xref: /openbmc/linux/drivers/thermal/qcom/qcom-spmi-adc-tm5.c (revision 23cb0767f0544858169c02cec445d066d4e02e2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2020 Linaro Limited
4  *
5  * Based on original driver:
6  * Copyright (c) 2012-2020, The Linux Foundation. All rights reserved.
7  *
8  * Copyright (c) 2022 Qualcomm Innovation Center, Inc. All rights reserved.
9  */
10 
11 #include <linux/bitfield.h>
12 #include <linux/iio/adc/qcom-vadc-common.h>
13 #include <linux/iio/consumer.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/regmap.h>
20 #include <linux/thermal.h>
21 #include <asm-generic/unaligned.h>
22 
23 #include "../thermal_hwmon.h"
24 
25 /*
26  * Thermal monitoring block consists of 8 (ADC_TM5_NUM_CHANNELS) channels. Each
27  * channel is programmed to use one of ADC channels for voltage comparison.
28  * Voltages are programmed using ADC codes, so we have to convert temp to
29  * voltage and then to ADC code value.
30  *
31  * Configuration of TM channels must match configuration of corresponding ADC
32  * channels.
33  */
34 
35 #define ADC5_MAX_CHANNEL                        0xc0
36 #define ADC_TM5_NUM_CHANNELS		8
37 
38 #define ADC_TM5_STATUS_LOW			0x0a
39 
40 #define ADC_TM5_STATUS_HIGH			0x0b
41 
42 #define ADC_TM5_NUM_BTM				0x0f
43 
44 #define ADC_TM5_ADC_DIG_PARAM			0x42
45 
46 #define ADC_TM5_FAST_AVG_CTL			(ADC_TM5_ADC_DIG_PARAM + 1)
47 #define ADC_TM5_FAST_AVG_EN				BIT(7)
48 
49 #define ADC_TM5_MEAS_INTERVAL_CTL		(ADC_TM5_ADC_DIG_PARAM + 2)
50 #define ADC_TM5_TIMER1					3 /* 3.9ms */
51 
52 #define ADC_TM5_MEAS_INTERVAL_CTL2		(ADC_TM5_ADC_DIG_PARAM + 3)
53 #define ADC_TM5_MEAS_INTERVAL_CTL2_MASK			0xf0
54 #define ADC_TM5_TIMER2					10 /* 1 second */
55 #define ADC_TM5_MEAS_INTERVAL_CTL3_MASK			0xf
56 #define ADC_TM5_TIMER3					4 /* 4 second */
57 
58 #define ADC_TM_EN_CTL1				0x46
59 #define ADC_TM_EN					BIT(7)
60 #define ADC_TM_CONV_REQ				0x47
61 #define ADC_TM_CONV_REQ_EN				BIT(7)
62 
63 #define ADC_TM5_M_CHAN_BASE			0x60
64 
65 #define ADC_TM5_M_ADC_CH_SEL_CTL(n)		(ADC_TM5_M_CHAN_BASE + ((n) * 8) + 0)
66 #define ADC_TM5_M_LOW_THR0(n)			(ADC_TM5_M_CHAN_BASE + ((n) * 8) + 1)
67 #define ADC_TM5_M_LOW_THR1(n)			(ADC_TM5_M_CHAN_BASE + ((n) * 8) + 2)
68 #define ADC_TM5_M_HIGH_THR0(n)			(ADC_TM5_M_CHAN_BASE + ((n) * 8) + 3)
69 #define ADC_TM5_M_HIGH_THR1(n)			(ADC_TM5_M_CHAN_BASE + ((n) * 8) + 4)
70 #define ADC_TM5_M_MEAS_INTERVAL_CTL(n)		(ADC_TM5_M_CHAN_BASE + ((n) * 8) + 5)
71 #define ADC_TM5_M_CTL(n)			(ADC_TM5_M_CHAN_BASE + ((n) * 8) + 6)
72 #define ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK		0xf
73 #define ADC_TM5_M_CTL_CAL_SEL_MASK			0x30
74 #define ADC_TM5_M_CTL_CAL_VAL				0x40
75 #define ADC_TM5_M_EN(n)				(ADC_TM5_M_CHAN_BASE + ((n) * 8) + 7)
76 #define ADC_TM5_M_MEAS_EN				BIT(7)
77 #define ADC_TM5_M_HIGH_THR_INT_EN			BIT(1)
78 #define ADC_TM5_M_LOW_THR_INT_EN			BIT(0)
79 
80 #define ADC_TM_GEN2_STATUS1			0x08
81 #define ADC_TM_GEN2_STATUS_LOW_SET		0x09
82 #define ADC_TM_GEN2_STATUS_LOW_CLR		0x0a
83 #define ADC_TM_GEN2_STATUS_HIGH_SET		0x0b
84 #define ADC_TM_GEN2_STATUS_HIGH_CLR		0x0c
85 
86 #define ADC_TM_GEN2_CFG_HS_SET			0x0d
87 #define ADC_TM_GEN2_CFG_HS_FLAG			BIT(0)
88 #define ADC_TM_GEN2_CFG_HS_CLR			0x0e
89 
90 #define ADC_TM_GEN2_SID				0x40
91 
92 #define ADC_TM_GEN2_CH_CTL			0x41
93 #define ADC_TM_GEN2_TM_CH_SEL			GENMASK(7, 5)
94 #define ADC_TM_GEN2_MEAS_INT_SEL		GENMASK(3, 2)
95 
96 #define ADC_TM_GEN2_ADC_DIG_PARAM		0x42
97 #define ADC_TM_GEN2_CTL_CAL_SEL			GENMASK(5, 4)
98 #define ADC_TM_GEN2_CTL_DEC_RATIO_MASK		GENMASK(3, 2)
99 
100 #define ADC_TM_GEN2_FAST_AVG_CTL		0x43
101 #define ADC_TM_GEN2_FAST_AVG_EN			BIT(7)
102 
103 #define ADC_TM_GEN2_ADC_CH_SEL_CTL		0x44
104 
105 #define ADC_TM_GEN2_DELAY_CTL			0x45
106 #define ADC_TM_GEN2_HW_SETTLE_DELAY		GENMASK(3, 0)
107 
108 #define ADC_TM_GEN2_EN_CTL1			0x46
109 #define ADC_TM_GEN2_EN				BIT(7)
110 
111 #define ADC_TM_GEN2_CONV_REQ			0x47
