xref: /openbmc/linux/drivers/spi/spi.c (revision a97126265dfe10d3321c0fde4708a6cea49b19ed)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/pm_domain.h>
24 #include <linux/property.h>
25 #include <linux/export.h>
26 #include <linux/sched/rt.h>
27 #include <uapi/linux/sched/types.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/ioport.h>
31 #include <linux/acpi.h>
32 #include <linux/highmem.h>
33 #include <linux/idr.h>
34 #include <linux/platform_data/x86/apple.h>
35 #include <linux/ptp_clock_kernel.h>
36 #include <linux/percpu.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/spi.h>
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 
43 #include "internals.h"
44 
45 static DEFINE_IDR(spi_master_idr);
46 
47 static void spidev_release(struct device *dev)
48 {
49 	struct spi_device	*spi = to_spi_device(dev);
50 
51 	spi_controller_put(spi->controller);
52 	kfree(spi->driver_override);
53 	free_percpu(spi->pcpu_statistics);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 static ssize_t driver_override_store(struct device *dev,
72 				     struct device_attribute *a,
73 				     const char *buf, size_t count)
74 {
75 	struct spi_device *spi = to_spi_device(dev);
76 	int ret;
77 
78 	ret = driver_set_override(dev, &spi->driver_override, buf, count);
79 	if (ret)
80 		return ret;
81 
82 	return count;
83 }
84 
85 static ssize_t driver_override_show(struct device *dev,
86 				    struct device_attribute *a, char *buf)
87 {
88 	const struct spi_device *spi = to_spi_device(dev);
89 	ssize_t len;
90 
91 	device_lock(dev);
92 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
93 	device_unlock(dev);
94 	return len;
95 }
96 static DEVICE_ATTR_RW(driver_override);
97 
98 static struct spi_statistics *spi_alloc_pcpu_stats(struct device *dev)
99 {
100 	struct spi_statistics __percpu *pcpu_stats;
101 
102 	if (dev)
103 		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
104 	else
105 		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
106 
107 	if (pcpu_stats) {
108 		int cpu;
109 
110 		for_each_possible_cpu(cpu) {
111 			struct spi_statistics *stat;
112 
113 			stat = per_cpu_ptr(pcpu_stats, cpu);
114 			u64_stats_init(&stat->syncp);
115 		}
116 	}
117 	return pcpu_stats;
118 }
119 
120 #define spi_pcpu_stats_totalize(ret, in, field)				\
121 do {									\
122 	int i;								\
123 	ret = 0;							\
124 	for_each_possible_cpu(i) {					\
125 		const struct spi_statistics *pcpu_stats;		\
126 		u64 inc;						\
127 		unsigned int start;					\
128 		pcpu_stats = per_cpu_ptr(in, i);			\
129 		do {							\
130 			start = u64_stats_fetch_begin_irq(		\
131 					&pcpu_stats->syncp);		\
132 			inc = u64_stats_read(&pcpu_stats->field);	\
133 		} while (u64_stats_fetch_retry_irq(			\
134 					&pcpu_stats->syncp, start));	\
135 		ret += inc;						\
136 	}								\
137 } while (0)
138 
139 #define SPI_STATISTICS_ATTRS(field, file)				\
140 static ssize_t spi_controller_##field##_show(struct device *dev,	\
141 					     struct device_attribute *attr, \
142 					     char *buf)			\
143 {									\
144 	struct spi_controller *ctlr = container_of(dev,			\
145 					 struct spi_controller, dev);	\
146 	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
147 }									\
148 static struct device_attribute dev_attr_spi_controller_##field = {	\
149 	.attr = { .name = file, .mode = 0444 },				\
150 	.show = spi_controller_##field##_show,				\
151 };									\
152 static ssize_t spi_device_##field##_show(struct device *dev,		\
153 					 struct device_attribute *attr,	\
154 					char *buf)			\
155 {									\
156 	struct spi_device *spi = to_spi_device(dev);			\
157 	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
158 }									\
159 static struct device_attribute dev_attr_spi_device_##field = {		\
160 	.attr = { .name = file, .mode = 0444 },				\
161 	.show = spi_device_##field##_show,				\
162 }
163 
164 #define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
165 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
166 					    char *buf)			\
167 {									\
168 	ssize_t len;							\
169 	u64 val;							\
170 	spi_pcpu_stats_totalize(val, stat, field);			\
171 	len = sysfs_emit(buf, "%llu\n", val);				\
172 	return len;							\
173 }									\
174 SPI_STATISTICS_ATTRS(name, file)
175 
176 #define SPI_STATISTICS_SHOW(field)					\
177 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
178 				 field)
179 
180 SPI_STATISTICS_SHOW(messages);
181 SPI_STATISTICS_SHOW(transfers);
182 SPI_STATISTICS_SHOW(errors);
183 SPI_STATISTICS_SHOW(timedout);
184 
185 SPI_STATISTICS_SHOW(spi_sync);
186 SPI_STATISTICS_SHOW(spi_sync_immediate);
187 SPI_STATISTICS_SHOW(spi_async);
188 
189 SPI_STATISTICS_SHOW(bytes);
190 SPI_STATISTICS_SHOW(bytes_rx);
191 SPI_STATISTICS_SHOW(bytes_tx);
192 
193 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
194 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
195 				 "transfer_bytes_histo_" number,	\
196 				 transfer_bytes_histo[index])
197 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
198 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
214 
215 SPI_STATISTICS_SHOW(transfers_split_maxsize);
216 
217 static struct attribute *spi_dev_attrs[] = {
218 	&dev_attr_modalias.attr,
219 	&dev_attr_driver_override.attr,
220 	NULL,
221 };
222 
223 static const struct attribute_group spi_dev_group = {
224 	.attrs  = spi_dev_attrs,
225 };
226 
227 static struct attribute *spi_device_statistics_attrs[] = {
228 	&dev_attr_spi_device_messages.attr,
229 	&dev_attr_spi_device_transfers.attr,
230 	&dev_attr_spi_device_errors.attr,
231 	&dev_attr_spi_device_timedout.attr,
232 	&dev_attr_spi_device_spi_sync.attr,
233 	&dev_attr_spi_device_spi_sync_immediate.attr,
234 	&dev_attr_spi_device_spi_async.attr,
235 	&dev_attr_spi_device_bytes.attr,
236 	&dev_attr_spi_device_bytes_rx.attr,
237 	&dev_attr_spi_device_bytes_tx.attr,
238 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
239 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
240 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
241 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
242 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
243 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
244 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
245 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
246 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
247 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
248 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
249 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
250 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
251 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
252 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
253 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
254 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
255 	&dev_attr_spi_device_transfers_split_maxsize.attr,
256 	NULL,
257 };
258 
259 static const struct attribute_group spi_device_statistics_group = {
260 	.name  = "statistics",
261 	.attrs  = spi_device_statistics_attrs,
262 };
263 
264 static const struct attribute_group *spi_dev_groups[] = {
265 	&spi_dev_group,
266 	&spi_device_statistics_group,
267 	NULL,
268 };
269 
270 static struct attribute *spi_controller_statistics_attrs[] = {
271 	&dev_attr_spi_controller_messages.attr,
272 	&dev_attr_spi_controller_transfers.attr,
273 	&dev_attr_spi_controller_errors.attr,
274 	&dev_attr_spi_controller_timedout.attr,
275 	&dev_attr_spi_controller_spi_sync.attr,
276 	&dev_attr_spi_controller_spi_sync_immediate.attr,
277 	&dev_attr_spi_controller_spi_async.attr,
278 	&dev_attr_spi_controller_bytes.attr,
279 	&dev_attr_spi_controller_bytes_rx.attr,
280 	&dev_attr_spi_controller_bytes_tx.attr,
281 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
282 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
283 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
284 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
285 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
286 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
287 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
288 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
289 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
290 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
291 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
292 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
293 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
294 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
295 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
296 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
297 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
298 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
299 	NULL,
300 };
301 
302 static const struct attribute_group spi_controller_statistics_group = {
303 	.name  = "statistics",
304 	.attrs  = spi_controller_statistics_attrs,
305 };
306 
307 static const struct attribute_group *spi_master_groups[] = {
308 	&spi_controller_statistics_group,
309 	NULL,
310 };
311 
312 static void spi_statistics_add_transfer_stats(struct spi_statistics *pcpu_stats,
313 					      struct spi_transfer *xfer,
314 					      struct spi_controller *ctlr)
315 {
316 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
317 	struct spi_statistics *stats;
318 
319 	if (l2len < 0)
320 		l2len = 0;
321 
322 	get_cpu();
323 	stats = this_cpu_ptr(pcpu_stats);
324 	u64_stats_update_begin(&stats->syncp);
325 
326 	u64_stats_inc(&stats->transfers);
327 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
328 
329 	u64_stats_add(&stats->bytes, xfer->len);
330 	if ((xfer->tx_buf) &&
331 	    (xfer->tx_buf != ctlr->dummy_tx))
332 		u64_stats_add(&stats->bytes_tx, xfer->len);
333 	if ((xfer->rx_buf) &&
334 	    (xfer->rx_buf != ctlr->dummy_rx))
335 		u64_stats_add(&stats->bytes_rx, xfer->len);
336 
337 	u64_stats_update_end(&stats->syncp);
338 	put_cpu();
339 }
340 
341 /*
342  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
343  * and the sysfs version makes coldplug work too.
344  */
345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
346 {
347 	while (id->name[0]) {
348 		if (!strcmp(name, id->name))
349 			return id;
350 		id++;
351 	}
352 	return NULL;
353 }
354 
355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
356 {
357 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
358 
359 	return spi_match_id(sdrv->id_table, sdev->modalias);
360 }
361 EXPORT_SYMBOL_GPL(spi_get_device_id);
362 
363 static int spi_match_device(struct device *dev, struct device_driver *drv)
364 {
365 	const struct spi_device	*spi = to_spi_device(dev);
366 	const struct spi_driver	*sdrv = to_spi_driver(drv);
367 
368 	/* Check override first, and if set, only use the named driver */
369 	if (spi->driver_override)
370 		return strcmp(spi->driver_override, drv->name) == 0;
371 
372 	/* Attempt an OF style match */
373 	if (of_driver_match_device(dev, drv))
374 		return 1;
375 
376 	/* Then try ACPI */
377 	if (acpi_driver_match_device(dev, drv))
378 		return 1;
379 
380 	if (sdrv->id_table)
381 		return !!spi_match_id(sdrv->id_table, spi->modalias);
382 
383 	return strcmp(spi->modalias, drv->name) == 0;
384 }
385 
386 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
387 {
388 	const struct spi_device		*spi = to_spi_device(dev);
389 	int rc;
390 
391 	rc = acpi_device_uevent_modalias(dev, env);
392 	if (rc != -ENODEV)
393 		return rc;
394 
395 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
396 }
397 
398 static int spi_probe(struct device *dev)
399 {
400 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
401 	struct spi_device		*spi = to_spi_device(dev);
402 	int ret;
403 
404 	ret = of_clk_set_defaults(dev->of_node, false);
405 	if (ret)
406 		return ret;
407 
408 	if (dev->of_node) {
409 		spi->irq = of_irq_get(dev->of_node, 0);
410 		if (spi->irq == -EPROBE_DEFER)
411 			return -EPROBE_DEFER;
412 		if (spi->irq < 0)
413 			spi->irq = 0;
414 	}
415 
416 	ret = dev_pm_domain_attach(dev, true);
417 	if (ret)
418 		return ret;
419 
420 	if (sdrv->probe) {
421 		ret = sdrv->probe(spi);
422 		if (ret)
423 			dev_pm_domain_detach(dev, true);
424 	}
425 
426 	return ret;
427 }
428 
429 static void spi_remove(struct device *dev)
430 {
431 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
432 
433 	if (sdrv->remove)
434 		sdrv->remove(to_spi_device(dev));
435 
436 	dev_pm_domain_detach(dev, true);
437 }
438 
439 static void spi_shutdown(struct device *dev)
440 {
441 	if (dev->driver) {
442 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
443 
444 		if (sdrv->shutdown)
445 			sdrv->shutdown(to_spi_device(dev));
446 	}
447 }
448 
449 struct bus_type spi_bus_type = {
450 	.name		= "spi",
451 	.dev_groups	= spi_dev_groups,
452 	.match		= spi_match_device,
453 	.uevent		= spi_uevent,
454 	.probe		= spi_probe,
455 	.remove		= spi_remove,
456 	.shutdown	= spi_shutdown,
457 };
458 EXPORT_SYMBOL_GPL(spi_bus_type);
459 
460 /**
461  * __spi_register_driver - register a SPI driver
462  * @owner: owner module of the driver to register
463  * @sdrv: the driver to register
464  * Context: can sleep
465  *
466  * Return: zero on success, else a negative error code.
467  */
468 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
469 {
470 	sdrv->driver.owner = owner;
471 	sdrv->driver.bus = &spi_bus_type;
472 
473 	/*
474 	 * For Really Good Reasons we use spi: modaliases not of:
475 	 * modaliases for DT so module autoloading won't work if we
476 	 * don't have a spi_device_id as well as a compatible string.
477 	 */
478 	if (sdrv->driver.of_match_table) {
479 		const struct of_device_id *of_id;
480 
481 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
482 		     of_id++) {
483 			const char *of_name;
484 
485 			/* Strip off any vendor prefix */
486 			of_name = strnchr(of_id->compatible,
487 					  sizeof(of_id->compatible), ',');
488 			if (of_name)
489 				of_name++;
490 			else
491 				of_name = of_id->compatible;
492 
493 			if (sdrv->id_table) {
494 				const struct spi_device_id *spi_id;
495 
496 				spi_id = spi_match_id(sdrv->id_table, of_name);
497 				if (spi_id)
498 					continue;
499 			} else {
500 				if (strcmp(sdrv->driver.name, of_name) == 0)
501 					continue;
502 			}
503 
504 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
505 				sdrv->driver.name, of_id->compatible);
506 		}
507 	}
508 
509 	return driver_register(&sdrv->driver);
510 }
511 EXPORT_SYMBOL_GPL(__spi_register_driver);
512 
513 /*-------------------------------------------------------------------------*/
514 
515 /*
516  * SPI devices should normally not be created by SPI device drivers; that
517  * would make them board-specific.  Similarly with SPI controller drivers.
518  * Device registration normally goes into like arch/.../mach.../board-YYY.c
519  * with other readonly (flashable) information about mainboard devices.
520  */
521 
522 struct boardinfo {
523 	struct list_head	list;
524 	struct spi_board_info	board_info;
525 };
526 
527 static LIST_HEAD(board_list);
528 static LIST_HEAD(spi_controller_list);
529 
530 /*
531  * Used to protect add/del operation for board_info list and
532  * spi_controller list, and their matching process also used
533  * to protect object of type struct idr.
534  */
535 static DEFINE_MUTEX(board_lock);
536 
537 /**
538  * spi_alloc_device - Allocate a new SPI device
539  * @ctlr: Controller to which device is connected
540  * Context: can sleep
541  *
542  * Allows a driver to allocate and initialize a spi_device without
543  * registering it immediately.  This allows a driver to directly
544  * fill the spi_device with device parameters before calling
545  * spi_add_device() on it.
546  *
547  * Caller is responsible to call spi_add_device() on the returned
548  * spi_device structure to add it to the SPI controller.  If the caller
549  * needs to discard the spi_device without adding it, then it should
550  * call spi_dev_put() on it.
551  *
552  * Return: a pointer to the new device, or NULL.
553  */
554 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
555 {
556 	struct spi_device	*spi;
557 
558 	if (!spi_controller_get(ctlr))
559 		return NULL;
560 
561 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
562 	if (!spi) {
563 		spi_controller_put(ctlr);
564 		return NULL;
565 	}
566 
567 	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
568 	if (!spi->pcpu_statistics) {
569 		kfree(spi);
570 		spi_controller_put(ctlr);
571 		return NULL;
572 	}
573 
574 	spi->master = spi->controller = ctlr;
575 	spi->dev.parent = &ctlr->dev;
576 	spi->dev.bus = &spi_bus_type;
577 	spi->dev.release = spidev_release;
578 	spi->mode = ctlr->buswidth_override_bits;
579 
580 	device_initialize(&spi->dev);
581 	return spi;
582 }
583 EXPORT_SYMBOL_GPL(spi_alloc_device);
584 
585 static void spi_dev_set_name(struct spi_device *spi)
586 {
587 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
588 
589 	if (adev) {
590 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
591 		return;
592 	}
593 
594 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
595 		     spi->chip_select);
596 }
597 
598 static int spi_dev_check(struct device *dev, void *data)
599 {
600 	struct spi_device *spi = to_spi_device(dev);
601 	struct spi_device *new_spi = data;
602 
603 	if (spi->controller == new_spi->controller &&
604 	    spi->chip_select == new_spi->chip_select)
605 		return -EBUSY;
606 	return 0;
607 }
608 
609 static void spi_cleanup(struct spi_device *spi)
610 {
611 	if (spi->controller->cleanup)
612 		spi->controller->cleanup(spi);
613 }
614 
615 static int __spi_add_device(struct spi_device *spi)
616 {
617 	struct spi_controller *ctlr = spi->controller;
618 	struct device *dev = ctlr->dev.parent;
619 	int status;
620 
621 	/*
622 	 * We need to make sure there's no other device with this
623 	 * chipselect **BEFORE** we call setup(), else we'll trash
624 	 * its configuration.
