xref: /openbmc/linux/drivers/tee/optee/smc_abi.c (revision ed8faf6c8f8c1f7e9ee88342a915ce5f09ca9736)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2015-2021, Linaro Limited
4  * Copyright (c) 2016, EPAM Systems
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/arm-smccc.h>
10 #include <linux/errno.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/irqdomain.h>
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/of_irq.h>
18 #include <linux/of_platform.h>
19 #include <linux/platform_device.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/string.h>
23 #include <linux/tee_drv.h>
24 #include <linux/types.h>
25 #include <linux/workqueue.h>
26 #include "optee_private.h"
27 #include "optee_smc.h"
28 #include "optee_rpc_cmd.h"
29 #include <linux/kmemleak.h>
30 #define CREATE_TRACE_POINTS
31 #include "optee_trace.h"
32 
33 /*
34  * This file implement the SMC ABI used when communicating with secure world
35  * OP-TEE OS via raw SMCs.
36  * This file is divided into the following sections:
37  * 1. Convert between struct tee_param and struct optee_msg_param
38  * 2. Low level support functions to register shared memory in secure world
39  * 3. Dynamic shared memory pool based on alloc_pages()
40  * 4. Do a normal scheduled call into secure world
41  * 5. Asynchronous notification
42  * 6. Driver initialization.
43  */
44 
45 /*
46  * A typical OP-TEE private shm allocation is 224 bytes (argument struct
47  * with 6 parameters, needed for open session). So with an alignment of 512
48  * we'll waste a bit more than 50%. However, it's only expected that we'll
49  * have a handful of these structs allocated at a time. Most memory will
50  * be allocated aligned to the page size, So all in all this should scale
51  * up and down quite well.
52  */
53 #define OPTEE_MIN_STATIC_POOL_ALIGN    9 /* 512 bytes aligned */
54 
55 /*
56  * 1. Convert between struct tee_param and struct optee_msg_param
57  *
58  * optee_from_msg_param() and optee_to_msg_param() are the main
59  * functions.
60  */
61 
62 static int from_msg_param_tmp_mem(struct tee_param *p, u32 attr,
63 				  const struct optee_msg_param *mp)
64 {
65 	struct tee_shm *shm;
66 	phys_addr_t pa;
67 	int rc;
68 
69 	p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
70 		  attr - OPTEE_MSG_ATTR_TYPE_TMEM_INPUT;
71 	p->u.memref.size = mp->u.tmem.size;
72 	shm = (struct tee_shm *)(unsigned long)mp->u.tmem.shm_ref;
73 	if (!shm) {
74 		p->u.memref.shm_offs = 0;
75 		p->u.memref.shm = NULL;
76 		return 0;
77 	}
78 
79 	rc = tee_shm_get_pa(shm, 0, &pa);
80 	if (rc)
81 		return rc;
82 
83 	p->u.memref.shm_offs = mp->u.tmem.buf_ptr - pa;
84 	p->u.memref.shm = shm;
85 
86 	return 0;
87 }
88 
89 static void from_msg_param_reg_mem(struct tee_param *p, u32 attr,
90 				   const struct optee_msg_param *mp)
91 {
92 	struct tee_shm *shm;
93 
94 	p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT +
95 		  attr - OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
96 	p->u.memref.size = mp->u.rmem.size;
97 	shm = (struct tee_shm *)(unsigned long)mp->u.rmem.shm_ref;
98 
99 	if (shm) {
100 		p->u.memref.shm_offs = mp->u.rmem.offs;
101 		p->u.memref.shm = shm;
102 	} else {
103 		p->u.memref.shm_offs = 0;
104 		p->u.memref.shm = NULL;
105 	}
106 }
107 
108 /**
109  * optee_from_msg_param() - convert from OPTEE_MSG parameters to
110  *			    struct tee_param
111  * @optee:	main service struct
112  * @params:	subsystem internal parameter representation
113  * @num_params:	number of elements in the parameter arrays
114  * @msg_params:	OPTEE_MSG parameters
115  * Returns 0 on success or <0 on failure
116  */
117 static int optee_from_msg_param(struct optee *optee, struct tee_param *params,
118 				size_t num_params,
119 				const struct optee_msg_param *msg_params)
120 {
121 	int rc;
122 	size_t n;
123 
124 	for (n = 0; n < num_params; n++) {
125 		struct tee_param *p = params + n;
126 		const struct optee_msg_param *mp = msg_params + n;
127 		u32 attr = mp->attr & OPTEE_MSG_ATTR_TYPE_MASK;
128 
129 		switch (attr) {
130 		case OPTEE_MSG_ATTR_TYPE_NONE:
131 			p->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
132 			memset(&p->u, 0, sizeof(p->u));
133 			break;
134 		case OPTEE_MSG_ATTR_TYPE_VALUE_INPUT:
135 		case OPTEE_MSG_ATTR_TYPE_VALUE_OUTPUT:
136 		case OPTEE_MSG_ATTR_TYPE_VALUE_INOUT:
137 			optee_from_msg_param_value(p, attr, mp);
138 			break;
139 		case OPTEE_MSG_ATTR_TYPE_TMEM_INPUT:
140 		case OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT:
141 		case OPTEE_MSG_ATTR_TYPE_TMEM_INOUT:
142 			rc = from_msg_param_tmp_mem(p, attr, mp);
143 			if (rc)
144 				return rc;
145 			break;
146 		case OPTEE_MSG_ATTR_TYPE_RMEM_INPUT:
147 		case OPTEE_MSG_ATTR_TYPE_RMEM_OUTPUT:
148 		case OPTEE_MSG_ATTR_TYPE_RMEM_INOUT:
149 			from_msg_param_reg_mem(p, attr, mp);
150 			break;
151 
152 		default:
153 			return -EINVAL;
154 		}
155 	}
156 	return 0;
157 }
158 
159 static int to_msg_param_tmp_mem(struct optee_msg_param *mp,
160 				const struct tee_param *p)
161 {
162 	int rc;
163 	phys_addr_t pa;
164 
165 	mp->attr = OPTEE_MSG_ATTR_TYPE_TMEM_INPUT + p->attr -
166 		   TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
167 
168 	mp->u.tmem.shm_ref = (unsigned long)p->u.memref.shm;
169 	mp->u.tmem.size = p->u.memref.size;
170 
171 	if (!p->u.memref.shm) {
172 		mp->u.tmem.buf_ptr = 0;
173 		return 0;
174 	}
175 
176 	rc = tee_shm_get_pa(p->u.memref.shm, p->u.memref.shm_offs, &pa);
177 	if (rc)
178 		return rc;
179 
180 	mp->u.tmem.buf_ptr = pa;
181 	mp->attr |= OPTEE_MSG_ATTR_CACHE_PREDEFINED <<
182 		    OPTEE_MSG_ATTR_CACHE_SHIFT;
183 
184 	return 0;
185 }
186 
187 static int to_msg_param_reg_mem(struct optee_msg_param *mp,
188 				const struct tee_param *p)
189 {
190 	mp->attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT + p->attr -
191 		   TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT;
192 
193 	mp->u.rmem.shm_ref = (unsigned long)p->u.memref.shm;
194 	mp->u.rmem.size = p->u.memref.size;
195 	mp->u.rmem.offs = p->u.memref.shm_offs;
196 	return 0;
197 }
198 
199 /**
200  * optee_to_msg_param() - convert from struct tee_params to OPTEE_MSG parameters
201  * @optee:	main service struct
202  * @msg_params:	OPTEE_MSG parameters
203  * @num_params:	number of elements in the parameter arrays
204  * @params:	subsystem itnernal parameter representation
205  * Returns 0 on success or <0 on failure
206  */
207 static int optee_to_msg_param(struct optee *optee,
208 			      struct optee_msg_param *msg_params,
209 			      size_t num_params, const struct tee_param *params)
210 {
211 	int rc;
212 	size_t n;
213 
214 	for (n = 0; n < num_params; n++) {
215 		const struct tee_param *p = params + n;
216 		struct optee_msg_param *mp = msg_params + n;
217 
218 		switch (p->attr) {
219 		case TEE_IOCTL_PARAM_ATTR_TYPE_NONE:
220 			mp->attr = TEE_IOCTL_PARAM_ATTR_TYPE_NONE;
221 			memset(&mp->u, 0, sizeof(mp->u));
222 			break;
223 		case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INPUT:
224 		case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_OUTPUT:
225 		case TEE_IOCTL_PARAM_ATTR_TYPE_VALUE_INOUT:
226 			optee_to_msg_param_value(mp, p);
227 			break;
228 		case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INPUT:
229 		case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_OUTPUT:
230 		case TEE_IOCTL_PARAM_ATTR_TYPE_MEMREF_INOUT:
231 			if (tee_shm_is_dynamic(p->u.memref.shm))
232 				rc = to_msg_param_reg_mem(mp, p);
233 			else
234 				rc = to_msg_param_tmp_mem(mp, p);
235 			if (rc)
236 				return rc;
237 			break;
238 		default:
239 			return -EINVAL;
240 		}
241 	}
242 	return 0;
243 }
244 
245 /*
246  * 2. Low level support functions to register shared memory in secure world
247  *
248  * Functions to enable/disable shared memory caching in secure world, that
249  * is, lazy freeing of previously allocated shared memory. Freeing is
250  * performed when a request has been compled.
