1 /* 2 * spi.c - SPI init/core code 3 * 4 * Copyright (C) 2005 David Brownell 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 19 */ 20 21 #include <linux/autoconf.h> 22 #include <linux/kernel.h> 23 #include <linux/device.h> 24 #include <linux/init.h> 25 #include <linux/cache.h> 26 #include <linux/mutex.h> 27 #include <linux/spi/spi.h> 28 29 30 /* SPI bustype and spi_master class are registered after board init code 31 * provides the SPI device tables, ensuring that both are present by the 32 * time controller driver registration causes spi_devices to "enumerate". 33 */ 34 static void spidev_release(struct device *dev) 35 { 36 struct spi_device *spi = to_spi_device(dev); 37 38 /* spi masters may cleanup for released devices */ 39 if (spi->master->cleanup) 40 spi->master->cleanup(spi); 41 42 spi_master_put(spi->master); 43 kfree(dev); 44 } 45 46 static ssize_t 47 modalias_show(struct device *dev, struct device_attribute *a, char *buf) 48 { 49 const struct spi_device *spi = to_spi_device(dev); 50 51 return snprintf(buf, BUS_ID_SIZE + 1, "%s\n", spi->modalias); 52 } 53 54 static struct device_attribute spi_dev_attrs[] = { 55 __ATTR_RO(modalias), 56 __ATTR_NULL, 57 }; 58 59 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work, 60 * and the sysfs version makes coldplug work too. 61 */ 62 63 static int spi_match_device(struct device *dev, struct device_driver *drv) 64 { 65 const struct spi_device *spi = to_spi_device(dev); 66 67 return strncmp(spi->modalias, drv->name, BUS_ID_SIZE) == 0; 68 } 69 70 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env) 71 { 72 const struct spi_device *spi = to_spi_device(dev); 73 74 add_uevent_var(env, "MODALIAS=%s", spi->modalias); 75 return 0; 76 } 77 78 #ifdef CONFIG_PM 79 80 /* 81 * NOTE: the suspend() method for an spi_master controller driver 82 * should verify that all its child devices are marked as suspended; 83 * suspend requests delivered through sysfs power/state files don't 84 * enforce such constraints. 85 */ 86 static int spi_suspend(struct device *dev, pm_message_t message) 87 { 88 int value; 89 struct spi_driver *drv = to_spi_driver(dev->driver); 90 91 if (!drv || !drv->suspend) 92 return 0; 93 94 /* suspend will stop irqs and dma; no more i/o */ 95 value = drv->suspend(to_spi_device(dev), message); 96 if (value == 0) 97 dev->power.power_state = message; 98 return value; 99 } 100 101 static int spi_resume(struct device *dev) 102 { 103 int value; 104 struct spi_driver *drv = to_spi_driver(dev->driver); 105 106 if (!drv || !drv->resume) 107 return 0; 108 109 /* resume may restart the i/o queue */ 110 value = drv->resume(to_spi_device(dev)); 111 if (value == 0) 112 dev->power.power_state = PMSG_ON; 113 return value; 114 } 115 116 #else 117 #define spi_suspend NULL 118 #define spi_resume NULL 119 #endif 120 121 struct bus_type spi_bus_type = { 122 .name = "spi", 123 .dev_attrs = spi_dev_attrs, 124 .match = spi_match_device, 125 .uevent = spi_uevent, 126 .suspend = spi_suspend, 127 .resume = spi_resume, 128 }; 129 EXPORT_SYMBOL_GPL(spi_bus_type); 130 131 132 static int spi_drv_probe(struct device *dev) 133 { 134 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 135 136 return sdrv->probe(to_spi_device(dev)); 137 } 138 139 static int spi_drv_remove(struct device *dev) 140 { 141 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 142 143 return sdrv->remove(to_spi_device(dev)); 144 } 145 146 static void spi_drv_shutdown(struct device *dev) 147 { 148 const struct spi_driver *sdrv = to_spi_driver(dev->driver); 149 150 sdrv->shutdown(to_spi_device(dev)); 151 } 152 153 /** 154 * spi_register_driver - register a SPI driver 155 * @sdrv: the driver to register 156 * Context: can sleep 157 */ 158 int spi_register_driver(struct spi_driver *sdrv) 159 { 160 sdrv->driver.bus = &spi_bus_type; 161 if (sdrv->probe) 162 sdrv->driver.probe = spi_drv_probe; 163 if (sdrv->remove) 164 sdrv->driver.remove = spi_drv_remove; 165 if (sdrv->shutdown) 166 sdrv->driver.shutdown = spi_drv_shutdown; 167 return driver_register(&sdrv->driver); 168 } 169 EXPORT_SYMBOL_GPL(spi_register_driver); 170 171 /*-------------------------------------------------------------------------*/ 172 173 /* SPI devices should normally not be created by SPI device drivers; that 174 * would make them board-specific. Similarly with SPI master drivers. 