625 	 */
626 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
627 	if (status) {
628 		dev_err(dev, "chipselect %d already in use\n",
629 				spi->chip_select);
630 		return status;
631 	}
632 
633 	/* Controller may unregister concurrently */
634 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
635 	    !device_is_registered(&ctlr->dev)) {
636 		return -ENODEV;
637 	}
638 
639 	if (ctlr->cs_gpiods)
640 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
641 
642 	/*
643 	 * Drivers may modify this initial i/o setup, but will
644 	 * normally rely on the device being setup.  Devices
645 	 * using SPI_CS_HIGH can't coexist well otherwise...
646 	 */
647 	status = spi_setup(spi);
648 	if (status < 0) {
649 		dev_err(dev, "can't setup %s, status %d\n",
650 				dev_name(&spi->dev), status);
651 		return status;
652 	}
653 
654 	/* Device may be bound to an active driver when this returns */
655 	status = device_add(&spi->dev);
656 	if (status < 0) {
657 		dev_err(dev, "can't add %s, status %d\n",
658 				dev_name(&spi->dev), status);
659 		spi_cleanup(spi);
660 	} else {
661 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
662 	}
663 
664 	return status;
665 }
666 
667 /**
668  * spi_add_device - Add spi_device allocated with spi_alloc_device
669  * @spi: spi_device to register
670  *
671  * Companion function to spi_alloc_device.  Devices allocated with
672  * spi_alloc_device can be added onto the spi bus with this function.
673  *
674  * Return: 0 on success; negative errno on failure
675  */
676 int spi_add_device(struct spi_device *spi)
677 {
678 	struct spi_controller *ctlr = spi->controller;
679 	struct device *dev = ctlr->dev.parent;
680 	int status;
681 
682 	/* Chipselects are numbered 0..max; validate. */
683 	if (spi->chip_select >= ctlr->num_chipselect) {
684 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
685 			ctlr->num_chipselect);
686 		return -EINVAL;
687 	}
688 
689 	/* Set the bus ID string */
690 	spi_dev_set_name(spi);
691 
692 	mutex_lock(&ctlr->add_lock);
693 	status = __spi_add_device(spi);
694 	mutex_unlock(&ctlr->add_lock);
695 	return status;
696 }
697 EXPORT_SYMBOL_GPL(spi_add_device);
698 
699 static int spi_add_device_locked(struct spi_device *spi)
700 {
701 	struct spi_controller *ctlr = spi->controller;
702 	struct device *dev = ctlr->dev.parent;
703 
704 	/* Chipselects are numbered 0..max; validate. */
705 	if (spi->chip_select >= ctlr->num_chipselect) {
706 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
707 			ctlr->num_chipselect);
708 		return -EINVAL;
709 	}
710 
711 	/* Set the bus ID string */
712 	spi_dev_set_name(spi);
713 
714 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
715 	return __spi_add_device(spi);
716 }
717 
718 /**
719  * spi_new_device - instantiate one new SPI device
720  * @ctlr: Controller to which device is connected
721  * @chip: Describes the SPI device
722  * Context: can sleep
723  *
724  * On typical mainboards, this is purely internal; and it's not needed
725  * after board init creates the hard-wired devices.  Some development
726  * platforms may not be able to use spi_register_board_info though, and
727  * this is exported so that for example a USB or parport based adapter
728  * driver could add devices (which it would learn about out-of-band).
729  *
730  * Return: the new device, or NULL.
731  */
732 struct spi_device *spi_new_device(struct spi_controller *ctlr,
733 				  struct spi_board_info *chip)
734 {
735 	struct spi_device	*proxy;
736 	int			status;
737 
738 	/*
739 	 * NOTE:  caller did any chip->bus_num checks necessary.
740 	 *
741 	 * Also, unless we change the return value convention to use
742 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
743 	 * suggests syslogged diagnostics are best here (ugh).
744 	 */
745 
746 	proxy = spi_alloc_device(ctlr);
747 	if (!proxy)
748 		return NULL;
749 
750 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
751 
752 	proxy->chip_select = chip->chip_select;
753 	proxy->max_speed_hz = chip->max_speed_hz;
754 	proxy->mode = chip->mode;
755 	proxy->irq = chip->irq;
756 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
757 	proxy->dev.platform_data = (void *) chip->platform_data;
758 	proxy->controller_data = chip->controller_data;
759 	proxy->controller_state = NULL;
760 
761 	if (chip->swnode) {
762 		status = device_add_software_node(&proxy->dev, chip->swnode);
763 		if (status) {
764 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
765 				chip->modalias, status);
766 			goto err_dev_put;
767 		}
768 	}
769 
770 	status = spi_add_device(proxy);
771 	if (status < 0)
772 		goto err_dev_put;
773 
774 	return proxy;
775 
776 err_dev_put:
777 	device_remove_software_node(&proxy->dev);
778 	spi_dev_put(proxy);
779 	return NULL;
780 }
781 EXPORT_SYMBOL_GPL(spi_new_device);
782 
783 /**
784  * spi_unregister_device - unregister a single SPI device
785  * @spi: spi_device to unregister
786  *
787  * Start making the passed SPI device vanish. Normally this would be handled
788  * by spi_unregister_controller().
789  */
790 void spi_unregister_device(struct spi_device *spi)
791 {
792 	if (!spi)
793 		return;
794 
795 	if (spi->dev.of_node) {
796 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
797 		of_node_put(spi->dev.of_node);
798 	}
799 	if (ACPI_COMPANION(&spi->dev))
800 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
801 	device_remove_software_node(&spi->dev);
802 	device_del(&spi->dev);
803 	spi_cleanup(spi);
804 	put_device(&spi->dev);
805 }
806 EXPORT_SYMBOL_GPL(spi_unregister_device);
807 
808 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
809 					      struct spi_board_info *bi)
810 {
811 	struct spi_device *dev;
812 
813 	if (ctlr->bus_num != bi->bus_num)
814 		return;
815 
816 	dev = spi_new_device(ctlr, bi);
817 	if (!dev)
818 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
819 			bi->modalias);
820 }
821 
822 /**
823  * spi_register_board_info - register SPI devices for a given board
824  * @info: array of chip descriptors
825  * @n: how many descriptors are provided
826  * Context: can sleep
827  *
828  * Board-specific early init code calls this (probably during arch_initcall)
829  * with segments of the SPI device table.  Any device nodes are created later,
830  * after the relevant parent SPI controller (bus_num) is defined.  We keep
831  * this table of devices forever, so that reloading a controller driver will
832  * not make Linux forget about these hard-wired devices.
833  *
834  * Other code can also call this, e.g. a particular add-on board might provide
835  * SPI devices through its expansion connector, so code initializing that board
836  * would naturally declare its SPI devices.
837  *
838  * The board info passed can safely be __initdata ... but be careful of
839  * any embedded pointers (platform_data, etc), they're copied as-is.
840  *
841  * Return: zero on success, else a negative error code.
842  */
843 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
844 {
845 	struct boardinfo *bi;
846 	int i;
847 
848 	if (!n)
849 		return 0;
850 
851 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
852 	if (!bi)
853 		return -ENOMEM;
854 
855 	for (i = 0; i < n; i++, bi++, info++) {
856 		struct spi_controller *ctlr;
857 
858 		memcpy(&bi->board_info, info, sizeof(*info));
859 
860 		mutex_lock(&board_lock);
861 		list_add_tail(&bi->list, &board_list);
862 		list_for_each_entry(ctlr, &spi_controller_list, list)
863 			spi_match_controller_to_boardinfo(ctlr,
864 							  &bi->board_info);
865 		mutex_unlock(&board_lock);
866 	}
867 
868 	return 0;
869 }
870 
871 /*-------------------------------------------------------------------------*/
872 
873 /* Core methods for SPI resource management */
874 
875 /**
876  * spi_res_alloc - allocate a spi resource that is life-cycle managed
877  *                 during the processing of a spi_message while using
878  *                 spi_transfer_one
879  * @spi:     the spi device for which we allocate memory
880  * @release: the release code to execute for this resource
881  * @size:    size to alloc and return
882  * @gfp:     GFP allocation flags
883  *
884  * Return: the pointer to the allocated data
885  *
886  * This may get enhanced in the future to allocate from a memory pool
887  * of the @spi_device or @spi_controller to avoid repeated allocations.
888  */
889 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
890 			   size_t size, gfp_t gfp)
891 {
892 	struct spi_res *sres;
893 
894 	sres = kzalloc(sizeof(*sres) + size, gfp);
895 	if (!sres)
896 		return NULL;
897 
898 	INIT_LIST_HEAD(&sres->entry);
899 	sres->release = release;
900 
901 	return sres->data;
902 }
903 
904 /**
905  * spi_res_free - free an spi resource
906  * @res: pointer to the custom data of a resource
907  */
908 static void spi_res_free(void *res)
909 {
910 	struct spi_res *sres = container_of(res, struct spi_res, data);
911 
912 	if (!res)
913 		return;
914 
915 	WARN_ON(!list_empty(&sres->entry));
916 	kfree(sres);
917 }
918 
919 /**
920  * spi_res_add - add a spi_res to the spi_message
921  * @message: the spi message
922  * @res:     the spi_resource
923  */
924 static void spi_res_add(struct spi_message *message, void *res)
925 {
926 	struct spi_res *sres = container_of(res, struct spi_res, data);
927 
928 	WARN_ON(!list_empty(&sres->entry));
929 	list_add_tail(&sres->entry, &message->resources);
930 }
931 
932 /**
933  * spi_res_release - release all spi resources for this message
934  * @ctlr:  the @spi_controller
935  * @message: the @spi_message
936  */
937 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
938 {
939 	struct spi_res *res, *tmp;
940 
941 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
942 		if (res->release)
943 			res->release(ctlr, message, res->data);
944 
945 		list_del(&res->entry);
946 
947 		kfree(res);
948 	}
949 }
950 
951 /*-------------------------------------------------------------------------*/
952 
953 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
954 {
955 	bool activate = enable;
956 
957 	/*
958 	 * Avoid calling into the driver (or doing delays) if the chip select
959 	 * isn't actually changing from the last time this was called.
960 	 */
961 	if (!force && ((enable && spi->controller->last_cs == spi->chip_select) ||
962 				(!enable && spi->controller->last_cs != spi->chip_select)) &&
963 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
964 		return;
965 
966 	trace_spi_set_cs(spi, activate);
967 
968 	spi->controller->last_cs = enable ? spi->chip_select : -1;
969 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
970 
971 	if ((spi->cs_gpiod || !spi->controller->set_cs_timing) && !activate) {
972 		spi_delay_exec(&spi->cs_hold, NULL);
973 	}
974 
975 	if (spi->mode & SPI_CS_HIGH)
976 		enable = !enable;
977 
978 	if (spi->cs_gpiod) {
979 		if (!(spi->mode & SPI_NO_CS)) {
980 			/*
981 			 * Historically ACPI has no means of the GPIO polarity and
982 			 * thus the SPISerialBus() resource defines it on the per-chip
983 			 * basis. In order to avoid a chain of negations, the GPIO
984 			 * polarity is considered being Active High. Even for the cases
985 			 * when _DSD() is involved (in the updated versions of ACPI)
986 			 * the GPIO CS polarity must be defined Active High to avoid
987 			 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
988 			 * into account.
989 			 */
990 			if (has_acpi_companion(&spi->dev))
991 				gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
992 			else
993 				/* Polarity handled by GPIO library */
994 				gpiod_set_value_cansleep(spi->cs_gpiod, activate);
995 		}
996 		/* Some SPI masters need both GPIO CS & slave_select */
997 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
998 		    spi->controller->set_cs)
999 			spi->controller->set_cs(spi, !enable);
1000 	} else if (spi->controller->set_cs) {
1001 		spi->controller->set_cs(spi, !enable);
1002 	}
1003 
1004 	if (spi->cs_gpiod || !spi->controller->set_cs_timing) {
1005 		if (activate)
1006 			spi_delay_exec(&spi->cs_setup, NULL);
1007 		else
1008 			spi_delay_exec(&spi->cs_inactive, NULL);
1009 	}
1010 }
1011 
1012 #ifdef CONFIG_HAS_DMA
1013 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1014 		struct sg_table *sgt, void *buf, size_t len,
1015 		enum dma_data_direction dir)
1016 {
1017 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1018 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1019 #ifdef CONFIG_HIGHMEM
1020 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1021 				(unsigned long)buf < (PKMAP_BASE +
1022 					(LAST_PKMAP * PAGE_SIZE)));
1023 #else
1024 	const bool kmap_buf = false;
1025 #endif
1026 	int desc_len;
1027 	int sgs;
1028 	struct page *vm_page;
1029 	struct scatterlist *sg;
1030 	void *sg_buf;
1031 	size_t min;
1032 	int i, ret;
1033 
1034 	if (vmalloced_buf || kmap_buf) {
1035 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1036 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1037 	} else if (virt_addr_valid(buf)) {
1038 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1039 		sgs = DIV_ROUND_UP(len, desc_len);
1040 	} else {
1041 		return -EINVAL;
1042 	}
1043 
1044 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1045 	if (ret != 0)
1046 		return ret;
1047 
1048 	sg = &sgt->sgl[0];
1049 	for (i = 0; i < sgs; i++) {
1050 
1051 		if (vmalloced_buf || kmap_buf) {
1052 			/*
1053 			 * Next scatterlist entry size is the minimum between
1054 			 * the desc_len and the remaining buffer length that
1055 			 * fits in a page.
1056 			 */
1057 			min = min_t(size_t, desc_len,
1058 				    min_t(size_t, len,
1059 					  PAGE_SIZE - offset_in_page(buf)));
1060 			if (vmalloced_buf)
1061 				vm_page = vmalloc_to_page(buf);
1062 			else
1063 				vm_page = kmap_to_page(buf);
1064 			if (!vm_page) {
1065 				sg_free_table(sgt);
1066 				return -ENOMEM;
1067 			}
1068 			sg_set_page(sg, vm_page,
1069 				    min, offset_in_page(buf));
1070 		} else {
1071 			min = min_t(size_t, len, desc_len);
1072 			sg_buf = buf;
1073 			sg_set_buf(sg, sg_buf, min);
1074 		}
1075 
1076 		buf += min;
1077 		len -= min;
1078 		sg = sg_next(sg);
1079 	}
1080 
1081 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
1082 	if (!ret)
1083 		ret = -ENOMEM;
1084 	if (ret < 0) {
1085 		sg_free_table(sgt);
1086 		return ret;
1087 	}
1088 
1089 	sgt->nents = ret;
1090 
1091 	return 0;
1092 }
1093 
1094 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1095 		   struct sg_table *sgt, enum dma_data_direction dir)
1096 {
1097 	if (sgt->orig_nents) {
1098 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
1099 		sg_free_table(sgt);
1100 	}
1101 }
1102 
1103 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1104 {
1105 	struct device *tx_dev, *rx_dev;
1106 	struct spi_transfer *xfer;
1107 	int ret;
1108 
1109 	if (!ctlr->can_dma)
1110 		return 0;
1111 
1112 	if (ctlr->dma_tx)
1113 		tx_dev = ctlr->dma_tx->device->dev;
1114 	else if (ctlr->dma_map_dev)
1115 		tx_dev = ctlr->dma_map_dev;
1116 	else
1117 		tx_dev = ctlr->dev.parent;
1118 
1119 	if (ctlr->dma_rx)
1120 		rx_dev = ctlr->dma_rx->device->dev;
1121 	else if (ctlr->dma_map_dev)
1122 		rx_dev = ctlr->dma_map_dev;
1123 	else
1124 		rx_dev = ctlr->dev.parent;
1125 
1126 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1127 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1128 			continue;
1129 
1130 		if (xfer->tx_buf != NULL) {
1131 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1132 					  (void *)xfer->tx_buf, xfer->len,
1133 					  DMA_TO_DEVICE);
1134 			if (ret != 0)
1135 				return ret;
1136 		}
1137 
1138 		if (xfer->rx_buf != NULL) {
1139 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1140 					  xfer->rx_buf, xfer->len,
1141 					  DMA_FROM_DEVICE);
1142 			if (ret != 0) {
1143 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1144 					      DMA_TO_DEVICE);
1145 				return ret;
1146 			}
1147 		}
1148 	}
1149 
1150 	ctlr->cur_msg_mapped = true;
1151 
1152 	return 0;
1153 }
1154 
1155 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1156 {
1157 	struct spi_transfer *xfer;
1158 	struct device *tx_dev, *rx_dev;
1159 
1160 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1161 		return 0;
1162 
1163 	if (ctlr->dma_tx)
1164 		tx_dev = ctlr->dma_tx->device->dev;
1165 	else if (ctlr->dma_map_dev)
1166 		tx_dev = ctlr->dma_map_dev;
1167 	else
1168 		tx_dev = ctlr->dev.parent;
1169 
1170 	if (ctlr->dma_rx)
1171 		rx_dev = ctlr->dma_rx->device->dev;
1172 	else if (ctlr->dma_map_dev)
1173 		rx_dev = ctlr->dma_map_dev;
1174 	else
1175 		rx_dev = ctlr->dev.parent;
1176 
1177 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1178 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1179 			continue;
1180 
1181 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1182 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1183 	}
1184 
1185 	ctlr->cur_msg_mapped = false;
1186 
1187 	return 0;
1188 }
1189 #else /* !CONFIG_HAS_DMA */
1190 static inline int __spi_map_msg(struct spi_controller *ctlr,
1191 				struct spi_message *msg)
1192 {
1193 	return 0;
1194 }
1195 
1196 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1197 				  struct spi_message *msg)
1198 {
1199 	return 0;
1200 }
1201 #endif /* !CONFIG_HAS_DMA */
1202 
1203 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1204 				struct spi_message *msg)
1205 {
1206 	struct spi_transfer *xfer;
1207 
1208 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1209 		/*
1210 		 * Restore the original value of tx_buf or rx_buf if they are
1211 		 * NULL.
