xref: /openbmc/linux/drivers/spi/spi-topcliff-pch.c (revision 496cc140279b4517a23f4534e468ec9c66283f4b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SPI bus driver for the Topcliff PCH used by Intel SoCs
4  *
5  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
6  */
7 
8 #include <linux/delay.h>
9 #include <linux/pci.h>
10 #include <linux/wait.h>
11 #include <linux/spi/spi.h>
12 #include <linux/interrupt.h>
13 #include <linux/sched.h>
14 #include <linux/spi/spidev.h>
15 #include <linux/module.h>
16 #include <linux/device.h>
17 #include <linux/platform_device.h>
18 
19 #include <linux/dmaengine.h>
20 #include <linux/pch_dma.h>
21 
22 /* Register offsets */
23 #define PCH_SPCR		0x00	/* SPI control register */
24 #define PCH_SPBRR		0x04	/* SPI baud rate register */
25 #define PCH_SPSR		0x08	/* SPI status register */
26 #define PCH_SPDWR		0x0C	/* SPI write data register */
27 #define PCH_SPDRR		0x10	/* SPI read data register */
28 #define PCH_SSNXCR		0x18	/* SSN Expand Control Register */
29 #define PCH_SRST		0x1C	/* SPI reset register */
30 #define PCH_ADDRESS_SIZE	0x20
31 
32 #define PCH_SPSR_TFD		0x000007C0
33 #define PCH_SPSR_RFD		0x0000F800
34 
35 #define PCH_READABLE(x)		(((x) & PCH_SPSR_RFD)>>11)
36 #define PCH_WRITABLE(x)		(((x) & PCH_SPSR_TFD)>>6)
37 
38 #define PCH_RX_THOLD		7
39 #define PCH_RX_THOLD_MAX	15
40 
41 #define PCH_TX_THOLD		2
42 
43 #define PCH_MAX_BAUDRATE	5000000
44 #define PCH_MAX_FIFO_DEPTH	16
45 
46 #define STATUS_RUNNING		1
47 #define STATUS_EXITING		2
48 #define PCH_SLEEP_TIME		10
49 
50 #define SSN_LOW			0x02U
51 #define SSN_HIGH		0x03U
52 #define SSN_NO_CONTROL		0x00U
53 #define PCH_MAX_CS		0xFF
54 #define PCI_DEVICE_ID_GE_SPI	0x8816
55 
56 #define SPCR_SPE_BIT		(1 << 0)
57 #define SPCR_MSTR_BIT		(1 << 1)
58 #define SPCR_LSBF_BIT		(1 << 4)
59 #define SPCR_CPHA_BIT		(1 << 5)
60 #define SPCR_CPOL_BIT		(1 << 6)
61 #define SPCR_TFIE_BIT		(1 << 8)
62 #define SPCR_RFIE_BIT		(1 << 9)
63 #define SPCR_FIE_BIT		(1 << 10)
64 #define SPCR_ORIE_BIT		(1 << 11)
65 #define SPCR_MDFIE_BIT		(1 << 12)
66 #define SPCR_FICLR_BIT		(1 << 24)
67 #define SPSR_TFI_BIT		(1 << 0)
68 #define SPSR_RFI_BIT		(1 << 1)
69 #define SPSR_FI_BIT		(1 << 2)
70 #define SPSR_ORF_BIT		(1 << 3)
71 #define SPBRR_SIZE_BIT		(1 << 10)
72 
73 #define PCH_ALL			(SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
74 				SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
75 
76 #define SPCR_RFIC_FIELD		20
77 #define SPCR_TFIC_FIELD		16
78 
79 #define MASK_SPBRR_SPBR_BITS	((1 << 10) - 1)
80 #define MASK_RFIC_SPCR_BITS	(0xf << SPCR_RFIC_FIELD)
81 #define MASK_TFIC_SPCR_BITS	(0xf << SPCR_TFIC_FIELD)
82 
83 #define PCH_CLOCK_HZ		50000000
84 #define PCH_MAX_SPBR		1023
85 
86 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
87 #define PCI_DEVICE_ID_ML7213_SPI	0x802c
88 #define PCI_DEVICE_ID_ML7223_SPI	0x800F
89 #define PCI_DEVICE_ID_ML7831_SPI	0x8816
90 
91 /*
92  * Set the number of SPI instance max
93  * Intel EG20T PCH :		1ch
94  * LAPIS Semiconductor ML7213 IOH :	2ch
95  * LAPIS Semiconductor ML7223 IOH :	1ch
96  * LAPIS Semiconductor ML7831 IOH :	1ch
97 */
98 #define PCH_SPI_MAX_DEV			2
99 
100 #define PCH_BUF_SIZE		4096
101 #define PCH_DMA_TRANS_SIZE	12
102 
103 static int use_dma = 1;
104 
105 struct pch_spi_dma_ctrl {
106 	struct dma_async_tx_descriptor	*desc_tx;
107 	struct dma_async_tx_descriptor	*desc_rx;
108 	struct pch_dma_slave		param_tx;
109 	struct pch_dma_slave		param_rx;
110 	struct dma_chan		*chan_tx;
111 	struct dma_chan		*chan_rx;
112 	struct scatterlist		*sg_tx_p;
113 	struct scatterlist		*sg_rx_p;
114 	struct scatterlist		sg_tx;
115 	struct scatterlist		sg_rx;
116 	int				nent;
117 	void				*tx_buf_virt;
118 	void				*rx_buf_virt;
119 	dma_addr_t			tx_buf_dma;
120 	dma_addr_t			rx_buf_dma;
121 };
122 /**
123  * struct pch_spi_data - Holds the SPI channel specific details
124  * @io_remap_addr:		The remapped PCI base address
125  * @io_base_addr:		Base address
126  * @master:			Pointer to the SPI master structure
127  * @work:			Reference to work queue handler
128  * @wait:			Wait queue for waking up upon receiving an
129  *				interrupt.
