xref: /openbmc/linux/drivers/spi/spi.c (revision 96de0e252cedffad61b3cb5e05662c591898e69a)
1 /*
2  * spi.c - SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/autoconf.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/cache.h>
26 #include <linux/mutex.h>
27 #include <linux/spi/spi.h>
28 
29 
30 /* SPI bustype and spi_master class are registered after board init code
31  * provides the SPI device tables, ensuring that both are present by the
32  * time controller driver registration causes spi_devices to "enumerate".
33  */
34 static void spidev_release(struct device *dev)
35 {
36 	struct spi_device	*spi = to_spi_device(dev);
37 
38 	/* spi masters may cleanup for released devices */
39 	if (spi->master->cleanup)
40 		spi->master->cleanup(spi);
41 
42 	spi_master_put(spi->master);
43 	kfree(dev);
44 }
45 
46 static ssize_t
47 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
48 {
49 	const struct spi_device	*spi = to_spi_device(dev);
50 
51 	return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias);
52 }
53 
54 static struct device_attribute spi_dev_attrs[] = {
55 	__ATTR_RO(modalias),
56 	__ATTR_NULL,
57 };
58 
59 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
60  * and the sysfs version makes coldplug work too.
61  */
62 
63 static int spi_match_device(struct device *dev, struct device_driver *drv)
64 {
65 	const struct spi_device	*spi = to_spi_device(dev);
66 
67 	return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0;
68 }
69 
70 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
71 {
72 	const struct spi_device		*spi = to_spi_device(dev);
73 
74 	add_uevent_var(env, "MODALIAS=%s", spi->modalias);
75 	return 0;
76 }
77 
78 #ifdef	CONFIG_PM
79 
80 /*
81  * NOTE:  the suspend() method for an spi_master controller driver
82  * should verify that all its child devices are marked as suspended;
83  * suspend requests delivered through sysfs power/state files don't
84  * enforce such constraints.
85  */
86 static int spi_suspend(struct device *dev, pm_message_t message)
87 {
88 	int			value;
89 	struct spi_driver	*drv = to_spi_driver(dev->driver);
90 
91 	if (!drv || !drv->suspend)
92 		return 0;
93 
94 	/* suspend will stop irqs and dma; no more i/o */
95 	value = drv->suspend(to_spi_device(dev), message);
96 	if (value == 0)
97 		dev->power.power_state = message;
98 	return value;
99 }
100 
101 static int spi_resume(struct device *dev)
102 {
103 	int			value;
104 	struct spi_driver	*drv = to_spi_driver(dev->driver);
105 
106 	if (!drv || !drv->resume)
107 		return 0;
108 
109 	/* resume may restart the i/o queue */
110 	value = drv->resume(to_spi_device(dev));
111 	if (value == 0)
112 		dev->power.power_state = PMSG_ON;
113 	return value;
114 }
115 
116 #else
117 #define spi_suspend	NULL
118 #define spi_resume	NULL
119 #endif
120 
121 struct bus_type spi_bus_type = {
122 	.name		= "spi",
123 	.dev_attrs	= spi_dev_attrs,
124 	.match		= spi_match_device,
125 	.uevent		= spi_uevent,
126 	.suspend	= spi_suspend,
127 	.resume		= spi_resume,
128 };
129 EXPORT_SYMBOL_GPL(spi_bus_type);
130 
131 
132 static int spi_drv_probe(struct device *dev)
133 {
134 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
135 
136 	return sdrv->probe(to_spi_device(dev));
137 }
138 
139 static int spi_drv_remove(struct device *dev)
140 {
141 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
142 
143 	return sdrv->remove(to_spi_device(dev));
144 }
145 
146 static void spi_drv_shutdown(struct device *dev)
147 {
148 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
149 
150 	sdrv->shutdown(to_spi_device(dev));
151 }
152 
153 /**
154  * spi_register_driver - register a SPI driver
155  * @sdrv: the driver to register
156  * Context: can sleep
157  */
158 int spi_register_driver(struct spi_driver *sdrv)
159 {
160 	sdrv->driver.bus = &spi_bus_type;
161 	if (sdrv->probe)
162 		sdrv->driver.probe = spi_drv_probe;
163 	if (sdrv->remove)
164 		sdrv->driver.remove = spi_drv_remove;
165 	if (sdrv->shutdown)
166 		sdrv->driver.shutdown = spi_drv_shutdown;
167 	return driver_register(&sdrv->driver);
168 }
169 EXPORT_SYMBOL_GPL(spi_register_driver);
170 
171 /*-------------------------------------------------------------------------*/
172 
173 /* SPI devices should normally not be created by SPI device drivers; that
174  * would make them board-specific.  Similarly with SPI master drivers.