175 * Device registration normally goes into like arch/.../mach.../board-YYY.c 176 * with other readonly (flashable) information about mainboard devices. 177 */ 178 179 struct boardinfo { 180 struct list_head list; 181 unsigned n_board_info; 182 struct spi_board_info board_info[0]; 183 }; 184 185 static LIST_HEAD(board_list); 186 static DEFINE_MUTEX(board_lock); 187 188 189 /** 190 * spi_new_device - instantiate one new SPI device 191 * @master: Controller to which device is connected 192 * @chip: Describes the SPI device 193 * Context: can sleep 194 * 195 * On typical mainboards, this is purely internal; and it's not needed 196 * after board init creates the hard-wired devices. Some development 197 * platforms may not be able to use spi_register_board_info though, and 198 * this is exported so that for example a USB or parport based adapter 199 * driver could add devices (which it would learn about out-of-band). 200 * 201 * Returns the new device, or NULL. 202 */ 203 struct spi_device *spi_new_device(struct spi_master *master, 204 struct spi_board_info *chip) 205 { 206 struct spi_device *proxy; 207 struct device *dev = master->dev.parent; 208 int status; 209 210 /* NOTE: caller did any chip->bus_num checks necessary. 211 * 212 * Also, unless we change the return value convention to use 213 * error-or-pointer (not NULL-or-pointer), troubleshootability 214 * suggests syslogged diagnostics are best here (ugh). 215 */ 216 217 /* Chipselects are numbered 0..max; validate. */ 218 if (chip->chip_select >= master->num_chipselect) { 219 dev_err(dev, "cs%d > max %d\n", 220 chip->chip_select, 221 master->num_chipselect); 222 return NULL; 223 } 224 225 if (!spi_master_get(master)) 226 return NULL; 227 228 proxy = kzalloc(sizeof *proxy, GFP_KERNEL); 229 if (!proxy) { 230 dev_err(dev, "can't alloc dev for cs%d\n", 231 chip->chip_select); 232 goto fail; 233 } 234 proxy->master = master; 235 proxy->chip_select = chip->chip_select; 236 proxy->max_speed_hz = chip->max_speed_hz; 237 proxy->mode = chip->mode; 238 proxy->irq = chip->irq; 239 proxy->modalias = chip->modalias; 240 241 snprintf(proxy->dev.bus_id, sizeof proxy->dev.bus_id, 242 "%s.%u", master->dev.bus_id, 243 chip->chip_select); 244 proxy->dev.parent = dev; 245 proxy->dev.bus = &spi_bus_type; 246 proxy->dev.platform_data = (void *) chip->platform_data; 247 proxy->controller_data = chip->controller_data; 248 proxy->controller_state = NULL; 249 proxy->dev.release = spidev_release; 250 251 /* drivers may modify this initial i/o setup */ 252 status = master->setup(proxy); 253 if (status < 0) { 254 dev_err(dev, "can't %s %s, status %d\n", 255 "setup", proxy->dev.bus_id, status); 256 goto fail; 257 } 258 259 /* driver core catches callers that misbehave by defining 260 * devices that already exist. 261 */ 262 status = device_register(&proxy->dev); 263 if (status < 0) { 264 dev_err(dev, "can't %s %s, status %d\n", 265 "add", proxy->dev.bus_id, status); 266 goto fail; 267 } 268 dev_dbg(dev, "registered child %s\n", proxy->dev.bus_id); 269 return proxy; 270 271 fail: 272 spi_master_put(master); 273 kfree(proxy); 274 return NULL; 275 } 276 EXPORT_SYMBOL_GPL(spi_new_device); 277 278 /** 279 * spi_register_board_info - register SPI devices for a given board 280 * @info: array of chip descriptors 281 * @n: how many descriptors are provided 282 * Context: can sleep 283 * 284 * Board-specific early init code calls this (probably during arch_initcall) 285 * with segments of the SPI device table. Any device nodes are created later, 286 * after the relevant parent SPI controller (bus_num) is defined. We keep 287 * this table of devices forever, so that reloading a controller driver will 288 * not make Linux forget about these hard-wired devices. 289 * 290 * Other code can also call this, e.g. a particular add-on board might provide 291 * SPI devices through its expansion connector, so code initializing that board 292 * would naturally declare its SPI devices. 