130  * @transfer_complete:		Status of SPI Transfer
131  * @bcurrent_msg_processing:	Status flag for message processing
132  * @lock:			Lock for protecting this structure
133  * @queue:			SPI Message queue
134  * @status:			Status of the SPI driver
135  * @bpw_len:			Length of data to be transferred in bits per
136  *				word
137  * @transfer_active:		Flag showing active transfer
138  * @tx_index:			Transmit data count; for bookkeeping during
139  *				transfer
140  * @rx_index:			Receive data count; for bookkeeping during
141  *				transfer
142  * @pkt_tx_buff:		Buffer for data to be transmitted
143  * @pkt_rx_buff:		Buffer for received data
144  * @n_curnt_chip:		The chip number that this SPI driver currently
145  *				operates on
146  * @current_chip:		Reference to the current chip that this SPI
147  *				driver currently operates on
148  * @current_msg:		The current message that this SPI driver is
149  *				handling
150  * @cur_trans:			The current transfer that this SPI driver is
151  *				handling
152  * @board_dat:			Reference to the SPI device data structure
153  * @plat_dev:			platform_device structure
154  * @ch:				SPI channel number
155  * @dma:			Local DMA information
156  * @use_dma:			True if DMA is to be used
157  * @irq_reg_sts:		Status of IRQ registration
158  * @save_total_len:		Save length while data is being transferred
159  */
160 struct pch_spi_data {
161 	void __iomem *io_remap_addr;
162 	unsigned long io_base_addr;
163 	struct spi_master *master;
164 	struct work_struct work;
165 	wait_queue_head_t wait;
166 	u8 transfer_complete;
167 	u8 bcurrent_msg_processing;
168 	spinlock_t lock;
169 	struct list_head queue;
170 	u8 status;
171 	u32 bpw_len;
172 	u8 transfer_active;
173 	u32 tx_index;
174 	u32 rx_index;
175 	u16 *pkt_tx_buff;
176 	u16 *pkt_rx_buff;
177 	u8 n_curnt_chip;
178 	struct spi_device *current_chip;
179 	struct spi_message *current_msg;
180 	struct spi_transfer *cur_trans;
181 	struct pch_spi_board_data *board_dat;
182 	struct platform_device	*plat_dev;
183 	int ch;
184 	struct pch_spi_dma_ctrl dma;
185 	int use_dma;
186 	u8 irq_reg_sts;
187 	int save_total_len;
188 };
189 
190 /**
191  * struct pch_spi_board_data - Holds the SPI device specific details
192  * @pdev:		Pointer to the PCI device
193  * @suspend_sts:	Status of suspend
194  * @num:		The number of SPI device instance
195  */
196 struct pch_spi_board_data {
197 	struct pci_dev *pdev;
198 	u8 suspend_sts;
199 	int num;
200 };
201 
202 struct pch_pd_dev_save {
203 	int num;
204 	struct platform_device *pd_save[PCH_SPI_MAX_DEV];
205 	struct pch_spi_board_data *board_dat;
206 };
207 
208 static const struct pci_device_id pch_spi_pcidev_id[] = {
209 	{ PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
210 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
211 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
212 	{ PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
213 	{ }
214 };
215 
216 /**
217  * pch_spi_writereg() - Performs  register writes
218  * @master:	Pointer to struct spi_master.
219  * @idx:	Register offset.
220  * @val:	Value to be written to register.
221  */
222 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
223 {
224 	struct pch_spi_data *data = spi_master_get_devdata(master);
225 	iowrite32(val, (data->io_remap_addr + idx));
226 }
227 
228 /**
229  * pch_spi_readreg() - Performs register reads
230  * @master:	Pointer to struct spi_master.
231  * @idx:	Register offset.
232  */
233 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
234 {
235 	struct pch_spi_data *data = spi_master_get_devdata(master);
236 	return ioread32(data->io_remap_addr + idx);
237 }
238 
239 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
240 				      u32 set, u32 clr)
241 {
242 	u32 tmp = pch_spi_readreg(master, idx);
243 	tmp = (tmp & ~clr) | set;
244 	pch_spi_writereg(master, idx, tmp);
245 }
246 
247 static void pch_spi_set_master_mode(struct spi_master *master)
248 {
249 	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
250 }
251 
252 /**
253  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
254  * @master:	Pointer to struct spi_master.
255  */
256 static void pch_spi_clear_fifo(struct spi_master *master)
257 {
258 	pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
259 	pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
260 }
261 
262 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
263 				void __iomem *io_remap_addr)
264 {
265 	u32 n_read, tx_index, rx_index, bpw_len;
266 	u16 *pkt_rx_buffer, *pkt_tx_buff;
267 	int read_cnt;
268 	u32 reg_spcr_val;
269 	void __iomem *spsr;
270 	void __iomem *spdrr;
271 	void __iomem *spdwr;
272 
273 	spsr = io_remap_addr + PCH_SPSR;
274 	iowrite32(reg_spsr_val, spsr);
275 
276 	if (data->transfer_active) {
277 		rx_index = data->rx_index;
278 		tx_index = data->tx_index;
279 		bpw_len = data->bpw_len;
280 		pkt_rx_buffer = data->pkt_rx_buff;
281 		pkt_tx_buff = data->pkt_tx_buff;
282 
283 		spdrr = io_remap_addr + PCH_SPDRR;
284 		spdwr = io_remap_addr + PCH_SPDWR;
285 
286 		n_read = PCH_READABLE(reg_spsr_val);
287 
288 		for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
289 			pkt_rx_buffer[rx_index++] = ioread32(spdrr);
290 			if (tx_index < bpw_len)
291 				iowrite32(pkt_tx_buff[tx_index++], spdwr);
292 		}
293 
294 		/* disable RFI if not needed */
295 		if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
296 			reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
297 			reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
298 
299 			/* reset rx threshold */
300 			reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
301 			reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
302 
303 			iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
304 		}
305 
306 		/* update counts */
307 		data->tx_index = tx_index;
308 		data->rx_index = rx_index;
309 
310 		/* if transfer complete interrupt */
311 		if (reg_spsr_val & SPSR_FI_BIT) {
312 			if ((tx_index == bpw_len) && (rx_index == tx_index)) {
313 				/* disable interrupts */
314 				pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
315 						   PCH_ALL);
316 
317 				/* transfer is completed;
318 				   inform pch_spi_process_messages */
319 				data->transfer_complete = true;
320 				data->transfer_active = false;
321 				wake_up(&data->wait);
322 			} else {
323 				dev_vdbg(&data->master->dev,
324 					"%s : Transfer is not completed",
325 					__func__);
326 			}
327 		}
328 	}
329 }
330 
331 /**
332  * pch_spi_handler() - Interrupt handler
333  * @irq:	The interrupt number.
334  * @dev_id:	Pointer to struct pch_spi_board_data.
335  */
336 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
337 {
338 	u32 reg_spsr_val;
339 	void __iomem *spsr;
340 	void __iomem *io_remap_addr;
341 	irqreturn_t ret = IRQ_NONE;
342 	struct pch_spi_data *data = dev_id;
343 	struct pch_spi_board_data *board_dat = data->board_dat;
344 
345 	if (board_dat->suspend_sts) {
346 		dev_dbg(&board_dat->pdev->dev,
347 			"%s returning due to suspend\n", __func__);
348 		return IRQ_NONE;
349 	}
350 
351 	io_remap_addr = data->io_remap_addr;
352 	spsr = io_remap_addr + PCH_SPSR;
353 
354 	reg_spsr_val = ioread32(spsr);
355 
356 	if (reg_spsr_val & SPSR_ORF_BIT) {
357 		dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
358 		if (data->current_msg->complete) {
359 			data->transfer_complete = true;
360 			data->current_msg->status = -EIO;
361 			data->current_msg->complete(data->current_msg->context);
362 			data->bcurrent_msg_processing = false;
363 			data->current_msg = NULL;
364 			data->cur_trans = NULL;
365 		}
366 	}
367 
368 	if (data->use_dma)
369 		return IRQ_NONE;
370 
371 	/* Check if the interrupt is for SPI device */
372 	if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
373 		pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
374 		ret = IRQ_HANDLED;
375 	}
376 
377 	dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
378 		__func__, ret);
379 
380 	return ret;
381 }
382 
383 /**
384  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
385  * @master:	Pointer to struct spi_master.
386  * @speed_hz:	Baud rate.
387  */
388 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
389 {
390 	u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
391 
392 	/* if baud rate is less than we can support limit it */
393 	if (n_spbr > PCH_MAX_SPBR)
394 		n_spbr = PCH_MAX_SPBR;
395 
396 	pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
397 }
398 
399 /**
400  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
401  * @master:		Pointer to struct spi_master.
