xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision 1e30b52edf175eee6bd096bd5d38de37ba98a871)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <linux/iopoll.h>
26 #include <scsi/scsi_cmnd.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include "ufshcd-priv.h"
31 #include <ufs/ufs_quirks.h>
32 #include <ufs/unipro.h>
33 #include "ufs-sysfs.h"
34 #include "ufs-debugfs.h"
35 #include "ufs-fault-injection.h"
36 #include "ufs_bsg.h"
37 #include "ufshcd-crypto.h"
38 #include <asm/unaligned.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42 
43 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
44 				 UTP_TASK_REQ_COMPL |\
45 				 UFSHCD_ERROR_MASK)
46 
47 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
48 				 UFSHCD_ERROR_MASK |\
49 				 MCQ_CQ_EVENT_STATUS)
50 
51 
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT	500
54 
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES    10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT    50 /* msecs */
59 
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64 
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
67 
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT	100 /* msecs */
70 
71 /* maximum number of retries for a general UIC command  */
72 #define UFS_UIC_COMMAND_RETRIES 3
73 
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76 
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79 
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82 
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85 
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO	0x02
88 
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91 
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94 
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97 
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100 
101 /* UFSHC 4.0 compliant HC support this mode. */
102 static bool use_mcq_mode = true;
103 
104 static bool is_mcq_supported(struct ufs_hba *hba)
105 {
106 	return hba->mcq_sup && use_mcq_mode;
107 }
108 
109 module_param(use_mcq_mode, bool, 0644);
110 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
111 
112 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
113 	({                                                              \
114 		int _ret;                                               \
115 		if (_on)                                                \
116 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
117 		else                                                    \
118 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
119 		_ret;                                                   \
120 	})
121 
122 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
123 	size_t __len = (len);                                            \
124 	print_hex_dump(KERN_ERR, prefix_str,                             \
125 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
126 		       16, 4, buf, __len, false);                        \
127 } while (0)
128 
129 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
130 		     const char *prefix)
131 {
132 	u32 *regs;
133 	size_t pos;
134 
135 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
136 		return -EINVAL;
137 
138 	regs = kzalloc(len, GFP_ATOMIC);
139 	if (!regs)
140 		return -ENOMEM;
141 
142 	for (pos = 0; pos < len; pos += 4) {
143 		if (offset == 0 &&
144 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
145 		    pos <= REG_UIC_ERROR_CODE_DME)
146 			continue;
147 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
148 	}
149 
150 	ufshcd_hex_dump(prefix, regs, len);
151 	kfree(regs);
152 
153 	return 0;
154 }
155 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
156 
157 enum {
158 	UFSHCD_MAX_CHANNEL	= 0,
159 	UFSHCD_MAX_ID		= 1,
160 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
161 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
162 };
163 
164 static const char *const ufshcd_state_name[] = {
165 	[UFSHCD_STATE_RESET]			= "reset",
166 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
167 	[UFSHCD_STATE_ERROR]			= "error",
168 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
169 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
170 };
171 
172 /* UFSHCD error handling flags */
173 enum {
174 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
175 };
176 
177 /* UFSHCD UIC layer error flags */
178 enum {
179 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
180 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
181 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
182 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
183 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
184 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
185 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
186 };
187 
188 #define ufshcd_set_eh_in_progress(h) \
189 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
190 #define ufshcd_eh_in_progress(h) \
191 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
192 #define ufshcd_clear_eh_in_progress(h) \
193 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
194 
195 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
196 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
197 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
198 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
199 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
200 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
202 	/*
203 	 * For DeepSleep, the link is first put in hibern8 and then off.
204 	 * Leaving the link in hibern8 is not supported.
205 	 */
206 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
207 };
208 
209 static inline enum ufs_dev_pwr_mode
210 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
211 {
212 	return ufs_pm_lvl_states[lvl].dev_state;
213 }
214 
215 static inline enum uic_link_state
216 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
217 {
218 	return ufs_pm_lvl_states[lvl].link_state;
219 }
220 
221 static inline enum ufs_pm_level
222 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
223 					enum uic_link_state link_state)
224 {
225 	enum ufs_pm_level lvl;
226 
227 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
228 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
229 			(ufs_pm_lvl_states[lvl].link_state == link_state))
230 			return lvl;
231 	}
232 
233 	/* if no match found, return the level 0 */
234 	return UFS_PM_LVL_0;
235 }
236 
237 static const struct ufs_dev_quirk ufs_fixups[] = {
238 	/* UFS cards deviations table */
239 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
240 	  .model = UFS_ANY_MODEL,
241 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
242 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
243 	  .model = UFS_ANY_MODEL,
244 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
245 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
246 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
247 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
248 	  .model = UFS_ANY_MODEL,
249 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
250 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
251 	  .model = "hB8aL1" /*H28U62301AMR*/,
252 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
253 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
254 	  .model = UFS_ANY_MODEL,
255 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
256 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
257 	  .model = "THGLF2G9C8KBADG",
258 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
259 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
260 	  .model = "THGLF2G9D8KBADG",
261 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
262 	{}
263 };
264 
265 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
266 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
267 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
268 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
269 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
270 static void ufshcd_hba_exit(struct ufs_hba *hba);
271 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
272 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
273 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
274 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
275 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
276 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
277 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
278 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
279 static irqreturn_t ufshcd_intr(int irq, void *__hba);
280 static int ufshcd_change_power_mode(struct ufs_hba *hba,
281 			     struct ufs_pa_layer_attr *pwr_mode);
282 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
283 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
284 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
285 					 struct ufs_vreg *vreg);
286 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
287 						 bool enable);
288 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
289 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
290 
291 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
292 {
293 	if (!hba->is_irq_enabled) {
294 		enable_irq(hba->irq);
295 		hba->is_irq_enabled = true;
296 	}
297 }
298 
299 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
300 {
301 	if (hba->is_irq_enabled) {
302 		disable_irq(hba->irq);
303 		hba->is_irq_enabled = false;
304 	}
305 }
306 
307 static void ufshcd_configure_wb(struct ufs_hba *hba)
308 {
309 	if (!ufshcd_is_wb_allowed(hba))
310 		return;
311 
312 	ufshcd_wb_toggle(hba, true);
313 
314 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
315 
316 	if (ufshcd_is_wb_buf_flush_allowed(hba))
317 		ufshcd_wb_toggle_buf_flush(hba, true);
318 }
319 
320 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
321 {
322 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
323 		scsi_unblock_requests(hba->host);
324 }
325 
326 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
327 {
328 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
329 		scsi_block_requests(hba->host);
330 }
331 
332 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
333 				      enum ufs_trace_str_t str_t)
334 {
335 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
336 	struct utp_upiu_header *header;
337 
338 	if (!trace_ufshcd_upiu_enabled())
339 		return;
340 
341 	if (str_t == UFS_CMD_SEND)
342 		header = &rq->header;
343 	else
344 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
345 
346 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
347 			  UFS_TSF_CDB);
348 }
349 
350 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
351 					enum ufs_trace_str_t str_t,
352 					struct utp_upiu_req *rq_rsp)
353 {
354 	if (!trace_ufshcd_upiu_enabled())
355 		return;
356 
357 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
358 			  &rq_rsp->qr, UFS_TSF_OSF);
359 }
360 
361 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
362 				     enum ufs_trace_str_t str_t)
363 {
364 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
365 
366 	if (!trace_ufshcd_upiu_enabled())
367 		return;
368 
369 	if (str_t == UFS_TM_SEND)
370 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
371 				  &descp->upiu_req.req_header,
372 				  &descp->upiu_req.input_param1,
373 				  UFS_TSF_TM_INPUT);
374 	else
375 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
376 				  &descp->upiu_rsp.rsp_header,
377 				  &descp->upiu_rsp.output_param1,
378 				  UFS_TSF_TM_OUTPUT);
379 }
380 
381 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
382 					 const struct uic_command *ucmd,
383 					 enum ufs_trace_str_t str_t)
384 {
385 	u32 cmd;
386 
387 	if (!trace_ufshcd_uic_command_enabled())
388 		return;
389 
390 	if (str_t == UFS_CMD_SEND)
391 		cmd = ucmd->command;
392 	else
393 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
394 
395 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
396 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
397 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
398 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
399 }
400 
401 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
402 				     enum ufs_trace_str_t str_t)
403 {
404 	u64 lba = 0;
405 	u8 opcode = 0, group_id = 0;
406 	u32 doorbell = 0;
407 	u32 intr;
408 	int hwq_id = -1;
409 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
410 	struct scsi_cmnd *cmd = lrbp->cmd;
411 	struct request *rq = scsi_cmd_to_rq(cmd);
412 	int transfer_len = -1;
413 
414 	if (!cmd)
415 		return;
416 
417 	/* trace UPIU also */
418 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
419 	if (!trace_ufshcd_command_enabled())
420 		return;
421 
422 	opcode = cmd->cmnd[0];
423 
424 	if (opcode == READ_10 || opcode == WRITE_10) {
425 		/*
426 		 * Currently we only fully trace read(10) and write(10) commands
427 		 */
428 		transfer_len =
429 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
430 		lba = scsi_get_lba(cmd);
431 		if (opcode == WRITE_10)
432 			group_id = lrbp->cmd->cmnd[6];
433 	} else if (opcode == UNMAP) {
434 		/*
435 		 * The number of Bytes to be unmapped beginning with the lba.
436 		 */
437 		transfer_len = blk_rq_bytes(rq);
438 		lba = scsi_get_lba(cmd);
439 	}
440 
441 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
442 
443 	if (is_mcq_enabled(hba)) {
444 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
445 
446 		hwq_id = hwq->id;
447 	} else {
448 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
449 	}
450 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
451 			doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
452 }
453 
454 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
455 {
456 	struct ufs_clk_info *clki;
457 	struct list_head *head = &hba->clk_list_head;
458 
459 	if (list_empty(head))
460 		return;
461 
462 	list_for_each_entry(clki, head, list) {
463 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
464 				clki->max_freq)
465 			dev_err(hba->dev, "clk: %s, rate: %u\n",
466 					clki->name, clki->curr_freq);
467 	}
468 }
469 
470 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
471 			     const char *err_name)
472 {
473 	int i;
474 	bool found = false;
475 	const struct ufs_event_hist *e;
476 
477 	if (id >= UFS_EVT_CNT)
478 		return;
479 
480 	e = &hba->ufs_stats.event[id];
481 
482 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
483 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
484 
485 		if (e->tstamp[p] == 0)
486 			continue;
487 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
488 			e->val[p], div_u64(e->tstamp[p], 1000));
489 		found = true;
490 	}
491 
492 	if (!found)
493 		dev_err(hba->dev, "No record of %s\n", err_name);
494 	else
495 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
496 }
497 
498 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
499 {
500 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
501 
502 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
503 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
504 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
505 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
506 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
507 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
508 			 "auto_hibern8_err");
509 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
510 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
511 			 "link_startup_fail");
512 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
513 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
514 			 "suspend_fail");
515 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
516 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
517 			 "wlun suspend_fail");
518 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
519 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
520 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
521 
522 	ufshcd_vops_dbg_register_dump(hba);
523 }
524 
525 static
526 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
527 {
528 	const struct ufshcd_lrb *lrbp;
529 	int prdt_length;
530 
531 	lrbp = &hba->lrb[tag];
532 
533 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
534 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
535 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
536 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
537 	dev_err(hba->dev,
538 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
539 		tag, (u64)lrbp->utrd_dma_addr);
540 
541 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
542 			sizeof(struct utp_transfer_req_desc));
543 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
544 		(u64)lrbp->ucd_req_dma_addr);
545 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
546 			sizeof(struct utp_upiu_req));
547 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
548 		(u64)lrbp->ucd_rsp_dma_addr);
549 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
550 			sizeof(struct utp_upiu_rsp));
551 
552 	prdt_length = le16_to_cpu(
553 		lrbp->utr_descriptor_ptr->prd_table_length);
554 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
555 		prdt_length /= ufshcd_sg_entry_size(hba);
556 
557 	dev_err(hba->dev,
558 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
559 		tag, prdt_length,
560 		(u64)lrbp->ucd_prdt_dma_addr);
561 
562 	if (pr_prdt)
563 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
564 			ufshcd_sg_entry_size(hba) * prdt_length);
565 }
566 
567 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
568 {
569 	struct scsi_device *sdev = req->q->queuedata;
570 	struct Scsi_Host *shost = sdev->host;
571 	struct ufs_hba *hba = shost_priv(shost);
572 
573 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
574 
575 	return true;
576 }
577 
578 /**
579  * ufshcd_print_trs_all - print trs for all started requests.
580  * @hba: per-adapter instance.
581  * @pr_prdt: need to print prdt or not.
582  */
583 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
584 {
585 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
586 }
587 
588 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
589 {
590 	int tag;
591 
592 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
593 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
594 
595 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
596 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
597 	}
598 }
599 
600 static void ufshcd_print_host_state(struct ufs_hba *hba)
601 {
602 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
603 
604 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
605 	dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
606 		hba->outstanding_reqs, hba->outstanding_tasks);
607 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
608 		hba->saved_err, hba->saved_uic_err);
609 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
610 		hba->curr_dev_pwr_mode, hba->uic_link_state);
611 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
612 		hba->pm_op_in_progress, hba->is_sys_suspended);
613 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
614 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
615 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
616 	dev_err(hba->dev,
617 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
618 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
619 		hba->ufs_stats.hibern8_exit_cnt);
620 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
621 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
622 		hba->ufs_stats.last_intr_status);
623 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
624 		hba->eh_flags, hba->req_abort_count);
625 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
626 		hba->ufs_version, hba->capabilities, hba->caps);
627 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
628 		hba->dev_quirks);
629 	if (sdev_ufs)
630 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
631 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
632 
633 	ufshcd_print_clk_freqs(hba);
634 }
635 
636 /**
637  * ufshcd_print_pwr_info - print power params as saved in hba
638  * power info
639  * @hba: per-adapter instance
640  */
641 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
642 {
643 	static const char * const names[] = {
644 		"INVALID MODE",
645 		"FAST MODE",
646 		"SLOW_MODE",
647 		"INVALID MODE",
648 		"FASTAUTO_MODE",
649 		"SLOWAUTO_MODE",
650 		"INVALID MODE",
651 	};
652 
653 	/*
654 	 * Using dev_dbg to avoid messages during runtime PM to avoid
655 	 * never-ending cycles of messages written back to storage by user space
656 	 * causing runtime resume, causing more messages and so on.
657 	 */
658 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
659 		 __func__,
660 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
661 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
662 		 names[hba->pwr_info.pwr_rx],
663 		 names[hba->pwr_info.pwr_tx],
664 		 hba->pwr_info.hs_rate);
665 }
666 
667 static void ufshcd_device_reset(struct ufs_hba *hba)
668 {
669 	int err;
670 
671 	err = ufshcd_vops_device_reset(hba);
672 
673 	if (!err) {
674 		ufshcd_set_ufs_dev_active(hba);
675 		if (ufshcd_is_wb_allowed(hba)) {
676 			hba->dev_info.wb_enabled = false;
677 			hba->dev_info.wb_buf_flush_enabled = false;
678 		}
679 	}
680 	if (err != -EOPNOTSUPP)
681 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
682 }
683 
684 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
685 {
686 	if (!us)
687 		return;
688 
689 	if (us < 10)
690 		udelay(us);
691 	else
692 		usleep_range(us, us + tolerance);
693 }
694 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
695 
696 /**
697  * ufshcd_wait_for_register - wait for register value to change
698  * @hba: per-adapter interface
699  * @reg: mmio register offset
700  * @mask: mask to apply to the read register value
701  * @val: value to wait for
702  * @interval_us: polling interval in microseconds
703  * @timeout_ms: timeout in milliseconds
704  *
705  * Return: -ETIMEDOUT on error, zero on success.
706  */
707 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
708 				u32 val, unsigned long interval_us,
709 				unsigned long timeout_ms)
710 {
711 	int err = 0;
712 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
713 
714 	/* ignore bits that we don't intend to wait on */
715 	val = val & mask;
716 
717 	while ((ufshcd_readl(hba, reg) & mask) != val) {
718 		usleep_range(interval_us, interval_us + 50);
719 		if (time_after(jiffies, timeout)) {
720 			if ((ufshcd_readl(hba, reg) & mask) != val)
721 				err = -ETIMEDOUT;
722 			break;
723 		}
724 	}
725 
726 	return err;
727 }
728 
729 /**
730  * ufshcd_get_intr_mask - Get the interrupt bit mask
731  * @hba: Pointer to adapter instance
732  *
733  * Return: interrupt bit mask per version
734  */
735 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
736 {
737 	if (hba->ufs_version == ufshci_version(1, 0))
738 		return INTERRUPT_MASK_ALL_VER_10;
739 	if (hba->ufs_version <= ufshci_version(2, 0))
740 		return INTERRUPT_MASK_ALL_VER_11;
741 
742 	return INTERRUPT_MASK_ALL_VER_21;
743 }
744 
745 /**
746  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
747  * @hba: Pointer to adapter instance
748  *
749  * Return: UFSHCI version supported by the controller
750  */
751 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
752 {
753 	u32 ufshci_ver;
754 
755 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
756 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
757 	else
758 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
759 
760 	/*
761 	 * UFSHCI v1.x uses a different version scheme, in order
762 	 * to allow the use of comparisons with the ufshci_version
763 	 * function, we convert it to the same scheme as ufs 2.0+.
764 	 */
765 	if (ufshci_ver & 0x00010000)
766 		return ufshci_version(1, ufshci_ver & 0x00000100);
767 
768 	return ufshci_ver;
769 }
770 
771 /**
772  * ufshcd_is_device_present - Check if any device connected to
773  *			      the host controller
774  * @hba: pointer to adapter instance
775  *
776  * Return: true if device present, false if no device detected
777  */
778 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
779 {
780 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
781 }
782 
783 /**
784  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
785  * @lrbp: pointer to local command reference block
786  * @cqe: pointer to the completion queue entry
787  *
788  * This function is used to get the OCS field from UTRD
789  *
790  * Return: the OCS field in the UTRD.
791  */
792 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
793 				      struct cq_entry *cqe)
794 {
795 	if (cqe)
796 		return le32_to_cpu(cqe->status) & MASK_OCS;
797 
798 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
799 }
800 
801 /**
802  * ufshcd_utrl_clear() - Clear requests from the controller request list.
803  * @hba: per adapter instance
804  * @mask: mask with one bit set for each request to be cleared
805  */
806 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
807 {
808 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
809 		mask = ~mask;
810 	/*
811 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
812 	 * Register (UTRLCLR): This field is bit significant. Each bit
813 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
814 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
815 	 * by host software to indicate to the host controller that a transfer
816 	 * request slot is cleared. The host controller
817 	 * shall free up any resources associated to the request slot
818 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
819 	 * host software indicates no change to request slots by setting the
820 	 * associated bits in this field to ‘1’. Bits in this field shall only
821 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
822 	 */
823 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
824 }
825 
826 /**
827  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
828  * @hba: per adapter instance
829  * @pos: position of the bit to be cleared
830  */
831 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
832 {
833 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
834 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
835 	else
836 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
837 }
838 
839 /**
840  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
841  * @reg: Register value of host controller status
842  *
843  * Return: 0 on success; a positive value if failed.
844  */
845 static inline int ufshcd_get_lists_status(u32 reg)
846 {
847 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
848 }
849 
850 /**
851  * ufshcd_get_uic_cmd_result - Get the UIC command result
852  * @hba: Pointer to adapter instance
853  *
854  * This function gets the result of UIC command completion
855  *
856  * Return: 0 on success; non-zero value on error.
857  */
858 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
859 {
860 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
861 	       MASK_UIC_COMMAND_RESULT;
862 }
863 
864 /**
865  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
866  * @hba: Pointer to adapter instance
867  *
868  * This function gets UIC command argument3
869  *
870  * Return: 0 on success; non-zero value on error.
871  */
872 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
873 {
874 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
875 }
876 
877 /**
878  * ufshcd_get_req_rsp - returns the TR response transaction type
879  * @ucd_rsp_ptr: pointer to response UPIU
880  *
881  * Return: UPIU type.
882  */
883 static inline enum upiu_response_transaction
884 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
885 {
886 	return ucd_rsp_ptr->header.transaction_code;
887 }
888 
889 /**
890  * ufshcd_is_exception_event - Check if the device raised an exception event
891  * @ucd_rsp_ptr: pointer to response UPIU
892  *
893  * The function checks if the device raised an exception event indicated in
894  * the Device Information field of response UPIU.
895  *
896  * Return: true if exception is raised, false otherwise.
897  */
898 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
899 {
900 	return ucd_rsp_ptr->header.device_information & 1;
901 }
902 
903 /**
904  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
905  * @hba: per adapter instance
906  */
907 static inline void
908 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
909 {
910 	ufshcd_writel(hba, INT_AGGR_ENABLE |
911 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
912 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
913 }
914 
915 /**
916  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
917  * @hba: per adapter instance
918  * @cnt: Interrupt aggregation counter threshold
919  * @tmout: Interrupt aggregation timeout value
920  */
921 static inline void
922 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
923 {
924 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
925 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
926 		      INT_AGGR_TIMEOUT_VAL(tmout),
927 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
928 }
929 
930 /**
931  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
932  * @hba: per adapter instance
933  */
934 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
935 {
936 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
937 }
938 
939 /**
940  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
941  *			When run-stop registers are set to 1, it indicates the
942  *			host controller that it can process the requests
943  * @hba: per adapter instance
944  */
945 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
946 {
947 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
948 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
949 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
950 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
951 }
952 
953 /**
954  * ufshcd_hba_start - Start controller initialization sequence
955  * @hba: per adapter instance
956  */
957 static inline void ufshcd_hba_start(struct ufs_hba *hba)
958 {
959 	u32 val = CONTROLLER_ENABLE;
960 
961 	if (ufshcd_crypto_enable(hba))
962 		val |= CRYPTO_GENERAL_ENABLE;
963 
964 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
965 }
966 
967 /**
968  * ufshcd_is_hba_active - Get controller state
969  * @hba: per adapter instance
970  *
971  * Return: true if and only if the controller is active.
972  */
973 bool ufshcd_is_hba_active(struct ufs_hba *hba)
974 {
975 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
976 }
977 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
978 
979 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
980 {
981 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
982 	if (hba->ufs_version <= ufshci_version(1, 1))
983 		return UFS_UNIPRO_VER_1_41;
984 	else
985 		return UFS_UNIPRO_VER_1_6;
986 }
987 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
988 
989 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
990 {
991 	/*
992 	 * If both host and device support UniPro ver1.6 or later, PA layer
993 	 * parameters tuning happens during link startup itself.
994 	 *
995 	 * We can manually tune PA layer parameters if either host or device
996 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
997 	 * logic simple, we will only do manual tuning if local unipro version
998 	 * doesn't support ver1.6 or later.
999 	 */
1000 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1001 }
1002 
1003 /**
1004  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1005  * @hba: per adapter instance
1006  * @scale_up: If True, set max possible frequency othewise set low frequency
1007  *
1008  * Return: 0 if successful; < 0 upon failure.
1009  */
1010 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1011 {
1012 	int ret = 0;
1013 	struct ufs_clk_info *clki;
1014 	struct list_head *head = &hba->clk_list_head;
1015 
1016 	if (list_empty(head))
1017 		goto out;
1018 
1019 	list_for_each_entry(clki, head, list) {
1020 		if (!IS_ERR_OR_NULL(clki->clk)) {
1021 			if (scale_up && clki->max_freq) {
1022 				if (clki->curr_freq == clki->max_freq)
1023 					continue;
1024 
1025 				ret = clk_set_rate(clki->clk, clki->max_freq);
1026 				if (ret) {
1027 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1028 						__func__, clki->name,
1029 						clki->max_freq, ret);
1030 					break;
1031 				}
1032 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1033 						"scaled up", clki->name,
1034 						clki->curr_freq,
1035 						clki->max_freq);
1036 
1037 				clki->curr_freq = clki->max_freq;
1038 
1039 			} else if (!scale_up && clki->min_freq) {
1040 				if (clki->curr_freq == clki->min_freq)
1041 					continue;
1042 
1043 				ret = clk_set_rate(clki->clk, clki->min_freq);
1044 				if (ret) {
1045 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1046 						__func__, clki->name,
1047 						clki->min_freq, ret);
1048 					break;
1049 				}
1050 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1051 						"scaled down", clki->name,
1052 						clki->curr_freq,
1053 						clki->min_freq);
1054 				clki->curr_freq = clki->min_freq;
1055 			}
1056 		}
1057 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1058 				clki->name, clk_get_rate(clki->clk));
1059 	}
1060 
1061 out:
1062 	return ret;
1063 }
1064 
1065 /**
1066  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1067  * @hba: per adapter instance
1068  * @scale_up: True if scaling up and false if scaling down
1069  *
1070  * Return: 0 if successful; < 0 upon failure.
1071  */
1072 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1073 {
1074 	int ret = 0;
1075 	ktime_t start = ktime_get();
1076 
1077 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1078 	if (ret)
1079 		goto out;
1080 
1081 	ret = ufshcd_set_clk_freq(hba, scale_up);
1082 	if (ret)
1083 		goto out;
1084 
1085 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1086 	if (ret)
1087 		ufshcd_set_clk_freq(hba, !scale_up);
1088 
1089 out:
1090 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1091 			(scale_up ? "up" : "down"),
1092 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1093 	return ret;
1094 }
1095 
1096 /**
1097  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1098  * @hba: per adapter instance
1099  * @scale_up: True if scaling up and false if scaling down
1100  *
1101  * Return: true if scaling is required, false otherwise.
1102  */
1103 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1104 					       bool scale_up)
1105 {
1106 	struct ufs_clk_info *clki;
1107 	struct list_head *head = &hba->clk_list_head;
1108 
1109 	if (list_empty(head))
1110 		return false;
1111 
1112 	list_for_each_entry(clki, head, list) {
1113 		if (!IS_ERR_OR_NULL(clki->clk)) {
1114 			if (scale_up && clki->max_freq) {
1115 				if (clki->curr_freq == clki->max_freq)
1116 					continue;
1117 				return true;
1118 			} else if (!scale_up && clki->min_freq) {
1119 				if (clki->curr_freq == clki->min_freq)
1120 					continue;
1121 				return true;
1122 			}
1123 		}
1124 	}
1125 
1126 	return false;
1127 }
1128 
1129 /*
1130  * Determine the number of pending commands by counting the bits in the SCSI
1131  * device budget maps. This approach has been selected because a bit is set in
1132  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1133  * flag. The host_self_blocked flag can be modified by calling
1134  * scsi_block_requests() or scsi_unblock_requests().
1135  */
1136 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1137 {
1138 	const struct scsi_device *sdev;
1139 	u32 pending = 0;
1140 
1141 	lockdep_assert_held(hba->host->host_lock);
1142 	__shost_for_each_device(sdev, hba->host)
1143 		pending += sbitmap_weight(&sdev->budget_map);
1144 
1145 	return pending;
1146 }
1147 
1148 /*
1149  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1150  * has expired.
1151  *
1152  * Return: 0 upon success; -EBUSY upon timeout.
1153  */
1154 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1155 					u64 wait_timeout_us)
1156 {
1157 	unsigned long flags;
1158 	int ret = 0;
1159 	u32 tm_doorbell;
1160 	u32 tr_pending;
1161 	bool timeout = false, do_last_check = false;
1162 	ktime_t start;
1163 
1164 	ufshcd_hold(hba);
1165 	spin_lock_irqsave(hba->host->host_lock, flags);
1166 	/*
1167 	 * Wait for all the outstanding tasks/transfer requests.
1168 	 * Verify by checking the doorbell registers are clear.
1169 	 */
1170 	start = ktime_get();
1171 	do {
1172 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1173 			ret = -EBUSY;
1174 			goto out;
1175 		}
1176 
1177 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1178 		tr_pending = ufshcd_pending_cmds(hba);
1179 		if (!tm_doorbell && !tr_pending) {
1180 			timeout = false;
1181 			break;
1182 		} else if (do_last_check) {
1183 			break;
1184 		}
1185 
1186 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1187 		io_schedule_timeout(msecs_to_jiffies(20));
1188 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1189 		    wait_timeout_us) {
1190 			timeout = true;
1191 			/*
1192 			 * We might have scheduled out for long time so make
1193 			 * sure to check if doorbells are cleared by this time
1194 			 * or not.
1195 			 */
1196 			do_last_check = true;
1197 		}
1198 		spin_lock_irqsave(hba->host->host_lock, flags);
1199 	} while (tm_doorbell || tr_pending);
1200 
1201 	if (timeout) {
1202 		dev_err(hba->dev,
1203 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1204 			__func__, tm_doorbell, tr_pending);
1205 		ret = -EBUSY;
1206 	}
1207 out:
1208 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1209 	ufshcd_release(hba);
1210 	return ret;
1211 }
1212 
1213 /**
1214  * ufshcd_scale_gear - scale up/down UFS gear
1215  * @hba: per adapter instance
1216  * @scale_up: True for scaling up gear and false for scaling down
1217  *
1218  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1219  * non-zero for any other errors.
1220  */
1221 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1222 {
1223 	int ret = 0;
1224 	struct ufs_pa_layer_attr new_pwr_info;
1225 
1226 	if (scale_up) {
1227 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1228 		       sizeof(struct ufs_pa_layer_attr));
1229 	} else {
1230 		memcpy(&new_pwr_info, &hba->pwr_info,
1231 		       sizeof(struct ufs_pa_layer_attr));
1232 
1233 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1234 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1235 			/* save the current power mode */
1236 			memcpy(&hba->clk_scaling.saved_pwr_info,
1237 				&hba->pwr_info,
1238 				sizeof(struct ufs_pa_layer_attr));
1239 
1240 			/* scale down gear */
1241 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1242 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1243 		}
1244 	}
1245 
1246 	/* check if the power mode needs to be changed or not? */
1247 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1248 	if (ret)
1249 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1250 			__func__, ret,
1251 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1252 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1253 
1254 	return ret;
1255 }
1256 
1257 /*
1258  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1259  * has expired.
1260  *
1261  * Return: 0 upon success; -EBUSY upon timeout.
1262  */
1263 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1264 {
1265 	int ret = 0;
1266 	/*
1267 	 * make sure that there are no outstanding requests when
1268 	 * clock scaling is in progress
1269 	 */
1270 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1271 	mutex_lock(&hba->wb_mutex);
1272 	down_write(&hba->clk_scaling_lock);
1273 
1274 	if (!hba->clk_scaling.is_allowed ||
1275 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1276 		ret = -EBUSY;
1277 		up_write(&hba->clk_scaling_lock);
1278 		mutex_unlock(&hba->wb_mutex);
1279 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1280 		goto out;
1281 	}
1282 
1283 	/* let's not get into low power until clock scaling is completed */
1284 	ufshcd_hold(hba);
1285 
1286 out:
1287 	return ret;
1288 }
1289 
1290 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1291 {
1292 	up_write(&hba->clk_scaling_lock);
1293 
1294 	/* Enable Write Booster if we have scaled up else disable it */
1295 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1296 		ufshcd_wb_toggle(hba, scale_up);
1297 
1298 	mutex_unlock(&hba->wb_mutex);
1299 
1300 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1301 	ufshcd_release(hba);
1302 }
1303 
1304 /**
1305  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1306  * @hba: per adapter instance
1307  * @scale_up: True for scaling up and false for scalin down
1308  *
1309  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1310  * for any other errors.
1311  */
1312 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1313 {
1314 	int ret = 0;
1315 
1316 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1317 	if (ret)
1318 		return ret;
1319 
1320 	/* scale down the gear before scaling down clocks */
1321 	if (!scale_up) {
1322 		ret = ufshcd_scale_gear(hba, false);
1323 		if (ret)
1324 			goto out_unprepare;
1325 	}
1326 
1327 	ret = ufshcd_scale_clks(hba, scale_up);
1328 	if (ret) {
1329 		if (!scale_up)
1330 			ufshcd_scale_gear(hba, true);
1331 		goto out_unprepare;
1332 	}
1333 
1334 	/* scale up the gear after scaling up clocks */
1335 	if (scale_up) {
1336 		ret = ufshcd_scale_gear(hba, true);
1337 		if (ret) {
1338 			ufshcd_scale_clks(hba, false);
1339 			goto out_unprepare;
1340 		}
1341 	}
1342 
1343 out_unprepare:
1344 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1345 	return ret;
1346 }
1347 
1348 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1349 {
1350 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1351 					   clk_scaling.suspend_work);
1352 	unsigned long irq_flags;
1353 
1354 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1355 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1356 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1357 		return;
1358 	}
1359 	hba->clk_scaling.is_suspended = true;
1360 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1361 
1362 	__ufshcd_suspend_clkscaling(hba);
1363 }
1364 
1365 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1366 {
1367 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1368 					   clk_scaling.resume_work);
1369 	unsigned long irq_flags;
1370 
1371 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1372 	if (!hba->clk_scaling.is_suspended) {
1373 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1374 		return;
1375 	}
1376 	hba->clk_scaling.is_suspended = false;
1377 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1378 
1379 	devfreq_resume_device(hba->devfreq);
1380 }
1381 
1382 static int ufshcd_devfreq_target(struct device *dev,
1383 				unsigned long *freq, u32 flags)
1384 {
1385 	int ret = 0;
1386 	struct ufs_hba *hba = dev_get_drvdata(dev);
1387 	ktime_t start;
1388 	bool scale_up, sched_clk_scaling_suspend_work = false;
1389 	struct list_head *clk_list = &hba->clk_list_head;
1390 	struct ufs_clk_info *clki;
1391 	unsigned long irq_flags;
1392 
1393 	if (!ufshcd_is_clkscaling_supported(hba))
1394 		return -EINVAL;
1395 
1396 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1397 	/* Override with the closest supported frequency */
1398 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1399 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1400 	if (ufshcd_eh_in_progress(hba)) {
1401 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1402 		return 0;
1403 	}
1404 
1405 	if (!hba->clk_scaling.active_reqs)
1406 		sched_clk_scaling_suspend_work = true;
1407 
1408 	if (list_empty(clk_list)) {
1409 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1410 		goto out;
1411 	}
1412 
1413 	/* Decide based on the rounded-off frequency and update */
1414 	scale_up = *freq == clki->max_freq;
1415 	if (!scale_up)
1416 		*freq = clki->min_freq;
1417 	/* Update the frequency */
1418 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1419 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1420 		ret = 0;
1421 		goto out; /* no state change required */
1422 	}
1423 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1424 
1425 	start = ktime_get();
1426 	ret = ufshcd_devfreq_scale(hba, scale_up);
1427 
1428 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1429 		(scale_up ? "up" : "down"),
1430 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1431 
1432 out:
1433 	if (sched_clk_scaling_suspend_work)
1434 		queue_work(hba->clk_scaling.workq,
1435 			   &hba->clk_scaling.suspend_work);
1436 
1437 	return ret;
1438 }
1439 
1440 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1441 		struct devfreq_dev_status *stat)
1442 {
1443 	struct ufs_hba *hba = dev_get_drvdata(dev);
1444 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1445 	unsigned long flags;
1446 	struct list_head *clk_list = &hba->clk_list_head;
1447 	struct ufs_clk_info *clki;
1448 	ktime_t curr_t;
1449 
1450 	if (!ufshcd_is_clkscaling_supported(hba))
1451 		return -EINVAL;
1452 
1453 	memset(stat, 0, sizeof(*stat));
1454 
1455 	spin_lock_irqsave(hba->host->host_lock, flags);
1456 	curr_t = ktime_get();
1457 	if (!scaling->window_start_t)
1458 		goto start_window;
1459 
1460 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1461 	/*
1462 	 * If current frequency is 0, then the ondemand governor considers
1463 	 * there's no initial frequency set. And it always requests to set
1464 	 * to max. frequency.
