_rq = ufshcd_queue_tmf, 10304 }; 10305 10306 /** 10307 * ufshcd_init - Driver initialization routine 10308 * @hba: per-adapter instance 10309 * @mmio_base: base register address 10310 * @irq: Interrupt line of device 10311 * 10312 * Return: 0 on success, non-zero value on failure. 10313 */ 10314 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq) 10315 { 10316 int err; 10317 struct Scsi_Host *host = hba->host; 10318 struct device *dev = hba->dev; 10319 char eh_wq_name[sizeof("ufs_eh_wq_00")]; 10320 10321 /* 10322 * dev_set_drvdata() must be called before any callbacks are registered 10323 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon, 10324 * sysfs). 10325 */ 10326 dev_set_drvdata(dev, hba); 10327 10328 if (!mmio_base) { 10329 dev_err(hba->dev, 10330 "Invalid memory reference for mmio_base is NULL\n"); 10331 err = -ENODEV; 10332 goto out_error; 10333 } 10334 10335 hba->mmio_base = mmio_base; 10336 hba->irq = irq; 10337 hba->vps = &ufs_hba_vps; 10338 10339 err = ufshcd_hba_init(hba); 10340 if (err) 10341 goto out_error; 10342 10343 /* Read capabilities registers */ 10344 err = ufshcd_hba_capabilities(hba); 10345 if (err) 10346 goto out_disable; 10347 10348 /* Get UFS version supported by the controller */ 10349 hba->ufs_version = ufshcd_get_ufs_version(hba); 10350 10351 /* Get Interrupt bit mask per version */ 10352 hba->intr_mask = ufshcd_get_intr_mask(hba); 10353 10354 err = ufshcd_set_dma_mask(hba); 10355 if (err) { 10356 dev_err(hba->dev, "set dma mask failed\n"); 10357 goto out_disable; 10358 } 10359 10360 /* Allocate memory for host memory space */ 10361 err = ufshcd_memory_alloc(hba); 10362 if (err) { 10363 dev_err(hba->dev, "Memory allocation failed\n"); 10364 goto out_disable; 10365 } 10366 10367 /* Configure LRB */ 10368 ufshcd_host_memory_configure(hba); 10369 10370 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED; 10371 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED; 10372 host->max_id = UFSHCD_MAX_ID; 10373 host->max_lun = UFS_MAX_LUNS; 10374 host->max_channel = UFSHCD_MAX_CHANNEL; 10375 host->unique_id = host->host_no; 10376 host->max_cmd_len = UFS_CDB_SIZE; 10377 host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING); 10378 10379 hba->max_pwr_info.is_valid = false; 10380 10381 /* Initialize work queues */ 10382 snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d", 10383 hba->host->host_no); 10384 hba->eh_wq = create_singlethread_workqueue(eh_wq_name); 10385 if (!hba->eh_wq) { 10386 dev_err(hba->dev, "%s: failed to create eh workqueue\n", 10387 __func__); 10388 err = -ENOMEM; 10389 goto out_disable; 10390 } 10391 INIT_WORK(&hba->eh_work, ufshcd_err_handler); 10392 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler); 10393 10394 sema_init(&hba->host_sem, 1); 10395 10396 /* Initialize UIC command mutex */ 10397 mutex_init(&hba->uic_cmd_mutex); 10398 10399 /* Initialize mutex for device management commands */ 10400 mutex_init(&hba->dev_cmd.lock); 10401 10402 /* Initialize mutex for exception event control */ 10403 mutex_init(&hba->ee_ctrl_mutex); 10404 10405 mutex_init(&hba->wb_mutex); 10406 init_rwsem(&hba->clk_scaling_lock); 10407 10408 ufshcd_init_clk_gating(hba); 10409 10410 ufshcd_init_clk_scaling(hba); 10411 10412 /* 10413 * In order to avoid any spurious interrupt immediately after 10414 * registering UFS controller interrupt handler, clear any pending UFS 10415 * interrupt status and disable all the UFS interrupts. 