251  *
252  * Functions to register and unregister shared memory both for normal
253  * clients and for tee-supplicant.
254  */
255 
256 /**
257  * optee_enable_shm_cache() - Enables caching of some shared memory allocation
258  *			      in OP-TEE
259  * @optee:	main service struct
260  */
261 static void optee_enable_shm_cache(struct optee *optee)
262 {
263 	struct optee_call_waiter w;
264 
265 	/* We need to retry until secure world isn't busy. */
266 	optee_cq_wait_init(&optee->call_queue, &w);
267 	while (true) {
268 		struct arm_smccc_res res;
269 
270 		optee->smc.invoke_fn(OPTEE_SMC_ENABLE_SHM_CACHE,
271 				     0, 0, 0, 0, 0, 0, 0, &res);
272 		if (res.a0 == OPTEE_SMC_RETURN_OK)
273 			break;
274 		optee_cq_wait_for_completion(&optee->call_queue, &w);
275 	}
276 	optee_cq_wait_final(&optee->call_queue, &w);
277 }
278 
279 /**
280  * __optee_disable_shm_cache() - Disables caching of some shared memory
281  *				 allocation in OP-TEE
282  * @optee:	main service struct
283  * @is_mapped:	true if the cached shared memory addresses were mapped by this
284  *		kernel, are safe to dereference, and should be freed
285  */
286 static void __optee_disable_shm_cache(struct optee *optee, bool is_mapped)
287 {
288 	struct optee_call_waiter w;
289 
290 	/* We need to retry until secure world isn't busy. */
291 	optee_cq_wait_init(&optee->call_queue, &w);
292 	while (true) {
293 		union {
294 			struct arm_smccc_res smccc;
295 			struct optee_smc_disable_shm_cache_result result;
296 		} res;
297 
298 		optee->smc.invoke_fn(OPTEE_SMC_DISABLE_SHM_CACHE,
299 				     0, 0, 0, 0, 0, 0, 0, &res.smccc);
300 		if (res.result.status == OPTEE_SMC_RETURN_ENOTAVAIL)
301 			break; /* All shm's freed */
302 		if (res.result.status == OPTEE_SMC_RETURN_OK) {
303 			struct tee_shm *shm;
304 
305 			/*
306 			 * Shared memory references that were not mapped by
307 			 * this kernel must be ignored to prevent a crash.
308 			 */
309 			if (!is_mapped)
310 				continue;
311 
312 			shm = reg_pair_to_ptr(res.result.shm_upper32,
313 					      res.result.shm_lower32);
314 			tee_shm_free(shm);
315 		} else {
316 			optee_cq_wait_for_completion(&optee->call_queue, &w);
317 		}
318 	}
319 	optee_cq_wait_final(&optee->call_queue, &w);
320 }
321 
322 /**
323  * optee_disable_shm_cache() - Disables caching of mapped shared memory
324  *			       allocations in OP-TEE
325  * @optee:	main service struct
326  */
327 static void optee_disable_shm_cache(struct optee *optee)
328 {
329 	return __optee_disable_shm_cache(optee, true);
330 }
331 
332 /**
333  * optee_disable_unmapped_shm_cache() - Disables caching of shared memory
334  *					allocations in OP-TEE which are not
335  *					currently mapped
336  * @optee:	main service struct
337  */
338 static void optee_disable_unmapped_shm_cache(struct optee *optee)
339 {
340 	return __optee_disable_shm_cache(optee, false);
341 }
342 
343 #define PAGELIST_ENTRIES_PER_PAGE				\
344 	((OPTEE_MSG_NONCONTIG_PAGE_SIZE / sizeof(u64)) - 1)
345 
346 /*
347  * The final entry in each pagelist page is a pointer to the next
348  * pagelist page.
349  */
350 static size_t get_pages_list_size(size_t num_entries)
351 {
352 	int pages = DIV_ROUND_UP(num_entries, PAGELIST_ENTRIES_PER_PAGE);
353 
354 	return pages * OPTEE_MSG_NONCONTIG_PAGE_SIZE;
355 }
356 
357 static u64 *optee_allocate_pages_list(size_t num_entries)
358 {
359 	return alloc_pages_exact(get_pages_list_size(num_entries), GFP_KERNEL);
360 }
361 
362 static void optee_free_pages_list(void *list, size_t num_entries)
363 {
364 	free_pages_exact(list, get_pages_list_size(num_entries));
365 }
366 
367 /**
368  * optee_fill_pages_list() - write list of user pages to given shared
369  * buffer.
370  *
371  * @dst: page-aligned buffer where list of pages will be stored
372  * @pages: array of pages that represents shared buffer
373  * @num_pages: number of entries in @pages
374  * @page_offset: offset of user buffer from page start
375  *
376  * @dst should be big enough to hold list of user page addresses and
377  *	links to the next pages of buffer
378  */
379 static void optee_fill_pages_list(u64 *dst, struct page **pages, int num_pages,
380 				  size_t page_offset)
381 {
382 	int n = 0;
383 	phys_addr_t optee_page;
384 	/*
385 	 * Refer to OPTEE_MSG_ATTR_NONCONTIG description in optee_msg.h
386 	 * for details.