1465 	 */
1466 	stat->current_frequency = clki->curr_freq;
1467 	if (scaling->is_busy_started)
1468 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1469 				scaling->busy_start_t);
1470 
1471 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1472 	stat->busy_time = scaling->tot_busy_t;
1473 start_window:
1474 	scaling->window_start_t = curr_t;
1475 	scaling->tot_busy_t = 0;
1476 
1477 	if (scaling->active_reqs) {
1478 		scaling->busy_start_t = curr_t;
1479 		scaling->is_busy_started = true;
1480 	} else {
1481 		scaling->busy_start_t = 0;
1482 		scaling->is_busy_started = false;
1483 	}
1484 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1485 	return 0;
1486 }
1487 
1488 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1489 {
1490 	struct list_head *clk_list = &hba->clk_list_head;
1491 	struct ufs_clk_info *clki;
1492 	struct devfreq *devfreq;
1493 	int ret;
1494 
1495 	/* Skip devfreq if we don't have any clocks in the list */
1496 	if (list_empty(clk_list))
1497 		return 0;
1498 
1499 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1500 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1501 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1502 
1503 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1504 					 &hba->vps->ondemand_data);
1505 	devfreq = devfreq_add_device(hba->dev,
1506 			&hba->vps->devfreq_profile,
1507 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1508 			&hba->vps->ondemand_data);
1509 	if (IS_ERR(devfreq)) {
1510 		ret = PTR_ERR(devfreq);
1511 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1512 
1513 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1514 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1515 		return ret;
1516 	}
1517 
1518 	hba->devfreq = devfreq;
1519 
1520 	return 0;
1521 }
1522 
1523 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1524 {
1525 	struct list_head *clk_list = &hba->clk_list_head;
1526 	struct ufs_clk_info *clki;
1527 
1528 	if (!hba->devfreq)
1529 		return;
1530 
1531 	devfreq_remove_device(hba->devfreq);
1532 	hba->devfreq = NULL;
1533 
1534 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1535 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1536 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1537 }
1538 
1539 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1540 {
1541 	unsigned long flags;
1542 
1543 	devfreq_suspend_device(hba->devfreq);
1544 	spin_lock_irqsave(hba->host->host_lock, flags);
1545 	hba->clk_scaling.window_start_t = 0;
1546 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1547 }
1548 
1549 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1550 {
1551 	unsigned long flags;
1552 	bool suspend = false;
1553 
1554 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1555 	cancel_work_sync(&hba->clk_scaling.resume_work);
1556 
1557 	spin_lock_irqsave(hba->host->host_lock, flags);
1558 	if (!hba->clk_scaling.is_suspended) {
1559 		suspend = true;
1560 		hba->clk_scaling.is_suspended = true;
1561 	}
1562 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1563 
1564 	if (suspend)
1565 		__ufshcd_suspend_clkscaling(hba);
1566 }
1567 
1568 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1569 {
1570 	unsigned long flags;
1571 	bool resume = false;
1572 
1573 	spin_lock_irqsave(hba->host->host_lock, flags);
1574 	if (hba->clk_scaling.is_suspended) {
1575 		resume = true;
1576 		hba->clk_scaling.is_suspended = false;
1577 	}
1578 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1579 
1580 	if (resume)
1581 		devfreq_resume_device(hba->devfreq);
1582 }
1583 
1584 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1585 		struct device_attribute *attr, char *buf)
1586 {
1587 	struct ufs_hba *hba = dev_get_drvdata(dev);
1588 
1589 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1590 }
1591 
1592 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1593 		struct device_attribute *attr, const char *buf, size_t count)
1594 {
1595 	struct ufs_hba *hba = dev_get_drvdata(dev);
1596 	u32 value;
1597 	int err = 0;
1598 
1599 	if (kstrtou32(buf, 0, &value))
1600 		return -EINVAL;
1601 
1602 	down(&hba->host_sem);
1603 	if (!ufshcd_is_user_access_allowed(hba)) {
1604 		err = -EBUSY;
1605 		goto out;
1606 	}
1607 
1608 	value = !!value;
1609 	if (value == hba->clk_scaling.is_enabled)
1610 		goto out;
1611 
1612 	ufshcd_rpm_get_sync(hba);
1613 	ufshcd_hold(hba);
1614 
1615 	hba->clk_scaling.is_enabled = value;
1616 
1617 	if (value) {
1618 		ufshcd_resume_clkscaling(hba);
1619 	} else {
1620 		ufshcd_suspend_clkscaling(hba);
1621 		err = ufshcd_devfreq_scale(hba, true);
1622 		if (err)
1623 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1624 					__func__, err);
1625 	}
1626 
1627 	ufshcd_release(hba);
1628 	ufshcd_rpm_put_sync(hba);
1629 out:
1630 	up(&hba->host_sem);
1631 	return err ? err : count;
1632 }
1633 
1634 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1635 {
1636 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1637 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1638 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1639 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1640 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1641 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1642 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1643 }
1644 
1645 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1646 {
1647 	if (hba->clk_scaling.enable_attr.attr.name)
1648 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1649 }
1650 
1651 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1652 {
1653 	char wq_name[sizeof("ufs_clkscaling_00")];
1654 
1655 	if (!ufshcd_is_clkscaling_supported(hba))
1656 		return;
1657 
1658 	if (!hba->clk_scaling.min_gear)
1659 		hba->clk_scaling.min_gear = UFS_HS_G1;
1660 
1661 	INIT_WORK(&hba->clk_scaling.suspend_work,
1662 		  ufshcd_clk_scaling_suspend_work);
1663 	INIT_WORK(&hba->clk_scaling.resume_work,
1664 		  ufshcd_clk_scaling_resume_work);
1665 
1666 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1667 		 hba->host->host_no);
1668 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1669 
1670 	hba->clk_scaling.is_initialized = true;
1671 }
1672 
1673 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1674 {
1675 	if (!hba->clk_scaling.is_initialized)
1676 		return;
1677 
1678 	ufshcd_remove_clk_scaling_sysfs(hba);
1679 	destroy_workqueue(hba->clk_scaling.workq);
1680 	ufshcd_devfreq_remove(hba);
1681 	hba->clk_scaling.is_initialized = false;
1682 }
1683 
1684 static void ufshcd_ungate_work(struct work_struct *work)
1685 {
1686 	int ret;
1687 	unsigned long flags;
1688 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1689 			clk_gating.ungate_work);
1690 
1691 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1692 
1693 	spin_lock_irqsave(hba->host->host_lock, flags);
1694 	if (hba->clk_gating.state == CLKS_ON) {
1695 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1696 		return;
1697 	}
1698 
1699 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1700 	ufshcd_hba_vreg_set_hpm(hba);
1701 	ufshcd_setup_clocks(hba, true);
1702 
1703 	ufshcd_enable_irq(hba);
1704 
1705 	/* Exit from hibern8 */
1706 	if (ufshcd_can_hibern8_during_gating(hba)) {
1707 		/* Prevent gating in this path */
1708 		hba->clk_gating.is_suspended = true;
1709 		if (ufshcd_is_link_hibern8(hba)) {
1710 			ret = ufshcd_uic_hibern8_exit(hba);
1711 			if (ret)
1712 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1713 					__func__, ret);
1714 			else
1715 				ufshcd_set_link_active(hba);
1716 		}
1717 		hba->clk_gating.is_suspended = false;
1718 	}
1719 }
1720 
1721 /**
1722  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1723  * Also, exit from hibern8 mode and set the link as active.
1724  * @hba: per adapter instance
1725  */
1726 void ufshcd_hold(struct ufs_hba *hba)
1727 {
1728 	bool flush_result;
1729 	unsigned long flags;
1730 
1731 	if (!ufshcd_is_clkgating_allowed(hba) ||
1732 	    !hba->clk_gating.is_initialized)
1733 		return;
1734 	spin_lock_irqsave(hba->host->host_lock, flags);
1735 	hba->clk_gating.active_reqs++;
1736 
1737 start:
1738 	switch (hba->clk_gating.state) {
1739 	case CLKS_ON:
1740 		/*
1741 		 * Wait for the ungate work to complete if in progress.
1742 		 * Though the clocks may be in ON state, the link could
1743 		 * still be in hibner8 state if hibern8 is allowed
1744 		 * during clock gating.
1745 		 * Make sure we exit hibern8 state also in addition to
1746 		 * clocks being ON.
1747 		 */
1748 		if (ufshcd_can_hibern8_during_gating(hba) &&
1749 		    ufshcd_is_link_hibern8(hba)) {
1750 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1751 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1752 			if (hba->clk_gating.is_suspended && !flush_result)
1753 				return;
1754 			spin_lock_irqsave(hba->host->host_lock, flags);
1755 			goto start;
1756 		}
1757 		break;
1758 	case REQ_CLKS_OFF:
1759 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1760 			hba->clk_gating.state = CLKS_ON;
1761 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1762 						hba->clk_gating.state);
1763 			break;
1764 		}
1765 		/*
1766 		 * If we are here, it means gating work is either done or
1767 		 * currently running. Hence, fall through to cancel gating
1768 		 * work and to enable clocks.
1769 		 */
1770 		fallthrough;
1771 	case CLKS_OFF:
1772 		hba->clk_gating.state = REQ_CLKS_ON;
1773 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1774 					hba->clk_gating.state);
1775 		queue_work(hba->clk_gating.clk_gating_workq,
1776 			   &hba->clk_gating.ungate_work);
1777 		/*
1778 		 * fall through to check if we should wait for this
1779 		 * work to be done or not.
1780 		 */
1781 		fallthrough;
1782 	case REQ_CLKS_ON:
1783 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1784 		flush_work(&hba->clk_gating.ungate_work);
1785 		/* Make sure state is CLKS_ON before returning */
1786 		spin_lock_irqsave(hba->host->host_lock, flags);
1787 		goto start;
1788 	default:
1789 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1790 				__func__, hba->clk_gating.state);
1791 		break;
1792 	}
1793 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1794 }
1795 EXPORT_SYMBOL_GPL(ufshcd_hold);
1796 
1797 static void ufshcd_gate_work(struct work_struct *work)
1798 {
1799 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1800 			clk_gating.gate_work.work);
1801 	unsigned long flags;
1802 	int ret;
1803 
1804 	spin_lock_irqsave(hba->host->host_lock, flags);
1805 	/*
1806 	 * In case you are here to cancel this work the gating state
1807 	 * would be marked as REQ_CLKS_ON. In this case save time by
1808 	 * skipping the gating work and exit after changing the clock
1809 	 * state to CLKS_ON.
1810 	 */
1811 	if (hba->clk_gating.is_suspended ||
1812 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1813 		hba->clk_gating.state = CLKS_ON;
1814 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1815 					hba->clk_gating.state);
1816 		goto rel_lock;
1817 	}
1818 
1819 	if (hba->clk_gating.active_reqs
1820 		|| hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1821 		|| hba->outstanding_reqs || hba->outstanding_tasks
1822 		|| hba->active_uic_cmd || hba->uic_async_done)
1823 		goto rel_lock;
1824 
1825 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1826 
1827 	/* put the link into hibern8 mode before turning off clocks */
1828 	if (ufshcd_can_hibern8_during_gating(hba)) {
1829 		ret = ufshcd_uic_hibern8_enter(hba);
1830 		if (ret) {
1831 			hba->clk_gating.state = CLKS_ON;
1832 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1833 					__func__, ret);
1834 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1835 						hba->clk_gating.state);
1836 			goto out;
1837 		}
1838 		ufshcd_set_link_hibern8(hba);
1839 	}
1840 
1841 	ufshcd_disable_irq(hba);
1842 
1843 	ufshcd_setup_clocks(hba, false);
1844 
1845 	/* Put the host controller in low power mode if possible */
1846 	ufshcd_hba_vreg_set_lpm(hba);
1847 	/*
1848 	 * In case you are here to cancel this work the gating state
1849 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1850 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1851 	 * and a request to turn them on is pending. By doing this way,
1852 	 * we keep the state machine in tact and this would ultimately
1853 	 * prevent from doing cancel work multiple times when there are
1854 	 * new requests arriving before the current cancel work is done.
1855 	 */
1856 	spin_lock_irqsave(hba->host->host_lock, flags);
1857 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1858 		hba->clk_gating.state = CLKS_OFF;
1859 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1860 					hba->clk_gating.state);
1861 	}
1862 rel_lock:
1863 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1864 out:
1865 	return;
1866 }
1867 
1868 /* host lock must be held before calling this variant */
1869 static void __ufshcd_release(struct ufs_hba *hba)
1870 {
1871 	if (!ufshcd_is_clkgating_allowed(hba))
1872 		return;
1873 
1874 	hba->clk_gating.active_reqs--;
1875 
1876 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1877 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1878 	    hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1879 	    hba->active_uic_cmd || hba->uic_async_done ||
1880 	    hba->clk_gating.state == CLKS_OFF)
1881 		return;
1882 
1883 	hba->clk_gating.state = REQ_CLKS_OFF;
1884 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1885 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1886 			   &hba->clk_gating.gate_work,
1887 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1888 }
1889 
1890 void ufshcd_release(struct ufs_hba *hba)
1891 {
1892 	unsigned long flags;
1893 
1894 	spin_lock_irqsave(hba->host->host_lock, flags);
1895 	__ufshcd_release(hba);
1896 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1897 }
1898 EXPORT_SYMBOL_GPL(ufshcd_release);
1899 
1900 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1901 		struct device_attribute *attr, char *buf)
1902 {
1903 	struct ufs_hba *hba = dev_get_drvdata(dev);
1904 
1905 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1906 }
1907 
1908 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1909 {
1910 	struct ufs_hba *hba = dev_get_drvdata(dev);
1911 	unsigned long flags;
1912 
1913 	spin_lock_irqsave(hba->host->host_lock, flags);
1914 	hba->clk_gating.delay_ms = value;
1915 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1916 }
1917 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1918 
1919 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1920 		struct device_attribute *attr, const char *buf, size_t count)
1921 {
1922 	unsigned long value;
1923 
1924 	if (kstrtoul(buf, 0, &value))
1925 		return -EINVAL;
1926 
1927 	ufshcd_clkgate_delay_set(dev, value);
1928 	return count;
1929 }
1930 
1931 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1932 		struct device_attribute *attr, char *buf)
1933 {
1934 	struct ufs_hba *hba = dev_get_drvdata(dev);
1935 
1936 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1937 }
1938 
1939 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1940 		struct device_attribute *attr, const char *buf, size_t count)
1941 {
1942 	struct ufs_hba *hba = dev_get_drvdata(dev);
1943 	unsigned long flags;
1944 	u32 value;
1945 
1946 	if (kstrtou32(buf, 0, &value))
1947 		return -EINVAL;
1948 
1949 	value = !!value;
1950 
1951 	spin_lock_irqsave(hba->host->host_lock, flags);
1952 	if (value == hba->clk_gating.is_enabled)
1953 		goto out;
1954 
1955 	if (value)
1956 		__ufshcd_release(hba);
1957 	else
1958 		hba->clk_gating.active_reqs++;
1959 
1960 	hba->clk_gating.is_enabled = value;
1961 out:
1962 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1963 	return count;
1964 }
1965 
1966 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1967 {
1968 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1969 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1970 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1971 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1972 	hba->clk_gating.delay_attr.attr.mode = 0644;
1973 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1974 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1975 
1976 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1977 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1978 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1979 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1980 	hba->clk_gating.enable_attr.attr.mode = 0644;
1981 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1982 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1983 }
1984 
1985 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1986 {
1987 	if (hba->clk_gating.delay_attr.attr.name)
1988 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1989 	if (hba->clk_gating.enable_attr.attr.name)
1990 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1991 }
1992 
1993 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1994 {
1995 	char wq_name[sizeof("ufs_clk_gating_00")];
1996 
1997 	if (!ufshcd_is_clkgating_allowed(hba))
1998 		return;
1999 
2000 	hba->clk_gating.state = CLKS_ON;
2001 
2002 	hba->clk_gating.delay_ms = 150;
2003 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2004 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2005 
2006 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2007 		 hba->host->host_no);
2008 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2009 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2010 
2011 	ufshcd_init_clk_gating_sysfs(hba);
2012 
2013 	hba->clk_gating.is_enabled = true;
2014 	hba->clk_gating.is_initialized = true;
2015 }
2016 
2017 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2018 {
2019 	if (!hba->clk_gating.is_initialized)
2020 		return;
2021 
2022 	ufshcd_remove_clk_gating_sysfs(hba);
2023 
2024 	/* Ungate the clock if necessary. */
2025 	ufshcd_hold(hba);
2026 	hba->clk_gating.is_initialized = false;
2027 	ufshcd_release(hba);
2028 
2029 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2030 }
2031 
2032 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2033 {
2034 	bool queue_resume_work = false;
2035 	ktime_t curr_t = ktime_get();
2036 	unsigned long flags;
2037 
2038 	if (!ufshcd_is_clkscaling_supported(hba))
2039 		return;
2040 
2041 	spin_lock_irqsave(hba->host->host_lock, flags);
2042 	if (!hba->clk_scaling.active_reqs++)
2043 		queue_resume_work = true;
2044 
2045 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2046 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2047 		return;
2048 	}
2049 
2050 	if (queue_resume_work)
2051 		queue_work(hba->clk_scaling.workq,
2052 			   &hba->clk_scaling.resume_work);
2053 
2054 	if (!hba->clk_scaling.window_start_t) {
2055 		hba->clk_scaling.window_start_t = curr_t;
2056 		hba->clk_scaling.tot_busy_t = 0;
2057 		hba->clk_scaling.is_busy_started = false;
2058 	}
2059 
2060 	if (!hba->clk_scaling.is_busy_started) {
2061 		hba->clk_scaling.busy_start_t = curr_t;
2062 		hba->clk_scaling.is_busy_started = true;
2063 	}
2064 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2065 }
2066 
2067 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2068 {
2069 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2070 	unsigned long flags;
2071 
2072 	if (!ufshcd_is_clkscaling_supported(hba))
2073 		return;
2074 
2075 	spin_lock_irqsave(hba->host->host_lock, flags);
2076 	hba->clk_scaling.active_reqs--;
2077 	if (!scaling->active_reqs && scaling->is_busy_started) {
2078 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2079 					scaling->busy_start_t));
2080 		scaling->busy_start_t = 0;
2081 		scaling->is_busy_started = false;
2082 	}
2083 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2084 }
2085 
2086 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2087 {
2088 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2089 		return READ;
2090 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2091 		return WRITE;
2092 	else
2093 		return -EINVAL;
2094 }
2095 
2096 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2097 						struct ufshcd_lrb *lrbp)
2098 {
2099 	const struct ufs_hba_monitor *m = &hba->monitor;
2100 
2101 	return (m->enabled && lrbp && lrbp->cmd &&
2102 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2103 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2104 }
2105 
2106 static void ufshcd_start_monitor(struct ufs_hba *hba,
2107 				 const struct ufshcd_lrb *lrbp)
2108 {
2109 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2110 	unsigned long flags;
2111 
2112 	spin_lock_irqsave(hba->host->host_lock, flags);
2113 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2114 		hba->monitor.busy_start_ts[dir] = ktime_get();
2115 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2116 }
2117 
2118 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2119 {
2120 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2121 	unsigned long flags;
2122 
2123 	spin_lock_irqsave(hba->host->host_lock, flags);
2124 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2125 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2126 		struct ufs_hba_monitor *m = &hba->monitor;
2127 		ktime_t now, inc, lat;
2128 
2129 		now = lrbp->compl_time_stamp;
2130 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2131 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2132 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2133 
2134 		/* Update latencies */
2135 		m->nr_req[dir]++;
2136 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2137 		m->lat_sum[dir] += lat;
2138 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2139 			m->lat_max[dir] = lat;
2140 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2141 			m->lat_min[dir] = lat;
2142 
2143 		m->nr_queued[dir]--;
2144 		/* Push forward the busy start of monitor */
2145 		m->busy_start_ts[dir] = now;
2146 	}
2147 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2148 }
2149 
2150 /**
2151  * ufshcd_send_command - Send SCSI or device management commands
2152  * @hba: per adapter instance
2153  * @task_tag: Task tag of the command
2154  * @hwq: pointer to hardware queue instance
2155  */
2156 static inline
2157 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2158 			 struct ufs_hw_queue *hwq)
2159 {
2160 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2161 	unsigned long flags;
2162 
2163 	lrbp->issue_time_stamp = ktime_get();
2164 	lrbp->issue_time_stamp_local_clock = local_clock();
2165 	lrbp->compl_time_stamp = ktime_set(0, 0);
2166 	lrbp->compl_time_stamp_local_clock = 0;
2167 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2168 	ufshcd_clk_scaling_start_busy(hba);
2169 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2170 		ufshcd_start_monitor(hba, lrbp);
2171 
2172 	if (is_mcq_enabled(hba)) {
2173 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2174 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2175 		struct utp_transfer_req_desc *dest;
2176 
2177 		spin_lock(&hwq->sq_lock);
2178 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2179 		memcpy(dest, src, utrd_size);
2180 		ufshcd_inc_sq_tail(hwq);
2181 		spin_unlock(&hwq->sq_lock);
2182 	} else {
2183 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2184 		if (hba->vops && hba->vops->setup_xfer_req)
2185 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2186 						  !!lrbp->cmd);
2187 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2188 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2189 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2190 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2191 	}
2192 }
2193 
2194 /**
2195  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2196  * @lrbp: pointer to local reference block
2197  */
2198 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2199 {
2200 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2201 	u16 resp_len;
2202 	int len;
2203 
2204 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2205 	if (sense_buffer && resp_len) {
2206 		int len_to_copy;
2207 
2208 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2209 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2210 
2211 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2212 		       len_to_copy);
2213 	}
2214 }
2215 
2216 /**
2217  * ufshcd_copy_query_response() - Copy the Query Response and the data
2218  * descriptor
2219  * @hba: per adapter instance
2220  * @lrbp: pointer to local reference block
2221  *
2222  * Return: 0 upon success; < 0 upon failure.
2223  */
2224 static
2225 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2226 {
2227 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2228 
2229 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2230 
2231 	/* Get the descriptor */
2232 	if (hba->dev_cmd.query.descriptor &&
2233 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2234 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2235 				GENERAL_UPIU_REQUEST_SIZE;
2236 		u16 resp_len;
2237 		u16 buf_len;
2238 
2239 		/* data segment length */
2240 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2241 				       .data_segment_length);
2242 		buf_len = be16_to_cpu(
2243 				hba->dev_cmd.query.request.upiu_req.length);
2244 		if (likely(buf_len >= resp_len)) {
2245 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2246 		} else {
2247 			dev_warn(hba->dev,
2248 				 "%s: rsp size %d is bigger than buffer size %d",
2249 				 __func__, resp_len, buf_len);
2250 			return -EINVAL;
2251 		}
2252 	}
2253 
2254 	return 0;
2255 }
2256 
2257 /**
2258  * ufshcd_hba_capabilities - Read controller capabilities
2259  * @hba: per adapter instance
2260  *
2261  * Return: 0 on success, negative on error.
2262  */
2263 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2264 {
2265 	int err;
2266 
2267 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2268 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_64BIT_ADDRESS)
2269 		hba->capabilities &= ~MASK_64_ADDRESSING_SUPPORT;
2270 
2271 	/* nutrs and nutmrs are 0 based values */
2272 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2273 	hba->nutmrs =
2274 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2275 	hba->reserved_slot = hba->nutrs - 1;
2276 
2277 	/* Read crypto capabilities */
2278 	err = ufshcd_hba_init_crypto_capabilities(hba);
2279 	if (err) {
2280 		dev_err(hba->dev, "crypto setup failed\n");
2281 		return err;
2282 	}
2283 
2284 	/*
2285 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2286 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2287 	 * means we can simply read values regardless of version.
2288 	 */
2289 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2290 	/*
2291 	 * 0h: legacy single doorbell support is available
2292 	 * 1h: indicate that legacy single doorbell support has been removed
2293 	 */
2294 	hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2295 	if (!hba->mcq_sup)
2296 		return 0;
2297 
2298 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2299 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2300 				     hba->mcq_capabilities);
2301 
2302 	return 0;
2303 }
2304 
2305 /**
2306  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2307  *                            to accept UIC commands
2308  * @hba: per adapter instance
2309  *
2310  * Return: true on success, else false.
2311  */
2312 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2313 {
2314 	u32 val;
2315 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2316 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2317 				    REG_CONTROLLER_STATUS);
2318 	return ret == 0 ? true : false;
2319 }
2320 
2321 /**
2322  * ufshcd_get_upmcrs - Get the power mode change request status
2323  * @hba: Pointer to adapter instance
2324  *
2325  * This function gets the UPMCRS field of HCS register
2326  *
2327  * Return: value of UPMCRS field.
2328  */
2329 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2330 {
2331 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2332 }
2333 
2334 /**
2335  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2336  * @hba: per adapter instance
2337  * @uic_cmd: UIC command
2338  */
2339 static inline void
2340 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2341 {
2342 	lockdep_assert_held(&hba->uic_cmd_mutex);
2343 
2344 	WARN_ON(hba->active_uic_cmd);
2345 
2346 	hba->active_uic_cmd = uic_cmd;
2347 
2348 	/* Write Args */
2349 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2350 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2351 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2352 
2353 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2354 
2355 	/* Write UIC Cmd */
2356 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2357 		      REG_UIC_COMMAND);
2358 }
2359 
2360 /**
2361  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2362  * @hba: per adapter instance
2363  * @uic_cmd: UIC command
2364  *
2365  * Return: 0 only if success.
2366  */
2367 static int
2368 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2369 {
2370 	int ret;
2371 	unsigned long flags;
2372 
2373 	lockdep_assert_held(&hba->uic_cmd_mutex);
2374 
2375 	if (wait_for_completion_timeout(&uic_cmd->done,
2376 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2377 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2378 	} else {
2379 		ret = -ETIMEDOUT;
2380 		dev_err(hba->dev,
2381 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2382 			uic_cmd->command, uic_cmd->argument3);
2383 
2384 		if (!uic_cmd->cmd_active) {
2385 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2386 				__func__);
2387 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2388 		}
2389 	}
2390 
2391 	spin_lock_irqsave(hba->host->host_lock, flags);
2392 	hba->active_uic_cmd = NULL;
2393 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2394 
2395 	return ret;
2396 }
2397 
2398 /**
2399  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2400  * @hba: per adapter instance
2401  * @uic_cmd: UIC command
2402  *
2403  * Return: 0 only if success.
2404  */
2405 static int
2406 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2407 {
2408 	lockdep_assert_held(&hba->uic_cmd_mutex);
2409 
2410 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2411 		dev_err(hba->dev,
2412 			"Controller not ready to accept UIC commands\n");
2413 		return -EIO;
2414 	}
2415 
2416 	init_completion(&uic_cmd->done);
2417 
2418 	uic_cmd->cmd_active = 1;
2419 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2420 
2421 	return 0;
2422 }
2423 
2424 /**
2425  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2426  * @hba: per adapter instance
2427  * @uic_cmd: UIC command
2428  *
2429  * Return: 0 only if success.
2430  */
2431 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2432 {
2433 	int ret;
2434 
2435 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2436 		return 0;
2437 
2438 	ufshcd_hold(hba);
2439 	mutex_lock(&hba->uic_cmd_mutex);
2440 	ufshcd_add_delay_before_dme_cmd(hba);
2441 
2442 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2443 	if (!ret)
2444 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2445 
2446 	mutex_unlock(&hba->uic_cmd_mutex);
2447 
2448 	ufshcd_release(hba);
2449 	return ret;
2450 }
2451 
2452 /**
2453  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2454  * @hba:	per-adapter instance
2455  * @lrbp:	pointer to local reference block
2456  * @sg_entries:	The number of sg lists actually used
2457  * @sg_list:	Pointer to SG list
2458  */
2459 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2460 			       struct scatterlist *sg_list)
2461 {
2462 	struct ufshcd_sg_entry *prd;
2463 	struct scatterlist *sg;
2464 	int i;
2465 
2466 	if (sg_entries) {
2467 
2468 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2469 			lrbp->utr_descriptor_ptr->prd_table_length =
2470 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2471 		else
2472 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2473 
2474 		prd = lrbp->ucd_prdt_ptr;
2475 
2476 		for_each_sg(sg_list, sg, sg_entries, i) {
2477 			const unsigned int len = sg_dma_len(sg);
2478 
2479 			/*
2480 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2481 			 * based value that indicates the length, in bytes, of
2482 			 * the data block. A maximum of length of 256KB may
2483 			 * exist for any entry. Bits 1:0 of this field shall be
2484 			 * 11b to indicate Dword granularity. A value of '3'
2485 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2486 			 */
2487 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2488 			prd->size = cpu_to_le32(len - 1);
2489 			prd->addr = cpu_to_le64(sg->dma_address);
2490 			prd->reserved = 0;
2491 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2492 		}
2493 	} else {
2494 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2495 	}
2496 }
2497 
2498 /**
2499  * ufshcd_map_sg - Map scatter-gather list to prdt
2500  * @hba: per adapter instance
2501  * @lrbp: pointer to local reference block
2502  *
2503  * Return: 0 in case of success, non-zero value in case of failure.
2504  */
2505 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2506 {
2507 	struct scsi_cmnd *cmd = lrbp->cmd;
2508 	int sg_segments = scsi_dma_map(cmd);
2509 
2510 	if (sg_segments < 0)
2511 		return sg_segments;
2512 
2513 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2514 
2515 	return 0;
2516 }
2517 
2518 /**
2519  * ufshcd_enable_intr - enable interrupts
2520  * @hba: per adapter instance
2521  * @intrs: interrupt bits
2522  */
2523 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2524 {
2525 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2526 
2527 	if (hba->ufs_version == ufshci_version(1, 0)) {
2528 		u32 rw;
2529 		rw = set & INTERRUPT_MASK_RW_VER_10;
2530 		set = rw | ((set ^ intrs) & intrs);
2531 	} else {
2532 		set |= intrs;
2533 	}
2534 
2535 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2536 }
2537 
2538 /**
2539  * ufshcd_disable_intr - disable interrupts
2540  * @hba: per adapter instance
2541  * @intrs: interrupt bits
2542  */
2543 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2544 {
2545 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2546 
2547 	if (hba->ufs_version == ufshci_version(1, 0)) {
2548 		u32 rw;
2549 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2550 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2551 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2552 
2553 	} else {
2554 		set &= ~intrs;
2555 	}
2556 
2557 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2558 }
2559 
2560 /**
2561  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2562  * descriptor according to request
2563  * @lrbp: pointer to local reference block
2564  * @upiu_flags: flags required in the header
2565  * @cmd_dir: requests data direction
2566  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2567  */
2568 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2569 					enum dma_data_direction cmd_dir, int ehs_length)
2570 {
2571 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2572 	struct request_desc_header *h = &req_desc->header;
2573 	enum utp_data_direction data_direction;
2574 
2575 	*h = (typeof(*h)){ };
2576 
2577 	if (cmd_dir == DMA_FROM_DEVICE) {
2578 		data_direction = UTP_DEVICE_TO_HOST;
2579 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2580 	} else if (cmd_dir == DMA_TO_DEVICE) {
2581 		data_direction = UTP_HOST_TO_DEVICE;
2582 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2583 	} else {
2584 		data_direction = UTP_NO_DATA_TRANSFER;
2585 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2586 	}
2587 
2588 	h->command_type = lrbp->command_type;
2589 	h->data_direction = data_direction;
2590 	h->ehs_length = ehs_length;
2591 
2592 	if (lrbp->intr_cmd)
2593 		h->interrupt = 1;
2594 
2595 	/* Prepare crypto related dwords */
2596 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2597 
2598 	/*
2599 	 * assigning invalid value for command status. Controller
2600 	 * updates OCS on command completion, with the command
2601 	 * status
2602 	 */
2603 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2604 
2605 	req_desc->prd_table_length = 0;
2606 }
2607 
2608 /**
2609  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2610  * for scsi commands
2611  * @lrbp: local reference block pointer
2612  * @upiu_flags: flags
2613  */
2614 static
2615 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2616 {
2617 	struct scsi_cmnd *cmd = lrbp->cmd;
2618 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2619 	unsigned short cdb_len;
2620 
2621 	ucd_req_ptr->header = (struct utp_upiu_header){
2622 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2623 		.flags = upiu_flags,
2624 		.lun = lrbp->lun,
2625 		.task_tag = lrbp->task_tag,
2626 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2627 	};
2628 
2629 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2630 
2631 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2632 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2633 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2634 
2635 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2636 }
2637 
2638 /**
2639  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2640  * @hba: UFS hba
2641  * @lrbp: local reference block pointer
2642  * @upiu_flags: flags
2643  */
2644 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2645 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2646 {
2647 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2648 	struct ufs_query *query = &hba->dev_cmd.query;
2649 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2650 
2651 	/* Query request header */
2652 	ucd_req_ptr->header = (struct utp_upiu_header){
2653 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2654 		.flags = upiu_flags,
2655 		.lun = lrbp->lun,
2656 		.task_tag = lrbp->task_tag,
2657 		.query_function = query->request.query_func,
2658 		/* Data segment length only need for WRITE_DESC */
2659 		.data_segment_length =
2660 			query->request.upiu_req.opcode ==
2661 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2662 				cpu_to_be16(len) :
2663 				0,
2664 	};
2665 
2666 	/* Copy the Query Request buffer as is */
2667 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2668 			QUERY_OSF_SIZE);
2669 
2670 	/* Copy the Descriptor */
2671 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2672 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2673 
2674 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2675 }
2676 
2677 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2678 {
2679 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2680 
2681 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2682 
2683 	ucd_req_ptr->header = (struct utp_upiu_header){
2684 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2685 		.task_tag = lrbp->task_tag,
2686 	};
2687 
2688 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2689 }
2690 
2691 /**
2692  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2693  *			     for Device Management Purposes
2694  * @hba: per adapter instance
2695  * @lrbp: pointer to local reference block
2696  *
2697  * Return: 0 upon success; < 0 upon failure.
2698  */
2699 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2700 				      struct ufshcd_lrb *lrbp)
2701 {
2702 	u8 upiu_flags;
2703 	int ret = 0;
2704 
2705 	if (hba->ufs_version <= ufshci_version(1, 1))
2706 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2707 	else
2708 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2709 
2710 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2711 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2712 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2713 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2714 		ufshcd_prepare_utp_nop_upiu(lrbp);
2715 	else
2716 		ret = -EINVAL;
2717 
2718 	return ret;
2719 }
2720 
2721 /**
2722  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2723  *			   for SCSI Purposes
2724  * @hba: per adapter instance
2725  * @lrbp: pointer to local reference block
2726  *
2727  * Return: 0 upon success; < 0 upon failure.
2728  */
2729 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2730 {
2731 	u8 upiu_flags;
2732 	int ret = 0;
2733 
2734 	if (hba->ufs_version <= ufshci_version(1, 1))
2735 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2736 	else
2737 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2738 
2739 	if (likely(lrbp->cmd)) {
2740 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2741 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2742 	} else {
2743 		ret = -EINVAL;
2744 	}
2745 
2746 	return ret;
2747 }
2748 
2749 /**
2750  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2751  * @upiu_wlun_id: UPIU W-LUN id
2752  *
2753  * Return: SCSI W-LUN id.
2754  */
2755 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2756 {
2757 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2758 }
2759 
2760 static inline bool is_device_wlun(struct scsi_device *sdev)
2761 {
2762 	return sdev->lun ==
2763 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2764 }
2765 
2766 /*
2767  * Associate the UFS controller queue with the default and poll HCTX types.
2768  * Initialize the mq_map[] arrays.
2769  */
2770 static void ufshcd_map_queues(struct Scsi_Host *shost)
2771 {
2772 	struct ufs_hba *hba = shost_priv(shost);
2773 	int i, queue_offset = 0;
2774 
2775 	if (!is_mcq_supported(hba)) {
2776 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2777 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2778 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2779 		hba->nr_hw_queues = 1;
2780 	}
2781 
2782 	for (i = 0; i < shost->nr_maps; i++) {
2783 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2784 
2785 		map->nr_queues = hba->nr_queues[i];
2786 		if (!map->nr_queues)
2787 			continue;
2788 		map->queue_offset = queue_offset;
2789 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2790 			map->queue_offset = 0;
2791 
2792 		blk_mq_map_queues(map);
2793 		queue_offset += map->nr_queues;
2794 	}
2795 }
2796 
2797 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2798 {
2799 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2800 		i * ufshcd_get_ucd_size(hba);
2801 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2802 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2803 		i * ufshcd_get_ucd_size(hba);
2804 	u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2805 	u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2806 
2807 	lrb->utr_descriptor_ptr = utrdlp + i;
2808 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2809 		i * sizeof(struct utp_transfer_req_desc);
2810 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2811 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2812 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2813 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2814 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2815 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2816 }
2817 
2818 /**
2819  * ufshcd_queuecommand - main entry point for SCSI requests
2820  * @host: SCSI host pointer
2821  * @cmd: command from SCSI Midlayer
2822  *
2823  * Return: 0 for success, non-zero in case of failure.
2824  */
2825 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2826 {
2827 	struct ufs_hba *hba = shost_priv(host);
2828 	int tag = scsi_cmd_to_rq(cmd)->tag;
2829 	struct ufshcd_lrb *lrbp;
2830 	int err = 0;
2831 	struct ufs_hw_queue *hwq = NULL;
2832 
2833 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2834 
2835 	switch (hba->ufshcd_state) {
2836 	case UFSHCD_STATE_OPERATIONAL:
2837 		break;
2838 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2839 		/*
2840 		 * SCSI error handler can call ->queuecommand() while UFS error
2841 		 * handler is in progress. Error interrupts could change the
2842 		 * state from UFSHCD_STATE_RESET to
2843 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2844 		 * being issued in that case.
2845 		 */
2846 		if (ufshcd_eh_in_progress(hba)) {
2847 			err = SCSI_MLQUEUE_HOST_BUSY;
2848 			goto out;
2849 		}
2850 		break;
2851 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2852 		/*
2853 		 * pm_runtime_get_sync() is used at error handling preparation
2854 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2855 		 * PM ops, it can never be finished if we let SCSI layer keep
2856 		 * retrying it, which gets err handler stuck forever. Neither
2857 		 * can we let the scsi cmd pass through, because UFS is in bad
2858 		 * state, the scsi cmd may eventually time out, which will get
2859 		 * err handler blocked for too long. So, just fail the scsi cmd
2860 		 * sent from PM ops, err handler can recover PM error anyways.