10416 */ 10417 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS), 10418 REG_INTERRUPT_STATUS); 10419 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE); 10420 /* 10421 * Make sure that UFS interrupts are disabled and any pending interrupt 10422 * status is cleared before registering UFS interrupt handler. 10423 */ 10424 ufshcd_readl(hba, REG_INTERRUPT_ENABLE); 10425 10426 /* IRQ registration */ 10427 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba); 10428 if (err) { 10429 dev_err(hba->dev, "request irq failed\n"); 10430 goto out_disable; 10431 } else { 10432 hba->is_irq_enabled = true; 10433 } 10434 10435 if (!is_mcq_supported(hba)) { 10436 if (!hba->lsdb_sup) { 10437 dev_err(hba->dev, "%s: failed to initialize (legacy doorbell mode not supported)\n", 10438 __func__); 10439 err = -EINVAL; 10440 goto out_disable; 10441 } 10442 err = scsi_add_host(host, hba->dev); 10443 if (err) { 10444 dev_err(hba->dev, "scsi_add_host failed\n"); 10445 goto out_disable; 10446 } 10447 hba->scsi_host_added = true; 10448 } 10449 10450 hba->tmf_tag_set = (struct blk_mq_tag_set) { 10451 .nr_hw_queues = 1, 10452 .queue_depth = hba->nutmrs, 10453 .ops = &ufshcd_tmf_ops, 10454 .flags = BLK_MQ_F_NO_SCHED, 10455 }; 10456 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set); 10457 if (err < 0) 10458 goto out_remove_scsi_host; 10459 hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set); 10460 if (IS_ERR(hba->tmf_queue)) { 10461 err = PTR_ERR(hba->tmf_queue); 10462 goto free_tmf_tag_set; 10463 } 10464 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs, 10465 sizeof(*hba->tmf_rqs), GFP_KERNEL); 10466 if (!hba->tmf_rqs) { 10467 err = -ENOMEM; 10468 goto free_tmf_queue; 10469 } 10470 10471 /* Reset the attached device */ 10472 ufshcd_device_reset(hba); 10473 10474 ufshcd_init_crypto(hba); 10475 10476 /* Host controller enable */ 10477 err = ufshcd_hba_enable(hba); 10478 if (err) { 10479 dev_err(hba->dev, "Host controller enable failed\n"); 10480 ufshcd_print_evt_hist(hba); 10481 ufshcd_print_host_state(hba); 10482 goto free_tmf_queue; 10483 } 10484 10485 /* 10486 * Set the default power management level for runtime and system PM. 10487 * Default power saving mode is to keep UFS link in Hibern8 state 10488 * and UFS device in sleep state. 10489 */ 10490 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10491 UFS_SLEEP_PWR_MODE, 10492 UIC_LINK_HIBERN8_STATE); 10493 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state( 10494 UFS_SLEEP_PWR_MODE, 10495 UIC_LINK_HIBERN8_STATE); 10496 10497 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, 10498 ufshcd_rpm_dev_flush_recheck_work); 10499 10500 /* Set the default auto-hiberate idle timer value to 150 ms */ 10501 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) { 10502 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) | 10503 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3); 10504 } 10505 10506 /* Hold auto suspend until async scan completes */ 10507 pm_runtime_get_sync(dev); 10508 atomic_set(&hba->scsi_block_reqs_cnt, 0); 10509 /* 10510 * We are assuming that device wasn't put in sleep/power-down 10511 * state exclusively during the boot stage before kernel. 10512 * This assumption helps avoid doing link startup twice during 10513 * ufshcd_probe_hba(). 