xref: /openbmc/linux/drivers/spi/spi-topcliff-pch.c (revision 9b4469410cf9a0fcbccc92c480fd42f7c815a745)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SPI bus driver for the Topcliff PCH used by Intel SoCs
4  *
5  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/pci.h>
10 #include <linux/wait.h>
11 #include <linux/spi/spi.h>
12 #include <linux/interrupt.h>
13 #include <linux/sched.h>
14 #include <linux/spi/spidev.h>
15 #include <linux/module.h>
16 #include <linux/device.h>
17 #include <linux/platform_device.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/pch_dma.h>
21 
22 /* Register offsets */
23 #define PCH_SPCR		0x00	/* SPI control register */
24 #define PCH_SPBRR		0x04	/* SPI baud rate register */
25 #define PCH_SPSR		0x08	/* SPI status register */
26 #define PCH_SPDWR		0x0C	/* SPI write data register */
27 #define PCH_SPDRR		0x10	/* SPI read data register */
28 #define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
29 #define PCH_SRST		0x1C	/* SPI reset register */
30 #define PCH_ADDRESS_SIZE	0x20
31 
32 #define PCH_SPSR_TFD		0x000007C0
33 #define PCH_SPSR_RFD		0x0000F800
34 
35 #define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
36 #define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
37 
38 #define PCH_RX_THOLD		7
39 #define PCH_RX_THOLD_MAX	15
40 
41 #define PCH_TX_THOLD		2
42 
43 #define PCH_MAX_BAUDRATE	5000000
44 #define PCH_MAX_FIFO_DEPTH	16
45 
46 #define STATUS_RUNNING		1
47 #define STATUS_EXITING		2
48 #define PCH_SLEEP_TIME		10
49 
50 #define SSN_LOW			0x02U
51 #define SSN_HIGH		0x03U
52 #define SSN_NO_CONTROL		0x00U
53 #define PCH_MAX_CS		0xFF
54 #define PCI_DEVICE_ID_GE_SPI	0x8816
55 
56 #define SPCR_SPE_BIT		(1 << 0)
57 #define SPCR_MSTR_BIT		(1 << 1)
58 #define SPCR_LSBF_BIT		(1 << 4)
59 #define SPCR_CPHA_BIT		(1 << 5)
60 #define SPCR_CPOL_BIT		(1 << 6)
61 #define SPCR_TFIE_BIT		(1 << 8)
62 #define SPCR_RFIE_BIT		(1 << 9)
63 #define SPCR_FIE_BIT		(1 << 10)
64 #define SPCR_ORIE_BIT		(1 << 11)
65 #define SPCR_MDFIE_BIT		(1 << 12)
66 #define SPCR_FICLR_BIT		(1 << 24)
67 #define SPSR_TFI_BIT		(1 << 0)
68 #define SPSR_RFI_BIT		(1 << 1)
69 #define SPSR_FI_BIT		(1 << 2)
70 #define SPSR_ORF_BIT		(1 << 3)
71 #define SPBRR_SIZE_BIT		(1 << 10)
72 
73 #define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
74 				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
75 
76 #define SPCR_RFIC_FIELD		20
77 #define SPCR_TFIC_FIELD		16
78 
79 #define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
80 #define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
81 #define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
82 
83 #define PCH_CLOCK_HZ		50000000
84 #define PCH_MAX_SPBR		1023
85 
86 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
87 #define PCI_DEVICE_ID_ML7213_SPI	0x802c
88 #define PCI_DEVICE_ID_ML7223_SPI	0x800F
89 #define PCI_DEVICE_ID_ML7831_SPI	0x8816
90 
91 /*
92  * Set the number of SPI instance max
93  * Intel EG20T PCH :		1ch
94  * LAPIS Semiconductor ML7213 IOH :	2ch
95  * LAPIS Semiconductor ML7223 IOH :	1ch
96  * LAPIS Semiconductor ML7831 IOH :	1ch
97 */
98 #define PCH_SPI_MAX_DEV			2
99 
100 #define PCH_BUF_SIZE		4096
101 #define PCH_DMA_TRANS_SIZE	12
102 
103 static int use_dma = 1;
104 
105 struct pch_spi_dma_ctrl {
106 	struct pci_dev		*dma_dev;
107 	struct dma_async_tx_descriptor	*desc_tx;
108 	struct dma_async_tx_descriptor	*desc_rx;
109 	struct pch_dma_slave		param_tx;
110 	struct pch_dma_slave		param_rx;
111 	struct dma_chan		*chan_tx;
112 	struct dma_chan		*chan_rx;
113 	struct scatterlist		*sg_tx_p;
114 	struct scatterlist		*sg_rx_p;
115 	struct scatterlist		sg_tx;
116 	struct scatterlist		sg_rx;
117 	int				nent;
118 	void				*tx_buf_virt;
119 	void				*rx_buf_virt;
120 	dma_addr_t			tx_buf_dma;
121 	dma_addr_t			rx_buf_dma;
122 };
123 /**
124  * struct pch_spi_data - Holds the SPI channel specific details
125  * @io_remap_addr:		The remapped PCI base address
126  * @io_base_addr:		Base address
127  * @master:			Pointer to the SPI master structure
128  * @work:			Reference to work queue handler
129  * @wait:			Wait queue for waking up upon receiving an
130  *				interrupt.
131  * @transfer_complete:		Status of SPI Transfer
132  * @bcurrent_msg_processing:	Status flag for message processing
133  * @lock:			Lock for protecting this structure
134  * @queue:			SPI Message queue
135  * @status:			Status of the SPI driver
136  * @bpw_len:			Length of data to be transferred in bits per
137  *				word
138  * @transfer_active:		Flag showing active transfer
139  * @tx_index:			Transmit data count; for bookkeeping during
140  *				transfer
141  * @rx_index:			Receive data count; for bookkeeping during
142  *				transfer
143  * @pkt_tx_buff:		Buffer for data to be transmitted
144  * @pkt_rx_buff:		Buffer for received data
145  * @n_curnt_chip:		The chip number that this SPI driver currently
146  *				operates on
147  * @current_chip:		Reference to the current chip that this SPI
148  *				driver currently operates on
149  * @current_msg:		The current message that this SPI driver is
150  *				handling
151  * @cur_trans:			The current transfer that this SPI driver is
152  *				handling
153  * @board_dat:			Reference to the SPI device data structure
154  * @plat_dev:			platform_device structure
155  * @ch:				SPI channel number
156  * @dma:			Local DMA information
157  * @use_dma:			True if DMA is to be used
158  * @irq_reg_sts:		Status of IRQ registration
159  * @save_total_len:		Save length while data is being transferred
160  */
161 struct pch_spi_data {
162 	void __iomem *io_remap_addr;
163 	unsigned long io_base_addr;
164 	struct spi_master *master;
165 	struct work_struct work;
166 	wait_queue_head_t wait;
167 	u8 transfer_complete;
168 	u8 bcurrent_msg_processing;
169 	spinlock_t lock;
170 	struct list_head queue;
171 	u8 status;
172 	u32 bpw_len;
173 	u8 transfer_active;
174 	u32 tx_index;
175 	u32 rx_index;
176 	u16 *pkt_tx_buff;
177 	u16 *pkt_rx_buff;
178 	u8 n_curnt_chip;
179 	struct spi_device *current_chip;
180 	struct spi_message *current_msg;
181 	struct spi_transfer *cur_trans;
182 	struct pch_spi_board_data *board_dat;
183 	struct platform_device	*plat_dev;
184 	int ch;
185 	struct pch_spi_dma_ctrl dma;
186 	int use_dma;
187 	u8 irq_reg_sts;
188 	int save_total_len;
189 };
190 
191 /**
192  * struct pch_spi_board_data - Holds the SPI device specific details
193  * @pdev:		Pointer to the PCI device
194  * @suspend_sts:	Status of suspend
195  * @num:		The number of SPI device instance
196  */
197 struct pch_spi_board_data {
198 	struct pci_dev *pdev;
199 	u8 suspend_sts;
200 	int num;
201 };
202 
203 struct pch_pd_dev_save {
204 	int num;
205 	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
206 	struct pch_spi_board_data *board_dat;
207 };
208 
209 static const struct pci_device_id pch_spi_pcidev_id[] = {
210 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
211 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
212 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
213 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
214 	{ }
215 };
216 
217 /**
218  * pch_spi_writereg() - Performs  register writes
219  * @master:	Pointer to struct spi_master.