402  * @bits_per_word:	Bits per word for SPI transfer.
403  */
404 static void pch_spi_set_bits_per_word(struct spi_master *master,
405 				      u8 bits_per_word)
406 {
407 	if (bits_per_word == 8)
408 		pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
409 	else
410 		pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
411 }
412 
413 /**
414  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
415  * @spi:	Pointer to struct spi_device.
416  */
417 static void pch_spi_setup_transfer(struct spi_device *spi)
418 {
419 	u32 flags = 0;
420 
421 	dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
422 		__func__, pch_spi_readreg(spi->master, PCH_SPBRR),
423 		spi->max_speed_hz);
424 	pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
425 
426 	/* set bits per word */
427 	pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
428 
429 	if (!(spi->mode & SPI_LSB_FIRST))
430 		flags |= SPCR_LSBF_BIT;
431 	if (spi->mode & SPI_CPOL)
432 		flags |= SPCR_CPOL_BIT;
433 	if (spi->mode & SPI_CPHA)
434 		flags |= SPCR_CPHA_BIT;
435 	pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
436 			   (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
437 
438 	/* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
439 	pch_spi_clear_fifo(spi->master);
440 }
441 
442 /**
443  * pch_spi_reset() - Clears SPI registers
444  * @master:	Pointer to struct spi_master.
445  */
446 static void pch_spi_reset(struct spi_master *master)
447 {
448 	/* write 1 to reset SPI */
449 	pch_spi_writereg(master, PCH_SRST, 0x1);
450 
451 	/* clear reset */
452 	pch_spi_writereg(master, PCH_SRST, 0x0);
453 }
454 
455 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
456 {
457 
458 	struct spi_transfer *transfer;
459 	struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
460 	int retval;
461 	unsigned long flags;
462 
463 	spin_lock_irqsave(&data->lock, flags);
464 	/* validate Tx/Rx buffers and Transfer length */
465 	list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
466 		if (!transfer->tx_buf && !transfer->rx_buf) {
467 			dev_err(&pspi->dev,
468 				"%s Tx and Rx buffer NULL\n", __func__);
469 			retval = -EINVAL;
470 			goto err_return_spinlock;
471 		}
472 
473 		if (!transfer->len) {
474 			dev_err(&pspi->dev, "%s Transfer length invalid\n",
475 				__func__);
476 			retval = -EINVAL;
477 			goto err_return_spinlock;
478 		}
479 
480 		dev_dbg(&pspi->dev,
481 			"%s Tx/Rx buffer valid. Transfer length valid\n",
482 			__func__);
483 	}
484 	spin_unlock_irqrestore(&data->lock, flags);
485 
486 	/* We won't process any messages if we have been asked to terminate */
487 	if (data->status == STATUS_EXITING) {
488 		dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
489 		retval = -ESHUTDOWN;
490 		goto err_out;
491 	}
492 
493 	/* If suspended ,return -EINVAL */
494 	if (data->board_dat->suspend_sts) {
495 		dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
496 		retval = -EINVAL;
497 		goto err_out;
498 	}
499 
500 	/* set status of message */
501 	pmsg->actual_length = 0;
502 	dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
503 
504 	pmsg->status = -EINPROGRESS;
505 	spin_lock_irqsave(&data->lock, flags);
506 	/* add message to queue */
507 	list_add_tail(&pmsg->queue, &data->queue);
508 	spin_unlock_irqrestore(&data->lock, flags);
509 
510 	dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
511 
512 	schedule_work(&data->work);
513 	dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
514 
515 	retval = 0;
516 
517 err_out:
518 	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
519 	return retval;
520 err_return_spinlock:
521 	dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
522 	spin_unlock_irqrestore(&data->lock, flags);
523 	return retval;
524 }
525 
526 static inline void pch_spi_select_chip(struct pch_spi_data *data,
527 				       struct spi_device *pspi)
528 {
529 	if (data->current_chip != NULL) {
530 		if (pspi->chip_select != data->n_curnt_chip) {
531 			dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
532 			data->current_chip = NULL;
533 		}
534 	}
535 
536 	data->current_chip = pspi;
537 
538 	data->n_curnt_chip = data->current_chip->chip_select;
539 
540 	dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
541 	pch_spi_setup_transfer(pspi);
542 }
543 
544 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
545 {
546 	int size;
547 	u32 n_writes;
548 	int j;
549 	struct spi_message *pmsg, *tmp;
550 	const u8 *tx_buf;
551 	const u16 *tx_sbuf;
552 
553 	/* set baud rate if needed */
554 	if (data->cur_trans->speed_hz) {
555 		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
556 		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
557 	}
558 
559 	/* set bits per word if needed */
560 	if (data->cur_trans->bits_per_word &&
561 	    (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
562 		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
563 		pch_spi_set_bits_per_word(data->master,
564 					  data->cur_trans->bits_per_word);
565 		*bpw = data->cur_trans->bits_per_word;
566 	} else {
567 		*bpw = data->current_msg->spi->bits_per_word;
568 	}
569 
570 	/* reset Tx/Rx index */
571 	data->tx_index = 0;
572 	data->rx_index = 0;
573 
574 	data->bpw_len = data->cur_trans->len / (*bpw / 8);
575 
576 	/* find alloc size */
577 	size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
578 
579 	/* allocate memory for pkt_tx_buff & pkt_rx_buffer */
580 	data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
581 	if (data->pkt_tx_buff != NULL) {
582 		data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
583 		if (!data->pkt_rx_buff) {
584 			kfree(data->pkt_tx_buff);
585 			data->pkt_tx_buff = NULL;
586 		}
587 	}
588 
589 	if (!data->pkt_rx_buff) {
590 		/* flush queue and set status of all transfers to -ENOMEM */
591 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
592 			pmsg->status = -ENOMEM;
593 
594 			if (pmsg->complete)
595 				pmsg->complete(pmsg->context);
596 
597 			/* delete from queue */
598 			list_del_init(&pmsg->queue);
599 		}
600 		return;
601 	}
602 
603 	/* copy Tx Data */
604 	if (data->cur_trans->tx_buf != NULL) {
605 		if (*bpw == 8) {
606 			tx_buf = data->cur_trans->tx_buf;
607 			for (j = 0; j < data->bpw_len; j++)
608 				data->pkt_tx_buff[j] = *tx_buf++;
609 		} else {
610 			tx_sbuf = data->cur_trans->tx_buf;
611 			for (j = 0; j < data->bpw_len; j++)
612 				data->pkt_tx_buff[j] = *tx_sbuf++;
613 		}
614 	}
615 
616 	/* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
617 	n_writes = data->bpw_len;
618 	if (n_writes > PCH_MAX_FIFO_DEPTH)
619 		n_writes = PCH_MAX_FIFO_DEPTH;
620 
621 	dev_dbg(&data->master->dev,
622 		"\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