112 #define ADC_TM_GEN2_CONV_REQ_EN			BIT(7)
113 
114 #define ADC_TM_GEN2_LOW_THR0			0x49
115 #define ADC_TM_GEN2_LOW_THR1			0x4a
116 #define ADC_TM_GEN2_HIGH_THR0			0x4b
117 #define ADC_TM_GEN2_HIGH_THR1			0x4c
118 #define ADC_TM_GEN2_LOWER_MASK(n)		((n) & GENMASK(7, 0))
119 #define ADC_TM_GEN2_UPPER_MASK(n)		(((n) & GENMASK(15, 8)) >> 8)
120 
121 #define ADC_TM_GEN2_MEAS_IRQ_EN			0x4d
122 #define ADC_TM_GEN2_MEAS_EN			BIT(7)
123 #define ADC_TM5_GEN2_HIGH_THR_INT_EN		BIT(1)
124 #define ADC_TM5_GEN2_LOW_THR_INT_EN		BIT(0)
125 
126 #define ADC_TM_GEN2_MEAS_INT_LSB		0x50
127 #define ADC_TM_GEN2_MEAS_INT_MSB		0x51
128 #define ADC_TM_GEN2_MEAS_INT_MODE		0x52
129 
130 #define ADC_TM_GEN2_Mn_DATA0(n)			((n * 2) + 0xa0)
131 #define ADC_TM_GEN2_Mn_DATA1(n)			((n * 2) + 0xa1)
132 #define ADC_TM_GEN2_DATA_SHIFT			8
133 
134 enum adc5_timer_select {
135 	ADC5_TIMER_SEL_1 = 0,
136 	ADC5_TIMER_SEL_2,
137 	ADC5_TIMER_SEL_3,
138 	ADC5_TIMER_SEL_NONE,
139 };
140 
141 enum adc5_gen {
142 	ADC_TM5,
143 	ADC_TM_HC,
144 	ADC_TM5_GEN2,
145 	ADC_TM5_MAX
146 };
147 
148 enum adc_tm5_cal_method {
149 	ADC_TM5_NO_CAL = 0,
150 	ADC_TM5_RATIOMETRIC_CAL,
151 	ADC_TM5_ABSOLUTE_CAL
152 };
153 
154 enum adc_tm_gen2_time_select {
155 	MEAS_INT_50MS = 0,
156 	MEAS_INT_100MS,
157 	MEAS_INT_1S,
158 	MEAS_INT_SET,
159 	MEAS_INT_NONE,
160 };
161 
162 struct adc_tm5_chip;
163 struct adc_tm5_channel;
164 
165 struct adc_tm5_data {
166 	const u32 full_scale_code_volt;
167 	unsigned int *decimation;
168 	unsigned int *hw_settle;
169 	int (*disable_channel)(struct adc_tm5_channel *channel);
170 	int (*configure)(struct adc_tm5_channel *channel, int low, int high);
171 	irqreturn_t (*isr)(int irq, void *data);
172 	int (*init)(struct adc_tm5_chip *chip);
173 	char *irq_name;
174 	int gen;
175 };
176 
177 /**
178  * struct adc_tm5_channel - ADC Thermal Monitoring channel data.
179  * @channel: channel number.
180  * @adc_channel: corresponding ADC channel number.
181  * @cal_method: calibration method.
182  * @prescale: channel scaling performed on the input signal.
183  * @hw_settle_time: the time between AMUX being configured and the
184  *	start of conversion.
185  * @decimation: sampling rate supported for the channel.
186  * @avg_samples: ability to provide single result from the ADC
187  *	that is an average of multiple measurements.
188  * @high_thr_en: channel upper voltage threshold enable state.
189  * @low_thr_en: channel lower voltage threshold enable state.
190  * @meas_en: recurring measurement enable state
191  * @iio: IIO channel instance used by this channel.
192  * @chip: ADC TM chip instance.
193  * @tzd: thermal zone device used by this channel.
194  */
195 struct adc_tm5_channel {
196 	unsigned int		channel;
197 	unsigned int		adc_channel;
198 	enum adc_tm5_cal_method	cal_method;
199 	unsigned int		prescale;
200 	unsigned int		hw_settle_time;
201 	unsigned int		decimation;	/* For Gen2 ADC_TM */
202 	unsigned int		avg_samples;	/* For Gen2 ADC_TM */
203 	bool			high_thr_en;	/* For Gen2 ADC_TM */
204 	bool			low_thr_en;	/* For Gen2 ADC_TM */
205 	bool			meas_en;	/* For Gen2 ADC_TM */
206 	struct iio_channel	*iio;
207 	struct adc_tm5_chip	*chip;
208 	struct thermal_zone_device *tzd;
209 };
210 
211 /**
212  * struct adc_tm5_chip - ADC Thermal Monitoring properties
213  * @regmap: SPMI ADC5 Thermal Monitoring  peripheral register map field.
214  * @dev: SPMI ADC5 device.
215  * @data: software configuration data.
216  * @channels: array of ADC TM channel data.
217  * @nchannels: amount of channels defined/allocated
218  * @decimation: sampling rate supported for the channel.
219  *      Applies to all channels, used only on Gen1 ADC_TM.
220  * @avg_samples: ability to provide single result from the ADC
221  *      that is an average of multiple measurements. Applies to all
222  *      channels, used only on Gen1 ADC_TM.
223  * @base: base address of TM registers.
224  * @adc_mutex_lock: ADC_TM mutex lock, used only on Gen2 ADC_TM.