2861 		 */
2862 		if (hba->pm_op_in_progress) {
2863 			hba->force_reset = true;
2864 			set_host_byte(cmd, DID_BAD_TARGET);
2865 			scsi_done(cmd);
2866 			goto out;
2867 		}
2868 		fallthrough;
2869 	case UFSHCD_STATE_RESET:
2870 		err = SCSI_MLQUEUE_HOST_BUSY;
2871 		goto out;
2872 	case UFSHCD_STATE_ERROR:
2873 		set_host_byte(cmd, DID_ERROR);
2874 		scsi_done(cmd);
2875 		goto out;
2876 	}
2877 
2878 	hba->req_abort_count = 0;
2879 
2880 	ufshcd_hold(hba);
2881 
2882 	lrbp = &hba->lrb[tag];
2883 	lrbp->cmd = cmd;
2884 	lrbp->task_tag = tag;
2885 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2886 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2887 
2888 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2889 
2890 	lrbp->req_abort_skip = false;
2891 
2892 	ufshcd_comp_scsi_upiu(hba, lrbp);
2893 
2894 	err = ufshcd_map_sg(hba, lrbp);
2895 	if (err) {
2896 		ufshcd_release(hba);
2897 		goto out;
2898 	}
2899 
2900 	if (is_mcq_enabled(hba))
2901 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2902 
2903 	ufshcd_send_command(hba, tag, hwq);
2904 
2905 out:
2906 	if (ufs_trigger_eh()) {
2907 		unsigned long flags;
2908 
2909 		spin_lock_irqsave(hba->host->host_lock, flags);
2910 		ufshcd_schedule_eh_work(hba);
2911 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2912 	}
2913 
2914 	return err;
2915 }
2916 
2917 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2918 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2919 {
2920 	lrbp->cmd = NULL;
2921 	lrbp->task_tag = tag;
2922 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2923 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2924 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2925 	hba->dev_cmd.type = cmd_type;
2926 
2927 	return ufshcd_compose_devman_upiu(hba, lrbp);
2928 }
2929 
2930 /*
2931  * Check with the block layer if the command is inflight
2932  * @cmd: command to check.
2933  *
2934  * Return: true if command is inflight; false if not.
2935  */
2936 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
2937 {
2938 	struct request *rq;
2939 
2940 	if (!cmd)
2941 		return false;
2942 
2943 	rq = scsi_cmd_to_rq(cmd);
2944 	if (!blk_mq_request_started(rq))
2945 		return false;
2946 
2947 	return true;
2948 }
2949 
2950 /*
2951  * Clear the pending command in the controller and wait until
2952  * the controller confirms that the command has been cleared.
2953  * @hba: per adapter instance
2954  * @task_tag: The tag number of the command to be cleared.
2955  */
2956 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
2957 {
2958 	u32 mask;
2959 	unsigned long flags;
2960 	int err;
2961 
2962 	if (is_mcq_enabled(hba)) {
2963 		/*
2964 		 * MCQ mode. Clean up the MCQ resources similar to
2965 		 * what the ufshcd_utrl_clear() does for SDB mode.
2966 		 */
2967 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
2968 		if (err) {
2969 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
2970 				__func__, task_tag, err);
2971 			return err;
2972 		}
2973 		return 0;
2974 	}
2975 
2976 	mask = 1U << task_tag;
2977 
2978 	/* clear outstanding transaction before retry */
2979 	spin_lock_irqsave(hba->host->host_lock, flags);
2980 	ufshcd_utrl_clear(hba, mask);
2981 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2982 
2983 	/*
2984 	 * wait for h/w to clear corresponding bit in door-bell.
2985 	 * max. wait is 1 sec.
2986 	 */
2987 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
2988 					mask, ~mask, 1000, 1000);
2989 }
2990 
2991 /**
2992  * ufshcd_dev_cmd_completion() - handles device management command responses
2993  * @hba: per adapter instance
2994  * @lrbp: pointer to local reference block
2995  *
2996  * Return: 0 upon success; < 0 upon failure.
2997  */
2998 static int
2999 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3000 {
3001 	enum upiu_response_transaction resp;
3002 	int err = 0;
3003 
3004 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3005 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3006 
3007 	switch (resp) {
3008 	case UPIU_TRANSACTION_NOP_IN:
3009 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3010 			err = -EINVAL;
3011 			dev_err(hba->dev, "%s: unexpected response %x\n",
3012 					__func__, resp);
3013 		}
3014 		break;
3015 	case UPIU_TRANSACTION_QUERY_RSP: {
3016 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3017 
3018 		if (response == 0)
3019 			err = ufshcd_copy_query_response(hba, lrbp);
3020 		break;
3021 	}
3022 	case UPIU_TRANSACTION_REJECT_UPIU:
3023 		/* TODO: handle Reject UPIU Response */
3024 		err = -EPERM;
3025 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3026 				__func__);
3027 		break;
3028 	case UPIU_TRANSACTION_RESPONSE:
3029 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3030 			err = -EINVAL;
3031 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3032 		}
3033 		break;
3034 	default:
3035 		err = -EINVAL;
3036 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3037 				__func__, resp);
3038 		break;
3039 	}
3040 
3041 	return err;
3042 }
3043 
3044 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3045 		struct ufshcd_lrb *lrbp, int max_timeout)
3046 {
3047 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3048 	unsigned long flags;
3049 	bool pending;
3050 	int err;
3051 
3052 retry:
3053 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3054 						time_left);
3055 
3056 	if (likely(time_left)) {
3057 		/*
3058 		 * The completion handler called complete() and the caller of
3059 		 * this function still owns the @lrbp tag so the code below does
3060 		 * not trigger any race conditions.
3061 		 */
3062 		hba->dev_cmd.complete = NULL;
3063 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3064 		if (!err)
3065 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3066 	} else {
3067 		err = -ETIMEDOUT;
3068 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3069 			__func__, lrbp->task_tag);
3070 
3071 		/* MCQ mode */
3072 		if (is_mcq_enabled(hba)) {
3073 			/* successfully cleared the command, retry if needed */
3074 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3075 				err = -EAGAIN;
3076 			hba->dev_cmd.complete = NULL;
3077 			return err;
3078 		}
3079 
3080 		/* SDB mode */
3081 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3082 			/* successfully cleared the command, retry if needed */
3083 			err = -EAGAIN;
3084 			/*
3085 			 * Since clearing the command succeeded we also need to
3086 			 * clear the task tag bit from the outstanding_reqs
3087 			 * variable.
3088 			 */
3089 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3090 			pending = test_bit(lrbp->task_tag,
3091 					   &hba->outstanding_reqs);
3092 			if (pending) {
3093 				hba->dev_cmd.complete = NULL;
3094 				__clear_bit(lrbp->task_tag,
3095 					    &hba->outstanding_reqs);
3096 			}
3097 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3098 
3099 			if (!pending) {
3100 				/*
3101 				 * The completion handler ran while we tried to
3102 				 * clear the command.
3103 				 */
3104 				time_left = 1;
3105 				goto retry;
3106 			}
3107 		} else {
3108 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3109 				__func__, lrbp->task_tag);
3110 
3111 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3112 			pending = test_bit(lrbp->task_tag,
3113 					   &hba->outstanding_reqs);
3114 			if (pending)
3115 				hba->dev_cmd.complete = NULL;
3116 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3117 
3118 			if (!pending) {
3119 				/*
3120 				 * The completion handler ran while we tried to
3121 				 * clear the command.
3122 				 */
3123 				time_left = 1;
3124 				goto retry;
3125 			}
3126 		}
3127 	}
3128 
3129 	return err;
3130 }
3131 
3132 /**
3133  * ufshcd_exec_dev_cmd - API for sending device management requests
3134  * @hba: UFS hba
3135  * @cmd_type: specifies the type (NOP, Query...)
3136  * @timeout: timeout in milliseconds
3137  *
3138  * Return: 0 upon success; < 0 upon failure.
3139  *
3140  * NOTE: Since there is only one available tag for device management commands,
3141  * it is expected you hold the hba->dev_cmd.lock mutex.
3142  */
3143 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3144 		enum dev_cmd_type cmd_type, int timeout)
3145 {
3146 	DECLARE_COMPLETION_ONSTACK(wait);
3147 	const u32 tag = hba->reserved_slot;
3148 	struct ufshcd_lrb *lrbp;
3149 	int err;
3150 
3151 	/* Protects use of hba->reserved_slot. */
3152 	lockdep_assert_held(&hba->dev_cmd.lock);
3153 
3154 	down_read(&hba->clk_scaling_lock);
3155 
3156 	lrbp = &hba->lrb[tag];
3157 	lrbp->cmd = NULL;
3158 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3159 	if (unlikely(err))
3160 		goto out;
3161 
3162 	hba->dev_cmd.complete = &wait;
3163 
3164 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3165 
3166 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3167 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3168 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3169 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3170 
3171 out:
3172 	up_read(&hba->clk_scaling_lock);
3173 	return err;
3174 }
3175 
3176 /**
3177  * ufshcd_init_query() - init the query response and request parameters
3178  * @hba: per-adapter instance
3179  * @request: address of the request pointer to be initialized
3180  * @response: address of the response pointer to be initialized
3181  * @opcode: operation to perform
3182  * @idn: flag idn to access
3183  * @index: LU number to access
3184  * @selector: query/flag/descriptor further identification
3185  */
3186 static inline void ufshcd_init_query(struct ufs_hba *hba,
3187 		struct ufs_query_req **request, struct ufs_query_res **response,
3188 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3189 {
3190 	*request = &hba->dev_cmd.query.request;
3191 	*response = &hba->dev_cmd.query.response;
3192 	memset(*request, 0, sizeof(struct ufs_query_req));
3193 	memset(*response, 0, sizeof(struct ufs_query_res));
3194 	(*request)->upiu_req.opcode = opcode;
3195 	(*request)->upiu_req.idn = idn;
3196 	(*request)->upiu_req.index = index;
3197 	(*request)->upiu_req.selector = selector;
3198 }
3199 
3200 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3201 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3202 {
3203 	int ret;
3204 	int retries;
3205 
3206 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3207 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3208 		if (ret)
3209 			dev_dbg(hba->dev,
3210 				"%s: failed with error %d, retries %d\n",
3211 				__func__, ret, retries);
3212 		else
3213 			break;
3214 	}
3215 
3216 	if (ret)
3217 		dev_err(hba->dev,
3218 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3219 			__func__, opcode, idn, ret, retries);
3220 	return ret;
3221 }
3222 
3223 /**
3224  * ufshcd_query_flag() - API function for sending flag query requests
3225  * @hba: per-adapter instance
3226  * @opcode: flag query to perform
3227  * @idn: flag idn to access
3228  * @index: flag index to access
3229  * @flag_res: the flag value after the query request completes
3230  *
3231  * Return: 0 for success, non-zero in case of failure.
3232  */
3233 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3234 			enum flag_idn idn, u8 index, bool *flag_res)
3235 {
3236 	struct ufs_query_req *request = NULL;
3237 	struct ufs_query_res *response = NULL;
3238 	int err, selector = 0;
3239 	int timeout = QUERY_REQ_TIMEOUT;
3240 
3241 	BUG_ON(!hba);
3242 
3243 	ufshcd_hold(hba);
3244 	mutex_lock(&hba->dev_cmd.lock);
3245 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3246 			selector);
3247 
3248 	switch (opcode) {
3249 	case UPIU_QUERY_OPCODE_SET_FLAG:
3250 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3251 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3252 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3253 		break;
3254 	case UPIU_QUERY_OPCODE_READ_FLAG:
3255 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3256 		if (!flag_res) {
3257 			/* No dummy reads */
3258 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3259 					__func__);
3260 			err = -EINVAL;
3261 			goto out_unlock;
3262 		}
3263 		break;
3264 	default:
3265 		dev_err(hba->dev,
3266 			"%s: Expected query flag opcode but got = %d\n",
3267 			__func__, opcode);
3268 		err = -EINVAL;
3269 		goto out_unlock;
3270 	}
3271 
3272 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3273 
3274 	if (err) {
3275 		dev_err(hba->dev,
3276 			"%s: Sending flag query for idn %d failed, err = %d\n",
3277 			__func__, idn, err);
3278 		goto out_unlock;
3279 	}
3280 
3281 	if (flag_res)
3282 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3283 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3284 
3285 out_unlock:
3286 	mutex_unlock(&hba->dev_cmd.lock);
3287 	ufshcd_release(hba);
3288 	return err;
3289 }
3290 
3291 /**
3292  * ufshcd_query_attr - API function for sending attribute requests
3293  * @hba: per-adapter instance
3294  * @opcode: attribute opcode
3295  * @idn: attribute idn to access
3296  * @index: index field
3297  * @selector: selector field
3298  * @attr_val: the attribute value after the query request completes
3299  *
3300  * Return: 0 for success, non-zero in case of failure.
3301 */
3302 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3303 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3304 {
3305 	struct ufs_query_req *request = NULL;
3306 	struct ufs_query_res *response = NULL;
3307 	int err;
3308 
3309 	BUG_ON(!hba);
3310 
3311 	if (!attr_val) {
3312 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3313 				__func__, opcode);
3314 		return -EINVAL;
3315 	}
3316 
3317 	ufshcd_hold(hba);
3318 
3319 	mutex_lock(&hba->dev_cmd.lock);
3320 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3321 			selector);
3322 
3323 	switch (opcode) {
3324 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3325 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3326 		request->upiu_req.value = cpu_to_be32(*attr_val);
3327 		break;
3328 	case UPIU_QUERY_OPCODE_READ_ATTR:
3329 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3330 		break;
3331 	default:
3332 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3333 				__func__, opcode);
3334 		err = -EINVAL;
3335 		goto out_unlock;
3336 	}
3337 
3338 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3339 
3340 	if (err) {
3341 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3342 				__func__, opcode, idn, index, err);
3343 		goto out_unlock;
3344 	}
3345 
3346 	*attr_val = be32_to_cpu(response->upiu_res.value);
3347 
3348 out_unlock:
3349 	mutex_unlock(&hba->dev_cmd.lock);
3350 	ufshcd_release(hba);
3351 	return err;
3352 }
3353 
3354 /**
3355  * ufshcd_query_attr_retry() - API function for sending query
3356  * attribute with retries
3357  * @hba: per-adapter instance
3358  * @opcode: attribute opcode
3359  * @idn: attribute idn to access
3360  * @index: index field
3361  * @selector: selector field
3362  * @attr_val: the attribute value after the query request
3363  * completes
3364  *
3365  * Return: 0 for success, non-zero in case of failure.
3366 */
3367 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3368 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3369 	u32 *attr_val)
3370 {
3371 	int ret = 0;
3372 	u32 retries;
3373 
3374 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3375 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3376 						selector, attr_val);
3377 		if (ret)
3378 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3379 				__func__, ret, retries);
3380 		else
3381 			break;
3382 	}
3383 
3384 	if (ret)
3385 		dev_err(hba->dev,
3386 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3387 			__func__, idn, ret, QUERY_REQ_RETRIES);
3388 	return ret;
3389 }
3390 
3391 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3392 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3393 			u8 selector, u8 *desc_buf, int *buf_len)
3394 {
3395 	struct ufs_query_req *request = NULL;
3396 	struct ufs_query_res *response = NULL;
3397 	int err;
3398 
3399 	BUG_ON(!hba);
3400 
3401 	if (!desc_buf) {
3402 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3403 				__func__, opcode);
3404 		return -EINVAL;
3405 	}
3406 
3407 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3408 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3409 				__func__, *buf_len);
3410 		return -EINVAL;
3411 	}
3412 
3413 	ufshcd_hold(hba);
3414 
3415 	mutex_lock(&hba->dev_cmd.lock);
3416 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3417 			selector);
3418 	hba->dev_cmd.query.descriptor = desc_buf;
3419 	request->upiu_req.length = cpu_to_be16(*buf_len);
3420 
3421 	switch (opcode) {
3422 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3423 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3424 		break;
3425 	case UPIU_QUERY_OPCODE_READ_DESC:
3426 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3427 		break;
3428 	default:
3429 		dev_err(hba->dev,
3430 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3431 				__func__, opcode);
3432 		err = -EINVAL;
3433 		goto out_unlock;
3434 	}
3435 
3436 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3437 
3438 	if (err) {
3439 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3440 				__func__, opcode, idn, index, err);
3441 		goto out_unlock;
3442 	}
3443 
3444 	*buf_len = be16_to_cpu(response->upiu_res.length);
3445 
3446 out_unlock:
3447 	hba->dev_cmd.query.descriptor = NULL;
3448 	mutex_unlock(&hba->dev_cmd.lock);
3449 	ufshcd_release(hba);
3450 	return err;
3451 }
3452 
3453 /**
3454  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3455  * @hba: per-adapter instance
3456  * @opcode: attribute opcode
3457  * @idn: attribute idn to access
3458  * @index: index field
3459  * @selector: selector field
3460  * @desc_buf: the buffer that contains the descriptor
3461  * @buf_len: length parameter passed to the device
3462  *
3463  * The buf_len parameter will contain, on return, the length parameter
3464  * received on the response.
3465  *
3466  * Return: 0 for success, non-zero in case of failure.
3467  */
3468 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3469 				  enum query_opcode opcode,
3470 				  enum desc_idn idn, u8 index,
3471 				  u8 selector,
3472 				  u8 *desc_buf, int *buf_len)
3473 {
3474 	int err;
3475 	int retries;
3476 
3477 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3478 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3479 						selector, desc_buf, buf_len);
3480 		if (!err || err == -EINVAL)
3481 			break;
3482 	}
3483 
3484 	return err;
3485 }
3486 
3487 /**
3488  * ufshcd_read_desc_param - read the specified descriptor parameter
3489  * @hba: Pointer to adapter instance
3490  * @desc_id: descriptor idn value
3491  * @desc_index: descriptor index
3492  * @param_offset: offset of the parameter to read
3493  * @param_read_buf: pointer to buffer where parameter would be read
3494  * @param_size: sizeof(param_read_buf)
3495  *
3496  * Return: 0 in case of success, non-zero otherwise.
3497  */
3498 int ufshcd_read_desc_param(struct ufs_hba *hba,
3499 			   enum desc_idn desc_id,
3500 			   int desc_index,
3501 			   u8 param_offset,
3502 			   u8 *param_read_buf,
3503 			   u8 param_size)
3504 {
3505 	int ret;
3506 	u8 *desc_buf;
3507 	int buff_len = QUERY_DESC_MAX_SIZE;
3508 	bool is_kmalloc = true;
3509 
3510 	/* Safety check */
3511 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3512 		return -EINVAL;
3513 
3514 	/* Check whether we need temp memory */
3515 	if (param_offset != 0 || param_size < buff_len) {
3516 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3517 		if (!desc_buf)
3518 			return -ENOMEM;
3519 	} else {
3520 		desc_buf = param_read_buf;
3521 		is_kmalloc = false;
3522 	}
3523 
3524 	/* Request for full descriptor */
3525 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3526 					    desc_id, desc_index, 0,
3527 					    desc_buf, &buff_len);
3528 	if (ret) {
3529 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3530 			__func__, desc_id, desc_index, param_offset, ret);
3531 		goto out;
3532 	}
3533 
3534 	/* Update descriptor length */
3535 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3536 
3537 	if (param_offset >= buff_len) {
3538 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3539 			__func__, param_offset, desc_id, buff_len);
3540 		ret = -EINVAL;
3541 		goto out;
3542 	}
3543 
3544 	/* Sanity check */
3545 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3546 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3547 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3548 		ret = -EINVAL;
3549 		goto out;
3550 	}
3551 
3552 	if (is_kmalloc) {
3553 		/* Make sure we don't copy more data than available */
3554 		if (param_offset >= buff_len)
3555 			ret = -EINVAL;
3556 		else
3557 			memcpy(param_read_buf, &desc_buf[param_offset],
3558 			       min_t(u32, param_size, buff_len - param_offset));
3559 	}
3560 out:
3561 	if (is_kmalloc)
3562 		kfree(desc_buf);
3563 	return ret;
3564 }
3565 
3566 /**
3567  * struct uc_string_id - unicode string
3568  *
3569  * @len: size of this descriptor inclusive
3570  * @type: descriptor type
3571  * @uc: unicode string character
3572  */
3573 struct uc_string_id {
3574 	u8 len;
3575 	u8 type;
3576 	wchar_t uc[];
3577 } __packed;
3578 
3579 /* replace non-printable or non-ASCII characters with spaces */
3580 static inline char ufshcd_remove_non_printable(u8 ch)
3581 {
3582 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3583 }
3584 
3585 /**
3586  * ufshcd_read_string_desc - read string descriptor
3587  * @hba: pointer to adapter instance
3588  * @desc_index: descriptor index
3589  * @buf: pointer to buffer where descriptor would be read,
3590  *       the caller should free the memory.
3591  * @ascii: if true convert from unicode to ascii characters
3592  *         null terminated string.
3593  *
3594  * Return:
3595  * *      string size on success.
3596  * *      -ENOMEM: on allocation failure
3597  * *      -EINVAL: on a wrong parameter
3598  */
3599 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3600 			    u8 **buf, bool ascii)
3601 {
3602 	struct uc_string_id *uc_str;
3603 	u8 *str;
3604 	int ret;
3605 
3606 	if (!buf)
3607 		return -EINVAL;
3608 
3609 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3610 	if (!uc_str)
3611 		return -ENOMEM;
3612 
3613 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3614 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3615 	if (ret < 0) {
3616 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3617 			QUERY_REQ_RETRIES, ret);
3618 		str = NULL;
3619 		goto out;
3620 	}
3621 
3622 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3623 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3624 		str = NULL;
3625 		ret = 0;
3626 		goto out;
3627 	}
3628 
3629 	if (ascii) {
3630 		ssize_t ascii_len;
3631 		int i;
3632 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3633 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3634 		str = kzalloc(ascii_len, GFP_KERNEL);
3635 		if (!str) {
3636 			ret = -ENOMEM;
3637 			goto out;
3638 		}
3639 
3640 		/*
3641 		 * the descriptor contains string in UTF16 format
3642 		 * we need to convert to utf-8 so it can be displayed
3643 		 */
3644 		ret = utf16s_to_utf8s(uc_str->uc,
3645 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3646 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3647 
3648 		/* replace non-printable or non-ASCII characters with spaces */
3649 		for (i = 0; i < ret; i++)
3650 			str[i] = ufshcd_remove_non_printable(str[i]);
3651 
3652 		str[ret++] = '\0';
3653 
3654 	} else {
3655 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3656 		if (!str) {
3657 			ret = -ENOMEM;
3658 			goto out;
3659 		}
3660 		ret = uc_str->len;
3661 	}
3662 out:
3663 	*buf = str;
3664 	kfree(uc_str);
3665 	return ret;
3666 }
3667 
3668 /**
3669  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3670  * @hba: Pointer to adapter instance
3671  * @lun: lun id
3672  * @param_offset: offset of the parameter to read
3673  * @param_read_buf: pointer to buffer where parameter would be read
3674  * @param_size: sizeof(param_read_buf)
3675  *
3676  * Return: 0 in case of success, non-zero otherwise.
3677  */
3678 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3679 					      int lun,
3680 					      enum unit_desc_param param_offset,
3681 					      u8 *param_read_buf,
3682 					      u32 param_size)
3683 {
3684 	/*
3685 	 * Unit descriptors are only available for general purpose LUs (LUN id
3686 	 * from 0 to 7) and RPMB Well known LU.
3687 	 */
3688 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3689 		return -EOPNOTSUPP;
3690 
3691 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3692 				      param_offset, param_read_buf, param_size);
3693 }
3694 
3695 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3696 {
3697 	int err = 0;
3698 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3699 
3700 	if (hba->dev_info.wspecversion >= 0x300) {
3701 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3702 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3703 				&gating_wait);
3704 		if (err)
3705 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3706 					 err, gating_wait);
3707 
3708 		if (gating_wait == 0) {
3709 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3710 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3711 					 gating_wait);
3712 		}
3713 
3714 		hba->dev_info.clk_gating_wait_us = gating_wait;
3715 	}
3716 
3717 	return err;
3718 }
3719 
3720 /**
3721  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3722  * @hba: per adapter instance
3723  *
3724  * 1. Allocate DMA memory for Command Descriptor array
3725  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3726  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3727  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3728  *	(UTMRDL)
3729  * 4. Allocate memory for local reference block(lrb).
3730  *
3731  * Return: 0 for success, non-zero in case of failure.
3732  */
3733 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3734 {
3735 	size_t utmrdl_size, utrdl_size, ucdl_size;
3736 
3737 	/* Allocate memory for UTP command descriptors */
3738 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3739 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3740 						  ucdl_size,
3741 						  &hba->ucdl_dma_addr,
3742 						  GFP_KERNEL);
3743 
3744 	/*
3745 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3746 	 */
3747 	if (!hba->ucdl_base_addr ||
3748 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3749 		dev_err(hba->dev,
3750 			"Command Descriptor Memory allocation failed\n");
3751 		goto out;
3752 	}
3753 
3754 	/*
3755 	 * Allocate memory for UTP Transfer descriptors
3756 	 * UFSHCI requires 1KB alignment of UTRD
3757 	 */
3758 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3759 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3760 						   utrdl_size,
3761 						   &hba->utrdl_dma_addr,
3762 						   GFP_KERNEL);
3763 	if (!hba->utrdl_base_addr ||
3764 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3765 		dev_err(hba->dev,
3766 			"Transfer Descriptor Memory allocation failed\n");
3767 		goto out;
3768 	}
3769 
3770 	/*
3771 	 * Skip utmrdl allocation; it may have been
3772 	 * allocated during first pass and not released during
3773 	 * MCQ memory allocation.
3774 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3775 	 */
3776 	if (hba->utmrdl_base_addr)
3777 		goto skip_utmrdl;
3778 	/*
3779 	 * Allocate memory for UTP Task Management descriptors
3780 	 * UFSHCI requires 1KB alignment of UTMRD
3781 	 */
3782 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3783 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3784 						    utmrdl_size,
3785 						    &hba->utmrdl_dma_addr,
3786 						    GFP_KERNEL);
3787 	if (!hba->utmrdl_base_addr ||
3788 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3789 		dev_err(hba->dev,
3790 		"Task Management Descriptor Memory allocation failed\n");
3791 		goto out;
3792 	}
3793 
3794 skip_utmrdl:
3795 	/* Allocate memory for local reference block */
3796 	hba->lrb = devm_kcalloc(hba->dev,
3797 				hba->nutrs, sizeof(struct ufshcd_lrb),
3798 				GFP_KERNEL);
3799 	if (!hba->lrb) {
3800 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3801 		goto out;
3802 	}
3803 	return 0;
3804 out:
3805 	return -ENOMEM;
3806 }
3807 
3808 /**
3809  * ufshcd_host_memory_configure - configure local reference block with
3810  *				memory offsets
3811  * @hba: per adapter instance
3812  *
3813  * Configure Host memory space
3814  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3815  * address.
3816  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3817  * and PRDT offset.
3818  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3819  * into local reference block.
3820  */
3821 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3822 {
3823 	struct utp_transfer_req_desc *utrdlp;
3824 	dma_addr_t cmd_desc_dma_addr;
3825 	dma_addr_t cmd_desc_element_addr;
3826 	u16 response_offset;
3827 	u16 prdt_offset;
3828 	int cmd_desc_size;
3829 	int i;
3830 
3831 	utrdlp = hba->utrdl_base_addr;
3832 
3833 	response_offset =
3834 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3835 	prdt_offset =
3836 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3837 
3838 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3839 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3840 
3841 	for (i = 0; i < hba->nutrs; i++) {
3842 		/* Configure UTRD with command descriptor base address */
3843 		cmd_desc_element_addr =
3844 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3845 		utrdlp[i].command_desc_base_addr =
3846 				cpu_to_le64(cmd_desc_element_addr);
3847 
3848 		/* Response upiu and prdt offset should be in double words */
3849 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3850 			utrdlp[i].response_upiu_offset =
3851 				cpu_to_le16(response_offset);
3852 			utrdlp[i].prd_table_offset =
3853 				cpu_to_le16(prdt_offset);
3854 			utrdlp[i].response_upiu_length =
3855 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3856 		} else {
3857 			utrdlp[i].response_upiu_offset =
3858 				cpu_to_le16(response_offset >> 2);
3859 			utrdlp[i].prd_table_offset =
3860 				cpu_to_le16(prdt_offset >> 2);
3861 			utrdlp[i].response_upiu_length =
3862 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3863 		}
3864 
3865 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3866 	}
3867 }
3868 
3869 /**
3870  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3871  * @hba: per adapter instance
3872  *
3873  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3874  * in order to initialize the Unipro link startup procedure.
3875  * Once the Unipro links are up, the device connected to the controller
3876  * is detected.
3877  *
3878  * Return: 0 on success, non-zero value on failure.
3879  */
3880 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3881 {
3882 	struct uic_command uic_cmd = {0};
3883 	int ret;
3884 
3885 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3886 
3887 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3888 	if (ret)
3889 		dev_dbg(hba->dev,
3890 			"dme-link-startup: error code %d\n", ret);
3891 	return ret;
3892 }
3893 /**
3894  * ufshcd_dme_reset - UIC command for DME_RESET
3895  * @hba: per adapter instance
3896  *
3897  * DME_RESET command is issued in order to reset UniPro stack.
3898  * This function now deals with cold reset.
3899  *
3900  * Return: 0 on success, non-zero value on failure.
3901  */
3902 static int ufshcd_dme_reset(struct ufs_hba *hba)
3903 {
3904 	struct uic_command uic_cmd = {0};
3905 	int ret;
3906 
3907 	uic_cmd.command = UIC_CMD_DME_RESET;
3908 
3909 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3910 	if (ret)
3911 		dev_err(hba->dev,
3912 			"dme-reset: error code %d\n", ret);
3913 
3914 	return ret;
3915 }
3916 
3917 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3918 			       int agreed_gear,
3919 			       int adapt_val)
3920 {
3921 	int ret;
3922 
3923 	if (agreed_gear < UFS_HS_G4)
3924 		adapt_val = PA_NO_ADAPT;
3925 
3926 	ret = ufshcd_dme_set(hba,
3927 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3928 			     adapt_val);
3929 	return ret;
3930 }
3931 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3932 
3933 /**
3934  * ufshcd_dme_enable - UIC command for DME_ENABLE
3935  * @hba: per adapter instance
3936  *
3937  * DME_ENABLE command is issued in order to enable UniPro stack.
3938  *
3939  * Return: 0 on success, non-zero value on failure.
3940  */
3941 static int ufshcd_dme_enable(struct ufs_hba *hba)
3942 {
3943 	struct uic_command uic_cmd = {0};
3944 	int ret;
3945 
3946 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3947 
3948 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3949 	if (ret)
3950 		dev_err(hba->dev,
3951 			"dme-enable: error code %d\n", ret);
3952 
3953 	return ret;
3954 }
3955 
3956 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3957 {
3958 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3959 	unsigned long min_sleep_time_us;
3960 
3961 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3962 		return;
3963 
3964 	/*
3965 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3966 	 * this function
3967 	 */
3968 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3969 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3970 	} else {
3971 		unsigned long delta =
3972 			(unsigned long) ktime_to_us(
3973 				ktime_sub(ktime_get(),
3974 				hba->last_dme_cmd_tstamp));
3975 
3976 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3977 			min_sleep_time_us =
3978 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3979 		else
3980 			min_sleep_time_us = 0; /* no more delay required */
3981 	}
3982 
3983 	if (min_sleep_time_us > 0) {
3984 		/* allow sleep for extra 50us if needed */
3985 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3986 	}
3987 
3988 	/* update the last_dme_cmd_tstamp */
3989 	hba->last_dme_cmd_tstamp = ktime_get();
3990 }
3991 
3992 /**
3993  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3994  * @hba: per adapter instance
3995  * @attr_sel: uic command argument1
3996  * @attr_set: attribute set type as uic command argument2
3997  * @mib_val: setting value as uic command argument3
3998  * @peer: indicate whether peer or local
3999  *
4000  * Return: 0 on success, non-zero value on failure.
4001  */
4002 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4003 			u8 attr_set, u32 mib_val, u8 peer)
4004 {
4005 	struct uic_command uic_cmd = {0};
4006 	static const char *const action[] = {
4007 		"dme-set",
4008 		"dme-peer-set"
4009 	};
4010 	const char *set = action[!!peer];
4011 	int ret;
4012 	int retries = UFS_UIC_COMMAND_RETRIES;
4013 
4014 	uic_cmd.command = peer ?
4015 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4016 	uic_cmd.argument1 = attr_sel;
4017 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4018 	uic_cmd.argument3 = mib_val;
4019 
4020 	do {
4021 		/* for peer attributes we retry upon failure */
4022 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4023 		if (ret)
4024 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4025 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4026 	} while (ret && peer && --retries);
4027 
4028 	if (ret)
4029 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4030 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4031 			UFS_UIC_COMMAND_RETRIES - retries);
4032 
4033 	return ret;
4034 }
4035 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4036 
4037 /**
4038  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4039  * @hba: per adapter instance
4040  * @attr_sel: uic command argument1
4041  * @mib_val: the value of the attribute as returned by the UIC command
4042  * @peer: indicate whether peer or local
4043  *
4044  * Return: 0 on success, non-zero value on failure.
4045  */
4046 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4047 			u32 *mib_val, u8 peer)
4048 {
4049 	struct uic_command uic_cmd = {0};
4050 	static const char *const action[] = {
4051 		"dme-get",
4052 		"dme-peer-get"
4053 	};
4054 	const char *get = action[!!peer];
4055 	int ret;
4056 	int retries = UFS_UIC_COMMAND_RETRIES;
4057 	struct ufs_pa_layer_attr orig_pwr_info;
4058 	struct ufs_pa_layer_attr temp_pwr_info;
4059 	bool pwr_mode_change = false;
4060 
4061 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4062 		orig_pwr_info = hba->pwr_info;
4063 		temp_pwr_info = orig_pwr_info;
4064 
4065 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4066 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4067 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4068 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4069 			pwr_mode_change = true;
4070 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4071 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4072 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4073 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4074 			pwr_mode_change = true;
4075 		}
4076 		if (pwr_mode_change) {
4077 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4078 			if (ret)
4079 				goto out;
4080 		}
4081 	}
4082 
4083 	uic_cmd.command = peer ?
4084 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4085 	uic_cmd.argument1 = attr_sel;
4086 
4087 	do {
4088 		/* for peer attributes we retry upon failure */
4089 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4090 		if (ret)
4091 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4092 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4093 	} while (ret && peer && --retries);
4094 
4095 	if (ret)
4096 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4097 			get, UIC_GET_ATTR_ID(attr_sel),
4098 			UFS_UIC_COMMAND_RETRIES - retries);
4099 
4100 	if (mib_val && !ret)
4101 		*mib_val = uic_cmd.argument3;
4102 
4103 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4104 	    && pwr_mode_change)
4105 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4106 out:
4107 	return ret;
4108 }
4109 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4110 
4111 /**
4112  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4113  * state) and waits for it to take effect.
4114  *
4115  * @hba: per adapter instance
4116  * @cmd: UIC command to execute
4117  *
4118  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4119  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4120  * and device UniPro link and hence it's final completion would be indicated by
4121  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4122  * addition to normal UIC command completion Status (UCCS). This function only
4123  * returns after the relevant status bits indicate the completion.
4124  *
4125  * Return: 0 on success, non-zero value on failure.
4126  */
4127 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4128 {
4129 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4130 	unsigned long flags;
4131 	u8 status;
4132 	int ret;
4133 	bool reenable_intr = false;
4134 
4135 	mutex_lock(&hba->uic_cmd_mutex);
4136 	ufshcd_add_delay_before_dme_cmd(hba);
4137 
4138 	spin_lock_irqsave(hba->host->host_lock, flags);
4139 	if (ufshcd_is_link_broken(hba)) {
4140 		ret = -ENOLINK;
4141 		goto out_unlock;
4142 	}
4143 	hba->uic_async_done = &uic_async_done;
4144 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4145 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4146 		/*
4147 		 * Make sure UIC command completion interrupt is disabled before
4148 		 * issuing UIC command.
4149 		 */
4150 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4151 		reenable_intr = true;
4152 	}
4153 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4154 	ret = __ufshcd_send_uic_cmd(hba, cmd);
4155 	if (ret) {
4156 		dev_err(hba->dev,
4157 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4158 			cmd->command, cmd->argument3, ret);
4159 		goto out;
4160 	}
4161 
4162 	if (!wait_for_completion_timeout(hba->uic_async_done,
4163 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4164 		dev_err(hba->dev,
4165 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4166 			cmd->command, cmd->argument3);
4167 
4168 		if (!cmd->cmd_active) {
4169 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4170 				__func__);
4171 			goto check_upmcrs;
4172 		}
4173 
4174 		ret = -ETIMEDOUT;
4175 		goto out;
4176 	}
4177 
4178 check_upmcrs:
4179 	status = ufshcd_get_upmcrs(hba);
4180 	if (status != PWR_LOCAL) {
4181 		dev_err(hba->dev,
4182 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4183 			cmd->command, status);
4184 		ret = (status != PWR_OK) ? status : -1;
4185 	}
4186 out:
4187 	if (ret) {
4188 		ufshcd_print_host_state(hba);
4189 		ufshcd_print_pwr_info(hba);
4190 		ufshcd_print_evt_hist(hba);
4191 	}
4192 
4193 	spin_lock_irqsave(hba->host->host_lock, flags);
4194 	hba->active_uic_cmd = NULL;
4195 	hba->uic_async_done = NULL;
4196 	if (reenable_intr)
4197 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4198 	if (ret) {
4199 		ufshcd_set_link_broken(hba);
4200 		ufshcd_schedule_eh_work(hba);
4201 	}
4202 out_unlock:
4203 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4204 	mutex_unlock(&hba->uic_cmd_mutex);
4205 
4206 	return ret;
4207 }
4208 
4209 /**
4210  * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4211  * @hba: per adapter instance
4212  * @uic_cmd: UIC command
4213  *
4214  * Return: 0 only if success.