1212 		 */
1213 		if (xfer->tx_buf == ctlr->dummy_tx)
1214 			xfer->tx_buf = NULL;
1215 		if (xfer->rx_buf == ctlr->dummy_rx)
1216 			xfer->rx_buf = NULL;
1217 	}
1218 
1219 	return __spi_unmap_msg(ctlr, msg);
1220 }
1221 
1222 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1223 {
1224 	struct spi_transfer *xfer;
1225 	void *tmp;
1226 	unsigned int max_tx, max_rx;
1227 
1228 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1229 		&& !(msg->spi->mode & SPI_3WIRE)) {
1230 		max_tx = 0;
1231 		max_rx = 0;
1232 
1233 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1234 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1235 			    !xfer->tx_buf)
1236 				max_tx = max(xfer->len, max_tx);
1237 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1238 			    !xfer->rx_buf)
1239 				max_rx = max(xfer->len, max_rx);
1240 		}
1241 
1242 		if (max_tx) {
1243 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1244 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1245 			if (!tmp)
1246 				return -ENOMEM;
1247 			ctlr->dummy_tx = tmp;
1248 		}
1249 
1250 		if (max_rx) {
1251 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1252 				       GFP_KERNEL | GFP_DMA);
1253 			if (!tmp)
1254 				return -ENOMEM;
1255 			ctlr->dummy_rx = tmp;
1256 		}
1257 
1258 		if (max_tx || max_rx) {
1259 			list_for_each_entry(xfer, &msg->transfers,
1260 					    transfer_list) {
1261 				if (!xfer->len)
1262 					continue;
1263 				if (!xfer->tx_buf)
1264 					xfer->tx_buf = ctlr->dummy_tx;
1265 				if (!xfer->rx_buf)
1266 					xfer->rx_buf = ctlr->dummy_rx;
1267 			}
1268 		}
1269 	}
1270 
1271 	return __spi_map_msg(ctlr, msg);
1272 }
1273 
1274 static int spi_transfer_wait(struct spi_controller *ctlr,
1275 			     struct spi_message *msg,
1276 			     struct spi_transfer *xfer)
1277 {
1278 	struct spi_statistics *statm = ctlr->pcpu_statistics;
1279 	struct spi_statistics *stats = msg->spi->pcpu_statistics;
1280 	u32 speed_hz = xfer->speed_hz;
1281 	unsigned long long ms;
1282 
1283 	if (spi_controller_is_slave(ctlr)) {
1284 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1285 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1286 			return -EINTR;
1287 		}
1288 	} else {
1289 		if (!speed_hz)
1290 			speed_hz = 100000;
1291 
1292 		/*
1293 		 * For each byte we wait for 8 cycles of the SPI clock.
1294 		 * Since speed is defined in Hz and we want milliseconds,
1295 		 * use respective multiplier, but before the division,
1296 		 * otherwise we may get 0 for short transfers.
1297 		 */
1298 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1299 		do_div(ms, speed_hz);
1300 
1301 		/*
1302 		 * Increase it twice and add 200 ms tolerance, use
1303 		 * predefined maximum in case of overflow.
1304 		 */
1305 		ms += ms + 200;
1306 		if (ms > UINT_MAX)
1307 			ms = UINT_MAX;
1308 
1309 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1310 						 msecs_to_jiffies(ms));
1311 
1312 		if (ms == 0) {
1313 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1314 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1315 			dev_err(&msg->spi->dev,
1316 				"SPI transfer timed out\n");
1317 			return -ETIMEDOUT;
1318 		}
1319 	}
1320 
1321 	return 0;
1322 }
1323 
1324 static void _spi_transfer_delay_ns(u32 ns)
1325 {
1326 	if (!ns)
1327 		return;
1328 	if (ns <= NSEC_PER_USEC) {
1329 		ndelay(ns);
1330 	} else {
1331 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1332 
1333 		if (us <= 10)
1334 			udelay(us);
1335 		else
1336 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1337 	}
1338 }
1339 
1340 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1341 {
1342 	u32 delay = _delay->value;
1343 	u32 unit = _delay->unit;
1344 	u32 hz;
1345 
1346 	if (!delay)
1347 		return 0;
1348 
1349 	switch (unit) {
1350 	case SPI_DELAY_UNIT_USECS:
1351 		delay *= NSEC_PER_USEC;
1352 		break;
1353 	case SPI_DELAY_UNIT_NSECS:
1354 		/* Nothing to do here */
1355 		break;
1356 	case SPI_DELAY_UNIT_SCK:
1357 		/* Clock cycles need to be obtained from spi_transfer */
1358 		if (!xfer)
1359 			return -EINVAL;
1360 		/*
1361 		 * If there is unknown effective speed, approximate it
1362 		 * by underestimating with half of the requested hz.
1363 		 */
1364 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1365 		if (!hz)
1366 			return -EINVAL;
1367 
1368 		/* Convert delay to nanoseconds */
1369 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1370 		break;
1371 	default:
1372 		return -EINVAL;
1373 	}
1374 
1375 	return delay;
1376 }
1377 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1378 
1379 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1380 {
1381 	int delay;
1382 
1383 	might_sleep();
1384 
1385 	if (!_delay)
1386 		return -EINVAL;
1387 
1388 	delay = spi_delay_to_ns(_delay, xfer);
1389 	if (delay < 0)
1390 		return delay;
1391 
1392 	_spi_transfer_delay_ns(delay);
1393 
1394 	return 0;
1395 }
1396 EXPORT_SYMBOL_GPL(spi_delay_exec);
1397 
1398 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1399 					  struct spi_transfer *xfer)
1400 {
1401 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1402 	u32 delay = xfer->cs_change_delay.value;
1403 	u32 unit = xfer->cs_change_delay.unit;
1404 	int ret;
1405 
1406 	/* Return early on "fast" mode - for everything but USECS */
1407 	if (!delay) {
1408 		if (unit == SPI_DELAY_UNIT_USECS)
1409 			_spi_transfer_delay_ns(default_delay_ns);
1410 		return;
1411 	}
1412 
1413 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1414 	if (ret) {
1415 		dev_err_once(&msg->spi->dev,
1416 			     "Use of unsupported delay unit %i, using default of %luus\n",
1417 			     unit, default_delay_ns / NSEC_PER_USEC);
1418 		_spi_transfer_delay_ns(default_delay_ns);
1419 	}
1420 }
1421 
1422 /*
1423  * spi_transfer_one_message - Default implementation of transfer_one_message()
1424  *
1425  * This is a standard implementation of transfer_one_message() for
1426  * drivers which implement a transfer_one() operation.  It provides
1427  * standard handling of delays and chip select management.
1428  */
1429 static int spi_transfer_one_message(struct spi_controller *ctlr,
1430 				    struct spi_message *msg)
1431 {
1432 	struct spi_transfer *xfer;
1433 	bool keep_cs = false;
1434 	int ret = 0;
1435 	struct spi_statistics *statm = ctlr->pcpu_statistics;
1436 	struct spi_statistics *stats = msg->spi->pcpu_statistics;
1437 
1438 	spi_set_cs(msg->spi, true, false);
1439 
1440 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1441 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1442 
1443 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1444 		trace_spi_transfer_start(msg, xfer);
1445 
1446 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1447 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1448 
1449 		if (!ctlr->ptp_sts_supported) {
1450 			xfer->ptp_sts_word_pre = 0;
1451 			ptp_read_system_prets(xfer->ptp_sts);
1452 		}
1453 
1454 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1455 			reinit_completion(&ctlr->xfer_completion);
1456 
1457 fallback_pio:
1458 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1459 			if (ret < 0) {
1460 				if (ctlr->cur_msg_mapped &&
1461 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1462 					__spi_unmap_msg(ctlr, msg);
1463 					ctlr->fallback = true;
1464 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1465 					goto fallback_pio;
1466 				}
1467 
1468 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1469 							       errors);
1470 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1471 							       errors);
1472 				dev_err(&msg->spi->dev,
1473 					"SPI transfer failed: %d\n", ret);
1474 				goto out;
1475 			}
1476 
1477 			if (ret > 0) {
1478 				ret = spi_transfer_wait(ctlr, msg, xfer);
1479 				if (ret < 0)
1480 					msg->status = ret;
1481 			}
1482 		} else {
1483 			if (xfer->len)
1484 				dev_err(&msg->spi->dev,
1485 					"Bufferless transfer has length %u\n",
1486 					xfer->len);
1487 		}
1488 
1489 		if (!ctlr->ptp_sts_supported) {
1490 			ptp_read_system_postts(xfer->ptp_sts);
1491 			xfer->ptp_sts_word_post = xfer->len;
1492 		}
1493 
1494 		trace_spi_transfer_stop(msg, xfer);
1495 
1496 		if (msg->status != -EINPROGRESS)
1497 			goto out;
1498 
1499 		spi_transfer_delay_exec(xfer);
1500 
1501 		if (xfer->cs_change) {
1502 			if (list_is_last(&xfer->transfer_list,
1503 					 &msg->transfers)) {
1504 				keep_cs = true;
1505 			} else {
1506 				spi_set_cs(msg->spi, false, false);
1507 				_spi_transfer_cs_change_delay(msg, xfer);
1508 				spi_set_cs(msg->spi, true, false);
1509 			}
1510 		}
1511 
1512 		msg->actual_length += xfer->len;
1513 	}
1514 
1515 out:
1516 	if (ret != 0 || !keep_cs)
1517 		spi_set_cs(msg->spi, false, false);
1518 
1519 	if (msg->status == -EINPROGRESS)
1520 		msg->status = ret;
1521 
1522 	if (msg->status && ctlr->handle_err)
1523 		ctlr->handle_err(ctlr, msg);
1524 
1525 	spi_finalize_current_message(ctlr);
1526 
1527 	return ret;
1528 }
1529 
1530 /**
1531  * spi_finalize_current_transfer - report completion of a transfer
1532  * @ctlr: the controller reporting completion
1533  *
1534  * Called by SPI drivers using the core transfer_one_message()
1535  * implementation to notify it that the current interrupt driven
1536  * transfer has finished and the next one may be scheduled.
1537  */
1538 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1539 {
1540 	complete(&ctlr->xfer_completion);
1541 }
1542 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1543 
1544 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1545 {
1546 	if (ctlr->auto_runtime_pm) {
1547 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1548 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1549 	}
1550 }
1551 
1552 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1553 		struct spi_message *msg, bool was_busy)
1554 {
1555 	struct spi_transfer *xfer;
1556 	int ret;
1557 
1558 	if (!was_busy && ctlr->auto_runtime_pm) {
1559 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1560 		if (ret < 0) {
1561 			pm_runtime_put_noidle(ctlr->dev.parent);
1562 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1563 				ret);
1564 			return ret;
1565 		}
1566 	}
1567 
1568 	if (!was_busy)
1569 		trace_spi_controller_busy(ctlr);
1570 
1571 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1572 		ret = ctlr->prepare_transfer_hardware(ctlr);
1573 		if (ret) {
1574 			dev_err(&ctlr->dev,
1575 				"failed to prepare transfer hardware: %d\n",
1576 				ret);
1577 
1578 			if (ctlr->auto_runtime_pm)
1579 				pm_runtime_put(ctlr->dev.parent);
1580 
1581 			msg->status = ret;
1582 			spi_finalize_current_message(ctlr);
1583 
1584 			return ret;
1585 		}
1586 	}
1587 
1588 	trace_spi_message_start(msg);
1589 
1590 	if (ctlr->prepare_message) {
1591 		ret = ctlr->prepare_message(ctlr, msg);
1592 		if (ret) {
1593 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1594 				ret);
1595 			msg->status = ret;
1596 			spi_finalize_current_message(ctlr);
1597 			return ret;
1598 		}
1599 		msg->prepared = true;
1600 	}
1601 
1602 	ret = spi_map_msg(ctlr, msg);
1603 	if (ret) {
1604 		msg->status = ret;
1605 		spi_finalize_current_message(ctlr);
1606 		return ret;
1607 	}
1608 
1609 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1610 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1611 			xfer->ptp_sts_word_pre = 0;
1612 			ptp_read_system_prets(xfer->ptp_sts);
1613 		}
1614 	}
1615 
1616 	/*
1617 	 * Drivers implementation of transfer_one_message() must arrange for
1618 	 * spi_finalize_current_message() to get called. Most drivers will do
1619 	 * this in the calling context, but some don't. For those cases, a
1620 	 * completion is used to guarantee that this function does not return
1621 	 * until spi_finalize_current_message() is done accessing
1622 	 * ctlr->cur_msg.
1623 	 * Use of the following two flags enable to opportunistically skip the
1624 	 * use of the completion since its use involves expensive spin locks.
1625 	 * In case of a race with the context that calls
1626 	 * spi_finalize_current_message() the completion will always be used,
1627 	 * due to strict ordering of these flags using barriers.
1628 	 */
1629 	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1630 	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1631 	reinit_completion(&ctlr->cur_msg_completion);
1632 	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1633 
1634 	ret = ctlr->transfer_one_message(ctlr, msg);
1635 	if (ret) {
1636 		dev_err(&ctlr->dev,
1637 			"failed to transfer one message from queue\n");
1638 		return ret;
1639 	}
1640 
1641 	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1642 	smp_mb(); /* See spi_finalize_current_message()... */
1643 	if (READ_ONCE(ctlr->cur_msg_incomplete))
1644 		wait_for_completion(&ctlr->cur_msg_completion);
1645 
1646 	return 0;
1647 }
1648 
1649 /**
1650  * __spi_pump_messages - function which processes spi message queue
1651  * @ctlr: controller to process queue for
1652  * @in_kthread: true if we are in the context of the message pump thread
1653  *
1654  * This function checks if there is any spi message in the queue that
1655  * needs processing and if so call out to the driver to initialize hardware
1656  * and transfer each message.
1657  *
1658  * Note that it is called both from the kthread itself and also from
1659  * inside spi_sync(); the queue extraction handling at the top of the
1660  * function should deal with this safely.
1661  */
1662 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1663 {
1664 	struct spi_message *msg;
1665 	bool was_busy = false;
1666 	unsigned long flags;
1667 	int ret;
1668 
1669 	/* Take the IO mutex */
1670 	mutex_lock(&ctlr->io_mutex);
1671 
1672 	/* Lock queue */
1673 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1674 
1675 	/* Make sure we are not already running a message */
1676 	if (ctlr->cur_msg)
1677 		goto out_unlock;
1678 
1679 	/* Check if the queue is idle */
1680 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1681 		if (!ctlr->busy)
1682 			goto out_unlock;
1683 
1684 		/* Defer any non-atomic teardown to the thread */
1685 		if (!in_kthread) {
1686 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1687 			    !ctlr->unprepare_transfer_hardware) {
1688 				spi_idle_runtime_pm(ctlr);
1689 				ctlr->busy = false;
1690 				ctlr->queue_empty = true;
1691 				trace_spi_controller_idle(ctlr);
1692 			} else {
1693 				kthread_queue_work(ctlr->kworker,
1694 						   &ctlr->pump_messages);
1695 			}
1696 			goto out_unlock;
1697 		}
1698 
1699 		ctlr->busy = false;
1700 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1701 
1702 		kfree(ctlr->dummy_rx);
1703 		ctlr->dummy_rx = NULL;
1704 		kfree(ctlr->dummy_tx);
1705 		ctlr->dummy_tx = NULL;
1706 		if (ctlr->unprepare_transfer_hardware &&
1707 		    ctlr->unprepare_transfer_hardware(ctlr))
1708 			dev_err(&ctlr->dev,
1709 				"failed to unprepare transfer hardware\n");
1710 		spi_idle_runtime_pm(ctlr);
1711 		trace_spi_controller_idle(ctlr);
1712 
1713 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1714 		ctlr->queue_empty = true;
1715 		goto out_unlock;
1716 	}
1717 
1718 	/* Extract head of queue */
1719 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1720 	ctlr->cur_msg = msg;
1721 
1722 	list_del_init(&msg->queue);
1723 	if (ctlr->busy)
1724 		was_busy = true;
1725 	else
1726 		ctlr->busy = true;
1727 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1728 
1729 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1730 	if (!ret)
1731 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1732 
1733 	ctlr->cur_msg = NULL;
1734 	ctlr->fallback = false;
1735 
1736 	mutex_unlock(&ctlr->io_mutex);
1737 
1738 	/* Prod the scheduler in case transfer_one() was busy waiting */
1739 	if (!ret)
1740 		cond_resched();
1741 	return;
1742 
1743 out_unlock:
1744 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1745 	mutex_unlock(&ctlr->io_mutex);
1746 }
1747 
1748 /**
1749  * spi_pump_messages - kthread work function which processes spi message queue
1750  * @work: pointer to kthread work struct contained in the controller struct
1751  */
1752 static void spi_pump_messages(struct kthread_work *work)
1753 {
1754 	struct spi_controller *ctlr =
1755 		container_of(work, struct spi_controller, pump_messages);
1756 
1757 	__spi_pump_messages(ctlr, true);
1758 }
1759 
1760 /**
1761  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1762  * @ctlr: Pointer to the spi_controller structure of the driver
1763  * @xfer: Pointer to the transfer being timestamped
1764  * @progress: How many words (not bytes) have been transferred so far
1765  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1766  *	      transfer, for less jitter in time measurement. Only compatible
1767  *	      with PIO drivers. If true, must follow up with
1768  *	      spi_take_timestamp_post or otherwise system will crash.