225  *      It is used to ensure only one ADC channel configuration
226  *      is done at a time using the shared set of configuration
227  *      registers.
228  */
229 struct adc_tm5_chip {
230 	struct regmap		*regmap;
231 	struct device		*dev;
232 	const struct adc_tm5_data	*data;
233 	struct adc_tm5_channel	*channels;
234 	unsigned int		nchannels;
235 	unsigned int		decimation;
236 	unsigned int		avg_samples;
237 	u16			base;
238 	struct mutex		adc_mutex_lock;
239 };
240 
241 static int adc_tm5_read(struct adc_tm5_chip *adc_tm, u16 offset, u8 *data, int len)
242 {
243 	return regmap_bulk_read(adc_tm->regmap, adc_tm->base + offset, data, len);
244 }
245 
246 static int adc_tm5_write(struct adc_tm5_chip *adc_tm, u16 offset, u8 *data, int len)
247 {
248 	return regmap_bulk_write(adc_tm->regmap, adc_tm->base + offset, data, len);
249 }
250 
251 static int adc_tm5_reg_update(struct adc_tm5_chip *adc_tm, u16 offset, u8 mask, u8 val)
252 {
253 	return regmap_write_bits(adc_tm->regmap, adc_tm->base + offset, mask, val);
254 }
255 
256 static irqreturn_t adc_tm5_isr(int irq, void *data)
257 {
258 	struct adc_tm5_chip *chip = data;
259 	u8 status_low, status_high, ctl;
260 	int ret, i;
261 
262 	ret = adc_tm5_read(chip, ADC_TM5_STATUS_LOW, &status_low, sizeof(status_low));
263 	if (unlikely(ret)) {
264 		dev_err(chip->dev, "read status low failed: %d\n", ret);
265 		return IRQ_HANDLED;
266 	}
267 
268 	ret = adc_tm5_read(chip, ADC_TM5_STATUS_HIGH, &status_high, sizeof(status_high));
269 	if (unlikely(ret)) {
270 		dev_err(chip->dev, "read status high failed: %d\n", ret);
271 		return IRQ_HANDLED;
272 	}
273 
274 	for (i = 0; i < chip->nchannels; i++) {
275 		bool upper_set = false, lower_set = false;
276 		unsigned int ch = chip->channels[i].channel;
277 
278 		/* No TZD, we warned at the boot time */
279 		if (!chip->channels[i].tzd)
280 			continue;
281 
282 		ret = adc_tm5_read(chip, ADC_TM5_M_EN(ch), &ctl, sizeof(ctl));
283 		if (unlikely(ret)) {
284 			dev_err(chip->dev, "ctl read failed: %d, channel %d\n", ret, i);
285 			continue;
286 		}
287 
288 		if (!(ctl & ADC_TM5_M_MEAS_EN))
289 			continue;
290 
291 		lower_set = (status_low & BIT(ch)) &&
292 			(ctl & ADC_TM5_M_LOW_THR_INT_EN);
293 
294 		upper_set = (status_high & BIT(ch)) &&
295 			(ctl & ADC_TM5_M_HIGH_THR_INT_EN);
296 
297 		if (upper_set || lower_set)
298 			thermal_zone_device_update(chip->channels[i].tzd,
299 						   THERMAL_EVENT_UNSPECIFIED);
300 	}
301 
302 	return IRQ_HANDLED;
303 }
304 
305 static irqreturn_t adc_tm5_gen2_isr(int irq, void *data)
306 {
307 	struct adc_tm5_chip *chip = data;
308 	u8 status_low, status_high;
309 	int ret, i;
310 
311 	ret = adc_tm5_read(chip, ADC_TM_GEN2_STATUS_LOW_CLR, &status_low, sizeof(status_low));
312 	if (ret) {
313 		dev_err(chip->dev, "read status_low failed: %d\n", ret);
314 		return IRQ_HANDLED;
315 	}
316 
317 	ret = adc_tm5_read(chip, ADC_TM_GEN2_STATUS_HIGH_CLR, &status_high, sizeof(status_high));
318 	if (ret) {
319 		dev_err(chip->dev, "read status_high failed: %d\n", ret);
320 		return IRQ_HANDLED;
321 	}
322 
323 	ret = adc_tm5_write(chip, ADC_TM_GEN2_STATUS_LOW_CLR, &status_low, sizeof(status_low));
324 	if (ret < 0) {
325 		dev_err(chip->dev, "clear status low failed with %d\n", ret);
326 		return IRQ_HANDLED;
327 	}
328 
329 	ret = adc_tm5_write(chip, ADC_TM_GEN2_STATUS_HIGH_CLR, &status_high, sizeof(status_high));
330 	if (ret < 0) {
331 		dev_err(chip->dev, "clear status high failed with %d\n", ret);
332 		return IRQ_HANDLED;
333 	}
334 
335 	for (i = 0; i < chip->nchannels; i++) {
336 		bool upper_set = false, lower_set = false;
337 		unsigned int ch = chip->channels[i].channel;
338 
339 		/* No TZD, we warned at the boot time */
340 		if (!chip->channels[i].tzd)
341 			continue;
342 
343 		if (!chip->channels[i].meas_en)
344 			continue;
345 
346 		lower_set = (status_low & BIT(ch)) &&
347 			(chip->channels[i].low_thr_en);
348 
349 		upper_set = (status_high & BIT(ch)) &&
350 			(chip->channels[i].high_thr_en);
351 
352 		if (upper_set || lower_set)
353 			thermal_zone_device_update(chip->channels[i].tzd,
354 						   THERMAL_EVENT_UNSPECIFIED);
355 	}
356 
357 	return IRQ_HANDLED;
358 }
359 
360 static int adc_tm5_get_temp(void *data, int *temp)
361 {
362 	struct adc_tm5_channel *channel = data;
363 	int ret;
364 
365 	if (!channel || !channel->iio)
366 		return -EINVAL;
367 