387 	 */
388 	struct {
389 		u64 pages_list[PAGELIST_ENTRIES_PER_PAGE];
390 		u64 next_page_data;
391 	} *pages_data;
392 
393 	/*
394 	 * Currently OP-TEE uses 4k page size and it does not looks
395 	 * like this will change in the future.  On other hand, there are
396 	 * no know ARM architectures with page size < 4k.
397 	 * Thus the next built assert looks redundant. But the following
398 	 * code heavily relies on this assumption, so it is better be
399 	 * safe than sorry.
400 	 */
401 	BUILD_BUG_ON(PAGE_SIZE < OPTEE_MSG_NONCONTIG_PAGE_SIZE);
402 
403 	pages_data = (void *)dst;
404 	/*
405 	 * If linux page is bigger than 4k, and user buffer offset is
406 	 * larger than 4k/8k/12k/etc this will skip first 4k pages,
407 	 * because they bear no value data for OP-TEE.
408 	 */
409 	optee_page = page_to_phys(*pages) +
410 		round_down(page_offset, OPTEE_MSG_NONCONTIG_PAGE_SIZE);
411 
412 	while (true) {
413 		pages_data->pages_list[n++] = optee_page;
414 
415 		if (n == PAGELIST_ENTRIES_PER_PAGE) {
416 			pages_data->next_page_data =
417 				virt_to_phys(pages_data + 1);
418 			pages_data++;
419 			n = 0;
420 		}
421 
422 		optee_page += OPTEE_MSG_NONCONTIG_PAGE_SIZE;
423 		if (!(optee_page & ~PAGE_MASK)) {
424 			if (!--num_pages)
425 				break;
426 			pages++;
427 			optee_page = page_to_phys(*pages);
428 		}
429 	}
430 }
431 
432 static int optee_shm_register(struct tee_context *ctx, struct tee_shm *shm,
433 			      struct page **pages, size_t num_pages,
434 			      unsigned long start)
435 {
436 	struct optee *optee = tee_get_drvdata(ctx->teedev);
437 	struct optee_msg_arg *msg_arg;
438 	struct tee_shm *shm_arg;
439 	u64 *pages_list;
440 	int rc;
441 
442 	if (!num_pages)
443 		return -EINVAL;
444 
445 	rc = optee_check_mem_type(start, num_pages);
446 	if (rc)
447 		return rc;
448 
449 	pages_list = optee_allocate_pages_list(num_pages);
450 	if (!pages_list)
451 		return -ENOMEM;
452 
453 	shm_arg = optee_get_msg_arg(ctx, 1, &msg_arg);
454 	if (IS_ERR(shm_arg)) {
455 		rc = PTR_ERR(shm_arg);
456 		goto out;
457 	}
458 
459 	optee_fill_pages_list(pages_list, pages, num_pages,
460 			      tee_shm_get_page_offset(shm));
461 
462 	msg_arg->cmd = OPTEE_MSG_CMD_REGISTER_SHM;
463 	msg_arg->params->attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
464 				OPTEE_MSG_ATTR_NONCONTIG;
465 	msg_arg->params->u.tmem.shm_ref = (unsigned long)shm;
466 	msg_arg->params->u.tmem.size = tee_shm_get_size(shm);
467 	/*
468 	 * In the least bits of msg_arg->params->u.tmem.buf_ptr we
469 	 * store buffer offset from 4k page, as described in OP-TEE ABI.
470 	 */
471 	msg_arg->params->u.tmem.buf_ptr = virt_to_phys(pages_list) |
472 	  (tee_shm_get_page_offset(shm) & (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
473 
474 	if (optee->ops->do_call_with_arg(ctx, shm_arg) ||
475 	    msg_arg->ret != TEEC_SUCCESS)
476 		rc = -EINVAL;
477 
478 	tee_shm_free(shm_arg);
479 out:
480 	optee_free_pages_list(pages_list, num_pages);
481 	return rc;
482 }
483 
484 static int optee_shm_unregister(struct tee_context *ctx, struct tee_shm *shm)
485 {
486 	struct optee *optee = tee_get_drvdata(ctx->teedev);
487 	struct optee_msg_arg *msg_arg;
488 	struct tee_shm *shm_arg;
489 	int rc = 0;
490 
491 	shm_arg = optee_get_msg_arg(ctx, 1, &msg_arg);
492 	if (IS_ERR(shm_arg))
493 		return PTR_ERR(shm_arg);
494 
495 	msg_arg->cmd = OPTEE_MSG_CMD_UNREGISTER_SHM;
496 
497 	msg_arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_RMEM_INPUT;
498 	msg_arg->params[0].u.rmem.shm_ref = (unsigned long)shm;
499 
500 	if (optee->ops->do_call_with_arg(ctx, shm_arg) ||
501 	    msg_arg->ret != TEEC_SUCCESS)
502 		rc = -EINVAL;
503 	tee_shm_free(shm_arg);
504 	return rc;
505 }
506 
507 static int optee_shm_register_supp(struct tee_context *ctx, struct tee_shm *shm,
508 				   struct page **pages, size_t num_pages,
509 				   unsigned long start)
510 {
511 	/*
512 	 * We don't want to register supplicant memory in OP-TEE.
513 	 * Instead information about it will be passed in RPC code.
514 	 */
515 	return optee_check_mem_type(start, num_pages);
516 }
517 
518 static int optee_shm_unregister_supp(struct tee_context *ctx,
519 				     struct tee_shm *shm)
520 {
521 	return 0;
522 }
523 
524 /*
525  * 3. Dynamic shared memory pool based on alloc_pages()
526  *
527  * Implements an OP-TEE specific shared memory pool which is used
528  * when dynamic shared memory is supported by secure world.
529  *
530  * The main function is optee_shm_pool_alloc_pages().
531  */
532 
533 static int pool_op_alloc(struct tee_shm_pool *pool,
534 			 struct tee_shm *shm, size_t size, size_t align)
535 {
536 	/*
537 	 * Shared memory private to the OP-TEE driver doesn't need
538 	 * to be registered with OP-TEE.
539 	 */
540 	if (shm->flags & TEE_SHM_PRIV)
541 		return optee_pool_op_alloc_helper(pool, shm, size, align, NULL);
542 
543 	return optee_pool_op_alloc_helper(pool, shm, size, align,
544 					  optee_shm_register);
545 }
546 
547 static void pool_op_free(struct tee_shm_pool *pool,
548 			 struct tee_shm *shm)
549 {
550 	if (!(shm->flags & TEE_SHM_PRIV))
551 		optee_pool_op_free_helper(pool, shm, optee_shm_unregister);
552 	else
553 		optee_pool_op_free_helper(pool, shm, NULL);
554 }
555 
556 static void pool_op_destroy_pool(struct tee_shm_pool *pool)
557 {
558 	kfree(pool);
559 }
560 
561 static const struct tee_shm_pool_ops pool_ops = {
562 	.alloc = pool_op_alloc,
563 	.free = pool_op_free,
564 	.destroy_pool = pool_op_destroy_pool,
565 };
566 
567 /**
568  * optee_shm_pool_alloc_pages() - create page-based allocator pool
569  *
570  * This pool is used when OP-TEE supports dymanic SHM. In this case
571  * command buffers and such are allocated from kernel's own memory.