220  * @idx:	Register offset.
221  * @val:	Value to be written to register.
222  */
223 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
224 {
225 	struct pch_spi_data *data = spi_master_get_devdata(master);
226 	iowrite32(val, (data->io_remap_addr + idx));
227 }
228 
229 /**
230  * pch_spi_readreg() - Performs register reads
231  * @master:	Pointer to struct spi_master.
232  * @idx:	Register offset.
233  */
234 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
235 {
236 	struct pch_spi_data *data = spi_master_get_devdata(master);
237 	return ioread32(data->io_remap_addr + idx);
238 }
239 
240 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
241 				      u32 set, u32 clr)
242 {
243 	u32 tmp = pch_spi_readreg(master, idx);
244 	tmp = (tmp & ~clr) | set;
245 	pch_spi_writereg(master, idx, tmp);
246 }
247 
248 static void pch_spi_set_master_mode(struct spi_master *master)
249 {
250 	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
251 }
252 
253 /**
254  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
255  * @master:	Pointer to struct spi_master.
256  */
257 static void pch_spi_clear_fifo(struct spi_master *master)
258 {
259 	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
260 	pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
261 }
262 
263 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
264 				void __iomem *io_remap_addr)
265 {
266 	u32 n_read, tx_index, rx_index, bpw_len;
267 	u16 *pkt_rx_buffer, *pkt_tx_buff;
268 	int read_cnt;
269 	u32 reg_spcr_val;
270 	void __iomem *spsr;
271 	void __iomem *spdrr;
272 	void __iomem *spdwr;
273 
274 	spsr = io_remap_addr + PCH_SPSR;
275 	iowrite32(reg_spsr_val, spsr);
276 
277 	if (data->transfer_active) {
278 		rx_index = data->rx_index;
279 		tx_index = data->tx_index;
280 		bpw_len = data->bpw_len;
281 		pkt_rx_buffer = data->pkt_rx_buff;
282 		pkt_tx_buff = data->pkt_tx_buff;
283 
284 		spdrr = io_remap_addr + PCH_SPDRR;
285 		spdwr = io_remap_addr + PCH_SPDWR;
286 
287 		n_read = PCH_READABLE(reg_spsr_val);
288 
289 		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
290 			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
291 			if (tx_index < bpw_len)
292 				iowrite32(pkt_tx_buff[tx_index++], spdwr);
293 		}
294 
295 		/* disable RFI if not needed */
296 		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
297 			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
298 			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
299 
300 			/* reset rx threshold */
301 			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
302 			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
303 
304 			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
305 		}
306 
307 		/* update counts */
308 		data->tx_index = tx_index;
309 		data->rx_index = rx_index;
310 
311 		/* if transfer complete interrupt */
312 		if (reg_spsr_val & SPSR_FI_BIT) {
313 			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
314 				/* disable interrupts */
315 				pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
316 						   PCH_ALL);
317 
318 				/* transfer is completed;
319 				   inform pch_spi_process_messages */
320 				data->transfer_complete = true;
321 				data->transfer_active = false;
322 				wake_up(&data->wait);
323 			} else {
324 				dev_vdbg(&data->master->dev,
325 					"%s : Transfer is not completed",
326 					__func__);
327 			}
328 		}
329 	}
330 }
331 
332 /**
333  * pch_spi_handler() - Interrupt handler
334  * @irq:	The interrupt number.
335  * @dev_id:	Pointer to struct pch_spi_board_data.
336  */
337 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
338 {
339 	u32 reg_spsr_val;
340 	void __iomem *spsr;
341 	void __iomem *io_remap_addr;
342 	irqreturn_t ret = IRQ_NONE;
343 	struct pch_spi_data *data = dev_id;
344 	struct pch_spi_board_data *board_dat = data->board_dat;
345 
346 	if (board_dat->suspend_sts) {
347 		dev_dbg(&board_dat->pdev->dev,
348 			"%s returning due to suspend\n", __func__);
349 		return IRQ_NONE;
350 	}
351 
352 	io_remap_addr = data->io_remap_addr;
353 	spsr = io_remap_addr + PCH_SPSR;
354 
355 	reg_spsr_val = ioread32(spsr);
356 
357 	if (reg_spsr_val & SPSR_ORF_BIT) {
358 		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
359 		if (data->current_msg->complete) {
360 			data->transfer_complete = true;
361 			data->current_msg->status = -EIO;
362 			data->current_msg->complete(data->current_msg->context);
363 			data->bcurrent_msg_processing = false;
364 			data->current_msg = NULL;
365 			data->cur_trans = NULL;
366 		}
367 	}
368 
369 	if (data->use_dma)
370 		return IRQ_NONE;
371 
372 	/* Check if the interrupt is for SPI device */
373 	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
374 		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
375 		ret = IRQ_HANDLED;
376 	}
377 
378 	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
379 		__func__, ret);
380 
381 	return ret;
382 }
383 
384 /**
385  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
386  * @master:	Pointer to struct spi_master.
387  * @speed_hz:	Baud rate.
388  */
389 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
390 {
391 	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
392 
393 	/* if baud rate is less than we can support limit it */
394 	if (n_spbr > PCH_MAX_SPBR)
395 		n_spbr = PCH_MAX_SPBR;
396 
397 	pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
398 }
399 
400 /**
401  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
402  * @master:		Pointer to struct spi_master.
403  * @bits_per_word:	Bits per word for SPI transfer.