368 	ret = iio_read_channel_processed(channel->iio, temp);
369 	if (ret < 0)
370 		return ret;
371 
372 	if (ret != IIO_VAL_INT)
373 		return -EINVAL;
374 
375 	return 0;
376 }
377 
378 static int adc_tm5_disable_channel(struct adc_tm5_channel *channel)
379 {
380 	struct adc_tm5_chip *chip = channel->chip;
381 	unsigned int reg = ADC_TM5_M_EN(channel->channel);
382 
383 	return adc_tm5_reg_update(chip, reg,
384 				  ADC_TM5_M_MEAS_EN |
385 				  ADC_TM5_M_HIGH_THR_INT_EN |
386 				  ADC_TM5_M_LOW_THR_INT_EN,
387 				  0);
388 }
389 
390 #define ADC_TM_GEN2_POLL_DELAY_MIN_US		100
391 #define ADC_TM_GEN2_POLL_DELAY_MAX_US		110
392 #define ADC_TM_GEN2_POLL_RETRY_COUNT		3
393 
394 static int32_t adc_tm5_gen2_conv_req(struct adc_tm5_chip *chip)
395 {
396 	int ret;
397 	u8 data;
398 	unsigned int count;
399 
400 	data = ADC_TM_GEN2_EN;
401 	ret = adc_tm5_write(chip, ADC_TM_GEN2_EN_CTL1, &data, 1);
402 	if (ret < 0) {
403 		dev_err(chip->dev, "adc-tm enable failed with %d\n", ret);
404 		return ret;
405 	}
406 
407 	data = ADC_TM_GEN2_CFG_HS_FLAG;
408 	ret = adc_tm5_write(chip, ADC_TM_GEN2_CFG_HS_SET, &data, 1);
409 	if (ret < 0) {
410 		dev_err(chip->dev, "adc-tm handshake failed with %d\n", ret);
411 		return ret;
412 	}
413 
414 	data = ADC_TM_GEN2_CONV_REQ_EN;
415 	ret = adc_tm5_write(chip, ADC_TM_GEN2_CONV_REQ, &data, 1);
416 	if (ret < 0) {
417 		dev_err(chip->dev, "adc-tm request conversion failed with %d\n", ret);
418 		return ret;
419 	}
420 
421 	/*
422 	 * SW sets a handshake bit and waits for PBS to clear it
423 	 * before the next conversion request can be queued.
424 	 */
425 
426 	for (count = 0; count < ADC_TM_GEN2_POLL_RETRY_COUNT; count++) {
427 		ret = adc_tm5_read(chip, ADC_TM_GEN2_CFG_HS_SET, &data, sizeof(data));
428 		if (ret < 0) {
429 			dev_err(chip->dev, "adc-tm read failed with %d\n", ret);
430 			return ret;
431 		}
432 
433 		if (!(data & ADC_TM_GEN2_CFG_HS_FLAG))
434 			return ret;
435 		usleep_range(ADC_TM_GEN2_POLL_DELAY_MIN_US,
436 			ADC_TM_GEN2_POLL_DELAY_MAX_US);
437 	}
438 
439 	dev_err(chip->dev, "adc-tm conversion request handshake timed out\n");
440 
441 	return -ETIMEDOUT;
442 }
443 
444 static int adc_tm5_gen2_disable_channel(struct adc_tm5_channel *channel)
445 {
446 	struct adc_tm5_chip *chip = channel->chip;
447 	int ret;
448 	u8 val;
449 
450 	mutex_lock(&chip->adc_mutex_lock);
451 
452 	channel->meas_en = false;
453 	channel->high_thr_en = false;
454 	channel->low_thr_en = false;
455 
456 	ret = adc_tm5_read(chip, ADC_TM_GEN2_CH_CTL, &val, sizeof(val));
457 	if (ret < 0) {
458 		dev_err(chip->dev, "adc-tm block read failed with %d\n", ret);
459 		goto disable_fail;
460 	}
461 
462 	val &= ~ADC_TM_GEN2_TM_CH_SEL;
463 	val |= FIELD_PREP(ADC_TM_GEN2_TM_CH_SEL, channel->channel);
464 
465 	ret = adc_tm5_write(chip, ADC_TM_GEN2_CH_CTL, &val, 1);
466 	if (ret < 0) {
467 		dev_err(chip->dev, "adc-tm channel disable failed with %d\n", ret);
468 		goto disable_fail;
469 	}
470 
471 	val = 0;
472 	ret = adc_tm5_write(chip, ADC_TM_GEN2_MEAS_IRQ_EN, &val, 1);
473 	if (ret < 0) {
474 		dev_err(chip->dev, "adc-tm interrupt disable failed with %d\n", ret);
475 		goto disable_fail;
476 	}
477 
478 
479 	ret = adc_tm5_gen2_conv_req(channel->chip);
480 	if (ret < 0)
481 		dev_err(chip->dev, "adc-tm channel configure failed with %d\n", ret);
482 
483 disable_fail:
484 	mutex_unlock(&chip->adc_mutex_lock);
485 	return ret;
486 }
487 
488 static int adc_tm5_enable(struct adc_tm5_chip *chip)
489 {
490 	int ret;
491 	u8 data;
492 
493 	data = ADC_TM_EN;
494 	ret = adc_tm5_write(chip, ADC_TM_EN_CTL1, &data, sizeof(data));
495 	if (ret < 0) {
496 		dev_err(chip->dev, "adc-tm enable failed\n");
497 		return ret;
498 	}
499 
500 	data = ADC_TM_CONV_REQ_EN;
501 	ret = adc_tm5_write(chip, ADC_TM_CONV_REQ, &data, sizeof(data));
502 	if (ret < 0) {
503 		dev_err(chip->dev, "adc-tm request conversion failed\n");
504 		return ret;
505 	}
506 
507 	return 0;
508 }
509 
510 static int adc_tm5_configure(struct adc_tm5_channel *channel, int low, int high)
511 {
512 	struct adc_tm5_chip *chip = channel->chip;
513 	u8 buf[8];
514 	u16 reg = ADC_TM5_M_ADC_CH_SEL_CTL(channel->channel);
515 	int ret;
516 
517 	ret = adc_tm5_read(chip, reg, buf, sizeof(buf));
518 	if (ret) {
519 		dev_err(chip->dev, "channel %d params read failed: %d\n", channel->channel, ret);
520 		return ret;
521 	}
522 
523 	buf[0] = channel->adc_channel;