4215  */
4216 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4217 {
4218 	int ret;
4219 
4220 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4221 		return 0;
4222 
4223 	ufshcd_hold(hba);
4224 
4225 	if (uic_cmd->argument1 == UIC_ARG_MIB(PA_PWRMODE) &&
4226 	    uic_cmd->command == UIC_CMD_DME_SET) {
4227 		ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4228 		goto out;
4229 	}
4230 
4231 	mutex_lock(&hba->uic_cmd_mutex);
4232 	ufshcd_add_delay_before_dme_cmd(hba);
4233 
4234 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
4235 	if (!ret)
4236 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
4237 
4238 	mutex_unlock(&hba->uic_cmd_mutex);
4239 
4240 out:
4241 	ufshcd_release(hba);
4242 	return ret;
4243 }
4244 
4245 /**
4246  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4247  *				using DME_SET primitives.
4248  * @hba: per adapter instance
4249  * @mode: powr mode value
4250  *
4251  * Return: 0 on success, non-zero value on failure.
4252  */
4253 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4254 {
4255 	struct uic_command uic_cmd = {0};
4256 	int ret;
4257 
4258 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4259 		ret = ufshcd_dme_set(hba,
4260 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4261 		if (ret) {
4262 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4263 						__func__, ret);
4264 			goto out;
4265 		}
4266 	}
4267 
4268 	uic_cmd.command = UIC_CMD_DME_SET;
4269 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4270 	uic_cmd.argument3 = mode;
4271 	ufshcd_hold(hba);
4272 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4273 	ufshcd_release(hba);
4274 
4275 out:
4276 	return ret;
4277 }
4278 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4279 
4280 int ufshcd_link_recovery(struct ufs_hba *hba)
4281 {
4282 	int ret;
4283 	unsigned long flags;
4284 
4285 	spin_lock_irqsave(hba->host->host_lock, flags);
4286 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4287 	ufshcd_set_eh_in_progress(hba);
4288 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4289 
4290 	/* Reset the attached device */
4291 	ufshcd_device_reset(hba);
4292 
4293 	ret = ufshcd_host_reset_and_restore(hba);
4294 
4295 	spin_lock_irqsave(hba->host->host_lock, flags);
4296 	if (ret)
4297 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4298 	ufshcd_clear_eh_in_progress(hba);
4299 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4300 
4301 	if (ret)
4302 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4303 			__func__, ret);
4304 
4305 	return ret;
4306 }
4307 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4308 
4309 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4310 {
4311 	int ret;
4312 	struct uic_command uic_cmd = {0};
4313 	ktime_t start = ktime_get();
4314 
4315 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4316 
4317 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4318 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4319 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4320 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4321 
4322 	if (ret)
4323 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4324 			__func__, ret);
4325 	else
4326 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4327 								POST_CHANGE);
4328 
4329 	return ret;
4330 }
4331 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4332 
4333 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4334 {
4335 	struct uic_command uic_cmd = {0};
4336 	int ret;
4337 	ktime_t start = ktime_get();
4338 
4339 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4340 
4341 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4342 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4343 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4344 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4345 
4346 	if (ret) {
4347 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4348 			__func__, ret);
4349 	} else {
4350 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4351 								POST_CHANGE);
4352 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4353 		hba->ufs_stats.hibern8_exit_cnt++;
4354 	}
4355 
4356 	return ret;
4357 }
4358 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4359 
4360 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4361 {
4362 	unsigned long flags;
4363 	bool update = false;
4364 
4365 	if (!ufshcd_is_auto_hibern8_supported(hba))
4366 		return;
4367 
4368 	spin_lock_irqsave(hba->host->host_lock, flags);
4369 	if (hba->ahit != ahit) {
4370 		hba->ahit = ahit;
4371 		update = true;
4372 	}
4373 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4374 
4375 	if (update &&
4376 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4377 		ufshcd_rpm_get_sync(hba);
4378 		ufshcd_hold(hba);
4379 		ufshcd_auto_hibern8_enable(hba);
4380 		ufshcd_release(hba);
4381 		ufshcd_rpm_put_sync(hba);
4382 	}
4383 }
4384 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4385 
4386 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4387 {
4388 	if (!ufshcd_is_auto_hibern8_supported(hba))
4389 		return;
4390 
4391 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4392 }
4393 
4394  /**
4395  * ufshcd_init_pwr_info - setting the POR (power on reset)
4396  * values in hba power info
4397  * @hba: per-adapter instance
4398  */
4399 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4400 {
4401 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4402 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4403 	hba->pwr_info.lane_rx = UFS_LANE_1;
4404 	hba->pwr_info.lane_tx = UFS_LANE_1;
4405 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4406 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4407 	hba->pwr_info.hs_rate = 0;
4408 }
4409 
4410 /**
4411  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4412  * @hba: per-adapter instance
4413  *
4414  * Return: 0 upon success; < 0 upon failure.
4415  */
4416 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4417 {
4418 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4419 
4420 	if (hba->max_pwr_info.is_valid)
4421 		return 0;
4422 
4423 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4424 		pwr_info->pwr_tx = FASTAUTO_MODE;
4425 		pwr_info->pwr_rx = FASTAUTO_MODE;
4426 	} else {
4427 		pwr_info->pwr_tx = FAST_MODE;
4428 		pwr_info->pwr_rx = FAST_MODE;
4429 	}
4430 	pwr_info->hs_rate = PA_HS_MODE_B;
4431 
4432 	/* Get the connected lane count */
4433 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4434 			&pwr_info->lane_rx);
4435 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4436 			&pwr_info->lane_tx);
4437 
4438 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4439 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4440 				__func__,
4441 				pwr_info->lane_rx,
4442 				pwr_info->lane_tx);
4443 		return -EINVAL;
4444 	}
4445 
4446 	/*
4447 	 * First, get the maximum gears of HS speed.
4448 	 * If a zero value, it means there is no HSGEAR capability.
4449 	 * Then, get the maximum gears of PWM speed.
4450 	 */
4451 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4452 	if (!pwr_info->gear_rx) {
4453 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4454 				&pwr_info->gear_rx);
4455 		if (!pwr_info->gear_rx) {
4456 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4457 				__func__, pwr_info->gear_rx);
4458 			return -EINVAL;
4459 		}
4460 		pwr_info->pwr_rx = SLOW_MODE;
4461 	}
4462 
4463 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4464 			&pwr_info->gear_tx);
4465 	if (!pwr_info->gear_tx) {
4466 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4467 				&pwr_info->gear_tx);
4468 		if (!pwr_info->gear_tx) {
4469 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4470 				__func__, pwr_info->gear_tx);
4471 			return -EINVAL;
4472 		}
4473 		pwr_info->pwr_tx = SLOW_MODE;
4474 	}
4475 
4476 	hba->max_pwr_info.is_valid = true;
4477 	return 0;
4478 }
4479 
4480 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4481 			     struct ufs_pa_layer_attr *pwr_mode)
4482 {
4483 	int ret;
4484 
4485 	/* if already configured to the requested pwr_mode */
4486 	if (!hba->force_pmc &&
4487 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4488 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4489 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4490 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4491 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4492 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4493 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4494 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4495 		return 0;
4496 	}
4497 
4498 	/*
4499 	 * Configure attributes for power mode change with below.
4500 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4501 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4502 	 * - PA_HSSERIES
4503 	 */
4504 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4505 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4506 			pwr_mode->lane_rx);
4507 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4508 			pwr_mode->pwr_rx == FAST_MODE)
4509 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4510 	else
4511 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4512 
4513 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4514 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4515 			pwr_mode->lane_tx);
4516 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4517 			pwr_mode->pwr_tx == FAST_MODE)
4518 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4519 	else
4520 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4521 
4522 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4523 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4524 	    pwr_mode->pwr_rx == FAST_MODE ||
4525 	    pwr_mode->pwr_tx == FAST_MODE)
4526 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4527 						pwr_mode->hs_rate);
4528 
4529 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4530 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4531 				DL_FC0ProtectionTimeOutVal_Default);
4532 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4533 				DL_TC0ReplayTimeOutVal_Default);
4534 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4535 				DL_AFC0ReqTimeOutVal_Default);
4536 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4537 				DL_FC1ProtectionTimeOutVal_Default);
4538 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4539 				DL_TC1ReplayTimeOutVal_Default);
4540 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4541 				DL_AFC1ReqTimeOutVal_Default);
4542 
4543 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4544 				DL_FC0ProtectionTimeOutVal_Default);
4545 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4546 				DL_TC0ReplayTimeOutVal_Default);
4547 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4548 				DL_AFC0ReqTimeOutVal_Default);
4549 	}
4550 
4551 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4552 			| pwr_mode->pwr_tx);
4553 
4554 	if (ret) {
4555 		dev_err(hba->dev,
4556 			"%s: power mode change failed %d\n", __func__, ret);
4557 	} else {
4558 		memcpy(&hba->pwr_info, pwr_mode,
4559 			sizeof(struct ufs_pa_layer_attr));
4560 	}
4561 
4562 	return ret;
4563 }
4564 
4565 /**
4566  * ufshcd_config_pwr_mode - configure a new power mode
4567  * @hba: per-adapter instance
4568  * @desired_pwr_mode: desired power configuration
4569  *
4570  * Return: 0 upon success; < 0 upon failure.
4571  */
4572 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4573 		struct ufs_pa_layer_attr *desired_pwr_mode)
4574 {
4575 	struct ufs_pa_layer_attr final_params = { 0 };
4576 	int ret;
4577 
4578 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4579 					desired_pwr_mode, &final_params);
4580 
4581 	if (ret)
4582 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4583 
4584 	ret = ufshcd_change_power_mode(hba, &final_params);
4585 
4586 	if (!ret)
4587 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4588 					&final_params);
4589 
4590 	return ret;
4591 }
4592 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4593 
4594 /**
4595  * ufshcd_complete_dev_init() - checks device readiness
4596  * @hba: per-adapter instance
4597  *
4598  * Set fDeviceInit flag and poll until device toggles it.
4599  *
4600  * Return: 0 upon success; < 0 upon failure.
4601  */
4602 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4603 {
4604 	int err;
4605 	bool flag_res = true;
4606 	ktime_t timeout;
4607 
4608 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4609 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4610 	if (err) {
4611 		dev_err(hba->dev,
4612 			"%s: setting fDeviceInit flag failed with error %d\n",
4613 			__func__, err);
4614 		goto out;
4615 	}
4616 
4617 	/* Poll fDeviceInit flag to be cleared */
4618 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4619 	do {
4620 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4621 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4622 		if (!flag_res)
4623 			break;
4624 		usleep_range(500, 1000);
4625 	} while (ktime_before(ktime_get(), timeout));
4626 
4627 	if (err) {
4628 		dev_err(hba->dev,
4629 				"%s: reading fDeviceInit flag failed with error %d\n",
4630 				__func__, err);
4631 	} else if (flag_res) {
4632 		dev_err(hba->dev,
4633 				"%s: fDeviceInit was not cleared by the device\n",
4634 				__func__);
4635 		err = -EBUSY;
4636 	}
4637 out:
4638 	return err;
4639 }
4640 
4641 /**
4642  * ufshcd_make_hba_operational - Make UFS controller operational
4643  * @hba: per adapter instance
4644  *
4645  * To bring UFS host controller to operational state,
4646  * 1. Enable required interrupts
4647  * 2. Configure interrupt aggregation
4648  * 3. Program UTRL and UTMRL base address
4649  * 4. Configure run-stop-registers
4650  *
4651  * Return: 0 on success, non-zero value on failure.
4652  */
4653 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4654 {
4655 	int err = 0;
4656 	u32 reg;
4657 
4658 	/* Enable required interrupts */
4659 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4660 
4661 	/* Configure interrupt aggregation */
4662 	if (ufshcd_is_intr_aggr_allowed(hba))
4663 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4664 	else
4665 		ufshcd_disable_intr_aggr(hba);
4666 
4667 	/* Configure UTRL and UTMRL base address registers */
4668 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4669 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4670 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4671 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4672 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4673 			REG_UTP_TASK_REQ_LIST_BASE_L);
4674 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4675 			REG_UTP_TASK_REQ_LIST_BASE_H);
4676 
4677 	/*
4678 	 * Make sure base address and interrupt setup are updated before
4679 	 * enabling the run/stop registers below.
4680 	 */
4681 	wmb();
4682 
4683 	/*
4684 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4685 	 */
4686 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4687 	if (!(ufshcd_get_lists_status(reg))) {
4688 		ufshcd_enable_run_stop_reg(hba);
4689 	} else {
4690 		dev_err(hba->dev,
4691 			"Host controller not ready to process requests");
4692 		err = -EIO;
4693 	}
4694 
4695 	return err;
4696 }
4697 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4698 
4699 /**
4700  * ufshcd_hba_stop - Send controller to reset state
4701  * @hba: per adapter instance
4702  */
4703 void ufshcd_hba_stop(struct ufs_hba *hba)
4704 {
4705 	unsigned long flags;
4706 	int err;
4707 
4708 	/*
4709 	 * Obtain the host lock to prevent that the controller is disabled
4710 	 * while the UFS interrupt handler is active on another CPU.
4711 	 */
4712 	spin_lock_irqsave(hba->host->host_lock, flags);
4713 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4714 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4715 
4716 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4717 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4718 					10, 1);
4719 	if (err)
4720 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4721 }
4722 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4723 
4724 /**
4725  * ufshcd_hba_execute_hce - initialize the controller
4726  * @hba: per adapter instance
4727  *
4728  * The controller resets itself and controller firmware initialization
4729  * sequence kicks off. When controller is ready it will set
4730  * the Host Controller Enable bit to 1.
4731  *
4732  * Return: 0 on success, non-zero value on failure.
4733  */
4734 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4735 {
4736 	int retry_outer = 3;
4737 	int retry_inner;
4738 
4739 start:
4740 	if (ufshcd_is_hba_active(hba))
4741 		/* change controller state to "reset state" */
4742 		ufshcd_hba_stop(hba);
4743 
4744 	/* UniPro link is disabled at this point */
4745 	ufshcd_set_link_off(hba);
4746 
4747 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4748 
4749 	/* start controller initialization sequence */
4750 	ufshcd_hba_start(hba);
4751 
4752 	/*
4753 	 * To initialize a UFS host controller HCE bit must be set to 1.
4754 	 * During initialization the HCE bit value changes from 1->0->1.
4755 	 * When the host controller completes initialization sequence
4756 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4757 	 * to check if the controller has completed initialization sequence.
4758 	 * So without this delay the value HCE = 1, set in the previous
4759 	 * instruction might be read back.
4760 	 * This delay can be changed based on the controller.
4761 	 */
4762 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4763 
4764 	/* wait for the host controller to complete initialization */
4765 	retry_inner = 50;
4766 	while (!ufshcd_is_hba_active(hba)) {
4767 		if (retry_inner) {
4768 			retry_inner--;
4769 		} else {
4770 			dev_err(hba->dev,
4771 				"Controller enable failed\n");
4772 			if (retry_outer) {
4773 				retry_outer--;
4774 				goto start;
4775 			}
4776 			return -EIO;
4777 		}
4778 		usleep_range(1000, 1100);
4779 	}
4780 
4781 	/* enable UIC related interrupts */
4782 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4783 
4784 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4785 
4786 	return 0;
4787 }
4788 
4789 int ufshcd_hba_enable(struct ufs_hba *hba)
4790 {
4791 	int ret;
4792 
4793 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4794 		ufshcd_set_link_off(hba);
4795 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4796 
4797 		/* enable UIC related interrupts */
4798 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4799 		ret = ufshcd_dme_reset(hba);
4800 		if (ret) {
4801 			dev_err(hba->dev, "DME_RESET failed\n");
4802 			return ret;
4803 		}
4804 
4805 		ret = ufshcd_dme_enable(hba);
4806 		if (ret) {
4807 			dev_err(hba->dev, "Enabling DME failed\n");
4808 			return ret;
4809 		}
4810 
4811 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4812 	} else {
4813 		ret = ufshcd_hba_execute_hce(hba);
4814 	}
4815 
4816 	return ret;
4817 }
4818 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4819 
4820 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4821 {
4822 	int tx_lanes = 0, i, err = 0;
4823 
4824 	if (!peer)
4825 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4826 			       &tx_lanes);
4827 	else
4828 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4829 				    &tx_lanes);
4830 	for (i = 0; i < tx_lanes; i++) {
4831 		if (!peer)
4832 			err = ufshcd_dme_set(hba,
4833 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4834 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4835 					0);
4836 		else
4837 			err = ufshcd_dme_peer_set(hba,
4838 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4839 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4840 					0);
4841 		if (err) {
4842 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4843 				__func__, peer, i, err);
4844 			break;
4845 		}
4846 	}
4847 
4848 	return err;
4849 }
4850 
4851 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4852 {
4853 	return ufshcd_disable_tx_lcc(hba, true);
4854 }
4855 
4856 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4857 {
4858 	struct ufs_event_hist *e;
4859 
4860 	if (id >= UFS_EVT_CNT)
4861 		return;
4862 
4863 	e = &hba->ufs_stats.event[id];
4864 	e->val[e->pos] = val;
4865 	e->tstamp[e->pos] = local_clock();
4866 	e->cnt += 1;
4867 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4868 
4869 	ufshcd_vops_event_notify(hba, id, &val);
4870 }
4871 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4872 
4873 /**
4874  * ufshcd_link_startup - Initialize unipro link startup
4875  * @hba: per adapter instance
4876  *
4877  * Return: 0 for success, non-zero in case of failure.
4878  */
4879 static int ufshcd_link_startup(struct ufs_hba *hba)
4880 {
4881 	int ret;
4882 	int retries = DME_LINKSTARTUP_RETRIES;
4883 	bool link_startup_again = false;
4884 
4885 	/*
4886 	 * If UFS device isn't active then we will have to issue link startup
4887 	 * 2 times to make sure the device state move to active.
4888 	 */
4889 	if (!ufshcd_is_ufs_dev_active(hba))
4890 		link_startup_again = true;
4891 
4892 link_startup:
4893 	do {
4894 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4895 
4896 		ret = ufshcd_dme_link_startup(hba);
4897 
4898 		/* check if device is detected by inter-connect layer */
4899 		if (!ret && !ufshcd_is_device_present(hba)) {
4900 			ufshcd_update_evt_hist(hba,
4901 					       UFS_EVT_LINK_STARTUP_FAIL,
4902 					       0);
4903 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4904 			ret = -ENXIO;
4905 			goto out;
4906 		}
4907 
4908 		/*
4909 		 * DME link lost indication is only received when link is up,
4910 		 * but we can't be sure if the link is up until link startup
4911 		 * succeeds. So reset the local Uni-Pro and try again.
4912 		 */
4913 		if (ret && retries && ufshcd_hba_enable(hba)) {
4914 			ufshcd_update_evt_hist(hba,
4915 					       UFS_EVT_LINK_STARTUP_FAIL,
4916 					       (u32)ret);
4917 			goto out;
4918 		}
4919 	} while (ret && retries--);
4920 
4921 	if (ret) {
4922 		/* failed to get the link up... retire */
4923 		ufshcd_update_evt_hist(hba,
4924 				       UFS_EVT_LINK_STARTUP_FAIL,
4925 				       (u32)ret);
4926 		goto out;
4927 	}
4928 
4929 	if (link_startup_again) {
4930 		link_startup_again = false;
4931 		retries = DME_LINKSTARTUP_RETRIES;
4932 		goto link_startup;
4933 	}
4934 
4935 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4936 	ufshcd_init_pwr_info(hba);
4937 	ufshcd_print_pwr_info(hba);
4938 
4939 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4940 		ret = ufshcd_disable_device_tx_lcc(hba);
4941 		if (ret)
4942 			goto out;
4943 	}
4944 
4945 	/* Include any host controller configuration via UIC commands */
4946 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4947 	if (ret)
4948 		goto out;
4949 
4950 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4951 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4952 	ret = ufshcd_make_hba_operational(hba);
4953 out:
4954 	if (ret) {
4955 		dev_err(hba->dev, "link startup failed %d\n", ret);
4956 		ufshcd_print_host_state(hba);
4957 		ufshcd_print_pwr_info(hba);
4958 		ufshcd_print_evt_hist(hba);
4959 	}
4960 	return ret;
4961 }
4962 
4963 /**
4964  * ufshcd_verify_dev_init() - Verify device initialization
4965  * @hba: per-adapter instance
4966  *
4967  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4968  * device Transport Protocol (UTP) layer is ready after a reset.
4969  * If the UTP layer at the device side is not initialized, it may
4970  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4971  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4972  *
4973  * Return: 0 upon success; < 0 upon failure.
4974  */
4975 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4976 {
4977 	int err = 0;
4978 	int retries;
4979 
4980 	ufshcd_hold(hba);
4981 	mutex_lock(&hba->dev_cmd.lock);
4982 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4983 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4984 					  hba->nop_out_timeout);
4985 
4986 		if (!err || err == -ETIMEDOUT)
4987 			break;
4988 
4989 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4990 	}
4991 	mutex_unlock(&hba->dev_cmd.lock);
4992 	ufshcd_release(hba);
4993 
4994 	if (err)
4995 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4996 	return err;
4997 }
4998 
4999 /**
5000  * ufshcd_setup_links - associate link b/w device wlun and other luns
5001  * @sdev: pointer to SCSI device
5002  * @hba: pointer to ufs hba
5003  */
5004 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5005 {
5006 	struct device_link *link;
5007 
5008 	/*
5009 	 * Device wlun is the supplier & rest of the luns are consumers.
5010 	 * This ensures that device wlun suspends after all other luns.
5011 	 */
5012 	if (hba->ufs_device_wlun) {
5013 		link = device_link_add(&sdev->sdev_gendev,
5014 				       &hba->ufs_device_wlun->sdev_gendev,
5015 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5016 		if (!link) {
5017 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5018 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5019 			return;
5020 		}
5021 		hba->luns_avail--;
5022 		/* Ignore REPORT_LUN wlun probing */
5023 		if (hba->luns_avail == 1) {
5024 			ufshcd_rpm_put(hba);
5025 			return;
5026 		}
5027 	} else {
5028 		/*
5029 		 * Device wlun is probed. The assumption is that WLUNs are
5030 		 * scanned before other LUNs.
5031 		 */
5032 		hba->luns_avail--;
5033 	}
5034 }
5035 
5036 /**
5037  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5038  * @hba: per-adapter instance
5039  * @sdev: pointer to SCSI device
5040  */
5041 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5042 {
5043 	int len = QUERY_DESC_MAX_SIZE;
5044 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5045 	u8 lun_qdepth = hba->nutrs;
5046 	u8 *desc_buf;
5047 	int ret;
5048 
5049 	desc_buf = kzalloc(len, GFP_KERNEL);
5050 	if (!desc_buf)
5051 		goto set_qdepth;
5052 
5053 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5054 	if (ret < 0) {
5055 		if (ret == -EOPNOTSUPP)
5056 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5057 			lun_qdepth = 1;
5058 		kfree(desc_buf);
5059 		goto set_qdepth;
5060 	}
5061 
5062 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5063 		/*
5064 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5065 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5066 		 */
5067 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5068 	}
5069 	/*
5070 	 * According to UFS device specification, the write protection mode is only supported by
5071 	 * normal LU, not supported by WLUN.
5072 	 */
5073 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5074 	    !hba->dev_info.is_lu_power_on_wp &&
5075 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5076 		hba->dev_info.is_lu_power_on_wp = true;
5077 
5078 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5079 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5080 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5081 		hba->dev_info.b_advanced_rpmb_en = true;
5082 
5083 
5084 	kfree(desc_buf);
5085 set_qdepth:
5086 	/*
5087 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5088 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5089 	 */
5090 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5091 	scsi_change_queue_depth(sdev, lun_qdepth);
5092 }
5093 
5094 /**
5095  * ufshcd_slave_alloc - handle initial SCSI device configurations
5096  * @sdev: pointer to SCSI device
5097  *
5098  * Return: success.
5099  */
5100 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5101 {
5102 	struct ufs_hba *hba;
5103 
5104 	hba = shost_priv(sdev->host);
5105 
5106 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5107 	sdev->use_10_for_ms = 1;
5108 
5109 	/* DBD field should be set to 1 in mode sense(10) */
5110 	sdev->set_dbd_for_ms = 1;
5111 
5112 	/* allow SCSI layer to restart the device in case of errors */
5113 	sdev->allow_restart = 1;
5114 
5115 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5116 	sdev->no_report_opcodes = 1;
5117 
5118 	/* WRITE_SAME command is not supported */
5119 	sdev->no_write_same = 1;
5120 
5121 	ufshcd_lu_init(hba, sdev);
5122 
5123 	ufshcd_setup_links(hba, sdev);
5124 
5125 	return 0;
5126 }
5127 
5128 /**
5129  * ufshcd_change_queue_depth - change queue depth
5130  * @sdev: pointer to SCSI device
5131  * @depth: required depth to set
5132  *
5133  * Change queue depth and make sure the max. limits are not crossed.
5134  *
5135  * Return: new queue depth.
5136  */
5137 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5138 {
5139 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5140 }
5141 
5142 /**
5143  * ufshcd_slave_configure - adjust SCSI device configurations
5144  * @sdev: pointer to SCSI device
5145  *
5146  * Return: 0 (success).
5147  */
5148 static int ufshcd_slave_configure(struct scsi_device *sdev)
5149 {
5150 	struct ufs_hba *hba = shost_priv(sdev->host);
5151 	struct request_queue *q = sdev->request_queue;
5152 
5153 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5154 	if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5155 		blk_queue_update_dma_alignment(q, SZ_4K - 1);
5156 	/*
5157 	 * Block runtime-pm until all consumers are added.
5158 	 * Refer ufshcd_setup_links().
5159 	 */
5160 	if (is_device_wlun(sdev))
5161 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5162 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5163 		sdev->rpm_autosuspend = 1;
5164 	/*
5165 	 * Do not print messages during runtime PM to avoid never-ending cycles
5166 	 * of messages written back to storage by user space causing runtime
5167 	 * resume, causing more messages and so on.
5168 	 */
5169 	sdev->silence_suspend = 1;
5170 
5171 	ufshcd_crypto_register(hba, q);
5172 
5173 	return 0;
5174 }
5175 
5176 /**
5177  * ufshcd_slave_destroy - remove SCSI device configurations
5178  * @sdev: pointer to SCSI device
5179  */
5180 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5181 {
5182 	struct ufs_hba *hba;
5183 	unsigned long flags;
5184 
5185 	hba = shost_priv(sdev->host);
5186 
5187 	/* Drop the reference as it won't be needed anymore */
5188 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5189 		spin_lock_irqsave(hba->host->host_lock, flags);
5190 		hba->ufs_device_wlun = NULL;
5191 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5192 	} else if (hba->ufs_device_wlun) {
5193 		struct device *supplier = NULL;
5194 
5195 		/* Ensure UFS Device WLUN exists and does not disappear */
5196 		spin_lock_irqsave(hba->host->host_lock, flags);
5197 		if (hba->ufs_device_wlun) {
5198 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5199 			get_device(supplier);
5200 		}
5201 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5202 
5203 		if (supplier) {
5204 			/*
5205 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5206 			 * device will not have been registered but can still
5207 			 * have a device link holding a reference to the device.
5208 			 */
5209 			device_link_remove(&sdev->sdev_gendev, supplier);
5210 			put_device(supplier);
5211 		}
5212 	}
5213 }
5214 
5215 /**
5216  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5217  * @lrbp: pointer to local reference block of completed command
5218  * @scsi_status: SCSI command status
5219  *
5220  * Return: value base on SCSI command status.
5221  */
5222 static inline int
5223 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5224 {
5225 	int result = 0;
5226 
5227 	switch (scsi_status) {
5228 	case SAM_STAT_CHECK_CONDITION:
5229 		ufshcd_copy_sense_data(lrbp);
5230 		fallthrough;
5231 	case SAM_STAT_GOOD:
5232 		result |= DID_OK << 16 | scsi_status;
5233 		break;
5234 	case SAM_STAT_TASK_SET_FULL:
5235 	case SAM_STAT_BUSY:
5236 	case SAM_STAT_TASK_ABORTED:
5237 		ufshcd_copy_sense_data(lrbp);
5238 		result |= scsi_status;
5239 		break;
5240 	default:
5241 		result |= DID_ERROR << 16;
5242 		break;
5243 	} /* end of switch */
5244 
5245 	return result;
5246 }
5247 
5248 /**
5249  * ufshcd_transfer_rsp_status - Get overall status of the response
5250  * @hba: per adapter instance
5251  * @lrbp: pointer to local reference block of completed command
5252  * @cqe: pointer to the completion queue entry
5253  *
5254  * Return: result of the command to notify SCSI midlayer.
5255  */
5256 static inline int
5257 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5258 			   struct cq_entry *cqe)
5259 {
5260 	int result = 0;
5261 	int scsi_status;
5262 	enum utp_ocs ocs;
5263 	u8 upiu_flags;
5264 	u32 resid;
5265 
5266 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5267 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5268 	/*
5269 	 * Test !overflow instead of underflow to support UFS devices that do
5270 	 * not set either flag.
5271 	 */
5272 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5273 		scsi_set_resid(lrbp->cmd, resid);
5274 
5275 	/* overall command status of utrd */
5276 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5277 
5278 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5279 		if (lrbp->ucd_rsp_ptr->header.response ||
5280 		    lrbp->ucd_rsp_ptr->header.status)
5281 			ocs = OCS_SUCCESS;
5282 	}
5283 
5284 	switch (ocs) {
5285 	case OCS_SUCCESS:
5286 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5287 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5288 		case UPIU_TRANSACTION_RESPONSE:
5289 			/*
5290 			 * get the result based on SCSI status response
5291 			 * to notify the SCSI midlayer of the command status
5292 			 */
5293 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5294 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5295 
5296 			/*
5297 			 * Currently we are only supporting BKOPs exception
5298 			 * events hence we can ignore BKOPs exception event
5299 			 * during power management callbacks. BKOPs exception
5300 			 * event is not expected to be raised in runtime suspend
5301 			 * callback as it allows the urgent bkops.
5302 			 * During system suspend, we are anyway forcefully
5303 			 * disabling the bkops and if urgent bkops is needed
5304 			 * it will be enabled on system resume. Long term
5305 			 * solution could be to abort the system suspend if
5306 			 * UFS device needs urgent BKOPs.
5307 			 */
5308 			if (!hba->pm_op_in_progress &&
5309 			    !ufshcd_eh_in_progress(hba) &&
5310 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5311 				/* Flushed in suspend */
5312 				schedule_work(&hba->eeh_work);
5313 			break;
5314 		case UPIU_TRANSACTION_REJECT_UPIU:
5315 			/* TODO: handle Reject UPIU Response */
5316 			result = DID_ERROR << 16;
5317 			dev_err(hba->dev,
5318 				"Reject UPIU not fully implemented\n");
5319 			break;
5320 		default:
5321 			dev_err(hba->dev,
5322 				"Unexpected request response code = %x\n",
5323 				result);
5324 			result = DID_ERROR << 16;
5325 			break;
5326 		}
5327 		break;
5328 	case OCS_ABORTED:
5329 		result |= DID_ABORT << 16;
5330 		break;
5331 	case OCS_INVALID_COMMAND_STATUS:
5332 		result |= DID_REQUEUE << 16;
5333 		break;
5334 	case OCS_INVALID_CMD_TABLE_ATTR:
5335 	case OCS_INVALID_PRDT_ATTR:
5336 	case OCS_MISMATCH_DATA_BUF_SIZE:
5337 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5338 	case OCS_PEER_COMM_FAILURE:
5339 	case OCS_FATAL_ERROR:
5340 	case OCS_DEVICE_FATAL_ERROR:
5341 	case OCS_INVALID_CRYPTO_CONFIG:
5342 	case OCS_GENERAL_CRYPTO_ERROR:
5343 	default:
5344 		result |= DID_ERROR << 16;
5345 		dev_err(hba->dev,
5346 				"OCS error from controller = %x for tag %d\n",
5347 				ocs, lrbp->task_tag);
5348 		ufshcd_print_evt_hist(hba);
5349 		ufshcd_print_host_state(hba);
5350 		break;
5351 	} /* end of switch */
5352 
5353 	if ((host_byte(result) != DID_OK) &&
5354 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5355 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5356 	return result;
5357 }
5358 
5359 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5360 					 u32 intr_mask)
5361 {
5362 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5363 	    !ufshcd_is_auto_hibern8_enabled(hba))
5364 		return false;
5365 
5366 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5367 		return false;
5368 
5369 	if (hba->active_uic_cmd &&
5370 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5371 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5372 		return false;
5373 
5374 	return true;
5375 }
5376 
5377 /**
5378  * ufshcd_uic_cmd_compl - handle completion of uic command
5379  * @hba: per adapter instance
5380  * @intr_status: interrupt status generated by the controller
5381  *
5382  * Return:
5383  *  IRQ_HANDLED - If interrupt is valid
5384  *  IRQ_NONE    - If invalid interrupt
5385  */
5386 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5387 {
5388 	irqreturn_t retval = IRQ_NONE;
5389 
5390 	spin_lock(hba->host->host_lock);
5391 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5392 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5393 
5394 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5395 		hba->active_uic_cmd->argument2 |=
5396 			ufshcd_get_uic_cmd_result(hba);
5397 		hba->active_uic_cmd->argument3 =
5398 			ufshcd_get_dme_attr_val(hba);
5399 		if (!hba->uic_async_done)
5400 			hba->active_uic_cmd->cmd_active = 0;
5401 		complete(&hba->active_uic_cmd->done);
5402 		retval = IRQ_HANDLED;
5403 	}
5404 
5405 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5406 		hba->active_uic_cmd->cmd_active = 0;
5407 		complete(hba->uic_async_done);
5408 		retval = IRQ_HANDLED;
5409 	}
5410 
5411 	if (retval == IRQ_HANDLED)
5412 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5413 					     UFS_CMD_COMP);
5414 	spin_unlock(hba->host->host_lock);
5415 	return retval;
5416 }
5417 
5418 /* Release the resources allocated for processing a SCSI command. */
5419 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5420 			     struct ufshcd_lrb *lrbp)
5421 {
5422 	struct scsi_cmnd *cmd = lrbp->cmd;
5423 
5424 	scsi_dma_unmap(cmd);
5425 	ufshcd_release(hba);
5426 	ufshcd_clk_scaling_update_busy(hba);
5427 }
5428 
5429 /**
5430  * ufshcd_compl_one_cqe - handle a completion queue entry
5431  * @hba: per adapter instance
5432  * @task_tag: the task tag of the request to be completed
5433  * @cqe: pointer to the completion queue entry
5434  */
5435 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5436 			  struct cq_entry *cqe)
5437 {
5438 	struct ufshcd_lrb *lrbp;
5439 	struct scsi_cmnd *cmd;
5440 	enum utp_ocs ocs;
5441 
5442 	lrbp = &hba->lrb[task_tag];
5443 	lrbp->compl_time_stamp = ktime_get();
5444 	cmd = lrbp->cmd;
5445 	if (cmd) {
5446 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5447 			ufshcd_update_monitor(hba, lrbp);
5448 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5449 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5450 		ufshcd_release_scsi_cmd(hba, lrbp);
5451 		/* Do not touch lrbp after scsi done */
5452 		scsi_done(cmd);
5453 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5454 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5455 		if (hba->dev_cmd.complete) {
5456 			if (cqe) {
5457 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5458 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5459 			}
5460 			complete(hba->dev_cmd.complete);
5461 			ufshcd_clk_scaling_update_busy(hba);
5462 		}
5463 	}
5464 }
5465 
5466 /**
5467  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5468  * @hba: per adapter instance
5469  * @completed_reqs: bitmask that indicates which requests to complete
5470  */
5471 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5472 					unsigned long completed_reqs)
5473 {
5474 	int tag;
5475 
5476 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5477 		ufshcd_compl_one_cqe(hba, tag, NULL);
5478 }
5479 
5480 /* Any value that is not an existing queue number is fine for this constant. */
5481 enum {
5482 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5483 };
5484 
5485 static void ufshcd_clear_polled(struct ufs_hba *hba,
5486 				unsigned long *completed_reqs)
5487 {
5488 	int tag;
5489 
5490 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5491 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5492 
5493 		if (!cmd)
5494 			continue;
5495 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5496 			__clear_bit(tag, completed_reqs);
5497 	}
5498 }
5499 
5500 /*
5501  * Return: > 0 if one or more commands have been completed or 0 if no
5502  * requests have been completed.
5503  */
5504 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5505 {
5506 	struct ufs_hba *hba = shost_priv(shost);
5507 	unsigned long completed_reqs, flags;
5508 	u32 tr_doorbell;
5509 	struct ufs_hw_queue *hwq;
5510 
5511 	if (is_mcq_enabled(hba)) {
5512 		hwq = &hba->uhq[queue_num];
5513 
5514 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5515 	}
5516 
5517 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5518 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5519 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5520 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5521 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5522 		  hba->outstanding_reqs);
5523 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5524 		/* Do not complete polled requests from interrupt context. */
5525 		ufshcd_clear_polled(hba, &completed_reqs);
5526 	}
5527 	hba->outstanding_reqs &= ~completed_reqs;
5528 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5529 
5530 	if (completed_reqs)
5531 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5532 
5533 	return completed_reqs != 0;
5534 }
5535 
5536 /**
5537  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5538  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5539  * to complete the pending transfers and free the resources associated with
5540  * the scsi command.