404  */
405 static void pch_spi_set_bits_per_word(struct spi_master *master,
406 				      u8 bits_per_word)
407 {
408 	if (bits_per_word == 8)
409 		pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
410 	else
411 		pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
412 }
413 
414 /**
415  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
416  * @spi:	Pointer to struct spi_device.
417  */
418 static void pch_spi_setup_transfer(struct spi_device *spi)
419 {
420 	u32 flags = 0;
421 
422 	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
423 		__func__, pch_spi_readreg(spi->master, PCH_SPBRR),
424 		spi->max_speed_hz);
425 	pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
426 
427 	/* set bits per word */
428 	pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
429 
430 	if (!(spi->mode & SPI_LSB_FIRST))
431 		flags |= SPCR_LSBF_BIT;
432 	if (spi->mode & SPI_CPOL)
433 		flags |= SPCR_CPOL_BIT;
434 	if (spi->mode & SPI_CPHA)
435 		flags |= SPCR_CPHA_BIT;
436 	pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
437 			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
438 
439 	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
440 	pch_spi_clear_fifo(spi->master);
441 }
442 
443 /**
444  * pch_spi_reset() - Clears SPI registers
445  * @master:	Pointer to struct spi_master.
446  */
447 static void pch_spi_reset(struct spi_master *master)
448 {
449 	/* write 1 to reset SPI */
450 	pch_spi_writereg(master, PCH_SRST, 0x1);
451 
452 	/* clear reset */
453 	pch_spi_writereg(master, PCH_SRST, 0x0);
454 }
455 
456 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
457 {
458 	struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
459 	int retval;
460 	unsigned long flags;
461 
462 	/* We won't process any messages if we have been asked to terminate */
463 	if (data->status == STATUS_EXITING) {
464 		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
465 		retval = -ESHUTDOWN;
466 		goto err_out;
467 	}
468 
469 	/* If suspended ,return -EINVAL */
470 	if (data->board_dat->suspend_sts) {
471 		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
472 		retval = -EINVAL;
473 		goto err_out;
474 	}
475 
476 	/* set status of message */
477 	pmsg->actual_length = 0;
478 	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
479 
480 	pmsg->status = -EINPROGRESS;
481 	spin_lock_irqsave(&data->lock, flags);
482 	/* add message to queue */
483 	list_add_tail(&pmsg->queue, &data->queue);
484 	spin_unlock_irqrestore(&data->lock, flags);
485 
486 	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
487 
488 	schedule_work(&data->work);
489 	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
490 
491 	retval = 0;
492 
493 err_out:
494 	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
495 	return retval;
496 }
497 
498 static inline void pch_spi_select_chip(struct pch_spi_data *data,
499 				       struct spi_device *pspi)
500 {
501 	if (data->current_chip != NULL) {
502 		if (spi_get_chipselect(pspi, 0) != data->n_curnt_chip) {
503 			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
504 			data->current_chip = NULL;
505 		}
506 	}
507 
508 	data->current_chip = pspi;
509 
510 	data->n_curnt_chip = spi_get_chipselect(data->current_chip, 0);
511 
512 	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
513 	pch_spi_setup_transfer(pspi);
514 }
515 
516 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
517 {
518 	int size;
519 	u32 n_writes;
520 	int j;
521 	struct spi_message *pmsg, *tmp;
522 	const u8 *tx_buf;
523 	const u16 *tx_sbuf;
524 
525 	/* set baud rate if needed */
526 	if (data->cur_trans->speed_hz) {
527 		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
528 		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
529 	}
530 
531 	/* set bits per word if needed */
532 	if (data->cur_trans->bits_per_word &&
533 	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
534 		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
535 		pch_spi_set_bits_per_word(data->master,
536 					  data->cur_trans->bits_per_word);
537 		*bpw = data->cur_trans->bits_per_word;
538 	} else {
539 		*bpw = data->current_msg->spi->bits_per_word;
540 	}
541 
542 	/* reset Tx/Rx index */
543 	data->tx_index = 0;
544 	data->rx_index = 0;
545 
546 	data->bpw_len = data->cur_trans->len / (*bpw / 8);
547 
548 	/* find alloc size */
549 	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
550 
551 	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
552 	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
553 	if (data->pkt_tx_buff != NULL) {
554 		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
555 		if (!data->pkt_rx_buff) {
556 			kfree(data->pkt_tx_buff);
557 			data->pkt_tx_buff = NULL;
558 		}
559 	}
560 
561 	if (!data->pkt_rx_buff) {
562 		/* flush queue and set status of all transfers to -ENOMEM */
563 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
564 			pmsg->status = -ENOMEM;
565 
566 			if (pmsg->complete)
567 				pmsg->complete(pmsg->context);
568 
569 			/* delete from queue */
570 			list_del_init(&pmsg->queue);
571 		}
572 		return;
573 	}
574 
575 	/* copy Tx Data */
576 	if (data->cur_trans->tx_buf != NULL) {
577 		if (*bpw == 8) {
578 			tx_buf = data->cur_trans->tx_buf;
579 			for (j = 0; j < data->bpw_len; j++)
580 				data->pkt_tx_buff[j] = *tx_buf++;
581 		} else {
582 			tx_sbuf = data->cur_trans->tx_buf;
583 			for (j = 0; j < data->bpw_len; j++)
584 				data->pkt_tx_buff[j] = *tx_sbuf++;
585 		}
586 	}
587 
588 	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
589 	n_writes = data->bpw_len;
590 	if (n_writes > PCH_MAX_FIFO_DEPTH)
591 		n_writes = PCH_MAX_FIFO_DEPTH;
592 
593 	dev_dbg(&data->master->dev,
594 		"\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
595 		__func__);
596 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
597 
598 	for (j = 0; j < n_writes; j++)
599 		pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
600 
601 	/* update tx_index */
602 	data->tx_index = j;
603 
604 	/* reset transfer complete flag */
605 	data->transfer_complete = false;
606 	data->transfer_active = true;
607 }
608 
609 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
610 {
611 	struct spi_message *pmsg, *tmp;
612 	dev_dbg(&data->master->dev, "%s called\n", __func__);
613 	/* Invoke complete callback
614 	 * [To the spi core..indicating end of transfer] */
615 	data->current_msg->status = 0;
616 
617 	if (data->current_msg->complete) {
618 		dev_dbg(&data->master->dev,
619 			"%s:Invoking callback of SPI core\n", __func__);