623 		__func__);
624 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
625 
626 	for (j = 0; j < n_writes; j++)
627 		pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
628 
629 	/* update tx_index */
630 	data->tx_index = j;
631 
632 	/* reset transfer complete flag */
633 	data->transfer_complete = false;
634 	data->transfer_active = true;
635 }
636 
637 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
638 {
639 	struct spi_message *pmsg, *tmp;
640 	dev_dbg(&data->master->dev, "%s called\n", __func__);
641 	/* Invoke complete callback
642 	 * [To the spi core..indicating end of transfer] */
643 	data->current_msg->status = 0;
644 
645 	if (data->current_msg->complete) {
646 		dev_dbg(&data->master->dev,
647 			"%s:Invoking callback of SPI core\n", __func__);
648 		data->current_msg->complete(data->current_msg->context);
649 	}
650 
651 	/* update status in global variable */
652 	data->bcurrent_msg_processing = false;
653 
654 	dev_dbg(&data->master->dev,
655 		"%s:data->bcurrent_msg_processing = false\n", __func__);
656 
657 	data->current_msg = NULL;
658 	data->cur_trans = NULL;
659 
660 	/* check if we have items in list and not suspending
661 	 * return 1 if list empty */
662 	if ((list_empty(&data->queue) == 0) &&
663 	    (!data->board_dat->suspend_sts) &&
664 	    (data->status != STATUS_EXITING)) {
665 		/* We have some more work to do (either there is more tranint
666 		 * bpw;sfer requests in the current message or there are
667 		 *more messages)
668 		 */
669 		dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
670 		schedule_work(&data->work);
671 	} else if (data->board_dat->suspend_sts ||
672 		   data->status == STATUS_EXITING) {
673 		dev_dbg(&data->master->dev,
674 			"%s suspend/remove initiated, flushing queue\n",
675 			__func__);
676 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
677 			pmsg->status = -EIO;
678 
679 			if (pmsg->complete)
680 				pmsg->complete(pmsg->context);
681 
682 			/* delete from queue */
683 			list_del_init(&pmsg->queue);
684 		}
685 	}
686 }
687 
688 static void pch_spi_set_ir(struct pch_spi_data *data)
689 {
690 	/* enable interrupts, set threshold, enable SPI */
691 	if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
692 		/* set receive threshold to PCH_RX_THOLD */
693 		pch_spi_setclr_reg(data->master, PCH_SPCR,
694 				   PCH_RX_THOLD << SPCR_RFIC_FIELD |
695 				   SPCR_FIE_BIT | SPCR_RFIE_BIT |
696 				   SPCR_ORIE_BIT | SPCR_SPE_BIT,
697 				   MASK_RFIC_SPCR_BITS | PCH_ALL);
698 	else
699 		/* set receive threshold to maximum */
700 		pch_spi_setclr_reg(data->master, PCH_SPCR,
701 				   PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
702 				   SPCR_FIE_BIT | SPCR_ORIE_BIT |
703 				   SPCR_SPE_BIT,
704 				   MASK_RFIC_SPCR_BITS | PCH_ALL);
705 
706 	/* Wait until the transfer completes; go to sleep after
707 				 initiating the transfer. */
708 	dev_dbg(&data->master->dev,
709 		"%s:waiting for transfer to get over\n", __func__);
710 
711 	wait_event_interruptible(data->wait, data->transfer_complete);
712 
713 	/* clear all interrupts */
714 	pch_spi_writereg(data->master, PCH_SPSR,
715 			 pch_spi_readreg(data->master, PCH_SPSR));
716 	/* Disable interrupts and SPI transfer */
717 	pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
718 	/* clear FIFO */
719 	pch_spi_clear_fifo(data->master);
720 }
721 
722 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
723 {
724 	int j;
725 	u8 *rx_buf;
726 	u16 *rx_sbuf;
727 
728 	/* copy Rx Data */
729 	if (!data->cur_trans->rx_buf)
730 		return;
731 
732 	if (bpw == 8) {
733 		rx_buf = data->cur_trans->rx_buf;
734 		for (j = 0; j < data->bpw_len; j++)
735 			*rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
736 	} else {
737 		rx_sbuf = data->cur_trans->rx_buf;
738 		for (j = 0; j < data->bpw_len; j++)
739 			*rx_sbuf++ = data->pkt_rx_buff[j];
740 	}
741 }
742 
743 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
744 {
745 	int j;
746 	u8 *rx_buf;
747 	u16 *rx_sbuf;
748 	const u8 *rx_dma_buf;
749 	const u16 *rx_dma_sbuf;
750 
751 	/* copy Rx Data */
752 	if (!data->cur_trans->rx_buf)
753 		return;
754 
755 	if (bpw == 8) {
756 		rx_buf = data->cur_trans->rx_buf;
757 		rx_dma_buf = data->dma.rx_buf_virt;
758 		for (j = 0; j < data->bpw_len; j++)
759 			*rx_buf++ = *rx_dma_buf++ & 0xFF;
760 		data->cur_trans->rx_buf = rx_buf;
761 	} else {
762 		rx_sbuf = data->cur_trans->rx_buf;
763 		rx_dma_sbuf = data->dma.rx_buf_virt;
764 		for (j = 0; j < data->bpw_len; j++)
765 			*rx_sbuf++ = *rx_dma_sbuf++;
766 		data->cur_trans->rx_buf = rx_sbuf;
767 	}
768 }
769 
770 static int pch_spi_start_transfer(struct pch_spi_data *data)
771 {
772 	struct pch_spi_dma_ctrl *dma;
773 	unsigned long flags;
774 	int rtn;
775 
776 	dma = &data->dma;
777 
778 	spin_lock_irqsave(&data->lock, flags);
779 
780 	/* disable interrupts, SPI set enable */
781 	pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
782 
783 	spin_unlock_irqrestore(&data->lock, flags);
784 
785 	/* Wait until the transfer completes; go to sleep after
786 				 initiating the transfer. */
787 	dev_dbg(&data->master->dev,
788 		"%s:waiting for transfer to get over\n", __func__);
789 	rtn = wait_event_interruptible_timeout(data->wait,
790 					       data->transfer_complete,
791 					       msecs_to_jiffies(2 * HZ));
792 	if (!rtn)
793 		dev_err(&data->master->dev,
794 			"%s wait-event timeout\n", __func__);
795 
796 	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
797 			    DMA_FROM_DEVICE);
798 
799 	dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
800 			    DMA_FROM_DEVICE);
801 	memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
802 
803 	async_tx_ack(dma->desc_rx);
804 	async_tx_ack(dma->desc_tx);
805 	kfree(dma->sg_tx_p);
806 	kfree(dma->sg_rx_p);
807 
808 	spin_lock_irqsave(&data->lock, flags);
809 
810 	/* clear fifo threshold, disable interrupts, disable SPI transfer */
811 	pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
812 			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
813 			   SPCR_SPE_BIT);
814 	/* clear all interrupts */
815 	pch_spi_writereg(data->master, PCH_SPSR,
816 			 pch_spi_readreg(data->master, PCH_SPSR));
817 	/* clear FIFO */
818 	pch_spi_clear_fifo(data->master);
819 
820 	spin_unlock_irqrestore(&data->lock, flags);
821 
822 	return rtn;
823 }
824 
825 static void pch_dma_rx_complete(void *arg)
826 {
827 	struct pch_spi_data *data = arg;
828 
829 	/* transfer is completed;inform pch_spi_process_messages_dma */
830 	data->transfer_complete = true;
831 	wake_up_interruptible(&data->wait);
832 }
833 
834 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
835 {
836 	struct pch_dma_slave *param = slave;
837 