5541  *
5542  * @hba: per adapter instance
5543  * @force_compl: This flag is set to true when invoked
5544  * from ufshcd_host_reset_and_restore() in which case it requires special
5545  * handling because the host controller has been reset by ufshcd_hba_stop().
5546  */
5547 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5548 					      bool force_compl)
5549 {
5550 	struct ufs_hw_queue *hwq;
5551 	struct ufshcd_lrb *lrbp;
5552 	struct scsi_cmnd *cmd;
5553 	unsigned long flags;
5554 	u32 hwq_num, utag;
5555 	int tag;
5556 
5557 	for (tag = 0; tag < hba->nutrs; tag++) {
5558 		lrbp = &hba->lrb[tag];
5559 		cmd = lrbp->cmd;
5560 		if (!ufshcd_cmd_inflight(cmd) ||
5561 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5562 			continue;
5563 
5564 		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5565 		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5566 		hwq = &hba->uhq[hwq_num];
5567 
5568 		if (force_compl) {
5569 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5570 			/*
5571 			 * For those cmds of which the cqes are not present
5572 			 * in the cq, complete them explicitly.
5573 			 */
5574 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5575 				spin_lock_irqsave(&hwq->cq_lock, flags);
5576 				set_host_byte(cmd, DID_REQUEUE);
5577 				ufshcd_release_scsi_cmd(hba, lrbp);
5578 				scsi_done(cmd);
5579 				spin_unlock_irqrestore(&hwq->cq_lock, flags);
5580 			}
5581 		} else {
5582 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5583 		}
5584 	}
5585 }
5586 
5587 /**
5588  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5589  * @hba: per adapter instance
5590  *
5591  * Return:
5592  *  IRQ_HANDLED - If interrupt is valid
5593  *  IRQ_NONE    - If invalid interrupt
5594  */
5595 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5596 {
5597 	/* Resetting interrupt aggregation counters first and reading the
5598 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5599 	 * In order to prevent other interrupts starvation the DB is read once
5600 	 * after reset. The down side of this solution is the possibility of
5601 	 * false interrupt if device completes another request after resetting
5602 	 * aggregation and before reading the DB.
5603 	 */
5604 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5605 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5606 		ufshcd_reset_intr_aggr(hba);
5607 
5608 	if (ufs_fail_completion())
5609 		return IRQ_HANDLED;
5610 
5611 	/*
5612 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5613 	 * do not want polling to trigger spurious interrupt complaints.
5614 	 */
5615 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5616 
5617 	return IRQ_HANDLED;
5618 }
5619 
5620 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5621 {
5622 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5623 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5624 				       &ee_ctrl_mask);
5625 }
5626 
5627 int ufshcd_write_ee_control(struct ufs_hba *hba)
5628 {
5629 	int err;
5630 
5631 	mutex_lock(&hba->ee_ctrl_mutex);
5632 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5633 	mutex_unlock(&hba->ee_ctrl_mutex);
5634 	if (err)
5635 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5636 			__func__, err);
5637 	return err;
5638 }
5639 
5640 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5641 			     const u16 *other_mask, u16 set, u16 clr)
5642 {
5643 	u16 new_mask, ee_ctrl_mask;
5644 	int err = 0;
5645 
5646 	mutex_lock(&hba->ee_ctrl_mutex);
5647 	new_mask = (*mask & ~clr) | set;
5648 	ee_ctrl_mask = new_mask | *other_mask;
5649 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5650 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5651 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5652 	if (!err) {
5653 		hba->ee_ctrl_mask = ee_ctrl_mask;
5654 		*mask = new_mask;
5655 	}
5656 	mutex_unlock(&hba->ee_ctrl_mutex);
5657 	return err;
5658 }
5659 
5660 /**
5661  * ufshcd_disable_ee - disable exception event
5662  * @hba: per-adapter instance
5663  * @mask: exception event to disable
5664  *
5665  * Disables exception event in the device so that the EVENT_ALERT
5666  * bit is not set.
5667  *
5668  * Return: zero on success, non-zero error value on failure.
5669  */
5670 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5671 {
5672 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5673 }
5674 
5675 /**
5676  * ufshcd_enable_ee - enable exception event
5677  * @hba: per-adapter instance
5678  * @mask: exception event to enable
5679  *
5680  * Enable corresponding exception event in the device to allow
5681  * device to alert host in critical scenarios.
5682  *
5683  * Return: zero on success, non-zero error value on failure.
5684  */
5685 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5686 {
5687 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5688 }
5689 
5690 /**
5691  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5692  * @hba: per-adapter instance
5693  *
5694  * Allow device to manage background operations on its own. Enabling
5695  * this might lead to inconsistent latencies during normal data transfers
5696  * as the device is allowed to manage its own way of handling background
5697  * operations.
5698  *
5699  * Return: zero on success, non-zero on failure.
5700  */
5701 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5702 {
5703 	int err = 0;
5704 
5705 	if (hba->auto_bkops_enabled)
5706 		goto out;
5707 
5708 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5709 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5710 	if (err) {
5711 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5712 				__func__, err);
5713 		goto out;
5714 	}
5715 
5716 	hba->auto_bkops_enabled = true;
5717 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5718 
5719 	/* No need of URGENT_BKOPS exception from the device */
5720 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5721 	if (err)
5722 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5723 				__func__, err);
5724 out:
5725 	return err;
5726 }
5727 
5728 /**
5729  * ufshcd_disable_auto_bkops - block device in doing background operations
5730  * @hba: per-adapter instance
5731  *
5732  * Disabling background operations improves command response latency but
5733  * has drawback of device moving into critical state where the device is
5734  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5735  * host is idle so that BKOPS are managed effectively without any negative
5736  * impacts.
5737  *
5738  * Return: zero on success, non-zero on failure.
5739  */
5740 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5741 {
5742 	int err = 0;
5743 
5744 	if (!hba->auto_bkops_enabled)
5745 		goto out;
5746 
5747 	/*
5748 	 * If host assisted BKOPs is to be enabled, make sure
5749 	 * urgent bkops exception is allowed.
5750 	 */
5751 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5752 	if (err) {
5753 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5754 				__func__, err);
5755 		goto out;
5756 	}
5757 
5758 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5759 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5760 	if (err) {
5761 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5762 				__func__, err);
5763 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5764 		goto out;
5765 	}
5766 
5767 	hba->auto_bkops_enabled = false;
5768 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5769 	hba->is_urgent_bkops_lvl_checked = false;
5770 out:
5771 	return err;
5772 }
5773 
5774 /**
5775  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5776  * @hba: per adapter instance
5777  *
5778  * After a device reset the device may toggle the BKOPS_EN flag
5779  * to default value. The s/w tracking variables should be updated
5780  * as well. This function would change the auto-bkops state based on
5781  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5782  */
5783 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5784 {
5785 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5786 		hba->auto_bkops_enabled = false;
5787 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5788 		ufshcd_enable_auto_bkops(hba);
5789 	} else {
5790 		hba->auto_bkops_enabled = true;
5791 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5792 		ufshcd_disable_auto_bkops(hba);
5793 	}
5794 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5795 	hba->is_urgent_bkops_lvl_checked = false;
5796 }
5797 
5798 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5799 {
5800 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5801 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5802 }
5803 
5804 /**
5805  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5806  * @hba: per-adapter instance
5807  * @status: bkops_status value
5808  *
5809  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5810  * flag in the device to permit background operations if the device
5811  * bkops_status is greater than or equal to "status" argument passed to
5812  * this function, disable otherwise.
5813  *
5814  * Return: 0 for success, non-zero in case of failure.
5815  *
5816  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5817  * to know whether auto bkops is enabled or disabled after this function
5818  * returns control to it.
5819  */
5820 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5821 			     enum bkops_status status)
5822 {
5823 	int err;
5824 	u32 curr_status = 0;
5825 
5826 	err = ufshcd_get_bkops_status(hba, &curr_status);
5827 	if (err) {
5828 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5829 				__func__, err);
5830 		goto out;
5831 	} else if (curr_status > BKOPS_STATUS_MAX) {
5832 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5833 				__func__, curr_status);
5834 		err = -EINVAL;
5835 		goto out;
5836 	}
5837 
5838 	if (curr_status >= status)
5839 		err = ufshcd_enable_auto_bkops(hba);
5840 	else
5841 		err = ufshcd_disable_auto_bkops(hba);
5842 out:
5843 	return err;
5844 }
5845 
5846 /**
5847  * ufshcd_urgent_bkops - handle urgent bkops exception event
5848  * @hba: per-adapter instance
5849  *
5850  * Enable fBackgroundOpsEn flag in the device to permit background
5851  * operations.
5852  *
5853  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5854  * and negative error value for any other failure.
5855  *
5856  * Return: 0 upon success; < 0 upon failure.
5857  */
5858 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5859 {
5860 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5861 }
5862 
5863 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5864 {
5865 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5866 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5867 }
5868 
5869 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5870 {
5871 	int err;
5872 	u32 curr_status = 0;
5873 
5874 	if (hba->is_urgent_bkops_lvl_checked)
5875 		goto enable_auto_bkops;
5876 
5877 	err = ufshcd_get_bkops_status(hba, &curr_status);
5878 	if (err) {
5879 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5880 				__func__, err);
5881 		goto out;
5882 	}
5883 
5884 	/*
5885 	 * We are seeing that some devices are raising the urgent bkops
5886 	 * exception events even when BKOPS status doesn't indicate performace
5887 	 * impacted or critical. Handle these device by determining their urgent
5888 	 * bkops status at runtime.
5889 	 */
5890 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5891 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5892 				__func__, curr_status);
5893 		/* update the current status as the urgent bkops level */
5894 		hba->urgent_bkops_lvl = curr_status;
5895 		hba->is_urgent_bkops_lvl_checked = true;
5896 	}
5897 
5898 enable_auto_bkops:
5899 	err = ufshcd_enable_auto_bkops(hba);
5900 out:
5901 	if (err < 0)
5902 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5903 				__func__, err);
5904 }
5905 
5906 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5907 {
5908 	u32 value;
5909 
5910 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5911 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5912 		return;
5913 
5914 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5915 
5916 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5917 
5918 	/*
5919 	 * A placeholder for the platform vendors to add whatever additional
5920 	 * steps required
5921 	 */
5922 }
5923 
5924 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5925 {
5926 	u8 index;
5927 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5928 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5929 
5930 	index = ufshcd_wb_get_query_index(hba);
5931 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5932 }
5933 
5934 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5935 {
5936 	int ret;
5937 
5938 	if (!ufshcd_is_wb_allowed(hba) ||
5939 	    hba->dev_info.wb_enabled == enable)
5940 		return 0;
5941 
5942 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5943 	if (ret) {
5944 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5945 			__func__, enable ? "enabling" : "disabling", ret);
5946 		return ret;
5947 	}
5948 
5949 	hba->dev_info.wb_enabled = enable;
5950 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5951 			__func__, enable ? "enabled" : "disabled");
5952 
5953 	return ret;
5954 }
5955 
5956 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5957 						 bool enable)
5958 {
5959 	int ret;
5960 
5961 	ret = __ufshcd_wb_toggle(hba, enable,
5962 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5963 	if (ret) {
5964 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5965 			__func__, enable ? "enabling" : "disabling", ret);
5966 		return;
5967 	}
5968 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5969 			__func__, enable ? "enabled" : "disabled");
5970 }
5971 
5972 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5973 {
5974 	int ret;
5975 
5976 	if (!ufshcd_is_wb_allowed(hba) ||
5977 	    hba->dev_info.wb_buf_flush_enabled == enable)
5978 		return 0;
5979 
5980 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5981 	if (ret) {
5982 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5983 			__func__, enable ? "enabling" : "disabling", ret);
5984 		return ret;
5985 	}
5986 
5987 	hba->dev_info.wb_buf_flush_enabled = enable;
5988 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
5989 			__func__, enable ? "enabled" : "disabled");
5990 
5991 	return ret;
5992 }
5993 
5994 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5995 						u32 avail_buf)
5996 {
5997 	u32 cur_buf;
5998 	int ret;
5999 	u8 index;
6000 
6001 	index = ufshcd_wb_get_query_index(hba);
6002 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6003 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6004 					      index, 0, &cur_buf);
6005 	if (ret) {
6006 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6007 			__func__, ret);
6008 		return false;
6009 	}
6010 
6011 	if (!cur_buf) {
6012 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6013 			 cur_buf);
6014 		return false;
6015 	}
6016 	/* Let it continue to flush when available buffer exceeds threshold */
6017 	return avail_buf < hba->vps->wb_flush_threshold;
6018 }
6019 
6020 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6021 {
6022 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6023 		ufshcd_wb_toggle_buf_flush(hba, false);
6024 
6025 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6026 	ufshcd_wb_toggle(hba, false);
6027 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6028 
6029 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6030 }
6031 
6032 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6033 {
6034 	u32 lifetime;
6035 	int ret;
6036 	u8 index;
6037 
6038 	index = ufshcd_wb_get_query_index(hba);
6039 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6040 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6041 				      index, 0, &lifetime);
6042 	if (ret) {
6043 		dev_err(hba->dev,
6044 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6045 			__func__, ret);
6046 		return false;
6047 	}
6048 
6049 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6050 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6051 			__func__, lifetime);
6052 		return false;
6053 	}
6054 
6055 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6056 		__func__, lifetime);
6057 
6058 	return true;
6059 }
6060 
6061 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6062 {
6063 	int ret;
6064 	u32 avail_buf;
6065 	u8 index;
6066 
6067 	if (!ufshcd_is_wb_allowed(hba))
6068 		return false;
6069 
6070 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6071 		ufshcd_wb_force_disable(hba);
6072 		return false;
6073 	}
6074 
6075 	/*
6076 	 * The ufs device needs the vcc to be ON to flush.
6077 	 * With user-space reduction enabled, it's enough to enable flush
6078 	 * by checking only the available buffer. The threshold
6079 	 * defined here is > 90% full.
6080 	 * With user-space preserved enabled, the current-buffer
6081 	 * should be checked too because the wb buffer size can reduce
6082 	 * when disk tends to be full. This info is provided by current
6083 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6084 	 * keeping vcc on when current buffer is empty.
6085 	 */
6086 	index = ufshcd_wb_get_query_index(hba);
6087 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6088 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6089 				      index, 0, &avail_buf);
6090 	if (ret) {
6091 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6092 			 __func__, ret);
6093 		return false;
6094 	}
6095 
6096 	if (!hba->dev_info.b_presrv_uspc_en)
6097 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6098 
6099 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6100 }
6101 
6102 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6103 {
6104 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6105 					   struct ufs_hba,
6106 					   rpm_dev_flush_recheck_work);
6107 	/*
6108 	 * To prevent unnecessary VCC power drain after device finishes
6109 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6110 	 * after a certain delay to recheck the threshold by next runtime
6111 	 * suspend.
6112 	 */
6113 	ufshcd_rpm_get_sync(hba);
6114 	ufshcd_rpm_put_sync(hba);
6115 }
6116 
6117 /**
6118  * ufshcd_exception_event_handler - handle exceptions raised by device
6119  * @work: pointer to work data
6120  *
6121  * Read bExceptionEventStatus attribute from the device and handle the
6122  * exception event accordingly.
6123  */
6124 static void ufshcd_exception_event_handler(struct work_struct *work)
6125 {
6126 	struct ufs_hba *hba;
6127 	int err;
6128 	u32 status = 0;
6129 	hba = container_of(work, struct ufs_hba, eeh_work);
6130 
6131 	ufshcd_scsi_block_requests(hba);
6132 	err = ufshcd_get_ee_status(hba, &status);
6133 	if (err) {
6134 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6135 				__func__, err);
6136 		goto out;
6137 	}
6138 
6139 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6140 
6141 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6142 		ufshcd_bkops_exception_event_handler(hba);
6143 
6144 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6145 		ufshcd_temp_exception_event_handler(hba, status);
6146 
6147 	ufs_debugfs_exception_event(hba, status);
6148 out:
6149 	ufshcd_scsi_unblock_requests(hba);
6150 }
6151 
6152 /* Complete requests that have door-bell cleared */
6153 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6154 {
6155 	if (is_mcq_enabled(hba))
6156 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6157 	else
6158 		ufshcd_transfer_req_compl(hba);
6159 
6160 	ufshcd_tmc_handler(hba);
6161 }
6162 
6163 /**
6164  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6165  *				to recover from the DL NAC errors or not.
6166  * @hba: per-adapter instance
6167  *
6168  * Return: true if error handling is required, false otherwise.
6169  */
6170 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6171 {
6172 	unsigned long flags;
6173 	bool err_handling = true;
6174 
6175 	spin_lock_irqsave(hba->host->host_lock, flags);
6176 	/*
6177 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6178 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6179 	 */
6180 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6181 		goto out;
6182 
6183 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6184 	    ((hba->saved_err & UIC_ERROR) &&
6185 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6186 		goto out;
6187 
6188 	if ((hba->saved_err & UIC_ERROR) &&
6189 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6190 		int err;
6191 		/*
6192 		 * wait for 50ms to see if we can get any other errors or not.
6193 		 */
6194 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6195 		msleep(50);
6196 		spin_lock_irqsave(hba->host->host_lock, flags);
6197 
6198 		/*
6199 		 * now check if we have got any other severe errors other than
6200 		 * DL NAC error?
6201 		 */
6202 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6203 		    ((hba->saved_err & UIC_ERROR) &&
6204 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6205 			goto out;
6206 
6207 		/*
6208 		 * As DL NAC is the only error received so far, send out NOP
6209 		 * command to confirm if link is still active or not.
6210 		 *   - If we don't get any response then do error recovery.
6211 		 *   - If we get response then clear the DL NAC error bit.
6212 		 */
6213 
6214 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6215 		err = ufshcd_verify_dev_init(hba);
6216 		spin_lock_irqsave(hba->host->host_lock, flags);
6217 
6218 		if (err)
6219 			goto out;
6220 
6221 		/* Link seems to be alive hence ignore the DL NAC errors */
6222 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6223 			hba->saved_err &= ~UIC_ERROR;
6224 		/* clear NAC error */
6225 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6226 		if (!hba->saved_uic_err)
6227 			err_handling = false;
6228 	}
6229 out:
6230 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6231 	return err_handling;
6232 }
6233 
6234 /* host lock must be held before calling this func */
6235 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6236 {
6237 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6238 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6239 }
6240 
6241 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6242 {
6243 	lockdep_assert_held(hba->host->host_lock);
6244 
6245 	/* handle fatal errors only when link is not in error state */
6246 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6247 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6248 		    ufshcd_is_saved_err_fatal(hba))
6249 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6250 		else
6251 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6252 		queue_work(hba->eh_wq, &hba->eh_work);
6253 	}
6254 }
6255 
6256 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6257 {
6258 	spin_lock_irq(hba->host->host_lock);
6259 	hba->force_reset = true;
6260 	ufshcd_schedule_eh_work(hba);
6261 	spin_unlock_irq(hba->host->host_lock);
6262 }
6263 
6264 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6265 {
6266 	mutex_lock(&hba->wb_mutex);
6267 	down_write(&hba->clk_scaling_lock);
6268 	hba->clk_scaling.is_allowed = allow;
6269 	up_write(&hba->clk_scaling_lock);
6270 	mutex_unlock(&hba->wb_mutex);
6271 }
6272 
6273 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6274 {
6275 	if (suspend) {
6276 		if (hba->clk_scaling.is_enabled)
6277 			ufshcd_suspend_clkscaling(hba);
6278 		ufshcd_clk_scaling_allow(hba, false);
6279 	} else {
6280 		ufshcd_clk_scaling_allow(hba, true);
6281 		if (hba->clk_scaling.is_enabled)
6282 			ufshcd_resume_clkscaling(hba);
6283 	}
6284 }
6285 
6286 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6287 {
6288 	ufshcd_rpm_get_sync(hba);
6289 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6290 	    hba->is_sys_suspended) {
6291 		enum ufs_pm_op pm_op;
6292 
6293 		/*
6294 		 * Don't assume anything of resume, if
6295 		 * resume fails, irq and clocks can be OFF, and powers
6296 		 * can be OFF or in LPM.
6297 		 */
6298 		ufshcd_setup_hba_vreg(hba, true);
6299 		ufshcd_enable_irq(hba);
6300 		ufshcd_setup_vreg(hba, true);
6301 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6302 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6303 		ufshcd_hold(hba);
6304 		if (!ufshcd_is_clkgating_allowed(hba))
6305 			ufshcd_setup_clocks(hba, true);
6306 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6307 		ufshcd_vops_resume(hba, pm_op);
6308 	} else {
6309 		ufshcd_hold(hba);
6310 		if (ufshcd_is_clkscaling_supported(hba) &&
6311 		    hba->clk_scaling.is_enabled)
6312 			ufshcd_suspend_clkscaling(hba);
6313 		ufshcd_clk_scaling_allow(hba, false);
6314 	}
6315 	ufshcd_scsi_block_requests(hba);
6316 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6317 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6318 	cancel_work_sync(&hba->eeh_work);
6319 }
6320 
6321 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6322 {
6323 	ufshcd_scsi_unblock_requests(hba);
6324 	ufshcd_release(hba);
6325 	if (ufshcd_is_clkscaling_supported(hba))
6326 		ufshcd_clk_scaling_suspend(hba, false);
6327 	ufshcd_rpm_put(hba);
6328 }
6329 
6330 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6331 {
6332 	return (!hba->is_powered || hba->shutting_down ||
6333 		!hba->ufs_device_wlun ||
6334 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6335 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6336 		   ufshcd_is_link_broken(hba))));
6337 }
6338 
6339 #ifdef CONFIG_PM
6340 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6341 {
6342 	struct Scsi_Host *shost = hba->host;
6343 	struct scsi_device *sdev;
6344 	struct request_queue *q;
6345 	int ret;
6346 
6347 	hba->is_sys_suspended = false;
6348 	/*
6349 	 * Set RPM status of wlun device to RPM_ACTIVE,
6350 	 * this also clears its runtime error.
6351 	 */
6352 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6353 
6354 	/* hba device might have a runtime error otherwise */
6355 	if (ret)
6356 		ret = pm_runtime_set_active(hba->dev);
6357 	/*
6358 	 * If wlun device had runtime error, we also need to resume those
6359 	 * consumer scsi devices in case any of them has failed to be
6360 	 * resumed due to supplier runtime resume failure. This is to unblock
6361 	 * blk_queue_enter in case there are bios waiting inside it.
6362 	 */
6363 	if (!ret) {
6364 		shost_for_each_device(sdev, shost) {
6365 			q = sdev->request_queue;
6366 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6367 				       q->rpm_status == RPM_SUSPENDING))
6368 				pm_request_resume(q->dev);
6369 		}
6370 	}
6371 }
6372 #else
6373 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6374 {
6375 }
6376 #endif
6377 
6378 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6379 {
6380 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6381 	u32 mode;
6382 
6383 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6384 
6385 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6386 		return true;
6387 
6388 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6389 		return true;
6390 
6391 	return false;
6392 }
6393 
6394 static bool ufshcd_abort_one(struct request *rq, void *priv)
6395 {
6396 	int *ret = priv;
6397 	u32 tag = rq->tag;
6398 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6399 	struct scsi_device *sdev = cmd->device;
6400 	struct Scsi_Host *shost = sdev->host;
6401 	struct ufs_hba *hba = shost_priv(shost);
6402 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6403 	struct ufs_hw_queue *hwq;
6404 	unsigned long flags;
6405 
6406 	*ret = ufshcd_try_to_abort_task(hba, tag);
6407 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6408 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6409 		*ret ? "failed" : "succeeded");
6410 
6411 	/* Release cmd in MCQ mode if abort succeeds */
6412 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6413 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6414 		if (!hwq)
6415 			return 0;
6416 		spin_lock_irqsave(&hwq->cq_lock, flags);
6417 		if (ufshcd_cmd_inflight(lrbp->cmd))
6418 			ufshcd_release_scsi_cmd(hba, lrbp);
6419 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6420 	}
6421 
6422 	return *ret == 0;
6423 }
6424 
6425 /**
6426  * ufshcd_abort_all - Abort all pending commands.
6427  * @hba: Host bus adapter pointer.
6428  *
6429  * Return: true if and only if the host controller needs to be reset.
6430  */
6431 static bool ufshcd_abort_all(struct ufs_hba *hba)
6432 {
6433 	int tag, ret = 0;
6434 
6435 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6436 	if (ret)
6437 		goto out;
6438 
6439 	/* Clear pending task management requests */
6440 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6441 		ret = ufshcd_clear_tm_cmd(hba, tag);
6442 		if (ret)
6443 			goto out;
6444 	}
6445 
6446 out:
6447 	/* Complete the requests that are cleared by s/w */
6448 	ufshcd_complete_requests(hba, false);
6449 
6450 	return ret != 0;
6451 }
6452 
6453 /**
6454  * ufshcd_err_handler - handle UFS errors that require s/w attention
6455  * @work: pointer to work structure
6456  */
6457 static void ufshcd_err_handler(struct work_struct *work)
6458 {
6459 	int retries = MAX_ERR_HANDLER_RETRIES;
6460 	struct ufs_hba *hba;
6461 	unsigned long flags;
6462 	bool needs_restore;
6463 	bool needs_reset;
6464 	int pmc_err;
6465 
6466 	hba = container_of(work, struct ufs_hba, eh_work);
6467 
6468 	dev_info(hba->dev,
6469 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6470 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6471 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6472 		 hba->saved_uic_err, hba->force_reset,
6473 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6474 
6475 	down(&hba->host_sem);
6476 	spin_lock_irqsave(hba->host->host_lock, flags);
6477 	if (ufshcd_err_handling_should_stop(hba)) {
6478 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6479 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6480 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6481 		up(&hba->host_sem);
6482 		return;
6483 	}
6484 	ufshcd_set_eh_in_progress(hba);
6485 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6486 	ufshcd_err_handling_prepare(hba);
6487 	/* Complete requests that have door-bell cleared by h/w */
6488 	ufshcd_complete_requests(hba, false);
6489 	spin_lock_irqsave(hba->host->host_lock, flags);
6490 again:
6491 	needs_restore = false;
6492 	needs_reset = false;
6493 
6494 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6495 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6496 	/*
6497 	 * A full reset and restore might have happened after preparation
6498 	 * is finished, double check whether we should stop.
6499 	 */
6500 	if (ufshcd_err_handling_should_stop(hba))
6501 		goto skip_err_handling;
6502 
6503 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6504 	    !hba->force_reset) {
6505 		bool ret;
6506 
6507 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6508 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6509 		ret = ufshcd_quirk_dl_nac_errors(hba);
6510 		spin_lock_irqsave(hba->host->host_lock, flags);
6511 		if (!ret && ufshcd_err_handling_should_stop(hba))
6512 			goto skip_err_handling;
6513 	}
6514 
6515 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6516 	    (hba->saved_uic_err &&
6517 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6518 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6519 
6520 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6521 		ufshcd_print_host_state(hba);
6522 		ufshcd_print_pwr_info(hba);
6523 		ufshcd_print_evt_hist(hba);
6524 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6525 		ufshcd_print_trs_all(hba, pr_prdt);
6526 		spin_lock_irqsave(hba->host->host_lock, flags);
6527 	}
6528 
6529 	/*
6530 	 * if host reset is required then skip clearing the pending
6531 	 * transfers forcefully because they will get cleared during
6532 	 * host reset and restore
6533 	 */
6534 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6535 	    ufshcd_is_saved_err_fatal(hba) ||
6536 	    ((hba->saved_err & UIC_ERROR) &&
6537 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6538 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6539 		needs_reset = true;
6540 		goto do_reset;
6541 	}
6542 
6543 	/*
6544 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6545 	 * check if power mode restore is needed.
6546 	 */
6547 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6548 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6549 		if (!hba->saved_uic_err)
6550 			hba->saved_err &= ~UIC_ERROR;
6551 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6552 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6553 			needs_restore = true;
6554 		spin_lock_irqsave(hba->host->host_lock, flags);
6555 		if (!hba->saved_err && !needs_restore)
6556 			goto skip_err_handling;
6557 	}
6558 
6559 	hba->silence_err_logs = true;
6560 	/* release lock as clear command might sleep */
6561 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6562 
6563 	needs_reset = ufshcd_abort_all(hba);
6564 
6565 	spin_lock_irqsave(hba->host->host_lock, flags);
6566 	hba->silence_err_logs = false;
6567 	if (needs_reset)
6568 		goto do_reset;
6569 
6570 	/*
6571 	 * After all reqs and tasks are cleared from doorbell,
6572 	 * now it is safe to retore power mode.
6573 	 */
6574 	if (needs_restore) {
6575 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6576 		/*
6577 		 * Hold the scaling lock just in case dev cmds
6578 		 * are sent via bsg and/or sysfs.
6579 		 */
6580 		down_write(&hba->clk_scaling_lock);
6581 		hba->force_pmc = true;
6582 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6583 		if (pmc_err) {
6584 			needs_reset = true;
6585 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6586 					__func__, pmc_err);
6587 		}
6588 		hba->force_pmc = false;
6589 		ufshcd_print_pwr_info(hba);
6590 		up_write(&hba->clk_scaling_lock);
6591 		spin_lock_irqsave(hba->host->host_lock, flags);
6592 	}
6593 
6594 do_reset:
6595 	/* Fatal errors need reset */
6596 	if (needs_reset) {
6597 		int err;
6598 
6599 		hba->force_reset = false;
6600 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6601 		err = ufshcd_reset_and_restore(hba);
6602 		if (err)
6603 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6604 					__func__, err);
6605 		else
6606 			ufshcd_recover_pm_error(hba);
6607 		spin_lock_irqsave(hba->host->host_lock, flags);
6608 	}
6609 
6610 skip_err_handling:
6611 	if (!needs_reset) {
6612 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6613 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6614 		if (hba->saved_err || hba->saved_uic_err)
6615 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6616 			    __func__, hba->saved_err, hba->saved_uic_err);
6617 	}
6618 	/* Exit in an operational state or dead */
6619 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6620 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6621 		if (--retries)
6622 			goto again;
6623 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6624 	}
6625 	ufshcd_clear_eh_in_progress(hba);
6626 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6627 	ufshcd_err_handling_unprepare(hba);
6628 	up(&hba->host_sem);
6629 
6630 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6631 		 ufshcd_state_name[hba->ufshcd_state]);
6632 }
6633 
6634 /**
6635  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6636  * @hba: per-adapter instance
6637  *
6638  * Return:
6639  *  IRQ_HANDLED - If interrupt is valid
6640  *  IRQ_NONE    - If invalid interrupt
6641  */
6642 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6643 {
6644 	u32 reg;
6645 	irqreturn_t retval = IRQ_NONE;
6646 
6647 	/* PHY layer error */
6648 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6649 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6650 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6651 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6652 		/*
6653 		 * To know whether this error is fatal or not, DB timeout
6654 		 * must be checked but this error is handled separately.
6655 		 */
6656 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6657 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6658 					__func__);
6659 
6660 		/* Got a LINERESET indication. */
6661 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6662 			struct uic_command *cmd = NULL;
6663 
6664 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6665 			if (hba->uic_async_done && hba->active_uic_cmd)
6666 				cmd = hba->active_uic_cmd;
6667 			/*
6668 			 * Ignore the LINERESET during power mode change
6669 			 * operation via DME_SET command.
6670 			 */
6671 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6672 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6673 		}
6674 		retval |= IRQ_HANDLED;
6675 	}
6676 
6677 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6678 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6679 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6680 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6681 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6682 
6683 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6684 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6685 		else if (hba->dev_quirks &
6686 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6687 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6688 				hba->uic_error |=
6689 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6690 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6691 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6692 		}
6693 		retval |= IRQ_HANDLED;
6694 	}
6695 
6696 	/* UIC NL/TL/DME errors needs software retry */
6697 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6698 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6699 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6700 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6701 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6702 		retval |= IRQ_HANDLED;
6703 	}
6704 
6705 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6706 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6707 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6708 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6709 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6710 		retval |= IRQ_HANDLED;
6711 	}
6712 
6713 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6714 	if ((reg & UIC_DME_ERROR) &&
6715 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6716 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6717 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6718 		retval |= IRQ_HANDLED;
6719 	}
6720 
6721 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6722 			__func__, hba->uic_error);
6723 	return retval;
6724 }
6725 
6726 /**
6727  * ufshcd_check_errors - Check for errors that need s/w attention
6728  * @hba: per-adapter instance
6729  * @intr_status: interrupt status generated by the controller
6730  *
6731  * Return:
6732  *  IRQ_HANDLED - If interrupt is valid
6733  *  IRQ_NONE    - If invalid interrupt
6734  */
6735 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6736 {
6737 	bool queue_eh_work = false;
6738 	irqreturn_t retval = IRQ_NONE;
6739 
6740 	spin_lock(hba->host->host_lock);
6741 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6742 
6743 	if (hba->errors & INT_FATAL_ERRORS) {
6744 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6745 				       hba->errors);
6746 		queue_eh_work = true;
6747 	}
6748 
6749 	if (hba->errors & UIC_ERROR) {
6750 		hba->uic_error = 0;
6751 		retval = ufshcd_update_uic_error(hba);
6752 		if (hba->uic_error)
6753 			queue_eh_work = true;
6754 	}
6755 
6756 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6757 		dev_err(hba->dev,
6758 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6759 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6760 			"Enter" : "Exit",
6761 			hba->errors, ufshcd_get_upmcrs(hba));
6762 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6763 				       hba->errors);
6764 		ufshcd_set_link_broken(hba);
6765 		queue_eh_work = true;
6766 	}
6767 
6768 	if (queue_eh_work) {
6769 		/*
6770 		 * update the transfer error masks to sticky bits, let's do this
6771 		 * irrespective of current ufshcd_state.
6772 		 */
6773 		hba->saved_err |= hba->errors;
6774 		hba->saved_uic_err |= hba->uic_error;
6775 
6776 		/* dump controller state before resetting */
6777 		if ((hba->saved_err &
6778 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6779 		    (hba->saved_uic_err &&
6780 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6781 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6782 					__func__, hba->saved_err,
6783 					hba->saved_uic_err);
6784 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6785 					 "host_regs: ");
6786 			ufshcd_print_pwr_info(hba);
6787 		}
6788 		ufshcd_schedule_eh_work(hba);
6789 		retval |= IRQ_HANDLED;
6790 	}
6791 	/*
6792 	 * if (!queue_eh_work) -
6793 	 * Other errors are either non-fatal where host recovers
6794 	 * itself without s/w intervention or errors that will be
6795 	 * handled by the SCSI core layer.
6796 	 */
6797 	hba->errors = 0;
6798 	hba->uic_error = 0;
6799 	spin_unlock(hba->host->host_lock);
6800 	return retval;
6801 }
6802 
6803 /**
6804  * ufshcd_tmc_handler - handle task management function completion
6805  * @hba: per adapter instance
6806  *
6807  * Return:
6808  *  IRQ_HANDLED - If interrupt is valid
6809  *  IRQ_NONE    - If invalid interrupt
6810  */
6811 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6812 {
6813 	unsigned long flags, pending, issued;
6814 	irqreturn_t ret = IRQ_NONE;
6815 	int tag;
6816 
6817 	spin_lock_irqsave(hba->host->host_lock, flags);
6818 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6819 	issued = hba->outstanding_tasks & ~pending;
6820 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6821 		struct request *req = hba->tmf_rqs[tag];
6822 		struct completion *c = req->end_io_data;
6823 
6824 		complete(c);
6825 		ret = IRQ_HANDLED;
6826 	}
6827 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6828 
6829 	return ret;
6830 }
6831 
6832 /**
6833  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6834  * @hba: per adapter instance
6835  *
6836  * Return: IRQ_HANDLED if interrupt is handled.
6837  */
6838 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6839 {
6840 	struct ufs_hw_queue *hwq;
6841 	unsigned long outstanding_cqs;
6842 	unsigned int nr_queues;
6843 	int i, ret;
6844 	u32 events;
6845 
6846 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6847 	if (ret)
6848 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6849 
6850 	/* Exclude the poll queues */
6851 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6852 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6853 		hwq = &hba->uhq[i];
6854 
6855 		events = ufshcd_mcq_read_cqis(hba, i);
6856 		if (events)
6857 			ufshcd_mcq_write_cqis(hba, events, i);
6858 
6859 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6860 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6861 	}
6862 
6863 	return IRQ_HANDLED;
6864 }
6865 
6866 /**
6867  * ufshcd_sl_intr - Interrupt service routine
6868  * @hba: per adapter instance
6869  * @intr_status: contains interrupts generated by the controller
6870  *
6871  * Return:
6872  *  IRQ_HANDLED - If interrupt is valid
6873  *  IRQ_NONE    - If invalid interrupt
6874  */
6875 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6876 {
6877 	irqreturn_t retval = IRQ_NONE;
6878 
6879 	if (intr_status & UFSHCD_UIC_MASK)
6880 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6881 
6882 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6883 		retval |= ufshcd_check_errors(hba, intr_status);
6884 
6885 	if (intr_status & UTP_TASK_REQ_COMPL)
6886 		retval |= ufshcd_tmc_handler(hba);
6887 
6888 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6889 		retval |= ufshcd_transfer_req_compl(hba);
6890 
6891 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6892 		retval |= ufshcd_handle_mcq_cq_events(hba);
6893 
6894 	return retval;
6895 }
6896 
6897 /**
6898  * ufshcd_intr - Main interrupt service routine
6899  * @irq: irq number
6900  * @__hba: pointer to adapter instance
6901  *
6902  * Return:
6903  *  IRQ_HANDLED - If interrupt is valid
6904  *  IRQ_NONE    - If invalid interrupt
6905  */
6906 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6907 {
6908 	u32 intr_status, enabled_intr_status = 0;
6909 	irqreturn_t retval = IRQ_NONE;
6910 	struct ufs_hba *hba = __hba;
6911 	int retries = hba->nutrs;
6912 
6913 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6914 	hba->ufs_stats.last_intr_status = intr_status;
6915 	hba->ufs_stats.last_intr_ts = local_clock();
6916 
6917 	/*
6918 	 * There could be max of hba->nutrs reqs in flight and in worst case
6919 	 * if the reqs get finished 1 by 1 after the interrupt status is
6920 	 * read, make sure we handle them by checking the interrupt status
6921 	 * again in a loop until we process all of the reqs before returning.