293 * 294 * The board info passed can safely be __initdata ... but be careful of 295 * any embedded pointers (platform_data, etc), they're copied as-is. 296 */ 297 int __init 298 spi_register_board_info(struct spi_board_info const *info, unsigned n) 299 { 300 struct boardinfo *bi; 301 302 bi = kmalloc(sizeof(*bi) + n * sizeof *info, GFP_KERNEL); 303 if (!bi) 304 return -ENOMEM; 305 bi->n_board_info = n; 306 memcpy(bi->board_info, info, n * sizeof *info); 307 308 mutex_lock(&board_lock); 309 list_add_tail(&bi->list, &board_list); 310 mutex_unlock(&board_lock); 311 return 0; 312 } 313 314 /* FIXME someone should add support for a __setup("spi", ...) that 315 * creates board info from kernel command lines 316 */ 317 318 static void scan_boardinfo(struct spi_master *master) 319 { 320 struct boardinfo *bi; 321 322 mutex_lock(&board_lock); 323 list_for_each_entry(bi, &board_list, list) { 324 struct spi_board_info *chip = bi->board_info; 325 unsigned n; 326 327 for (n = bi->n_board_info; n > 0; n--, chip++) { 328 if (chip->bus_num != master->bus_num) 329 continue; 330 /* NOTE: this relies on spi_new_device to 331 * issue diagnostics when given bogus inputs 332 */ 333 (void) spi_new_device(master, chip); 334 } 335 } 336 mutex_unlock(&board_lock); 337 } 338 339 /*-------------------------------------------------------------------------*/ 340 341 static void spi_master_release(struct device *dev) 342 { 343 struct spi_master *master; 344 345 master = container_of(dev, struct spi_master, dev); 346 kfree(master); 347 } 348 349 static struct class spi_master_class = { 350 .name = "spi_master", 351 .owner = THIS_MODULE, 352 .dev_release = spi_master_release, 353 }; 354 355 356 /** 357 * spi_alloc_master - allocate SPI master controller 358 * @dev: the controller, possibly using the platform_bus 359 * @size: how much zeroed driver-private data to allocate; the pointer to this 360 * memory is in the driver_data field of the returned device, 361 * accessible with spi_master_get_devdata(). 362 * Context: can sleep 363 * 364 * This call is used only by SPI master controller drivers, which are the 365 * only ones directly touching chip registers. It's how they allocate 366 * an spi_master structure, prior to calling spi_register_master(). 367 * 368 * This must be called from context that can sleep. It returns the SPI 369 * master structure on success, else NULL. 370 * 371 * The caller is responsible for assigning the bus number and initializing 372 * the master's methods before calling spi_register_master(); and (after errors 373 * adding the device) calling spi_master_put() to prevent a memory leak. 374 */ 375 struct spi_master *spi_alloc_master(struct device *dev, unsigned size) 376 { 377 struct spi_master *master; 378 379 if (!dev) 380 return NULL; 381 382 master = kzalloc(size + sizeof *master, GFP_KERNEL); 383 if (!master) 384 return NULL; 385 386 device_initialize(&master->dev); 387 master->dev.class = &spi_master_class; 388 master->dev.parent = get_device(dev); 389 spi_master_set_devdata(master, &master[1]); 390 391 return master; 392 } 393 EXPORT_SYMBOL_GPL(spi_alloc_master); 394 395 /** 396 * spi_register_master - register SPI master controller 397 * @master: initialized master, originally from spi_alloc_master() 398 * Context: can sleep 399 * 400 * SPI master controllers connect to their drivers using some non-SPI bus, 401 * such as the platform bus. The final stage of probe() in that code 402 * includes calling spi_register_master() to hook up to this SPI bus glue. 403 * 404 * SPI controllers use board specific (often SOC specific) bus numbers, 405 * and board-specific addressing for SPI devices combines those numbers 406 * with chip select numbers. Since SPI does not directly support dynamic 407 * device identification, boards need configuration tables telling which 408 * chip is at which address. 409 * 410 * This must be called from context that can sleep. It returns zero on 411 * success, else a negative error code (dropping the master's refcount). 