572  */
573 static struct tee_shm_pool *optee_shm_pool_alloc_pages(void)
574 {
575 	struct tee_shm_pool *pool = kzalloc(sizeof(*pool), GFP_KERNEL);
576 
577 	if (!pool)
578 		return ERR_PTR(-ENOMEM);
579 
580 	pool->ops = &pool_ops;
581 
582 	return pool;
583 }
584 
585 /*
586  * 4. Do a normal scheduled call into secure world
587  *
588  * The function optee_smc_do_call_with_arg() performs a normal scheduled
589  * call into secure world. During this call may normal world request help
590  * from normal world using RPCs, Remote Procedure Calls. This includes
591  * delivery of non-secure interrupts to for instance allow rescheduling of
592  * the current task.
593  */
594 
595 static void handle_rpc_func_cmd_shm_free(struct tee_context *ctx,
596 					 struct optee_msg_arg *arg)
597 {
598 	struct tee_shm *shm;
599 
600 	arg->ret_origin = TEEC_ORIGIN_COMMS;
601 
602 	if (arg->num_params != 1 ||
603 	    arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
604 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
605 		return;
606 	}
607 
608 	shm = (struct tee_shm *)(unsigned long)arg->params[0].u.value.b;
609 	switch (arg->params[0].u.value.a) {
610 	case OPTEE_RPC_SHM_TYPE_APPL:
611 		optee_rpc_cmd_free_suppl(ctx, shm);
612 		break;
613 	case OPTEE_RPC_SHM_TYPE_KERNEL:
614 		tee_shm_free(shm);
615 		break;
616 	default:
617 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
618 	}
619 	arg->ret = TEEC_SUCCESS;
620 }
621 
622 static void handle_rpc_func_cmd_shm_alloc(struct tee_context *ctx,
623 					  struct optee *optee,
624 					  struct optee_msg_arg *arg,
625 					  struct optee_call_ctx *call_ctx)
626 {
627 	phys_addr_t pa;
628 	struct tee_shm *shm;
629 	size_t sz;
630 	size_t n;
631 
632 	arg->ret_origin = TEEC_ORIGIN_COMMS;
633 
634 	if (!arg->num_params ||
635 	    arg->params[0].attr != OPTEE_MSG_ATTR_TYPE_VALUE_INPUT) {
636 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
637 		return;
638 	}
639 
640 	for (n = 1; n < arg->num_params; n++) {
641 		if (arg->params[n].attr != OPTEE_MSG_ATTR_TYPE_NONE) {
642 			arg->ret = TEEC_ERROR_BAD_PARAMETERS;
643 			return;
644 		}
645 	}
646 
647 	sz = arg->params[0].u.value.b;
648 	switch (arg->params[0].u.value.a) {
649 	case OPTEE_RPC_SHM_TYPE_APPL:
650 		shm = optee_rpc_cmd_alloc_suppl(ctx, sz);
651 		break;
652 	case OPTEE_RPC_SHM_TYPE_KERNEL:
653 		shm = tee_shm_alloc_priv_buf(optee->ctx, sz);
654 		break;
655 	default:
656 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
657 		return;
658 	}
659 
660 	if (IS_ERR(shm)) {
661 		arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
662 		return;
663 	}
664 
665 	if (tee_shm_get_pa(shm, 0, &pa)) {
666 		arg->ret = TEEC_ERROR_BAD_PARAMETERS;
667 		goto bad;
668 	}
669 
670 	sz = tee_shm_get_size(shm);
671 
672 	if (tee_shm_is_dynamic(shm)) {
673 		struct page **pages;
674 		u64 *pages_list;
675 		size_t page_num;
676 
677 		pages = tee_shm_get_pages(shm, &page_num);
678 		if (!pages || !page_num) {
679 			arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
680 			goto bad;
681 		}
682 
683 		pages_list = optee_allocate_pages_list(page_num);
684 		if (!pages_list) {
685 			arg->ret = TEEC_ERROR_OUT_OF_MEMORY;
686 			goto bad;
687 		}
688 
689 		call_ctx->pages_list = pages_list;
690 		call_ctx->num_entries = page_num;
691 
692 		arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT |
693 				      OPTEE_MSG_ATTR_NONCONTIG;
694 		/*
695 		 * In the least bits of u.tmem.buf_ptr we store buffer offset
696 		 * from 4k page, as described in OP-TEE ABI.
697 		 */
698 		arg->params[0].u.tmem.buf_ptr = virt_to_phys(pages_list) |
699 			(tee_shm_get_page_offset(shm) &
700 			 (OPTEE_MSG_NONCONTIG_PAGE_SIZE - 1));
701 		arg->params[0].u.tmem.size = tee_shm_get_size(shm);
702 		arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
703 
704 		optee_fill_pages_list(pages_list, pages, page_num,
705 				      tee_shm_get_page_offset(shm));
706 	} else {
707 		arg->params[0].attr = OPTEE_MSG_ATTR_TYPE_TMEM_OUTPUT;
708 		arg->params[0].u.tmem.buf_ptr = pa;
709 		arg->params[0].u.tmem.size = sz;
710 		arg->params[0].u.tmem.shm_ref = (unsigned long)shm;
711 	}
712 
713 	arg->ret = TEEC_SUCCESS;
714 	return;
715 bad:
716 	tee_shm_free(shm);
717 }
718 
719 static void free_pages_list(struct optee_call_ctx *call_ctx)
720 {
721 	if (call_ctx->pages_list) {
722 		optee_free_pages_list(call_ctx->pages_list,
723 				      call_ctx->num_entries);
724 		call_ctx->pages_list = NULL;
725 		call_ctx->num_entries = 0;
726 	}
727 }
728 
729 static void optee_rpc_finalize_call(struct optee_call_ctx *call_ctx)
730 {
731 	free_pages_list(call_ctx);
732 }
733 
734 static void handle_rpc_func_cmd(struct tee_context *ctx, struct optee *optee,
735 				struct optee_msg_arg *arg,
736 				struct optee_call_ctx *call_ctx)
737 {
738 
739 	switch (arg->cmd) {
740 	case OPTEE_RPC_CMD_SHM_ALLOC:
741 		free_pages_list(call_ctx);
742 		handle_rpc_func_cmd_shm_alloc(ctx, optee, arg, call_ctx);
743 		break;
744 	case OPTEE_RPC_CMD_SHM_FREE:
745 		handle_rpc_func_cmd_shm_free(ctx, arg);
746 		break;
747 	default:
748 		optee_rpc_cmd(ctx, optee, arg);
749 	}
750 }
751 
752 /**
753  * optee_handle_rpc() - handle RPC from secure world
754  * @ctx:	context doing the RPC
755  * @param:	value of registers for the RPC
756  * @call_ctx:	call context. Preserved during one OP-TEE invocation
757  *
758  * Result of RPC is written back into @param.