6922 	 */
6923 	while (intr_status && retries--) {
6924 		enabled_intr_status =
6925 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6926 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6927 		if (enabled_intr_status)
6928 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6929 
6930 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6931 	}
6932 
6933 	if (enabled_intr_status && retval == IRQ_NONE &&
6934 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6935 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6936 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6937 					__func__,
6938 					intr_status,
6939 					hba->ufs_stats.last_intr_status,
6940 					enabled_intr_status);
6941 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6942 	}
6943 
6944 	return retval;
6945 }
6946 
6947 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6948 {
6949 	int err = 0;
6950 	u32 mask = 1 << tag;
6951 	unsigned long flags;
6952 
6953 	if (!test_bit(tag, &hba->outstanding_tasks))
6954 		goto out;
6955 
6956 	spin_lock_irqsave(hba->host->host_lock, flags);
6957 	ufshcd_utmrl_clear(hba, tag);
6958 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6959 
6960 	/* poll for max. 1 sec to clear door bell register by h/w */
6961 	err = ufshcd_wait_for_register(hba,
6962 			REG_UTP_TASK_REQ_DOOR_BELL,
6963 			mask, 0, 1000, 1000);
6964 
6965 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6966 		tag, err < 0 ? "failed" : "succeeded");
6967 
6968 out:
6969 	return err;
6970 }
6971 
6972 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6973 		struct utp_task_req_desc *treq, u8 tm_function)
6974 {
6975 	struct request_queue *q = hba->tmf_queue;
6976 	struct Scsi_Host *host = hba->host;
6977 	DECLARE_COMPLETION_ONSTACK(wait);
6978 	struct request *req;
6979 	unsigned long flags;
6980 	int task_tag, err;
6981 
6982 	/*
6983 	 * blk_mq_alloc_request() is used here only to get a free tag.
6984 	 */
6985 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6986 	if (IS_ERR(req))
6987 		return PTR_ERR(req);
6988 
6989 	req->end_io_data = &wait;
6990 	ufshcd_hold(hba);
6991 
6992 	spin_lock_irqsave(host->host_lock, flags);
6993 
6994 	task_tag = req->tag;
6995 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
6996 		  task_tag);
6997 	hba->tmf_rqs[req->tag] = req;
6998 	treq->upiu_req.req_header.task_tag = task_tag;
6999 
7000 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7001 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7002 
7003 	/* send command to the controller */
7004 	__set_bit(task_tag, &hba->outstanding_tasks);
7005 
7006 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7007 	/* Make sure that doorbell is committed immediately */
7008 	wmb();
7009 
7010 	spin_unlock_irqrestore(host->host_lock, flags);
7011 
7012 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7013 
7014 	/* wait until the task management command is completed */
7015 	err = wait_for_completion_io_timeout(&wait,
7016 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7017 	if (!err) {
7018 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7019 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7020 				__func__, tm_function);
7021 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7022 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7023 					__func__, task_tag);
7024 		err = -ETIMEDOUT;
7025 	} else {
7026 		err = 0;
7027 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7028 
7029 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7030 	}
7031 
7032 	spin_lock_irqsave(hba->host->host_lock, flags);
7033 	hba->tmf_rqs[req->tag] = NULL;
7034 	__clear_bit(task_tag, &hba->outstanding_tasks);
7035 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7036 
7037 	ufshcd_release(hba);
7038 	blk_mq_free_request(req);
7039 
7040 	return err;
7041 }
7042 
7043 /**
7044  * ufshcd_issue_tm_cmd - issues task management commands to controller
7045  * @hba: per adapter instance
7046  * @lun_id: LUN ID to which TM command is sent
7047  * @task_id: task ID to which the TM command is applicable
7048  * @tm_function: task management function opcode
7049  * @tm_response: task management service response return value
7050  *
7051  * Return: non-zero value on error, zero on success.
7052  */
7053 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7054 		u8 tm_function, u8 *tm_response)
7055 {
7056 	struct utp_task_req_desc treq = { };
7057 	enum utp_ocs ocs_value;
7058 	int err;
7059 
7060 	/* Configure task request descriptor */
7061 	treq.header.interrupt = 1;
7062 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7063 
7064 	/* Configure task request UPIU */
7065 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7066 	treq.upiu_req.req_header.lun = lun_id;
7067 	treq.upiu_req.req_header.tm_function = tm_function;
7068 
7069 	/*
7070 	 * The host shall provide the same value for LUN field in the basic
7071 	 * header and for Input Parameter.
7072 	 */
7073 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7074 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7075 
7076 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7077 	if (err == -ETIMEDOUT)
7078 		return err;
7079 
7080 	ocs_value = treq.header.ocs & MASK_OCS;
7081 	if (ocs_value != OCS_SUCCESS)
7082 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7083 				__func__, ocs_value);
7084 	else if (tm_response)
7085 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7086 				MASK_TM_SERVICE_RESP;
7087 	return err;
7088 }
7089 
7090 /**
7091  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7092  * @hba:	per-adapter instance
7093  * @req_upiu:	upiu request
7094  * @rsp_upiu:	upiu reply
7095  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7096  * @buff_len:	descriptor size, 0 if NA
7097  * @cmd_type:	specifies the type (NOP, Query...)
7098  * @desc_op:	descriptor operation
7099  *
7100  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7101  * Therefore, it "rides" the device management infrastructure: uses its tag and
7102  * tasks work queues.
7103  *
7104  * Since there is only one available tag for device management commands,
7105  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7106  *
7107  * Return: 0 upon success; < 0 upon failure.
7108  */
7109 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7110 					struct utp_upiu_req *req_upiu,
7111 					struct utp_upiu_req *rsp_upiu,
7112 					u8 *desc_buff, int *buff_len,
7113 					enum dev_cmd_type cmd_type,
7114 					enum query_opcode desc_op)
7115 {
7116 	DECLARE_COMPLETION_ONSTACK(wait);
7117 	const u32 tag = hba->reserved_slot;
7118 	struct ufshcd_lrb *lrbp;
7119 	int err = 0;
7120 	u8 upiu_flags;
7121 
7122 	/* Protects use of hba->reserved_slot. */
7123 	lockdep_assert_held(&hba->dev_cmd.lock);
7124 
7125 	down_read(&hba->clk_scaling_lock);
7126 
7127 	lrbp = &hba->lrb[tag];
7128 	lrbp->cmd = NULL;
7129 	lrbp->task_tag = tag;
7130 	lrbp->lun = 0;
7131 	lrbp->intr_cmd = true;
7132 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7133 	hba->dev_cmd.type = cmd_type;
7134 
7135 	if (hba->ufs_version <= ufshci_version(1, 1))
7136 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7137 	else
7138 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7139 
7140 	/* update the task tag in the request upiu */
7141 	req_upiu->header.task_tag = tag;
7142 
7143 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7144 
7145 	/* just copy the upiu request as it is */
7146 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7147 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7148 		/* The Data Segment Area is optional depending upon the query
7149 		 * function value. for WRITE DESCRIPTOR, the data segment
7150 		 * follows right after the tsf.
7151 		 */
7152 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7153 		*buff_len = 0;
7154 	}
7155 
7156 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7157 
7158 	hba->dev_cmd.complete = &wait;
7159 
7160 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7161 
7162 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7163 	/*
7164 	 * ignore the returning value here - ufshcd_check_query_response is
7165 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7166 	 * read the response directly ignoring all errors.
7167 	 */
7168 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7169 
7170 	/* just copy the upiu response as it is */
7171 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7172 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7173 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7174 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7175 					   .data_segment_length);
7176 
7177 		if (*buff_len >= resp_len) {
7178 			memcpy(desc_buff, descp, resp_len);
7179 			*buff_len = resp_len;
7180 		} else {
7181 			dev_warn(hba->dev,
7182 				 "%s: rsp size %d is bigger than buffer size %d",
7183 				 __func__, resp_len, *buff_len);
7184 			*buff_len = 0;
7185 			err = -EINVAL;
7186 		}
7187 	}
7188 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7189 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7190 
7191 	up_read(&hba->clk_scaling_lock);
7192 	return err;
7193 }
7194 
7195 /**
7196  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7197  * @hba:	per-adapter instance
7198  * @req_upiu:	upiu request
7199  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7200  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7201  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7202  * @buff_len:	descriptor size, 0 if NA
7203  * @desc_op:	descriptor operation
7204  *
7205  * Supports UTP Transfer requests (nop and query), and UTP Task
7206  * Management requests.
7207  * It is up to the caller to fill the upiu conent properly, as it will
7208  * be copied without any further input validations.
7209  *
7210  * Return: 0 upon success; < 0 upon failure.
7211  */
7212 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7213 			     struct utp_upiu_req *req_upiu,
7214 			     struct utp_upiu_req *rsp_upiu,
7215 			     enum upiu_request_transaction msgcode,
7216 			     u8 *desc_buff, int *buff_len,
7217 			     enum query_opcode desc_op)
7218 {
7219 	int err;
7220 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7221 	struct utp_task_req_desc treq = { };
7222 	enum utp_ocs ocs_value;
7223 	u8 tm_f = req_upiu->header.tm_function;
7224 
7225 	switch (msgcode) {
7226 	case UPIU_TRANSACTION_NOP_OUT:
7227 		cmd_type = DEV_CMD_TYPE_NOP;
7228 		fallthrough;
7229 	case UPIU_TRANSACTION_QUERY_REQ:
7230 		ufshcd_hold(hba);
7231 		mutex_lock(&hba->dev_cmd.lock);
7232 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7233 						   desc_buff, buff_len,
7234 						   cmd_type, desc_op);
7235 		mutex_unlock(&hba->dev_cmd.lock);
7236 		ufshcd_release(hba);
7237 
7238 		break;
7239 	case UPIU_TRANSACTION_TASK_REQ:
7240 		treq.header.interrupt = 1;
7241 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7242 
7243 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7244 
7245 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7246 		if (err == -ETIMEDOUT)
7247 			break;
7248 
7249 		ocs_value = treq.header.ocs & MASK_OCS;
7250 		if (ocs_value != OCS_SUCCESS) {
7251 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7252 				ocs_value);
7253 			break;
7254 		}
7255 
7256 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7257 
7258 		break;
7259 	default:
7260 		err = -EINVAL;
7261 
7262 		break;
7263 	}
7264 
7265 	return err;
7266 }
7267 
7268 /**
7269  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7270  * @hba:	per adapter instance
7271  * @req_upiu:	upiu request
7272  * @rsp_upiu:	upiu reply
7273  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7274  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7275  * @sg_cnt:	The number of sg lists actually used
7276  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7277  * @dir:	DMA direction
7278  *
7279  * Return: zero on success, non-zero on failure.
7280  */
7281 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7282 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7283 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7284 			 enum dma_data_direction dir)
7285 {
7286 	DECLARE_COMPLETION_ONSTACK(wait);
7287 	const u32 tag = hba->reserved_slot;
7288 	struct ufshcd_lrb *lrbp;
7289 	int err = 0;
7290 	int result;
7291 	u8 upiu_flags;
7292 	u8 *ehs_data;
7293 	u16 ehs_len;
7294 
7295 	/* Protects use of hba->reserved_slot. */
7296 	ufshcd_hold(hba);
7297 	mutex_lock(&hba->dev_cmd.lock);
7298 	down_read(&hba->clk_scaling_lock);
7299 
7300 	lrbp = &hba->lrb[tag];
7301 	lrbp->cmd = NULL;
7302 	lrbp->task_tag = tag;
7303 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7304 
7305 	lrbp->intr_cmd = true;
7306 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7307 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7308 
7309 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7310 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7311 
7312 	/*
7313 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7314 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7315 	 * HW controller takes EHS length from UTRD.
7316 	 */
7317 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7318 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7319 	else
7320 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7321 
7322 	/* update the task tag */
7323 	req_upiu->header.task_tag = tag;
7324 
7325 	/* copy the UPIU(contains CDB) request as it is */
7326 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7327 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7328 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7329 
7330 	if (dir != DMA_NONE && sg_list)
7331 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7332 
7333 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7334 
7335 	hba->dev_cmd.complete = &wait;
7336 
7337 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7338 
7339 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7340 
7341 	if (!err) {
7342 		/* Just copy the upiu response as it is */
7343 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7344 		/* Get the response UPIU result */
7345 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7346 			lrbp->ucd_rsp_ptr->header.status;
7347 
7348 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7349 		/*
7350 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7351 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7352 		 * Message is 02h
7353 		 */
7354 		if (ehs_len == 2 && rsp_ehs) {
7355 			/*
7356 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7357 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7358 			 */
7359 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7360 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7361 		}
7362 	}
7363 
7364 	up_read(&hba->clk_scaling_lock);
7365 	mutex_unlock(&hba->dev_cmd.lock);
7366 	ufshcd_release(hba);
7367 	return err ? : result;
7368 }
7369 
7370 /**
7371  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7372  * @cmd: SCSI command pointer
7373  *
7374  * Return: SUCCESS or FAILED.
7375  */
7376 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7377 {
7378 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7379 	struct Scsi_Host *host;
7380 	struct ufs_hba *hba;
7381 	struct ufs_hw_queue *hwq;
7382 	struct ufshcd_lrb *lrbp;
7383 	u32 pos, not_cleared_mask = 0;
7384 	int err;
7385 	u8 resp = 0xF, lun;
7386 
7387 	host = cmd->device->host;
7388 	hba = shost_priv(host);
7389 
7390 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7391 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7392 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7393 		if (!err)
7394 			err = resp;
7395 		goto out;
7396 	}
7397 
7398 	if (is_mcq_enabled(hba)) {
7399 		for (pos = 0; pos < hba->nutrs; pos++) {
7400 			lrbp = &hba->lrb[pos];
7401 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7402 			    lrbp->lun == lun) {
7403 				ufshcd_clear_cmd(hba, pos);
7404 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7405 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7406 			}
7407 		}
7408 		err = 0;
7409 		goto out;
7410 	}
7411 
7412 	/* clear the commands that were pending for corresponding LUN */
7413 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7414 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7415 		if (hba->lrb[pos].lun == lun)
7416 			__set_bit(pos, &pending_reqs);
7417 	hba->outstanding_reqs &= ~pending_reqs;
7418 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7419 
7420 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7421 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7422 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7423 			not_cleared = 1U << pos &
7424 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7425 			hba->outstanding_reqs |= not_cleared;
7426 			not_cleared_mask |= not_cleared;
7427 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7428 
7429 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7430 				__func__, pos);
7431 		}
7432 	}
7433 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7434 
7435 out:
7436 	hba->req_abort_count = 0;
7437 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7438 	if (!err) {
7439 		err = SUCCESS;
7440 	} else {
7441 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7442 		err = FAILED;
7443 	}
7444 	return err;
7445 }
7446 
7447 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7448 {
7449 	struct ufshcd_lrb *lrbp;
7450 	int tag;
7451 
7452 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7453 		lrbp = &hba->lrb[tag];
7454 		lrbp->req_abort_skip = true;
7455 	}
7456 }
7457 
7458 /**
7459  * ufshcd_try_to_abort_task - abort a specific task
7460  * @hba: Pointer to adapter instance
7461  * @tag: Task tag/index to be aborted
7462  *
7463  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7464  * command, and in host controller by clearing the door-bell register. There can
7465  * be race between controller sending the command to the device while abort is
7466  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7467  * really issued and then try to abort it.
7468  *
7469  * Return: zero on success, non-zero on failure.
7470  */
7471 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7472 {
7473 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7474 	int err = 0;
7475 	int poll_cnt;
7476 	u8 resp = 0xF;
7477 	u32 reg;
7478 
7479 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7480 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7481 				UFS_QUERY_TASK, &resp);
7482 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7483 			/* cmd pending in the device */
7484 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7485 				__func__, tag);
7486 			break;
7487 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7488 			/*
7489 			 * cmd not pending in the device, check if it is
7490 			 * in transition.
7491 			 */
7492 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7493 				__func__, tag);
7494 			if (is_mcq_enabled(hba)) {
7495 				/* MCQ mode */
7496 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7497 					/* sleep for max. 200us same delay as in SDB mode */
7498 					usleep_range(100, 200);
7499 					continue;
7500 				}
7501 				/* command completed already */
7502 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7503 					__func__, tag);
7504 				goto out;
7505 			}
7506 
7507 			/* Single Doorbell Mode */
7508 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7509 			if (reg & (1 << tag)) {
7510 				/* sleep for max. 200us to stabilize */
7511 				usleep_range(100, 200);
7512 				continue;
7513 			}
7514 			/* command completed already */
7515 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7516 				__func__, tag);
7517 			goto out;
7518 		} else {
7519 			dev_err(hba->dev,
7520 				"%s: no response from device. tag = %d, err %d\n",
7521 				__func__, tag, err);
7522 			if (!err)
7523 				err = resp; /* service response error */
7524 			goto out;
7525 		}
7526 	}
7527 
7528 	if (!poll_cnt) {
7529 		err = -EBUSY;
7530 		goto out;
7531 	}
7532 
7533 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7534 			UFS_ABORT_TASK, &resp);
7535 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7536 		if (!err) {
7537 			err = resp; /* service response error */
7538 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7539 				__func__, tag, err);
7540 		}
7541 		goto out;
7542 	}
7543 
7544 	err = ufshcd_clear_cmd(hba, tag);
7545 	if (err)
7546 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7547 			__func__, tag, err);
7548 
7549 out:
7550 	return err;
7551 }
7552 
7553 /**
7554  * ufshcd_abort - scsi host template eh_abort_handler callback
7555  * @cmd: SCSI command pointer
7556  *
7557  * Return: SUCCESS or FAILED.
7558  */
7559 static int ufshcd_abort(struct scsi_cmnd *cmd)
7560 {
7561 	struct Scsi_Host *host = cmd->device->host;
7562 	struct ufs_hba *hba = shost_priv(host);
7563 	int tag = scsi_cmd_to_rq(cmd)->tag;
7564 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7565 	unsigned long flags;
7566 	int err = FAILED;
7567 	bool outstanding;
7568 	u32 reg;
7569 
7570 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7571 
7572 	ufshcd_hold(hba);
7573 
7574 	if (!is_mcq_enabled(hba)) {
7575 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7576 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7577 			/* If command is already aborted/completed, return FAILED. */
7578 			dev_err(hba->dev,
7579 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7580 				__func__, tag, hba->outstanding_reqs, reg);
7581 			goto release;
7582 		}
7583 	}
7584 
7585 	/* Print Transfer Request of aborted task */
7586 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7587 
7588 	/*
7589 	 * Print detailed info about aborted request.
7590 	 * As more than one request might get aborted at the same time,
7591 	 * print full information only for the first aborted request in order
7592 	 * to reduce repeated printouts. For other aborted requests only print
7593 	 * basic details.
7594 	 */
7595 	scsi_print_command(cmd);
7596 	if (!hba->req_abort_count) {
7597 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7598 		ufshcd_print_evt_hist(hba);
7599 		ufshcd_print_host_state(hba);
7600 		ufshcd_print_pwr_info(hba);
7601 		ufshcd_print_tr(hba, tag, true);
7602 	} else {
7603 		ufshcd_print_tr(hba, tag, false);
7604 	}
7605 	hba->req_abort_count++;
7606 
7607 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7608 		/* only execute this code in single doorbell mode */
7609 		dev_err(hba->dev,
7610 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7611 		__func__, tag);
7612 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7613 		goto release;
7614 	}
7615 
7616 	/*
7617 	 * Task abort to the device W-LUN is illegal. When this command
7618 	 * will fail, due to spec violation, scsi err handling next step
7619 	 * will be to send LU reset which, again, is a spec violation.
7620 	 * To avoid these unnecessary/illegal steps, first we clean up
7621 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7622 	 * then queue the eh_work and bail.
7623 	 */
7624 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7625 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7626 
7627 		spin_lock_irqsave(host->host_lock, flags);
7628 		hba->force_reset = true;
7629 		ufshcd_schedule_eh_work(hba);
7630 		spin_unlock_irqrestore(host->host_lock, flags);
7631 		goto release;
7632 	}
7633 
7634 	if (is_mcq_enabled(hba)) {
7635 		/* MCQ mode. Branch off to handle abort for mcq mode */
7636 		err = ufshcd_mcq_abort(cmd);
7637 		goto release;
7638 	}
7639 
7640 	/* Skip task abort in case previous aborts failed and report failure */
7641 	if (lrbp->req_abort_skip) {
7642 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7643 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7644 		goto release;
7645 	}
7646 
7647 	err = ufshcd_try_to_abort_task(hba, tag);
7648 	if (err) {
7649 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7650 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7651 		err = FAILED;
7652 		goto release;
7653 	}
7654 
7655 	/*
7656 	 * Clear the corresponding bit from outstanding_reqs since the command
7657 	 * has been aborted successfully.
7658 	 */
7659 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7660 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7661 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7662 
7663 	if (outstanding)
7664 		ufshcd_release_scsi_cmd(hba, lrbp);
7665 
7666 	err = SUCCESS;
7667 
7668 release:
7669 	/* Matches the ufshcd_hold() call at the start of this function. */
7670 	ufshcd_release(hba);
7671 	return err;
7672 }
7673 
7674 /**
7675  * ufshcd_host_reset_and_restore - reset and restore host controller
7676  * @hba: per-adapter instance
7677  *
7678  * Note that host controller reset may issue DME_RESET to
7679  * local and remote (device) Uni-Pro stack and the attributes
7680  * are reset to default state.
7681  *
7682  * Return: zero on success, non-zero on failure.
7683  */
7684 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7685 {
7686 	int err;
7687 
7688 	/*
7689 	 * Stop the host controller and complete the requests
7690 	 * cleared by h/w
7691 	 */
7692 	ufshcd_hba_stop(hba);
7693 	hba->silence_err_logs = true;
7694 	ufshcd_complete_requests(hba, true);
7695 	hba->silence_err_logs = false;
7696 
7697 	/* scale up clocks to max frequency before full reinitialization */
7698 	ufshcd_scale_clks(hba, true);
7699 
7700 	err = ufshcd_hba_enable(hba);
7701 
7702 	/* Establish the link again and restore the device */
7703 	if (!err)
7704 		err = ufshcd_probe_hba(hba, false);
7705 
7706 	if (err)
7707 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7708 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7709 	return err;
7710 }
7711 
7712 /**
7713  * ufshcd_reset_and_restore - reset and re-initialize host/device
7714  * @hba: per-adapter instance
7715  *
7716  * Reset and recover device, host and re-establish link. This
7717  * is helpful to recover the communication in fatal error conditions.
7718  *
7719  * Return: zero on success, non-zero on failure.
7720  */
7721 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7722 {
7723 	u32 saved_err = 0;
7724 	u32 saved_uic_err = 0;
7725 	int err = 0;
7726 	unsigned long flags;
7727 	int retries = MAX_HOST_RESET_RETRIES;
7728 
7729 	spin_lock_irqsave(hba->host->host_lock, flags);
7730 	do {
7731 		/*
7732 		 * This is a fresh start, cache and clear saved error first,
7733 		 * in case new error generated during reset and restore.
7734 		 */
7735 		saved_err |= hba->saved_err;
7736 		saved_uic_err |= hba->saved_uic_err;
7737 		hba->saved_err = 0;
7738 		hba->saved_uic_err = 0;
7739 		hba->force_reset = false;
7740 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7741 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7742 
7743 		/* Reset the attached device */
7744 		ufshcd_device_reset(hba);
7745 
7746 		err = ufshcd_host_reset_and_restore(hba);
7747 
7748 		spin_lock_irqsave(hba->host->host_lock, flags);
7749 		if (err)
7750 			continue;
7751 		/* Do not exit unless operational or dead */
7752 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7753 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7754 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7755 			err = -EAGAIN;
7756 	} while (err && --retries);
7757 
7758 	/*
7759 	 * Inform scsi mid-layer that we did reset and allow to handle
7760 	 * Unit Attention properly.
7761 	 */
7762 	scsi_report_bus_reset(hba->host, 0);
7763 	if (err) {
7764 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7765 		hba->saved_err |= saved_err;
7766 		hba->saved_uic_err |= saved_uic_err;
7767 	}
7768 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7769 
7770 	return err;
7771 }
7772 
7773 /**
7774  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7775  * @cmd: SCSI command pointer
7776  *
7777  * Return: SUCCESS or FAILED.
7778  */
7779 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7780 {
7781 	int err = SUCCESS;
7782 	unsigned long flags;
7783 	struct ufs_hba *hba;
7784 
7785 	hba = shost_priv(cmd->device->host);
7786 
7787 	spin_lock_irqsave(hba->host->host_lock, flags);
7788 	hba->force_reset = true;
7789 	ufshcd_schedule_eh_work(hba);
7790 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7791 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7792 
7793 	flush_work(&hba->eh_work);
7794 
7795 	spin_lock_irqsave(hba->host->host_lock, flags);
7796 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7797 		err = FAILED;
7798 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7799 
7800 	return err;
7801 }
7802 
7803 /**
7804  * ufshcd_get_max_icc_level - calculate the ICC level
7805  * @sup_curr_uA: max. current supported by the regulator
7806  * @start_scan: row at the desc table to start scan from
7807  * @buff: power descriptor buffer
7808  *
7809  * Return: calculated max ICC level for specific regulator.
7810  */
7811 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7812 				    const char *buff)
7813 {
7814 	int i;
7815 	int curr_uA;
7816 	u16 data;
7817 	u16 unit;
7818 
7819 	for (i = start_scan; i >= 0; i--) {
7820 		data = get_unaligned_be16(&buff[2 * i]);
7821 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7822 						ATTR_ICC_LVL_UNIT_OFFSET;
7823 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7824 		switch (unit) {
7825 		case UFSHCD_NANO_AMP:
7826 			curr_uA = curr_uA / 1000;
7827 			break;
7828 		case UFSHCD_MILI_AMP:
7829 			curr_uA = curr_uA * 1000;
7830 			break;
7831 		case UFSHCD_AMP:
7832 			curr_uA = curr_uA * 1000 * 1000;
7833 			break;
7834 		case UFSHCD_MICRO_AMP:
7835 		default:
7836 			break;
7837 		}
7838 		if (sup_curr_uA >= curr_uA)
7839 			break;
7840 	}
7841 	if (i < 0) {
7842 		i = 0;
7843 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7844 	}
7845 
7846 	return (u32)i;
7847 }
7848 
7849 /**
7850  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7851  * In case regulators are not initialized we'll return 0
7852  * @hba: per-adapter instance
7853  * @desc_buf: power descriptor buffer to extract ICC levels from.
7854  *
7855  * Return: calculated ICC level.
7856  */
7857 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7858 						const u8 *desc_buf)
7859 {
7860 	u32 icc_level = 0;
7861 
7862 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7863 						!hba->vreg_info.vccq2) {
7864 		/*
7865 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7866 		 * never-ending cycles of messages written back to storage by
7867 		 * user space causing runtime resume, causing more messages and
7868 		 * so on.
7869 		 */
7870 		dev_dbg(hba->dev,
7871 			"%s: Regulator capability was not set, actvIccLevel=%d",
7872 							__func__, icc_level);
7873 		goto out;
7874 	}
7875 
7876 	if (hba->vreg_info.vcc->max_uA)
7877 		icc_level = ufshcd_get_max_icc_level(
7878 				hba->vreg_info.vcc->max_uA,
7879 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7880 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7881 
7882 	if (hba->vreg_info.vccq->max_uA)
7883 		icc_level = ufshcd_get_max_icc_level(
7884 				hba->vreg_info.vccq->max_uA,
7885 				icc_level,
7886 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7887 
7888 	if (hba->vreg_info.vccq2->max_uA)
7889 		icc_level = ufshcd_get_max_icc_level(
7890 				hba->vreg_info.vccq2->max_uA,
7891 				icc_level,
7892 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7893 out:
7894 	return icc_level;
7895 }
7896 
7897 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7898 {
7899 	int ret;
7900 	u8 *desc_buf;
7901 	u32 icc_level;
7902 
7903 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7904 	if (!desc_buf)
7905 		return;
7906 
7907 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7908 				     desc_buf, QUERY_DESC_MAX_SIZE);
7909 	if (ret) {
7910 		dev_err(hba->dev,
7911 			"%s: Failed reading power descriptor ret = %d",
7912 			__func__, ret);
7913 		goto out;
7914 	}
7915 
7916 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7917 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7918 
7919 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7920 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7921 
7922 	if (ret)
7923 		dev_err(hba->dev,
7924 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7925 			__func__, icc_level, ret);
7926 
7927 out:
7928 	kfree(desc_buf);
7929 }
7930 
7931 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7932 {
7933 	scsi_autopm_get_device(sdev);
7934 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7935 	if (sdev->rpm_autosuspend)
7936 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7937 						 RPM_AUTOSUSPEND_DELAY_MS);
7938 	scsi_autopm_put_device(sdev);
7939 }
7940 
7941 /**
7942  * ufshcd_scsi_add_wlus - Adds required W-LUs
7943  * @hba: per-adapter instance
7944  *
7945  * UFS device specification requires the UFS devices to support 4 well known
7946  * logical units:
7947  *	"REPORT_LUNS" (address: 01h)
7948  *	"UFS Device" (address: 50h)
7949  *	"RPMB" (address: 44h)
7950  *	"BOOT" (address: 30h)
7951  * UFS device's power management needs to be controlled by "POWER CONDITION"
7952  * field of SSU (START STOP UNIT) command. But this "power condition" field
7953  * will take effect only when its sent to "UFS device" well known logical unit
7954  * hence we require the scsi_device instance to represent this logical unit in
7955  * order for the UFS host driver to send the SSU command for power management.
7956  *
7957  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7958  * Block) LU so user space process can control this LU. User space may also
7959  * want to have access to BOOT LU.
7960  *
7961  * This function adds scsi device instances for each of all well known LUs
7962  * (except "REPORT LUNS" LU).
7963  *
7964  * Return: zero on success (all required W-LUs are added successfully),
7965  * non-zero error value on failure (if failed to add any of the required W-LU).
7966  */
7967 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7968 {
7969 	int ret = 0;
7970 	struct scsi_device *sdev_boot, *sdev_rpmb;
7971 
7972 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7973 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7974 	if (IS_ERR(hba->ufs_device_wlun)) {
7975 		ret = PTR_ERR(hba->ufs_device_wlun);
7976 		hba->ufs_device_wlun = NULL;
7977 		goto out;
7978 	}
7979 	scsi_device_put(hba->ufs_device_wlun);
7980 
7981 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7982 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7983 	if (IS_ERR(sdev_rpmb)) {
7984 		ret = PTR_ERR(sdev_rpmb);
7985 		goto remove_ufs_device_wlun;
7986 	}
7987 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
7988 	scsi_device_put(sdev_rpmb);
7989 
7990 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
7991 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7992 	if (IS_ERR(sdev_boot)) {
7993 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7994 	} else {
7995 		ufshcd_blk_pm_runtime_init(sdev_boot);
7996 		scsi_device_put(sdev_boot);
7997 	}
7998 	goto out;
7999 
8000 remove_ufs_device_wlun:
8001 	scsi_remove_device(hba->ufs_device_wlun);
8002 out:
8003 	return ret;
8004 }
8005 
8006 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8007 {
8008 	struct ufs_dev_info *dev_info = &hba->dev_info;
8009 	u8 lun;
8010 	u32 d_lu_wb_buf_alloc;
8011 	u32 ext_ufs_feature;
8012 
8013 	if (!ufshcd_is_wb_allowed(hba))
8014 		return;
8015 
8016 	/*
8017 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8018 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8019 	 * enabled
8020 	 */
8021 	if (!(dev_info->wspecversion >= 0x310 ||
8022 	      dev_info->wspecversion == 0x220 ||
8023 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8024 		goto wb_disabled;
8025 
8026 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8027 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8028 
8029 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8030 		goto wb_disabled;
8031 
8032 	/*
8033 	 * WB may be supported but not configured while provisioning. The spec
8034 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8035 	 * buffer configured.
8036 	 */
8037 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8038 
8039 	dev_info->b_presrv_uspc_en =
8040 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8041 
8042 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8043 		if (!get_unaligned_be32(desc_buf +
8044 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8045 			goto wb_disabled;
8046 	} else {
8047 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8048 			d_lu_wb_buf_alloc = 0;
8049 			ufshcd_read_unit_desc_param(hba,
8050 					lun,
8051 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8052 					(u8 *)&d_lu_wb_buf_alloc,
8053 					sizeof(d_lu_wb_buf_alloc));
8054 			if (d_lu_wb_buf_alloc) {
8055 				dev_info->wb_dedicated_lu = lun;
8056 				break;
8057 			}
8058 		}
8059 
8060 		if (!d_lu_wb_buf_alloc)
8061 			goto wb_disabled;
8062 	}
8063 
8064 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8065 		goto wb_disabled;
8066 
8067 	return;
8068 
8069 wb_disabled:
8070 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8071 }
8072 
8073 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8074 {
8075 	struct ufs_dev_info *dev_info = &hba->dev_info;
8076 	u32 ext_ufs_feature;
8077 	u8 mask = 0;
8078 
8079 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8080 		return;
8081 
8082 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8083 
8084 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8085 		mask |= MASK_EE_TOO_LOW_TEMP;
8086 
8087 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8088 		mask |= MASK_EE_TOO_HIGH_TEMP;
8089 
8090 	if (mask) {
8091 		ufshcd_enable_ee(hba, mask);
8092 		ufs_hwmon_probe(hba, mask);
8093 	}
8094 }
8095 
8096 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8097 {
8098 	struct ufs_dev_info *dev_info = &hba->dev_info;
8099 	u32 ext_ufs_feature;
8100 	u32 ext_iid_en = 0;
8101 	int err;
8102 
8103 	/* Only UFS-4.0 and above may support EXT_IID */
8104 	if (dev_info->wspecversion < 0x400)
8105 		goto out;
8106 
8107 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8108 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8109 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8110 		goto out;
8111 
8112 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8113 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8114 	if (err)
8115 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8116 
8117 out:
8118 	dev_info->b_ext_iid_en = ext_iid_en;
8119 }
8120 
8121 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8122 			     const struct ufs_dev_quirk *fixups)
8123 {
8124 	const struct ufs_dev_quirk *f;
8125 	struct ufs_dev_info *dev_info = &hba->dev_info;
8126 
8127 	if (!fixups)
8128 		return;
8129 
8130 	for (f = fixups; f->quirk; f++) {
8131 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8132 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8133 		     ((dev_info->model &&
8134 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8135 		      !strcmp(f->model, UFS_ANY_MODEL)))
8136 			hba->dev_quirks |= f->quirk;
8137 	}
8138 }
8139 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8140 
8141 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8142 {
8143 	/* fix by general quirk table */
8144 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8145 
8146 	/* allow vendors to fix quirks */
8147 	ufshcd_vops_fixup_dev_quirks(hba);
8148 }
8149 
8150 static int ufs_get_device_desc(struct ufs_hba *hba)
8151 {
8152 	int err;
8153 	u8 model_index;
8154 	u8 *desc_buf;
8155 	struct ufs_dev_info *dev_info = &hba->dev_info;
8156 
8157 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8158 	if (!desc_buf) {
8159 		err = -ENOMEM;
8160 		goto out;
8161 	}
8162 
8163 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8164 				     QUERY_DESC_MAX_SIZE);
8165 	if (err) {
8166 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8167 			__func__, err);
8168 		goto out;
8169 	}
8170 
8171 	/*
8172 	 * getting vendor (manufacturerID) and Bank Index in big endian
8173 	 * format
8174 	 */
8175 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8176 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8177 
8178 	/* getting Specification Version in big endian format */
8179 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8180 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8181 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8182 
8183 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8184 
8185 	err = ufshcd_read_string_desc(hba, model_index,
8186 				      &dev_info->model, SD_ASCII_STD);
8187 	if (err < 0) {
8188 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8189 			__func__, err);
8190 		goto out;
8191 	}
8192 
8193 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8194 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8195 
8196 	ufs_fixup_device_setup(hba);
8197 
8198 	ufshcd_wb_probe(hba, desc_buf);
8199 
8200 	ufshcd_temp_notif_probe(hba, desc_buf);
8201 
8202 	if (hba->ext_iid_sup)
8203 		ufshcd_ext_iid_probe(hba, desc_buf);
8204 
8205 	/*
8206 	 * ufshcd_read_string_desc returns size of the string
8207 	 * reset the error value
8208 	 */
8209 	err = 0;
8210 
8211 out:
8212 	kfree(desc_buf);
8213 	return err;
8214 }
8215 
8216 static void ufs_put_device_desc(struct ufs_hba *hba)
8217 {
8218 	struct ufs_dev_info *dev_info = &hba->dev_info;
8219 
8220 	kfree(dev_info->model);
8221 	dev_info->model = NULL;
8222 }
8223 
8224 /**
8225  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8226  * @hba: per-adapter instance
8227  *
8228  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8229  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8230  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8231  * the hibern8 exit latency.