412 * After a successful return, the caller is responsible for calling 413 * spi_unregister_master(). 414 */ 415 int spi_register_master(struct spi_master *master) 416 { 417 static atomic_t dyn_bus_id = ATOMIC_INIT((1<<15) - 1); 418 struct device *dev = master->dev.parent; 419 int status = -ENODEV; 420 int dynamic = 0; 421 422 if (!dev) 423 return -ENODEV; 424 425 /* even if it's just one always-selected device, there must 426 * be at least one chipselect 427 */ 428 if (master->num_chipselect == 0) 429 return -EINVAL; 430 431 /* convention: dynamically assigned bus IDs count down from the max */ 432 if (master->bus_num < 0) { 433 /* FIXME switch to an IDR based scheme, something like 434 * I2C now uses, so we can't run out of "dynamic" IDs 435 */ 436 master->bus_num = atomic_dec_return(&dyn_bus_id); 437 dynamic = 1; 438 } 439 440 /* register the device, then userspace will see it. 441 * registration fails if the bus ID is in use. 442 */ 443 snprintf(master->dev.bus_id, sizeof master->dev.bus_id, 444 "spi%u", master->bus_num); 445 status = device_add(&master->dev); 446 if (status < 0) 447 goto done; 448 dev_dbg(dev, "registered master %s%s\n", master->dev.bus_id, 449 dynamic ? " (dynamic)" : ""); 450 451 /* populate children from any spi device tables */ 452 scan_boardinfo(master); 453 status = 0; 454 done: 455 return status; 456 } 457 EXPORT_SYMBOL_GPL(spi_register_master); 458 459 460 static int __unregister(struct device *dev, void *unused) 461 { 462 /* note: before about 2.6.14-rc1 this would corrupt memory: */ 463 spi_unregister_device(to_spi_device(dev)); 464 return 0; 465 } 466 467 /** 468 * spi_unregister_master - unregister SPI master controller 469 * @master: the master being unregistered 470 * Context: can sleep 471 * 472 * This call is used only by SPI master controller drivers, which are the 473 * only ones directly touching chip registers. 474 * 475 * This must be called from context that can sleep. 476 */ 477 void spi_unregister_master(struct spi_master *master) 478 { 479 int dummy; 480 481 dummy = device_for_each_child(master->dev.parent, NULL, __unregister); 482 device_unregister(&master->dev); 483 } 484 EXPORT_SYMBOL_GPL(spi_unregister_master); 485 486 /** 487 * spi_busnum_to_master - look up master associated with bus_num 488 * @bus_num: the master's bus number 489 * Context: can sleep 490 * 491 * This call may be used with devices that are registered after 492 * arch init time. It returns a refcounted pointer to the relevant 493 * spi_master (which the caller must release), or NULL if there is 494 * no such master registered. 495 */ 496 struct spi_master *spi_busnum_to_master(u16 bus_num) 497 { 498 struct device *dev; 499 struct spi_master *master = NULL; 500 struct spi_master *m; 501 502 down(&spi_master_class.sem); 503 list_for_each_entry(dev, &spi_master_class.children, node) { 504 m = container_of(dev, struct spi_master, dev); 505 if (m->bus_num == bus_num) { 506 master = spi_master_get(m); 507 break; 508 } 509 } 510 up(&spi_master_class.sem); 511 return master; 512 } 513 EXPORT_SYMBOL_GPL(spi_busnum_to_master); 514 515 516 /*-------------------------------------------------------------------------*/ 517 518 static void spi_complete(void *arg) 519 { 520 complete(arg); 521 } 522 523 /** 524 * spi_sync - blocking/synchronous SPI data transfers 525 * @spi: device with which data will be exchanged 526 * @message: describes the data transfers 527 * Context: can sleep 528 * 529 * This call may only be used from a context that may sleep. The sleep 530 * is non-interruptible, and has no timeout. Low-overhead controller 531 * drivers may DMA directly into and out of the message buffers. 532 * 533 * Note that the SPI device's chip select is active during the message, 534 * and then is normally disabled between messages. Drivers for some 535 * frequently-used devices may want to minimize costs of selecting a chip, 536 * by leaving it selected in anticipation that the next message will go 537 * to the same chip. (That may increase power usage.) 538 * 539 * Also, the caller is guaranteeing that the memory associated with the 540 * message will not be freed before this call returns. 