1769  *	      WARNING: for fully predictable results, the CPU frequency must
1770  *	      also be under control (governor).
1771  *
1772  * This is a helper for drivers to collect the beginning of the TX timestamp
1773  * for the requested byte from the SPI transfer. The frequency with which this
1774  * function must be called (once per word, once for the whole transfer, once
1775  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1776  * greater than or equal to the requested byte at the time of the call. The
1777  * timestamp is only taken once, at the first such call. It is assumed that
1778  * the driver advances its @tx buffer pointer monotonically.
1779  */
1780 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1781 			    struct spi_transfer *xfer,
1782 			    size_t progress, bool irqs_off)
1783 {
1784 	if (!xfer->ptp_sts)
1785 		return;
1786 
1787 	if (xfer->timestamped)
1788 		return;
1789 
1790 	if (progress > xfer->ptp_sts_word_pre)
1791 		return;
1792 
1793 	/* Capture the resolution of the timestamp */
1794 	xfer->ptp_sts_word_pre = progress;
1795 
1796 	if (irqs_off) {
1797 		local_irq_save(ctlr->irq_flags);
1798 		preempt_disable();
1799 	}
1800 
1801 	ptp_read_system_prets(xfer->ptp_sts);
1802 }
1803 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1804 
1805 /**
1806  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1807  * @ctlr: Pointer to the spi_controller structure of the driver
1808  * @xfer: Pointer to the transfer being timestamped
1809  * @progress: How many words (not bytes) have been transferred so far
1810  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1811  *
1812  * This is a helper for drivers to collect the end of the TX timestamp for
1813  * the requested byte from the SPI transfer. Can be called with an arbitrary
1814  * frequency: only the first call where @tx exceeds or is equal to the
1815  * requested word will be timestamped.
1816  */
1817 void spi_take_timestamp_post(struct spi_controller *ctlr,
1818 			     struct spi_transfer *xfer,
1819 			     size_t progress, bool irqs_off)
1820 {
1821 	if (!xfer->ptp_sts)
1822 		return;
1823 
1824 	if (xfer->timestamped)
1825 		return;
1826 
1827 	if (progress < xfer->ptp_sts_word_post)
1828 		return;
1829 
1830 	ptp_read_system_postts(xfer->ptp_sts);
1831 
1832 	if (irqs_off) {
1833 		local_irq_restore(ctlr->irq_flags);
1834 		preempt_enable();
1835 	}
1836 
1837 	/* Capture the resolution of the timestamp */
1838 	xfer->ptp_sts_word_post = progress;
1839 
1840 	xfer->timestamped = true;
1841 }
1842 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1843 
1844 /**
1845  * spi_set_thread_rt - set the controller to pump at realtime priority
1846  * @ctlr: controller to boost priority of
1847  *
1848  * This can be called because the controller requested realtime priority
1849  * (by setting the ->rt value before calling spi_register_controller()) or
1850  * because a device on the bus said that its transfers needed realtime
1851  * priority.
1852  *
1853  * NOTE: at the moment if any device on a bus says it needs realtime then
1854  * the thread will be at realtime priority for all transfers on that
1855  * controller.  If this eventually becomes a problem we may see if we can
1856  * find a way to boost the priority only temporarily during relevant
1857  * transfers.
1858  */
1859 static void spi_set_thread_rt(struct spi_controller *ctlr)
1860 {
1861 	dev_info(&ctlr->dev,
1862 		"will run message pump with realtime priority\n");
1863 	sched_set_fifo(ctlr->kworker->task);
1864 }
1865 
1866 static int spi_init_queue(struct spi_controller *ctlr)
1867 {
1868 	ctlr->running = false;
1869 	ctlr->busy = false;
1870 	ctlr->queue_empty = true;
1871 
1872 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1873 	if (IS_ERR(ctlr->kworker)) {
1874 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1875 		return PTR_ERR(ctlr->kworker);
1876 	}
1877 
1878 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1879 
1880 	/*
1881 	 * Controller config will indicate if this controller should run the
1882 	 * message pump with high (realtime) priority to reduce the transfer
1883 	 * latency on the bus by minimising the delay between a transfer
1884 	 * request and the scheduling of the message pump thread. Without this
1885 	 * setting the message pump thread will remain at default priority.
1886 	 */
1887 	if (ctlr->rt)
1888 		spi_set_thread_rt(ctlr);
1889 
1890 	return 0;
1891 }
1892 
1893 /**
1894  * spi_get_next_queued_message() - called by driver to check for queued
1895  * messages
1896  * @ctlr: the controller to check for queued messages
1897  *
1898  * If there are more messages in the queue, the next message is returned from
1899  * this call.
1900  *
1901  * Return: the next message in the queue, else NULL if the queue is empty.
1902  */
1903 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1904 {
1905 	struct spi_message *next;
1906 	unsigned long flags;
1907 
1908 	/* Get a pointer to the next message, if any */
1909 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1910 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1911 					queue);
1912 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1913 
1914 	return next;
1915 }
1916 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1917 
1918 /**
1919  * spi_finalize_current_message() - the current message is complete
1920  * @ctlr: the controller to return the message to
1921  *
1922  * Called by the driver to notify the core that the message in the front of the
1923  * queue is complete and can be removed from the queue.
1924  */
1925 void spi_finalize_current_message(struct spi_controller *ctlr)
1926 {
1927 	struct spi_transfer *xfer;
1928 	struct spi_message *mesg;
1929 	int ret;
1930 
1931 	mesg = ctlr->cur_msg;
1932 
1933 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1934 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1935 			ptp_read_system_postts(xfer->ptp_sts);
1936 			xfer->ptp_sts_word_post = xfer->len;
1937 		}
1938 	}
1939 
1940 	if (unlikely(ctlr->ptp_sts_supported))
1941 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1942 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1943 
1944 	spi_unmap_msg(ctlr, mesg);
1945 
1946 	/*
1947 	 * In the prepare_messages callback the SPI bus has the opportunity
1948 	 * to split a transfer to smaller chunks.
1949 	 *
1950 	 * Release the split transfers here since spi_map_msg() is done on
1951 	 * the split transfers.
1952 	 */
1953 	spi_res_release(ctlr, mesg);
1954 
1955 	if (mesg->prepared && ctlr->unprepare_message) {
1956 		ret = ctlr->unprepare_message(ctlr, mesg);
1957 		if (ret) {
1958 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1959 				ret);
1960 		}
1961 	}
1962 
1963 	mesg->prepared = false;
1964 
1965 	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
1966 	smp_mb(); /* See __spi_pump_transfer_message()... */
1967 	if (READ_ONCE(ctlr->cur_msg_need_completion))
1968 		complete(&ctlr->cur_msg_completion);
1969 
1970 	trace_spi_message_done(mesg);
1971 
1972 	mesg->state = NULL;
1973 	if (mesg->complete)
1974 		mesg->complete(mesg->context);
1975 }
1976 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1977 
1978 static int spi_start_queue(struct spi_controller *ctlr)
1979 {
1980 	unsigned long flags;
1981 
1982 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1983 
1984 	if (ctlr->running || ctlr->busy) {
1985 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1986 		return -EBUSY;
1987 	}
1988 
1989 	ctlr->running = true;
1990 	ctlr->cur_msg = NULL;
1991 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1992 
1993 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1994 
1995 	return 0;
1996 }
1997 
1998 static int spi_stop_queue(struct spi_controller *ctlr)
1999 {
2000 	unsigned long flags;
2001 	unsigned limit = 500;
2002 	int ret = 0;
2003 
2004 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2005 
2006 	/*
2007 	 * This is a bit lame, but is optimized for the common execution path.
2008 	 * A wait_queue on the ctlr->busy could be used, but then the common
2009 	 * execution path (pump_messages) would be required to call wake_up or
2010 	 * friends on every SPI message. Do this instead.
2011 	 */
2012 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
2013 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2014 		usleep_range(10000, 11000);
2015 		spin_lock_irqsave(&ctlr->queue_lock, flags);
2016 	}
2017 
2018 	if (!list_empty(&ctlr->queue) || ctlr->busy)
2019 		ret = -EBUSY;
2020 	else
2021 		ctlr->running = false;
2022 
2023 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2024 
2025 	if (ret) {
2026 		dev_warn(&ctlr->dev, "could not stop message queue\n");
2027 		return ret;
2028 	}
2029 	return ret;
2030 }
2031 
2032 static int spi_destroy_queue(struct spi_controller *ctlr)
2033 {
2034 	int ret;
2035 
2036 	ret = spi_stop_queue(ctlr);
2037 
2038 	/*
2039 	 * kthread_flush_worker will block until all work is done.
2040 	 * If the reason that stop_queue timed out is that the work will never
2041 	 * finish, then it does no good to call flush/stop thread, so
2042 	 * return anyway.
2043 	 */
2044 	if (ret) {
2045 		dev_err(&ctlr->dev, "problem destroying queue\n");
2046 		return ret;
2047 	}
2048 
2049 	kthread_destroy_worker(ctlr->kworker);
2050 
2051 	return 0;
2052 }
2053 
2054 static int __spi_queued_transfer(struct spi_device *spi,
2055 				 struct spi_message *msg,
2056 				 bool need_pump)
2057 {
2058 	struct spi_controller *ctlr = spi->controller;
2059 	unsigned long flags;
2060 
2061 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2062 
2063 	if (!ctlr->running) {
2064 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2065 		return -ESHUTDOWN;
2066 	}
2067 	msg->actual_length = 0;
2068 	msg->status = -EINPROGRESS;
2069 
2070 	list_add_tail(&msg->queue, &ctlr->queue);
2071 	ctlr->queue_empty = false;
2072 	if (!ctlr->busy && need_pump)
2073 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2074 
2075 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2076 	return 0;
2077 }
2078 
2079 /**
2080  * spi_queued_transfer - transfer function for queued transfers
2081  * @spi: spi device which is requesting transfer
2082  * @msg: spi message which is to handled is queued to driver queue
2083  *
2084  * Return: zero on success, else a negative error code.
2085  */
2086 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2087 {
2088 	return __spi_queued_transfer(spi, msg, true);
2089 }
2090 
2091 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2092 {
2093 	int ret;
2094 
2095 	ctlr->transfer = spi_queued_transfer;
2096 	if (!ctlr->transfer_one_message)
2097 		ctlr->transfer_one_message = spi_transfer_one_message;
2098 
2099 	/* Initialize and start queue */
2100 	ret = spi_init_queue(ctlr);
2101 	if (ret) {
2102 		dev_err(&ctlr->dev, "problem initializing queue\n");
2103 		goto err_init_queue;
2104 	}
2105 	ctlr->queued = true;
2106 	ret = spi_start_queue(ctlr);
2107 	if (ret) {
2108 		dev_err(&ctlr->dev, "problem starting queue\n");
2109 		goto err_start_queue;
2110 	}
2111 
2112 	return 0;
2113 
2114 err_start_queue:
2115 	spi_destroy_queue(ctlr);
2116 err_init_queue:
2117 	return ret;
2118 }
2119 
2120 /**
2121  * spi_flush_queue - Send all pending messages in the queue from the callers'
2122  *		     context
2123  * @ctlr: controller to process queue for
2124  *
2125  * This should be used when one wants to ensure all pending messages have been
2126  * sent before doing something. Is used by the spi-mem code to make sure SPI
2127  * memory operations do not preempt regular SPI transfers that have been queued
2128  * before the spi-mem operation.
2129  */
2130 void spi_flush_queue(struct spi_controller *ctlr)
2131 {
2132 	if (ctlr->transfer == spi_queued_transfer)
2133 		__spi_pump_messages(ctlr, false);
2134 }
2135 
2136 /*-------------------------------------------------------------------------*/
2137 
2138 #if defined(CONFIG_OF)
2139 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2140 			   struct device_node *nc)
2141 {
2142 	u32 value;
2143 	int rc;
2144 
2145 	/* Mode (clock phase/polarity/etc.) */
2146 	if (of_property_read_bool(nc, "spi-cpha"))
2147 		spi->mode |= SPI_CPHA;
2148 	if (of_property_read_bool(nc, "spi-cpol"))
2149 		spi->mode |= SPI_CPOL;
2150 	if (of_property_read_bool(nc, "spi-3wire"))
2151 		spi->mode |= SPI_3WIRE;
2152 	if (of_property_read_bool(nc, "spi-lsb-first"))
2153 		spi->mode |= SPI_LSB_FIRST;
2154 	if (of_property_read_bool(nc, "spi-cs-high"))
2155 		spi->mode |= SPI_CS_HIGH;
2156 
2157 	/* Device DUAL/QUAD mode */
2158 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2159 		switch (value) {
2160 		case 0:
2161 			spi->mode |= SPI_NO_TX;
2162 			break;
2163 		case 1:
2164 			break;
2165 		case 2:
2166 			spi->mode |= SPI_TX_DUAL;
2167 			break;
2168 		case 4:
2169 			spi->mode |= SPI_TX_QUAD;
2170 			break;
2171 		case 8:
2172 			spi->mode |= SPI_TX_OCTAL;
2173 			break;
2174 		default:
2175 			dev_warn(&ctlr->dev,
2176 				"spi-tx-bus-width %d not supported\n",
2177 				value);
2178 			break;
2179 		}
2180 	}
2181 
2182 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2183 		switch (value) {
2184 		case 0:
2185 			spi->mode |= SPI_NO_RX;
2186 			break;
2187 		case 1:
2188 			break;
2189 		case 2:
2190 			spi->mode |= SPI_RX_DUAL;
2191 			break;
2192 		case 4:
2193 			spi->mode |= SPI_RX_QUAD;
2194 			break;
2195 		case 8:
2196 			spi->mode |= SPI_RX_OCTAL;
2197 			break;
2198 		default:
2199 			dev_warn(&ctlr->dev,
2200 				"spi-rx-bus-width %d not supported\n",
2201 				value);
2202 			break;
2203 		}
2204 	}
2205 
2206 	if (spi_controller_is_slave(ctlr)) {
2207 		if (!of_node_name_eq(nc, "slave")) {
2208 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2209 				nc);
2210 			return -EINVAL;
2211 		}
2212 		return 0;
2213 	}
2214 
2215 	/* Device address */
2216 	rc = of_property_read_u32(nc, "reg", &value);
2217 	if (rc) {
2218 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2219 			nc, rc);
2220 		return rc;
2221 	}
2222 	spi->chip_select = value;
2223 
2224 	/* Device speed */
2225 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2226 		spi->max_speed_hz = value;
2227 
2228 	return 0;
2229 }
2230 
2231 static struct spi_device *
2232 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2233 {
2234 	struct spi_device *spi;
2235 	int rc;
2236 
2237 	/* Alloc an spi_device */
2238 	spi = spi_alloc_device(ctlr);
2239 	if (!spi) {
2240 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2241 		rc = -ENOMEM;
2242 		goto err_out;
2243 	}
2244 
2245 	/* Select device driver */
2246 	rc = of_modalias_node(nc, spi->modalias,
2247 				sizeof(spi->modalias));
2248 	if (rc < 0) {
2249 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2250 		goto err_out;
2251 	}
2252 
2253 	rc = of_spi_parse_dt(ctlr, spi, nc);
2254 	if (rc)
2255 		goto err_out;
2256 
2257 	/* Store a pointer to the node in the device structure */
2258 	of_node_get(nc);
2259 	spi->dev.of_node = nc;
2260 	spi->dev.fwnode = of_fwnode_handle(nc);
2261 
2262 	/* Register the new device */
2263 	rc = spi_add_device(spi);
2264 	if (rc) {
2265 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2266 		goto err_of_node_put;
2267 	}
2268 
2269 	return spi;
2270 
2271 err_of_node_put:
2272 	of_node_put(nc);
2273 err_out:
2274 	spi_dev_put(spi);
2275 	return ERR_PTR(rc);
2276 }
2277 
2278 /**
2279  * of_register_spi_devices() - Register child devices onto the SPI bus
2280  * @ctlr:	Pointer to spi_controller device
2281  *
2282  * Registers an spi_device for each child node of controller node which
2283  * represents a valid SPI slave.