759  */
760 static void optee_handle_rpc(struct tee_context *ctx,
761 			     struct optee_msg_arg *rpc_arg,
762 			     struct optee_rpc_param *param,
763 			     struct optee_call_ctx *call_ctx)
764 {
765 	struct tee_device *teedev = ctx->teedev;
766 	struct optee *optee = tee_get_drvdata(teedev);
767 	struct optee_msg_arg *arg;
768 	struct tee_shm *shm;
769 	phys_addr_t pa;
770 
771 	switch (OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0)) {
772 	case OPTEE_SMC_RPC_FUNC_ALLOC:
773 		shm = tee_shm_alloc_priv_buf(optee->ctx, param->a1);
774 		if (!IS_ERR(shm) && !tee_shm_get_pa(shm, 0, &pa)) {
775 			reg_pair_from_64(&param->a1, &param->a2, pa);
776 			reg_pair_from_64(&param->a4, &param->a5,
777 					 (unsigned long)shm);
778 		} else {
779 			param->a1 = 0;
780 			param->a2 = 0;
781 			param->a4 = 0;
782 			param->a5 = 0;
783 		}
784 		kmemleak_not_leak(shm);
785 		break;
786 	case OPTEE_SMC_RPC_FUNC_FREE:
787 		shm = reg_pair_to_ptr(param->a1, param->a2);
788 		tee_shm_free(shm);
789 		break;
790 	case OPTEE_SMC_RPC_FUNC_FOREIGN_INTR:
791 		/*
792 		 * A foreign interrupt was raised while secure world was
793 		 * executing, since they are handled in Linux a dummy RPC is
794 		 * performed to let Linux take the interrupt through the normal
795 		 * vector.
796 		 */
797 		break;
798 	case OPTEE_SMC_RPC_FUNC_CMD:
799 		if (rpc_arg) {
800 			arg = rpc_arg;
801 		} else {
802 			shm = reg_pair_to_ptr(param->a1, param->a2);
803 			arg = tee_shm_get_va(shm, 0);
804 			if (IS_ERR(arg)) {
805 				pr_err("%s: tee_shm_get_va %p failed\n",
806 				       __func__, shm);
807 				break;
808 			}
809 		}
810 
811 		handle_rpc_func_cmd(ctx, optee, arg, call_ctx);
812 		break;
813 	default:
814 		pr_warn("Unknown RPC func 0x%x\n",
815 			(u32)OPTEE_SMC_RETURN_GET_RPC_FUNC(param->a0));
816 		break;
817 	}
818 
819 	param->a0 = OPTEE_SMC_CALL_RETURN_FROM_RPC;
820 }
821 
822 /**
823  * optee_smc_do_call_with_arg() - Do an SMC to OP-TEE in secure world
824  * @ctx:	calling context
825  * @shm:	shared memory holding the message to pass to secure world
826  *
827  * Does and SMC to OP-TEE in secure world and handles eventual resulting
828  * Remote Procedure Calls (RPC) from OP-TEE.
829  *
830  * Returns return code from secure world, 0 is OK
831  */
832 static int optee_smc_do_call_with_arg(struct tee_context *ctx,
833 				      struct tee_shm *shm)
834 {
835 	struct optee *optee = tee_get_drvdata(ctx->teedev);
836 	struct optee_call_waiter w;
837 	struct optee_rpc_param param = { };
838 	struct optee_call_ctx call_ctx = { };
839 	struct optee_msg_arg *rpc_arg = NULL;
840 	int rc;
841 
842 	if (optee->rpc_param_count) {
843 		struct optee_msg_arg *arg;
844 		unsigned int rpc_arg_offs;
845 
846 		arg = tee_shm_get_va(shm, 0);
847 		if (IS_ERR(arg))
848 			return PTR_ERR(arg);
849 
850 		rpc_arg_offs = OPTEE_MSG_GET_ARG_SIZE(arg->num_params);
851 		rpc_arg = tee_shm_get_va(shm, rpc_arg_offs);
852 		if (IS_ERR(arg))
853 			return PTR_ERR(arg);
854 	}
855 
856 	if  (rpc_arg && tee_shm_is_dynamic(shm)) {
857 		param.a0 = OPTEE_SMC_CALL_WITH_REGD_ARG;
858 		reg_pair_from_64(&param.a1, &param.a2, (u_long)shm);
859 		param.a3 = 0;
860 	} else {
861 		phys_addr_t parg;
862 
863 		rc = tee_shm_get_pa(shm, 0, &parg);
864 		if (rc)
865 			return rc;
866 
867 		if (rpc_arg)
868 			param.a0 = OPTEE_SMC_CALL_WITH_RPC_ARG;
869 		else
870 			param.a0 = OPTEE_SMC_CALL_WITH_ARG;
871 		reg_pair_from_64(&param.a1, &param.a2, parg);
872 	}
873 	/* Initialize waiter */
874 	optee_cq_wait_init(&optee->call_queue, &w);
875 	while (true) {
876 		struct arm_smccc_res res;
877 
878 		trace_optee_invoke_fn_begin(&param);
879 		optee->smc.invoke_fn(param.a0, param.a1, param.a2, param.a3,
880 				     param.a4, param.a5, param.a6, param.a7,
881 				     &res);
882 		trace_optee_invoke_fn_end(&param, &res);
883 
884 		if (res.a0 == OPTEE_SMC_RETURN_ETHREAD_LIMIT) {
885 			/*
886 			 * Out of threads in secure world, wait for a thread
887 			 * become available.
888 			 */
889 			optee_cq_wait_for_completion(&optee->call_queue, &w);
890 		} else if (OPTEE_SMC_RETURN_IS_RPC(res.a0)) {
891 			cond_resched();
892 			param.a0 = res.a0;
893 			param.a1 = res.a1;
894 			param.a2 = res.a2;
895 			param.a3 = res.a3;
896 			optee_handle_rpc(ctx, rpc_arg, &param, &call_ctx);
897 		} else {
898 			rc = res.a0;
899 			break;
900 		}
901 	}
902 
903 	optee_rpc_finalize_call(&call_ctx);
904 	/*
905 	 * We're done with our thread in secure world, if there's any
906 	 * thread waiters wake up one.