838 	if ((chan->chan_id == param->chan_id) &&
839 	    (param->dma_dev == chan->device->dev)) {
840 		chan->private = param;
841 		return true;
842 	} else {
843 		return false;
844 	}
845 }
846 
847 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
848 {
849 	dma_cap_mask_t mask;
850 	struct dma_chan *chan;
851 	struct pci_dev *dma_dev;
852 	struct pch_dma_slave *param;
853 	struct pch_spi_dma_ctrl *dma;
854 	unsigned int width;
855 
856 	if (bpw == 8)
857 		width = PCH_DMA_WIDTH_1_BYTE;
858 	else
859 		width = PCH_DMA_WIDTH_2_BYTES;
860 
861 	dma = &data->dma;
862 	dma_cap_zero(mask);
863 	dma_cap_set(DMA_SLAVE, mask);
864 
865 	/* Get DMA's dev information */
866 	dma_dev = pci_get_slot(data->board_dat->pdev->bus,
867 			PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
868 
869 	/* Set Tx DMA */
870 	param = &dma->param_tx;
871 	param->dma_dev = &dma_dev->dev;
872 	param->chan_id = data->ch * 2; /* Tx = 0, 2 */
873 	param->tx_reg = data->io_base_addr + PCH_SPDWR;
874 	param->width = width;
875 	chan = dma_request_channel(mask, pch_spi_filter, param);
876 	if (!chan) {
877 		dev_err(&data->master->dev,
878 			"ERROR: dma_request_channel FAILS(Tx)\n");
879 		data->use_dma = 0;
880 		return;
881 	}
882 	dma->chan_tx = chan;
883 
884 	/* Set Rx DMA */
885 	param = &dma->param_rx;
886 	param->dma_dev = &dma_dev->dev;
887 	param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */
888 	param->rx_reg = data->io_base_addr + PCH_SPDRR;
889 	param->width = width;
890 	chan = dma_request_channel(mask, pch_spi_filter, param);
891 	if (!chan) {
892 		dev_err(&data->master->dev,
893 			"ERROR: dma_request_channel FAILS(Rx)\n");
894 		dma_release_channel(dma->chan_tx);
895 		dma->chan_tx = NULL;
896 		data->use_dma = 0;
897 		return;
898 	}
899 	dma->chan_rx = chan;
900 }
901 
902 static void pch_spi_release_dma(struct pch_spi_data *data)
903 {
904 	struct pch_spi_dma_ctrl *dma;
905 
906 	dma = &data->dma;
907 	if (dma->chan_tx) {
908 		dma_release_channel(dma->chan_tx);
909 		dma->chan_tx = NULL;
910 	}
911 	if (dma->chan_rx) {
912 		dma_release_channel(dma->chan_rx);
913 		dma->chan_rx = NULL;
914 	}
915 }
916 
917 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
918 {
919 	const u8 *tx_buf;
920 	const u16 *tx_sbuf;
921 	u8 *tx_dma_buf;
922 	u16 *tx_dma_sbuf;
923 	struct scatterlist *sg;
924 	struct dma_async_tx_descriptor *desc_tx;
925 	struct dma_async_tx_descriptor *desc_rx;
926 	int num;
927 	int i;
928 	int size;
929 	int rem;
930 	int head;
931 	unsigned long flags;
932 	struct pch_spi_dma_ctrl *dma;
933 
934 	dma = &data->dma;
935 
936 	/* set baud rate if needed */
937 	if (data->cur_trans->speed_hz) {
938 		dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
939 		spin_lock_irqsave(&data->lock, flags);
940 		pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
941 		spin_unlock_irqrestore(&data->lock, flags);
942 	}
943 
944 	/* set bits per word if needed */
945 	if (data->cur_trans->bits_per_word &&
946 	    (data->current_msg->spi->bits_per_word !=
947 	     data->cur_trans->bits_per_word)) {
948 		dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
949 		spin_lock_irqsave(&data->lock, flags);
950 		pch_spi_set_bits_per_word(data->master,
951 					  data->cur_trans->bits_per_word);
952 		spin_unlock_irqrestore(&data->lock, flags);
953 		*bpw = data->cur_trans->bits_per_word;
954 	} else {
955 		*bpw = data->current_msg->spi->bits_per_word;
956 	}
957 	data->bpw_len = data->cur_trans->len / (*bpw / 8);
958 
959 	if (data->bpw_len > PCH_BUF_SIZE) {
960 		data->bpw_len = PCH_BUF_SIZE;
961 		data->cur_trans->len -= PCH_BUF_SIZE;
962 	}
963 
964 	/* copy Tx Data */
965 	if (data->cur_trans->tx_buf != NULL) {
966 		if (*bpw == 8) {
967 			tx_buf = data->cur_trans->tx_buf;
968 			tx_dma_buf = dma->tx_buf_virt;
969 			for (i = 0; i < data->bpw_len; i++)
970 				*tx_dma_buf++ = *tx_buf++;
971 		} else {
972 			tx_sbuf = data->cur_trans->tx_buf;
973 			tx_dma_sbuf = dma->tx_buf_virt;
974 			for (i = 0; i < data->bpw_len; i++)
975 				*tx_dma_sbuf++ = *tx_sbuf++;
976 		}
977 	}
978 
979 	/* Calculate Rx parameter for DMA transmitting */
980 	if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
981 		if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
982 			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
983 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
984 		} else {
985 			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
986 			rem = PCH_DMA_TRANS_SIZE;
987 		}
988 		size = PCH_DMA_TRANS_SIZE;
989 	} else {
990 		num = 1;
991 		size = data->bpw_len;
992 		rem = data->bpw_len;
993 	}
994 	dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
995 		__func__, num, size, rem);
996 	spin_lock_irqsave(&data->lock, flags);
997 
998 	/* set receive fifo threshold and transmit fifo threshold */
999 	pch_spi_setclr_reg(data->master, PCH_SPCR,
1000 			   ((size - 1) << SPCR_RFIC_FIELD) |
1001 			   (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1002 			   MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1003 
1004 	spin_unlock_irqrestore(&data->lock, flags);
1005 
1006 	/* RX */
1007 	dma->sg_rx_p = kmalloc_array(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
1008 	if (!dma->sg_rx_p)
1009 		return;
1010 
1011 	sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1012 	/* offset, length setting */
1013 	sg = dma->sg_rx_p;
1014 	for (i = 0; i < num; i++, sg++) {
1015 		if (i == (num - 2)) {
1016 			sg->offset = size * i;
1017 			sg->offset = sg->offset * (*bpw / 8);
1018 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1019 				    sg->offset);
1020 			sg_dma_len(sg) = rem;
1021 		} else if (i == (num - 1)) {
1022 			sg->offset = size * (i - 1) + rem;
1023 			sg->offset = sg->offset * (*bpw / 8);
1024 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1025 				    sg->offset);
1026 			sg_dma_len(sg) = size;
1027 		} else {
1028 			sg->offset = size * i;
1029 			sg->offset = sg->offset * (*bpw / 8);
1030 			sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1031 				    sg->offset);
1032 			sg_dma_len(sg) = size;
1033 		}
1034 		sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1035 	}
1036 	sg = dma->sg_rx_p;
1037 	desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1038 					num, DMA_DEV_TO_MEM,
1039 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1040 	if (!desc_rx) {
1041 		dev_err(&data->master->dev,
1042 			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1043 		return;
1044 	}
1045 	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1046 	desc_rx->callback = pch_dma_rx_complete;
1047 	desc_rx->callback_param = data;
1048 	dma->nent = num;
1049 	dma->desc_rx = desc_rx;
1050 