620 		data->current_msg->complete(data->current_msg->context);
621 	}
622 
623 	/* update status in global variable */
624 	data->bcurrent_msg_processing = false;
625 
626 	dev_dbg(&data->master->dev,
627 		"%s:data->bcurrent_msg_processing = false\n", __func__);
628 
629 	data->current_msg = NULL;
630 	data->cur_trans = NULL;
631 
632 	/* check if we have items in list and not suspending
633 	 * return 1 if list empty */
634 	if ((list_empty(&data->queue) == 0) &&
635 	    (!data->board_dat->suspend_sts) &&
636 	    (data->status != STATUS_EXITING)) {
637 		/* We have some more work to do (either there is more tranint
638 		 * bpw;sfer requests in the current message or there are
639 		 *more messages)
640 		 */
641 		dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
642 		schedule_work(&data->work);
643 	} else if (data->board_dat->suspend_sts ||
644 		   data->status == STATUS_EXITING) {
645 		dev_dbg(&data->master->dev,
646 			"%s suspend/remove initiated, flushing queue\n",
647 			__func__);
648 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
649 			pmsg->status = -EIO;
650 
651 			if (pmsg->complete)
652 				pmsg->complete(pmsg->context);
653 
654 			/* delete from queue */
655 			list_del_init(&pmsg->queue);
656 		}
657 	}
658 }
659 
660 static void pch_spi_set_ir(struct pch_spi_data *data)
661 {
662 	/* enable interrupts, set threshold, enable SPI */
663 	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
664 		/* set receive threshold to PCH_RX_THOLD */
665 		pch_spi_setclr_reg(data->master, PCH_SPCR,
666 				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
667 				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
668 				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
669 				   MASK_RFIC_SPCR_BITS | PCH_ALL);
670 	else
671 		/* set receive threshold to maximum */
672 		pch_spi_setclr_reg(data->master, PCH_SPCR,
673 				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
674 				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
675 				   SPCR_SPE_BIT,
676 				   MASK_RFIC_SPCR_BITS | PCH_ALL);
677 
678 	/* Wait until the transfer completes; go to sleep after
679 				 initiating the transfer. */
680 	dev_dbg(&data->master->dev,
681 		"%s:waiting for transfer to get over\n", __func__);
682 
683 	wait_event_interruptible(data->wait, data->transfer_complete);
684 
685 	/* clear all interrupts */
686 	pch_spi_writereg(data->master, PCH_SPSR,
687 			 pch_spi_readreg(data->master, PCH_SPSR));
688 	/* Disable interrupts and SPI transfer */
689 	pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
690 	/* clear FIFO */
691 	pch_spi_clear_fifo(data->master);
692 }
693 
694 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
695 {
696 	int j;
697 	u8 *rx_buf;
698 	u16 *rx_sbuf;
699 
700 	/* copy Rx Data */
701 	if (!data->cur_trans->rx_buf)
702 		return;
703 
704 	if (bpw == 8) {
705 		rx_buf = data->cur_trans->rx_buf;
706 		for (j = 0; j < data->bpw_len; j++)
707 			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
708 	} else {
709 		rx_sbuf = data->cur_trans->rx_buf;
710 		for (j = 0; j < data->bpw_len; j++)
711 			*rx_sbuf++ = data->pkt_rx_buff[j];
712 	}
713 }
714 
715 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
716 {
717 	int j;
718 	u8 *rx_buf;
719 	u16 *rx_sbuf;
720 	const u8 *rx_dma_buf;
721 	const u16 *rx_dma_sbuf;
722 
723 	/* copy Rx Data */
724 	if (!data->cur_trans->rx_buf)
725 		return;
726 
727 	if (bpw == 8) {
728 		rx_buf = data->cur_trans->rx_buf;
729 		rx_dma_buf = data->dma.rx_buf_virt;
730 		for (j = 0; j < data->bpw_len; j++)
731 			*rx_buf++ = *rx_dma_buf++ & 0xFF;
732 		data->cur_trans->rx_buf = rx_buf;
733 	} else {
734 		rx_sbuf = data->cur_trans->rx_buf;
735 		rx_dma_sbuf = data->dma.rx_buf_virt;
736 		for (j = 0; j < data->bpw_len; j++)
737 			*rx_sbuf++ = *rx_dma_sbuf++;
738 		data->cur_trans->rx_buf = rx_sbuf;
739 	}
740 }
741 
742 static int pch_spi_start_transfer(struct pch_spi_data *data)
743 {
744 	struct pch_spi_dma_ctrl *dma;
745 	unsigned long flags;
746 	int rtn;
747 
748 	dma = &data->dma;
749 
750 	spin_lock_irqsave(&data->lock, flags);
751 
752 	/* disable interrupts, SPI set enable */
753 	pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
754 
755 	spin_unlock_irqrestore(&data->lock, flags);
756 
757 	/* Wait until the transfer completes; go to sleep after
758 				 initiating the transfer. */
759 	dev_dbg(&data->master->dev,
760 		"%s:waiting for transfer to get over\n", __func__);
761 	rtn = wait_event_interruptible_timeout(data->wait,
762 					       data->transfer_complete,
763 					       msecs_to_jiffies(2 * HZ));
764 	if (!rtn)
765 		dev_err(&data->master->dev,
766 			"%s wait-event timeout\n", __func__);
767 
768 	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
769 			    DMA_FROM_DEVICE);
770 
771 	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
772 			    DMA_FROM_DEVICE);
773 	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
774 
775 	async_tx_ack(dma->desc_rx);
776 	async_tx_ack(dma->desc_tx);
777 	kfree(dma->sg_tx_p);
778 	kfree(dma->sg_rx_p);
779 
780 	spin_lock_irqsave(&data->lock, flags);
781 
782 	/* clear fifo threshold, disable interrupts, disable SPI transfer */
783 	pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
784 			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
785 			   SPCR_SPE_BIT);
786 	/* clear all interrupts */
787 	pch_spi_writereg(data->master, PCH_SPSR,
788 			 pch_spi_readreg(data->master, PCH_SPSR));
789 	/* clear FIFO */
790 	pch_spi_clear_fifo(data->master);
791 
792 	spin_unlock_irqrestore(&data->lock, flags);
793 
794 	return rtn;
795 }
796 
797 static void pch_dma_rx_complete(void *arg)
798 {
799 	struct pch_spi_data *data = arg;
800 
801 	/* transfer is completed;inform pch_spi_process_messages_dma */
802 	data->transfer_complete = true;
803 	wake_up_interruptible(&data->wait);
804 }
805 
806 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
807 {
808 	struct pch_dma_slave *param = slave;
809 
810 	if ((chan->chan_id == param->chan_id) &&
811 	    (param->dma_dev == chan->device->dev)) {
812 		chan->private = param;
813 		return true;
814 	} else {
815 		return false;
816 	}
817 }
818 
819 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
820 {
821 	dma_cap_mask_t mask;
822 	struct dma_chan *chan;
823 	struct pci_dev *dma_dev;
824 	struct pch_dma_slave *param;
825 	struct pch_spi_dma_ctrl *dma;
826 	unsigned int width;
827 
828 	if (bpw == 8)
829 		width = PCH_DMA_WIDTH_1_BYTE;
830 	else
831 		width = PCH_DMA_WIDTH_2_BYTES;
832 
833 	dma = &data->dma;
834 	dma_cap_zero(mask);