175  * Device registration normally goes into like arch/.../mach.../board-YYY.c
176  * with other readonly (flashable) information about mainboard devices.
177  */
178 
179 struct boardinfo {
180 	struct list_head	list;
181 	unsigned		n_board_info;
182 	struct spi_board_info	board_info[0];
183 };
184 
185 static LIST_HEAD(board_list);
186 static DEFINE_MUTEX(board_lock);
187 
188 
189 /**
190  * spi_new_device - instantiate one new SPI device
191  * @master: Controller to which device is connected
192  * @chip: Describes the SPI device
193  * Context: can sleep
194  *
195  * On typical mainboards, this is purely internal; and it's not needed
196  * after board init creates the hard-wired devices.  Some development
197  * platforms may not be able to use spi_register_board_info though, and
198  * this is exported so that for example a USB or parport based adapter
199  * driver could add devices (which it would learn about out-of-band).
200  *
201  * Returns the new device, or NULL.
202  */
203 struct spi_device *spi_new_device(struct spi_master *master,
204 				  struct spi_board_info *chip)
205 {
206 	struct spi_device	*proxy;
207 	struct device		*dev = master->dev.parent;
208 	int			status;
209 
210 	/* NOTE:  caller did any chip->bus_num checks necessary.
211 	 *
212 	 * Also, unless we change the return value convention to use
213 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
214 	 * suggests syslogged diagnostics are best here (ugh).
215 	 */
216 
217 	/* Chipselects are numbered 0..max; validate. */
218 	if (chip->chip_select >= master->num_chipselect) {
219 		dev_err(dev, "cs%d > max %d\n",
220 			chip->chip_select,
221 			master->num_chipselect);
222 		return NULL;
223 	}
224 
225 	if (!spi_master_get(master))
226 		return NULL;
227 
228 	proxy = kzalloc(sizeof *proxy, GFP_KERNEL);
229 	if (!proxy) {
230 		dev_err(dev, "can't alloc dev for cs%d\n",
231 			chip->chip_select);
232 		goto fail;
233 	}
234 	proxy->master = master;
235 	proxy->chip_select = chip->chip_select;
236 	proxy->max_speed_hz = chip->max_speed_hz;
237 	proxy->mode = chip->mode;
238 	proxy->irq = chip->irq;
239 	proxy->modalias = chip->modalias;
240 
241 	snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id,
242 			"%s.%u", master->dev.bus_id,
243 			chip->chip_select);
244 	proxy->dev.parent = dev;
245 	proxy->dev.bus = &spi_bus_type;
246 	proxy->dev.platform_data = (void *) chip->platform_data;
247 	proxy->controller_data = chip->controller_data;
248 	proxy->controller_state = NULL;
249 	proxy->dev.release = spidev_release;
250 
251 	/* drivers may modify this initial i/o setup */
252 	status = master->setup(proxy);
253 	if (status < 0) {
254 		dev_err(dev, "can't %s %s, status %d\n",
255 				"setup", proxy->dev.bus_id, status);
256 		goto fail;
257 	}
258 
259 	/* driver core catches callers that misbehave by defining
260 	 * devices that already exist.
261 	 */
262 	status = device_register(&proxy->dev);
263 	if (status < 0) {
264 		dev_err(dev, "can't %s %s, status %d\n",
265 				"add", proxy->dev.bus_id, status);
266 		goto fail;
267 	}
268 	dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id);
269 	return proxy;
270 
271 fail:
272 	spi_master_put(master);
273 	kfree(proxy);
274 	return NULL;
275 }
276 EXPORT_SYMBOL_GPL(spi_new_device);
277 
278 /**
279  * spi_register_board_info - register SPI devices for a given board
280  * @info: array of chip descriptors
281  * @n: how many descriptors are provided
282  * Context: can sleep
283  *
284  * Board-specific early init code calls this (probably during arch_initcall)
285  * with segments of the SPI device table.  Any device nodes are created later,
286  * after the relevant parent SPI controller (bus_num) is defined.  We keep
287  * this table of devices forever, so that reloading a controller driver will
288  * not make Linux forget about these hard-wired devices.