1051 	/* Calculate Tx parameter for DMA transmitting */
1052 	if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1053 		head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1054 		if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1055 			num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1056 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1057 		} else {
1058 			num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1059 			rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1060 			      PCH_DMA_TRANS_SIZE - head;
1061 		}
1062 		size = PCH_DMA_TRANS_SIZE;
1063 	} else {
1064 		num = 1;
1065 		size = data->bpw_len;
1066 		rem = data->bpw_len;
1067 		head = 0;
1068 	}
1069 
1070 	dma->sg_tx_p = kmalloc_array(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1071 	if (!dma->sg_tx_p)
1072 		return;
1073 
1074 	sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1075 	/* offset, length setting */
1076 	sg = dma->sg_tx_p;
1077 	for (i = 0; i < num; i++, sg++) {
1078 		if (i == 0) {
1079 			sg->offset = 0;
1080 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1081 				    sg->offset);
1082 			sg_dma_len(sg) = size + head;
1083 		} else if (i == (num - 1)) {
1084 			sg->offset = head + size * i;
1085 			sg->offset = sg->offset * (*bpw / 8);
1086 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1087 				    sg->offset);
1088 			sg_dma_len(sg) = rem;
1089 		} else {
1090 			sg->offset = head + size * i;
1091 			sg->offset = sg->offset * (*bpw / 8);
1092 			sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1093 				    sg->offset);
1094 			sg_dma_len(sg) = size;
1095 		}
1096 		sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1097 	}
1098 	sg = dma->sg_tx_p;
1099 	desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1100 					sg, num, DMA_MEM_TO_DEV,
1101 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1102 	if (!desc_tx) {
1103 		dev_err(&data->master->dev,
1104 			"%s:dmaengine_prep_slave_sg Failed\n", __func__);
1105 		return;
1106 	}
1107 	dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1108 	desc_tx->callback = NULL;
1109 	desc_tx->callback_param = data;
1110 	dma->nent = num;
1111 	dma->desc_tx = desc_tx;
1112 
1113 	dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1114 
1115 	spin_lock_irqsave(&data->lock, flags);
1116 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1117 	desc_rx->tx_submit(desc_rx);
1118 	desc_tx->tx_submit(desc_tx);
1119 	spin_unlock_irqrestore(&data->lock, flags);
1120 
1121 	/* reset transfer complete flag */
1122 	data->transfer_complete = false;
1123 }
1124 
1125 static void pch_spi_process_messages(struct work_struct *pwork)
1126 {
1127 	struct spi_message *pmsg, *tmp;
1128 	struct pch_spi_data *data;
1129 	int bpw;
1130 
1131 	data = container_of(pwork, struct pch_spi_data, work);
1132 	dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1133 
1134 	spin_lock(&data->lock);
1135 	/* check if suspend has been initiated;if yes flush queue */
1136 	if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1137 		dev_dbg(&data->master->dev,
1138 			"%s suspend/remove initiated, flushing queue\n", __func__);
1139 		list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1140 			pmsg->status = -EIO;
1141 
1142 			if (pmsg->complete) {
1143 				spin_unlock(&data->lock);
1144 				pmsg->complete(pmsg->context);
1145 				spin_lock(&data->lock);
1146 			}
1147 
1148 			/* delete from queue */
1149 			list_del_init(&pmsg->queue);
1150 		}
1151 
1152 		spin_unlock(&data->lock);
1153 		return;
1154 	}
1155 
1156 	data->bcurrent_msg_processing = true;
1157 	dev_dbg(&data->master->dev,
1158 		"%s Set data->bcurrent_msg_processing= true\n", __func__);
1159 
1160 	/* Get the message from the queue and delete it from there. */
1161 	data->current_msg = list_entry(data->queue.next, struct spi_message,
1162 					queue);
1163 
1164 	list_del_init(&data->current_msg->queue);
1165 
1166 	data->current_msg->status = 0;
1167 
1168 	pch_spi_select_chip(data, data->current_msg->spi);
1169 
1170 	spin_unlock(&data->lock);
1171 
1172 	if (data->use_dma)
1173 		pch_spi_request_dma(data,
1174 				    data->current_msg->spi->bits_per_word);
1175 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1176 	do {
1177 		int cnt;
1178 		/* If we are already processing a message get the next
1179 		transfer structure from the message otherwise retrieve
1180 		the 1st transfer request from the message. */
1181 		spin_lock(&data->lock);
1182 		if (data->cur_trans == NULL) {
1183 			data->cur_trans =
1184 				list_entry(data->current_msg->transfers.next,
1185 					   struct spi_transfer, transfer_list);
1186 			dev_dbg(&data->master->dev,
1187 				"%s :Getting 1st transfer message\n",
1188 				__func__);
1189 		} else {
1190 			data->cur_trans =
1191 				list_entry(data->cur_trans->transfer_list.next,
1192 					   struct spi_transfer, transfer_list);
1193 			dev_dbg(&data->master->dev,
1194 				"%s :Getting next transfer message\n",
1195 				__func__);
1196 		}
1197 		spin_unlock(&data->lock);
1198 
1199 		if (!data->cur_trans->len)
1200 			goto out;
1201 		cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1202 		data->save_total_len = data->cur_trans->len;
1203 		if (data->use_dma) {
1204 			int i;
1205 			char *save_rx_buf = data->cur_trans->rx_buf;
1206 
1207 			for (i = 0; i < cnt; i++) {
1208 				pch_spi_handle_dma(data, &bpw);
1209 				if (!pch_spi_start_transfer(data)) {
1210 					data->transfer_complete = true;
1211 					data->current_msg->status = -EIO;
1212 					data->current_msg->complete
1213 						   (data->current_msg->context);
1214 					data->bcurrent_msg_processing = false;
1215 					data->current_msg = NULL;
1216 					data->cur_trans = NULL;
1217 					goto out;
1218 				}
1219 				pch_spi_copy_rx_data_for_dma(data, bpw);
1220 			}
1221 			data->cur_trans->rx_buf = save_rx_buf;
1222 		} else {
1223 			pch_spi_set_tx(data, &bpw);
1224 			pch_spi_set_ir(data);
1225 			pch_spi_copy_rx_data(data, bpw);
1226 			kfree(data->pkt_rx_buff);
1227 			data->pkt_rx_buff = NULL;
1228 			kfree(data->pkt_tx_buff);
1229 			data->pkt_tx_buff = NULL;
1230 		}
1231 		/* increment message count */
1232 		data->cur_trans->len = data->save_total_len;
1233 		data->current_msg->actual_length += data->cur_trans->len;
1234 
1235 		dev_dbg(&data->master->dev,
1236 			"%s:data->current_msg->actual_length=%d\n",
1237 			__func__, data->current_msg->actual_length);
1238 
1239 		spi_transfer_delay_exec(data->cur_trans);
1240 
1241 		spin_lock(&data->lock);
1242 
1243 		/* No more transfer in this message. */
1244 		if ((data->cur_trans->transfer_list.next) ==
1245 		    &(data->current_msg->transfers)) {
1246 			pch_spi_nomore_transfer(data);
1247 		}
1248 