835 	dma_cap_set(DMA_SLAVE, mask);
836 
837 	/* Get DMA's dev information */
838 	dma_dev = pci_get_slot(data->board_dat->pdev->bus,
839 			PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
840 
841 	/* Set Tx DMA */
842 	param = &dma->param_tx;
843 	param->dma_dev = &dma_dev->dev;
844 	param->chan_id = data->ch * 2; /* Tx = 0, 2 */
845 	param->tx_reg = data->io_base_addr + PCH_SPDWR;
846 	param->width = width;
847 	chan = dma_request_channel(mask, pch_spi_filter, param);
848 	if (!chan) {
849 		dev_err(&data->master->dev,
850 			"ERROR: dma_request_channel FAILS(Tx)\n");
851 		goto out;
852 	}
853 	dma->chan_tx = chan;
854 
855 	/* Set Rx DMA */
856 	param = &dma->param_rx;
857 	param->dma_dev = &dma_dev->dev;
858 	param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */
859 	param->rx_reg = data->io_base_addr + PCH_SPDRR;
860 	param->width = width;
861 	chan = dma_request_channel(mask, pch_spi_filter, param);
862 	if (!chan) {
863 		dev_err(&data->master->dev,
864 			"ERROR: dma_request_channel FAILS(Rx)\n");
865 		dma_release_channel(dma->chan_tx);
866 		dma->chan_tx = NULL;
867 		goto out;
868 	}
869 	dma->chan_rx = chan;
870 
871 	dma->dma_dev = dma_dev;
872 	return;
873 out:
874 	pci_dev_put(dma_dev);
875 	data->use_dma = 0;
876 }
877 
878 static void pch_spi_release_dma(struct pch_spi_data *data)
879 {
880 	struct pch_spi_dma_ctrl *dma;
881 
882 	dma = &data->dma;
883 	if (dma->chan_tx) {
884 		dma_release_channel(dma->chan_tx);
885 		dma->chan_tx = NULL;
886 	}
887 	if (dma->chan_rx) {
888 		dma_release_channel(dma->chan_rx);
889 		dma->chan_rx = NULL;
890 	}
891 
892 	pci_dev_put(dma->dma_dev);
893 }
894 
895 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
896 {
897 	const u8 *tx_buf;
898 	const u16 *tx_sbuf;
899 	u8 *tx_dma_buf;
900 	u16 *tx_dma_sbuf;
901 	struct scatterlist *sg;
902 	struct dma_async_tx_descriptor *desc_tx;
903 	struct dma_async_tx_descriptor *desc_rx;
904 	int num;
905 	int i;
906 	int size;
907 	int rem;
908 	int head;
909 	unsigned long flags;
910 	struct pch_spi_dma_ctrl *dma;
911 
912 	dma = &data->dma;
913 
914 	/* set baud rate if needed */
915 	if (data->cur_trans->speed_hz) {
916 		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
917 		spin_lock_irqsave(&data->lock, flags);
918 		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
919 		spin_unlock_irqrestore(&data->lock, flags);
920 	}
921 
922 	/* set bits per word if needed */
923 	if (data->cur_trans->bits_per_word &&
924 	    (data->current_msg->spi->bits_per_word !=
925 	     data->cur_trans->bits_per_word)) {
926 		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
927 		spin_lock_irqsave(&data->lock, flags);
928 		pch_spi_set_bits_per_word(data->master,
929 					  data->cur_trans->bits_per_word);
930 		spin_unlock_irqrestore(&data->lock, flags);
931 		*bpw = data->cur_trans->bits_per_word;
932 	} else {
933 		*bpw = data->current_msg->spi->bits_per_word;
934 	}
935 	data->bpw_len = data->cur_trans->len / (*bpw / 8);
936 
937 	if (data->bpw_len > PCH_BUF_SIZE) {
938 		data->bpw_len = PCH_BUF_SIZE;
939 		data->cur_trans->len -= PCH_BUF_SIZE;
940 	}
941 
942 	/* copy Tx Data */
943 	if (data->cur_trans->tx_buf != NULL) {
944 		if (*bpw == 8) {
945 			tx_buf = data->cur_trans->tx_buf;
946 			tx_dma_buf = dma->tx_buf_virt;
947 			for (i = 0; i < data->bpw_len; i++)
948 				*tx_dma_buf++ = *tx_buf++;
949 		} else {
950 			tx_sbuf = data->cur_trans->tx_buf;
951 			tx_dma_sbuf = dma->tx_buf_virt;
952 			for (i = 0; i < data->bpw_len; i++)
953 				*tx_dma_sbuf++ = *tx_sbuf++;
954 		}
955 	}
956 
957 	/* Calculate Rx parameter for DMA transmitting */
958 	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
959 		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
960 			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
961 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
962 		} else {
963 			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
964 			rem = PCH_DMA_TRANS_SIZE;
965 		}
966 		size = PCH_DMA_TRANS_SIZE;
967 	} else {
968 		num = 1;
969 		size = data->bpw_len;
970 		rem = data->bpw_len;
971 	}
972 	dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
973 		__func__, num, size, rem);
974 	spin_lock_irqsave(&data->lock, flags);
975 
976 	/* set receive fifo threshold and transmit fifo threshold */
977 	pch_spi_setclr_reg(data->master, PCH_SPCR,
978 			   ((size - 1) << SPCR_RFIC_FIELD) |
979 			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
980 			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
981 
982 	spin_unlock_irqrestore(&data->lock, flags);
983 
984 	/* RX */
985 	dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
986 	if (!dma->sg_rx_p)
987 		return;
988 
989 	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
990 	/* offset, length setting */
991 	sg = dma->sg_rx_p;
992 	for (i = 0; i < num; i++, sg++) {
993 		if (i == (num - 2)) {
994 			sg->offset = size * i;
995 			sg->offset = sg->offset * (*bpw / 8);
996 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
997 				    sg->offset);
998 			sg_dma_len(sg) = rem;
999 		} else if (i == (num - 1)) {
1000 			sg->offset = size * (i - 1) + rem;
1001 			sg->offset = sg->offset * (*bpw / 8);
1002 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1003 				    sg->offset);
1004 			sg_dma_len(sg) = size;
1005 		} else {
1006 			sg->offset = size * i;
1007 			sg->offset = sg->offset * (*bpw / 8);
1008 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1009 				    sg->offset);
1010 			sg_dma_len(sg) = size;
1011 		}
1012 		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1013 	}
1014 	sg = dma->sg_rx_p;
1015 	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1016 					num, DMA_DEV_TO_MEM,
1017 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1018 	if (!desc_rx) {
1019 		dev_err(&data->master->dev,
1020 			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1021 		return;
1022 	}
1023 	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1024 	desc_rx->callback = pch_dma_rx_complete;
1025 	desc_rx->callback_param = data;
1026 	dma->nent = num;
1027 	dma->desc_rx = desc_rx;
1028 
1029 	/* Calculate Tx parameter for DMA transmitting */
1030 	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1031 		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1032 		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1033 			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1034 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1035 		} else {