289  *
290  * Other code can also call this, e.g. a particular add-on board might provide
291  * SPI devices through its expansion connector, so code initializing that board
292  * would naturally declare its SPI devices.
293  *
294  * The board info passed can safely be __initdata ... but be careful of
295  * any embedded pointers (platform_data, etc), they're copied as-is.
296  */
297 int __init
298 spi_register_board_info(struct spi_board_info const *info, unsigned n)
299 {
300 	struct boardinfo	*bi;
301 
302 	bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL);
303 	if (!bi)
304 		return -ENOMEM;
305 	bi->n_board_info = n;
306 	memcpy(bi->board_info, info, n * sizeof *info);
307 
308 	mutex_lock(&board_lock);
309 	list_add_tail(&bi->list, &board_list);
310 	mutex_unlock(&board_lock);
311 	return 0;
312 }
313 
314 /* FIXME someone should add support for a __setup("spi", ...) that
315  * creates board info from kernel command lines
316  */
317 
318 static void scan_boardinfo(struct spi_master *master)
319 {
320 	struct boardinfo	*bi;
321 
322 	mutex_lock(&board_lock);
323 	list_for_each_entry(bi, &board_list, list) {
324 		struct spi_board_info	*chip = bi->board_info;
325 		unsigned		n;
326 
327 		for (n = bi->n_board_info; n > 0; n--, chip++) {
328 			if (chip->bus_num != master->bus_num)
329 				continue;
330 			/* NOTE: this relies on spi_new_device to
331 			 * issue diagnostics when given bogus inputs
332 			 */
333 			(void) spi_new_device(master, chip);
334 		}
335 	}
336 	mutex_unlock(&board_lock);
337 }
338 
339 /*-------------------------------------------------------------------------*/
340 
341 static void spi_master_release(struct device *dev)
342 {
343 	struct spi_master *master;
344 
345 	master = container_of(dev, struct spi_master, dev);
346 	kfree(master);
347 }
348 
349 static struct class spi_master_class = {
350 	.name		= "spi_master",
351 	.owner		= THIS_MODULE,
352 	.dev_release	= spi_master_release,
353 };
354 
355 
356 /**
357  * spi_alloc_master - allocate SPI master controller
358  * @dev: the controller, possibly using the platform_bus
359  * @size: how much zeroed driver-private data to allocate; the pointer to this
360  *	memory is in the driver_data field of the returned device,
361  *	accessible with spi_master_get_devdata().
362  * Context: can sleep
363  *
364  * This call is used only by SPI master controller drivers, which are the
365  * only ones directly touching chip registers.  It's how they allocate
366  * an spi_master structure, prior to calling spi_register_master().
367  *
368  * This must be called from context that can sleep.  It returns the SPI
369  * master structure on success, else NULL.
370  *
371  * The caller is responsible for assigning the bus number and initializing
372  * the master's methods before calling spi_register_master(); and (after errors
373  * adding the device) calling spi_master_put() to prevent a memory leak.
374  */
375 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
376 {
377 	struct spi_master	*master;
378 
379 	if (!dev)
380 		return NULL;
381 
382 	master = kzalloc(size + sizeof *master, GFP_KERNEL);
383 	if (!master)
384 		return NULL;
385 
386 	device_initialize(&master->dev);
387 	master->dev.class = &spi_master_class;
388 	master->dev.parent = get_device(dev);
389 	spi_master_set_devdata(master, &master[1]);
390 
391 	return master;
392 }
393 EXPORT_SYMBOL_GPL(spi_alloc_master);
394 
395 /**
396  * spi_register_master - register SPI master controller
397  * @master: initialized master, originally from spi_alloc_master()
398  * Context: can sleep
399  *
400  * SPI master controllers connect to their drivers using some non-SPI bus,
401  * such as the platform bus.  The final stage of probe() in that code
402  * includes calling spi_register_master() to hook up to this SPI bus glue.
403  *
404  * SPI controllers use board specific (often SOC specific) bus numbers,
405  * and board-specific addressing for SPI devices combines those numbers
406  * with chip select numbers.  Since SPI does not directly support dynamic
407  * device identification, boards need configuration tables telling which
408  * chip is at which address.
409  *
410  * This must be called from context that can sleep.  It returns zero on
411  * success, else a negative error code (dropping the master's refcount).
412  * After a successful return, the caller is responsible for calling
413  * spi_unregister_master().