1249 		spin_unlock(&data->lock);
1250 
1251 	} while (data->cur_trans != NULL);
1252 
1253 out:
1254 	pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1255 	if (data->use_dma)
1256 		pch_spi_release_dma(data);
1257 }
1258 
1259 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1260 				   struct pch_spi_data *data)
1261 {
1262 	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1263 
1264 	flush_work(&data->work);
1265 }
1266 
1267 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1268 				 struct pch_spi_data *data)
1269 {
1270 	dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1271 
1272 	/* reset PCH SPI h/w */
1273 	pch_spi_reset(data->master);
1274 	dev_dbg(&board_dat->pdev->dev,
1275 		"%s pch_spi_reset invoked successfully\n", __func__);
1276 
1277 	dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1278 
1279 	return 0;
1280 }
1281 
1282 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1283 			     struct pch_spi_data *data)
1284 {
1285 	struct pch_spi_dma_ctrl *dma;
1286 
1287 	dma = &data->dma;
1288 	if (dma->tx_buf_dma)
1289 		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1290 				  dma->tx_buf_virt, dma->tx_buf_dma);
1291 	if (dma->rx_buf_dma)
1292 		dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1293 				  dma->rx_buf_virt, dma->rx_buf_dma);
1294 }
1295 
1296 static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1297 			      struct pch_spi_data *data)
1298 {
1299 	struct pch_spi_dma_ctrl *dma;
1300 	int ret;
1301 
1302 	dma = &data->dma;
1303 	ret = 0;
1304 	/* Get Consistent memory for Tx DMA */
1305 	dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1306 				PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1307 	if (!dma->tx_buf_virt)
1308 		ret = -ENOMEM;
1309 
1310 	/* Get Consistent memory for Rx DMA */
1311 	dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1312 				PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1313 	if (!dma->rx_buf_virt)
1314 		ret = -ENOMEM;
1315 
1316 	return ret;
1317 }
1318 
1319 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1320 {
1321 	int ret;
1322 	struct spi_master *master;
1323 	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1324 	struct pch_spi_data *data;
1325 
1326 	dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1327 
1328 	master = spi_alloc_master(&board_dat->pdev->dev,
1329 				  sizeof(struct pch_spi_data));
1330 	if (!master) {
1331 		dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1332 			plat_dev->id);
1333 		return -ENOMEM;
1334 	}
1335 
1336 	data = spi_master_get_devdata(master);
1337 	data->master = master;
1338 
1339 	platform_set_drvdata(plat_dev, data);
1340 
1341 	/* baseaddress + address offset) */
1342 	data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1343 					 PCH_ADDRESS_SIZE * plat_dev->id;
1344 	data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1345 	if (!data->io_remap_addr) {
1346 		dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1347 		ret = -ENOMEM;
1348 		goto err_pci_iomap;
1349 	}
1350 	data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1351 
1352 	dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1353 		plat_dev->id, data->io_remap_addr);
1354 
1355 	/* initialize members of SPI master */
1356 	master->num_chipselect = PCH_MAX_CS;
1357 	master->transfer = pch_spi_transfer;
1358 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1359 	master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1360 	master->max_speed_hz = PCH_MAX_BAUDRATE;
1361 
1362 	data->board_dat = board_dat;
1363 	data->plat_dev = plat_dev;
1364 	data->n_curnt_chip = 255;
1365 	data->status = STATUS_RUNNING;
1366 	data->ch = plat_dev->id;
1367 	data->use_dma = use_dma;
1368 
1369 	INIT_LIST_HEAD(&data->queue);
1370 	spin_lock_init(&data->lock);
1371 	INIT_WORK(&data->work, pch_spi_process_messages);
1372 	init_waitqueue_head(&data->wait);
1373 
1374 	ret = pch_spi_get_resources(board_dat, data);
1375 	if (ret) {
1376 		dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1377 		goto err_spi_get_resources;
1378 	}
1379 
1380 	ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1381 			  IRQF_SHARED, KBUILD_MODNAME, data);
1382 	if (ret) {
1383 		dev_err(&plat_dev->dev,
1384 			"%s request_irq failed\n", __func__);
1385 		goto err_request_irq;
1386 	}
1387 	data->irq_reg_sts = true;
1388 
1389 	pch_spi_set_master_mode(master);
1390 
1391 	if (use_dma) {
1392 		dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1393 		ret = pch_alloc_dma_buf(board_dat, data);
1394 		if (ret)
1395 			goto err_spi_register_master;
1396 	}
1397 
1398 	ret = spi_register_master(master);
1399 	if (ret != 0) {
1400 		dev_err(&plat_dev->dev,
1401 			"%s spi_register_master FAILED\n", __func__);
1402 		goto err_spi_register_master;
1403 	}
1404 
1405 	return 0;
1406 
1407 err_spi_register_master:
1408 	pch_free_dma_buf(board_dat, data);
1409 	free_irq(board_dat->pdev->irq, data);
1410 err_request_irq:
1411 	pch_spi_free_resources(board_dat, data);
1412 err_spi_get_resources:
1413 	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1414 err_pci_iomap:
1415 	spi_master_put(master);
1416 
1417 	return ret;
1418 }
1419 
1420 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1421 {
1422 	struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1423 	struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1424 	int count;
1425 	unsigned long flags;
1426 
1427 	dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1428 		__func__, plat_dev->id, board_dat->pdev->irq);
1429 
1430 	if (use_dma)
1431 		pch_free_dma_buf(board_dat, data);
1432 
1433 	/* check for any pending messages; no action is taken if the queue
1434 	 * is still full; but at least we tried.  Unload anyway */
1435 	count = 500;
1436 	spin_lock_irqsave(&data->lock, flags);
1437 	data->status = STATUS_EXITING;
1438 	while ((list_empty(&data->queue) == 0) && --count) {
1439 		dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1440 			__func__);
1441 		spin_unlock_irqrestore(&data->lock, flags);
1442 		msleep(PCH_SLEEP_TIME);
1443 		spin_lock_irqsave(&data->lock, flags);
1444 	}
1445 	spin_unlock_irqrestore(&data->lock, flags);
1446 
1447 	pch_spi_free_resources(board_dat, data);
1448 	/* disable interrupts & free IRQ */
1449 	if (data->irq_reg_sts) {
1450 		/* disable interrupts */
1451 		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1452 		data->irq_reg_sts = false;
1453 		free_irq(board_dat->pdev->irq, data);
1454 	}
1455 
1456 	pci_iounmap(board_dat->pdev, data->io_remap_addr);
1457 	spi_unregister_master(data->master);
1458 
1459 	return 0;
1460 }
1461 #ifdef CONFIG_PM
1462 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1463 			      pm_message_t state)