1036 			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1037 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1038 			      PCH_DMA_TRANS_SIZE - head;
1039 		}
1040 		size = PCH_DMA_TRANS_SIZE;
1041 	} else {
1042 		num = 1;
1043 		size = data->bpw_len;
1044 		rem = data->bpw_len;
1045 		head = 0;
1046 	}
1047 
1048 	dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1049 	if (!dma->sg_tx_p)
1050 		return;
1051 
1052 	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1053 	/* offset, length setting */
1054 	sg = dma->sg_tx_p;
1055 	for (i = 0; i < num; i++, sg++) {
1056 		if (i == 0) {
1057 			sg->offset = 0;
1058 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1059 				    sg->offset);
1060 			sg_dma_len(sg) = size + head;
1061 		} else if (i == (num - 1)) {
1062 			sg->offset = head + size * i;
1063 			sg->offset = sg->offset * (*bpw / 8);
1064 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1065 				    sg->offset);
1066 			sg_dma_len(sg) = rem;
1067 		} else {
1068 			sg->offset = head + size * i;
1069 			sg->offset = sg->offset * (*bpw / 8);
1070 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1071 				    sg->offset);
1072 			sg_dma_len(sg) = size;
1073 		}
1074 		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1075 	}
1076 	sg = dma->sg_tx_p;
1077 	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1078 					sg, num, DMA_MEM_TO_DEV,
1079 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1080 	if (!desc_tx) {
1081 		dev_err(&data->master->dev,
1082 			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1083 		return;
1084 	}
1085 	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1086 	desc_tx->callback = NULL;
1087 	desc_tx->callback_param = data;
1088 	dma->nent = num;
1089 	dma->desc_tx = desc_tx;
1090 
1091 	dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1092 
1093 	spin_lock_irqsave(&data->lock, flags);
1094 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1095 	desc_rx->tx_submit(desc_rx);
1096 	desc_tx->tx_submit(desc_tx);
1097 	spin_unlock_irqrestore(&data->lock, flags);
1098 
1099 	/* reset transfer complete flag */
1100 	data->transfer_complete = false;
1101 }
1102 
1103 static void pch_spi_process_messages(struct work_struct *pwork)
1104 {
1105 	struct spi_message *pmsg, *tmp;
1106 	struct pch_spi_data *data;
1107 	int bpw;
1108 
1109 	data = container_of(pwork, struct pch_spi_data, work);
1110 	dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1111 
1112 	spin_lock(&data->lock);
1113 	/* check if suspend has been initiated;if yes flush queue */
1114 	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1115 		dev_dbg(&data->master->dev,
1116 			"%s suspend/remove initiated, flushing queue\n", __func__);
1117 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1118 			pmsg->status = -EIO;
1119 
1120 			if (pmsg->complete) {
1121 				spin_unlock(&data->lock);
1122 				pmsg->complete(pmsg->context);
1123 				spin_lock(&data->lock);
1124 			}
1125 
1126 			/* delete from queue */
1127 			list_del_init(&pmsg->queue);
1128 		}
1129 
1130 		spin_unlock(&data->lock);
1131 		return;
1132 	}
1133 
1134 	data->bcurrent_msg_processing = true;
1135 	dev_dbg(&data->master->dev,
1136 		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1137 
1138 	/* Get the message from the queue and delete it from there. */
1139 	data->current_msg = list_entry(data->queue.next, struct spi_message,
1140 					queue);
1141 
1142 	list_del_init(&data->current_msg->queue);
1143 
1144 	data->current_msg->status = 0;
1145 
1146 	pch_spi_select_chip(data, data->current_msg->spi);
1147 
1148 	spin_unlock(&data->lock);
1149 
1150 	if (data->use_dma)
1151 		pch_spi_request_dma(data,
1152 				    data->current_msg->spi->bits_per_word);
1153 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1154 	do {
1155 		int cnt;
1156 		/* If we are already processing a message get the next
1157 		transfer structure from the message otherwise retrieve
1158 		the 1st transfer request from the message. */
1159 		spin_lock(&data->lock);
1160 		if (data->cur_trans == NULL) {
1161 			data->cur_trans =
1162 				list_entry(data->current_msg->transfers.next,
1163 					   struct spi_transfer, transfer_list);
1164 			dev_dbg(&data->master->dev,
1165 				"%s :Getting 1st transfer message\n",
1166 				__func__);
1167 		} else {
1168 			data->cur_trans =
1169 				list_entry(data->cur_trans->transfer_list.next,
1170 					   struct spi_transfer, transfer_list);
1171 			dev_dbg(&data->master->dev,
1172 				"%s :Getting next transfer message\n",
1173 				__func__);
1174 		}
1175 		spin_unlock(&data->lock);
1176 
1177 		if (!data->cur_trans->len)
1178 			goto out;
1179 		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1180 		data->save_total_len = data->cur_trans->len;
1181 		if (data->use_dma) {
1182 			int i;
1183 			char *save_rx_buf = data->cur_trans->rx_buf;
1184 
1185 			for (i = 0; i < cnt; i++) {
1186 				pch_spi_handle_dma(data, &bpw);
1187 				if (!pch_spi_start_transfer(data)) {
1188 					data->transfer_complete = true;
1189 					data->current_msg->status = -EIO;
1190 					data->current_msg->complete
1191 						   (data->current_msg->context);
1192 					data->bcurrent_msg_processing = false;
1193 					data->current_msg = NULL;
1194 					data->cur_trans = NULL;
1195 					goto out;
1196 				}
1197 				pch_spi_copy_rx_data_for_dma(data, bpw);
1198 			}
1199 			data->cur_trans->rx_buf = save_rx_buf;
1200 		} else {
1201 			pch_spi_set_tx(data, &bpw);
1202 			pch_spi_set_ir(data);
1203 			pch_spi_copy_rx_data(data, bpw);
1204 			kfree(data->pkt_rx_buff);
1205 			data->pkt_rx_buff = NULL;
1206 			kfree(data->pkt_tx_buff);
1207 			data->pkt_tx_buff = NULL;
1208 		}
1209 		/* increment message count */
1210 		data->cur_trans->len = data->save_total_len;
1211 		data->current_msg->actual_length += data->cur_trans->len;
1212 
1213 		dev_dbg(&data->master->dev,
1214 			"%s:data->current_msg->actual_length=%d\n",
1215 			__func__, data->current_msg->actual_length);
1216 
1217 		spi_transfer_delay_exec(data->cur_trans);
1218 
1219 		spin_lock(&data->lock);
1220 
1221 		/* No more transfer in this message. */
1222 		if ((data->cur_trans->transfer_list.next) ==
1223 		    &(data->current_msg->transfers)) {
1224 			pch_spi_nomore_transfer(data);
1225 		}
1226 
1227 		spin_unlock(&data->lock);
1228 
1229 	} while (data->cur_trans != NULL);
1230 
1231 out:
1232 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1233 	if (data->use_dma)
1234 		pch_spi_release_dma(data);
1235 }
1236 
1237 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1238 				   struct pch_spi_data *data)
1239 {