414  */
415 int spi_register_master(struct spi_master *master)
416 {
417 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
418 	struct device		*dev = master->dev.parent;
419 	int			status = -ENODEV;
420 	int			dynamic = 0;
421 
422 	if (!dev)
423 		return -ENODEV;
424 
425 	/* even if it's just one always-selected device, there must
426 	 * be at least one chipselect
427 	 */
428 	if (master->num_chipselect == 0)
429 		return -EINVAL;
430 
431 	/* convention:  dynamically assigned bus IDs count down from the max */
432 	if (master->bus_num < 0) {
433 		/* FIXME switch to an IDR based scheme, something like
434 		 * I2C now uses, so we can't run out of "dynamic" IDs
435 		 */
436 		master->bus_num = atomic_dec_return(&dyn_bus_id);
437 		dynamic = 1;
438 	}
439 
440 	/* register the device, then userspace will see it.
441 	 * registration fails if the bus ID is in use.
442 	 */
443 	snprintf(master->dev.bus_id, sizeof master->dev.bus_id,
444 		"spi%u", master->bus_num);
445 	status = device_add(&master->dev);
446 	if (status < 0)
447 		goto done;
448 	dev_dbg(dev, "registered master %s%s\n", master->dev.bus_id,
449 			dynamic ? " (dynamic)" : "");
450 
451 	/* populate children from any spi device tables */
452 	scan_boardinfo(master);
453 	status = 0;
454 done:
455 	return status;
456 }
457 EXPORT_SYMBOL_GPL(spi_register_master);
458 
459 
460 static int __unregister(struct device *dev, void *unused)
461 {
462 	/* note: before about 2.6.14-rc1 this would corrupt memory: */
463 	spi_unregister_device(to_spi_device(dev));
464 	return 0;
465 }
466 
467 /**
468  * spi_unregister_master - unregister SPI master controller
469  * @master: the master being unregistered
470  * Context: can sleep
471  *
472  * This call is used only by SPI master controller drivers, which are the
473  * only ones directly touching chip registers.
474  *
475  * This must be called from context that can sleep.
476  */
477 void spi_unregister_master(struct spi_master *master)
478 {
479 	int dummy;
480 
481 	dummy = device_for_each_child(master->dev.parent, NULL, __unregister);
482 	device_unregister(&master->dev);
483 }
484 EXPORT_SYMBOL_GPL(spi_unregister_master);
485 
486 /**
487  * spi_busnum_to_master - look up master associated with bus_num
488  * @bus_num: the master's bus number
489  * Context: can sleep
490  *
491  * This call may be used with devices that are registered after
492  * arch init time.  It returns a refcounted pointer to the relevant
493  * spi_master (which the caller must release), or NULL if there is
494  * no such master registered.
495  */
496 struct spi_master *spi_busnum_to_master(u16 bus_num)
497 {
498 	struct device		*dev;
499 	struct spi_master	*master = NULL;
500 	struct spi_master	*m;
501 
502 	down(&spi_master_class.sem);
503 	list_for_each_entry(dev, &spi_master_class.children, node) {
504 		m = container_of(dev, struct spi_master, dev);
505 		if (m->bus_num == bus_num) {
506 			master = spi_master_get(m);
507 			break;
508 		}
509 	}
510 	up(&spi_master_class.sem);
511 	return master;
512 }
513 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
514 
515 
516 /*-------------------------------------------------------------------------*/
517 
518 static void spi_complete(void *arg)
519 {
520 	complete(arg);
521 }
522 
523 /**
524  * spi_sync - blocking/synchronous SPI data transfers
525  * @spi: device with which data will be exchanged
526  * @message: describes the data transfers
527  * Context: can sleep
528  *
529  * This call may only be used from a context that may sleep.  The sleep
530  * is non-interruptible, and has no timeout.  Low-overhead controller
531  * drivers may DMA directly into and out of the message buffers.
532  *
533  * Note that the SPI device's chip select is active during the message,
534  * and then is normally disabled between messages.  Drivers for some
535  * frequently-used devices may want to minimize costs of selecting a chip,
536  * by leaving it selected in anticipation that the next message will go
537  * to the same chip.  (That may increase power usage.)
538  *
539  * Also, the caller is guaranteeing that the memory associated with the
540  * message will not be freed before this call returns.
541  *
542  * The return value is a negative error code if the message could not be
543  * submitted, else zero.  When the value is zero, then message->status is
544  * also defined;  it's the completion code for the transfer, either zero
545  * or a negative error code from the controller driver.