2284  */
2285 static void of_register_spi_devices(struct spi_controller *ctlr)
2286 {
2287 	struct spi_device *spi;
2288 	struct device_node *nc;
2289 
2290 	if (!ctlr->dev.of_node)
2291 		return;
2292 
2293 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2294 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2295 			continue;
2296 		spi = of_register_spi_device(ctlr, nc);
2297 		if (IS_ERR(spi)) {
2298 			dev_warn(&ctlr->dev,
2299 				 "Failed to create SPI device for %pOF\n", nc);
2300 			of_node_clear_flag(nc, OF_POPULATED);
2301 		}
2302 	}
2303 }
2304 #else
2305 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2306 #endif
2307 
2308 /**
2309  * spi_new_ancillary_device() - Register ancillary SPI device
2310  * @spi:         Pointer to the main SPI device registering the ancillary device
2311  * @chip_select: Chip Select of the ancillary device
2312  *
2313  * Register an ancillary SPI device; for example some chips have a chip-select
2314  * for normal device usage and another one for setup/firmware upload.
2315  *
2316  * This may only be called from main SPI device's probe routine.
2317  *
2318  * Return: 0 on success; negative errno on failure
2319  */
2320 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2321 					     u8 chip_select)
2322 {
2323 	struct spi_device *ancillary;
2324 	int rc = 0;
2325 
2326 	/* Alloc an spi_device */
2327 	ancillary = spi_alloc_device(spi->controller);
2328 	if (!ancillary) {
2329 		rc = -ENOMEM;
2330 		goto err_out;
2331 	}
2332 
2333 	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2334 
2335 	/* Use provided chip-select for ancillary device */
2336 	ancillary->chip_select = chip_select;
2337 
2338 	/* Take over SPI mode/speed from SPI main device */
2339 	ancillary->max_speed_hz = spi->max_speed_hz;
2340 	ancillary->mode = spi->mode;
2341 
2342 	/* Register the new device */
2343 	rc = spi_add_device_locked(ancillary);
2344 	if (rc) {
2345 		dev_err(&spi->dev, "failed to register ancillary device\n");
2346 		goto err_out;
2347 	}
2348 
2349 	return ancillary;
2350 
2351 err_out:
2352 	spi_dev_put(ancillary);
2353 	return ERR_PTR(rc);
2354 }
2355 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2356 
2357 #ifdef CONFIG_ACPI
2358 struct acpi_spi_lookup {
2359 	struct spi_controller 	*ctlr;
2360 	u32			max_speed_hz;
2361 	u32			mode;
2362 	int			irq;
2363 	u8			bits_per_word;
2364 	u8			chip_select;
2365 	int			n;
2366 	int			index;
2367 };
2368 
2369 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2370 {
2371 	struct acpi_resource_spi_serialbus *sb;
2372 	int *count = data;
2373 
2374 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2375 		return 1;
2376 
2377 	sb = &ares->data.spi_serial_bus;
2378 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2379 		return 1;
2380 
2381 	*count = *count + 1;
2382 
2383 	return 1;
2384 }
2385 
2386 /**
2387  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2388  * @adev:	ACPI device
2389  *
2390  * Returns the number of SpiSerialBus resources in the ACPI-device's
2391  * resource-list; or a negative error code.
2392  */
2393 int acpi_spi_count_resources(struct acpi_device *adev)
2394 {
2395 	LIST_HEAD(r);
2396 	int count = 0;
2397 	int ret;
2398 
2399 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2400 	if (ret < 0)
2401 		return ret;
2402 
2403 	acpi_dev_free_resource_list(&r);
2404 
2405 	return count;
2406 }
2407 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2408 
2409 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2410 					    struct acpi_spi_lookup *lookup)
2411 {
2412 	const union acpi_object *obj;
2413 
2414 	if (!x86_apple_machine)
2415 		return;
2416 
2417 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2418 	    && obj->buffer.length >= 4)
2419 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2420 
2421 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2422 	    && obj->buffer.length == 8)
2423 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2424 
2425 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2426 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2427 		lookup->mode |= SPI_LSB_FIRST;
2428 
2429 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2430 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2431 		lookup->mode |= SPI_CPOL;
2432 
2433 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2434 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2435 		lookup->mode |= SPI_CPHA;
2436 }
2437 
2438 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev);
2439 
2440 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2441 {
2442 	struct acpi_spi_lookup *lookup = data;
2443 	struct spi_controller *ctlr = lookup->ctlr;
2444 
2445 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2446 		struct acpi_resource_spi_serialbus *sb;
2447 		acpi_handle parent_handle;
2448 		acpi_status status;
2449 
2450 		sb = &ares->data.spi_serial_bus;
2451 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2452 
2453 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2454 				return 1;
2455 
2456 			status = acpi_get_handle(NULL,
2457 						 sb->resource_source.string_ptr,
2458 						 &parent_handle);
2459 
2460 			if (ACPI_FAILURE(status))
2461 				return -ENODEV;
2462 
2463 			if (ctlr) {
2464 				if (ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2465 					return -ENODEV;
2466 			} else {
2467 				struct acpi_device *adev;
2468 
2469 				adev = acpi_fetch_acpi_dev(parent_handle);
2470 				if (!adev)
2471 					return -ENODEV;
2472 
2473 				ctlr = acpi_spi_find_controller_by_adev(adev);
2474 				if (!ctlr)
2475 					return -EPROBE_DEFER;
2476 
2477 				lookup->ctlr = ctlr;
2478 			}
2479 
2480 			/*
2481 			 * ACPI DeviceSelection numbering is handled by the
2482 			 * host controller driver in Windows and can vary
2483 			 * from driver to driver. In Linux we always expect
2484 			 * 0 .. max - 1 so we need to ask the driver to
2485 			 * translate between the two schemes.
2486 			 */
2487 			if (ctlr->fw_translate_cs) {
2488 				int cs = ctlr->fw_translate_cs(ctlr,
2489 						sb->device_selection);
2490 				if (cs < 0)
2491 					return cs;
2492 				lookup->chip_select = cs;
2493 			} else {
2494 				lookup->chip_select = sb->device_selection;
2495 			}
2496 
2497 			lookup->max_speed_hz = sb->connection_speed;
2498 			lookup->bits_per_word = sb->data_bit_length;
2499 
2500 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2501 				lookup->mode |= SPI_CPHA;
2502 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2503 				lookup->mode |= SPI_CPOL;
2504 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2505 				lookup->mode |= SPI_CS_HIGH;
2506 		}
2507 	} else if (lookup->irq < 0) {
2508 		struct resource r;
2509 
2510 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2511 			lookup->irq = r.start;
2512 	}
2513 
2514 	/* Always tell the ACPI core to skip this resource */
2515 	return 1;
2516 }
2517 
2518 /**
2519  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2520  * @ctlr: controller to which the spi device belongs
2521  * @adev: ACPI Device for the spi device
2522  * @index: Index of the spi resource inside the ACPI Node
2523  *
2524  * This should be used to allocate a new spi device from and ACPI Node.
2525  * The caller is responsible for calling spi_add_device to register the spi device.
2526  *
2527  * If ctlr is set to NULL, the Controller for the spi device will be looked up
2528  * using the resource.
2529  * If index is set to -1, index is not used.
2530  * Note: If index is -1, ctlr must be set.
2531  *
2532  * Return: a pointer to the new device, or ERR_PTR on error.
2533  */
2534 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2535 					 struct acpi_device *adev,
2536 					 int index)
2537 {
2538 	acpi_handle parent_handle = NULL;
2539 	struct list_head resource_list;
2540 	struct acpi_spi_lookup lookup = {};
2541 	struct spi_device *spi;
2542 	int ret;
2543 
2544 	if (!ctlr && index == -1)
2545 		return ERR_PTR(-EINVAL);
2546 
2547 	lookup.ctlr		= ctlr;
2548 	lookup.irq		= -1;
2549 	lookup.index		= index;
2550 	lookup.n		= 0;
2551 
2552 	INIT_LIST_HEAD(&resource_list);
2553 	ret = acpi_dev_get_resources(adev, &resource_list,
2554 				     acpi_spi_add_resource, &lookup);
2555 	acpi_dev_free_resource_list(&resource_list);
2556 
2557 	if (ret < 0)
2558 		/* Found SPI in _CRS but it points to another controller */
2559 		return ERR_PTR(ret);
2560 
2561 	if (!lookup.max_speed_hz &&
2562 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2563 	    ACPI_HANDLE(lookup.ctlr->dev.parent) == parent_handle) {
2564 		/* Apple does not use _CRS but nested devices for SPI slaves */
2565 		acpi_spi_parse_apple_properties(adev, &lookup);
2566 	}
2567 
2568 	if (!lookup.max_speed_hz)
2569 		return ERR_PTR(-ENODEV);
2570 
2571 	spi = spi_alloc_device(lookup.ctlr);
2572 	if (!spi) {
2573 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2574 			dev_name(&adev->dev));
2575 		return ERR_PTR(-ENOMEM);
2576 	}
2577 
2578 	ACPI_COMPANION_SET(&spi->dev, adev);
2579 	spi->max_speed_hz	= lookup.max_speed_hz;
2580 	spi->mode		|= lookup.mode;
2581 	spi->irq		= lookup.irq;
2582 	spi->bits_per_word	= lookup.bits_per_word;
2583 	spi->chip_select	= lookup.chip_select;
2584 
2585 	return spi;
2586 }
2587 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2588 
2589 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2590 					    struct acpi_device *adev)
2591 {
2592 	struct spi_device *spi;
2593 
2594 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2595 	    acpi_device_enumerated(adev))
2596 		return AE_OK;
2597 
2598 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2599 	if (IS_ERR(spi)) {
2600 		if (PTR_ERR(spi) == -ENOMEM)
2601 			return AE_NO_MEMORY;
2602 		else
2603 			return AE_OK;
2604 	}
2605 
2606 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2607 			  sizeof(spi->modalias));
2608 
2609 	if (spi->irq < 0)
2610 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2611 
2612 	acpi_device_set_enumerated(adev);
2613 
2614 	adev->power.flags.ignore_parent = true;
2615 	if (spi_add_device(spi)) {
2616 		adev->power.flags.ignore_parent = false;
2617 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2618 			dev_name(&adev->dev));
2619 		spi_dev_put(spi);
2620 	}
2621 
2622 	return AE_OK;
2623 }
2624 
2625 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2626 				       void *data, void **return_value)
2627 {
2628 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2629 	struct spi_controller *ctlr = data;
2630 
2631 	if (!adev)
2632 		return AE_OK;
2633 
2634 	return acpi_register_spi_device(ctlr, adev);
2635 }
2636 
2637 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2638 
2639 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2640 {
2641 	acpi_status status;
2642 	acpi_handle handle;
2643 
2644 	handle = ACPI_HANDLE(ctlr->dev.parent);
2645 	if (!handle)
2646 		return;
2647 
2648 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2649 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2650 				     acpi_spi_add_device, NULL, ctlr, NULL);
2651 	if (ACPI_FAILURE(status))
2652 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2653 }
2654 #else
2655 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2656 #endif /* CONFIG_ACPI */
2657 
2658 static void spi_controller_release(struct device *dev)
2659 {
2660 	struct spi_controller *ctlr;
2661 
2662 	ctlr = container_of(dev, struct spi_controller, dev);
2663 	kfree(ctlr);
2664 }
2665 
2666 static struct class spi_master_class = {
2667 	.name		= "spi_master",
2668 	.owner		= THIS_MODULE,
2669 	.dev_release	= spi_controller_release,
2670 	.dev_groups	= spi_master_groups,
2671 };
2672 
2673 #ifdef CONFIG_SPI_SLAVE
2674 /**
2675  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2676  *		     controller
2677  * @spi: device used for the current transfer
2678  */
2679 int spi_slave_abort(struct spi_device *spi)
2680 {
2681 	struct spi_controller *ctlr = spi->controller;
2682 
2683 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2684 		return ctlr->slave_abort(ctlr);
2685 
2686 	return -ENOTSUPP;
2687 }
2688 EXPORT_SYMBOL_GPL(spi_slave_abort);
2689 
2690 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2691 			  char *buf)
2692 {
2693 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2694 						   dev);
2695 	struct device *child;
2696 
2697 	child = device_find_any_child(&ctlr->dev);
2698 	return sprintf(buf, "%s\n",
2699 		       child ? to_spi_device(child)->modalias : NULL);
2700 }
2701 
2702 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2703 			   const char *buf, size_t count)
2704 {
2705 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2706 						   dev);
2707 	struct spi_device *spi;
2708 	struct device *child;
2709 	char name[32];
2710 	int rc;
2711 
2712 	rc = sscanf(buf, "%31s", name);
2713 	if (rc != 1 || !name[0])
2714 		return -EINVAL;
2715 
2716 	child = device_find_any_child(&ctlr->dev);
2717 	if (child) {
2718 		/* Remove registered slave */
2719 		device_unregister(child);
2720 		put_device(child);
2721 	}
2722 
2723 	if (strcmp(name, "(null)")) {
2724 		/* Register new slave */
2725 		spi = spi_alloc_device(ctlr);
2726 		if (!spi)
2727 			return -ENOMEM;
2728 
2729 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2730 
2731 		rc = spi_add_device(spi);
2732 		if (rc) {
2733 			spi_dev_put(spi);
2734 			return rc;
2735 		}
2736 	}
2737 
2738 	return count;
2739 }
2740 
2741 static DEVICE_ATTR_RW(slave);
2742 
2743 static struct attribute *spi_slave_attrs[] = {
2744 	&dev_attr_slave.attr,
2745 	NULL,
2746 };
2747 
2748 static const struct attribute_group spi_slave_group = {
2749 	.attrs = spi_slave_attrs,
2750 };
2751 
2752 static const struct attribute_group *spi_slave_groups[] = {
2753 	&spi_controller_statistics_group,
2754 	&spi_slave_group,
2755 	NULL,
2756 };
2757 
2758 static struct class spi_slave_class = {
2759 	.name		= "spi_slave",
2760 	.owner		= THIS_MODULE,
2761 	.dev_release	= spi_controller_release,
2762 	.dev_groups	= spi_slave_groups,
2763 };
2764 #else
2765 extern struct class spi_slave_class;	/* dummy */
2766 #endif
2767 
2768 /**
2769  * __spi_alloc_controller - allocate an SPI master or slave controller
2770  * @dev: the controller, possibly using the platform_bus
2771  * @size: how much zeroed driver-private data to allocate; the pointer to this
2772  *	memory is in the driver_data field of the returned device, accessible
2773  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2774  *	drivers granting DMA access to portions of their private data need to
2775  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2776  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2777  *	slave (true) controller
2778  * Context: can sleep
2779  *
2780  * This call is used only by SPI controller drivers, which are the
2781  * only ones directly touching chip registers.  It's how they allocate
2782  * an spi_controller structure, prior to calling spi_register_controller().
2783  *
2784  * This must be called from context that can sleep.
2785  *
2786  * The caller is responsible for assigning the bus number and initializing the
2787  * controller's methods before calling spi_register_controller(); and (after
2788  * errors adding the device) calling spi_controller_put() to prevent a memory
2789  * leak.
2790  *
2791  * Return: the SPI controller structure on success, else NULL.
2792  */
2793 struct spi_controller *__spi_alloc_controller(struct device *dev,
2794 					      unsigned int size, bool slave)
2795 {
2796 	struct spi_controller	*ctlr;
2797 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2798 
2799 	if (!dev)
2800 		return NULL;
2801 
2802 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2803 	if (!ctlr)
2804 		return NULL;
2805 
2806 	device_initialize(&ctlr->dev);
2807 	INIT_LIST_HEAD(&ctlr->queue);
2808 	spin_lock_init(&ctlr->queue_lock);
2809 	spin_lock_init(&ctlr->bus_lock_spinlock);
2810 	mutex_init(&ctlr->bus_lock_mutex);
2811 	mutex_init(&ctlr->io_mutex);
2812 	mutex_init(&ctlr->add_lock);
2813 	ctlr->bus_num = -1;
2814 	ctlr->num_chipselect = 1;
2815 	ctlr->slave = slave;
2816 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2817 		ctlr->dev.class = &spi_slave_class;
2818 	else
2819 		ctlr->dev.class = &spi_master_class;
2820 	ctlr->dev.parent = dev;
2821 	pm_suspend_ignore_children(&ctlr->dev, true);
2822 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2823 
2824 	return ctlr;
2825 }
2826 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2827 
2828 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2829 {
2830 	spi_controller_put(*(struct spi_controller **)ctlr);
2831 }
2832 
2833 /**
2834  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2835  * @dev: physical device of SPI controller
2836  * @size: how much zeroed driver-private data to allocate
2837  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2838  * Context: can sleep
2839  *
2840  * Allocate an SPI controller and automatically release a reference on it
2841  * when @dev is unbound from its driver.  Drivers are thus relieved from
2842  * having to call spi_controller_put().
2843  *
2844  * The arguments to this function are identical to __spi_alloc_controller().
2845  *
2846  * Return: the SPI controller structure on success, else NULL.