1240 	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1241 
1242 	flush_work(&data->work);
1243 }
1244 
1245 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1246 				 struct pch_spi_data *data)
1247 {
1248 	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1249 
1250 	/* reset PCH SPI h/w */
1251 	pch_spi_reset(data->master);
1252 	dev_dbg(&board_dat->pdev->dev,
1253 		"%s pch_spi_reset invoked successfully\n", __func__);
1254 
1255 	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1256 
1257 	return 0;
1258 }
1259 
1260 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1261 			     struct pch_spi_data *data)
1262 {
1263 	struct pch_spi_dma_ctrl *dma;
1264 
1265 	dma = &data->dma;
1266 	if (dma->tx_buf_dma)
1267 		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1268 				  dma->tx_buf_virt, dma->tx_buf_dma);
1269 	if (dma->rx_buf_dma)
1270 		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1271 				  dma->rx_buf_virt, dma->rx_buf_dma);
1272 }
1273 
1274 static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1275 			      struct pch_spi_data *data)
1276 {
1277 	struct pch_spi_dma_ctrl *dma;
1278 	int ret;
1279 
1280 	dma = &data->dma;
1281 	ret = 0;
1282 	/* Get Consistent memory for Tx DMA */
1283 	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1284 				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1285 	if (!dma->tx_buf_virt)
1286 		ret = -ENOMEM;
1287 
1288 	/* Get Consistent memory for Rx DMA */
1289 	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1290 				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1291 	if (!dma->rx_buf_virt)
1292 		ret = -ENOMEM;
1293 
1294 	return ret;
1295 }
1296 
1297 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1298 {
1299 	int ret;
1300 	struct spi_master *master;
1301 	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1302 	struct pch_spi_data *data;
1303 
1304 	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1305 
1306 	master = spi_alloc_master(&board_dat->pdev->dev,
1307 				  sizeof(struct pch_spi_data));
1308 	if (!master) {
1309 		dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1310 			plat_dev->id);
1311 		return -ENOMEM;
1312 	}
1313 
1314 	data = spi_master_get_devdata(master);
1315 	data->master = master;
1316 
1317 	platform_set_drvdata(plat_dev, data);
1318 
1319 	/* baseaddress + address offset) */
1320 	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1321 					 PCH_ADDRESS_SIZE * plat_dev->id;
1322 	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1323 	if (!data->io_remap_addr) {
1324 		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1325 		ret = -ENOMEM;
1326 		goto err_pci_iomap;
1327 	}
1328 	data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1329 
1330 	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1331 		plat_dev->id, data->io_remap_addr);
1332 
1333 	/* initialize members of SPI master */
1334 	master->num_chipselect = PCH_MAX_CS;
1335 	master->transfer = pch_spi_transfer;
1336 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1337 	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1338 	master->max_speed_hz = PCH_MAX_BAUDRATE;
1339 	master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1340 
1341 	data->board_dat = board_dat;
1342 	data->plat_dev = plat_dev;
1343 	data->n_curnt_chip = 255;
1344 	data->status = STATUS_RUNNING;
1345 	data->ch = plat_dev->id;
1346 	data->use_dma = use_dma;
1347 
1348 	INIT_LIST_HEAD(&data->queue);
1349 	spin_lock_init(&data->lock);
1350 	INIT_WORK(&data->work, pch_spi_process_messages);
1351 	init_waitqueue_head(&data->wait);
1352 
1353 	ret = pch_spi_get_resources(board_dat, data);
1354 	if (ret) {
1355 		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1356 		goto err_spi_get_resources;
1357 	}
1358 
1359 	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1360 			  IRQF_SHARED, KBUILD_MODNAME, data);
1361 	if (ret) {
1362 		dev_err(&plat_dev->dev,
1363 			"%s request_irq failed\n", __func__);
1364 		goto err_request_irq;
1365 	}
1366 	data->irq_reg_sts = true;
1367 
1368 	pch_spi_set_master_mode(master);
1369 
1370 	if (use_dma) {
1371 		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1372 		ret = pch_alloc_dma_buf(board_dat, data);
1373 		if (ret)
1374 			goto err_spi_register_master;
1375 	}
1376 
1377 	ret = spi_register_master(master);
1378 	if (ret != 0) {
1379 		dev_err(&plat_dev->dev,
1380 			"%s spi_register_master FAILED\n", __func__);
1381 		goto err_spi_register_master;
1382 	}
1383 
1384 	return 0;
1385 
1386 err_spi_register_master:
1387 	pch_free_dma_buf(board_dat, data);
1388 	free_irq(board_dat->pdev->irq, data);
1389 err_request_irq:
1390 	pch_spi_free_resources(board_dat, data);
1391 err_spi_get_resources:
1392 	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1393 err_pci_iomap:
1394 	spi_master_put(master);
1395 
1396 	return ret;
1397 }
1398 
1399 static void pch_spi_pd_remove(struct platform_device *plat_dev)
1400 {
1401 	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1402 	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1403 	int count;
1404 	unsigned long flags;
1405 
1406 	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1407 		__func__, plat_dev->id, board_dat->pdev->irq);
1408 
1409 	if (use_dma)
1410 		pch_free_dma_buf(board_dat, data);
1411 
1412 	/* check for any pending messages; no action is taken if the queue
1413 	 * is still full; but at least we tried.  Unload anyway */
1414 	count = 500;
1415 	spin_lock_irqsave(&data->lock, flags);
1416 	data->status = STATUS_EXITING;
1417 	while ((list_empty(&data->queue) == 0) && --count) {
1418 		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1419 			__func__);
1420 		spin_unlock_irqrestore(&data->lock, flags);
1421 		msleep(PCH_SLEEP_TIME);
1422 		spin_lock_irqsave(&data->lock, flags);
1423 	}
1424 	spin_unlock_irqrestore(&data->lock, flags);
1425 
1426 	pch_spi_free_resources(board_dat, data);
1427 	/* disable interrupts & free IRQ */
1428 	if (data->irq_reg_sts) {
1429 		/* disable interrupts */
1430 		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1431 		data->irq_reg_sts = false;
1432 		free_irq(board_dat->pdev->irq, data);
1433 	}
1434 
1435 	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1436 	spi_unregister_master(data->master);
1437 }
1438 #ifdef CONFIG_PM
1439 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1440 			      pm_message_t state)
1441 {
1442 	u8 count;
1443 	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1444 	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1445 