8232  *
8233  * Return: zero on success, non-zero error value on failure.
8234  */
8235 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8236 {
8237 	int ret = 0;
8238 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8239 
8240 	ret = ufshcd_dme_peer_get(hba,
8241 				  UIC_ARG_MIB_SEL(
8242 					RX_MIN_ACTIVATETIME_CAPABILITY,
8243 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8244 				  &peer_rx_min_activatetime);
8245 	if (ret)
8246 		goto out;
8247 
8248 	/* make sure proper unit conversion is applied */
8249 	tuned_pa_tactivate =
8250 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8251 		 / PA_TACTIVATE_TIME_UNIT_US);
8252 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8253 			     tuned_pa_tactivate);
8254 
8255 out:
8256 	return ret;
8257 }
8258 
8259 /**
8260  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8261  * @hba: per-adapter instance
8262  *
8263  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8264  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8265  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8266  * This optimal value can help reduce the hibern8 exit latency.
8267  *
8268  * Return: zero on success, non-zero error value on failure.
8269  */
8270 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8271 {
8272 	int ret = 0;
8273 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8274 	u32 max_hibern8_time, tuned_pa_hibern8time;
8275 
8276 	ret = ufshcd_dme_get(hba,
8277 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8278 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8279 				  &local_tx_hibern8_time_cap);
8280 	if (ret)
8281 		goto out;
8282 
8283 	ret = ufshcd_dme_peer_get(hba,
8284 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8285 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8286 				  &peer_rx_hibern8_time_cap);
8287 	if (ret)
8288 		goto out;
8289 
8290 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8291 			       peer_rx_hibern8_time_cap);
8292 	/* make sure proper unit conversion is applied */
8293 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8294 				/ PA_HIBERN8_TIME_UNIT_US);
8295 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8296 			     tuned_pa_hibern8time);
8297 out:
8298 	return ret;
8299 }
8300 
8301 /**
8302  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8303  * less than device PA_TACTIVATE time.
8304  * @hba: per-adapter instance
8305  *
8306  * Some UFS devices require host PA_TACTIVATE to be lower than device
8307  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8308  * for such devices.
8309  *
8310  * Return: zero on success, non-zero error value on failure.
8311  */
8312 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8313 {
8314 	int ret = 0;
8315 	u32 granularity, peer_granularity;
8316 	u32 pa_tactivate, peer_pa_tactivate;
8317 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8318 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8319 
8320 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8321 				  &granularity);
8322 	if (ret)
8323 		goto out;
8324 
8325 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8326 				  &peer_granularity);
8327 	if (ret)
8328 		goto out;
8329 
8330 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8331 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8332 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8333 			__func__, granularity);
8334 		return -EINVAL;
8335 	}
8336 
8337 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8338 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8339 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8340 			__func__, peer_granularity);
8341 		return -EINVAL;
8342 	}
8343 
8344 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8345 	if (ret)
8346 		goto out;
8347 
8348 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8349 				  &peer_pa_tactivate);
8350 	if (ret)
8351 		goto out;
8352 
8353 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8354 	peer_pa_tactivate_us = peer_pa_tactivate *
8355 			     gran_to_us_table[peer_granularity - 1];
8356 
8357 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8358 		u32 new_peer_pa_tactivate;
8359 
8360 		new_peer_pa_tactivate = pa_tactivate_us /
8361 				      gran_to_us_table[peer_granularity - 1];
8362 		new_peer_pa_tactivate++;
8363 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8364 					  new_peer_pa_tactivate);
8365 	}
8366 
8367 out:
8368 	return ret;
8369 }
8370 
8371 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8372 {
8373 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8374 		ufshcd_tune_pa_tactivate(hba);
8375 		ufshcd_tune_pa_hibern8time(hba);
8376 	}
8377 
8378 	ufshcd_vops_apply_dev_quirks(hba);
8379 
8380 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8381 		/* set 1ms timeout for PA_TACTIVATE */
8382 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8383 
8384 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8385 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8386 }
8387 
8388 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8389 {
8390 	hba->ufs_stats.hibern8_exit_cnt = 0;
8391 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8392 	hba->req_abort_count = 0;
8393 }
8394 
8395 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8396 {
8397 	int err;
8398 	u8 *desc_buf;
8399 
8400 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8401 	if (!desc_buf) {
8402 		err = -ENOMEM;
8403 		goto out;
8404 	}
8405 
8406 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8407 				     desc_buf, QUERY_DESC_MAX_SIZE);
8408 	if (err) {
8409 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8410 				__func__, err);
8411 		goto out;
8412 	}
8413 
8414 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8415 		hba->dev_info.max_lu_supported = 32;
8416 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8417 		hba->dev_info.max_lu_supported = 8;
8418 
8419 out:
8420 	kfree(desc_buf);
8421 	return err;
8422 }
8423 
8424 struct ufs_ref_clk {
8425 	unsigned long freq_hz;
8426 	enum ufs_ref_clk_freq val;
8427 };
8428 
8429 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8430 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8431 	{26000000, REF_CLK_FREQ_26_MHZ},
8432 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8433 	{52000000, REF_CLK_FREQ_52_MHZ},
8434 	{0, REF_CLK_FREQ_INVAL},
8435 };
8436 
8437 static enum ufs_ref_clk_freq
8438 ufs_get_bref_clk_from_hz(unsigned long freq)
8439 {
8440 	int i;
8441 
8442 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8443 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8444 			return ufs_ref_clk_freqs[i].val;
8445 
8446 	return REF_CLK_FREQ_INVAL;
8447 }
8448 
8449 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8450 {
8451 	unsigned long freq;
8452 
8453 	freq = clk_get_rate(refclk);
8454 
8455 	hba->dev_ref_clk_freq =
8456 		ufs_get_bref_clk_from_hz(freq);
8457 
8458 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8459 		dev_err(hba->dev,
8460 		"invalid ref_clk setting = %ld\n", freq);
8461 }
8462 
8463 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8464 {
8465 	int err;
8466 	u32 ref_clk;
8467 	u32 freq = hba->dev_ref_clk_freq;
8468 
8469 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8470 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8471 
8472 	if (err) {
8473 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8474 			err);
8475 		goto out;
8476 	}
8477 
8478 	if (ref_clk == freq)
8479 		goto out; /* nothing to update */
8480 
8481 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8482 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8483 
8484 	if (err) {
8485 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8486 			ufs_ref_clk_freqs[freq].freq_hz);
8487 		goto out;
8488 	}
8489 
8490 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8491 			ufs_ref_clk_freqs[freq].freq_hz);
8492 
8493 out:
8494 	return err;
8495 }
8496 
8497 static int ufshcd_device_params_init(struct ufs_hba *hba)
8498 {
8499 	bool flag;
8500 	int ret;
8501 
8502 	/* Init UFS geometry descriptor related parameters */
8503 	ret = ufshcd_device_geo_params_init(hba);
8504 	if (ret)
8505 		goto out;
8506 
8507 	/* Check and apply UFS device quirks */
8508 	ret = ufs_get_device_desc(hba);
8509 	if (ret) {
8510 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8511 			__func__, ret);
8512 		goto out;
8513 	}
8514 
8515 	ufshcd_get_ref_clk_gating_wait(hba);
8516 
8517 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8518 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8519 		hba->dev_info.f_power_on_wp_en = flag;
8520 
8521 	/* Probe maximum power mode co-supported by both UFS host and device */
8522 	if (ufshcd_get_max_pwr_mode(hba))
8523 		dev_err(hba->dev,
8524 			"%s: Failed getting max supported power mode\n",
8525 			__func__);
8526 out:
8527 	return ret;
8528 }
8529 
8530 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8531 {
8532 	int err;
8533 	struct ufs_query_req *request = NULL;
8534 	struct ufs_query_res *response = NULL;
8535 	struct ufs_dev_info *dev_info = &hba->dev_info;
8536 	struct utp_upiu_query_v4_0 *upiu_data;
8537 
8538 	if (dev_info->wspecversion < 0x400)
8539 		return;
8540 
8541 	ufshcd_hold(hba);
8542 
8543 	mutex_lock(&hba->dev_cmd.lock);
8544 
8545 	ufshcd_init_query(hba, &request, &response,
8546 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8547 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8548 
8549 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8550 
8551 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8552 
8553 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8554 
8555 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8556 
8557 	if (err)
8558 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8559 			__func__, err);
8560 
8561 	mutex_unlock(&hba->dev_cmd.lock);
8562 	ufshcd_release(hba);
8563 }
8564 
8565 /**
8566  * ufshcd_add_lus - probe and add UFS logical units
8567  * @hba: per-adapter instance
8568  *
8569  * Return: 0 upon success; < 0 upon failure.
8570  */
8571 static int ufshcd_add_lus(struct ufs_hba *hba)
8572 {
8573 	int ret;
8574 
8575 	/* Add required well known logical units to scsi mid layer */
8576 	ret = ufshcd_scsi_add_wlus(hba);
8577 	if (ret)
8578 		goto out;
8579 
8580 	/* Initialize devfreq after UFS device is detected */
8581 	if (ufshcd_is_clkscaling_supported(hba)) {
8582 		memcpy(&hba->clk_scaling.saved_pwr_info,
8583 			&hba->pwr_info,
8584 			sizeof(struct ufs_pa_layer_attr));
8585 		hba->clk_scaling.is_allowed = true;
8586 
8587 		ret = ufshcd_devfreq_init(hba);
8588 		if (ret)
8589 			goto out;
8590 
8591 		hba->clk_scaling.is_enabled = true;
8592 		ufshcd_init_clk_scaling_sysfs(hba);
8593 	}
8594 
8595 	ufs_bsg_probe(hba);
8596 	scsi_scan_host(hba->host);
8597 
8598 out:
8599 	return ret;
8600 }
8601 
8602 /* SDB - Single Doorbell */
8603 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8604 {
8605 	size_t ucdl_size, utrdl_size;
8606 
8607 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8608 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8609 			   hba->ucdl_dma_addr);
8610 
8611 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8612 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8613 			   hba->utrdl_dma_addr);
8614 
8615 	devm_kfree(hba->dev, hba->lrb);
8616 }
8617 
8618 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8619 {
8620 	int ret;
8621 	int old_nutrs = hba->nutrs;
8622 
8623 	ret = ufshcd_mcq_decide_queue_depth(hba);
8624 	if (ret < 0)
8625 		return ret;
8626 
8627 	hba->nutrs = ret;
8628 	ret = ufshcd_mcq_init(hba);
8629 	if (ret)
8630 		goto err;
8631 
8632 	/*
8633 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8634 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8635 	 */
8636 	if (hba->nutrs != old_nutrs) {
8637 		ufshcd_release_sdb_queue(hba, old_nutrs);
8638 		ret = ufshcd_memory_alloc(hba);
8639 		if (ret)
8640 			goto err;
8641 		ufshcd_host_memory_configure(hba);
8642 	}
8643 
8644 	ret = ufshcd_mcq_memory_alloc(hba);
8645 	if (ret)
8646 		goto err;
8647 
8648 	return 0;
8649 err:
8650 	hba->nutrs = old_nutrs;
8651 	return ret;
8652 }
8653 
8654 static void ufshcd_config_mcq(struct ufs_hba *hba)
8655 {
8656 	int ret;
8657 	u32 intrs;
8658 
8659 	ret = ufshcd_mcq_vops_config_esi(hba);
8660 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8661 
8662 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8663 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8664 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8665 	ufshcd_enable_intr(hba, intrs);
8666 	ufshcd_mcq_make_queues_operational(hba);
8667 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8668 
8669 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8670 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8671 
8672 	/* Select MCQ mode */
8673 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8674 		      REG_UFS_MEM_CFG);
8675 	hba->mcq_enabled = true;
8676 
8677 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8678 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8679 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8680 		 hba->nutrs);
8681 }
8682 
8683 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8684 {
8685 	int ret;
8686 	struct Scsi_Host *host = hba->host;
8687 
8688 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8689 
8690 	ret = ufshcd_link_startup(hba);
8691 	if (ret)
8692 		return ret;
8693 
8694 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8695 		return ret;
8696 
8697 	/* Debug counters initialization */
8698 	ufshcd_clear_dbg_ufs_stats(hba);
8699 
8700 	/* UniPro link is active now */
8701 	ufshcd_set_link_active(hba);
8702 
8703 	/* Reconfigure MCQ upon reset */
8704 	if (is_mcq_enabled(hba) && !init_dev_params)
8705 		ufshcd_config_mcq(hba);
8706 
8707 	/* Verify device initialization by sending NOP OUT UPIU */
8708 	ret = ufshcd_verify_dev_init(hba);
8709 	if (ret)
8710 		return ret;
8711 
8712 	/* Initiate UFS initialization, and waiting until completion */
8713 	ret = ufshcd_complete_dev_init(hba);
8714 	if (ret)
8715 		return ret;
8716 
8717 	/*
8718 	 * Initialize UFS device parameters used by driver, these
8719 	 * parameters are associated with UFS descriptors.
8720 	 */
8721 	if (init_dev_params) {
8722 		ret = ufshcd_device_params_init(hba);
8723 		if (ret)
8724 			return ret;
8725 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8726 			ret = ufshcd_alloc_mcq(hba);
8727 			if (!ret) {
8728 				ufshcd_config_mcq(hba);
8729 			} else {
8730 				/* Continue with SDB mode */
8731 				use_mcq_mode = false;
8732 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8733 					 ret);
8734 			}
8735 			ret = scsi_add_host(host, hba->dev);
8736 			if (ret) {
8737 				dev_err(hba->dev, "scsi_add_host failed\n");
8738 				return ret;
8739 			}
8740 			hba->scsi_host_added = true;
8741 		} else if (is_mcq_supported(hba)) {
8742 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8743 			ufshcd_config_mcq(hba);
8744 		}
8745 	}
8746 
8747 	ufshcd_tune_unipro_params(hba);
8748 
8749 	/* UFS device is also active now */
8750 	ufshcd_set_ufs_dev_active(hba);
8751 	ufshcd_force_reset_auto_bkops(hba);
8752 
8753 	ufshcd_set_timestamp_attr(hba);
8754 
8755 	/* Gear up to HS gear if supported */
8756 	if (hba->max_pwr_info.is_valid) {
8757 		/*
8758 		 * Set the right value to bRefClkFreq before attempting to
8759 		 * switch to HS gears.
8760 		 */
8761 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8762 			ufshcd_set_dev_ref_clk(hba);
8763 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8764 		if (ret) {
8765 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8766 					__func__, ret);
8767 			return ret;
8768 		}
8769 	}
8770 
8771 	return 0;
8772 }
8773 
8774 /**
8775  * ufshcd_probe_hba - probe hba to detect device and initialize it
8776  * @hba: per-adapter instance
8777  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8778  *
8779  * Execute link-startup and verify device initialization
8780  *
8781  * Return: 0 upon success; < 0 upon failure.
8782  */
8783 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8784 {
8785 	ktime_t start = ktime_get();
8786 	unsigned long flags;
8787 	int ret;
8788 
8789 	ret = ufshcd_device_init(hba, init_dev_params);
8790 	if (ret)
8791 		goto out;
8792 
8793 	if (!hba->pm_op_in_progress &&
8794 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8795 		/* Reset the device and controller before doing reinit */
8796 		ufshcd_device_reset(hba);
8797 		ufs_put_device_desc(hba);
8798 		ufshcd_hba_stop(hba);
8799 		ufshcd_vops_reinit_notify(hba);
8800 		ret = ufshcd_hba_enable(hba);
8801 		if (ret) {
8802 			dev_err(hba->dev, "Host controller enable failed\n");
8803 			ufshcd_print_evt_hist(hba);
8804 			ufshcd_print_host_state(hba);
8805 			goto out;
8806 		}
8807 
8808 		/* Reinit the device */
8809 		ret = ufshcd_device_init(hba, init_dev_params);
8810 		if (ret)
8811 			goto out;
8812 	}
8813 
8814 	ufshcd_print_pwr_info(hba);
8815 
8816 	/*
8817 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8818 	 * and for removable UFS card as well, hence always set the parameter.
8819 	 * Note: Error handler may issue the device reset hence resetting
8820 	 * bActiveICCLevel as well so it is always safe to set this here.
8821 	 */
8822 	ufshcd_set_active_icc_lvl(hba);
8823 
8824 	/* Enable UFS Write Booster if supported */
8825 	ufshcd_configure_wb(hba);
8826 
8827 	if (hba->ee_usr_mask)
8828 		ufshcd_write_ee_control(hba);
8829 	/* Enable Auto-Hibernate if configured */
8830 	ufshcd_auto_hibern8_enable(hba);
8831 
8832 out:
8833 	spin_lock_irqsave(hba->host->host_lock, flags);
8834 	if (ret)
8835 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8836 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8837 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8838 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8839 
8840 	trace_ufshcd_init(dev_name(hba->dev), ret,
8841 		ktime_to_us(ktime_sub(ktime_get(), start)),
8842 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8843 	return ret;
8844 }
8845 
8846 /**
8847  * ufshcd_async_scan - asynchronous execution for probing hba
8848  * @data: data pointer to pass to this function
8849  * @cookie: cookie data
8850  */
8851 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8852 {
8853 	struct ufs_hba *hba = (struct ufs_hba *)data;
8854 	int ret;
8855 
8856 	down(&hba->host_sem);
8857 	/* Initialize hba, detect and initialize UFS device */
8858 	ret = ufshcd_probe_hba(hba, true);
8859 	up(&hba->host_sem);
8860 	if (ret)
8861 		goto out;
8862 
8863 	/* Probe and add UFS logical units  */
8864 	ret = ufshcd_add_lus(hba);
8865 
8866 out:
8867 	pm_runtime_put_sync(hba->dev);
8868 
8869 	if (ret)
8870 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8871 }
8872 
8873 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8874 {
8875 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8876 
8877 	if (!hba->system_suspending) {
8878 		/* Activate the error handler in the SCSI core. */
8879 		return SCSI_EH_NOT_HANDLED;
8880 	}
8881 
8882 	/*
8883 	 * If we get here we know that no TMFs are outstanding and also that
8884 	 * the only pending command is a START STOP UNIT command. Handle the
8885 	 * timeout of that command directly to prevent a deadlock between
8886 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8887 	 */
8888 	ufshcd_link_recovery(hba);
8889 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8890 		 __func__, hba->outstanding_tasks);
8891 
8892 	return hba->outstanding_reqs ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8893 }
8894 
8895 static const struct attribute_group *ufshcd_driver_groups[] = {
8896 	&ufs_sysfs_unit_descriptor_group,
8897 	&ufs_sysfs_lun_attributes_group,
8898 	NULL,
8899 };
8900 
8901 static struct ufs_hba_variant_params ufs_hba_vps = {
8902 	.hba_enable_delay_us		= 1000,
8903 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8904 	.devfreq_profile.polling_ms	= 100,
8905 	.devfreq_profile.target		= ufshcd_devfreq_target,
8906 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
8907 	.ondemand_data.upthreshold	= 70,
8908 	.ondemand_data.downdifferential	= 5,
8909 };
8910 
8911 static const struct scsi_host_template ufshcd_driver_template = {
8912 	.module			= THIS_MODULE,
8913 	.name			= UFSHCD,
8914 	.proc_name		= UFSHCD,
8915 	.map_queues		= ufshcd_map_queues,
8916 	.queuecommand		= ufshcd_queuecommand,
8917 	.mq_poll		= ufshcd_poll,
8918 	.slave_alloc		= ufshcd_slave_alloc,
8919 	.slave_configure	= ufshcd_slave_configure,
8920 	.slave_destroy		= ufshcd_slave_destroy,
8921 	.change_queue_depth	= ufshcd_change_queue_depth,
8922 	.eh_abort_handler	= ufshcd_abort,
8923 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8924 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
8925 	.eh_timed_out		= ufshcd_eh_timed_out,
8926 	.this_id		= -1,
8927 	.sg_tablesize		= SG_ALL,
8928 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
8929 	.can_queue		= UFSHCD_CAN_QUEUE,
8930 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
8931 	.max_sectors		= SZ_1M / SECTOR_SIZE,
8932 	.max_host_blocked	= 1,
8933 	.track_queue_depth	= 1,
8934 	.skip_settle_delay	= 1,
8935 	.sdev_groups		= ufshcd_driver_groups,
8936 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
8937 };
8938 
8939 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8940 				   int ua)
8941 {
8942 	int ret;
8943 
8944 	if (!vreg)
8945 		return 0;
8946 
8947 	/*
8948 	 * "set_load" operation shall be required on those regulators
8949 	 * which specifically configured current limitation. Otherwise
8950 	 * zero max_uA may cause unexpected behavior when regulator is
8951 	 * enabled or set as high power mode.
8952 	 */
8953 	if (!vreg->max_uA)
8954 		return 0;
8955 
8956 	ret = regulator_set_load(vreg->reg, ua);
8957 	if (ret < 0) {
8958 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8959 				__func__, vreg->name, ua, ret);
8960 	}
8961 
8962 	return ret;
8963 }
8964 
8965 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8966 					 struct ufs_vreg *vreg)
8967 {
8968 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8969 }
8970 
8971 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8972 					 struct ufs_vreg *vreg)
8973 {
8974 	if (!vreg)
8975 		return 0;
8976 
8977 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8978 }
8979 
8980 static int ufshcd_config_vreg(struct device *dev,
8981 		struct ufs_vreg *vreg, bool on)
8982 {
8983 	if (regulator_count_voltages(vreg->reg) <= 0)
8984 		return 0;
8985 
8986 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
8987 }
8988 
8989 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8990 {
8991 	int ret = 0;
8992 
8993 	if (!vreg || vreg->enabled)
8994 		goto out;
8995 
8996 	ret = ufshcd_config_vreg(dev, vreg, true);
8997 	if (!ret)
8998 		ret = regulator_enable(vreg->reg);
8999 
9000 	if (!ret)
9001 		vreg->enabled = true;
9002 	else
9003 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9004 				__func__, vreg->name, ret);
9005 out:
9006 	return ret;
9007 }
9008 
9009 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9010 {
9011 	int ret = 0;
9012 
9013 	if (!vreg || !vreg->enabled || vreg->always_on)
9014 		goto out;
9015 
9016 	ret = regulator_disable(vreg->reg);
9017 
9018 	if (!ret) {
9019 		/* ignore errors on applying disable config */
9020 		ufshcd_config_vreg(dev, vreg, false);
9021 		vreg->enabled = false;
9022 	} else {
9023 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9024 				__func__, vreg->name, ret);
9025 	}
9026 out:
9027 	return ret;
9028 }
9029 
9030 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9031 {
9032 	int ret = 0;
9033 	struct device *dev = hba->dev;
9034 	struct ufs_vreg_info *info = &hba->vreg_info;
9035 
9036 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9037 	if (ret)
9038 		goto out;
9039 
9040 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9041 	if (ret)
9042 		goto out;
9043 
9044 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9045 
9046 out:
9047 	if (ret) {
9048 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9049 		ufshcd_toggle_vreg(dev, info->vccq, false);
9050 		ufshcd_toggle_vreg(dev, info->vcc, false);
9051 	}
9052 	return ret;
9053 }
9054 
9055 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9056 {
9057 	struct ufs_vreg_info *info = &hba->vreg_info;
9058 
9059 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9060 }
9061 
9062 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9063 {
9064 	int ret = 0;
9065 
9066 	if (!vreg)
9067 		goto out;
9068 
9069 	vreg->reg = devm_regulator_get(dev, vreg->name);
9070 	if (IS_ERR(vreg->reg)) {
9071 		ret = PTR_ERR(vreg->reg);
9072 		dev_err(dev, "%s: %s get failed, err=%d\n",
9073 				__func__, vreg->name, ret);
9074 	}
9075 out:
9076 	return ret;
9077 }
9078 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9079 
9080 static int ufshcd_init_vreg(struct ufs_hba *hba)
9081 {
9082 	int ret = 0;
9083 	struct device *dev = hba->dev;
9084 	struct ufs_vreg_info *info = &hba->vreg_info;
9085 
9086 	ret = ufshcd_get_vreg(dev, info->vcc);
9087 	if (ret)
9088 		goto out;
9089 
9090 	ret = ufshcd_get_vreg(dev, info->vccq);
9091 	if (!ret)
9092 		ret = ufshcd_get_vreg(dev, info->vccq2);
9093 out:
9094 	return ret;
9095 }
9096 
9097 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9098 {
9099 	struct ufs_vreg_info *info = &hba->vreg_info;
9100 
9101 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9102 }
9103 
9104 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9105 {
9106 	int ret = 0;
9107 	struct ufs_clk_info *clki;
9108 	struct list_head *head = &hba->clk_list_head;
9109 	unsigned long flags;
9110 	ktime_t start = ktime_get();
9111 	bool clk_state_changed = false;
9112 
9113 	if (list_empty(head))
9114 		goto out;
9115 
9116 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9117 	if (ret)
9118 		return ret;
9119 
9120 	list_for_each_entry(clki, head, list) {
9121 		if (!IS_ERR_OR_NULL(clki->clk)) {
9122 			/*
9123 			 * Don't disable clocks which are needed
9124 			 * to keep the link active.
9125 			 */
9126 			if (ufshcd_is_link_active(hba) &&
9127 			    clki->keep_link_active)
9128 				continue;
9129 
9130 			clk_state_changed = on ^ clki->enabled;
9131 			if (on && !clki->enabled) {
9132 				ret = clk_prepare_enable(clki->clk);
9133 				if (ret) {
9134 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9135 						__func__, clki->name, ret);
9136 					goto out;
9137 				}
9138 			} else if (!on && clki->enabled) {
9139 				clk_disable_unprepare(clki->clk);
9140 			}
9141 			clki->enabled = on;
9142 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9143 					clki->name, on ? "en" : "dis");
9144 		}
9145 	}
9146 
9147 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9148 	if (ret)
9149 		return ret;
9150 
9151 out:
9152 	if (ret) {
9153 		list_for_each_entry(clki, head, list) {
9154 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9155 				clk_disable_unprepare(clki->clk);
9156 		}
9157 	} else if (!ret && on) {
9158 		spin_lock_irqsave(hba->host->host_lock, flags);
9159 		hba->clk_gating.state = CLKS_ON;
9160 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9161 					hba->clk_gating.state);
9162 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9163 	}
9164 
9165 	if (clk_state_changed)
9166 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9167 			(on ? "on" : "off"),
9168 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9169 	return ret;
9170 }
9171 
9172 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9173 {
9174 	u32 freq;
9175 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9176 
9177 	if (ret) {
9178 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9179 		return REF_CLK_FREQ_INVAL;
9180 	}
9181 
9182 	return ufs_get_bref_clk_from_hz(freq);
9183 }
9184 
9185 static int ufshcd_init_clocks(struct ufs_hba *hba)
9186 {
9187 	int ret = 0;
9188 	struct ufs_clk_info *clki;
9189 	struct device *dev = hba->dev;
9190 	struct list_head *head = &hba->clk_list_head;
9191 
9192 	if (list_empty(head))
9193 		goto out;
9194 
9195 	list_for_each_entry(clki, head, list) {
9196 		if (!clki->name)
9197 			continue;
9198 
9199 		clki->clk = devm_clk_get(dev, clki->name);
9200 		if (IS_ERR(clki->clk)) {
9201 			ret = PTR_ERR(clki->clk);
9202 			dev_err(dev, "%s: %s clk get failed, %d\n",
9203 					__func__, clki->name, ret);
9204 			goto out;
9205 		}
9206 
9207 		/*
9208 		 * Parse device ref clk freq as per device tree "ref_clk".
9209 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9210 		 * in ufshcd_alloc_host().
9211 		 */
9212 		if (!strcmp(clki->name, "ref_clk"))
9213 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9214 
9215 		if (clki->max_freq) {
9216 			ret = clk_set_rate(clki->clk, clki->max_freq);
9217 			if (ret) {
9218 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9219 					__func__, clki->name,
9220 					clki->max_freq, ret);
9221 				goto out;
9222 			}
9223 			clki->curr_freq = clki->max_freq;
9224 		}
9225 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9226 				clki->name, clk_get_rate(clki->clk));
9227 	}
9228 out:
9229 	return ret;
9230 }
9231 
9232 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9233 {
9234 	int err = 0;
9235 
9236 	if (!hba->vops)
9237 		goto out;
9238 
9239 	err = ufshcd_vops_init(hba);
9240 	if (err)
9241 		dev_err_probe(hba->dev, err,
9242 			      "%s: variant %s init failed with err %d\n",
9243 			      __func__, ufshcd_get_var_name(hba), err);
9244 out:
9245 	return err;
9246 }
9247 
9248 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9249 {
9250 	if (!hba->vops)
9251 		return;
9252 
9253 	ufshcd_vops_exit(hba);
9254 }
9255 
9256 static int ufshcd_hba_init(struct ufs_hba *hba)
9257 {
9258 	int err;
9259 
9260 	/*
9261 	 * Handle host controller power separately from the UFS device power
9262 	 * rails as it will help controlling the UFS host controller power
9263 	 * collapse easily which is different than UFS device power collapse.
9264 	 * Also, enable the host controller power before we go ahead with rest
9265 	 * of the initialization here.
9266 	 */
9267 	err = ufshcd_init_hba_vreg(hba);
9268 	if (err)
9269 		goto out;
9270 
9271 	err = ufshcd_setup_hba_vreg(hba, true);
9272 	if (err)
9273 		goto out;
9274 
9275 	err = ufshcd_init_clocks(hba);
9276 	if (err)
9277 		goto out_disable_hba_vreg;
9278 
9279 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9280 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9281 
9282 	err = ufshcd_setup_clocks(hba, true);
9283 	if (err)
9284 		goto out_disable_hba_vreg;
9285 
9286 	err = ufshcd_init_vreg(hba);
9287 	if (err)
9288 		goto out_disable_clks;
9289 
9290 	err = ufshcd_setup_vreg(hba, true);
9291 	if (err)
9292 		goto out_disable_clks;
9293 
9294 	err = ufshcd_variant_hba_init(hba);
9295 	if (err)
9296 		goto out_disable_vreg;
9297 
9298 	ufs_debugfs_hba_init(hba);
9299 
9300 	hba->is_powered = true;
9301 	goto out;
9302 
9303 out_disable_vreg:
9304 	ufshcd_setup_vreg(hba, false);
9305 out_disable_clks:
9306 	ufshcd_setup_clocks(hba, false);
9307 out_disable_hba_vreg:
9308 	ufshcd_setup_hba_vreg(hba, false);
9309 out:
9310 	return err;
9311 }
9312 
9313 static void ufshcd_hba_exit(struct ufs_hba *hba)
9314 {
9315 	if (hba->is_powered) {
9316 		ufshcd_exit_clk_scaling(hba);
9317 		ufshcd_exit_clk_gating(hba);
9318 		if (hba->eh_wq)
9319 			destroy_workqueue(hba->eh_wq);
9320 		ufs_debugfs_hba_exit(hba);
9321 		ufshcd_variant_hba_exit(hba);
9322 		ufshcd_setup_vreg(hba, false);
9323 		ufshcd_setup_clocks(hba, false);
9324 		ufshcd_setup_hba_vreg(hba, false);
9325 		hba->is_powered = false;
9326 		ufs_put_device_desc(hba);
9327 	}
9328 }
9329 
9330 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9331 				     enum ufs_dev_pwr_mode pwr_mode,
9332 				     struct scsi_sense_hdr *sshdr)
9333 {
9334 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9335 	const struct scsi_exec_args args = {
9336 		.sshdr = sshdr,
9337 		.req_flags = BLK_MQ_REQ_PM,
9338 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9339 	};
9340 
9341 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9342 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9343 			&args);
9344 }
9345 
9346 /**
9347  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9348  *			     power mode
9349  * @hba: per adapter instance
9350  * @pwr_mode: device power mode to set
9351  *
9352  * Return: 0 if requested power mode is set successfully;
9353  *         < 0 if failed to set the requested power mode.
9354  */
9355 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9356 				     enum ufs_dev_pwr_mode pwr_mode)
9357 {
9358 	struct scsi_sense_hdr sshdr;
9359 	struct scsi_device *sdp;
9360 	unsigned long flags;
9361 	int ret, retries;
9362 
9363 	spin_lock_irqsave(hba->host->host_lock, flags);
9364 	sdp = hba->ufs_device_wlun;
9365 	if (sdp && scsi_device_online(sdp))
9366 		ret = scsi_device_get(sdp);
9367 	else
9368 		ret = -ENODEV;
9369 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9370 
9371 	if (ret)
9372 		return ret;
9373 
9374 	/*
9375 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9376 	 * handling, which would wait for host to be resumed. Since we know
9377 	 * we are functional while we are here, skip host resume in error
9378 	 * handling context.
9379 	 */
9380 	hba->host->eh_noresume = 1;
9381 
9382 	/*
9383 	 * Current function would be generally called from the power management
9384 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9385 	 * already suspended childs.
9386 	 */
9387 	for (retries = 3; retries > 0; --retries) {
9388 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9389 		/*
9390 		 * scsi_execute() only returns a negative value if the request
9391 		 * queue is dying.
9392 		 */
9393 		if (ret <= 0)
9394 			break;
9395 	}
9396 	if (ret) {
9397 		sdev_printk(KERN_WARNING, sdp,
9398 			    "START_STOP failed for power mode: %d, result %x\n",
9399 			    pwr_mode, ret);
9400 		if (ret > 0) {
9401 			if (scsi_sense_valid(&sshdr))
9402 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9403 			ret = -EIO;
9404 		}
9405 	} else {
9406 		hba->curr_dev_pwr_mode = pwr_mode;
9407 	}
9408 
9409 	scsi_device_put(sdp);
9410 	hba->host->eh_noresume = 0;
9411 	return ret;
9412 }
9413 
9414 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9415 					enum uic_link_state req_link_state,
9416 					bool check_for_bkops)
9417 {
9418 	int ret = 0;
9419 
9420 	if (req_link_state == hba->uic_link_state)
9421 		return 0;
9422 
9423 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9424 		ret = ufshcd_uic_hibern8_enter(hba);
9425 		if (!ret) {
9426 			ufshcd_set_link_hibern8(hba);
9427 		} else {
9428 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9429 					__func__, ret);
9430 			goto out;
9431 		}
9432 	}
9433 	/*
9434 	 * If autobkops is enabled, link can't be turned off because
9435 	 * turning off the link would also turn off the device, except in the
9436 	 * case of DeepSleep where the device is expected to remain powered.
9437 	 */
9438 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9439 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9440 		/*
9441 		 * Let's make sure that link is in low power mode, we are doing
9442 		 * this currently by putting the link in Hibern8. Otherway to
9443 		 * put the link in low power mode is to send the DME end point
9444 		 * to device and then send the DME reset command to local
9445 		 * unipro. But putting the link in hibern8 is much faster.
9446 		 *
9447 		 * Note also that putting the link in Hibern8 is a requirement
9448 		 * for entering DeepSleep.
9449 		 */
9450 		ret = ufshcd_uic_hibern8_enter(hba);
9451 		if (ret) {
9452 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9453 					__func__, ret);
9454 			goto out;
9455 		}
9456 		/*
9457 		 * Change controller state to "reset state" which
9458 		 * should also put the link in off/reset state
9459 		 */
9460 		ufshcd_hba_stop(hba);
9461 		/*
9462 		 * TODO: Check if we need any delay to make sure that
9463 		 * controller is reset
9464 		 */
9465 		ufshcd_set_link_off(hba);
9466 	}
9467 
9468 out:
9469 	return ret;
9470 }
9471 
9472 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9473 {
9474 	bool vcc_off = false;
9475 
9476 	/*
9477 	 * It seems some UFS devices may keep drawing more than sleep current
9478 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9479 	 * To avoid this situation, add 2ms delay before putting these UFS
9480 	 * rails in LPM mode.
9481 	 */
9482 	if (!ufshcd_is_link_active(hba) &&
9483 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9484 		usleep_range(2000, 2100);
9485 
9486 	/*
9487 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9488 	 * power.
9489 	 *
9490 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9491 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9492 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9493 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9494 	 *
9495 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9496 	 * in low power state which would save some power.
9497 	 *
9498 	 * If Write Booster is enabled and the device needs to flush the WB
9499 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9500 	 */
9501 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9502 	    !hba->dev_info.is_lu_power_on_wp) {
9503 		ufshcd_setup_vreg(hba, false);
9504 		vcc_off = true;
9505 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9506 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9507 		vcc_off = true;
9508 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9509 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9510 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9511 		}
9512 	}
9513 
9514 	/*
9515 	 * Some UFS devices require delay after VCC power rail is turned-off.