2847  */
2848 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2849 						   unsigned int size,
2850 						   bool slave)
2851 {
2852 	struct spi_controller **ptr, *ctlr;
2853 
2854 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2855 			   GFP_KERNEL);
2856 	if (!ptr)
2857 		return NULL;
2858 
2859 	ctlr = __spi_alloc_controller(dev, size, slave);
2860 	if (ctlr) {
2861 		ctlr->devm_allocated = true;
2862 		*ptr = ctlr;
2863 		devres_add(dev, ptr);
2864 	} else {
2865 		devres_free(ptr);
2866 	}
2867 
2868 	return ctlr;
2869 }
2870 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2871 
2872 /**
2873  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2874  * @ctlr: The SPI master to grab GPIO descriptors for
2875  */
2876 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2877 {
2878 	int nb, i;
2879 	struct gpio_desc **cs;
2880 	struct device *dev = &ctlr->dev;
2881 	unsigned long native_cs_mask = 0;
2882 	unsigned int num_cs_gpios = 0;
2883 
2884 	nb = gpiod_count(dev, "cs");
2885 	if (nb < 0) {
2886 		/* No GPIOs at all is fine, else return the error */
2887 		if (nb == -ENOENT)
2888 			return 0;
2889 		return nb;
2890 	}
2891 
2892 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2893 
2894 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2895 			  GFP_KERNEL);
2896 	if (!cs)
2897 		return -ENOMEM;
2898 	ctlr->cs_gpiods = cs;
2899 
2900 	for (i = 0; i < nb; i++) {
2901 		/*
2902 		 * Most chipselects are active low, the inverted
2903 		 * semantics are handled by special quirks in gpiolib,
2904 		 * so initializing them GPIOD_OUT_LOW here means
2905 		 * "unasserted", in most cases this will drive the physical
2906 		 * line high.
2907 		 */
2908 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2909 						      GPIOD_OUT_LOW);
2910 		if (IS_ERR(cs[i]))
2911 			return PTR_ERR(cs[i]);
2912 
2913 		if (cs[i]) {
2914 			/*
2915 			 * If we find a CS GPIO, name it after the device and
2916 			 * chip select line.
2917 			 */
2918 			char *gpioname;
2919 
2920 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2921 						  dev_name(dev), i);
2922 			if (!gpioname)
2923 				return -ENOMEM;
2924 			gpiod_set_consumer_name(cs[i], gpioname);
2925 			num_cs_gpios++;
2926 			continue;
2927 		}
2928 
2929 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2930 			dev_err(dev, "Invalid native chip select %d\n", i);
2931 			return -EINVAL;
2932 		}
2933 		native_cs_mask |= BIT(i);
2934 	}
2935 
2936 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2937 
2938 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2939 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2940 		dev_err(dev, "No unused native chip select available\n");
2941 		return -EINVAL;
2942 	}
2943 
2944 	return 0;
2945 }
2946 
2947 static int spi_controller_check_ops(struct spi_controller *ctlr)
2948 {
2949 	/*
2950 	 * The controller may implement only the high-level SPI-memory like
2951 	 * operations if it does not support regular SPI transfers, and this is
2952 	 * valid use case.
2953 	 * If ->mem_ops is NULL, we request that at least one of the
2954 	 * ->transfer_xxx() method be implemented.
2955 	 */
2956 	if (ctlr->mem_ops) {
2957 		if (!ctlr->mem_ops->exec_op)
2958 			return -EINVAL;
2959 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2960 		   !ctlr->transfer_one_message) {
2961 		return -EINVAL;
2962 	}
2963 
2964 	return 0;
2965 }
2966 
2967 /**
2968  * spi_register_controller - register SPI master or slave controller
2969  * @ctlr: initialized master, originally from spi_alloc_master() or
2970  *	spi_alloc_slave()
2971  * Context: can sleep
2972  *
2973  * SPI controllers connect to their drivers using some non-SPI bus,
2974  * such as the platform bus.  The final stage of probe() in that code
2975  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2976  *
2977  * SPI controllers use board specific (often SOC specific) bus numbers,
2978  * and board-specific addressing for SPI devices combines those numbers
2979  * with chip select numbers.  Since SPI does not directly support dynamic
2980  * device identification, boards need configuration tables telling which
2981  * chip is at which address.
2982  *
2983  * This must be called from context that can sleep.  It returns zero on
2984  * success, else a negative error code (dropping the controller's refcount).
2985  * After a successful return, the caller is responsible for calling
2986  * spi_unregister_controller().
2987  *
2988  * Return: zero on success, else a negative error code.
2989  */
2990 int spi_register_controller(struct spi_controller *ctlr)
2991 {
2992 	struct device		*dev = ctlr->dev.parent;
2993 	struct boardinfo	*bi;
2994 	int			status;
2995 	int			id, first_dynamic;
2996 
2997 	if (!dev)
2998 		return -ENODEV;
2999 
3000 	/*
3001 	 * Make sure all necessary hooks are implemented before registering
3002 	 * the SPI controller.
3003 	 */
3004 	status = spi_controller_check_ops(ctlr);
3005 	if (status)
3006 		return status;
3007 
3008 	if (ctlr->bus_num >= 0) {
3009 		/* Devices with a fixed bus num must check-in with the num */
3010 		mutex_lock(&board_lock);
3011 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3012 			ctlr->bus_num + 1, GFP_KERNEL);
3013 		mutex_unlock(&board_lock);
3014 		if (WARN(id < 0, "couldn't get idr"))
3015 			return id == -ENOSPC ? -EBUSY : id;
3016 		ctlr->bus_num = id;
3017 	} else if (ctlr->dev.of_node) {
3018 		/* Allocate dynamic bus number using Linux idr */
3019 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
3020 		if (id >= 0) {
3021 			ctlr->bus_num = id;
3022 			mutex_lock(&board_lock);
3023 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
3024 				       ctlr->bus_num + 1, GFP_KERNEL);
3025 			mutex_unlock(&board_lock);
3026 			if (WARN(id < 0, "couldn't get idr"))
3027 				return id == -ENOSPC ? -EBUSY : id;
3028 		}
3029 	}
3030 	if (ctlr->bus_num < 0) {
3031 		first_dynamic = of_alias_get_highest_id("spi");
3032 		if (first_dynamic < 0)
3033 			first_dynamic = 0;
3034 		else
3035 			first_dynamic++;
3036 
3037 		mutex_lock(&board_lock);
3038 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
3039 			       0, GFP_KERNEL);
3040 		mutex_unlock(&board_lock);
3041 		if (WARN(id < 0, "couldn't get idr"))
3042 			return id;
3043 		ctlr->bus_num = id;
3044 	}
3045 	ctlr->bus_lock_flag = 0;
3046 	init_completion(&ctlr->xfer_completion);
3047 	init_completion(&ctlr->cur_msg_completion);
3048 	if (!ctlr->max_dma_len)
3049 		ctlr->max_dma_len = INT_MAX;
3050 
3051 	/*
3052 	 * Register the device, then userspace will see it.
3053 	 * Registration fails if the bus ID is in use.
3054 	 */
3055 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3056 
3057 	if (!spi_controller_is_slave(ctlr) && ctlr->use_gpio_descriptors) {
3058 		status = spi_get_gpio_descs(ctlr);
3059 		if (status)
3060 			goto free_bus_id;
3061 		/*
3062 		 * A controller using GPIO descriptors always
3063 		 * supports SPI_CS_HIGH if need be.
3064 		 */
3065 		ctlr->mode_bits |= SPI_CS_HIGH;
3066 	}
3067 
3068 	/*
3069 	 * Even if it's just one always-selected device, there must
3070 	 * be at least one chipselect.
3071 	 */
3072 	if (!ctlr->num_chipselect) {
3073 		status = -EINVAL;
3074 		goto free_bus_id;
3075 	}
3076 
3077 	/* Setting last_cs to -1 means no chip selected */
3078 	ctlr->last_cs = -1;
3079 
3080 	status = device_add(&ctlr->dev);
3081 	if (status < 0)
3082 		goto free_bus_id;
3083 	dev_dbg(dev, "registered %s %s\n",
3084 			spi_controller_is_slave(ctlr) ? "slave" : "master",
3085 			dev_name(&ctlr->dev));
3086 
3087 	/*
3088 	 * If we're using a queued driver, start the queue. Note that we don't
3089 	 * need the queueing logic if the driver is only supporting high-level
3090 	 * memory operations.
3091 	 */
3092 	if (ctlr->transfer) {
3093 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3094 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3095 		status = spi_controller_initialize_queue(ctlr);
3096 		if (status) {
3097 			device_del(&ctlr->dev);
3098 			goto free_bus_id;
3099 		}
3100 	}
3101 	/* Add statistics */
3102 	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3103 	if (!ctlr->pcpu_statistics) {
3104 		dev_err(dev, "Error allocating per-cpu statistics\n");
3105 		status = -ENOMEM;
3106 		goto destroy_queue;
3107 	}
3108 
3109 	mutex_lock(&board_lock);
3110 	list_add_tail(&ctlr->list, &spi_controller_list);
3111 	list_for_each_entry(bi, &board_list, list)
3112 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3113 	mutex_unlock(&board_lock);
3114 
3115 	/* Register devices from the device tree and ACPI */
3116 	of_register_spi_devices(ctlr);
3117 	acpi_register_spi_devices(ctlr);
3118 	return status;
3119 
3120 destroy_queue:
3121 	spi_destroy_queue(ctlr);
3122 free_bus_id:
3123 	mutex_lock(&board_lock);
3124 	idr_remove(&spi_master_idr, ctlr->bus_num);
3125 	mutex_unlock(&board_lock);
3126 	return status;
3127 }
3128 EXPORT_SYMBOL_GPL(spi_register_controller);
3129 
3130 static void devm_spi_unregister(struct device *dev, void *res)
3131 {
3132 	spi_unregister_controller(*(struct spi_controller **)res);
3133 }
3134 
3135 /**
3136  * devm_spi_register_controller - register managed SPI master or slave
3137  *	controller
3138  * @dev:    device managing SPI controller
3139  * @ctlr: initialized controller, originally from spi_alloc_master() or
3140  *	spi_alloc_slave()
3141  * Context: can sleep
3142  *
3143  * Register a SPI device as with spi_register_controller() which will
3144  * automatically be unregistered and freed.
3145  *
3146  * Return: zero on success, else a negative error code.
3147  */
3148 int devm_spi_register_controller(struct device *dev,
3149 				 struct spi_controller *ctlr)
3150 {
3151 	struct spi_controller **ptr;
3152 	int ret;
3153 
3154 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3155 	if (!ptr)
3156 		return -ENOMEM;
3157 
3158 	ret = spi_register_controller(ctlr);
3159 	if (!ret) {
3160 		*ptr = ctlr;
3161 		devres_add(dev, ptr);
3162 	} else {
3163 		devres_free(ptr);
3164 	}
3165 
3166 	return ret;
3167 }
3168 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3169 
3170 static int __unregister(struct device *dev, void *null)
3171 {
3172 	spi_unregister_device(to_spi_device(dev));
3173 	return 0;
3174 }
3175 
3176 /**
3177  * spi_unregister_controller - unregister SPI master or slave controller
3178  * @ctlr: the controller being unregistered
3179  * Context: can sleep
3180  *
3181  * This call is used only by SPI controller drivers, which are the
3182  * only ones directly touching chip registers.
3183  *
3184  * This must be called from context that can sleep.
3185  *
3186  * Note that this function also drops a reference to the controller.
3187  */
3188 void spi_unregister_controller(struct spi_controller *ctlr)
3189 {
3190 	struct spi_controller *found;
3191 	int id = ctlr->bus_num;
3192 
3193 	/* Prevent addition of new devices, unregister existing ones */
3194 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3195 		mutex_lock(&ctlr->add_lock);
3196 
3197 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3198 
3199 	/* First make sure that this controller was ever added */
3200 	mutex_lock(&board_lock);
3201 	found = idr_find(&spi_master_idr, id);
3202 	mutex_unlock(&board_lock);
3203 	if (ctlr->queued) {
3204 		if (spi_destroy_queue(ctlr))
3205 			dev_err(&ctlr->dev, "queue remove failed\n");
3206 	}
3207 	mutex_lock(&board_lock);
3208 	list_del(&ctlr->list);
3209 	mutex_unlock(&board_lock);
3210 
3211 	device_del(&ctlr->dev);
3212 
3213 	/* Free bus id */
3214 	mutex_lock(&board_lock);
3215 	if (found == ctlr)
3216 		idr_remove(&spi_master_idr, id);
3217 	mutex_unlock(&board_lock);
3218 
3219 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3220 		mutex_unlock(&ctlr->add_lock);
3221 
3222 	/* Release the last reference on the controller if its driver
3223 	 * has not yet been converted to devm_spi_alloc_master/slave().
3224 	 */
3225 	if (!ctlr->devm_allocated)
3226 		put_device(&ctlr->dev);
3227 }
3228 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3229 
3230 int spi_controller_suspend(struct spi_controller *ctlr)
3231 {
3232 	int ret;
3233 
3234 	/* Basically no-ops for non-queued controllers */
3235 	if (!ctlr->queued)
3236 		return 0;
3237 
3238 	ret = spi_stop_queue(ctlr);
3239 	if (ret)
3240 		dev_err(&ctlr->dev, "queue stop failed\n");
3241 
3242 	return ret;
3243 }
3244 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3245 
3246 int spi_controller_resume(struct spi_controller *ctlr)
3247 {
3248 	int ret;
3249 
3250 	if (!ctlr->queued)
3251 		return 0;
3252 
3253 	ret = spi_start_queue(ctlr);
3254 	if (ret)
3255 		dev_err(&ctlr->dev, "queue restart failed\n");
3256 
3257 	return ret;
3258 }
3259 EXPORT_SYMBOL_GPL(spi_controller_resume);
3260 
3261 /*-------------------------------------------------------------------------*/
3262 
3263 /* Core methods for spi_message alterations */
3264 
3265 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3266 					    struct spi_message *msg,
3267 					    void *res)
3268 {
3269 	struct spi_replaced_transfers *rxfer = res;
3270 	size_t i;
3271 
3272 	/* Call extra callback if requested */
3273 	if (rxfer->release)
3274 		rxfer->release(ctlr, msg, res);
3275 
3276 	/* Insert replaced transfers back into the message */
3277 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3278 
3279 	/* Remove the formerly inserted entries */
3280 	for (i = 0; i < rxfer->inserted; i++)
3281 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3282 }
3283 
3284 /**
3285  * spi_replace_transfers - replace transfers with several transfers
3286  *                         and register change with spi_message.resources
3287  * @msg:           the spi_message we work upon
3288  * @xfer_first:    the first spi_transfer we want to replace
3289  * @remove:        number of transfers to remove
3290  * @insert:        the number of transfers we want to insert instead
3291  * @release:       extra release code necessary in some circumstances
3292  * @extradatasize: extra data to allocate (with alignment guarantees
3293  *                 of struct @spi_transfer)
3294  * @gfp:           gfp flags
3295  *
3296  * Returns: pointer to @spi_replaced_transfers,
3297  *          PTR_ERR(...) in case of errors.
3298  */
3299 static struct spi_replaced_transfers *spi_replace_transfers(
3300 	struct spi_message *msg,
3301 	struct spi_transfer *xfer_first,
3302 	size_t remove,
3303 	size_t insert,
3304 	spi_replaced_release_t release,
3305 	size_t extradatasize,
3306 	gfp_t gfp)
3307 {
3308 	struct spi_replaced_transfers *rxfer;
3309 	struct spi_transfer *xfer;
3310 	size_t i;
3311 
3312 	/* Allocate the structure using spi_res */
3313 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3314 			      struct_size(rxfer, inserted_transfers, insert)
3315 			      + extradatasize,
3316 			      gfp);
3317 	if (!rxfer)
3318 		return ERR_PTR(-ENOMEM);
3319 
3320 	/* The release code to invoke before running the generic release */
3321 	rxfer->release = release;
3322 
3323 	/* Assign extradata */
3324 	if (extradatasize)
3325 		rxfer->extradata =
3326 			&rxfer->inserted_transfers[insert];
3327 
3328 	/* Init the replaced_transfers list */
3329 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3330 
3331 	/*
3332 	 * Assign the list_entry after which we should reinsert
3333 	 * the @replaced_transfers - it may be spi_message.messages!
3334 	 */
3335 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3336 
3337 	/* Remove the requested number of transfers */
3338 	for (i = 0; i < remove; i++) {
3339 		/*
3340 		 * If the entry after replaced_after it is msg->transfers
3341 		 * then we have been requested to remove more transfers
3342 		 * than are in the list.
3343 		 */
3344 		if (rxfer->replaced_after->next == &msg->transfers) {
3345 			dev_err(&msg->spi->dev,
3346 				"requested to remove more spi_transfers than are available\n");
3347 			/* Insert replaced transfers back into the message */
3348 			list_splice(&rxfer->replaced_transfers,
3349 				    rxfer->replaced_after);
3350 
3351 			/* Free the spi_replace_transfer structure... */
3352 			spi_res_free(rxfer);
3353 
3354 			/* ...and return with an error */
3355 			return ERR_PTR(-EINVAL);
3356 		}
3357 
3358 		/*
3359 		 * Remove the entry after replaced_after from list of
3360 		 * transfers and add it to list of replaced_transfers.