524 
525 	/* High temperature corresponds to low voltage threshold */
526 	if (high != INT_MAX) {
527 		u16 adc_code = qcom_adc_tm5_temp_volt_scale(channel->prescale,
528 				chip->data->full_scale_code_volt, high);
529 
530 		put_unaligned_le16(adc_code, &buf[1]);
531 		buf[7] |= ADC_TM5_M_LOW_THR_INT_EN;
532 	} else {
533 		buf[7] &= ~ADC_TM5_M_LOW_THR_INT_EN;
534 	}
535 
536 	/* Low temperature corresponds to high voltage threshold */
537 	if (low != -INT_MAX) {
538 		u16 adc_code = qcom_adc_tm5_temp_volt_scale(channel->prescale,
539 				chip->data->full_scale_code_volt, low);
540 
541 		put_unaligned_le16(adc_code, &buf[3]);
542 		buf[7] |= ADC_TM5_M_HIGH_THR_INT_EN;
543 	} else {
544 		buf[7] &= ~ADC_TM5_M_HIGH_THR_INT_EN;
545 	}
546 
547 	buf[5] = ADC5_TIMER_SEL_2;
548 
549 	/* Set calibration select, hw_settle delay */
550 	buf[6] &= ~ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK;
551 	buf[6] |= FIELD_PREP(ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK, channel->hw_settle_time);
552 	buf[6] &= ~ADC_TM5_M_CTL_CAL_SEL_MASK;
553 	buf[6] |= FIELD_PREP(ADC_TM5_M_CTL_CAL_SEL_MASK, channel->cal_method);
554 
555 	buf[7] |= ADC_TM5_M_MEAS_EN;
556 
557 	ret = adc_tm5_write(chip, reg, buf, sizeof(buf));
558 	if (ret) {
559 		dev_err(chip->dev, "channel %d params write failed: %d\n", channel->channel, ret);
560 		return ret;
561 	}
562 
563 	return adc_tm5_enable(chip);
564 }
565 
566 static int adc_tm5_gen2_configure(struct adc_tm5_channel *channel, int low, int high)
567 {
568 	struct adc_tm5_chip *chip = channel->chip;
569 	int ret;
570 	u8 buf[14];
571 	u16 adc_code;
572 
573 	mutex_lock(&chip->adc_mutex_lock);
574 
575 	channel->meas_en = true;
576 
577 	ret = adc_tm5_read(chip, ADC_TM_GEN2_SID, buf, sizeof(buf));
578 	if (ret < 0) {
579 		dev_err(chip->dev, "adc-tm block read failed with %d\n", ret);
580 		goto config_fail;
581 	}
582 
583 	/* Set SID from virtual channel number */
584 	buf[0] = channel->adc_channel >> 8;
585 
586 	/* Set TM channel number used and measurement interval */
587 	buf[1] &= ~ADC_TM_GEN2_TM_CH_SEL;
588 	buf[1] |= FIELD_PREP(ADC_TM_GEN2_TM_CH_SEL, channel->channel);
589 	buf[1] &= ~ADC_TM_GEN2_MEAS_INT_SEL;
590 	buf[1] |= FIELD_PREP(ADC_TM_GEN2_MEAS_INT_SEL, MEAS_INT_1S);
591 
592 	buf[2] &= ~ADC_TM_GEN2_CTL_DEC_RATIO_MASK;
593 	buf[2] |= FIELD_PREP(ADC_TM_GEN2_CTL_DEC_RATIO_MASK, channel->decimation);
594 	buf[2] &= ~ADC_TM_GEN2_CTL_CAL_SEL;
595 	buf[2] |= FIELD_PREP(ADC_TM_GEN2_CTL_CAL_SEL, channel->cal_method);
596 
597 	buf[3] = channel->avg_samples | ADC_TM_GEN2_FAST_AVG_EN;
598 
599 	buf[4] = channel->adc_channel & 0xff;
600 
601 	buf[5] = channel->hw_settle_time & ADC_TM_GEN2_HW_SETTLE_DELAY;
602 
603 	/* High temperature corresponds to low voltage threshold */
604 	if (high != INT_MAX) {
605 		channel->low_thr_en = true;
606 		adc_code = qcom_adc_tm5_gen2_temp_res_scale(high);
607 		put_unaligned_le16(adc_code, &buf[9]);
608 	} else {
609 		channel->low_thr_en = false;
610 	}
611 
612 	/* Low temperature corresponds to high voltage threshold */
613 	if (low != -INT_MAX) {
614 		channel->high_thr_en = true;
615 		adc_code = qcom_adc_tm5_gen2_temp_res_scale(low);
616 		put_unaligned_le16(adc_code, &buf[11]);
617 	} else {
618 		channel->high_thr_en = false;
619 	}
620 
621 	buf[13] = ADC_TM_GEN2_MEAS_EN;
622 	if (channel->high_thr_en)
623 		buf[13] |= ADC_TM5_GEN2_HIGH_THR_INT_EN;
624 	if (channel->low_thr_en)
625 		buf[13] |= ADC_TM5_GEN2_LOW_THR_INT_EN;
626 
627 	ret = adc_tm5_write(chip, ADC_TM_GEN2_SID, buf, sizeof(buf));
628 	if (ret) {
629 		dev_err(chip->dev, "channel %d params write failed: %d\n", channel->channel, ret);
630 		goto config_fail;
631 	}
632 
633 	ret = adc_tm5_gen2_conv_req(channel->chip);
634 	if (ret < 0)
635 		dev_err(chip->dev, "adc-tm channel configure failed with %d\n", ret);
636 
637 config_fail:
638 	mutex_unlock(&chip->adc_mutex_lock);
639 	return ret;
640 }
641 
642 static int adc_tm5_set_trips(void *data, int low, int high)
643 {
644 	struct adc_tm5_channel *channel = data;
645 	struct adc_tm5_chip *chip;
646 	int ret;
647 
648 	if (!channel)
649 		return -EINVAL;
650 
651 	chip = channel->chip;
652 	dev_dbg(chip->dev, "%d:low(mdegC):%d, high(mdegC):%d\n",
653 		channel->channel, low, high);
654 
655 	if (high == INT_MAX && low <= -INT_MAX)
656 		ret = chip->data->disable_channel(channel);
657 	else