1446 	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1447 
1448 	if (!board_dat) {
1449 		dev_err(&pd_dev->dev,
1450 			"%s pci_get_drvdata returned NULL\n", __func__);
1451 		return -EFAULT;
1452 	}
1453 
1454 	/* check if the current message is processed:
1455 	   Only after thats done the transfer will be suspended */
1456 	count = 255;
1457 	while ((--count) > 0) {
1458 		if (!(data->bcurrent_msg_processing))
1459 			break;
1460 		msleep(PCH_SLEEP_TIME);
1461 	}
1462 
1463 	/* Free IRQ */
1464 	if (data->irq_reg_sts) {
1465 		/* disable all interrupts */
1466 		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1467 		pch_spi_reset(data->master);
1468 		free_irq(board_dat->pdev->irq, data);
1469 
1470 		data->irq_reg_sts = false;
1471 		dev_dbg(&pd_dev->dev,
1472 			"%s free_irq invoked successfully.\n", __func__);
1473 	}
1474 
1475 	return 0;
1476 }
1477 
1478 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1479 {
1480 	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1481 	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1482 	int retval;
1483 
1484 	if (!board_dat) {
1485 		dev_err(&pd_dev->dev,
1486 			"%s pci_get_drvdata returned NULL\n", __func__);
1487 		return -EFAULT;
1488 	}
1489 
1490 	if (!data->irq_reg_sts) {
1491 		/* register IRQ */
1492 		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1493 				     IRQF_SHARED, KBUILD_MODNAME, data);
1494 		if (retval < 0) {
1495 			dev_err(&pd_dev->dev,
1496 				"%s request_irq failed\n", __func__);
1497 			return retval;
1498 		}
1499 
1500 		/* reset PCH SPI h/w */
1501 		pch_spi_reset(data->master);
1502 		pch_spi_set_master_mode(data->master);
1503 		data->irq_reg_sts = true;
1504 	}
1505 	return 0;
1506 }
1507 #else
1508 #define pch_spi_pd_suspend NULL
1509 #define pch_spi_pd_resume NULL
1510 #endif
1511 
1512 static struct platform_driver pch_spi_pd_driver = {
1513 	.driver = {
1514 		.name = "pch-spi",
1515 	},
1516 	.probe = pch_spi_pd_probe,
1517 	.remove_new = pch_spi_pd_remove,
1518 	.suspend = pch_spi_pd_suspend,
1519 	.resume = pch_spi_pd_resume
1520 };
1521 
1522 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1523 {
1524 	struct pch_spi_board_data *board_dat;
1525 	struct platform_device *pd_dev = NULL;
1526 	int retval;
1527 	int i;
1528 	struct pch_pd_dev_save *pd_dev_save;
1529 
1530 	pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1531 	if (!pd_dev_save)
1532 		return -ENOMEM;
1533 
1534 	board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1535 	if (!board_dat) {
1536 		retval = -ENOMEM;
1537 		goto err_no_mem;
1538 	}
1539 
1540 	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1541 	if (retval) {
1542 		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1543 		goto pci_request_regions;
1544 	}
1545 
1546 	board_dat->pdev = pdev;
1547 	board_dat->num = id->driver_data;
1548 	pd_dev_save->num = id->driver_data;
1549 	pd_dev_save->board_dat = board_dat;
1550 
1551 	retval = pci_enable_device(pdev);
1552 	if (retval) {
1553 		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1554 		goto pci_enable_device;
1555 	}
1556 
1557 	for (i = 0; i < board_dat->num; i++) {
1558 		pd_dev = platform_device_alloc("pch-spi", i);
1559 		if (!pd_dev) {
1560 			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1561 			retval = -ENOMEM;
1562 			goto err_platform_device;
1563 		}
1564 		pd_dev_save->pd_save[i] = pd_dev;
1565 		pd_dev->dev.parent = &pdev->dev;
1566 
1567 		retval = platform_device_add_data(pd_dev, board_dat,
1568 						  sizeof(*board_dat));
1569 		if (retval) {
1570 			dev_err(&pdev->dev,
1571 				"platform_device_add_data failed\n");
1572 			platform_device_put(pd_dev);
1573 			goto err_platform_device;
1574 		}
1575 
1576 		retval = platform_device_add(pd_dev);
1577 		if (retval) {
1578 			dev_err(&pdev->dev, "platform_device_add failed\n");
1579 			platform_device_put(pd_dev);
1580 			goto err_platform_device;
1581 		}
1582 	}
1583 
1584 	pci_set_drvdata(pdev, pd_dev_save);
1585 
1586 	return 0;
1587 
1588 err_platform_device:
1589 	while (--i >= 0)
1590 		platform_device_unregister(pd_dev_save->pd_save[i]);
1591 	pci_disable_device(pdev);
1592 pci_enable_device:
1593 	pci_release_regions(pdev);
1594 pci_request_regions:
1595 	kfree(board_dat);
1596 err_no_mem:
1597 	kfree(pd_dev_save);
1598 
1599 	return retval;
1600 }
1601 
1602 static void pch_spi_remove(struct pci_dev *pdev)
1603 {
1604 	int i;
1605 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1606 
1607 	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1608 
1609 	for (i = 0; i < pd_dev_save->num; i++)
1610 		platform_device_unregister(pd_dev_save->pd_save[i]);
1611 
1612 	pci_disable_device(pdev);
1613 	pci_release_regions(pdev);
1614 	kfree(pd_dev_save->board_dat);
1615 	kfree(pd_dev_save);
1616 }
1617 
1618 static int __maybe_unused pch_spi_suspend(struct device *dev)
1619 {
1620 	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1621 
1622 	dev_dbg(dev, "%s ENTRY\n", __func__);
1623 
1624 	pd_dev_save->board_dat->suspend_sts = true;
1625 
1626 	return 0;
1627 }
1628 
1629 static int __maybe_unused pch_spi_resume(struct device *dev)
1630 {
1631 	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1632 
1633 	dev_dbg(dev, "%s ENTRY\n", __func__);
1634 
1635 	/* set suspend status to false */
1636 	pd_dev_save->board_dat->suspend_sts = false;
1637 
1638 	return 0;
1639 }
1640 
1641 static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
1642 
1643 static struct pci_driver pch_spi_pcidev_driver = {
1644 	.name = "pch_spi",
1645 	.id_table = pch_spi_pcidev_id,
1646 	.probe = pch_spi_probe,
1647 	.remove = pch_spi_remove,
1648 	.driver.pm = &pch_spi_pm_ops,
1649 };
1650 
1651 static int __init pch_spi_init(void)
1652 {
1653 	int ret;
1654 	ret = platform_driver_register(&pch_spi_pd_driver);
1655 	if (ret)
1656 		return ret;
1657 
1658 	ret = pci_register_driver(&pch_spi_pcidev_driver);
1659 	if (ret) {
1660 		platform_driver_unregister(&pch_spi_pd_driver);
1661 		return ret;
1662 	}
1663 
1664 	return 0;
1665 }
1666 module_init(pch_spi_init);
1667 
1668 static void __exit pch_spi_exit(void)
1669 {
1670 	pci_unregister_driver(&pch_spi_pcidev_driver);
1671 	platform_driver_unregister(&pch_spi_pd_driver);
1672 }
1673 module_exit(pch_spi_exit);
1674 
1675 module_param(use_dma, int, 0644);
1676 MODULE_PARM_DESC(use_dma,
1677 		 "to use DMA for data transfers pass 1 else 0; default 1");
1678 
1679 MODULE_LICENSE("GPL");
1680 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1681 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1682 
1683