907 	 */
908 	optee_cq_wait_final(&optee->call_queue, &w);
909 
910 	return rc;
911 }
912 
913 static int simple_call_with_arg(struct tee_context *ctx, u32 cmd)
914 {
915 	struct optee_msg_arg *msg_arg;
916 	struct tee_shm *shm;
917 
918 	shm = optee_get_msg_arg(ctx, 0, &msg_arg);
919 	if (IS_ERR(shm))
920 		return PTR_ERR(shm);
921 
922 	msg_arg->cmd = cmd;
923 	optee_smc_do_call_with_arg(ctx, shm);
924 
925 	tee_shm_free(shm);
926 	return 0;
927 }
928 
929 static int optee_smc_do_bottom_half(struct tee_context *ctx)
930 {
931 	return simple_call_with_arg(ctx, OPTEE_MSG_CMD_DO_BOTTOM_HALF);
932 }
933 
934 static int optee_smc_stop_async_notif(struct tee_context *ctx)
935 {
936 	return simple_call_with_arg(ctx, OPTEE_MSG_CMD_STOP_ASYNC_NOTIF);
937 }
938 
939 /*
940  * 5. Asynchronous notification
941  */
942 
943 static u32 get_async_notif_value(optee_invoke_fn *invoke_fn, bool *value_valid,
944 				 bool *value_pending)
945 {
946 	struct arm_smccc_res res;
947 
948 	invoke_fn(OPTEE_SMC_GET_ASYNC_NOTIF_VALUE, 0, 0, 0, 0, 0, 0, 0, &res);
949 
950 	if (res.a0)
951 		return 0;
952 	*value_valid = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_VALID);
953 	*value_pending = (res.a2 & OPTEE_SMC_ASYNC_NOTIF_VALUE_PENDING);
954 	return res.a1;
955 }
956 
957 static irqreturn_t notif_irq_handler(int irq, void *dev_id)
958 {
959 	struct optee *optee = dev_id;
960 	bool do_bottom_half = false;
961 	bool value_valid;
962 	bool value_pending;
963 	u32 value;
964 
965 	do {
966 		value = get_async_notif_value(optee->smc.invoke_fn,
967 					      &value_valid, &value_pending);
968 		if (!value_valid)
969 			break;
970 
971 		if (value == OPTEE_SMC_ASYNC_NOTIF_VALUE_DO_BOTTOM_HALF)
972 			do_bottom_half = true;
973 		else
974 			optee_notif_send(optee, value);
975 	} while (value_pending);
976 
977 	if (do_bottom_half)
978 		return IRQ_WAKE_THREAD;
979 	return IRQ_HANDLED;
980 }
981 
982 static irqreturn_t notif_irq_thread_fn(int irq, void *dev_id)
983 {
984 	struct optee *optee = dev_id;
985 
986 	optee_smc_do_bottom_half(optee->ctx);
987 
988 	return IRQ_HANDLED;
989 }
990 
991 static int optee_smc_notif_init_irq(struct optee *optee, u_int irq)
992 {
993 	int rc;
994 
995 	rc = request_threaded_irq(irq, notif_irq_handler,
996 				  notif_irq_thread_fn,
997 				  0, "optee_notification", optee);
998 	if (rc)
999 		return rc;
1000 
1001 	optee->smc.notif_irq = irq;
1002 
1003 	return 0;
1004 }
1005 
1006 static void optee_smc_notif_uninit_irq(struct optee *optee)
1007 {
1008 	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1009 		optee_smc_stop_async_notif(optee->ctx);
1010 		if (optee->smc.notif_irq) {
1011 			free_irq(optee->smc.notif_irq, optee);
1012 			irq_dispose_mapping(optee->smc.notif_irq);
1013 		}
1014 	}
1015 }
1016 
1017 /*
1018  * 6. Driver initialization
1019  *
1020  * During driver initialization is secure world probed to find out which
1021  * features it supports so the driver can be initialized with a matching
1022  * configuration. This involves for instance support for dynamic shared
1023  * memory instead of a static memory carvout.
1024  */
1025 
1026 static void optee_get_version(struct tee_device *teedev,
1027 			      struct tee_ioctl_version_data *vers)
1028 {
1029 	struct tee_ioctl_version_data v = {
1030 		.impl_id = TEE_IMPL_ID_OPTEE,
1031 		.impl_caps = TEE_OPTEE_CAP_TZ,
1032 		.gen_caps = TEE_GEN_CAP_GP,
1033 	};
1034 	struct optee *optee = tee_get_drvdata(teedev);
1035 
1036 	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1037 		v.gen_caps |= TEE_GEN_CAP_REG_MEM;
1038 	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL)
1039 		v.gen_caps |= TEE_GEN_CAP_MEMREF_NULL;
1040 	*vers = v;
1041 }
1042 
1043 static int optee_smc_open(struct tee_context *ctx)
1044 {
1045 	struct optee *optee = tee_get_drvdata(ctx->teedev);
1046 	u32 sec_caps = optee->smc.sec_caps;
1047 
1048 	return optee_open(ctx, sec_caps & OPTEE_SMC_SEC_CAP_MEMREF_NULL);
1049 }
1050 
1051 static const struct tee_driver_ops optee_clnt_ops = {
1052 	.get_version = optee_get_version,
1053 	.open = optee_smc_open,
1054 	.release = optee_release,
1055 	.open_session = optee_open_session,
1056 	.close_session = optee_close_session,
1057 	.invoke_func = optee_invoke_func,
1058 	.cancel_req = optee_cancel_req,
1059 	.shm_register = optee_shm_register,
1060 	.shm_unregister = optee_shm_unregister,
1061 };
1062 
1063 static const struct tee_desc optee_clnt_desc = {
1064 	.name = DRIVER_NAME "-clnt",
1065 	.ops = &optee_clnt_ops,
1066 	.owner = THIS_MODULE,
1067 };
1068 
1069 static const struct tee_driver_ops optee_supp_ops = {
1070 	.get_version = optee_get_version,
1071 	.open = optee_smc_open,
1072 	.release = optee_release_supp,
1073 	.supp_recv = optee_supp_recv,
1074 	.supp_send = optee_supp_send,
1075 	.shm_register = optee_shm_register_supp,
1076 	.shm_unregister = optee_shm_unregister_supp,
1077 };
1078 
1079 static const struct tee_desc optee_supp_desc = {
1080 	.name = DRIVER_NAME "-supp",
1081 	.ops = &optee_supp_ops,
1082 	.owner = THIS_MODULE,
1083 	.flags = TEE_DESC_PRIVILEGED,
1084 };
1085 
1086 static const struct optee_ops optee_ops = {
1087 	.do_call_with_arg = optee_smc_do_call_with_arg,
1088 	.to_msg_param = optee_to_msg_param,
1089 	.from_msg_param = optee_from_msg_param,
1090 };
1091 
1092 static int enable_async_notif(optee_invoke_fn *invoke_fn)
1093 {
1094 	struct arm_smccc_res res;
1095 
1096 	invoke_fn(OPTEE_SMC_ENABLE_ASYNC_NOTIF, 0, 0, 0, 0, 0, 0, 0, &res);
1097 
1098 	if (res.a0)
1099 		return -EINVAL;
1100 	return 0;
1101 }
1102 
1103 static bool optee_msg_api_uid_is_optee_api(optee_invoke_fn *invoke_fn)
1104 {
1105 	struct arm_smccc_res res;
1106 
1107 	invoke_fn(OPTEE_SMC_CALLS_UID, 0, 0, 0, 0, 0, 0, 0, &res);
1108 
1109 	if (res.a0 == OPTEE_MSG_UID_0 && res.a1 == OPTEE_MSG_UID_1 &&
1110 	    res.a2 == OPTEE_MSG_UID_2 && res.a3 == OPTEE_MSG_UID_3)
1111 		return true;
1112 	return false;
1113 }
1114 
1115 static void optee_msg_get_os_revision(optee_invoke_fn *invoke_fn)
1116 {
1117 	union {
1118 		struct arm_smccc_res smccc;
1119 		struct optee_smc_call_get_os_revision_result result;
1120 	} res = {
1121 		.result = {
1122 			.build_id = 0
1123 		}
1124 	};
1125 
1126 	invoke_fn(OPTEE_SMC_CALL_GET_OS_REVISION, 0, 0, 0, 0, 0, 0, 0,
1127 		  &res.smccc);
1128 
1129 	if (res.result.build_id)
1130 		pr_info("revision %lu.%lu (%08lx)", res.result.major,
1131 			res.result.minor, res.result.build_id);
1132 	else
1133 		pr_info("revision %lu.%lu", res.result.major, res.result.minor);
1134 }
1135 
1136 static bool optee_msg_api_revision_is_compatible(optee_invoke_fn *invoke_fn)
1137 {
1138 	union {
1139 		struct arm_smccc_res smccc;
1140 		struct optee_smc_calls_revision_result result;
1141 	} res;
1142 
1143 	invoke_fn(OPTEE_SMC_CALLS_REVISION, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1144 
1145 	if (res.result.major == OPTEE_MSG_REVISION_MAJOR &&
1146 	    (int)res.result.minor >= OPTEE_MSG_REVISION_MINOR)
1147 		return true;
1148 	return false;
1149 }
1150 
1151 static bool optee_msg_exchange_capabilities(optee_invoke_fn *invoke_fn,
1152 					    u32 *sec_caps, u32 *max_notif_value,
1153 					    unsigned int *rpc_param_count)
1154 {
1155 	union {
1156 		struct arm_smccc_res smccc;
1157 		struct optee_smc_exchange_capabilities_result result;
1158 	} res;
1159 	u32 a1 = 0;
1160 
1161 	/*
1162 	 * TODO This isn't enough to tell if it's UP system (from kernel
1163 	 * point of view) or not, is_smp() returns the information
1164 	 * needed, but can't be called directly from here.