658 		ret = chip->data->configure(channel, low, high);
659 
660 	return ret;
661 }
662 
663 static struct thermal_zone_of_device_ops adc_tm5_thermal_ops = {
664 	.get_temp = adc_tm5_get_temp,
665 	.set_trips = adc_tm5_set_trips,
666 };
667 
668 static int adc_tm5_register_tzd(struct adc_tm5_chip *adc_tm)
669 {
670 	unsigned int i;
671 	struct thermal_zone_device *tzd;
672 
673 	for (i = 0; i < adc_tm->nchannels; i++) {
674 		adc_tm->channels[i].chip = adc_tm;
675 
676 		tzd = devm_thermal_zone_of_sensor_register(adc_tm->dev,
677 							   adc_tm->channels[i].channel,
678 							   &adc_tm->channels[i],
679 							   &adc_tm5_thermal_ops);
680 		if (IS_ERR(tzd)) {
681 			if (PTR_ERR(tzd) == -ENODEV) {
682 				dev_warn(adc_tm->dev, "thermal sensor on channel %d is not used\n",
683 					 adc_tm->channels[i].channel);
684 				continue;
685 			}
686 
687 			dev_err(adc_tm->dev, "Error registering TZ zone for channel %d: %ld\n",
688 				adc_tm->channels[i].channel, PTR_ERR(tzd));
689 			return PTR_ERR(tzd);
690 		}
691 		adc_tm->channels[i].tzd = tzd;
692 		if (devm_thermal_add_hwmon_sysfs(tzd))
693 			dev_warn(adc_tm->dev,
694 				 "Failed to add hwmon sysfs attributes\n");
695 	}
696 
697 	return 0;
698 }
699 
700 static int adc_tm_hc_init(struct adc_tm5_chip *chip)
701 {
702 	unsigned int i;
703 	u8 buf[2];
704 	int ret;
705 
706 	for (i = 0; i < chip->nchannels; i++) {
707 		if (chip->channels[i].channel >= ADC_TM5_NUM_CHANNELS) {
708 			dev_err(chip->dev, "Invalid channel %d\n", chip->channels[i].channel);
709 			return -EINVAL;
710 		}
711 	}
712 
713 	buf[0] = chip->decimation;
714 	buf[1] = chip->avg_samples | ADC_TM5_FAST_AVG_EN;
715 
716 	ret = adc_tm5_write(chip, ADC_TM5_ADC_DIG_PARAM, buf, sizeof(buf));
717 	if (ret)
718 		dev_err(chip->dev, "block write failed: %d\n", ret);
719 
720 	return ret;
721 }
722 
723 static int adc_tm5_init(struct adc_tm5_chip *chip)
724 {
725 	u8 buf[4], channels_available;
726 	int ret;
727 	unsigned int i;
728 
729 	ret = adc_tm5_read(chip, ADC_TM5_NUM_BTM,
730 			   &channels_available, sizeof(channels_available));
731 	if (ret) {
732 		dev_err(chip->dev, "read failed for BTM channels\n");
733 		return ret;
734 	}
735 
736 	for (i = 0; i < chip->nchannels; i++) {
737 		if (chip->channels[i].channel >= channels_available) {
738 			dev_err(chip->dev, "Invalid channel %d\n", chip->channels[i].channel);
739 			return -EINVAL;
740 		}
741 	}
742 
743 	buf[0] = chip->decimation;
744 	buf[1] = chip->avg_samples | ADC_TM5_FAST_AVG_EN;
745 	buf[2] = ADC_TM5_TIMER1;
746 	buf[3] = FIELD_PREP(ADC_TM5_MEAS_INTERVAL_CTL2_MASK, ADC_TM5_TIMER2) |
747 		 FIELD_PREP(ADC_TM5_MEAS_INTERVAL_CTL3_MASK, ADC_TM5_TIMER3);
748 
749 	ret = adc_tm5_write(chip, ADC_TM5_ADC_DIG_PARAM, buf, sizeof(buf));
750 	if (ret) {
751 		dev_err(chip->dev, "block write failed: %d\n", ret);
752 		return ret;
753 	}
754 
755 	return ret;
756 }
757 
758 static int adc_tm5_gen2_init(struct adc_tm5_chip *chip)
759 {
760 	u8 channels_available;
761 	int ret;
762 	unsigned int i;
763 
764 	ret = adc_tm5_read(chip, ADC_TM5_NUM_BTM,
765 			   &channels_available, sizeof(channels_available));
766 	if (ret) {
767 		dev_err(chip->dev, "read failed for BTM channels\n");
768 		return ret;
769 	}
770 
771 	for (i = 0; i < chip->nchannels; i++) {
772 		if (chip->channels[i].channel >= channels_available) {
773 			dev_err(chip->dev, "Invalid channel %d\n", chip->channels[i].channel);
774 			return -EINVAL;
775 		}
776 	}
777 
778 	mutex_init(&chip->adc_mutex_lock);
779 
780 	return ret;
781 }
782 
783 static int adc_tm5_get_dt_channel_data(struct adc_tm5_chip *adc_tm,
784 				       struct adc_tm5_channel *channel,
785 				       struct device_node *node)
786 {
787 	const char *name = node->name;
788 	u32 chan, value, adc_channel, varr[2];
789 	int ret;
790 	struct device *dev = adc_tm->dev;
791 	struct of_phandle_args args;
792 
793 	ret = of_property_read_u32(node, "reg", &chan);
794 	if (ret) {
795 		dev_err(dev, "%s: invalid channel number %d\n", name, ret);
796 		return ret;
797 	}
798 
799 	if (chan >= ADC_TM5_NUM_CHANNELS) {
800 		dev_err(dev, "%s: channel number too big: %d\n", name, chan);
801 		return -EINVAL;
802 	}
803 
804 	channel->channel = chan;
805 
806 	/*
807 	 * We are tied to PMIC's ADC controller, which always use single
808 	 * argument for channel number.  So don't bother parsing
809 	 * #io-channel-cells, just enforce cell_count = 1.