541 * 542 * The return value is a negative error code if the message could not be 543 * submitted, else zero. When the value is zero, then message->status is 544 * also defined; it's the completion code for the transfer, either zero 545 * or a negative error code from the controller driver. 546 */ 547 int spi_sync(struct spi_device *spi, struct spi_message *message) 548 { 549 DECLARE_COMPLETION_ONSTACK(done); 550 int status; 551 552 message->complete = spi_complete; 553 message->context = &done; 554 status = spi_async(spi, message); 555 if (status == 0) 556 wait_for_completion(&done); 557 message->context = NULL; 558 return status; 559 } 560 EXPORT_SYMBOL_GPL(spi_sync); 561 562 /* portable code must never pass more than 32 bytes */ 563 #define SPI_BUFSIZ max(32,SMP_CACHE_BYTES) 564 565 static u8 *buf; 566 567 /** 568 * spi_write_then_read - SPI synchronous write followed by read 569 * @spi: device with which data will be exchanged 570 * @txbuf: data to be written (need not be dma-safe) 571 * @n_tx: size of txbuf, in bytes 572 * @rxbuf: buffer into which data will be read 573 * @n_rx: size of rxbuf, in bytes (need not be dma-safe) 574 * Context: can sleep 575 * 576 * This performs a half duplex MicroWire style transaction with the 577 * device, sending txbuf and then reading rxbuf. The return value 578 * is zero for success, else a negative errno status code. 579 * This call may only be used from a context that may sleep. 580 * 581 * Parameters to this routine are always copied using a small buffer; 582 * portable code should never use this for more than 32 bytes. 583 * Performance-sensitive or bulk transfer code should instead use 584 * spi_{async,sync}() calls with dma-safe buffers. 585 */ 586 int spi_write_then_read(struct spi_device *spi, 587 const u8 *txbuf, unsigned n_tx, 588 u8 *rxbuf, unsigned n_rx) 589 { 590 static DECLARE_MUTEX(lock); 591 592 int status; 593 struct spi_message message; 594 struct spi_transfer x[2]; 595 u8 *local_buf; 596 597 /* Use preallocated DMA-safe buffer. We can't avoid copying here, 598 * (as a pure convenience thing), but we can keep heap costs 599 * out of the hot path ... 600 */ 601 if ((n_tx + n_rx) > SPI_BUFSIZ) 602 return -EINVAL; 603 604 spi_message_init(&message); 605 memset(x, 0, sizeof x); 606 if (n_tx) { 607 x[0].len = n_tx; 608 spi_message_add_tail(&x[0], &message); 609 } 610 if (n_rx) { 611 x[1].len = n_rx; 612 spi_message_add_tail(&x[1], &message); 613 } 614 615 /* ... unless someone else is using the pre-allocated buffer */ 616 if (down_trylock(&lock)) { 617 local_buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 618 if (!local_buf) 619 return -ENOMEM; 620 } else 621 local_buf = buf; 622 623 memcpy(local_buf, txbuf, n_tx); 624 x[0].tx_buf = local_buf; 625 x[1].rx_buf = local_buf + n_tx; 626 627 /* do the i/o */ 628 status = spi_sync(spi, &message); 629 if (status == 0) { 630 memcpy(rxbuf, x[1].rx_buf, n_rx); 631 status = message.status; 632 } 633 634 if (x[0].tx_buf == buf) 635 up(&lock); 636 else 637 kfree(local_buf); 638 639 return status; 640 } 641 EXPORT_SYMBOL_GPL(spi_write_then_read); 642 643 /*-------------------------------------------------------------------------*/ 644 645 static int __init spi_init(void) 646 { 647 int status; 648 649 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL); 650 if (!buf) { 651 status = -ENOMEM; 652 goto err0; 653 } 654 655 status = bus_register(&spi_bus_type); 656 if (status < 0) 657 goto err1; 658 659 status = class_register(&spi_master_class); 660 if (status < 0) 661 goto err2; 662 return 0; 663 664 err2: 665 bus_unregister(&spi_bus_type); 666 err1: 667 kfree(buf); 668 buf = NULL; 669 err0: 670 return status; 671 } 672 673 /* board_info is normally registered in arch_initcall(), 674 * but even essential drivers wait till later 675 * 676 * REVISIT only boardinfo really needs static linking. the rest (device and 677 * driver registration) _could_ be dynamically linked (modular) ... costs 678 * include needing to have boardinfo data structures be much more public. 679 */ 680 subsys_initcall(spi_init); 681 682