1464 {
1465 	u8 count;
1466 	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1467 	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1468 
1469 	dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1470 
1471 	if (!board_dat) {
1472 		dev_err(&pd_dev->dev,
1473 			"%s pci_get_drvdata returned NULL\n", __func__);
1474 		return -EFAULT;
1475 	}
1476 
1477 	/* check if the current message is processed:
1478 	   Only after thats done the transfer will be suspended */
1479 	count = 255;
1480 	while ((--count) > 0) {
1481 		if (!(data->bcurrent_msg_processing))
1482 			break;
1483 		msleep(PCH_SLEEP_TIME);
1484 	}
1485 
1486 	/* Free IRQ */
1487 	if (data->irq_reg_sts) {
1488 		/* disable all interrupts */
1489 		pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1490 		pch_spi_reset(data->master);
1491 		free_irq(board_dat->pdev->irq, data);
1492 
1493 		data->irq_reg_sts = false;
1494 		dev_dbg(&pd_dev->dev,
1495 			"%s free_irq invoked successfully.\n", __func__);
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1502 {
1503 	struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1504 	struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1505 	int retval;
1506 
1507 	if (!board_dat) {
1508 		dev_err(&pd_dev->dev,
1509 			"%s pci_get_drvdata returned NULL\n", __func__);
1510 		return -EFAULT;
1511 	}
1512 
1513 	if (!data->irq_reg_sts) {
1514 		/* register IRQ */
1515 		retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1516 				     IRQF_SHARED, KBUILD_MODNAME, data);
1517 		if (retval < 0) {
1518 			dev_err(&pd_dev->dev,
1519 				"%s request_irq failed\n", __func__);
1520 			return retval;
1521 		}
1522 
1523 		/* reset PCH SPI h/w */
1524 		pch_spi_reset(data->master);
1525 		pch_spi_set_master_mode(data->master);
1526 		data->irq_reg_sts = true;
1527 	}
1528 	return 0;
1529 }
1530 #else
1531 #define pch_spi_pd_suspend NULL
1532 #define pch_spi_pd_resume NULL
1533 #endif
1534 
1535 static struct platform_driver pch_spi_pd_driver = {
1536 	.driver = {
1537 		.name = "pch-spi",
1538 	},
1539 	.probe = pch_spi_pd_probe,
1540 	.remove = pch_spi_pd_remove,
1541 	.suspend = pch_spi_pd_suspend,
1542 	.resume = pch_spi_pd_resume
1543 };
1544 
1545 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1546 {
1547 	struct pch_spi_board_data *board_dat;
1548 	struct platform_device *pd_dev = NULL;
1549 	int retval;
1550 	int i;
1551 	struct pch_pd_dev_save *pd_dev_save;
1552 
1553 	pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1554 	if (!pd_dev_save)
1555 		return -ENOMEM;
1556 
1557 	board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1558 	if (!board_dat) {
1559 		retval = -ENOMEM;
1560 		goto err_no_mem;
1561 	}
1562 
1563 	retval = pci_request_regions(pdev, KBUILD_MODNAME);
1564 	if (retval) {
1565 		dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1566 		goto pci_request_regions;
1567 	}
1568 
1569 	board_dat->pdev = pdev;
1570 	board_dat->num = id->driver_data;
1571 	pd_dev_save->num = id->driver_data;
1572 	pd_dev_save->board_dat = board_dat;
1573 
1574 	retval = pci_enable_device(pdev);
1575 	if (retval) {
1576 		dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1577 		goto pci_enable_device;
1578 	}
1579 
1580 	for (i = 0; i < board_dat->num; i++) {
1581 		pd_dev = platform_device_alloc("pch-spi", i);
1582 		if (!pd_dev) {
1583 			dev_err(&pdev->dev, "platform_device_alloc failed\n");
1584 			retval = -ENOMEM;
1585 			goto err_platform_device;
1586 		}
1587 		pd_dev_save->pd_save[i] = pd_dev;
1588 		pd_dev->dev.parent = &pdev->dev;
1589 
1590 		retval = platform_device_add_data(pd_dev, board_dat,
1591 						  sizeof(*board_dat));
1592 		if (retval) {
1593 			dev_err(&pdev->dev,
1594 				"platform_device_add_data failed\n");
1595 			platform_device_put(pd_dev);
1596 			goto err_platform_device;
1597 		}
1598 
1599 		retval = platform_device_add(pd_dev);
1600 		if (retval) {
1601 			dev_err(&pdev->dev, "platform_device_add failed\n");
1602 			platform_device_put(pd_dev);
1603 			goto err_platform_device;
1604 		}
1605 	}
1606 
1607 	pci_set_drvdata(pdev, pd_dev_save);
1608 
1609 	return 0;
1610 
1611 err_platform_device:
1612 	while (--i >= 0)
1613 		platform_device_unregister(pd_dev_save->pd_save[i]);
1614 	pci_disable_device(pdev);
1615 pci_enable_device:
1616 	pci_release_regions(pdev);
1617 pci_request_regions:
1618 	kfree(board_dat);
1619 err_no_mem:
1620 	kfree(pd_dev_save);
1621 
1622 	return retval;
1623 }
1624 
1625 static void pch_spi_remove(struct pci_dev *pdev)
1626 {
1627 	int i;
1628 	struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1629 
1630 	dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1631 
1632 	for (i = 0; i < pd_dev_save->num; i++)
1633 		platform_device_unregister(pd_dev_save->pd_save[i]);
1634 
1635 	pci_disable_device(pdev);
1636 	pci_release_regions(pdev);
1637 	kfree(pd_dev_save->board_dat);
1638 	kfree(pd_dev_save);
1639 }
1640 
1641 static int __maybe_unused pch_spi_suspend(struct device *dev)
1642 {
1643 	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1644 
1645 	dev_dbg(dev, "%s ENTRY\n", __func__);
1646 
1647 	pd_dev_save->board_dat->suspend_sts = true;
1648 
1649 	return 0;
1650 }
1651 
1652 static int __maybe_unused pch_spi_resume(struct device *dev)
1653 {
1654 	struct pch_pd_dev_save *pd_dev_save = dev_get_drvdata(dev);
1655 
1656 	dev_dbg(dev, "%s ENTRY\n", __func__);
1657 
1658 	/* set suspend status to false */
1659 	pd_dev_save->board_dat->suspend_sts = false;
1660 
1661 	return 0;
1662 }
1663 
1664 static SIMPLE_DEV_PM_OPS(pch_spi_pm_ops, pch_spi_suspend, pch_spi_resume);
1665 
1666 static struct pci_driver pch_spi_pcidev_driver = {
1667 	.name = "pch_spi",
1668 	.id_table = pch_spi_pcidev_id,
1669 	.probe = pch_spi_probe,
1670 	.remove = pch_spi_remove,
1671 	.driver.pm = &pch_spi_pm_ops,
1672 };
1673 
1674 static int __init pch_spi_init(void)
1675 {
1676 	int ret;
1677 	ret = platform_driver_register(&pch_spi_pd_driver);
1678 	if (ret)
1679 		return ret;
1680 
1681 	ret = pci_register_driver(&pch_spi_pcidev_driver);
1682 	if (ret) {
1683 		platform_driver_unregister(&pch_spi_pd_driver);
1684 		return ret;
1685 	}
1686 
1687 	return 0;
1688 }
1689 module_init(pch_spi_init);
1690 
1691 static void __exit pch_spi_exit(void)
1692 {
1693 	pci_unregister_driver(&pch_spi_pcidev_driver);
1694 	platform_driver_unregister(&pch_spi_pd_driver);
1695 }
1696 module_exit(pch_spi_exit);
1697 
1698 module_param(use_dma, int, 0644);
1699 MODULE_PARM_DESC(use_dma,
1700 		 "to use DMA for data transfers pass 1 else 0; default 1");
1701 
1702 MODULE_LICENSE("GPL");
1703 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1704 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1705 
1706