10514 */ 10515 ufshcd_set_ufs_dev_active(hba); 10516 10517 async_schedule(ufshcd_async_scan, hba); 10518 ufs_sysfs_add_nodes(hba->dev); 10519 10520 device_enable_async_suspend(dev); 10521 return 0; 10522 10523 free_tmf_queue: 10524 blk_mq_destroy_queue(hba->tmf_queue); 10525 blk_put_queue(hba->tmf_queue); 10526 free_tmf_tag_set: 10527 blk_mq_free_tag_set(&hba->tmf_tag_set); 10528 out_remove_scsi_host: 10529 if (hba->scsi_host_added) 10530 scsi_remove_host(hba->host); 10531 out_disable: 10532 hba->is_irq_enabled = false; 10533 ufshcd_hba_exit(hba); 10534 out_error: 10535 return err; 10536 } 10537 EXPORT_SYMBOL_GPL(ufshcd_init); 10538 10539 void ufshcd_resume_complete(struct device *dev) 10540 { 10541 struct ufs_hba *hba = dev_get_drvdata(dev); 10542 10543 if (hba->complete_put) { 10544 ufshcd_rpm_put(hba); 10545 hba->complete_put = false; 10546 } 10547 } 10548 EXPORT_SYMBOL_GPL(ufshcd_resume_complete); 10549 10550 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba) 10551 { 10552 struct device *dev = &hba->ufs_device_wlun->sdev_gendev; 10553 enum ufs_dev_pwr_mode dev_pwr_mode; 10554 enum uic_link_state link_state; 10555 unsigned long flags; 10556 bool res; 10557 10558 spin_lock_irqsave(&dev->power.lock, flags); 10559 dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl); 10560 link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl); 10561 res = pm_runtime_suspended(dev) && 10562 hba->curr_dev_pwr_mode == dev_pwr_mode && 10563 hba->uic_link_state == link_state && 10564 !hba->dev_info.b_rpm_dev_flush_capable; 10565 spin_unlock_irqrestore(&dev->power.lock, flags); 10566 10567 return res; 10568 } 10569 10570 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm) 10571 { 10572 struct ufs_hba *hba = dev_get_drvdata(dev); 10573 int ret; 10574 10575 /* 10576 * SCSI assumes that runtime-pm and system-pm for scsi drivers 10577 * are same. And it doesn't wake up the device for system-suspend 10578 * if it's runtime suspended. But ufs doesn't follow that. 10579 * Refer ufshcd_resume_complete() 10580 */ 10581 if (hba->ufs_device_wlun) { 10582 /* Prevent runtime suspend */ 10583 ufshcd_rpm_get_noresume(hba); 10584 /* 10585 * Check if already runtime suspended in same state as system 10586 * suspend would be. 10587 */ 10588 if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) { 10589 /* RPM state is not ok for SPM, so runtime resume */ 10590 ret = ufshcd_rpm_resume(hba); 10591 if (ret < 0 && ret != -EACCES) { 10592 ufshcd_rpm_put(hba); 10593 return ret; 10594 } 10595 } 10596 hba->complete_put = true; 10597 } 10598 return 0; 10599 } 10600 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare); 10601 10602 int ufshcd_suspend_prepare(struct device *dev) 10603 { 10604 return __ufshcd_suspend_prepare(dev, true); 10605 } 10606 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare); 10607 10608 #ifdef CONFIG_PM_SLEEP 10609 static int ufshcd_wl_poweroff(struct device *dev) 10610 { 10611 struct scsi_device *sdev = to_scsi_device(dev); 10612 struct ufs_hba *hba = shost_priv(sdev->host); 10613 10614 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM); 10615 return 0; 10616 } 10617 #endif 10618 10619 static int ufshcd_wl_probe(struct device *dev) 10620 { 10621 struct scsi_device *sdev = to_scsi_device(dev); 10622 10623 if (!is_device_wlun(sdev)) 10624 return -ENODEV; 10625 10626 blk_pm_runtime_init(sdev->request_queue, dev); 10627 pm_runtime_set_autosuspend_delay(dev, 0); 10628 pm_runtime_allow(dev); 10629 10630 return 0; 10631 } 10632 10633 static int ufshcd_wl_remove(struct device *dev) 10634 { 10635 pm_runtime_forbid(dev); 