1165 	 */
1166 	if (!IS_ENABLED(CONFIG_SMP) || nr_cpu_ids == 1)
1167 		a1 |= OPTEE_SMC_NSEC_CAP_UNIPROCESSOR;
1168 
1169 	invoke_fn(OPTEE_SMC_EXCHANGE_CAPABILITIES, a1, 0, 0, 0, 0, 0, 0,
1170 		  &res.smccc);
1171 
1172 	if (res.result.status != OPTEE_SMC_RETURN_OK)
1173 		return false;
1174 
1175 	*sec_caps = res.result.capabilities;
1176 	if (*sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF)
1177 		*max_notif_value = res.result.max_notif_value;
1178 	else
1179 		*max_notif_value = OPTEE_DEFAULT_MAX_NOTIF_VALUE;
1180 	if (*sec_caps & OPTEE_SMC_SEC_CAP_RPC_ARG)
1181 		*rpc_param_count = (u8)res.result.data;
1182 	else
1183 		*rpc_param_count = 0;
1184 
1185 	return true;
1186 }
1187 
1188 static struct tee_shm_pool *
1189 optee_config_shm_memremap(optee_invoke_fn *invoke_fn, void **memremaped_shm)
1190 {
1191 	union {
1192 		struct arm_smccc_res smccc;
1193 		struct optee_smc_get_shm_config_result result;
1194 	} res;
1195 	unsigned long vaddr;
1196 	phys_addr_t paddr;
1197 	size_t size;
1198 	phys_addr_t begin;
1199 	phys_addr_t end;
1200 	void *va;
1201 	void *rc;
1202 
1203 	invoke_fn(OPTEE_SMC_GET_SHM_CONFIG, 0, 0, 0, 0, 0, 0, 0, &res.smccc);
1204 	if (res.result.status != OPTEE_SMC_RETURN_OK) {
1205 		pr_err("static shm service not available\n");
1206 		return ERR_PTR(-ENOENT);
1207 	}
1208 
1209 	if (res.result.settings != OPTEE_SMC_SHM_CACHED) {
1210 		pr_err("only normal cached shared memory supported\n");
1211 		return ERR_PTR(-EINVAL);
1212 	}
1213 
1214 	begin = roundup(res.result.start, PAGE_SIZE);
1215 	end = rounddown(res.result.start + res.result.size, PAGE_SIZE);
1216 	paddr = begin;
1217 	size = end - begin;
1218 
1219 	va = memremap(paddr, size, MEMREMAP_WB);
1220 	if (!va) {
1221 		pr_err("shared memory ioremap failed\n");
1222 		return ERR_PTR(-EINVAL);
1223 	}
1224 	vaddr = (unsigned long)va;
1225 
1226 	rc = tee_shm_pool_alloc_res_mem(vaddr, paddr, size,
1227 					OPTEE_MIN_STATIC_POOL_ALIGN);
1228 	if (IS_ERR(rc))
1229 		memunmap(va);
1230 	else
1231 		*memremaped_shm = va;
1232 
1233 	return rc;
1234 }
1235 
1236 /* Simple wrapper functions to be able to use a function pointer */
1237 static void optee_smccc_smc(unsigned long a0, unsigned long a1,
1238 			    unsigned long a2, unsigned long a3,
1239 			    unsigned long a4, unsigned long a5,
1240 			    unsigned long a6, unsigned long a7,
1241 			    struct arm_smccc_res *res)
1242 {
1243 	arm_smccc_smc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1244 }
1245 
1246 static void optee_smccc_hvc(unsigned long a0, unsigned long a1,
1247 			    unsigned long a2, unsigned long a3,
1248 			    unsigned long a4, unsigned long a5,
1249 			    unsigned long a6, unsigned long a7,
1250 			    struct arm_smccc_res *res)
1251 {
1252 	arm_smccc_hvc(a0, a1, a2, a3, a4, a5, a6, a7, res);
1253 }
1254 
1255 static optee_invoke_fn *get_invoke_func(struct device *dev)
1256 {
1257 	const char *method;
1258 
1259 	pr_info("probing for conduit method.\n");
1260 
1261 	if (device_property_read_string(dev, "method", &method)) {
1262 		pr_warn("missing \"method\" property\n");
1263 		return ERR_PTR(-ENXIO);
1264 	}
1265 
1266 	if (!strcmp("hvc", method))
1267 		return optee_smccc_hvc;
1268 	else if (!strcmp("smc", method))
1269 		return optee_smccc_smc;
1270 
1271 	pr_warn("invalid \"method\" property: %s\n", method);
1272 	return ERR_PTR(-EINVAL);
1273 }
1274 
1275 /* optee_remove - Device Removal Routine
1276  * @pdev: platform device information struct
1277  *
1278  * optee_remove is called by platform subsystem to alert the driver
1279  * that it should release the device
1280  */
1281 static int optee_smc_remove(struct platform_device *pdev)
1282 {
1283 	struct optee *optee = platform_get_drvdata(pdev);
1284 
1285 	/*
1286 	 * Ask OP-TEE to free all cached shared memory objects to decrease
1287 	 * reference counters and also avoid wild pointers in secure world
1288 	 * into the old shared memory range.
1289 	 */
1290 	if (!optee->rpc_param_count)
1291 		optee_disable_shm_cache(optee);
1292 
1293 	optee_smc_notif_uninit_irq(optee);
1294 
1295 	optee_remove_common(optee);
1296 
1297 	if (optee->smc.memremaped_shm)
1298 		memunmap(optee->smc.memremaped_shm);
1299 
1300 	kfree(optee);
1301 
1302 	return 0;
1303 }
1304 
1305 /* optee_shutdown - Device Removal Routine
1306  * @pdev: platform device information struct
1307  *
1308  * platform_shutdown is called by the platform subsystem to alert
1309  * the driver that a shutdown, reboot, or kexec is happening and
1310  * device must be disabled.