810 	 */
811 	ret = of_parse_phandle_with_fixed_args(node, "io-channels", 1, 0, &args);
812 	if (ret < 0) {
813 		dev_err(dev, "%s: error parsing ADC channel number %d: %d\n", name, chan, ret);
814 		return ret;
815 	}
816 	of_node_put(args.np);
817 
818 	if (args.args_count != 1) {
819 		dev_err(dev, "%s: invalid args count for ADC channel %d\n", name, chan);
820 		return -EINVAL;
821 	}
822 
823 	adc_channel = args.args[0];
824 	if (adc_tm->data->gen == ADC_TM5_GEN2)
825 		adc_channel &= 0xff;
826 
827 	if (adc_channel >= ADC5_MAX_CHANNEL) {
828 		dev_err(dev, "%s: invalid ADC channel number %d\n", name, chan);
829 		return -EINVAL;
830 	}
831 	channel->adc_channel = args.args[0];
832 
833 	channel->iio = devm_of_iio_channel_get_by_name(adc_tm->dev, node, NULL);
834 	if (IS_ERR(channel->iio)) {
835 		ret = PTR_ERR(channel->iio);
836 		if (ret != -EPROBE_DEFER)
837 			dev_err(dev, "%s: error getting channel: %d\n", name, ret);
838 		return ret;
839 	}
840 
841 	ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2);
842 	if (!ret) {
843 		ret = qcom_adc5_prescaling_from_dt(varr[0], varr[1]);
844 		if (ret < 0) {
845 			dev_err(dev, "%s: invalid pre-scaling <%d %d>\n",
846 				name, varr[0], varr[1]);
847 			return ret;
848 		}
849 		channel->prescale = ret;
850 	} else {
851 		/* 1:1 prescale is index 0 */
852 		channel->prescale = 0;
853 	}
854 
855 	ret = of_property_read_u32(node, "qcom,hw-settle-time-us", &value);
856 	if (!ret) {
857 		ret = qcom_adc5_hw_settle_time_from_dt(value, adc_tm->data->hw_settle);
858 		if (ret < 0) {
859 			dev_err(dev, "%s invalid hw-settle-time-us %d us\n",
860 				name, value);
861 			return ret;
862 		}
863 		channel->hw_settle_time = ret;
864 	} else {
865 		channel->hw_settle_time = VADC_DEF_HW_SETTLE_TIME;
866 	}
867 
868 	if (of_property_read_bool(node, "qcom,ratiometric"))
869 		channel->cal_method = ADC_TM5_RATIOMETRIC_CAL;
870 	else
871 		channel->cal_method = ADC_TM5_ABSOLUTE_CAL;
872 
873 	if (adc_tm->data->gen == ADC_TM5_GEN2) {
874 		ret = of_property_read_u32(node, "qcom,decimation", &value);
875 		if (!ret) {
876 			ret = qcom_adc5_decimation_from_dt(value, adc_tm->data->decimation);
877 			if (ret < 0) {
878 				dev_err(dev, "invalid decimation %d\n", value);
879 				return ret;
880 			}
881 			channel->decimation = ret;
882 		} else {
883 			channel->decimation = ADC5_DECIMATION_DEFAULT;
884 		}
885 
886 		ret = of_property_read_u32(node, "qcom,avg-samples", &value);
887 		if (!ret) {
888 			ret = qcom_adc5_avg_samples_from_dt(value);
889 			if (ret < 0) {
890 				dev_err(dev, "invalid avg-samples %d\n", value);
891 				return ret;
892 			}
893 			channel->avg_samples = ret;
894 		} else {
895 			channel->avg_samples = VADC_DEF_AVG_SAMPLES;
896 		}
897 	}
898 
899 	return 0;
900 }
901 
902 static const struct adc_tm5_data adc_tm5_data_pmic = {
903 	.full_scale_code_volt = 0x70e4,
904 	.decimation = (unsigned int []) { 250, 420, 840 },
905 	.hw_settle = (unsigned int []) { 15, 100, 200, 300, 400, 500, 600, 700,
906 					 1000, 2000, 4000, 8000, 16000, 32000,
907 					 64000, 128000 },
908 	.disable_channel = adc_tm5_disable_channel,
909 	.configure = adc_tm5_configure,
910 	.isr = adc_tm5_isr,
911 	.init = adc_tm5_init,
912 	.irq_name = "pm-adc-tm5",
913 	.gen = ADC_TM5,
914 };
915 
916 static const struct adc_tm5_data adc_tm_hc_data_pmic = {
917 	.full_scale_code_volt = 0x70e4,
918 	.decimation = (unsigned int []) { 256, 512, 1024 },
919 	.hw_settle = (unsigned int []) { 0, 100, 200, 300, 400, 500, 600, 700,
920 					 1000, 2000, 4000, 6000, 8000, 10000 },
921 	.disable_channel = adc_tm5_disable_channel,
922 	.configure = adc_tm5_configure,
923 	.isr = adc_tm5_isr,
924 	.init = adc_tm_hc_init,
925 	.irq_name = "pm-adc-tm5",
926 	.gen = ADC_TM_HC,
927 };
928 
929 static const struct adc_tm5_data adc_tm5_gen2_data_pmic = {
930 	.full_scale_code_volt = 0x70e4,
931 	.decimation = (unsigned int []) { 85, 340, 1360 },
932 	.hw_settle = (unsigned int []) { 15, 100, 200, 300, 400, 500, 600, 700,
933 					 1000, 2000, 4000, 8000, 16000, 32000,