9516 	 */
9517 	if (vcc_off && hba->vreg_info.vcc &&
9518 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9519 		usleep_range(5000, 5100);
9520 }
9521 
9522 #ifdef CONFIG_PM
9523 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9524 {
9525 	int ret = 0;
9526 
9527 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9528 	    !hba->dev_info.is_lu_power_on_wp) {
9529 		ret = ufshcd_setup_vreg(hba, true);
9530 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9531 		if (!ufshcd_is_link_active(hba)) {
9532 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9533 			if (ret)
9534 				goto vcc_disable;
9535 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9536 			if (ret)
9537 				goto vccq_lpm;
9538 		}
9539 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9540 	}
9541 	goto out;
9542 
9543 vccq_lpm:
9544 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9545 vcc_disable:
9546 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9547 out:
9548 	return ret;
9549 }
9550 #endif /* CONFIG_PM */
9551 
9552 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9553 {
9554 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9555 		ufshcd_setup_hba_vreg(hba, false);
9556 }
9557 
9558 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9559 {
9560 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9561 		ufshcd_setup_hba_vreg(hba, true);
9562 }
9563 
9564 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9565 {
9566 	int ret = 0;
9567 	bool check_for_bkops;
9568 	enum ufs_pm_level pm_lvl;
9569 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9570 	enum uic_link_state req_link_state;
9571 
9572 	hba->pm_op_in_progress = true;
9573 	if (pm_op != UFS_SHUTDOWN_PM) {
9574 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9575 			 hba->rpm_lvl : hba->spm_lvl;
9576 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9577 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9578 	} else {
9579 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9580 		req_link_state = UIC_LINK_OFF_STATE;
9581 	}
9582 
9583 	/*
9584 	 * If we can't transition into any of the low power modes
9585 	 * just gate the clocks.
9586 	 */
9587 	ufshcd_hold(hba);
9588 	hba->clk_gating.is_suspended = true;
9589 
9590 	if (ufshcd_is_clkscaling_supported(hba))
9591 		ufshcd_clk_scaling_suspend(hba, true);
9592 
9593 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9594 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9595 		goto vops_suspend;
9596 	}
9597 
9598 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9599 	    (req_link_state == hba->uic_link_state))
9600 		goto enable_scaling;
9601 
9602 	/* UFS device & link must be active before we enter in this function */
9603 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9604 		/*  Wait err handler finish or trigger err recovery */
9605 		if (!ufshcd_eh_in_progress(hba))
9606 			ufshcd_force_error_recovery(hba);
9607 		ret = -EBUSY;
9608 		goto enable_scaling;
9609 	}
9610 
9611 	if (pm_op == UFS_RUNTIME_PM) {
9612 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9613 			/*
9614 			 * The device is idle with no requests in the queue,
9615 			 * allow background operations if bkops status shows
9616 			 * that performance might be impacted.
9617 			 */
9618 			ret = ufshcd_urgent_bkops(hba);
9619 			if (ret) {
9620 				/*
9621 				 * If return err in suspend flow, IO will hang.
9622 				 * Trigger error handler and break suspend for
9623 				 * error recovery.
9624 				 */
9625 				ufshcd_force_error_recovery(hba);
9626 				ret = -EBUSY;
9627 				goto enable_scaling;
9628 			}
9629 		} else {
9630 			/* make sure that auto bkops is disabled */
9631 			ufshcd_disable_auto_bkops(hba);
9632 		}
9633 		/*
9634 		 * If device needs to do BKOP or WB buffer flush during
9635 		 * Hibern8, keep device power mode as "active power mode"
9636 		 * and VCC supply.
9637 		 */
9638 		hba->dev_info.b_rpm_dev_flush_capable =
9639 			hba->auto_bkops_enabled ||
9640 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9641 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9642 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9643 			ufshcd_wb_need_flush(hba));
9644 	}
9645 
9646 	flush_work(&hba->eeh_work);
9647 
9648 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9649 	if (ret)
9650 		goto enable_scaling;
9651 
9652 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9653 		if (pm_op != UFS_RUNTIME_PM)
9654 			/* ensure that bkops is disabled */
9655 			ufshcd_disable_auto_bkops(hba);
9656 
9657 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9658 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9659 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9660 				/*
9661 				 * If return err in suspend flow, IO will hang.
9662 				 * Trigger error handler and break suspend for
9663 				 * error recovery.
9664 				 */
9665 				ufshcd_force_error_recovery(hba);
9666 				ret = -EBUSY;
9667 			}
9668 			if (ret)
9669 				goto enable_scaling;
9670 		}
9671 	}
9672 
9673 	/*
9674 	 * In the case of DeepSleep, the device is expected to remain powered
9675 	 * with the link off, so do not check for bkops.
9676 	 */
9677 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9678 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9679 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9680 		/*
9681 		 * If return err in suspend flow, IO will hang.
9682 		 * Trigger error handler and break suspend for
9683 		 * error recovery.
9684 		 */
9685 		ufshcd_force_error_recovery(hba);
9686 		ret = -EBUSY;
9687 	}
9688 	if (ret)
9689 		goto set_dev_active;
9690 
9691 vops_suspend:
9692 	/*
9693 	 * Call vendor specific suspend callback. As these callbacks may access
9694 	 * vendor specific host controller register space call them before the
9695 	 * host clocks are ON.
9696 	 */
9697 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9698 	if (ret)
9699 		goto set_link_active;
9700 	goto out;
9701 
9702 set_link_active:
9703 	/*
9704 	 * Device hardware reset is required to exit DeepSleep. Also, for
9705 	 * DeepSleep, the link is off so host reset and restore will be done
9706 	 * further below.
9707 	 */
9708 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9709 		ufshcd_device_reset(hba);
9710 		WARN_ON(!ufshcd_is_link_off(hba));
9711 	}
9712 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9713 		ufshcd_set_link_active(hba);
9714 	else if (ufshcd_is_link_off(hba))
9715 		ufshcd_host_reset_and_restore(hba);
9716 set_dev_active:
9717 	/* Can also get here needing to exit DeepSleep */
9718 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9719 		ufshcd_device_reset(hba);
9720 		ufshcd_host_reset_and_restore(hba);
9721 	}
9722 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9723 		ufshcd_disable_auto_bkops(hba);
9724 enable_scaling:
9725 	if (ufshcd_is_clkscaling_supported(hba))
9726 		ufshcd_clk_scaling_suspend(hba, false);
9727 
9728 	hba->dev_info.b_rpm_dev_flush_capable = false;
9729 out:
9730 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9731 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9732 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9733 	}
9734 
9735 	if (ret) {
9736 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9737 		hba->clk_gating.is_suspended = false;
9738 		ufshcd_release(hba);
9739 	}
9740 	hba->pm_op_in_progress = false;
9741 	return ret;
9742 }
9743 
9744 #ifdef CONFIG_PM
9745 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9746 {
9747 	int ret;
9748 	enum uic_link_state old_link_state = hba->uic_link_state;
9749 
9750 	hba->pm_op_in_progress = true;
9751 
9752 	/*
9753 	 * Call vendor specific resume callback. As these callbacks may access
9754 	 * vendor specific host controller register space call them when the
9755 	 * host clocks are ON.
9756 	 */
9757 	ret = ufshcd_vops_resume(hba, pm_op);
9758 	if (ret)
9759 		goto out;
9760 
9761 	/* For DeepSleep, the only supported option is to have the link off */
9762 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9763 
9764 	if (ufshcd_is_link_hibern8(hba)) {
9765 		ret = ufshcd_uic_hibern8_exit(hba);
9766 		if (!ret) {
9767 			ufshcd_set_link_active(hba);
9768 		} else {
9769 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9770 					__func__, ret);
9771 			goto vendor_suspend;
9772 		}
9773 	} else if (ufshcd_is_link_off(hba)) {
9774 		/*
9775 		 * A full initialization of the host and the device is
9776 		 * required since the link was put to off during suspend.
9777 		 * Note, in the case of DeepSleep, the device will exit
9778 		 * DeepSleep due to device reset.
9779 		 */
9780 		ret = ufshcd_reset_and_restore(hba);
9781 		/*
9782 		 * ufshcd_reset_and_restore() should have already
9783 		 * set the link state as active
9784 		 */
9785 		if (ret || !ufshcd_is_link_active(hba))
9786 			goto vendor_suspend;
9787 	}
9788 
9789 	if (!ufshcd_is_ufs_dev_active(hba)) {
9790 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9791 		if (ret)
9792 			goto set_old_link_state;
9793 		ufshcd_set_timestamp_attr(hba);
9794 	}
9795 
9796 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9797 		ufshcd_enable_auto_bkops(hba);
9798 	else
9799 		/*
9800 		 * If BKOPs operations are urgently needed at this moment then
9801 		 * keep auto-bkops enabled or else disable it.
9802 		 */
9803 		ufshcd_urgent_bkops(hba);
9804 
9805 	if (hba->ee_usr_mask)
9806 		ufshcd_write_ee_control(hba);
9807 
9808 	if (ufshcd_is_clkscaling_supported(hba))
9809 		ufshcd_clk_scaling_suspend(hba, false);
9810 
9811 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9812 		hba->dev_info.b_rpm_dev_flush_capable = false;
9813 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9814 	}
9815 
9816 	/* Enable Auto-Hibernate if configured */
9817 	ufshcd_auto_hibern8_enable(hba);
9818 
9819 	goto out;
9820 
9821 set_old_link_state:
9822 	ufshcd_link_state_transition(hba, old_link_state, 0);
9823 vendor_suspend:
9824 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9825 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9826 out:
9827 	if (ret)
9828 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9829 	hba->clk_gating.is_suspended = false;
9830 	ufshcd_release(hba);
9831 	hba->pm_op_in_progress = false;
9832 	return ret;
9833 }
9834 
9835 static int ufshcd_wl_runtime_suspend(struct device *dev)
9836 {
9837 	struct scsi_device *sdev = to_scsi_device(dev);
9838 	struct ufs_hba *hba;
9839 	int ret;
9840 	ktime_t start = ktime_get();
9841 
9842 	hba = shost_priv(sdev->host);
9843 
9844 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9845 	if (ret)
9846 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9847 
9848 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9849 		ktime_to_us(ktime_sub(ktime_get(), start)),
9850 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9851 
9852 	return ret;
9853 }
9854 
9855 static int ufshcd_wl_runtime_resume(struct device *dev)
9856 {
9857 	struct scsi_device *sdev = to_scsi_device(dev);
9858 	struct ufs_hba *hba;
9859 	int ret = 0;
9860 	ktime_t start = ktime_get();
9861 
9862 	hba = shost_priv(sdev->host);
9863 
9864 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9865 	if (ret)
9866 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9867 
9868 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9869 		ktime_to_us(ktime_sub(ktime_get(), start)),
9870 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9871 
9872 	return ret;
9873 }
9874 #endif
9875 
9876 #ifdef CONFIG_PM_SLEEP
9877 static int ufshcd_wl_suspend(struct device *dev)
9878 {
9879 	struct scsi_device *sdev = to_scsi_device(dev);
9880 	struct ufs_hba *hba;
9881 	int ret = 0;
9882 	ktime_t start = ktime_get();
9883 
9884 	hba = shost_priv(sdev->host);
9885 	down(&hba->host_sem);
9886 	hba->system_suspending = true;
9887 
9888 	if (pm_runtime_suspended(dev))
9889 		goto out;
9890 
9891 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9892 	if (ret) {
9893 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9894 		up(&hba->host_sem);
9895 	}
9896 
9897 out:
9898 	if (!ret)
9899 		hba->is_sys_suspended = true;
9900 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9901 		ktime_to_us(ktime_sub(ktime_get(), start)),
9902 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9903 
9904 	return ret;
9905 }
9906 
9907 static int ufshcd_wl_resume(struct device *dev)
9908 {
9909 	struct scsi_device *sdev = to_scsi_device(dev);
9910 	struct ufs_hba *hba;
9911 	int ret = 0;
9912 	ktime_t start = ktime_get();
9913 
9914 	hba = shost_priv(sdev->host);
9915 
9916 	if (pm_runtime_suspended(dev))
9917 		goto out;
9918 
9919 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9920 	if (ret)
9921 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9922 out:
9923 	trace_ufshcd_wl_resume(dev_name(dev), ret,
9924 		ktime_to_us(ktime_sub(ktime_get(), start)),
9925 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9926 	if (!ret)
9927 		hba->is_sys_suspended = false;
9928 	hba->system_suspending = false;
9929 	up(&hba->host_sem);
9930 	return ret;
9931 }
9932 #endif
9933 
9934 /**
9935  * ufshcd_suspend - helper function for suspend operations
9936  * @hba: per adapter instance
9937  *
9938  * This function will put disable irqs, turn off clocks
9939  * and set vreg and hba-vreg in lpm mode.
9940  *
9941  * Return: 0 upon success; < 0 upon failure.
9942  */
9943 static int ufshcd_suspend(struct ufs_hba *hba)
9944 {
9945 	int ret;
9946 
9947 	if (!hba->is_powered)
9948 		return 0;
9949 	/*
9950 	 * Disable the host irq as host controller as there won't be any
9951 	 * host controller transaction expected till resume.
9952 	 */
9953 	ufshcd_disable_irq(hba);
9954 	ret = ufshcd_setup_clocks(hba, false);
9955 	if (ret) {
9956 		ufshcd_enable_irq(hba);
9957 		return ret;
9958 	}
9959 	if (ufshcd_is_clkgating_allowed(hba)) {
9960 		hba->clk_gating.state = CLKS_OFF;
9961 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9962 					hba->clk_gating.state);
9963 	}
9964 
9965 	ufshcd_vreg_set_lpm(hba);
9966 	/* Put the host controller in low power mode if possible */
9967 	ufshcd_hba_vreg_set_lpm(hba);
9968 	return ret;
9969 }
9970 
9971 #ifdef CONFIG_PM
9972 /**
9973  * ufshcd_resume - helper function for resume operations
9974  * @hba: per adapter instance
9975  *
9976  * This function basically turns on the regulators, clocks and
9977  * irqs of the hba.
9978  *
9979  * Return: 0 for success and non-zero for failure.
9980  */
9981 static int ufshcd_resume(struct ufs_hba *hba)
9982 {
9983 	int ret;
9984 
9985 	if (!hba->is_powered)
9986 		return 0;
9987 
9988 	ufshcd_hba_vreg_set_hpm(hba);
9989 	ret = ufshcd_vreg_set_hpm(hba);
9990 	if (ret)
9991 		goto out;
9992 
9993 	/* Make sure clocks are enabled before accessing controller */
9994 	ret = ufshcd_setup_clocks(hba, true);
9995 	if (ret)
9996 		goto disable_vreg;
9997 
9998 	/* enable the host irq as host controller would be active soon */
9999 	ufshcd_enable_irq(hba);
10000 
10001 	goto out;
10002 
10003 disable_vreg:
10004 	ufshcd_vreg_set_lpm(hba);
10005 out:
10006 	if (ret)
10007 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10008 	return ret;
10009 }
10010 #endif /* CONFIG_PM */
10011 
10012 #ifdef CONFIG_PM_SLEEP
10013 /**
10014  * ufshcd_system_suspend - system suspend callback
10015  * @dev: Device associated with the UFS controller.
10016  *
10017  * Executed before putting the system into a sleep state in which the contents
10018  * of main memory are preserved.
10019  *
10020  * Return: 0 for success and non-zero for failure.
10021  */
10022 int ufshcd_system_suspend(struct device *dev)
10023 {
10024 	struct ufs_hba *hba = dev_get_drvdata(dev);
10025 	int ret = 0;
10026 	ktime_t start = ktime_get();
10027 
10028 	if (pm_runtime_suspended(hba->dev))
10029 		goto out;
10030 
10031 	ret = ufshcd_suspend(hba);
10032 out:
10033 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10034 		ktime_to_us(ktime_sub(ktime_get(), start)),
10035 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10036 	return ret;
10037 }
10038 EXPORT_SYMBOL(ufshcd_system_suspend);
10039 
10040 /**
10041  * ufshcd_system_resume - system resume callback
10042  * @dev: Device associated with the UFS controller.
10043  *
10044  * Executed after waking the system up from a sleep state in which the contents
10045  * of main memory were preserved.
10046  *
10047  * Return: 0 for success and non-zero for failure.
10048  */
10049 int ufshcd_system_resume(struct device *dev)
10050 {
10051 	struct ufs_hba *hba = dev_get_drvdata(dev);
10052 	ktime_t start = ktime_get();
10053 	int ret = 0;
10054 
10055 	if (pm_runtime_suspended(hba->dev))
10056 		goto out;
10057 
10058 	ret = ufshcd_resume(hba);
10059 
10060 out:
10061 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10062 		ktime_to_us(ktime_sub(ktime_get(), start)),
10063 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10064 
10065 	return ret;
10066 }
10067 EXPORT_SYMBOL(ufshcd_system_resume);
10068 #endif /* CONFIG_PM_SLEEP */
10069 
10070 #ifdef CONFIG_PM
10071 /**
10072  * ufshcd_runtime_suspend - runtime suspend callback
10073  * @dev: Device associated with the UFS controller.
10074  *
10075  * Check the description of ufshcd_suspend() function for more details.
10076  *
10077  * Return: 0 for success and non-zero for failure.
10078  */
10079 int ufshcd_runtime_suspend(struct device *dev)
10080 {
10081 	struct ufs_hba *hba = dev_get_drvdata(dev);
10082 	int ret;
10083 	ktime_t start = ktime_get();
10084 
10085 	ret = ufshcd_suspend(hba);
10086 
10087 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10088 		ktime_to_us(ktime_sub(ktime_get(), start)),
10089 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10090 	return ret;
10091 }
10092 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10093 
10094 /**
10095  * ufshcd_runtime_resume - runtime resume routine
10096  * @dev: Device associated with the UFS controller.
10097  *
10098  * This function basically brings controller
10099  * to active state. Following operations are done in this function:
10100  *
10101  * 1. Turn on all the controller related clocks
10102  * 2. Turn ON VCC rail
10103  *
10104  * Return: 0 upon success; < 0 upon failure.
10105  */
10106 int ufshcd_runtime_resume(struct device *dev)
10107 {
10108 	struct ufs_hba *hba = dev_get_drvdata(dev);
10109 	int ret;
10110 	ktime_t start = ktime_get();
10111 
10112 	ret = ufshcd_resume(hba);
10113 
10114 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10115 		ktime_to_us(ktime_sub(ktime_get(), start)),
10116 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10117 	return ret;
10118 }
10119 EXPORT_SYMBOL(ufshcd_runtime_resume);
10120 #endif /* CONFIG_PM */
10121 
10122 static void ufshcd_wl_shutdown(struct device *dev)
10123 {
10124 	struct scsi_device *sdev = to_scsi_device(dev);
10125 	struct ufs_hba *hba = shost_priv(sdev->host);
10126 
10127 	down(&hba->host_sem);
10128 	hba->shutting_down = true;
10129 	up(&hba->host_sem);
10130 
10131 	/* Turn on everything while shutting down */
10132 	ufshcd_rpm_get_sync(hba);
10133 	scsi_device_quiesce(sdev);
10134 	shost_for_each_device(sdev, hba->host) {
10135 		if (sdev == hba->ufs_device_wlun)
10136 			continue;
10137 		mutex_lock(&sdev->state_mutex);
10138 		scsi_device_set_state(sdev, SDEV_OFFLINE);
10139 		mutex_unlock(&sdev->state_mutex);
10140 	}
10141 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10142 
10143 	/*
10144 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10145 	 * clocks.
10146 	 */
10147 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10148 		ufshcd_suspend(hba);
10149 
10150 	hba->is_powered = false;
10151 }
10152 
10153 /**
10154  * ufshcd_remove - de-allocate SCSI host and host memory space
10155  *		data structure memory
10156  * @hba: per adapter instance
10157  */
10158 void ufshcd_remove(struct ufs_hba *hba)
10159 {
10160 	if (hba->ufs_device_wlun)
10161 		ufshcd_rpm_get_sync(hba);
10162 	ufs_hwmon_remove(hba);
10163 	ufs_bsg_remove(hba);
10164 	ufs_sysfs_remove_nodes(hba->dev);
10165 	blk_mq_destroy_queue(hba->tmf_queue);
10166 	blk_put_queue(hba->tmf_queue);
10167 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10168 	if (hba->scsi_host_added)
10169 		scsi_remove_host(hba->host);
10170 	/* disable interrupts */
10171 	ufshcd_disable_intr(hba, hba->intr_mask);
10172 	ufshcd_hba_stop(hba);
10173 	ufshcd_hba_exit(hba);
10174 }
10175 EXPORT_SYMBOL_GPL(ufshcd_remove);
10176 
10177 #ifdef CONFIG_PM_SLEEP
10178 int ufshcd_system_freeze(struct device *dev)
10179 {
10180 
10181 	return ufshcd_system_suspend(dev);
10182 
10183 }
10184 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10185 
10186 int ufshcd_system_restore(struct device *dev)
10187 {
10188 
10189 	struct ufs_hba *hba = dev_get_drvdata(dev);
10190 	int ret;
10191 
10192 	ret = ufshcd_system_resume(dev);
10193 	if (ret)
10194 		return ret;
10195 
10196 	/* Configure UTRL and UTMRL base address registers */
10197 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10198 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10199 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10200 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10201 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10202 			REG_UTP_TASK_REQ_LIST_BASE_L);
10203 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10204 			REG_UTP_TASK_REQ_LIST_BASE_H);
10205 	/*
10206 	 * Make sure that UTRL and UTMRL base address registers
10207 	 * are updated with the latest queue addresses. Only after
10208 	 * updating these addresses, we can queue the new commands.
10209 	 */
10210 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10211 
10212 	return 0;
10213 
10214 }
10215 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10216 
10217 int ufshcd_system_thaw(struct device *dev)
10218 {
10219 	return ufshcd_system_resume(dev);
10220 }
10221 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10222 #endif /* CONFIG_PM_SLEEP  */
10223 
10224 /**
10225  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10226  * @hba: pointer to Host Bus Adapter (HBA)
10227  */
10228 void ufshcd_dealloc_host(struct ufs_hba *hba)
10229 {
10230 	scsi_host_put(hba->host);
10231 }
10232 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10233 
10234 /**
10235  * ufshcd_set_dma_mask - Set dma mask based on the controller
10236  *			 addressing capability
10237  * @hba: per adapter instance
10238  *
10239  * Return: 0 for success, non-zero for failure.
10240  */
10241 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10242 {
10243 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10244 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10245 			return 0;
10246 	}
10247 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10248 }
10249 
10250 /**
10251  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10252  * @dev: pointer to device handle
10253  * @hba_handle: driver private handle
10254  *
10255  * Return: 0 on success, non-zero value on failure.
10256  */
10257 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10258 {
10259 	struct Scsi_Host *host;
10260 	struct ufs_hba *hba;
10261 	int err = 0;
10262 
10263 	if (!dev) {
10264 		dev_err(dev,
10265 		"Invalid memory reference for dev is NULL\n");
10266 		err = -ENODEV;
10267 		goto out_error;
10268 	}
10269 
10270 	host = scsi_host_alloc(&ufshcd_driver_template,
10271 				sizeof(struct ufs_hba));
10272 	if (!host) {
10273 		dev_err(dev, "scsi_host_alloc failed\n");
10274 		err = -ENOMEM;
10275 		goto out_error;
10276 	}
10277 	host->nr_maps = HCTX_TYPE_POLL + 1;
10278 	hba = shost_priv(host);
10279 	hba->host = host;
10280 	hba->dev = dev;
10281 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10282 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10283 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10284 	INIT_LIST_HEAD(&hba->clk_list_head);
10285 	spin_lock_init(&hba->outstanding_lock);
10286 
10287 	*hba_handle = hba;
10288 
10289 out_error:
10290 	return err;
10291 }
10292 EXPORT_SYMBOL(ufshcd_alloc_host);
10293 
10294 /* This function exists because blk_mq_alloc_tag_set() requires this. */
10295 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10296 				     const struct blk_mq_queue_data *qd)
10297 {
10298 	WARN_ON_ONCE(true);
10299 	return BLK_STS_NOTSUPP;
10300 }
10301 
10302 static const struct blk_mq_ops ufshcd_tmf_ops = {
10303 	.queue_rq = ufshcd_queue_tmf,
10304 };
10305 
10306 /**
10307  * ufshcd_init - Driver initialization routine
10308  * @hba: per-adapter instance
10309  * @mmio_base: base register address
10310  * @irq: Interrupt line of device
10311  *
10312  * Return: 0 on success, non-zero value on failure.
10313  */
10314 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10315 {
10316 	int err;
10317 	struct Scsi_Host *host = hba->host;
10318 	struct device *dev = hba->dev;
10319 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10320 
10321 	/*
10322 	 * dev_set_drvdata() must be called before any callbacks are registered
10323 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10324 	 * sysfs).
10325 	 */
10326 	dev_set_drvdata(dev, hba);
10327 
10328 	if (!mmio_base) {
10329 		dev_err(hba->dev,
10330 		"Invalid memory reference for mmio_base is NULL\n");
10331 		err = -ENODEV;
10332 		goto out_error;
10333 	}
10334 
10335 	hba->mmio_base = mmio_base;
10336 	hba->irq = irq;
10337 	hba->vps = &ufs_hba_vps;
10338 
10339 	err = ufshcd_hba_init(hba);
10340 	if (err)
10341 		goto out_error;
10342 
10343 	/* Read capabilities registers */
10344 	err = ufshcd_hba_capabilities(hba);
10345 	if (err)
10346 		goto out_disable;
10347 
10348 	/* Get UFS version supported by the controller */
10349 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10350 
10351 	/* Get Interrupt bit mask per version */
10352 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10353 
10354 	err = ufshcd_set_dma_mask(hba);
10355 	if (err) {
10356 		dev_err(hba->dev, "set dma mask failed\n");
10357 		goto out_disable;
10358 	}
10359 
10360 	/* Allocate memory for host memory space */
10361 	err = ufshcd_memory_alloc(hba);
10362 	if (err) {
10363 		dev_err(hba->dev, "Memory allocation failed\n");
10364 		goto out_disable;
10365 	}
10366 
10367 	/* Configure LRB */
10368 	ufshcd_host_memory_configure(hba);
10369 
10370 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10371 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10372 	host->max_id = UFSHCD_MAX_ID;
10373 	host->max_lun = UFS_MAX_LUNS;
10374 	host->max_channel = UFSHCD_MAX_CHANNEL;
10375 	host->unique_id = host->host_no;
10376 	host->max_cmd_len = UFS_CDB_SIZE;
10377 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10378 
10379 	hba->max_pwr_info.is_valid = false;
10380 
10381 	/* Initialize work queues */
10382 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10383 		 hba->host->host_no);
10384 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10385 	if (!hba->eh_wq) {
10386 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10387 			__func__);
10388 		err = -ENOMEM;
10389 		goto out_disable;
10390 	}
10391 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10392 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10393 
10394 	sema_init(&hba->host_sem, 1);
10395 
10396 	/* Initialize UIC command mutex */
10397 	mutex_init(&hba->uic_cmd_mutex);
10398 
10399 	/* Initialize mutex for device management commands */
10400 	mutex_init(&hba->dev_cmd.lock);
10401 
10402 	/* Initialize mutex for exception event control */
10403 	mutex_init(&hba->ee_ctrl_mutex);
10404 
10405 	mutex_init(&hba->wb_mutex);
10406 	init_rwsem(&hba->clk_scaling_lock);
10407 
10408 	ufshcd_init_clk_gating(hba);
10409 
10410 	ufshcd_init_clk_scaling(hba);
10411 
10412 	/*
10413 	 * In order to avoid any spurious interrupt immediately after
10414 	 * registering UFS controller interrupt handler, clear any pending UFS
10415 	 * interrupt status and disable all the UFS interrupts.
10416 	 */
10417 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10418 		      REG_INTERRUPT_STATUS);
10419 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10420 	/*
10421 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10422 	 * status is cleared before registering UFS interrupt handler.
10423 	 */
10424 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10425 
10426 	/* IRQ registration */
10427 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10428 	if (err) {
10429 		dev_err(hba->dev, "request irq failed\n");
10430 		goto out_disable;
10431 	} else {
10432 		hba->is_irq_enabled = true;
10433 	}
10434 
10435 	if (!is_mcq_supported(hba)) {
10436 		if (!hba->lsdb_sup) {
10437 			dev_err(hba->dev, "%s: failed to initialize (legacy doorbell mode not supported)\n",
10438 				__func__);
10439 			err = -EINVAL;
10440 			goto out_disable;
10441 		}
10442 		err = scsi_add_host(host, hba->dev);
10443 		if (err) {
10444 			dev_err(hba->dev, "scsi_add_host failed\n");
10445 			goto out_disable;
10446 		}
10447 		hba->scsi_host_added = true;
10448 	}
10449 
10450 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10451 		.nr_hw_queues	= 1,
10452 		.queue_depth	= hba->nutmrs,
10453 		.ops		= &ufshcd_tmf_ops,
10454 		.flags		= BLK_MQ_F_NO_SCHED,
10455 	};
10456 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10457 	if (err < 0)
10458 		goto out_remove_scsi_host;
10459 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10460 	if (IS_ERR(hba->tmf_queue)) {
10461 		err = PTR_ERR(hba->tmf_queue);
10462 		goto free_tmf_tag_set;
10463 	}
10464 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10465 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10466 	if (!hba->tmf_rqs) {
10467 		err = -ENOMEM;
10468 		goto free_tmf_queue;
10469 	}
10470 
10471 	/* Reset the attached device */
10472 	ufshcd_device_reset(hba);
10473 
10474 	ufshcd_init_crypto(hba);
10475 
10476 	/* Host controller enable */
10477 	err = ufshcd_hba_enable(hba);
10478 	if (err) {
10479 		dev_err(hba->dev, "Host controller enable failed\n");
10480 		ufshcd_print_evt_hist(hba);
10481 		ufshcd_print_host_state(hba);
10482 		goto free_tmf_queue;
10483 	}
10484 
10485 	/*
10486 	 * Set the default power management level for runtime and system PM.
10487 	 * Default power saving mode is to keep UFS link in Hibern8 state
10488 	 * and UFS device in sleep state.
10489 	 */
10490 	hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10491 						UFS_SLEEP_PWR_MODE,
10492 						UIC_LINK_HIBERN8_STATE);
10493 	hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10494 						UFS_SLEEP_PWR_MODE,
10495 						UIC_LINK_HIBERN8_STATE);
10496 
10497 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
10498 			  ufshcd_rpm_dev_flush_recheck_work);
10499 
10500 	/* Set the default auto-hiberate idle timer value to 150 ms */
10501 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10502 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10503 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10504 	}
10505 
10506 	/* Hold auto suspend until async scan completes */
10507 	pm_runtime_get_sync(dev);
10508 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10509 	/*
10510 	 * We are assuming that device wasn't put in sleep/power-down
10511 	 * state exclusively during the boot stage before kernel.
10512 	 * This assumption helps avoid doing link startup twice during
10513 	 * ufshcd_probe_hba().
10514 	 */
10515 	ufshcd_set_ufs_dev_active(hba);
10516 
10517 	async_schedule(ufshcd_async_scan, hba);
10518 	ufs_sysfs_add_nodes(hba->dev);
10519 
10520 	device_enable_async_suspend(dev);
10521 	return 0;
10522 
10523 free_tmf_queue:
10524 	blk_mq_destroy_queue(hba->tmf_queue);
10525 	blk_put_queue(hba->tmf_queue);
10526 free_tmf_tag_set:
10527 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10528 out_remove_scsi_host:
10529 	if (hba->scsi_host_added)
10530 		scsi_remove_host(hba->host);
10531 out_disable:
10532 	hba->is_irq_enabled = false;
10533 	ufshcd_hba_exit(hba);
10534 out_error:
10535 	return err;
10536 }
10537 EXPORT_SYMBOL_GPL(ufshcd_init);
10538 
10539 void ufshcd_resume_complete(struct device *dev)
10540 {
10541 	struct ufs_hba *hba = dev_get_drvdata(dev);
10542 
10543 	if (hba->complete_put) {
10544 		ufshcd_rpm_put(hba);
10545 		hba->complete_put = false;
10546 	}
10547 }
10548 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10549 
10550 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10551 {
10552 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10553 	enum ufs_dev_pwr_mode dev_pwr_mode;
10554 	enum uic_link_state link_state;
10555 	unsigned long flags;
10556 	bool res;
10557 
10558 	spin_lock_irqsave(&dev->power.lock, flags);
10559 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10560 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10561 	res = pm_runtime_suspended(dev) &&
10562 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10563 	      hba->uic_link_state == link_state &&
10564 	      !hba->dev_info.b_rpm_dev_flush_capable;
10565 	spin_unlock_irqrestore(&dev->power.lock, flags);
10566 
10567 	return res;
10568 }
10569 
10570 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10571 {
10572 	struct ufs_hba *hba = dev_get_drvdata(dev);
10573 	int ret;
10574 
10575 	/*
10576 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10577 	 * are same. And it doesn't wake up the device for system-suspend
10578 	 * if it's runtime suspended. But ufs doesn't follow that.
10579 	 * Refer ufshcd_resume_complete()
10580 	 */
10581 	if (hba->ufs_device_wlun) {
10582 		/* Prevent runtime suspend */
10583 		ufshcd_rpm_get_noresume(hba);
10584 		/*
10585 		 * Check if already runtime suspended in same state as system
10586 		 * suspend would be.
10587 		 */
10588 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10589 			/* RPM state is not ok for SPM, so runtime resume */
10590 			ret = ufshcd_rpm_resume(hba);
10591 			if (ret < 0 && ret != -EACCES) {
10592 				ufshcd_rpm_put(hba);
10593 				return ret;
10594 			}
10595 		}
10596 		hba->complete_put = true;
10597 	}
10598 	return 0;
10599 }
10600 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10601 
10602 int ufshcd_suspend_prepare(struct device *dev)
10603 {
10604 	return __ufshcd_suspend_prepare(dev, true);
10605 }
10606 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10607 
10608 #ifdef CONFIG_PM_SLEEP
10609 static int ufshcd_wl_poweroff(struct device *dev)
10610 {
10611 	struct scsi_device *sdev = to_scsi_device(dev);
10612 	struct ufs_hba *hba = shost_priv(sdev->host);
10613 
10614 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10615 	return 0;
10616 }
10617 #endif
10618 
10619 static int ufshcd_wl_probe(struct device *dev)
10620 {
10621 	struct scsi_device *sdev = to_scsi_device(dev);
10622 
10623 	if (!is_device_wlun(sdev))
10624 		return -ENODEV;
10625 
10626 	blk_pm_runtime_init(sdev->request_queue, dev);
10627 	pm_runtime_set_autosuspend_delay(dev, 0);
10628 	pm_runtime_allow(dev);
10629 
10630 	return  0;
10631 }
10632 
10633 static int ufshcd_wl_remove(struct device *dev)
10634 {
10635 	pm_runtime_forbid(dev);
10636 	return 0;
10637 }
10638 
10639 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10640 #ifdef CONFIG_PM_SLEEP
10641 	.suspend = ufshcd_wl_suspend,
10642 	.resume = ufshcd_wl_resume,
10643 	.freeze = ufshcd_wl_suspend,
10644 	.thaw = ufshcd_wl_resume,
10645 	.poweroff = ufshcd_wl_poweroff,
10646 	.restore = ufshcd_wl_resume,
10647 #endif
10648 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10649 };
10650 
10651 static void ufshcd_check_header_layout(void)
10652 {
10653 	/*
10654 	 * gcc compilers before version 10 cannot do constant-folding for
10655 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10656 	 * before.
10657 	 */
10658 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10659 		return;
10660 
10661 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10662 				.cci = 3})[0] != 3);
10663 
10664 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10665 				.ehs_length = 2})[1] != 2);
10666 
10667 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10668 				.enable_crypto = 1})[2]
10669 		     != 0x80);
10670 
10671 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10672 					.command_type = 5,
10673 					.data_direction = 3,
10674 					.interrupt = 1,
10675 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10676 
10677 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10678 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10679 		cpu_to_le32(0xdeadbeef));
10680 
10681 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10682 				.ocs = 4})[8] != 4);
10683 
10684 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10685 				.cds = 5})[9] != 5);
10686 
10687 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10688 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10689 		cpu_to_le32(0xbadcafe));
10690 
10691 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10692 			     .iid = 0xf })[4] != 0xf0);
10693 
10694 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10695 			     .command_set_type = 0xf })[4] != 0xf);
10696 }
10697 
10698 /*
10699  * ufs_dev_wlun_template - describes ufs device wlun
10700  * ufs-device wlun - used to send pm commands
10701  * All luns are consumers of ufs-device wlun.
10702  *
10703  * Currently, no sd driver is present for wluns.
10704  * Hence the no specific pm operations are performed.
10705  * With ufs design, SSU should be sent to ufs-device wlun.
10706  * Hence register a scsi driver for ufs wluns only.
10707  */
10708 static struct scsi_driver ufs_dev_wlun_template = {
10709 	.gendrv = {
10710 		.name = "ufs_device_wlun",
10711 		.owner = THIS_MODULE,
10712 		.probe = ufshcd_wl_probe,
10713 		.remove = ufshcd_wl_remove,
10714 		.pm = &ufshcd_wl_pm_ops,
10715 		.shutdown = ufshcd_wl_shutdown,
10716 	},
10717 };
10718 
10719 static int __init ufshcd_core_init(void)
10720 {
10721 	int ret;
10722 
10723 	ufshcd_check_header_layout();
10724 
10725 	ufs_debugfs_init();
10726 
10727 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10728 	if (ret)
10729 		ufs_debugfs_exit();
10730 	return ret;
10731 }
10732 
10733 static void __exit ufshcd_core_exit(void)
10734 {
10735 	ufs_debugfs_exit();
10736 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10737 }
10738 
10739 module_init(ufshcd_core_init);
10740 module_exit(ufshcd_core_exit);
10741 
10742 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10743 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10744 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10745 MODULE_SOFTDEP("pre: governor_simpleondemand");
10746 MODULE_LICENSE("GPL");
10747