1311  */
1312 static void optee_shutdown(struct platform_device *pdev)
1313 {
1314 	struct optee *optee = platform_get_drvdata(pdev);
1315 
1316 	if (!optee->rpc_param_count)
1317 		optee_disable_shm_cache(optee);
1318 }
1319 
1320 static int optee_probe(struct platform_device *pdev)
1321 {
1322 	optee_invoke_fn *invoke_fn;
1323 	struct tee_shm_pool *pool = ERR_PTR(-EINVAL);
1324 	struct optee *optee = NULL;
1325 	void *memremaped_shm = NULL;
1326 	unsigned int rpc_param_count;
1327 	struct tee_device *teedev;
1328 	struct tee_context *ctx;
1329 	u32 max_notif_value;
1330 	u32 sec_caps;
1331 	int rc;
1332 
1333 	invoke_fn = get_invoke_func(&pdev->dev);
1334 	if (IS_ERR(invoke_fn))
1335 		return PTR_ERR(invoke_fn);
1336 
1337 	if (!optee_msg_api_uid_is_optee_api(invoke_fn)) {
1338 		pr_warn("api uid mismatch\n");
1339 		return -EINVAL;
1340 	}
1341 
1342 	optee_msg_get_os_revision(invoke_fn);
1343 
1344 	if (!optee_msg_api_revision_is_compatible(invoke_fn)) {
1345 		pr_warn("api revision mismatch\n");
1346 		return -EINVAL;
1347 	}
1348 
1349 	if (!optee_msg_exchange_capabilities(invoke_fn, &sec_caps,
1350 					     &max_notif_value,
1351 					     &rpc_param_count)) {
1352 		pr_warn("capabilities mismatch\n");
1353 		return -EINVAL;
1354 	}
1355 
1356 	/*
1357 	 * Try to use dynamic shared memory if possible
1358 	 */
1359 	if (sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1360 		pool = optee_shm_pool_alloc_pages();
1361 
1362 	/*
1363 	 * If dynamic shared memory is not available or failed - try static one
1364 	 */
1365 	if (IS_ERR(pool) && (sec_caps & OPTEE_SMC_SEC_CAP_HAVE_RESERVED_SHM))
1366 		pool = optee_config_shm_memremap(invoke_fn, &memremaped_shm);
1367 
1368 	if (IS_ERR(pool))
1369 		return PTR_ERR(pool);
1370 
1371 	optee = kzalloc(sizeof(*optee), GFP_KERNEL);
1372 	if (!optee) {
1373 		rc = -ENOMEM;
1374 		goto err_free_pool;
1375 	}
1376 
1377 	optee->ops = &optee_ops;
1378 	optee->smc.invoke_fn = invoke_fn;
1379 	optee->smc.sec_caps = sec_caps;
1380 	optee->rpc_param_count = rpc_param_count;
1381 
1382 	teedev = tee_device_alloc(&optee_clnt_desc, NULL, pool, optee);
1383 	if (IS_ERR(teedev)) {
1384 		rc = PTR_ERR(teedev);
1385 		goto err_free_optee;
1386 	}
1387 	optee->teedev = teedev;
1388 
1389 	teedev = tee_device_alloc(&optee_supp_desc, NULL, pool, optee);
1390 	if (IS_ERR(teedev)) {
1391 		rc = PTR_ERR(teedev);
1392 		goto err_unreg_teedev;
1393 	}
1394 	optee->supp_teedev = teedev;
1395 
1396 	rc = tee_device_register(optee->teedev);
1397 	if (rc)
1398 		goto err_unreg_supp_teedev;
1399 
1400 	rc = tee_device_register(optee->supp_teedev);
1401 	if (rc)
1402 		goto err_unreg_supp_teedev;
1403 
1404 	mutex_init(&optee->call_queue.mutex);
1405 	INIT_LIST_HEAD(&optee->call_queue.waiters);
1406 	optee_supp_init(&optee->supp);
1407 	optee->smc.memremaped_shm = memremaped_shm;
1408 	optee->pool = pool;
1409 
1410 	platform_set_drvdata(pdev, optee);
1411 	ctx = teedev_open(optee->teedev);
1412 	if (IS_ERR(ctx)) {
1413 		rc = PTR_ERR(ctx);
1414 		goto err_supp_uninit;
1415 	}
1416 	optee->ctx = ctx;
1417 	rc = optee_notif_init(optee, max_notif_value);
1418 	if (rc)
1419 		goto err_close_ctx;
1420 
1421 	if (sec_caps & OPTEE_SMC_SEC_CAP_ASYNC_NOTIF) {
1422 		unsigned int irq;
1423 
1424 		rc = platform_get_irq(pdev, 0);
1425 		if (rc < 0) {
1426 			pr_err("platform_get_irq: ret %d\n", rc);
1427 			goto err_notif_uninit;
1428 		}
1429 		irq = rc;
1430 
1431 		rc = optee_smc_notif_init_irq(optee, irq);
1432 		if (rc) {
1433 			irq_dispose_mapping(irq);
1434 			goto err_notif_uninit;
1435 		}
1436 		enable_async_notif(optee->smc.invoke_fn);
1437 		pr_info("Asynchronous notifications enabled\n");
1438 	}
1439 
1440 	/*
1441 	 * Ensure that there are no pre-existing shm objects before enabling
1442 	 * the shm cache so that there's no chance of receiving an invalid
1443 	 * address during shutdown. This could occur, for example, if we're
1444 	 * kexec booting from an older kernel that did not properly cleanup the
1445 	 * shm cache.
1446 	 */
1447 	optee_disable_unmapped_shm_cache(optee);
1448 
1449 	/*
1450 	 * Only enable the shm cache in case we're not able to pass the RPC
1451 	 * arg struct right after the normal arg struct.
1452 	 */
1453 	if (!optee->rpc_param_count)
1454 		optee_enable_shm_cache(optee);
1455 
1456 	if (optee->smc.sec_caps & OPTEE_SMC_SEC_CAP_DYNAMIC_SHM)
1457 		pr_info("dynamic shared memory is enabled\n");
1458 
1459 	rc = optee_enumerate_devices(PTA_CMD_GET_DEVICES);
1460 	if (rc)
1461 		goto err_disable_shm_cache;
1462 
1463 	pr_info("initialized driver\n");
1464 	return 0;
1465 
1466 err_disable_shm_cache:
1467 	if (!optee->rpc_param_count)
1468 		optee_disable_shm_cache(optee);
1469 	optee_smc_notif_uninit_irq(optee);
1470 	optee_unregister_devices();
1471 err_notif_uninit:
1472 	optee_notif_uninit(optee);
1473 err_close_ctx:
1474 	teedev_close_context(ctx);
1475 err_supp_uninit:
1476 	optee_supp_uninit(&optee->supp);
1477 	mutex_destroy(&optee->call_queue.mutex);
1478 err_unreg_supp_teedev:
1479 	tee_device_unregister(optee->supp_teedev);
1480 err_unreg_teedev:
1481 	tee_device_unregister(optee->teedev);
1482 err_free_optee:
1483 	kfree(optee);
1484 err_free_pool:
1485 	tee_shm_pool_free(pool);
1486 	if (memremaped_shm)
1487 		memunmap(memremaped_shm);
1488 	return rc;
1489 }
1490 
1491 static const struct of_device_id optee_dt_match[] = {
1492 	{ .compatible = "linaro,optee-tz" },
1493 	{},
1494 };
1495 MODULE_DEVICE_TABLE(of, optee_dt_match);
1496 
1497 static struct platform_driver optee_driver = {
1498 	.probe  = optee_probe,
1499 	.remove = optee_smc_remove,
1500 	.shutdown = optee_shutdown,
1501 	.driver = {
1502 		.name = "optee",
1503 		.of_match_table = optee_dt_match,
1504 	},
1505 };
1506 
1507 int optee_smc_abi_register(void)
1508 {
1509 	return platform_driver_register(&optee_driver);
1510 }
1511 
1512 void optee_smc_abi_unregister(void)
1513 {
1514 	platform_driver_unregister(&optee_driver);
1515 }
1516