3361 		 */
3362 		list_move_tail(rxfer->replaced_after->next,
3363 			       &rxfer->replaced_transfers);
3364 	}
3365 
3366 	/*
3367 	 * Create copy of the given xfer with identical settings
3368 	 * based on the first transfer to get removed.
3369 	 */
3370 	for (i = 0; i < insert; i++) {
3371 		/* We need to run in reverse order */
3372 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3373 
3374 		/* Copy all spi_transfer data */
3375 		memcpy(xfer, xfer_first, sizeof(*xfer));
3376 
3377 		/* Add to list */
3378 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3379 
3380 		/* Clear cs_change and delay for all but the last */
3381 		if (i) {
3382 			xfer->cs_change = false;
3383 			xfer->delay.value = 0;
3384 		}
3385 	}
3386 
3387 	/* Set up inserted... */
3388 	rxfer->inserted = insert;
3389 
3390 	/* ...and register it with spi_res/spi_message */
3391 	spi_res_add(msg, rxfer);
3392 
3393 	return rxfer;
3394 }
3395 
3396 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3397 					struct spi_message *msg,
3398 					struct spi_transfer **xferp,
3399 					size_t maxsize,
3400 					gfp_t gfp)
3401 {
3402 	struct spi_transfer *xfer = *xferp, *xfers;
3403 	struct spi_replaced_transfers *srt;
3404 	size_t offset;
3405 	size_t count, i;
3406 
3407 	/* Calculate how many we have to replace */
3408 	count = DIV_ROUND_UP(xfer->len, maxsize);
3409 
3410 	/* Create replacement */
3411 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3412 	if (IS_ERR(srt))
3413 		return PTR_ERR(srt);
3414 	xfers = srt->inserted_transfers;
3415 
3416 	/*
3417 	 * Now handle each of those newly inserted spi_transfers.
3418 	 * Note that the replacements spi_transfers all are preset
3419 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3420 	 * are all identical (as well as most others)
3421 	 * so we just have to fix up len and the pointers.
3422 	 *
3423 	 * This also includes support for the depreciated
3424 	 * spi_message.is_dma_mapped interface.
3425 	 */
3426 
3427 	/*
3428 	 * The first transfer just needs the length modified, so we
3429 	 * run it outside the loop.
3430 	 */
3431 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3432 
3433 	/* All the others need rx_buf/tx_buf also set */
3434 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3435 		/* Update rx_buf, tx_buf and dma */
3436 		if (xfers[i].rx_buf)
3437 			xfers[i].rx_buf += offset;
3438 		if (xfers[i].rx_dma)
3439 			xfers[i].rx_dma += offset;
3440 		if (xfers[i].tx_buf)
3441 			xfers[i].tx_buf += offset;
3442 		if (xfers[i].tx_dma)
3443 			xfers[i].tx_dma += offset;
3444 
3445 		/* Update length */
3446 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3447 	}
3448 
3449 	/*
3450 	 * We set up xferp to the last entry we have inserted,
3451 	 * so that we skip those already split transfers.
3452 	 */
3453 	*xferp = &xfers[count - 1];
3454 
3455 	/* Increment statistics counters */
3456 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3457 				       transfers_split_maxsize);
3458 	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3459 				       transfers_split_maxsize);
3460 
3461 	return 0;
3462 }
3463 
3464 /**
3465  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3466  *                               when an individual transfer exceeds a
3467  *                               certain size
3468  * @ctlr:    the @spi_controller for this transfer
3469  * @msg:   the @spi_message to transform
3470  * @maxsize:  the maximum when to apply this
3471  * @gfp: GFP allocation flags
3472  *
3473  * Return: status of transformation
3474  */
3475 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3476 				struct spi_message *msg,
3477 				size_t maxsize,
3478 				gfp_t gfp)
3479 {
3480 	struct spi_transfer *xfer;
3481 	int ret;
3482 
3483 	/*
3484 	 * Iterate over the transfer_list,
3485 	 * but note that xfer is advanced to the last transfer inserted
3486 	 * to avoid checking sizes again unnecessarily (also xfer does
3487 	 * potentially belong to a different list by the time the
3488 	 * replacement has happened).
3489 	 */
3490 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3491 		if (xfer->len > maxsize) {
3492 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3493 							   maxsize, gfp);
3494 			if (ret)
3495 				return ret;
3496 		}
3497 	}
3498 
3499 	return 0;
3500 }
3501 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3502 
3503 /*-------------------------------------------------------------------------*/
3504 
3505 /* Core methods for SPI controller protocol drivers.  Some of the
3506  * other core methods are currently defined as inline functions.
3507  */
3508 
3509 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3510 					u8 bits_per_word)
3511 {
3512 	if (ctlr->bits_per_word_mask) {
3513 		/* Only 32 bits fit in the mask */
3514 		if (bits_per_word > 32)
3515 			return -EINVAL;
3516 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3517 			return -EINVAL;
3518 	}
3519 
3520 	return 0;
3521 }
3522 
3523 /**
3524  * spi_setup - setup SPI mode and clock rate
3525  * @spi: the device whose settings are being modified
3526  * Context: can sleep, and no requests are queued to the device
3527  *
3528  * SPI protocol drivers may need to update the transfer mode if the
3529  * device doesn't work with its default.  They may likewise need
3530  * to update clock rates or word sizes from initial values.  This function
3531  * changes those settings, and must be called from a context that can sleep.
3532  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3533  * effect the next time the device is selected and data is transferred to
3534  * or from it.  When this function returns, the spi device is deselected.
3535  *
3536  * Note that this call will fail if the protocol driver specifies an option
3537  * that the underlying controller or its driver does not support.  For
3538  * example, not all hardware supports wire transfers using nine bit words,
3539  * LSB-first wire encoding, or active-high chipselects.
3540  *
3541  * Return: zero on success, else a negative error code.
3542  */
3543 int spi_setup(struct spi_device *spi)
3544 {
3545 	unsigned	bad_bits, ugly_bits;
3546 	int		status = 0;
3547 
3548 	/*
3549 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3550 	 * are set at the same time.
3551 	 */
3552 	if ((hweight_long(spi->mode &
3553 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3554 	    (hweight_long(spi->mode &
3555 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3556 		dev_err(&spi->dev,
3557 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3558 		return -EINVAL;
3559 	}
3560 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3561 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3562 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3563 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3564 		return -EINVAL;
3565 	/*
3566 	 * Help drivers fail *cleanly* when they need options
3567 	 * that aren't supported with their current controller.
3568 	 * SPI_CS_WORD has a fallback software implementation,
3569 	 * so it is ignored here.
3570 	 */
3571 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3572 				 SPI_NO_TX | SPI_NO_RX);
3573 	ugly_bits = bad_bits &
3574 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3575 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3576 	if (ugly_bits) {
3577 		dev_warn(&spi->dev,
3578 			 "setup: ignoring unsupported mode bits %x\n",
3579 			 ugly_bits);
3580 		spi->mode &= ~ugly_bits;
3581 		bad_bits &= ~ugly_bits;
3582 	}
3583 	if (bad_bits) {
3584 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3585 			bad_bits);
3586 		return -EINVAL;
3587 	}
3588 
3589 	if (!spi->bits_per_word) {
3590 		spi->bits_per_word = 8;
3591 	} else {
3592 		/*
3593 		 * Some controllers may not support the default 8 bits-per-word
3594 		 * so only perform the check when this is explicitly provided.
3595 		 */
3596 		status = __spi_validate_bits_per_word(spi->controller,
3597 						      spi->bits_per_word);
3598 		if (status)
3599 			return status;
3600 	}
3601 
3602 	if (spi->controller->max_speed_hz &&
3603 	    (!spi->max_speed_hz ||
3604 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3605 		spi->max_speed_hz = spi->controller->max_speed_hz;
3606 
3607 	mutex_lock(&spi->controller->io_mutex);
3608 
3609 	if (spi->controller->setup) {
3610 		status = spi->controller->setup(spi);
3611 		if (status) {
3612 			mutex_unlock(&spi->controller->io_mutex);
3613 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3614 				status);
3615 			return status;
3616 		}
3617 	}
3618 
3619 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3620 		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3621 		if (status < 0) {
3622 			mutex_unlock(&spi->controller->io_mutex);
3623 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3624 				status);
3625 			return status;
3626 		}
3627 
3628 		/*
3629 		 * We do not want to return positive value from pm_runtime_get,
3630 		 * there are many instances of devices calling spi_setup() and
3631 		 * checking for a non-zero return value instead of a negative
3632 		 * return value.
3633 		 */
3634 		status = 0;
3635 
3636 		spi_set_cs(spi, false, true);
3637 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3638 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3639 	} else {
3640 		spi_set_cs(spi, false, true);
3641 	}
3642 
3643 	mutex_unlock(&spi->controller->io_mutex);
3644 
3645 	if (spi->rt && !spi->controller->rt) {
3646 		spi->controller->rt = true;
3647 		spi_set_thread_rt(spi->controller);
3648 	}
3649 
3650 	trace_spi_setup(spi, status);
3651 
3652 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3653 			spi->mode & SPI_MODE_X_MASK,
3654 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3655 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3656 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3657 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3658 			spi->bits_per_word, spi->max_speed_hz,
3659 			status);
3660 
3661 	return status;
3662 }
3663 EXPORT_SYMBOL_GPL(spi_setup);
3664 
3665 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3666 				       struct spi_device *spi)
3667 {
3668 	int delay1, delay2;
3669 
3670 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3671 	if (delay1 < 0)
3672 		return delay1;
3673 
3674 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3675 	if (delay2 < 0)
3676 		return delay2;
3677 
3678 	if (delay1 < delay2)
3679 		memcpy(&xfer->word_delay, &spi->word_delay,
3680 		       sizeof(xfer->word_delay));
3681 
3682 	return 0;
3683 }
3684 
3685 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3686 {
3687 	struct spi_controller *ctlr = spi->controller;
3688 	struct spi_transfer *xfer;
3689 	int w_size;
3690 
3691 	if (list_empty(&message->transfers))
3692 		return -EINVAL;
3693 
3694 	/*
3695 	 * If an SPI controller does not support toggling the CS line on each
3696 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3697 	 * for the CS line, we can emulate the CS-per-word hardware function by
3698 	 * splitting transfers into one-word transfers and ensuring that
3699 	 * cs_change is set for each transfer.
3700 	 */
3701 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3702 					  spi->cs_gpiod)) {
3703 		size_t maxsize;
3704 		int ret;
3705 
3706 		maxsize = (spi->bits_per_word + 7) / 8;
3707 
3708 		/* spi_split_transfers_maxsize() requires message->spi */
3709 		message->spi = spi;
3710 
3711 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3712 						  GFP_KERNEL);
3713 		if (ret)
3714 			return ret;
3715 
3716 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3717 			/* Don't change cs_change on the last entry in the list */
3718 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3719 				break;
3720 			xfer->cs_change = 1;
3721 		}
3722 	}
3723 
3724 	/*
3725 	 * Half-duplex links include original MicroWire, and ones with
3726 	 * only one data pin like SPI_3WIRE (switches direction) or where
3727 	 * either MOSI or MISO is missing.  They can also be caused by
3728 	 * software limitations.
3729 	 */
3730 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3731 	    (spi->mode & SPI_3WIRE)) {
3732 		unsigned flags = ctlr->flags;
3733 
3734 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3735 			if (xfer->rx_buf && xfer->tx_buf)
3736 				return -EINVAL;
3737 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3738 				return -EINVAL;
3739 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3740 				return -EINVAL;
3741 		}
3742 	}
3743 
3744 	/*
3745 	 * Set transfer bits_per_word and max speed as spi device default if
3746 	 * it is not set for this transfer.
3747 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3748 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3749 	 * Ensure transfer word_delay is at least as long as that required by
3750 	 * device itself.
3751 	 */
3752 	message->frame_length = 0;
3753 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3754 		xfer->effective_speed_hz = 0;
3755 		message->frame_length += xfer->len;
3756 		if (!xfer->bits_per_word)
3757 			xfer->bits_per_word = spi->bits_per_word;
3758 
3759 		if (!xfer->speed_hz)
3760 			xfer->speed_hz = spi->max_speed_hz;
3761 
3762 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3763 			xfer->speed_hz = ctlr->max_speed_hz;
3764 
3765 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3766 			return -EINVAL;
3767 
3768 		/*
3769 		 * SPI transfer length should be multiple of SPI word size
3770 		 * where SPI word size should be power-of-two multiple.
3771 		 */
3772 		if (xfer->bits_per_word <= 8)
3773 			w_size = 1;
3774 		else if (xfer->bits_per_word <= 16)
3775 			w_size = 2;
3776 		else
3777 			w_size = 4;
3778 
3779 		/* No partial transfers accepted */
3780 		if (xfer->len % w_size)
3781 			return -EINVAL;
3782 
3783 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3784 		    xfer->speed_hz < ctlr->min_speed_hz)
3785 			return -EINVAL;
3786 
3787 		if (xfer->tx_buf && !xfer->tx_nbits)
3788 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3789 		if (xfer->rx_buf && !xfer->rx_nbits)
3790 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3791 		/*
3792 		 * Check transfer tx/rx_nbits:
3793 		 * 1. check the value matches one of single, dual and quad
3794 		 * 2. check tx/rx_nbits match the mode in spi_device
3795 		 */
3796 		if (xfer->tx_buf) {
3797 			if (spi->mode & SPI_NO_TX)
3798 				return -EINVAL;
3799 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3800 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3801 				xfer->tx_nbits != SPI_NBITS_QUAD)
3802 				return -EINVAL;
3803 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3804 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3805 				return -EINVAL;
3806 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3807 				!(spi->mode & SPI_TX_QUAD))
3808 				return -EINVAL;
3809 		}
3810 		/* Check transfer rx_nbits */
3811 		if (xfer->rx_buf) {
3812 			if (spi->mode & SPI_NO_RX)
3813 				return -EINVAL;
3814 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3815 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3816 				xfer->rx_nbits != SPI_NBITS_QUAD)
3817 				return -EINVAL;
3818 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3819 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3820 				return -EINVAL;
3821 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3822 				!(spi->mode & SPI_RX_QUAD))
3823 				return -EINVAL;
3824 		}
3825 
3826 		if (_spi_xfer_word_delay_update(xfer, spi))
3827 			return -EINVAL;
3828 	}
3829 
3830 	message->status = -EINPROGRESS;
3831 
3832 	return 0;
3833 }
3834 
3835 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3836 {
3837 	struct spi_controller *ctlr = spi->controller;
3838 	struct spi_transfer *xfer;
3839 
3840 	/*
3841 	 * Some controllers do not support doing regular SPI transfers. Return
3842 	 * ENOTSUPP when this is the case.
3843 	 */
3844 	if (!ctlr->transfer)
3845 		return -ENOTSUPP;
3846 
3847 	message->spi = spi;
3848 
3849 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
3850 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
3851 
3852 	trace_spi_message_submit(message);
3853 
3854 	if (!ctlr->ptp_sts_supported) {
3855 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3856 			xfer->ptp_sts_word_pre = 0;
3857 			ptp_read_system_prets(xfer->ptp_sts);
3858 		}
3859 	}
3860 
3861 	return ctlr->transfer(spi, message);
3862 }
3863 
3864 /**
3865  * spi_async - asynchronous SPI transfer
3866  * @spi: device with which data will be exchanged
3867  * @message: describes the data transfers, including completion callback
3868  * Context: any (irqs may be blocked, etc)
3869  *
3870  * This call may be used in_irq and other contexts which can't sleep,
3871  * as well as from task contexts which can sleep.
3872  *
3873  * The completion callback is invoked in a context which can't sleep.
3874  * Before that invocation, the value of message->status is undefined.
3875  * When the callback is issued, message->status holds either zero (to
3876  * indicate complete success) or a negative error code.  After that
3877  * callback returns, the driver which issued the transfer request may
3878  * deallocate the associated memory; it's no longer in use by any SPI
3879  * core or controller driver code.
3880  *
3881  * Note that although all messages to a spi_device are handled in
3882  * FIFO order, messages may go to different devices in other orders.
3883  * Some device might be higher priority, or have various "hard" access
3884  * time requirements, for example.
3885  *
3886  * On detection of any fault during the transfer, processing of
3887  * the entire message is aborted, and the device is deselected.
3888  * Until returning from the associated message completion callback,
3889  * no other spi_message queued to that device will be processed.
3890  * (This rule applies equally to all the synchronous transfer calls,
3891  * which are wrappers around this core asynchronous primitive.)
3892  *
3893  * Return: zero on success, else a negative error code.