546  */
547 int spi_sync(struct spi_device *spi, struct spi_message *message)
548 {
549 	DECLARE_COMPLETION_ONSTACK(done);
550 	int status;
551 
552 	message->complete = spi_complete;
553 	message->context = &done;
554 	status = spi_async(spi, message);
555 	if (status == 0)
556 		wait_for_completion(&done);
557 	message->context = NULL;
558 	return status;
559 }
560 EXPORT_SYMBOL_GPL(spi_sync);
561 
562 /* portable code must never pass more than 32 bytes */
563 #define	SPI_BUFSIZ	max(32,SMP_CACHE_BYTES)
564 
565 static u8	*buf;
566 
567 /**
568  * spi_write_then_read - SPI synchronous write followed by read
569  * @spi: device with which data will be exchanged
570  * @txbuf: data to be written (need not be dma-safe)
571  * @n_tx: size of txbuf, in bytes
572  * @rxbuf: buffer into which data will be read
573  * @n_rx: size of rxbuf, in bytes (need not be dma-safe)
574  * Context: can sleep
575  *
576  * This performs a half duplex MicroWire style transaction with the
577  * device, sending txbuf and then reading rxbuf.  The return value
578  * is zero for success, else a negative errno status code.
579  * This call may only be used from a context that may sleep.
580  *
581  * Parameters to this routine are always copied using a small buffer;
582  * portable code should never use this for more than 32 bytes.
583  * Performance-sensitive or bulk transfer code should instead use
584  * spi_{async,sync}() calls with dma-safe buffers.
585  */
586 int spi_write_then_read(struct spi_device *spi,
587 		const u8 *txbuf, unsigned n_tx,
588 		u8 *rxbuf, unsigned n_rx)
589 {
590 	static DECLARE_MUTEX(lock);
591 
592 	int			status;
593 	struct spi_message	message;
594 	struct spi_transfer	x[2];
595 	u8			*local_buf;
596 
597 	/* Use preallocated DMA-safe buffer.  We can't avoid copying here,
598 	 * (as a pure convenience thing), but we can keep heap costs
599 	 * out of the hot path ...
600 	 */
601 	if ((n_tx + n_rx) > SPI_BUFSIZ)
602 		return -EINVAL;
603 
604 	spi_message_init(&message);
605 	memset(x, 0, sizeof x);
606 	if (n_tx) {
607 		x[0].len = n_tx;
608 		spi_message_add_tail(&x[0], &message);
609 	}
610 	if (n_rx) {
611 		x[1].len = n_rx;
612 		spi_message_add_tail(&x[1], &message);
613 	}
614 
615 	/* ... unless someone else is using the pre-allocated buffer */
616 	if (down_trylock(&lock)) {
617 		local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
618 		if (!local_buf)
619 			return -ENOMEM;
620 	} else
621 		local_buf = buf;
622 
623 	memcpy(local_buf, txbuf, n_tx);
624 	x[0].tx_buf = local_buf;
625 	x[1].rx_buf = local_buf + n_tx;
626 
627 	/* do the i/o */
628 	status = spi_sync(spi, &message);
629 	if (status == 0) {
630 		memcpy(rxbuf, x[1].rx_buf, n_rx);
631 		status = message.status;
632 	}
633 
634 	if (x[0].tx_buf == buf)
635 		up(&lock);
636 	else
637 		kfree(local_buf);
638 
639 	return status;
640 }
641 EXPORT_SYMBOL_GPL(spi_write_then_read);
642 
643 /*-------------------------------------------------------------------------*/
644 
645 static int __init spi_init(void)
646 {
647 	int	status;
648 
649 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
650 	if (!buf) {
651 		status = -ENOMEM;
652 		goto err0;
653 	}
654 
655 	status = bus_register(&spi_bus_type);
656 	if (status < 0)
657 		goto err1;
658 
659 	status = class_register(&spi_master_class);
660 	if (status < 0)
661 		goto err2;
662 	return 0;
663 
664 err2:
665 	bus_unregister(&spi_bus_type);
666 err1:
667 	kfree(buf);
668 	buf = NULL;
669 err0:
670 	return status;
671 }
672 
673 /* board_info is normally registered in arch_initcall(),
674  * but even essential drivers wait till later
675  *
676  * REVISIT only boardinfo really needs static linking. the rest (device and
677  * driver registration) _could_ be dynamically linked (modular) ... costs
678  * include needing to have boardinfo data structures be much more public.
679  */
680 subsys_initcall(spi_init);
681 
682