934 					 64000, 128000 },
935 	.disable_channel = adc_tm5_gen2_disable_channel,
936 	.configure = adc_tm5_gen2_configure,
937 	.isr = adc_tm5_gen2_isr,
938 	.init = adc_tm5_gen2_init,
939 	.irq_name = "pm-adc-tm5-gen2",
940 	.gen = ADC_TM5_GEN2,
941 };
942 
943 static int adc_tm5_get_dt_data(struct adc_tm5_chip *adc_tm, struct device_node *node)
944 {
945 	struct adc_tm5_channel *channels;
946 	struct device_node *child;
947 	u32 value;
948 	int ret;
949 	struct device *dev = adc_tm->dev;
950 
951 	adc_tm->nchannels = of_get_available_child_count(node);
952 	if (!adc_tm->nchannels)
953 		return -EINVAL;
954 
955 	adc_tm->channels = devm_kcalloc(dev, adc_tm->nchannels,
956 					sizeof(*adc_tm->channels), GFP_KERNEL);
957 	if (!adc_tm->channels)
958 		return -ENOMEM;
959 
960 	channels = adc_tm->channels;
961 
962 	adc_tm->data = of_device_get_match_data(dev);
963 	if (!adc_tm->data)
964 		adc_tm->data = &adc_tm5_data_pmic;
965 
966 	ret = of_property_read_u32(node, "qcom,decimation", &value);
967 	if (!ret) {
968 		ret = qcom_adc5_decimation_from_dt(value, adc_tm->data->decimation);
969 		if (ret < 0) {
970 			dev_err(dev, "invalid decimation %d\n", value);
971 			return ret;
972 		}
973 		adc_tm->decimation = ret;
974 	} else {
975 		adc_tm->decimation = ADC5_DECIMATION_DEFAULT;
976 	}
977 
978 	ret = of_property_read_u32(node, "qcom,avg-samples", &value);
979 	if (!ret) {
980 		ret = qcom_adc5_avg_samples_from_dt(value);
981 		if (ret < 0) {
982 			dev_err(dev, "invalid avg-samples %d\n", value);
983 			return ret;
984 		}
985 		adc_tm->avg_samples = ret;
986 	} else {
987 		adc_tm->avg_samples = VADC_DEF_AVG_SAMPLES;
988 	}
989 
990 	for_each_available_child_of_node(node, child) {
991 		ret = adc_tm5_get_dt_channel_data(adc_tm, channels, child);
992 		if (ret) {
993 			of_node_put(child);
994 			return ret;
995 		}
996 
997 		channels++;
998 	}
999 
1000 	return 0;
1001 }
1002 
1003 static int adc_tm5_probe(struct platform_device *pdev)
1004 {
1005 	struct device_node *node = pdev->dev.of_node;
1006 	struct device *dev = &pdev->dev;
1007 	struct adc_tm5_chip *adc_tm;
1008 	struct regmap *regmap;
1009 	int ret, irq;
1010 	u32 reg;
1011 
1012 	regmap = dev_get_regmap(dev->parent, NULL);
1013 	if (!regmap)
1014 		return -ENODEV;
1015 
1016 	ret = of_property_read_u32(node, "reg", &reg);
1017 	if (ret)
1018 		return ret;
1019 
1020 	adc_tm = devm_kzalloc(&pdev->dev, sizeof(*adc_tm), GFP_KERNEL);
1021 	if (!adc_tm)
1022 		return -ENOMEM;
1023 
1024 	adc_tm->regmap = regmap;
1025 	adc_tm->dev = dev;
1026 	adc_tm->base = reg;
1027 
1028 	irq = platform_get_irq(pdev, 0);
1029 	if (irq < 0) {
1030 		dev_err(dev, "get_irq failed: %d\n", irq);
1031 		return irq;
1032 	}
1033 
1034 	ret = adc_tm5_get_dt_data(adc_tm, node);
1035 	if (ret) {
1036 		dev_err(dev, "get dt data failed: %d\n", ret);
1037 		return ret;
1038 	}
1039 
1040 	ret = adc_tm->data->init(adc_tm);
1041 	if (ret) {
1042 		dev_err(dev, "adc-tm init failed\n");
1043 		return ret;
1044 	}
1045 
1046 	ret = adc_tm5_register_tzd(adc_tm);
1047 	if (ret) {
1048 		dev_err(dev, "tzd register failed\n");
1049 		return ret;
1050 	}
1051 
1052 	return devm_request_threaded_irq(dev, irq, NULL, adc_tm->data->isr,
1053 			IRQF_ONESHOT, adc_tm->data->irq_name, adc_tm);
1054 }
1055 
1056 static const struct of_device_id adc_tm5_match_table[] = {
1057 	{
1058 		.compatible = "qcom,spmi-adc-tm5",
1059 		.data = &adc_tm5_data_pmic,
1060 	},
1061 	{
1062 		.compatible = "qcom,spmi-adc-tm-hc",
1063 		.data = &adc_tm_hc_data_pmic,
1064 	},
1065 	{
1066 		.compatible = "qcom,spmi-adc-tm5-gen2",
1067 		.data = &adc_tm5_gen2_data_pmic,
1068 	},
1069 	{ }
1070 };
1071 MODULE_DEVICE_TABLE(of, adc_tm5_match_table);
1072 
1073 static struct platform_driver adc_tm5_driver = {
1074 	.driver = {
1075 		.name = "qcom-spmi-adc-tm5",
1076 		.of_match_table = adc_tm5_match_table,
1077 	},
1078 	.probe = adc_tm5_probe,
1079 };
1080 module_platform_driver(adc_tm5_driver);
1081 
1082 MODULE_DESCRIPTION("SPMI PMIC Thermal Monitor ADC driver");
1083 MODULE_LICENSE("GPL v2");
1084