3894  */
3895 int spi_async(struct spi_device *spi, struct spi_message *message)
3896 {
3897 	struct spi_controller *ctlr = spi->controller;
3898 	int ret;
3899 	unsigned long flags;
3900 
3901 	ret = __spi_validate(spi, message);
3902 	if (ret != 0)
3903 		return ret;
3904 
3905 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3906 
3907 	if (ctlr->bus_lock_flag)
3908 		ret = -EBUSY;
3909 	else
3910 		ret = __spi_async(spi, message);
3911 
3912 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3913 
3914 	return ret;
3915 }
3916 EXPORT_SYMBOL_GPL(spi_async);
3917 
3918 /**
3919  * spi_async_locked - version of spi_async with exclusive bus usage
3920  * @spi: device with which data will be exchanged
3921  * @message: describes the data transfers, including completion callback
3922  * Context: any (irqs may be blocked, etc)
3923  *
3924  * This call may be used in_irq and other contexts which can't sleep,
3925  * as well as from task contexts which can sleep.
3926  *
3927  * The completion callback is invoked in a context which can't sleep.
3928  * Before that invocation, the value of message->status is undefined.
3929  * When the callback is issued, message->status holds either zero (to
3930  * indicate complete success) or a negative error code.  After that
3931  * callback returns, the driver which issued the transfer request may
3932  * deallocate the associated memory; it's no longer in use by any SPI
3933  * core or controller driver code.
3934  *
3935  * Note that although all messages to a spi_device are handled in
3936  * FIFO order, messages may go to different devices in other orders.
3937  * Some device might be higher priority, or have various "hard" access
3938  * time requirements, for example.
3939  *
3940  * On detection of any fault during the transfer, processing of
3941  * the entire message is aborted, and the device is deselected.
3942  * Until returning from the associated message completion callback,
3943  * no other spi_message queued to that device will be processed.
3944  * (This rule applies equally to all the synchronous transfer calls,
3945  * which are wrappers around this core asynchronous primitive.)
3946  *
3947  * Return: zero on success, else a negative error code.
3948  */
3949 static int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3950 {
3951 	struct spi_controller *ctlr = spi->controller;
3952 	int ret;
3953 	unsigned long flags;
3954 
3955 	ret = __spi_validate(spi, message);
3956 	if (ret != 0)
3957 		return ret;
3958 
3959 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3960 
3961 	ret = __spi_async(spi, message);
3962 
3963 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3964 
3965 	return ret;
3966 
3967 }
3968 
3969 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
3970 {
3971 	bool was_busy;
3972 	int ret;
3973 
3974 	mutex_lock(&ctlr->io_mutex);
3975 
3976 	was_busy = ctlr->busy;
3977 
3978 	ctlr->cur_msg = msg;
3979 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
3980 	if (ret)
3981 		goto out;
3982 
3983 	ctlr->cur_msg = NULL;
3984 	ctlr->fallback = false;
3985 
3986 	if (!was_busy) {
3987 		kfree(ctlr->dummy_rx);
3988 		ctlr->dummy_rx = NULL;
3989 		kfree(ctlr->dummy_tx);
3990 		ctlr->dummy_tx = NULL;
3991 		if (ctlr->unprepare_transfer_hardware &&
3992 		    ctlr->unprepare_transfer_hardware(ctlr))
3993 			dev_err(&ctlr->dev,
3994 				"failed to unprepare transfer hardware\n");
3995 		spi_idle_runtime_pm(ctlr);
3996 	}
3997 
3998 out:
3999 	mutex_unlock(&ctlr->io_mutex);
4000 }
4001 
4002 /*-------------------------------------------------------------------------*/
4003 
4004 /*
4005  * Utility methods for SPI protocol drivers, layered on
4006  * top of the core.  Some other utility methods are defined as
4007  * inline functions.
4008  */
4009 
4010 static void spi_complete(void *arg)
4011 {
4012 	complete(arg);
4013 }
4014 
4015 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4016 {
4017 	DECLARE_COMPLETION_ONSTACK(done);
4018 	int status;
4019 	struct spi_controller *ctlr = spi->controller;
4020 
4021 	status = __spi_validate(spi, message);
4022 	if (status != 0)
4023 		return status;
4024 
4025 	message->spi = spi;
4026 
4027 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4028 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4029 
4030 	/*
4031 	 * Checking queue_empty here only guarantees async/sync message
4032 	 * ordering when coming from the same context. It does not need to
4033 	 * guard against reentrancy from a different context. The io_mutex
4034 	 * will catch those cases.
4035 	 */
4036 	if (READ_ONCE(ctlr->queue_empty)) {
4037 		message->actual_length = 0;
4038 		message->status = -EINPROGRESS;
4039 
4040 		trace_spi_message_submit(message);
4041 
4042 		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4043 		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4044 
4045 		__spi_transfer_message_noqueue(ctlr, message);
4046 
4047 		return message->status;
4048 	}
4049 
4050 	/*
4051 	 * There are messages in the async queue that could have originated
4052 	 * from the same context, so we need to preserve ordering.
4053 	 * Therefor we send the message to the async queue and wait until they
4054 	 * are completed.
4055 	 */
4056 	message->complete = spi_complete;
4057 	message->context = &done;
4058 	status = spi_async_locked(spi, message);
4059 	if (status == 0) {
4060 		wait_for_completion(&done);
4061 		status = message->status;
4062 	}
4063 	message->context = NULL;
4064 
4065 	return status;
4066 }
4067 
4068 /**
4069  * spi_sync - blocking/synchronous SPI data transfers
4070  * @spi: device with which data will be exchanged
4071  * @message: describes the data transfers
4072  * Context: can sleep
4073  *
4074  * This call may only be used from a context that may sleep.  The sleep
4075  * is non-interruptible, and has no timeout.  Low-overhead controller
4076  * drivers may DMA directly into and out of the message buffers.
4077  *
4078  * Note that the SPI device's chip select is active during the message,
4079  * and then is normally disabled between messages.  Drivers for some
4080  * frequently-used devices may want to minimize costs of selecting a chip,
4081  * by leaving it selected in anticipation that the next message will go
4082  * to the same chip.  (That may increase power usage.)
4083  *
4084  * Also, the caller is guaranteeing that the memory associated with the
4085  * message will not be freed before this call returns.
4086  *
4087  * Return: zero on success, else a negative error code.
4088  */
4089 int spi_sync(struct spi_device *spi, struct spi_message *message)
4090 {
4091 	int ret;
4092 
4093 	mutex_lock(&spi->controller->bus_lock_mutex);
4094 	ret = __spi_sync(spi, message);
4095 	mutex_unlock(&spi->controller->bus_lock_mutex);
4096 
4097 	return ret;
4098 }
4099 EXPORT_SYMBOL_GPL(spi_sync);
4100 
4101 /**
4102  * spi_sync_locked - version of spi_sync with exclusive bus usage
4103  * @spi: device with which data will be exchanged
4104  * @message: describes the data transfers
4105  * Context: can sleep
4106  *
4107  * This call may only be used from a context that may sleep.  The sleep
4108  * is non-interruptible, and has no timeout.  Low-overhead controller
4109  * drivers may DMA directly into and out of the message buffers.
4110  *
4111  * This call should be used by drivers that require exclusive access to the
4112  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4113  * be released by a spi_bus_unlock call when the exclusive access is over.
4114  *
4115  * Return: zero on success, else a negative error code.
4116  */
4117 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4118 {
4119 	return __spi_sync(spi, message);
4120 }
4121 EXPORT_SYMBOL_GPL(spi_sync_locked);
4122 
4123 /**
4124  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4125  * @ctlr: SPI bus master that should be locked for exclusive bus access
4126  * Context: can sleep
4127  *
4128  * This call may only be used from a context that may sleep.  The sleep
4129  * is non-interruptible, and has no timeout.
4130  *
4131  * This call should be used by drivers that require exclusive access to the
4132  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4133  * exclusive access is over. Data transfer must be done by spi_sync_locked
4134  * and spi_async_locked calls when the SPI bus lock is held.
4135  *
4136  * Return: always zero.
4137  */
4138 int spi_bus_lock(struct spi_controller *ctlr)
4139 {
4140 	unsigned long flags;
4141 
4142 	mutex_lock(&ctlr->bus_lock_mutex);
4143 
4144 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4145 	ctlr->bus_lock_flag = 1;
4146 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4147 
4148 	/* Mutex remains locked until spi_bus_unlock() is called */
4149 
4150 	return 0;
4151 }
4152 EXPORT_SYMBOL_GPL(spi_bus_lock);
4153 
4154 /**
4155  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4156  * @ctlr: SPI bus master that was locked for exclusive bus access
4157  * Context: can sleep
4158  *
4159  * This call may only be used from a context that may sleep.  The sleep
4160  * is non-interruptible, and has no timeout.
4161  *
4162  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4163  * call.
4164  *
4165  * Return: always zero.
4166  */
4167 int spi_bus_unlock(struct spi_controller *ctlr)
4168 {
4169 	ctlr->bus_lock_flag = 0;
4170 
4171 	mutex_unlock(&ctlr->bus_lock_mutex);
4172 
4173 	return 0;
4174 }
4175 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4176 
4177 /* Portable code must never pass more than 32 bytes */
4178 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4179 
4180 static u8	*buf;
4181 
4182 /**
4183  * spi_write_then_read - SPI synchronous write followed by read
4184  * @spi: device with which data will be exchanged
4185  * @txbuf: data to be written (need not be dma-safe)
4186  * @n_tx: size of txbuf, in bytes
4187  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4188  * @n_rx: size of rxbuf, in bytes
4189  * Context: can sleep
4190  *
4191  * This performs a half duplex MicroWire style transaction with the
4192  * device, sending txbuf and then reading rxbuf.  The return value
4193  * is zero for success, else a negative errno status code.
4194  * This call may only be used from a context that may sleep.
4195  *
4196  * Parameters to this routine are always copied using a small buffer.
4197  * Performance-sensitive or bulk transfer code should instead use
4198  * spi_{async,sync}() calls with dma-safe buffers.
4199  *
4200  * Return: zero on success, else a negative error code.
4201  */
4202 int spi_write_then_read(struct spi_device *spi,
4203 		const void *txbuf, unsigned n_tx,
4204 		void *rxbuf, unsigned n_rx)
4205 {
4206 	static DEFINE_MUTEX(lock);
4207 
4208 	int			status;
4209 	struct spi_message	message;
4210 	struct spi_transfer	x[2];
4211 	u8			*local_buf;
4212 
4213 	/*
4214 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4215 	 * copying here, (as a pure convenience thing), but we can
4216 	 * keep heap costs out of the hot path unless someone else is
4217 	 * using the pre-allocated buffer or the transfer is too large.
4218 	 */
4219 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4220 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4221 				    GFP_KERNEL | GFP_DMA);
4222 		if (!local_buf)
4223 			return -ENOMEM;
4224 	} else {
4225 		local_buf = buf;
4226 	}
4227 
4228 	spi_message_init(&message);
4229 	memset(x, 0, sizeof(x));
4230 	if (n_tx) {
4231 		x[0].len = n_tx;
4232 		spi_message_add_tail(&x[0], &message);
4233 	}
4234 	if (n_rx) {
4235 		x[1].len = n_rx;
4236 		spi_message_add_tail(&x[1], &message);
4237 	}
4238 
4239 	memcpy(local_buf, txbuf, n_tx);
4240 	x[0].tx_buf = local_buf;
4241 	x[1].rx_buf = local_buf + n_tx;
4242 
4243 	/* Do the i/o */
4244 	status = spi_sync(spi, &message);
4245 	if (status == 0)
4246 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4247 
4248 	if (x[0].tx_buf == buf)
4249 		mutex_unlock(&lock);
4250 	else
4251 		kfree(local_buf);
4252 
4253 	return status;
4254 }
4255 EXPORT_SYMBOL_GPL(spi_write_then_read);
4256 
4257 /*-------------------------------------------------------------------------*/
4258 
4259 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4260 /* Must call put_device() when done with returned spi_device device */
4261 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4262 {
4263 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4264 
4265 	return dev ? to_spi_device(dev) : NULL;
4266 }
4267 
4268 /* The spi controllers are not using spi_bus, so we find it with another way */
4269 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4270 {
4271 	struct device *dev;
4272 
4273 	dev = class_find_device_by_of_node(&spi_master_class, node);
4274 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4275 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4276 	if (!dev)
4277 		return NULL;
4278 
4279 	/* Reference got in class_find_device */
4280 	return container_of(dev, struct spi_controller, dev);
4281 }
4282 
4283 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4284 			 void *arg)
4285 {
4286 	struct of_reconfig_data *rd = arg;
4287 	struct spi_controller *ctlr;
4288 	struct spi_device *spi;
4289 
4290 	switch (of_reconfig_get_state_change(action, arg)) {
4291 	case OF_RECONFIG_CHANGE_ADD:
4292 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4293 		if (ctlr == NULL)
4294 			return NOTIFY_OK;	/* Not for us */
4295 
4296 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4297 			put_device(&ctlr->dev);
4298 			return NOTIFY_OK;
4299 		}
4300 
4301 		spi = of_register_spi_device(ctlr, rd->dn);
4302 		put_device(&ctlr->dev);
4303 
4304 		if (IS_ERR(spi)) {
4305 			pr_err("%s: failed to create for '%pOF'\n",
4306 					__func__, rd->dn);
4307 			of_node_clear_flag(rd->dn, OF_POPULATED);
4308 			return notifier_from_errno(PTR_ERR(spi));
4309 		}
4310 		break;
4311 
4312 	case OF_RECONFIG_CHANGE_REMOVE:
4313 		/* Already depopulated? */
4314 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4315 			return NOTIFY_OK;
4316 
4317 		/* Find our device by node */
4318 		spi = of_find_spi_device_by_node(rd->dn);
4319 		if (spi == NULL)
4320 			return NOTIFY_OK;	/* No? not meant for us */
4321 
4322 		/* Unregister takes one ref away */
4323 		spi_unregister_device(spi);
4324 
4325 		/* And put the reference of the find */
4326 		put_device(&spi->dev);
4327 		break;
4328 	}
4329 
4330 	return NOTIFY_OK;
4331 }
4332 
4333 static struct notifier_block spi_of_notifier = {
4334 	.notifier_call = of_spi_notify,
4335 };
4336 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4337 extern struct notifier_block spi_of_notifier;
4338 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4339 
4340 #if IS_ENABLED(CONFIG_ACPI)
4341 static int spi_acpi_controller_match(struct device *dev, const void *data)
4342 {
4343 	return ACPI_COMPANION(dev->parent) == data;
4344 }
4345 
4346 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4347 {
4348 	struct device *dev;
4349 
4350 	dev = class_find_device(&spi_master_class, NULL, adev,
4351 				spi_acpi_controller_match);
4352 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4353 		dev = class_find_device(&spi_slave_class, NULL, adev,
4354 					spi_acpi_controller_match);
4355 	if (!dev)
4356 		return NULL;
4357 
4358 	return container_of(dev, struct spi_controller, dev);
4359 }
4360 
4361 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4362 {
4363 	struct device *dev;
4364 
4365 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4366 	return to_spi_device(dev);
4367 }
4368 
4369 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4370 			   void *arg)
4371 {
4372 	struct acpi_device *adev = arg;
4373 	struct spi_controller *ctlr;
4374 	struct spi_device *spi;
4375 
4376 	switch (value) {
4377 	case ACPI_RECONFIG_DEVICE_ADD:
4378 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4379 		if (!ctlr)
4380 			break;
4381 
4382 		acpi_register_spi_device(ctlr, adev);
4383 		put_device(&ctlr->dev);
4384 		break;
4385 	case ACPI_RECONFIG_DEVICE_REMOVE:
4386 		if (!acpi_device_enumerated(adev))
4387 			break;
4388 
4389 		spi = acpi_spi_find_device_by_adev(adev);
4390 		if (!spi)
4391 			break;
4392 
4393 		spi_unregister_device(spi);
4394 		put_device(&spi->dev);
4395 		break;
4396 	}
4397 
4398 	return NOTIFY_OK;
4399 }
4400 
4401 static struct notifier_block spi_acpi_notifier = {
4402 	.notifier_call = acpi_spi_notify,
4403 };
4404 #else
4405 extern struct notifier_block spi_acpi_notifier;
4406 #endif
4407 
4408 static int __init spi_init(void)
4409 {
4410 	int	status;
4411 
4412 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4413 	if (!buf) {
4414 		status = -ENOMEM;
4415 		goto err0;
4416 	}
4417 
4418 	status = bus_register(&spi_bus_type);
4419 	if (status < 0)
4420 		goto err1;
4421 
4422 	status = class_register(&spi_master_class);
4423 	if (status < 0)
4424 		goto err2;
4425 
4426 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4427 		status = class_register(&spi_slave_class);
4428 		if (status < 0)
4429 			goto err3;
4430 	}
4431 
4432 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4433 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4434 	if (IS_ENABLED(CONFIG_ACPI))
4435 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4436 
4437 	return 0;
4438 
4439 err3:
4440 	class_unregister(&spi_master_class);
4441 err2:
4442 	bus_unregister(&spi_bus_type);
4443 err1:
4444 	kfree(buf);
4445 	buf = NULL;
4446 err0:
4447 	return status;
4448 }
4449 
4450 /*
4451  * A board_info is normally registered in arch_initcall(),
4452  * but even essential drivers wait till later.
4453  *
4454  * REVISIT only boardinfo really needs static linking. The rest (device and
4455  * driver registration) _could_ be dynamically linked (modular) ... Costs
4456  * include needing to have boardinfo data structures be much more public.
4457  */
4458 postcore_initcall(spi_init);
4459