10636 return 0; 10637 } 10638 10639 static const struct dev_pm_ops ufshcd_wl_pm_ops = { 10640 #ifdef CONFIG_PM_SLEEP 10641 .suspend = ufshcd_wl_suspend, 10642 .resume = ufshcd_wl_resume, 10643 .freeze = ufshcd_wl_suspend, 10644 .thaw = ufshcd_wl_resume, 10645 .poweroff = ufshcd_wl_poweroff, 10646 .restore = ufshcd_wl_resume, 10647 #endif 10648 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL) 10649 }; 10650 10651 static void ufshcd_check_header_layout(void) 10652 { 10653 /* 10654 * gcc compilers before version 10 cannot do constant-folding for 10655 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and 10656 * before. 10657 */ 10658 if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000) 10659 return; 10660 10661 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10662 .cci = 3})[0] != 3); 10663 10664 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10665 .ehs_length = 2})[1] != 2); 10666 10667 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10668 .enable_crypto = 1})[2] 10669 != 0x80); 10670 10671 BUILD_BUG_ON((((u8 *)&(struct request_desc_header){ 10672 .command_type = 5, 10673 .data_direction = 3, 10674 .interrupt = 1, 10675 })[3]) != ((5 << 4) | (3 << 1) | 1)); 10676 10677 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 10678 .dunl = cpu_to_le32(0xdeadbeef)})[1] != 10679 cpu_to_le32(0xdeadbeef)); 10680 10681 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10682 .ocs = 4})[8] != 4); 10683 10684 BUILD_BUG_ON(((u8 *)&(struct request_desc_header){ 10685 .cds = 5})[9] != 5); 10686 10687 BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){ 10688 .dunu = cpu_to_le32(0xbadcafe)})[3] != 10689 cpu_to_le32(0xbadcafe)); 10690 10691 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 10692 .iid = 0xf })[4] != 0xf0); 10693 10694 BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){ 10695 .command_set_type = 0xf })[4] != 0xf); 10696 } 10697 10698 /* 10699 * ufs_dev_wlun_template - describes ufs device wlun 10700 * ufs-device wlun - used to send pm commands 10701 * All luns are consumers of ufs-device wlun. 10702 * 10703 * Currently, no sd driver is present for wluns. 10704 * Hence the no specific pm operations are performed. 10705 * With ufs design, SSU should be sent to ufs-device wlun. 10706 * Hence register a scsi driver for ufs wluns only. 10707 */ 10708 static struct scsi_driver ufs_dev_wlun_template = { 10709 .gendrv = { 10710 .name = "ufs_device_wlun", 10711 .owner = THIS_MODULE, 10712 .probe = ufshcd_wl_probe, 10713 .remove = ufshcd_wl_remove, 10714 .pm = &ufshcd_wl_pm_ops, 10715 .shutdown = ufshcd_wl_shutdown, 10716 }, 10717 }; 10718 10719 static int __init ufshcd_core_init(void) 10720 { 10721 int ret; 10722 10723 ufshcd_check_header_layout(); 10724 10725 ufs_debugfs_init(); 10726 10727 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv); 10728 if (ret) 10729 ufs_debugfs_exit(); 10730 return ret; 10731 } 10732 10733 static void __exit ufshcd_core_exit(void) 10734 { 10735 ufs_debugfs_exit(); 10736 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv); 10737 } 10738 10739 module_init(ufshcd_core_init); 10740 module_exit(ufshcd_core_exit); 10741 10742 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>"); 10743 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>"); 10744 MODULE_DESCRIPTION("Generic UFS host controller driver Core"); 10745 MODULE_SOFTDEP("pre: governor_simpleondemand"); 10746 MODULE_LICENSE("GPL"); 10747